Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_PGTABLE_H
3#define _LINUX_PGTABLE_H
4
5#include <linux/pfn.h>
6#include <asm/pgtable.h>
7
8#define PMD_ORDER (PMD_SHIFT - PAGE_SHIFT)
9#define PUD_ORDER (PUD_SHIFT - PAGE_SHIFT)
10
11#ifndef __ASSEMBLY__
12#ifdef CONFIG_MMU
13
14#include <linux/mm_types.h>
15#include <linux/bug.h>
16#include <linux/errno.h>
17#include <asm-generic/pgtable_uffd.h>
18#include <linux/page_table_check.h>
19
20#if 5 - defined(__PAGETABLE_P4D_FOLDED) - defined(__PAGETABLE_PUD_FOLDED) - \
21 defined(__PAGETABLE_PMD_FOLDED) != CONFIG_PGTABLE_LEVELS
22#error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{P4D,PUD,PMD}_FOLDED
23#endif
24
25/*
26 * On almost all architectures and configurations, 0 can be used as the
27 * upper ceiling to free_pgtables(): on many architectures it has the same
28 * effect as using TASK_SIZE. However, there is one configuration which
29 * must impose a more careful limit, to avoid freeing kernel pgtables.
30 */
31#ifndef USER_PGTABLES_CEILING
32#define USER_PGTABLES_CEILING 0UL
33#endif
34
35/*
36 * This defines the first usable user address. Platforms
37 * can override its value with custom FIRST_USER_ADDRESS
38 * defined in their respective <asm/pgtable.h>.
39 */
40#ifndef FIRST_USER_ADDRESS
41#define FIRST_USER_ADDRESS 0UL
42#endif
43
44/*
45 * This defines the generic helper for accessing PMD page
46 * table page. Although platforms can still override this
47 * via their respective <asm/pgtable.h>.
48 */
49#ifndef pmd_pgtable
50#define pmd_pgtable(pmd) pmd_page(pmd)
51#endif
52
53#define pmd_folio(pmd) page_folio(pmd_page(pmd))
54
55/*
56 * A page table page can be thought of an array like this: pXd_t[PTRS_PER_PxD]
57 *
58 * The pXx_index() functions return the index of the entry in the page
59 * table page which would control the given virtual address
60 *
61 * As these functions may be used by the same code for different levels of
62 * the page table folding, they are always available, regardless of
63 * CONFIG_PGTABLE_LEVELS value. For the folded levels they simply return 0
64 * because in such cases PTRS_PER_PxD equals 1.
65 */
66
67static inline unsigned long pte_index(unsigned long address)
68{
69 return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
70}
71
72#ifndef pmd_index
73static inline unsigned long pmd_index(unsigned long address)
74{
75 return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
76}
77#define pmd_index pmd_index
78#endif
79
80#ifndef pud_index
81static inline unsigned long pud_index(unsigned long address)
82{
83 return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1);
84}
85#define pud_index pud_index
86#endif
87
88#ifndef pgd_index
89/* Must be a compile-time constant, so implement it as a macro */
90#define pgd_index(a) (((a) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
91#endif
92
93#ifndef kernel_pte_init
94static inline void kernel_pte_init(void *addr)
95{
96}
97#define kernel_pte_init kernel_pte_init
98#endif
99
100#ifndef pmd_init
101static inline void pmd_init(void *addr)
102{
103}
104#define pmd_init pmd_init
105#endif
106
107#ifndef pud_init
108static inline void pud_init(void *addr)
109{
110}
111#define pud_init pud_init
112#endif
113
114#ifndef pte_offset_kernel
115static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address)
116{
117 return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address);
118}
119#define pte_offset_kernel pte_offset_kernel
120#endif
121
122#ifdef CONFIG_HIGHPTE
123#define __pte_map(pmd, address) \
124 ((pte_t *)kmap_local_page(pmd_page(*(pmd))) + pte_index((address)))
125#define pte_unmap(pte) do { \
126 kunmap_local((pte)); \
127 rcu_read_unlock(); \
128} while (0)
129#else
130static inline pte_t *__pte_map(pmd_t *pmd, unsigned long address)
131{
132 return pte_offset_kernel(pmd, address);
133}
134static inline void pte_unmap(pte_t *pte)
135{
136 rcu_read_unlock();
137}
138#endif
139
140void pte_free_defer(struct mm_struct *mm, pgtable_t pgtable);
141
142/* Find an entry in the second-level page table.. */
143#ifndef pmd_offset
144static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
145{
146 return pud_pgtable(*pud) + pmd_index(address);
147}
148#define pmd_offset pmd_offset
149#endif
150
151#ifndef pud_offset
152static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address)
153{
154 return p4d_pgtable(*p4d) + pud_index(address);
155}
156#define pud_offset pud_offset
157#endif
158
159static inline pgd_t *pgd_offset_pgd(pgd_t *pgd, unsigned long address)
160{
161 return (pgd + pgd_index(address));
162};
163
164/*
165 * a shortcut to get a pgd_t in a given mm
166 */
167#ifndef pgd_offset
168#define pgd_offset(mm, address) pgd_offset_pgd((mm)->pgd, (address))
169#endif
170
171/*
172 * a shortcut which implies the use of the kernel's pgd, instead
173 * of a process's
174 */
175#define pgd_offset_k(address) pgd_offset(&init_mm, (address))
176
177/*
178 * In many cases it is known that a virtual address is mapped at PMD or PTE
179 * level, so instead of traversing all the page table levels, we can get a
180 * pointer to the PMD entry in user or kernel page table or translate a virtual
181 * address to the pointer in the PTE in the kernel page tables with simple
182 * helpers.
183 */
184static inline pmd_t *pmd_off(struct mm_struct *mm, unsigned long va)
185{
186 return pmd_offset(pud_offset(p4d_offset(pgd_offset(mm, va), va), va), va);
187}
188
189static inline pmd_t *pmd_off_k(unsigned long va)
190{
191 return pmd_offset(pud_offset(p4d_offset(pgd_offset_k(va), va), va), va);
192}
193
194static inline pte_t *virt_to_kpte(unsigned long vaddr)
195{
196 pmd_t *pmd = pmd_off_k(vaddr);
197
198 return pmd_none(*pmd) ? NULL : pte_offset_kernel(pmd, vaddr);
199}
200
201#ifndef pmd_young
202static inline int pmd_young(pmd_t pmd)
203{
204 return 0;
205}
206#endif
207
208#ifndef pmd_dirty
209static inline int pmd_dirty(pmd_t pmd)
210{
211 return 0;
212}
213#endif
214
215/*
216 * A facility to provide lazy MMU batching. This allows PTE updates and
217 * page invalidations to be delayed until a call to leave lazy MMU mode
218 * is issued. Some architectures may benefit from doing this, and it is
219 * beneficial for both shadow and direct mode hypervisors, which may batch
220 * the PTE updates which happen during this window. Note that using this
221 * interface requires that read hazards be removed from the code. A read
222 * hazard could result in the direct mode hypervisor case, since the actual
223 * write to the page tables may not yet have taken place, so reads though
224 * a raw PTE pointer after it has been modified are not guaranteed to be
225 * up to date.
226 *
227 * In the general case, no lock is guaranteed to be held between entry and exit
228 * of the lazy mode. So the implementation must assume preemption may be enabled
229 * and cpu migration is possible; it must take steps to be robust against this.
230 * (In practice, for user PTE updates, the appropriate page table lock(s) are
231 * held, but for kernel PTE updates, no lock is held). Nesting is not permitted
232 * and the mode cannot be used in interrupt context.
233 */
234#ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
235static inline void arch_enter_lazy_mmu_mode(void) {}
236static inline void arch_leave_lazy_mmu_mode(void) {}
237static inline void arch_flush_lazy_mmu_mode(void) {}
238#endif
239
240#ifndef pte_batch_hint
241/**
242 * pte_batch_hint - Number of pages that can be added to batch without scanning.
243 * @ptep: Page table pointer for the entry.
244 * @pte: Page table entry.
245 *
246 * Some architectures know that a set of contiguous ptes all map the same
247 * contiguous memory with the same permissions. In this case, it can provide a
248 * hint to aid pte batching without the core code needing to scan every pte.
249 *
250 * An architecture implementation may ignore the PTE accessed state. Further,
251 * the dirty state must apply atomically to all the PTEs described by the hint.
252 *
253 * May be overridden by the architecture, else pte_batch_hint is always 1.
254 */
255static inline unsigned int pte_batch_hint(pte_t *ptep, pte_t pte)
256{
257 return 1;
258}
259#endif
260
261#ifndef pte_advance_pfn
262static inline pte_t pte_advance_pfn(pte_t pte, unsigned long nr)
263{
264 return __pte(pte_val(pte) + (nr << PFN_PTE_SHIFT));
265}
266#endif
267
268#define pte_next_pfn(pte) pte_advance_pfn(pte, 1)
269
270#ifndef set_ptes
271/**
272 * set_ptes - Map consecutive pages to a contiguous range of addresses.
273 * @mm: Address space to map the pages into.
274 * @addr: Address to map the first page at.
275 * @ptep: Page table pointer for the first entry.
276 * @pte: Page table entry for the first page.
277 * @nr: Number of pages to map.
278 *
279 * When nr==1, initial state of pte may be present or not present, and new state
280 * may be present or not present. When nr>1, initial state of all ptes must be
281 * not present, and new state must be present.
282 *
283 * May be overridden by the architecture, or the architecture can define
284 * set_pte() and PFN_PTE_SHIFT.
285 *
286 * Context: The caller holds the page table lock. The pages all belong
287 * to the same folio. The PTEs are all in the same PMD.
288 */
289static inline void set_ptes(struct mm_struct *mm, unsigned long addr,
290 pte_t *ptep, pte_t pte, unsigned int nr)
291{
292 page_table_check_ptes_set(mm, ptep, pte, nr);
293
294 for (;;) {
295 set_pte(ptep, pte);
296 if (--nr == 0)
297 break;
298 ptep++;
299 pte = pte_next_pfn(pte);
300 }
301}
302#endif
303#define set_pte_at(mm, addr, ptep, pte) set_ptes(mm, addr, ptep, pte, 1)
304
305#ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
306extern int ptep_set_access_flags(struct vm_area_struct *vma,
307 unsigned long address, pte_t *ptep,
308 pte_t entry, int dirty);
309#endif
310
311#ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
312#ifdef CONFIG_TRANSPARENT_HUGEPAGE
313extern int pmdp_set_access_flags(struct vm_area_struct *vma,
314 unsigned long address, pmd_t *pmdp,
315 pmd_t entry, int dirty);
316extern int pudp_set_access_flags(struct vm_area_struct *vma,
317 unsigned long address, pud_t *pudp,
318 pud_t entry, int dirty);
319#else
320static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
321 unsigned long address, pmd_t *pmdp,
322 pmd_t entry, int dirty)
323{
324 BUILD_BUG();
325 return 0;
326}
327static inline int pudp_set_access_flags(struct vm_area_struct *vma,
328 unsigned long address, pud_t *pudp,
329 pud_t entry, int dirty)
330{
331 BUILD_BUG();
332 return 0;
333}
334#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
335#endif
336
337#ifndef ptep_get
338static inline pte_t ptep_get(pte_t *ptep)
339{
340 return READ_ONCE(*ptep);
341}
342#endif
343
344#ifndef pmdp_get
345static inline pmd_t pmdp_get(pmd_t *pmdp)
346{
347 return READ_ONCE(*pmdp);
348}
349#endif
350
351#ifndef pudp_get
352static inline pud_t pudp_get(pud_t *pudp)
353{
354 return READ_ONCE(*pudp);
355}
356#endif
357
358#ifndef p4dp_get
359static inline p4d_t p4dp_get(p4d_t *p4dp)
360{
361 return READ_ONCE(*p4dp);
362}
363#endif
364
365#ifndef pgdp_get
366static inline pgd_t pgdp_get(pgd_t *pgdp)
367{
368 return READ_ONCE(*pgdp);
369}
370#endif
371
372#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
373static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
374 unsigned long address,
375 pte_t *ptep)
376{
377 pte_t pte = ptep_get(ptep);
378 int r = 1;
379 if (!pte_young(pte))
380 r = 0;
381 else
382 set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
383 return r;
384}
385#endif
386
387#ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
388#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
389static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
390 unsigned long address,
391 pmd_t *pmdp)
392{
393 pmd_t pmd = *pmdp;
394 int r = 1;
395 if (!pmd_young(pmd))
396 r = 0;
397 else
398 set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
399 return r;
400}
401#else
402static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
403 unsigned long address,
404 pmd_t *pmdp)
405{
406 BUILD_BUG();
407 return 0;
408}
409#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG */
410#endif
411
412#ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
413int ptep_clear_flush_young(struct vm_area_struct *vma,
414 unsigned long address, pte_t *ptep);
415#endif
416
417#ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
418#ifdef CONFIG_TRANSPARENT_HUGEPAGE
419extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
420 unsigned long address, pmd_t *pmdp);
421#else
422/*
423 * Despite relevant to THP only, this API is called from generic rmap code
424 * under PageTransHuge(), hence needs a dummy implementation for !THP
425 */
426static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
427 unsigned long address, pmd_t *pmdp)
428{
429 BUILD_BUG();
430 return 0;
431}
432#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
433#endif
434
435#ifndef arch_has_hw_nonleaf_pmd_young
436/*
437 * Return whether the accessed bit in non-leaf PMD entries is supported on the
438 * local CPU.
439 */
440static inline bool arch_has_hw_nonleaf_pmd_young(void)
441{
442 return IS_ENABLED(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG);
443}
444#endif
445
446#ifndef arch_has_hw_pte_young
447/*
448 * Return whether the accessed bit is supported on the local CPU.
449 *
450 * This stub assumes accessing through an old PTE triggers a page fault.
451 * Architectures that automatically set the access bit should overwrite it.
452 */
453static inline bool arch_has_hw_pte_young(void)
454{
455 return IS_ENABLED(CONFIG_ARCH_HAS_HW_PTE_YOUNG);
456}
457#endif
458
459#ifndef exec_folio_order
460/*
461 * Returns preferred minimum folio order for executable file-backed memory. Must
462 * be in range [0, PMD_ORDER). Default to order-0.
463 */
464static inline unsigned int exec_folio_order(void)
465{
466 return 0;
467}
468#endif
469
470#ifndef arch_check_zapped_pte
471static inline void arch_check_zapped_pte(struct vm_area_struct *vma,
472 pte_t pte)
473{
474}
475#endif
476
477#ifndef arch_check_zapped_pmd
478static inline void arch_check_zapped_pmd(struct vm_area_struct *vma,
479 pmd_t pmd)
480{
481}
482#endif
483
484#ifndef arch_check_zapped_pud
485static inline void arch_check_zapped_pud(struct vm_area_struct *vma, pud_t pud)
486{
487}
488#endif
489
490#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
491static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
492 unsigned long address,
493 pte_t *ptep)
494{
495 pte_t pte = ptep_get(ptep);
496 pte_clear(mm, address, ptep);
497 page_table_check_pte_clear(mm, pte);
498 return pte;
499}
500#endif
501
502#ifndef clear_young_dirty_ptes
503/**
504 * clear_young_dirty_ptes - Mark PTEs that map consecutive pages of the
505 * same folio as old/clean.
506 * @mm: Address space the pages are mapped into.
507 * @addr: Address the first page is mapped at.
508 * @ptep: Page table pointer for the first entry.
509 * @nr: Number of entries to mark old/clean.
510 * @flags: Flags to modify the PTE batch semantics.
511 *
512 * May be overridden by the architecture; otherwise, implemented by
513 * get_and_clear/modify/set for each pte in the range.
514 *
515 * Note that PTE bits in the PTE range besides the PFN can differ. For example,
516 * some PTEs might be write-protected.
517 *
518 * Context: The caller holds the page table lock. The PTEs map consecutive
519 * pages that belong to the same folio. The PTEs are all in the same PMD.
520 */
521static inline void clear_young_dirty_ptes(struct vm_area_struct *vma,
522 unsigned long addr, pte_t *ptep,
523 unsigned int nr, cydp_t flags)
524{
525 pte_t pte;
526
527 for (;;) {
528 if (flags == CYDP_CLEAR_YOUNG)
529 ptep_test_and_clear_young(vma, addr, ptep);
530 else {
531 pte = ptep_get_and_clear(vma->vm_mm, addr, ptep);
532 if (flags & CYDP_CLEAR_YOUNG)
533 pte = pte_mkold(pte);
534 if (flags & CYDP_CLEAR_DIRTY)
535 pte = pte_mkclean(pte);
536 set_pte_at(vma->vm_mm, addr, ptep, pte);
537 }
538 if (--nr == 0)
539 break;
540 ptep++;
541 addr += PAGE_SIZE;
542 }
543}
544#endif
545
546static inline void ptep_clear(struct mm_struct *mm, unsigned long addr,
547 pte_t *ptep)
548{
549 pte_t pte = ptep_get(ptep);
550
551 pte_clear(mm, addr, ptep);
552 /*
553 * No need for ptep_get_and_clear(): page table check doesn't care about
554 * any bits that could have been set by HW concurrently.
555 */
556 page_table_check_pte_clear(mm, pte);
557}
558
559#ifdef CONFIG_GUP_GET_PXX_LOW_HIGH
560/*
561 * For walking the pagetables without holding any locks. Some architectures
562 * (eg x86-32 PAE) cannot load the entries atomically without using expensive
563 * instructions. We are guaranteed that a PTE will only either go from not
564 * present to present, or present to not present -- it will not switch to a
565 * completely different present page without a TLB flush inbetween; which we
566 * are blocking by holding interrupts off.
567 *
568 * Setting ptes from not present to present goes:
569 *
570 * ptep->pte_high = h;
571 * smp_wmb();
572 * ptep->pte_low = l;
573 *
574 * And present to not present goes:
575 *
576 * ptep->pte_low = 0;
577 * smp_wmb();
578 * ptep->pte_high = 0;
579 *
580 * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
581 * We load pte_high *after* loading pte_low, which ensures we don't see an older
582 * value of pte_high. *Then* we recheck pte_low, which ensures that we haven't
583 * picked up a changed pte high. We might have gotten rubbish values from
584 * pte_low and pte_high, but we are guaranteed that pte_low will not have the
585 * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
586 * operates on present ptes we're safe.
587 */
588static inline pte_t ptep_get_lockless(pte_t *ptep)
589{
590 pte_t pte;
591
592 do {
593 pte.pte_low = ptep->pte_low;
594 smp_rmb();
595 pte.pte_high = ptep->pte_high;
596 smp_rmb();
597 } while (unlikely(pte.pte_low != ptep->pte_low));
598
599 return pte;
600}
601#define ptep_get_lockless ptep_get_lockless
602
603#if CONFIG_PGTABLE_LEVELS > 2
604static inline pmd_t pmdp_get_lockless(pmd_t *pmdp)
605{
606 pmd_t pmd;
607
608 do {
609 pmd.pmd_low = pmdp->pmd_low;
610 smp_rmb();
611 pmd.pmd_high = pmdp->pmd_high;
612 smp_rmb();
613 } while (unlikely(pmd.pmd_low != pmdp->pmd_low));
614
615 return pmd;
616}
617#define pmdp_get_lockless pmdp_get_lockless
618#define pmdp_get_lockless_sync() tlb_remove_table_sync_one()
619#endif /* CONFIG_PGTABLE_LEVELS > 2 */
620#endif /* CONFIG_GUP_GET_PXX_LOW_HIGH */
621
622/*
623 * We require that the PTE can be read atomically.
624 */
625#ifndef ptep_get_lockless
626static inline pte_t ptep_get_lockless(pte_t *ptep)
627{
628 return ptep_get(ptep);
629}
630#endif
631
632#ifndef pmdp_get_lockless
633static inline pmd_t pmdp_get_lockless(pmd_t *pmdp)
634{
635 return pmdp_get(pmdp);
636}
637static inline void pmdp_get_lockless_sync(void)
638{
639}
640#endif
641
642#ifdef CONFIG_TRANSPARENT_HUGEPAGE
643#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
644static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
645 unsigned long address,
646 pmd_t *pmdp)
647{
648 pmd_t pmd = *pmdp;
649
650 pmd_clear(pmdp);
651 page_table_check_pmd_clear(mm, pmd);
652
653 return pmd;
654}
655#endif /* __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR */
656#ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR
657static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm,
658 unsigned long address,
659 pud_t *pudp)
660{
661 pud_t pud = *pudp;
662
663 pud_clear(pudp);
664 page_table_check_pud_clear(mm, pud);
665
666 return pud;
667}
668#endif /* __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR */
669#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
670
671#ifdef CONFIG_TRANSPARENT_HUGEPAGE
672#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
673static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
674 unsigned long address, pmd_t *pmdp,
675 int full)
676{
677 return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
678}
679#endif
680
681#ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL
682static inline pud_t pudp_huge_get_and_clear_full(struct vm_area_struct *vma,
683 unsigned long address, pud_t *pudp,
684 int full)
685{
686 return pudp_huge_get_and_clear(vma->vm_mm, address, pudp);
687}
688#endif
689#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
690
691#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
692static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
693 unsigned long address, pte_t *ptep,
694 int full)
695{
696 return ptep_get_and_clear(mm, address, ptep);
697}
698#endif
699
700#ifndef get_and_clear_full_ptes
701/**
702 * get_and_clear_full_ptes - Clear present PTEs that map consecutive pages of
703 * the same folio, collecting dirty/accessed bits.
704 * @mm: Address space the pages are mapped into.
705 * @addr: Address the first page is mapped at.
706 * @ptep: Page table pointer for the first entry.
707 * @nr: Number of entries to clear.
708 * @full: Whether we are clearing a full mm.
709 *
710 * May be overridden by the architecture; otherwise, implemented as a simple
711 * loop over ptep_get_and_clear_full(), merging dirty/accessed bits into the
712 * returned PTE.
713 *
714 * Note that PTE bits in the PTE range besides the PFN can differ. For example,
715 * some PTEs might be write-protected.
716 *
717 * Context: The caller holds the page table lock. The PTEs map consecutive
718 * pages that belong to the same folio. The PTEs are all in the same PMD.
719 */
720static inline pte_t get_and_clear_full_ptes(struct mm_struct *mm,
721 unsigned long addr, pte_t *ptep, unsigned int nr, int full)
722{
723 pte_t pte, tmp_pte;
724
725 pte = ptep_get_and_clear_full(mm, addr, ptep, full);
726 while (--nr) {
727 ptep++;
728 addr += PAGE_SIZE;
729 tmp_pte = ptep_get_and_clear_full(mm, addr, ptep, full);
730 if (pte_dirty(tmp_pte))
731 pte = pte_mkdirty(pte);
732 if (pte_young(tmp_pte))
733 pte = pte_mkyoung(pte);
734 }
735 return pte;
736}
737#endif
738
739/**
740 * get_and_clear_ptes - Clear present PTEs that map consecutive pages of
741 * the same folio, collecting dirty/accessed bits.
742 * @mm: Address space the pages are mapped into.
743 * @addr: Address the first page is mapped at.
744 * @ptep: Page table pointer for the first entry.
745 * @nr: Number of entries to clear.
746 *
747 * Use this instead of get_and_clear_full_ptes() if it is known that we don't
748 * need to clear the full mm, which is mostly the case.
749 *
750 * Note that PTE bits in the PTE range besides the PFN can differ. For example,
751 * some PTEs might be write-protected.
752 *
753 * Context: The caller holds the page table lock. The PTEs map consecutive
754 * pages that belong to the same folio. The PTEs are all in the same PMD.
755 */
756static inline pte_t get_and_clear_ptes(struct mm_struct *mm, unsigned long addr,
757 pte_t *ptep, unsigned int nr)
758{
759 return get_and_clear_full_ptes(mm, addr, ptep, nr, 0);
760}
761
762#ifndef clear_full_ptes
763/**
764 * clear_full_ptes - Clear present PTEs that map consecutive pages of the same
765 * folio.
766 * @mm: Address space the pages are mapped into.
767 * @addr: Address the first page is mapped at.
768 * @ptep: Page table pointer for the first entry.
769 * @nr: Number of entries to clear.
770 * @full: Whether we are clearing a full mm.
771 *
772 * May be overridden by the architecture; otherwise, implemented as a simple
773 * loop over ptep_get_and_clear_full().
774 *
775 * Note that PTE bits in the PTE range besides the PFN can differ. For example,
776 * some PTEs might be write-protected.
777 *
778 * Context: The caller holds the page table lock. The PTEs map consecutive
779 * pages that belong to the same folio. The PTEs are all in the same PMD.
780 */
781static inline void clear_full_ptes(struct mm_struct *mm, unsigned long addr,
782 pte_t *ptep, unsigned int nr, int full)
783{
784 for (;;) {
785 ptep_get_and_clear_full(mm, addr, ptep, full);
786 if (--nr == 0)
787 break;
788 ptep++;
789 addr += PAGE_SIZE;
790 }
791}
792#endif
793
794/**
795 * clear_ptes - Clear present PTEs that map consecutive pages of the same folio.
796 * @mm: Address space the pages are mapped into.
797 * @addr: Address the first page is mapped at.
798 * @ptep: Page table pointer for the first entry.
799 * @nr: Number of entries to clear.
800 *
801 * Use this instead of clear_full_ptes() if it is known that we don't need to
802 * clear the full mm, which is mostly the case.
803 *
804 * Note that PTE bits in the PTE range besides the PFN can differ. For example,
805 * some PTEs might be write-protected.
806 *
807 * Context: The caller holds the page table lock. The PTEs map consecutive
808 * pages that belong to the same folio. The PTEs are all in the same PMD.
809 */
810static inline void clear_ptes(struct mm_struct *mm, unsigned long addr,
811 pte_t *ptep, unsigned int nr)
812{
813 clear_full_ptes(mm, addr, ptep, nr, 0);
814}
815
816/*
817 * If two threads concurrently fault at the same page, the thread that
818 * won the race updates the PTE and its local TLB/Cache. The other thread
819 * gives up, simply does nothing, and continues; on architectures where
820 * software can update TLB, local TLB can be updated here to avoid next page
821 * fault. This function updates TLB only, do nothing with cache or others.
822 * It is the difference with function update_mmu_cache.
823 */
824#ifndef update_mmu_tlb_range
825static inline void update_mmu_tlb_range(struct vm_area_struct *vma,
826 unsigned long address, pte_t *ptep, unsigned int nr)
827{
828}
829#endif
830
831static inline void update_mmu_tlb(struct vm_area_struct *vma,
832 unsigned long address, pte_t *ptep)
833{
834 update_mmu_tlb_range(vma, address, ptep, 1);
835}
836
837/*
838 * Some architectures may be able to avoid expensive synchronization
839 * primitives when modifications are made to PTE's which are already
840 * not present, or in the process of an address space destruction.
841 */
842#ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
843static inline void pte_clear_not_present_full(struct mm_struct *mm,
844 unsigned long address,
845 pte_t *ptep,
846 int full)
847{
848 pte_clear(mm, address, ptep);
849}
850#endif
851
852#ifndef clear_not_present_full_ptes
853/**
854 * clear_not_present_full_ptes - Clear multiple not present PTEs which are
855 * consecutive in the pgtable.
856 * @mm: Address space the ptes represent.
857 * @addr: Address of the first pte.
858 * @ptep: Page table pointer for the first entry.
859 * @nr: Number of entries to clear.
860 * @full: Whether we are clearing a full mm.
861 *
862 * May be overridden by the architecture; otherwise, implemented as a simple
863 * loop over pte_clear_not_present_full().
864 *
865 * Context: The caller holds the page table lock. The PTEs are all not present.
866 * The PTEs are all in the same PMD.
867 */
868static inline void clear_not_present_full_ptes(struct mm_struct *mm,
869 unsigned long addr, pte_t *ptep, unsigned int nr, int full)
870{
871 for (;;) {
872 pte_clear_not_present_full(mm, addr, ptep, full);
873 if (--nr == 0)
874 break;
875 ptep++;
876 addr += PAGE_SIZE;
877 }
878}
879#endif
880
881#ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
882extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
883 unsigned long address,
884 pte_t *ptep);
885#endif
886
887#ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
888extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
889 unsigned long address,
890 pmd_t *pmdp);
891extern pud_t pudp_huge_clear_flush(struct vm_area_struct *vma,
892 unsigned long address,
893 pud_t *pudp);
894#endif
895
896#ifndef pte_mkwrite
897static inline pte_t pte_mkwrite(pte_t pte, struct vm_area_struct *vma)
898{
899 return pte_mkwrite_novma(pte);
900}
901#endif
902
903#if defined(CONFIG_ARCH_WANT_PMD_MKWRITE) && !defined(pmd_mkwrite)
904static inline pmd_t pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
905{
906 return pmd_mkwrite_novma(pmd);
907}
908#endif
909
910#ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
911struct mm_struct;
912static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
913{
914 pte_t old_pte = ptep_get(ptep);
915 set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
916}
917#endif
918
919#ifndef wrprotect_ptes
920/**
921 * wrprotect_ptes - Write-protect PTEs that map consecutive pages of the same
922 * folio.
923 * @mm: Address space the pages are mapped into.
924 * @addr: Address the first page is mapped at.
925 * @ptep: Page table pointer for the first entry.
926 * @nr: Number of entries to write-protect.
927 *
928 * May be overridden by the architecture; otherwise, implemented as a simple
929 * loop over ptep_set_wrprotect().
930 *
931 * Note that PTE bits in the PTE range besides the PFN can differ. For example,
932 * some PTEs might be write-protected.
933 *
934 * Context: The caller holds the page table lock. The PTEs map consecutive
935 * pages that belong to the same folio. The PTEs are all in the same PMD.
936 */
937static inline void wrprotect_ptes(struct mm_struct *mm, unsigned long addr,
938 pte_t *ptep, unsigned int nr)
939{
940 for (;;) {
941 ptep_set_wrprotect(mm, addr, ptep);
942 if (--nr == 0)
943 break;
944 ptep++;
945 addr += PAGE_SIZE;
946 }
947}
948#endif
949
950/*
951 * On some architectures hardware does not set page access bit when accessing
952 * memory page, it is responsibility of software setting this bit. It brings
953 * out extra page fault penalty to track page access bit. For optimization page
954 * access bit can be set during all page fault flow on these arches.
955 * To be differentiate with macro pte_mkyoung, this macro is used on platforms
956 * where software maintains page access bit.
957 */
958#ifndef pte_sw_mkyoung
959static inline pte_t pte_sw_mkyoung(pte_t pte)
960{
961 return pte;
962}
963#define pte_sw_mkyoung pte_sw_mkyoung
964#endif
965
966#ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
967#ifdef CONFIG_TRANSPARENT_HUGEPAGE
968static inline void pmdp_set_wrprotect(struct mm_struct *mm,
969 unsigned long address, pmd_t *pmdp)
970{
971 pmd_t old_pmd = *pmdp;
972 set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
973}
974#else
975static inline void pmdp_set_wrprotect(struct mm_struct *mm,
976 unsigned long address, pmd_t *pmdp)
977{
978 BUILD_BUG();
979}
980#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
981#endif
982#ifndef __HAVE_ARCH_PUDP_SET_WRPROTECT
983#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
984#ifdef CONFIG_TRANSPARENT_HUGEPAGE
985static inline void pudp_set_wrprotect(struct mm_struct *mm,
986 unsigned long address, pud_t *pudp)
987{
988 pud_t old_pud = *pudp;
989
990 set_pud_at(mm, address, pudp, pud_wrprotect(old_pud));
991}
992#else
993static inline void pudp_set_wrprotect(struct mm_struct *mm,
994 unsigned long address, pud_t *pudp)
995{
996 BUILD_BUG();
997}
998#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
999#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1000#endif
1001
1002#ifndef pmdp_collapse_flush
1003#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1004extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1005 unsigned long address, pmd_t *pmdp);
1006#else
1007static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1008 unsigned long address,
1009 pmd_t *pmdp)
1010{
1011 BUILD_BUG();
1012 return *pmdp;
1013}
1014#define pmdp_collapse_flush pmdp_collapse_flush
1015#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1016#endif
1017
1018#ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
1019extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1020 pgtable_t pgtable);
1021#endif
1022
1023#ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
1024extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
1025#endif
1026
1027#ifndef arch_needs_pgtable_deposit
1028#define arch_needs_pgtable_deposit() (false)
1029#endif
1030
1031#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1032/*
1033 * This is an implementation of pmdp_establish() that is only suitable for an
1034 * architecture that doesn't have hardware dirty/accessed bits. In this case we
1035 * can't race with CPU which sets these bits and non-atomic approach is fine.
1036 */
1037static inline pmd_t generic_pmdp_establish(struct vm_area_struct *vma,
1038 unsigned long address, pmd_t *pmdp, pmd_t pmd)
1039{
1040 pmd_t old_pmd = *pmdp;
1041 set_pmd_at(vma->vm_mm, address, pmdp, pmd);
1042 return old_pmd;
1043}
1044#endif
1045
1046#ifndef __HAVE_ARCH_PMDP_INVALIDATE
1047extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
1048 pmd_t *pmdp);
1049#endif
1050
1051#ifndef __HAVE_ARCH_PMDP_INVALIDATE_AD
1052
1053/*
1054 * pmdp_invalidate_ad() invalidates the PMD while changing a transparent
1055 * hugepage mapping in the page tables. This function is similar to
1056 * pmdp_invalidate(), but should only be used if the access and dirty bits would
1057 * not be cleared by the software in the new PMD value. The function ensures
1058 * that hardware changes of the access and dirty bits updates would not be lost.
1059 *
1060 * Doing so can allow in certain architectures to avoid a TLB flush in most
1061 * cases. Yet, another TLB flush might be necessary later if the PMD update
1062 * itself requires such flush (e.g., if protection was set to be stricter). Yet,
1063 * even when a TLB flush is needed because of the update, the caller may be able
1064 * to batch these TLB flushing operations, so fewer TLB flush operations are
1065 * needed.
1066 */
1067extern pmd_t pmdp_invalidate_ad(struct vm_area_struct *vma,
1068 unsigned long address, pmd_t *pmdp);
1069#endif
1070
1071#ifndef __HAVE_ARCH_PTE_SAME
1072static inline int pte_same(pte_t pte_a, pte_t pte_b)
1073{
1074 return pte_val(pte_a) == pte_val(pte_b);
1075}
1076#endif
1077
1078#ifndef __HAVE_ARCH_PTE_UNUSED
1079/*
1080 * Some architectures provide facilities to virtualization guests
1081 * so that they can flag allocated pages as unused. This allows the
1082 * host to transparently reclaim unused pages. This function returns
1083 * whether the pte's page is unused.
1084 */
1085static inline int pte_unused(pte_t pte)
1086{
1087 return 0;
1088}
1089#endif
1090
1091#ifndef pte_access_permitted
1092#define pte_access_permitted(pte, write) \
1093 (pte_present(pte) && (!(write) || pte_write(pte)))
1094#endif
1095
1096#ifndef pmd_access_permitted
1097#define pmd_access_permitted(pmd, write) \
1098 (pmd_present(pmd) && (!(write) || pmd_write(pmd)))
1099#endif
1100
1101#ifndef pud_access_permitted
1102#define pud_access_permitted(pud, write) \
1103 (pud_present(pud) && (!(write) || pud_write(pud)))
1104#endif
1105
1106#ifndef p4d_access_permitted
1107#define p4d_access_permitted(p4d, write) \
1108 (p4d_present(p4d) && (!(write) || p4d_write(p4d)))
1109#endif
1110
1111#ifndef pgd_access_permitted
1112#define pgd_access_permitted(pgd, write) \
1113 (pgd_present(pgd) && (!(write) || pgd_write(pgd)))
1114#endif
1115
1116#ifndef __HAVE_ARCH_PMD_SAME
1117static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
1118{
1119 return pmd_val(pmd_a) == pmd_val(pmd_b);
1120}
1121#endif
1122
1123#ifndef pud_same
1124static inline int pud_same(pud_t pud_a, pud_t pud_b)
1125{
1126 return pud_val(pud_a) == pud_val(pud_b);
1127}
1128#define pud_same pud_same
1129#endif
1130
1131#ifndef __HAVE_ARCH_P4D_SAME
1132static inline int p4d_same(p4d_t p4d_a, p4d_t p4d_b)
1133{
1134 return p4d_val(p4d_a) == p4d_val(p4d_b);
1135}
1136#endif
1137
1138#ifndef __HAVE_ARCH_PGD_SAME
1139static inline int pgd_same(pgd_t pgd_a, pgd_t pgd_b)
1140{
1141 return pgd_val(pgd_a) == pgd_val(pgd_b);
1142}
1143#endif
1144
1145#ifndef __HAVE_ARCH_DO_SWAP_PAGE
1146static inline void arch_do_swap_page_nr(struct mm_struct *mm,
1147 struct vm_area_struct *vma,
1148 unsigned long addr,
1149 pte_t pte, pte_t oldpte,
1150 int nr)
1151{
1152
1153}
1154#else
1155/*
1156 * Some architectures support metadata associated with a page. When a
1157 * page is being swapped out, this metadata must be saved so it can be
1158 * restored when the page is swapped back in. SPARC M7 and newer
1159 * processors support an ADI (Application Data Integrity) tag for the
1160 * page as metadata for the page. arch_do_swap_page() can restore this
1161 * metadata when a page is swapped back in.
1162 */
1163static inline void arch_do_swap_page_nr(struct mm_struct *mm,
1164 struct vm_area_struct *vma,
1165 unsigned long addr,
1166 pte_t pte, pte_t oldpte,
1167 int nr)
1168{
1169 for (int i = 0; i < nr; i++) {
1170 arch_do_swap_page(vma->vm_mm, vma, addr + i * PAGE_SIZE,
1171 pte_advance_pfn(pte, i),
1172 pte_advance_pfn(oldpte, i));
1173 }
1174}
1175#endif
1176
1177#ifndef __HAVE_ARCH_UNMAP_ONE
1178/*
1179 * Some architectures support metadata associated with a page. When a
1180 * page is being swapped out, this metadata must be saved so it can be
1181 * restored when the page is swapped back in. SPARC M7 and newer
1182 * processors support an ADI (Application Data Integrity) tag for the
1183 * page as metadata for the page. arch_unmap_one() can save this
1184 * metadata on a swap-out of a page.
1185 */
1186static inline int arch_unmap_one(struct mm_struct *mm,
1187 struct vm_area_struct *vma,
1188 unsigned long addr,
1189 pte_t orig_pte)
1190{
1191 return 0;
1192}
1193#endif
1194
1195/*
1196 * Allow architectures to preserve additional metadata associated with
1197 * swapped-out pages. The corresponding __HAVE_ARCH_SWAP_* macros and function
1198 * prototypes must be defined in the arch-specific asm/pgtable.h file.
1199 */
1200#ifndef __HAVE_ARCH_PREPARE_TO_SWAP
1201static inline int arch_prepare_to_swap(struct folio *folio)
1202{
1203 return 0;
1204}
1205#endif
1206
1207#ifndef __HAVE_ARCH_SWAP_INVALIDATE
1208static inline void arch_swap_invalidate_page(int type, pgoff_t offset)
1209{
1210}
1211
1212static inline void arch_swap_invalidate_area(int type)
1213{
1214}
1215#endif
1216
1217#ifndef __HAVE_ARCH_SWAP_RESTORE
1218static inline void arch_swap_restore(swp_entry_t entry, struct folio *folio)
1219{
1220}
1221#endif
1222
1223#ifndef __HAVE_ARCH_MOVE_PTE
1224#define move_pte(pte, old_addr, new_addr) (pte)
1225#endif
1226
1227#ifndef pte_accessible
1228# define pte_accessible(mm, pte) ((void)(pte), 1)
1229#endif
1230
1231#ifndef flush_tlb_fix_spurious_fault
1232#define flush_tlb_fix_spurious_fault(vma, address, ptep) flush_tlb_page(vma, address)
1233#endif
1234
1235#ifndef flush_tlb_fix_spurious_fault_pmd
1236#define flush_tlb_fix_spurious_fault_pmd(vma, address, pmdp) do { } while (0)
1237#endif
1238
1239/*
1240 * When walking page tables, get the address of the next boundary,
1241 * or the end address of the range if that comes earlier. Although no
1242 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
1243 */
1244
1245#define pgd_addr_end(addr, end) \
1246({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \
1247 (__boundary - 1 < (end) - 1)? __boundary: (end); \
1248})
1249
1250#ifndef p4d_addr_end
1251#define p4d_addr_end(addr, end) \
1252({ unsigned long __boundary = ((addr) + P4D_SIZE) & P4D_MASK; \
1253 (__boundary - 1 < (end) - 1)? __boundary: (end); \
1254})
1255#endif
1256
1257#ifndef pud_addr_end
1258#define pud_addr_end(addr, end) \
1259({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \
1260 (__boundary - 1 < (end) - 1)? __boundary: (end); \
1261})
1262#endif
1263
1264#ifndef pmd_addr_end
1265#define pmd_addr_end(addr, end) \
1266({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \
1267 (__boundary - 1 < (end) - 1)? __boundary: (end); \
1268})
1269#endif
1270
1271/*
1272 * When walking page tables, we usually want to skip any p?d_none entries;
1273 * and any p?d_bad entries - reporting the error before resetting to none.
1274 * Do the tests inline, but report and clear the bad entry in mm/memory.c.
1275 */
1276void pgd_clear_bad(pgd_t *);
1277
1278#ifndef __PAGETABLE_P4D_FOLDED
1279void p4d_clear_bad(p4d_t *);
1280#else
1281#define p4d_clear_bad(p4d) do { } while (0)
1282#endif
1283
1284#ifndef __PAGETABLE_PUD_FOLDED
1285void pud_clear_bad(pud_t *);
1286#else
1287#define pud_clear_bad(p4d) do { } while (0)
1288#endif
1289
1290void pmd_clear_bad(pmd_t *);
1291
1292static inline int pgd_none_or_clear_bad(pgd_t *pgd)
1293{
1294 if (pgd_none(*pgd))
1295 return 1;
1296 if (unlikely(pgd_bad(*pgd))) {
1297 pgd_clear_bad(pgd);
1298 return 1;
1299 }
1300 return 0;
1301}
1302
1303static inline int p4d_none_or_clear_bad(p4d_t *p4d)
1304{
1305 if (p4d_none(*p4d))
1306 return 1;
1307 if (unlikely(p4d_bad(*p4d))) {
1308 p4d_clear_bad(p4d);
1309 return 1;
1310 }
1311 return 0;
1312}
1313
1314static inline int pud_none_or_clear_bad(pud_t *pud)
1315{
1316 if (pud_none(*pud))
1317 return 1;
1318 if (unlikely(pud_bad(*pud))) {
1319 pud_clear_bad(pud);
1320 return 1;
1321 }
1322 return 0;
1323}
1324
1325static inline int pmd_none_or_clear_bad(pmd_t *pmd)
1326{
1327 if (pmd_none(*pmd))
1328 return 1;
1329 if (unlikely(pmd_bad(*pmd))) {
1330 pmd_clear_bad(pmd);
1331 return 1;
1332 }
1333 return 0;
1334}
1335
1336static inline pte_t __ptep_modify_prot_start(struct vm_area_struct *vma,
1337 unsigned long addr,
1338 pte_t *ptep)
1339{
1340 /*
1341 * Get the current pte state, but zero it out to make it
1342 * non-present, preventing the hardware from asynchronously
1343 * updating it.
1344 */
1345 return ptep_get_and_clear(vma->vm_mm, addr, ptep);
1346}
1347
1348static inline void __ptep_modify_prot_commit(struct vm_area_struct *vma,
1349 unsigned long addr,
1350 pte_t *ptep, pte_t pte)
1351{
1352 /*
1353 * The pte is non-present, so there's no hardware state to
1354 * preserve.
1355 */
1356 set_pte_at(vma->vm_mm, addr, ptep, pte);
1357}
1358
1359#ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1360/*
1361 * Start a pte protection read-modify-write transaction, which
1362 * protects against asynchronous hardware modifications to the pte.
1363 * The intention is not to prevent the hardware from making pte
1364 * updates, but to prevent any updates it may make from being lost.
1365 *
1366 * This does not protect against other software modifications of the
1367 * pte; the appropriate pte lock must be held over the transaction.
1368 *
1369 * Note that this interface is intended to be batchable, meaning that
1370 * ptep_modify_prot_commit may not actually update the pte, but merely
1371 * queue the update to be done at some later time. The update must be
1372 * actually committed before the pte lock is released, however.
1373 */
1374static inline pte_t ptep_modify_prot_start(struct vm_area_struct *vma,
1375 unsigned long addr,
1376 pte_t *ptep)
1377{
1378 return __ptep_modify_prot_start(vma, addr, ptep);
1379}
1380
1381/*
1382 * Commit an update to a pte, leaving any hardware-controlled bits in
1383 * the PTE unmodified. The pte returned from ptep_modify_prot_start() may
1384 * additionally have young and/or dirty bits set where previously they were not,
1385 * so the updated pte may have these additional changes.
1386 */
1387static inline void ptep_modify_prot_commit(struct vm_area_struct *vma,
1388 unsigned long addr,
1389 pte_t *ptep, pte_t old_pte, pte_t pte)
1390{
1391 __ptep_modify_prot_commit(vma, addr, ptep, pte);
1392}
1393#endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
1394
1395/**
1396 * modify_prot_start_ptes - Start a pte protection read-modify-write transaction
1397 * over a batch of ptes, which protects against asynchronous hardware
1398 * modifications to the ptes. The intention is not to prevent the hardware from
1399 * making pte updates, but to prevent any updates it may make from being lost.
1400 * Please see the comment above ptep_modify_prot_start() for full description.
1401 *
1402 * @vma: The virtual memory area the pages are mapped into.
1403 * @addr: Address the first page is mapped at.
1404 * @ptep: Page table pointer for the first entry.
1405 * @nr: Number of entries.
1406 *
1407 * May be overridden by the architecture; otherwise, implemented as a simple
1408 * loop over ptep_modify_prot_start(), collecting the a/d bits from each pte
1409 * in the batch.
1410 *
1411 * Note that PTE bits in the PTE batch besides the PFN can differ.
1412 *
1413 * Context: The caller holds the page table lock. The PTEs map consecutive
1414 * pages that belong to the same folio. All other PTE bits must be identical for
1415 * all PTEs in the batch except for young and dirty bits. The PTEs are all in
1416 * the same PMD.
1417 */
1418#ifndef modify_prot_start_ptes
1419static inline pte_t modify_prot_start_ptes(struct vm_area_struct *vma,
1420 unsigned long addr, pte_t *ptep, unsigned int nr)
1421{
1422 pte_t pte, tmp_pte;
1423
1424 pte = ptep_modify_prot_start(vma, addr, ptep);
1425 while (--nr) {
1426 ptep++;
1427 addr += PAGE_SIZE;
1428 tmp_pte = ptep_modify_prot_start(vma, addr, ptep);
1429 if (pte_dirty(tmp_pte))
1430 pte = pte_mkdirty(pte);
1431 if (pte_young(tmp_pte))
1432 pte = pte_mkyoung(pte);
1433 }
1434 return pte;
1435}
1436#endif
1437
1438/**
1439 * modify_prot_commit_ptes - Commit an update to a batch of ptes, leaving any
1440 * hardware-controlled bits in the PTE unmodified.
1441 *
1442 * @vma: The virtual memory area the pages are mapped into.
1443 * @addr: Address the first page is mapped at.
1444 * @ptep: Page table pointer for the first entry.
1445 * @old_pte: Old page table entry (for the first entry) which is now cleared.
1446 * @pte: New page table entry to be set.
1447 * @nr: Number of entries.
1448 *
1449 * May be overridden by the architecture; otherwise, implemented as a simple
1450 * loop over ptep_modify_prot_commit().
1451 *
1452 * Context: The caller holds the page table lock. The PTEs are all in the same
1453 * PMD. On exit, the set ptes in the batch map the same folio. The ptes set by
1454 * ptep_modify_prot_start() may additionally have young and/or dirty bits set
1455 * where previously they were not, so the updated ptes may have these
1456 * additional changes.
1457 */
1458#ifndef modify_prot_commit_ptes
1459static inline void modify_prot_commit_ptes(struct vm_area_struct *vma, unsigned long addr,
1460 pte_t *ptep, pte_t old_pte, pte_t pte, unsigned int nr)
1461{
1462 int i;
1463
1464 for (i = 0; i < nr; ++i, ++ptep, addr += PAGE_SIZE) {
1465 ptep_modify_prot_commit(vma, addr, ptep, old_pte, pte);
1466
1467 /* Advance PFN only, set same prot */
1468 old_pte = pte_next_pfn(old_pte);
1469 pte = pte_next_pfn(pte);
1470 }
1471}
1472#endif
1473
1474/*
1475 * Architectures can set this mask to a combination of PGTBL_P?D_MODIFIED values
1476 * and let generic vmalloc, ioremap and page table update code know when
1477 * arch_sync_kernel_mappings() needs to be called.
1478 */
1479#ifndef ARCH_PAGE_TABLE_SYNC_MASK
1480#define ARCH_PAGE_TABLE_SYNC_MASK 0
1481#endif
1482
1483/*
1484 * There is no default implementation for arch_sync_kernel_mappings(). It is
1485 * relied upon the compiler to optimize calls out if ARCH_PAGE_TABLE_SYNC_MASK
1486 * is 0.
1487 */
1488void arch_sync_kernel_mappings(unsigned long start, unsigned long end);
1489
1490#endif /* CONFIG_MMU */
1491
1492/*
1493 * No-op macros that just return the current protection value. Defined here
1494 * because these macros can be used even if CONFIG_MMU is not defined.
1495 */
1496
1497#ifndef pgprot_nx
1498#define pgprot_nx(prot) (prot)
1499#endif
1500
1501#ifndef pgprot_noncached
1502#define pgprot_noncached(prot) (prot)
1503#endif
1504
1505#ifndef pgprot_writecombine
1506#define pgprot_writecombine pgprot_noncached
1507#endif
1508
1509#ifndef pgprot_writethrough
1510#define pgprot_writethrough pgprot_noncached
1511#endif
1512
1513#ifndef pgprot_device
1514#define pgprot_device pgprot_noncached
1515#endif
1516
1517#ifndef pgprot_mhp
1518#define pgprot_mhp(prot) (prot)
1519#endif
1520
1521#ifdef CONFIG_MMU
1522#ifndef pgprot_modify
1523#define pgprot_modify pgprot_modify
1524static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
1525{
1526 if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot)))
1527 newprot = pgprot_noncached(newprot);
1528 if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot)))
1529 newprot = pgprot_writecombine(newprot);
1530 if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot)))
1531 newprot = pgprot_device(newprot);
1532 return newprot;
1533}
1534#endif
1535#endif /* CONFIG_MMU */
1536
1537#ifndef pgprot_encrypted
1538#define pgprot_encrypted(prot) (prot)
1539#endif
1540
1541#ifndef pgprot_decrypted
1542#define pgprot_decrypted(prot) (prot)
1543#endif
1544
1545/*
1546 * A facility to provide batching of the reload of page tables and
1547 * other process state with the actual context switch code for
1548 * paravirtualized guests. By convention, only one of the batched
1549 * update (lazy) modes (CPU, MMU) should be active at any given time,
1550 * entry should never be nested, and entry and exits should always be
1551 * paired. This is for sanity of maintaining and reasoning about the
1552 * kernel code. In this case, the exit (end of the context switch) is
1553 * in architecture-specific code, and so doesn't need a generic
1554 * definition.
1555 */
1556#ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
1557#define arch_start_context_switch(prev) do {} while (0)
1558#endif
1559
1560/*
1561 * Some platforms can customize the PTE soft-dirty bit making it unavailable
1562 * even if the architecture provides the resource.
1563 * Adding this API allows architectures to add their own checks for the
1564 * devices on which the kernel is running.
1565 * Note: When overriding it, please make sure the CONFIG_MEM_SOFT_DIRTY
1566 * is part of this macro.
1567 */
1568#ifndef pgtable_supports_soft_dirty
1569#define pgtable_supports_soft_dirty() IS_ENABLED(CONFIG_MEM_SOFT_DIRTY)
1570#endif
1571
1572#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
1573#ifndef CONFIG_ARCH_ENABLE_THP_MIGRATION
1574static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1575{
1576 return pmd;
1577}
1578
1579static inline int pmd_swp_soft_dirty(pmd_t pmd)
1580{
1581 return 0;
1582}
1583
1584static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1585{
1586 return pmd;
1587}
1588#endif
1589#else /* !CONFIG_HAVE_ARCH_SOFT_DIRTY */
1590static inline int pte_soft_dirty(pte_t pte)
1591{
1592 return 0;
1593}
1594
1595static inline int pmd_soft_dirty(pmd_t pmd)
1596{
1597 return 0;
1598}
1599
1600static inline pte_t pte_mksoft_dirty(pte_t pte)
1601{
1602 return pte;
1603}
1604
1605static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
1606{
1607 return pmd;
1608}
1609
1610static inline pte_t pte_clear_soft_dirty(pte_t pte)
1611{
1612 return pte;
1613}
1614
1615static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
1616{
1617 return pmd;
1618}
1619
1620static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
1621{
1622 return pte;
1623}
1624
1625static inline int pte_swp_soft_dirty(pte_t pte)
1626{
1627 return 0;
1628}
1629
1630static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
1631{
1632 return pte;
1633}
1634
1635static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1636{
1637 return pmd;
1638}
1639
1640static inline int pmd_swp_soft_dirty(pmd_t pmd)
1641{
1642 return 0;
1643}
1644
1645static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1646{
1647 return pmd;
1648}
1649#endif
1650
1651#ifndef __HAVE_PFNMAP_TRACKING
1652/*
1653 * Interfaces that can be used by architecture code to keep track of
1654 * memory type of pfn mappings specified by the remap_pfn_range,
1655 * vmf_insert_pfn.
1656 */
1657
1658static inline int pfnmap_setup_cachemode(unsigned long pfn, unsigned long size,
1659 pgprot_t *prot)
1660{
1661 return 0;
1662}
1663
1664static inline int pfnmap_track(unsigned long pfn, unsigned long size,
1665 pgprot_t *prot)
1666{
1667 return 0;
1668}
1669
1670static inline void pfnmap_untrack(unsigned long pfn, unsigned long size)
1671{
1672}
1673#else
1674/**
1675 * pfnmap_setup_cachemode - setup the cachemode in the pgprot for a pfn range
1676 * @pfn: the start of the pfn range
1677 * @size: the size of the pfn range in bytes
1678 * @prot: the pgprot to modify
1679 *
1680 * Lookup the cachemode for the pfn range starting at @pfn with the size
1681 * @size and store it in @prot, leaving other data in @prot unchanged.
1682 *
1683 * This allows for a hardware implementation to have fine-grained control of
1684 * memory cache behavior at page level granularity. Without a hardware
1685 * implementation, this function does nothing.
1686 *
1687 * Currently there is only one implementation for this - x86 Page Attribute
1688 * Table (PAT). See Documentation/arch/x86/pat.rst for more details.
1689 *
1690 * This function can fail if the pfn range spans pfns that require differing
1691 * cachemodes. If the pfn range was previously verified to have a single
1692 * cachemode, it is sufficient to query only a single pfn. The assumption is
1693 * that this is the case for drivers using the vmf_insert_pfn*() interface.
1694 *
1695 * Returns 0 on success and -EINVAL on error.
1696 */
1697int pfnmap_setup_cachemode(unsigned long pfn, unsigned long size,
1698 pgprot_t *prot);
1699
1700/**
1701 * pfnmap_track - track a pfn range
1702 * @pfn: the start of the pfn range
1703 * @size: the size of the pfn range in bytes
1704 * @prot: the pgprot to track
1705 *
1706 * Requested the pfn range to be 'tracked' by a hardware implementation and
1707 * setup the cachemode in @prot similar to pfnmap_setup_cachemode().
1708 *
1709 * This allows for fine-grained control of memory cache behaviour at page
1710 * level granularity. Tracking memory this way is persisted across VMA splits
1711 * (VMA merging does not apply for VM_PFNMAP).
1712 *
1713 * Currently, there is only one implementation for this - x86 Page Attribute
1714 * Table (PAT). See Documentation/arch/x86/pat.rst for more details.
1715 *
1716 * Returns 0 on success and -EINVAL on error.
1717 */
1718int pfnmap_track(unsigned long pfn, unsigned long size, pgprot_t *prot);
1719
1720/**
1721 * pfnmap_untrack - untrack a pfn range
1722 * @pfn: the start of the pfn range
1723 * @size: the size of the pfn range in bytes
1724 *
1725 * Untrack a pfn range previously tracked through pfnmap_track().
1726 */
1727void pfnmap_untrack(unsigned long pfn, unsigned long size);
1728#endif
1729
1730/**
1731 * pfnmap_setup_cachemode_pfn - setup the cachemode in the pgprot for a pfn
1732 * @pfn: the pfn
1733 * @prot: the pgprot to modify
1734 *
1735 * Lookup the cachemode for @pfn and store it in @prot, leaving other
1736 * data in @prot unchanged.
1737 *
1738 * See pfnmap_setup_cachemode() for details.
1739 */
1740static inline void pfnmap_setup_cachemode_pfn(unsigned long pfn, pgprot_t *prot)
1741{
1742 pfnmap_setup_cachemode(pfn, PAGE_SIZE, prot);
1743}
1744
1745#ifdef CONFIG_MMU
1746#ifdef __HAVE_COLOR_ZERO_PAGE
1747static inline int is_zero_pfn(unsigned long pfn)
1748{
1749 extern unsigned long zero_pfn;
1750 unsigned long offset_from_zero_pfn = pfn - zero_pfn;
1751 return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
1752}
1753
1754#define my_zero_pfn(addr) page_to_pfn(ZERO_PAGE(addr))
1755
1756#else
1757static inline int is_zero_pfn(unsigned long pfn)
1758{
1759 extern unsigned long zero_pfn;
1760 return pfn == zero_pfn;
1761}
1762
1763static inline unsigned long my_zero_pfn(unsigned long addr)
1764{
1765 extern unsigned long zero_pfn;
1766 return zero_pfn;
1767}
1768#endif
1769#else
1770static inline int is_zero_pfn(unsigned long pfn)
1771{
1772 return 0;
1773}
1774
1775static inline unsigned long my_zero_pfn(unsigned long addr)
1776{
1777 return 0;
1778}
1779#endif /* CONFIG_MMU */
1780
1781#ifdef CONFIG_MMU
1782
1783#ifndef CONFIG_TRANSPARENT_HUGEPAGE
1784static inline int pmd_trans_huge(pmd_t pmd)
1785{
1786 return 0;
1787}
1788#ifndef pmd_write
1789static inline int pmd_write(pmd_t pmd)
1790{
1791 BUG();
1792 return 0;
1793}
1794#endif /* pmd_write */
1795#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1796
1797#ifndef pud_write
1798static inline int pud_write(pud_t pud)
1799{
1800 BUG();
1801 return 0;
1802}
1803#endif /* pud_write */
1804
1805#if !defined(CONFIG_TRANSPARENT_HUGEPAGE) || \
1806 !defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1807static inline int pud_trans_huge(pud_t pud)
1808{
1809 return 0;
1810}
1811#endif
1812
1813static inline int pud_trans_unstable(pud_t *pud)
1814{
1815#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
1816 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1817 pud_t pudval = READ_ONCE(*pud);
1818
1819 if (pud_none(pudval) || pud_trans_huge(pudval))
1820 return 1;
1821 if (unlikely(pud_bad(pudval))) {
1822 pud_clear_bad(pud);
1823 return 1;
1824 }
1825#endif
1826 return 0;
1827}
1828
1829#ifndef CONFIG_NUMA_BALANCING
1830/*
1831 * In an inaccessible (PROT_NONE) VMA, pte_protnone() may indicate "yes". It is
1832 * perfectly valid to indicate "no" in that case, which is why our default
1833 * implementation defaults to "always no".
1834 *
1835 * In an accessible VMA, however, pte_protnone() reliably indicates PROT_NONE
1836 * page protection due to NUMA hinting. NUMA hinting faults only apply in
1837 * accessible VMAs.
1838 *
1839 * So, to reliably identify PROT_NONE PTEs that require a NUMA hinting fault,
1840 * looking at the VMA accessibility is sufficient.
1841 */
1842static inline int pte_protnone(pte_t pte)
1843{
1844 return 0;
1845}
1846
1847static inline int pmd_protnone(pmd_t pmd)
1848{
1849 return 0;
1850}
1851#endif /* CONFIG_NUMA_BALANCING */
1852
1853#endif /* CONFIG_MMU */
1854
1855#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
1856
1857#ifndef __PAGETABLE_P4D_FOLDED
1858int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot);
1859void p4d_clear_huge(p4d_t *p4d);
1860#else
1861static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1862{
1863 return 0;
1864}
1865static inline void p4d_clear_huge(p4d_t *p4d) { }
1866#endif /* !__PAGETABLE_P4D_FOLDED */
1867
1868int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot);
1869int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot);
1870int pud_clear_huge(pud_t *pud);
1871int pmd_clear_huge(pmd_t *pmd);
1872int p4d_free_pud_page(p4d_t *p4d, unsigned long addr);
1873int pud_free_pmd_page(pud_t *pud, unsigned long addr);
1874int pmd_free_pte_page(pmd_t *pmd, unsigned long addr);
1875#else /* !CONFIG_HAVE_ARCH_HUGE_VMAP */
1876static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1877{
1878 return 0;
1879}
1880static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
1881{
1882 return 0;
1883}
1884static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
1885{
1886 return 0;
1887}
1888static inline void p4d_clear_huge(p4d_t *p4d) { }
1889static inline int pud_clear_huge(pud_t *pud)
1890{
1891 return 0;
1892}
1893static inline int pmd_clear_huge(pmd_t *pmd)
1894{
1895 return 0;
1896}
1897static inline int p4d_free_pud_page(p4d_t *p4d, unsigned long addr)
1898{
1899 return 0;
1900}
1901static inline int pud_free_pmd_page(pud_t *pud, unsigned long addr)
1902{
1903 return 0;
1904}
1905static inline int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
1906{
1907 return 0;
1908}
1909#endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */
1910
1911#ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
1912#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1913/*
1914 * ARCHes with special requirements for evicting THP backing TLB entries can
1915 * implement this. Otherwise also, it can help optimize normal TLB flush in
1916 * THP regime. Stock flush_tlb_range() typically has optimization to nuke the
1917 * entire TLB if flush span is greater than a threshold, which will
1918 * likely be true for a single huge page. Thus a single THP flush will
1919 * invalidate the entire TLB which is not desirable.
1920 * e.g. see arch/arc: flush_pmd_tlb_range
1921 */
1922#define flush_pmd_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
1923#define flush_pud_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
1924#else
1925#define flush_pmd_tlb_range(vma, addr, end) BUILD_BUG()
1926#define flush_pud_tlb_range(vma, addr, end) BUILD_BUG()
1927#endif
1928#endif
1929
1930struct file;
1931int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
1932 unsigned long size, pgprot_t *vma_prot);
1933
1934#ifndef CONFIG_X86_ESPFIX64
1935static inline void init_espfix_bsp(void) { }
1936#endif
1937
1938extern void __init pgtable_cache_init(void);
1939
1940#ifndef __HAVE_ARCH_PFN_MODIFY_ALLOWED
1941static inline bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot)
1942{
1943 return true;
1944}
1945
1946static inline bool arch_has_pfn_modify_check(void)
1947{
1948 return false;
1949}
1950#endif /* !_HAVE_ARCH_PFN_MODIFY_ALLOWED */
1951
1952/*
1953 * Architecture PAGE_KERNEL_* fallbacks
1954 *
1955 * Some architectures don't define certain PAGE_KERNEL_* flags. This is either
1956 * because they really don't support them, or the port needs to be updated to
1957 * reflect the required functionality. Below are a set of relatively safe
1958 * fallbacks, as best effort, which we can count on in lieu of the architectures
1959 * not defining them on their own yet.
1960 */
1961
1962#ifndef PAGE_KERNEL_RO
1963# define PAGE_KERNEL_RO PAGE_KERNEL
1964#endif
1965
1966#ifndef PAGE_KERNEL_EXEC
1967# define PAGE_KERNEL_EXEC PAGE_KERNEL
1968#endif
1969
1970/*
1971 * Page Table Modification bits for pgtbl_mod_mask.
1972 *
1973 * These are used by the p?d_alloc_track*() and p*d_populate_kernel()
1974 * functions in the generic vmalloc, ioremap and page table update code
1975 * to track at which page-table levels entries have been modified.
1976 * Based on that the code can better decide when page table changes need
1977 * to be synchronized to other page-tables in the system.
1978 */
1979#define __PGTBL_PGD_MODIFIED 0
1980#define __PGTBL_P4D_MODIFIED 1
1981#define __PGTBL_PUD_MODIFIED 2
1982#define __PGTBL_PMD_MODIFIED 3
1983#define __PGTBL_PTE_MODIFIED 4
1984
1985#define PGTBL_PGD_MODIFIED BIT(__PGTBL_PGD_MODIFIED)
1986#define PGTBL_P4D_MODIFIED BIT(__PGTBL_P4D_MODIFIED)
1987#define PGTBL_PUD_MODIFIED BIT(__PGTBL_PUD_MODIFIED)
1988#define PGTBL_PMD_MODIFIED BIT(__PGTBL_PMD_MODIFIED)
1989#define PGTBL_PTE_MODIFIED BIT(__PGTBL_PTE_MODIFIED)
1990
1991/* Page-Table Modification Mask */
1992typedef unsigned int pgtbl_mod_mask;
1993
1994enum pgtable_level {
1995 PGTABLE_LEVEL_PTE = 0,
1996 PGTABLE_LEVEL_PMD,
1997 PGTABLE_LEVEL_PUD,
1998 PGTABLE_LEVEL_P4D,
1999 PGTABLE_LEVEL_PGD,
2000};
2001
2002static inline const char *pgtable_level_to_str(enum pgtable_level level)
2003{
2004 switch (level) {
2005 case PGTABLE_LEVEL_PTE:
2006 return "pte";
2007 case PGTABLE_LEVEL_PMD:
2008 return "pmd";
2009 case PGTABLE_LEVEL_PUD:
2010 return "pud";
2011 case PGTABLE_LEVEL_P4D:
2012 return "p4d";
2013 case PGTABLE_LEVEL_PGD:
2014 return "pgd";
2015 default:
2016 return "unknown";
2017 }
2018}
2019
2020#endif /* !__ASSEMBLY__ */
2021
2022#if !defined(MAX_POSSIBLE_PHYSMEM_BITS) && !defined(CONFIG_64BIT)
2023#ifdef CONFIG_PHYS_ADDR_T_64BIT
2024/*
2025 * ZSMALLOC needs to know the highest PFN on 32-bit architectures
2026 * with physical address space extension, but falls back to
2027 * BITS_PER_LONG otherwise.
2028 */
2029#error Missing MAX_POSSIBLE_PHYSMEM_BITS definition
2030#else
2031#define MAX_POSSIBLE_PHYSMEM_BITS 32
2032#endif
2033#endif
2034
2035#ifndef has_transparent_hugepage
2036#define has_transparent_hugepage() IS_BUILTIN(CONFIG_TRANSPARENT_HUGEPAGE)
2037#endif
2038
2039#ifndef has_transparent_pud_hugepage
2040#define has_transparent_pud_hugepage() IS_BUILTIN(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
2041#endif
2042/*
2043 * On some architectures it depends on the mm if the p4d/pud or pmd
2044 * layer of the page table hierarchy is folded or not.
2045 */
2046#ifndef mm_p4d_folded
2047#define mm_p4d_folded(mm) __is_defined(__PAGETABLE_P4D_FOLDED)
2048#endif
2049
2050#ifndef mm_pud_folded
2051#define mm_pud_folded(mm) __is_defined(__PAGETABLE_PUD_FOLDED)
2052#endif
2053
2054#ifndef mm_pmd_folded
2055#define mm_pmd_folded(mm) __is_defined(__PAGETABLE_PMD_FOLDED)
2056#endif
2057
2058#ifndef p4d_offset_lockless
2059#define p4d_offset_lockless(pgdp, pgd, address) p4d_offset(&(pgd), address)
2060#endif
2061#ifndef pud_offset_lockless
2062#define pud_offset_lockless(p4dp, p4d, address) pud_offset(&(p4d), address)
2063#endif
2064#ifndef pmd_offset_lockless
2065#define pmd_offset_lockless(pudp, pud, address) pmd_offset(&(pud), address)
2066#endif
2067
2068/*
2069 * pXd_leaf() is the API to check whether a pgtable entry is a huge page
2070 * mapping. It should work globally across all archs, without any
2071 * dependency on CONFIG_* options. For architectures that do not support
2072 * huge mappings on specific levels, below fallbacks will be used.
2073 *
2074 * A leaf pgtable entry should always imply the following:
2075 *
2076 * - It is a "present" entry. IOW, before using this API, please check it
2077 * with pXd_present() first. NOTE: it may not always mean the "present
2078 * bit" is set. For example, PROT_NONE entries are always "present".
2079 *
2080 * - It should _never_ be a swap entry of any type. Above "present" check
2081 * should have guarded this, but let's be crystal clear on this.
2082 *
2083 * - It should contain a huge PFN, which points to a huge page larger than
2084 * PAGE_SIZE of the platform. The PFN format isn't important here.
2085 *
2086 * - It should cover all kinds of huge mappings (i.e. pXd_trans_huge()
2087 * or hugetlb mappings).
2088 */
2089#ifndef pgd_leaf
2090#define pgd_leaf(x) false
2091#endif
2092#ifndef p4d_leaf
2093#define p4d_leaf(x) false
2094#endif
2095#ifndef pud_leaf
2096#define pud_leaf(x) false
2097#endif
2098#ifndef pmd_leaf
2099#define pmd_leaf(x) false
2100#endif
2101
2102#ifndef pgd_leaf_size
2103#define pgd_leaf_size(x) (1ULL << PGDIR_SHIFT)
2104#endif
2105#ifndef p4d_leaf_size
2106#define p4d_leaf_size(x) P4D_SIZE
2107#endif
2108#ifndef pud_leaf_size
2109#define pud_leaf_size(x) PUD_SIZE
2110#endif
2111#ifndef pmd_leaf_size
2112#define pmd_leaf_size(x) PMD_SIZE
2113#endif
2114#ifndef __pte_leaf_size
2115#ifndef pte_leaf_size
2116#define pte_leaf_size(x) PAGE_SIZE
2117#endif
2118#define __pte_leaf_size(x,y) pte_leaf_size(y)
2119#endif
2120
2121/*
2122 * We always define pmd_pfn for all archs as it's used in lots of generic
2123 * code. Now it happens too for pud_pfn (and can happen for larger
2124 * mappings too in the future; we're not there yet). Instead of defining
2125 * it for all archs (like pmd_pfn), provide a fallback.
2126 *
2127 * Note that returning 0 here means any arch that didn't define this can
2128 * get severely wrong when it hits a real pud leaf. It's arch's
2129 * responsibility to properly define it when a huge pud is possible.
2130 */
2131#ifndef pud_pfn
2132#define pud_pfn(x) 0
2133#endif
2134
2135/*
2136 * Some architectures have MMUs that are configurable or selectable at boot
2137 * time. These lead to variable PTRS_PER_x. For statically allocated arrays it
2138 * helps to have a static maximum value.
2139 */
2140
2141#ifndef MAX_PTRS_PER_PTE
2142#define MAX_PTRS_PER_PTE PTRS_PER_PTE
2143#endif
2144
2145#ifndef MAX_PTRS_PER_PMD
2146#define MAX_PTRS_PER_PMD PTRS_PER_PMD
2147#endif
2148
2149#ifndef MAX_PTRS_PER_PUD
2150#define MAX_PTRS_PER_PUD PTRS_PER_PUD
2151#endif
2152
2153#ifndef MAX_PTRS_PER_P4D
2154#define MAX_PTRS_PER_P4D PTRS_PER_P4D
2155#endif
2156
2157#ifndef pte_pgprot
2158#define pte_pgprot(x) ((pgprot_t) {0})
2159#endif
2160
2161#ifndef pmd_pgprot
2162#define pmd_pgprot(x) ((pgprot_t) {0})
2163#endif
2164
2165#ifndef pud_pgprot
2166#define pud_pgprot(x) ((pgprot_t) {0})
2167#endif
2168
2169/* description of effects of mapping type and prot in current implementation.
2170 * this is due to the limited x86 page protection hardware. The expected
2171 * behavior is in parens:
2172 *
2173 * map_type prot
2174 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
2175 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
2176 * w: (no) no w: (no) no w: (yes) yes w: (no) no
2177 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
2178 *
2179 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
2180 * w: (no) no w: (no) no w: (copy) copy w: (no) no
2181 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
2182 *
2183 * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
2184 * MAP_PRIVATE (with Enhanced PAN supported):
2185 * r: (no) no
2186 * w: (no) no
2187 * x: (yes) yes
2188 */
2189#define DECLARE_VM_GET_PAGE_PROT \
2190pgprot_t vm_get_page_prot(vm_flags_t vm_flags) \
2191{ \
2192 return protection_map[vm_flags & \
2193 (VM_READ | VM_WRITE | VM_EXEC | VM_SHARED)]; \
2194} \
2195EXPORT_SYMBOL(vm_get_page_prot);
2196
2197#endif /* _LINUX_PGTABLE_H */