at master 62 kB view raw
1/* 2 * Performance events: 3 * 4 * Copyright (C) 2008-2009, Linutronix GmbH, Thomas Gleixner <tglx@kernel.org> 5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra 7 * 8 * Data type definitions, declarations, prototypes. 9 * 10 * Started by: Thomas Gleixner and Ingo Molnar 11 * 12 * For licencing details see kernel-base/COPYING 13 */ 14#ifndef _LINUX_PERF_EVENT_H 15#define _LINUX_PERF_EVENT_H 16 17#include <uapi/linux/perf_event.h> 18#include <uapi/linux/bpf_perf_event.h> 19 20/* 21 * Kernel-internal data types and definitions: 22 */ 23 24#ifdef CONFIG_PERF_EVENTS 25# include <asm/perf_event.h> 26# include <asm/local64.h> 27#endif 28 29#ifdef CONFIG_HAVE_HW_BREAKPOINT 30# include <linux/rhashtable-types.h> 31# include <asm/hw_breakpoint.h> 32#endif 33 34#include <linux/list.h> 35#include <linux/mutex.h> 36#include <linux/rculist.h> 37#include <linux/rcupdate.h> 38#include <linux/spinlock.h> 39#include <linux/hrtimer.h> 40#include <linux/fs.h> 41#include <linux/pid_namespace.h> 42#include <linux/workqueue.h> 43#include <linux/ftrace.h> 44#include <linux/cpu.h> 45#include <linux/irq_work.h> 46#include <linux/static_key.h> 47#include <linux/jump_label_ratelimit.h> 48#include <linux/atomic.h> 49#include <linux/sysfs.h> 50#include <linux/perf_regs.h> 51#include <linux/cgroup.h> 52#include <linux/refcount.h> 53#include <linux/security.h> 54#include <linux/static_call.h> 55#include <linux/lockdep.h> 56 57#include <asm/local.h> 58 59struct perf_callchain_entry { 60 u64 nr; 61 u64 ip[]; /* /proc/sys/kernel/perf_event_max_stack */ 62}; 63 64struct perf_callchain_entry_ctx { 65 struct perf_callchain_entry *entry; 66 u32 max_stack; 67 u32 nr; 68 short contexts; 69 bool contexts_maxed; 70}; 71 72typedef unsigned long (*perf_copy_f)(void *dst, const void *src, 73 unsigned long off, unsigned long len); 74 75struct perf_raw_frag { 76 union { 77 struct perf_raw_frag *next; 78 unsigned long pad; 79 }; 80 perf_copy_f copy; 81 void *data; 82 u32 size; 83} __packed; 84 85struct perf_raw_record { 86 struct perf_raw_frag frag; 87 u32 size; 88}; 89 90static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag) 91{ 92 return frag->pad < sizeof(u64); 93} 94 95/* 96 * branch stack layout: 97 * nr: number of taken branches stored in entries[] 98 * hw_idx: The low level index of raw branch records 99 * for the most recent branch. 100 * -1ULL means invalid/unknown. 101 * 102 * Note that nr can vary from sample to sample 103 * branches (to, from) are stored from most recent 104 * to least recent, i.e., entries[0] contains the most 105 * recent branch. 106 * The entries[] is an abstraction of raw branch records, 107 * which may not be stored in age order in HW, e.g. Intel LBR. 108 * The hw_idx is to expose the low level index of raw 109 * branch record for the most recent branch aka entries[0]. 110 * The hw_idx index is between -1 (unknown) and max depth, 111 * which can be retrieved in /sys/devices/cpu/caps/branches. 112 * For the architectures whose raw branch records are 113 * already stored in age order, the hw_idx should be 0. 114 */ 115struct perf_branch_stack { 116 u64 nr; 117 u64 hw_idx; 118 struct perf_branch_entry entries[]; 119}; 120 121struct task_struct; 122 123/* 124 * extra PMU register associated with an event 125 */ 126struct hw_perf_event_extra { 127 u64 config; /* register value */ 128 unsigned int reg; /* register address or index */ 129 int alloc; /* extra register already allocated */ 130 int idx; /* index in shared_regs->regs[] */ 131}; 132 133/** 134 * hw_perf_event::flag values 135 * 136 * PERF_EVENT_FLAG_ARCH bits are reserved for architecture-specific 137 * usage. 138 */ 139#define PERF_EVENT_FLAG_ARCH 0x0fffffff 140#define PERF_EVENT_FLAG_USER_READ_CNT 0x80000000 141 142static_assert((PERF_EVENT_FLAG_USER_READ_CNT & PERF_EVENT_FLAG_ARCH) == 0); 143 144/** 145 * struct hw_perf_event - performance event hardware details: 146 */ 147struct hw_perf_event { 148#ifdef CONFIG_PERF_EVENTS 149 union { 150 struct { /* hardware */ 151 u64 config; 152 u64 config1; 153 u64 last_tag; 154 u64 dyn_constraint; 155 unsigned long config_base; 156 unsigned long event_base; 157 int event_base_rdpmc; 158 int idx; 159 int last_cpu; 160 int flags; 161 162 struct hw_perf_event_extra extra_reg; 163 struct hw_perf_event_extra branch_reg; 164 }; 165 struct { /* aux / Intel-PT */ 166 u64 aux_config; 167 /* 168 * For AUX area events, aux_paused cannot be a state 169 * flag because it can be updated asynchronously to 170 * state. 171 */ 172 unsigned int aux_paused; 173 }; 174 struct { /* software */ 175 struct hrtimer hrtimer; 176 }; 177 struct { /* tracepoint */ 178 /* for tp_event->class */ 179 struct list_head tp_list; 180 }; 181 struct { /* amd_power */ 182 u64 pwr_acc; 183 u64 ptsc; 184 }; 185#ifdef CONFIG_HAVE_HW_BREAKPOINT 186 struct { /* breakpoint */ 187 /* 188 * Crufty hack to avoid the chicken and egg 189 * problem hw_breakpoint has with context 190 * creation and event initalization. 191 */ 192 struct arch_hw_breakpoint info; 193 struct rhlist_head bp_list; 194 }; 195#endif 196 struct { /* amd_iommu */ 197 u8 iommu_bank; 198 u8 iommu_cntr; 199 u16 padding; 200 u64 conf; 201 u64 conf1; 202 }; 203 }; 204 /* 205 * If the event is a per task event, this will point to the task in 206 * question. See the comment in perf_event_alloc(). 207 */ 208 struct task_struct *target; 209 210 /* 211 * PMU would store hardware filter configuration 212 * here. 213 */ 214 void *addr_filters; 215 216 /* Last sync'ed generation of filters */ 217 unsigned long addr_filters_gen; 218 219/* 220 * hw_perf_event::state flags; used to track the PERF_EF_* state. 221 */ 222 223/* the counter is stopped */ 224#define PERF_HES_STOPPED 0x01 225 226/* event->count up-to-date */ 227#define PERF_HES_UPTODATE 0x02 228 229#define PERF_HES_ARCH 0x04 230 231 int state; 232 233 /* 234 * The last observed hardware counter value, updated with a 235 * local64_cmpxchg() such that pmu::read() can be called nested. 236 */ 237 local64_t prev_count; 238 239 /* 240 * The period to start the next sample with. 241 */ 242 u64 sample_period; 243 244 union { 245 struct { /* Sampling */ 246 /* 247 * The period we started this sample with. 248 */ 249 u64 last_period; 250 251 /* 252 * However much is left of the current period; 253 * note that this is a full 64bit value and 254 * allows for generation of periods longer 255 * than hardware might allow. 256 */ 257 local64_t period_left; 258 }; 259 struct { /* Topdown events counting for context switch */ 260 u64 saved_metric; 261 u64 saved_slots; 262 }; 263 }; 264 265 /* 266 * State for throttling the event, see __perf_event_overflow() and 267 * perf_adjust_freq_unthr_context(). 268 */ 269 u64 interrupts_seq; 270 u64 interrupts; 271 272 /* 273 * State for freq target events, see __perf_event_overflow() and 274 * perf_adjust_freq_unthr_context(). 275 */ 276 u64 freq_time_stamp; 277 u64 freq_count_stamp; 278#endif /* CONFIG_PERF_EVENTS */ 279}; 280 281struct perf_event; 282struct perf_event_pmu_context; 283 284/* 285 * Common implementation detail of pmu::{start,commit,cancel}_txn 286 */ 287 288/* txn to add/schedule event on PMU */ 289#define PERF_PMU_TXN_ADD 0x1 290 291/* txn to read event group from PMU */ 292#define PERF_PMU_TXN_READ 0x2 293 294/** 295 * pmu::capabilities flags 296 */ 297#define PERF_PMU_CAP_NO_INTERRUPT 0x0001 298#define PERF_PMU_CAP_NO_NMI 0x0002 299#define PERF_PMU_CAP_AUX_NO_SG 0x0004 300#define PERF_PMU_CAP_EXTENDED_REGS 0x0008 301#define PERF_PMU_CAP_EXCLUSIVE 0x0010 302#define PERF_PMU_CAP_ITRACE 0x0020 303#define PERF_PMU_CAP_NO_EXCLUDE 0x0040 304#define PERF_PMU_CAP_AUX_OUTPUT 0x0080 305#define PERF_PMU_CAP_EXTENDED_HW_TYPE 0x0100 306#define PERF_PMU_CAP_AUX_PAUSE 0x0200 307#define PERF_PMU_CAP_AUX_PREFER_LARGE 0x0400 308 309/** 310 * pmu::scope 311 */ 312enum perf_pmu_scope { 313 PERF_PMU_SCOPE_NONE = 0, 314 PERF_PMU_SCOPE_CORE, 315 PERF_PMU_SCOPE_DIE, 316 PERF_PMU_SCOPE_CLUSTER, 317 PERF_PMU_SCOPE_PKG, 318 PERF_PMU_SCOPE_SYS_WIDE, 319 PERF_PMU_MAX_SCOPE, 320}; 321 322struct perf_output_handle; 323 324#define PMU_NULL_DEV ((void *)(~0UL)) 325 326/** 327 * struct pmu - generic performance monitoring unit 328 */ 329struct pmu { 330 struct list_head entry; 331 332 spinlock_t events_lock; 333 struct list_head events; 334 335 struct module *module; 336 struct device *dev; 337 struct device *parent; 338 const struct attribute_group **attr_groups; 339 const struct attribute_group **attr_update; 340 const char *name; 341 int type; 342 343 /* 344 * various common per-pmu feature flags 345 */ 346 int capabilities; 347 348 /* 349 * PMU scope 350 */ 351 unsigned int scope; 352 353 struct perf_cpu_pmu_context * __percpu *cpu_pmu_context; 354 atomic_t exclusive_cnt; /* < 0: cpu; > 0: tsk */ 355 int task_ctx_nr; 356 int hrtimer_interval_ms; 357 358 /* number of address filters this PMU can do */ 359 unsigned int nr_addr_filters; 360 361 /* 362 * Fully disable/enable this PMU, can be used to protect from the PMI 363 * as well as for lazy/batch writing of the MSRs. 364 */ 365 void (*pmu_enable) (struct pmu *pmu); /* optional */ 366 void (*pmu_disable) (struct pmu *pmu); /* optional */ 367 368 /* 369 * Try and initialize the event for this PMU. 370 * 371 * Returns: 372 * -ENOENT -- @event is not for this PMU 373 * 374 * -ENODEV -- @event is for this PMU but PMU not present 375 * -EBUSY -- @event is for this PMU but PMU temporarily unavailable 376 * -EINVAL -- @event is for this PMU but @event is not valid 377 * -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported 378 * -EACCES -- @event is for this PMU, @event is valid, but no privileges 379 * 380 * 0 -- @event is for this PMU and valid 381 * 382 * Other error return values are allowed. 383 */ 384 int (*event_init) (struct perf_event *event); 385 386 /* 387 * Notification that the event was mapped or unmapped. Called 388 * in the context of the mapping task. 389 */ 390 void (*event_mapped) (struct perf_event *event, struct mm_struct *mm); /* optional */ 391 void (*event_unmapped) (struct perf_event *event, struct mm_struct *mm); /* optional */ 392 393 /* 394 * Flags for ->add()/->del()/ ->start()/->stop(). There are 395 * matching hw_perf_event::state flags. 396 */ 397 398/* start the counter when adding */ 399#define PERF_EF_START 0x01 400 401/* reload the counter when starting */ 402#define PERF_EF_RELOAD 0x02 403 404/* update the counter when stopping */ 405#define PERF_EF_UPDATE 0x04 406 407/* AUX area event, pause tracing */ 408#define PERF_EF_PAUSE 0x08 409 410/* AUX area event, resume tracing */ 411#define PERF_EF_RESUME 0x10 412 413 /* 414 * Adds/Removes a counter to/from the PMU, can be done inside a 415 * transaction, see the ->*_txn() methods. 416 * 417 * The add/del callbacks will reserve all hardware resources required 418 * to service the event, this includes any counter constraint 419 * scheduling etc. 420 * 421 * Called with IRQs disabled and the PMU disabled on the CPU the event 422 * is on. 423 * 424 * ->add() called without PERF_EF_START should result in the same state 425 * as ->add() followed by ->stop(). 426 * 427 * ->del() must always PERF_EF_UPDATE stop an event. If it calls 428 * ->stop() that must deal with already being stopped without 429 * PERF_EF_UPDATE. 430 */ 431 int (*add) (struct perf_event *event, int flags); 432 void (*del) (struct perf_event *event, int flags); 433 434 /* 435 * Starts/Stops a counter present on the PMU. 436 * 437 * The PMI handler should stop the counter when perf_event_overflow() 438 * returns !0. ->start() will be used to continue. 439 * 440 * Also used to change the sample period. 441 * 442 * Called with IRQs disabled and the PMU disabled on the CPU the event 443 * is on -- will be called from NMI context with the PMU generates 444 * NMIs. 445 * 446 * ->stop() with PERF_EF_UPDATE will read the counter and update 447 * period/count values like ->read() would. 448 * 449 * ->start() with PERF_EF_RELOAD will reprogram the counter 450 * value, must be preceded by a ->stop() with PERF_EF_UPDATE. 451 * 452 * ->stop() with PERF_EF_PAUSE will stop as simply as possible. Will not 453 * overlap another ->stop() with PERF_EF_PAUSE nor ->start() with 454 * PERF_EF_RESUME. 455 * 456 * ->start() with PERF_EF_RESUME will start as simply as possible but 457 * only if the counter is not otherwise stopped. Will not overlap 458 * another ->start() with PERF_EF_RESUME nor ->stop() with 459 * PERF_EF_PAUSE. 460 * 461 * Notably, PERF_EF_PAUSE/PERF_EF_RESUME *can* be concurrent with other 462 * ->stop()/->start() invocations, just not itself. 463 */ 464 void (*start) (struct perf_event *event, int flags); 465 void (*stop) (struct perf_event *event, int flags); 466 467 /* 468 * Updates the counter value of the event. 469 * 470 * For sampling capable PMUs this will also update the software period 471 * hw_perf_event::period_left field. 472 */ 473 void (*read) (struct perf_event *event); 474 475 /* 476 * Group events scheduling is treated as a transaction, add 477 * group events as a whole and perform one schedulability test. 478 * If the test fails, roll back the whole group 479 * 480 * Start the transaction, after this ->add() doesn't need to 481 * do schedulability tests. 482 * 483 * Optional. 484 */ 485 void (*start_txn) (struct pmu *pmu, unsigned int txn_flags); 486 /* 487 * If ->start_txn() disabled the ->add() schedulability test 488 * then ->commit_txn() is required to perform one. On success 489 * the transaction is closed. On error the transaction is kept 490 * open until ->cancel_txn() is called. 491 * 492 * Optional. 493 */ 494 int (*commit_txn) (struct pmu *pmu); 495 /* 496 * Will cancel the transaction, assumes ->del() is called 497 * for each successful ->add() during the transaction. 498 * 499 * Optional. 500 */ 501 void (*cancel_txn) (struct pmu *pmu); 502 503 /* 504 * Will return the value for perf_event_mmap_page::index for this event, 505 * if no implementation is provided it will default to 0 (see 506 * perf_event_idx_default). 507 */ 508 int (*event_idx) (struct perf_event *event); /*optional */ 509 510 /* 511 * context-switches callback 512 */ 513 void (*sched_task) (struct perf_event_pmu_context *pmu_ctx, 514 struct task_struct *task, bool sched_in); 515 516 /* 517 * Kmem cache of PMU specific data 518 */ 519 struct kmem_cache *task_ctx_cache; 520 521 /* 522 * Set up pmu-private data structures for an AUX area 523 */ 524 void *(*setup_aux) (struct perf_event *event, void **pages, 525 int nr_pages, bool overwrite); 526 /* optional */ 527 528 /* 529 * Free pmu-private AUX data structures 530 */ 531 void (*free_aux) (void *aux); /* optional */ 532 533 /* 534 * Take a snapshot of the AUX buffer without touching the event 535 * state, so that preempting ->start()/->stop() callbacks does 536 * not interfere with their logic. Called in PMI context. 537 * 538 * Returns the size of AUX data copied to the output handle. 539 * 540 * Optional. 541 */ 542 long (*snapshot_aux) (struct perf_event *event, 543 struct perf_output_handle *handle, 544 unsigned long size); 545 546 /* 547 * Validate address range filters: make sure the HW supports the 548 * requested configuration and number of filters; return 0 if the 549 * supplied filters are valid, -errno otherwise. 550 * 551 * Runs in the context of the ioctl()ing process and is not serialized 552 * with the rest of the PMU callbacks. 553 */ 554 int (*addr_filters_validate) (struct list_head *filters); 555 /* optional */ 556 557 /* 558 * Synchronize address range filter configuration: 559 * translate hw-agnostic filters into hardware configuration in 560 * event::hw::addr_filters. 561 * 562 * Runs as a part of filter sync sequence that is done in ->start() 563 * callback by calling perf_event_addr_filters_sync(). 564 * 565 * May (and should) traverse event::addr_filters::list, for which its 566 * caller provides necessary serialization. 567 */ 568 void (*addr_filters_sync) (struct perf_event *event); 569 /* optional */ 570 571 /* 572 * Check if event can be used for aux_output purposes for 573 * events of this PMU. 574 * 575 * Runs from perf_event_open(). Should return 0 for "no match" 576 * or non-zero for "match". 577 */ 578 int (*aux_output_match) (struct perf_event *event); 579 /* optional */ 580 581 /* 582 * Skip programming this PMU on the given CPU. Typically needed for 583 * big.LITTLE things. 584 */ 585 bool (*filter) (struct pmu *pmu, int cpu); /* optional */ 586 587 /* 588 * Check period value for PERF_EVENT_IOC_PERIOD ioctl. 589 */ 590 int (*check_period) (struct perf_event *event, u64 value); /* optional */ 591}; 592 593enum perf_addr_filter_action_t { 594 PERF_ADDR_FILTER_ACTION_STOP = 0, 595 PERF_ADDR_FILTER_ACTION_START, 596 PERF_ADDR_FILTER_ACTION_FILTER, 597}; 598 599/** 600 * struct perf_addr_filter - address range filter definition 601 * @entry: event's filter list linkage 602 * @path: object file's path for file-based filters 603 * @offset: filter range offset 604 * @size: filter range size (size==0 means single address trigger) 605 * @action: filter/start/stop 606 * 607 * This is a hardware-agnostic filter configuration as specified by the user. 608 */ 609struct perf_addr_filter { 610 struct list_head entry; 611 struct path path; 612 unsigned long offset; 613 unsigned long size; 614 enum perf_addr_filter_action_t action; 615}; 616 617/** 618 * struct perf_addr_filters_head - container for address range filters 619 * @list: list of filters for this event 620 * @lock: spinlock that serializes accesses to the @list and event's 621 * (and its children's) filter generations. 622 * @nr_file_filters: number of file-based filters 623 * 624 * A child event will use parent's @list (and therefore @lock), so they are 625 * bundled together; see perf_event_addr_filters(). 626 */ 627struct perf_addr_filters_head { 628 struct list_head list; 629 raw_spinlock_t lock; 630 unsigned int nr_file_filters; 631}; 632 633struct perf_addr_filter_range { 634 unsigned long start; 635 unsigned long size; 636}; 637 638/* 639 * The normal states are: 640 * 641 * ACTIVE --. 642 * ^ | 643 * | | 644 * sched_{in,out}() | 645 * | | 646 * v | 647 * ,---> INACTIVE --+ <-. 648 * | | | 649 * | {dis,en}able() 650 * sched_in() | | 651 * | OFF <--' --+ 652 * | | 653 * `---> ERROR ------' 654 * 655 * That is: 656 * 657 * sched_in: INACTIVE -> {ACTIVE,ERROR} 658 * sched_out: ACTIVE -> INACTIVE 659 * disable: {ACTIVE,INACTIVE} -> OFF 660 * enable: {OFF,ERROR} -> INACTIVE 661 * 662 * Where {OFF,ERROR} are disabled states. 663 * 664 * Then we have the {EXIT,REVOKED,DEAD} states which are various shades of 665 * defunct events: 666 * 667 * - EXIT means task that the even was assigned to died, but child events 668 * still live, and further children can still be created. But the event 669 * itself will never be active again. It can only transition to 670 * {REVOKED,DEAD}; 671 * 672 * - REVOKED means the PMU the event was associated with is gone; all 673 * functionality is stopped but the event is still alive. Can only 674 * transition to DEAD; 675 * 676 * - DEAD event really is DYING tearing down state and freeing bits. 677 * 678 */ 679enum perf_event_state { 680 PERF_EVENT_STATE_DEAD = -5, 681 PERF_EVENT_STATE_REVOKED = -4, /* pmu gone, must not touch */ 682 PERF_EVENT_STATE_EXIT = -3, /* task died, still inherit */ 683 PERF_EVENT_STATE_ERROR = -2, /* scheduling error, can enable */ 684 PERF_EVENT_STATE_OFF = -1, 685 PERF_EVENT_STATE_INACTIVE = 0, 686 PERF_EVENT_STATE_ACTIVE = 1, 687}; 688 689struct file; 690struct perf_sample_data; 691 692typedef void (*perf_overflow_handler_t)(struct perf_event *, 693 struct perf_sample_data *, 694 struct pt_regs *regs); 695 696/* 697 * Event capabilities. For event_caps and groups caps. 698 * 699 * PERF_EV_CAP_SOFTWARE: Is a software event. 700 * PERF_EV_CAP_READ_ACTIVE_PKG: A CPU event (or cgroup event) that can be read 701 * from any CPU in the package where it is active. 702 * PERF_EV_CAP_SIBLING: An event with this flag must be a group sibling and 703 * cannot be a group leader. If an event with this flag is detached from the 704 * group it is scheduled out and moved into an unrecoverable ERROR state. 705 * PERF_EV_CAP_READ_SCOPE: A CPU event that can be read from any CPU of the 706 * PMU scope where it is active. 707 */ 708#define PERF_EV_CAP_SOFTWARE BIT(0) 709#define PERF_EV_CAP_READ_ACTIVE_PKG BIT(1) 710#define PERF_EV_CAP_SIBLING BIT(2) 711#define PERF_EV_CAP_READ_SCOPE BIT(3) 712 713#define SWEVENT_HLIST_BITS 8 714#define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS) 715 716struct swevent_hlist { 717 struct hlist_head heads[SWEVENT_HLIST_SIZE]; 718 struct rcu_head rcu_head; 719}; 720 721#define PERF_ATTACH_CONTEXT 0x0001 722#define PERF_ATTACH_GROUP 0x0002 723#define PERF_ATTACH_TASK 0x0004 724#define PERF_ATTACH_TASK_DATA 0x0008 725#define PERF_ATTACH_GLOBAL_DATA 0x0010 726#define PERF_ATTACH_SCHED_CB 0x0020 727#define PERF_ATTACH_CHILD 0x0040 728#define PERF_ATTACH_EXCLUSIVE 0x0080 729#define PERF_ATTACH_CALLCHAIN 0x0100 730#define PERF_ATTACH_ITRACE 0x0200 731 732struct bpf_prog; 733struct perf_cgroup; 734struct perf_buffer; 735 736struct pmu_event_list { 737 raw_spinlock_t lock; 738 struct list_head list; 739}; 740 741/* 742 * event->sibling_list is modified whole holding both ctx->lock and ctx->mutex 743 * as such iteration must hold either lock. However, since ctx->lock is an IRQ 744 * safe lock, and is only held by the CPU doing the modification, having IRQs 745 * disabled is sufficient since it will hold-off the IPIs. 746 */ 747#ifdef CONFIG_PROVE_LOCKING 748# define lockdep_assert_event_ctx(event) \ 749 WARN_ON_ONCE(__lockdep_enabled && \ 750 (this_cpu_read(hardirqs_enabled) && \ 751 lockdep_is_held(&(event)->ctx->mutex) != LOCK_STATE_HELD)) 752#else 753# define lockdep_assert_event_ctx(event) 754#endif 755 756#define for_each_sibling_event(sibling, event) \ 757 lockdep_assert_event_ctx(event); \ 758 if ((event)->group_leader == (event)) \ 759 list_for_each_entry((sibling), &(event)->sibling_list, sibling_list) 760 761/** 762 * struct perf_event - performance event kernel representation: 763 */ 764struct perf_event { 765#ifdef CONFIG_PERF_EVENTS 766 /* 767 * entry onto perf_event_context::event_list; 768 * modifications require ctx->lock 769 * RCU safe iterations. 770 */ 771 struct list_head event_entry; 772 773 /* 774 * Locked for modification by both ctx->mutex and ctx->lock; holding 775 * either sufficies for read. 776 */ 777 struct list_head sibling_list; 778 struct list_head active_list; 779 /* 780 * Node on the pinned or flexible tree located at the event context; 781 */ 782 struct rb_node group_node; 783 u64 group_index; 784 /* 785 * We need storage to track the entries in perf_pmu_migrate_context; we 786 * cannot use the event_entry because of RCU and we want to keep the 787 * group in tact which avoids us using the other two entries. 788 */ 789 struct list_head migrate_entry; 790 791 struct hlist_node hlist_entry; 792 struct list_head active_entry; 793 int nr_siblings; 794 795 /* Not serialized. Only written during event initialization. */ 796 int event_caps; 797 /* The cumulative AND of all event_caps for events in this group. */ 798 int group_caps; 799 800 unsigned int group_generation; 801 struct perf_event *group_leader; 802 /* 803 * event->pmu will always point to pmu in which this event belongs. 804 * Whereas event->pmu_ctx->pmu may point to other pmu when group of 805 * different pmu events is created. 806 */ 807 struct pmu *pmu; 808 void *pmu_private; 809 810 enum perf_event_state state; 811 unsigned int attach_state; 812 local64_t count; 813 atomic64_t child_count; 814 815 /* 816 * These are the total time in nanoseconds that the event 817 * has been enabled (i.e. eligible to run, and the task has 818 * been scheduled in, if this is a per-task event) 819 * and running (scheduled onto the CPU), respectively. 820 */ 821 u64 total_time_enabled; 822 u64 total_time_running; 823 u64 tstamp; 824 825 struct perf_event_attr attr; 826 u16 header_size; 827 u16 id_header_size; 828 u16 read_size; 829 struct hw_perf_event hw; 830 831 struct perf_event_context *ctx; 832 /* 833 * event->pmu_ctx points to perf_event_pmu_context in which the event 834 * is added. This pmu_ctx can be of other pmu for sw event when that 835 * sw event is part of a group which also contains non-sw events. 836 */ 837 struct perf_event_pmu_context *pmu_ctx; 838 atomic_long_t refcount; 839 840 /* 841 * These accumulate total time (in nanoseconds) that children 842 * events have been enabled and running, respectively. 843 */ 844 atomic64_t child_total_time_enabled; 845 atomic64_t child_total_time_running; 846 847 /* 848 * Protect attach/detach and child_list: 849 */ 850 struct mutex child_mutex; 851 struct list_head child_list; 852 struct perf_event *parent; 853 854 int oncpu; 855 int cpu; 856 857 struct list_head owner_entry; 858 struct task_struct *owner; 859 860 /* mmap bits */ 861 struct mutex mmap_mutex; 862 refcount_t mmap_count; 863 864 struct perf_buffer *rb; 865 struct list_head rb_entry; 866 unsigned long rcu_batches; 867 int rcu_pending; 868 869 /* poll related */ 870 wait_queue_head_t waitq; 871 struct fasync_struct *fasync; 872 873 /* delayed work for NMIs and such */ 874 unsigned int pending_wakeup; 875 unsigned int pending_kill; 876 unsigned int pending_disable; 877 unsigned long pending_addr; /* SIGTRAP */ 878 struct irq_work pending_irq; 879 struct irq_work pending_disable_irq; 880 struct callback_head pending_task; 881 unsigned int pending_work; 882 883 atomic_t event_limit; 884 885 /* address range filters */ 886 struct perf_addr_filters_head addr_filters; 887 /* vma address array for file-based filders */ 888 struct perf_addr_filter_range *addr_filter_ranges; 889 unsigned long addr_filters_gen; 890 891 /* for aux_output events */ 892 struct perf_event *aux_event; 893 894 void (*destroy)(struct perf_event *); 895 struct rcu_head rcu_head; 896 897 struct pid_namespace *ns; 898 u64 id; 899 900 atomic64_t lost_samples; 901 902 u64 (*clock)(void); 903 perf_overflow_handler_t overflow_handler; 904 void *overflow_handler_context; 905 struct bpf_prog *prog; 906 u64 bpf_cookie; 907 908#ifdef CONFIG_EVENT_TRACING 909 struct trace_event_call *tp_event; 910 struct event_filter *filter; 911# ifdef CONFIG_FUNCTION_TRACER 912 struct ftrace_ops ftrace_ops; 913# endif 914#endif 915 916#ifdef CONFIG_CGROUP_PERF 917 struct perf_cgroup *cgrp; /* cgroup event is attach to */ 918#endif 919 920#ifdef CONFIG_SECURITY 921 void *security; 922#endif 923 struct list_head sb_list; 924 struct list_head pmu_list; 925 926 /* 927 * Certain events gets forwarded to another pmu internally by over- 928 * writing kernel copy of event->attr.type without user being aware 929 * of it. event->orig_type contains original 'type' requested by 930 * user. 931 */ 932 u32 orig_type; 933#endif /* CONFIG_PERF_EVENTS */ 934}; 935 936/* 937 * ,-----------------------[1:n]------------------------. 938 * V V 939 * perf_event_context <-[1:n]-> perf_event_pmu_context <-[1:n]- perf_event 940 * | | 941 * `--[n:1]-> pmu <-[1:n]--' 942 * 943 * 944 * struct perf_event_pmu_context lifetime is refcount based and RCU freed 945 * (similar to perf_event_context). Locking is as if it were a member of 946 * perf_event_context; specifically: 947 * 948 * modification, both: ctx->mutex && ctx->lock 949 * reading, either: ctx->mutex || ctx->lock 950 * 951 * There is one exception to this; namely put_pmu_ctx() isn't always called 952 * with ctx->mutex held; this means that as long as we can guarantee the epc 953 * has events the above rules hold. 954 * 955 * Specificially, sys_perf_event_open()'s group_leader case depends on 956 * ctx->mutex pinning the configuration. Since we hold a reference on 957 * group_leader (through the filedesc) it can't go away, therefore it's 958 * associated pmu_ctx must exist and cannot change due to ctx->mutex. 959 * 960 * perf_event holds a refcount on perf_event_context 961 * perf_event holds a refcount on perf_event_pmu_context 962 */ 963struct perf_event_pmu_context { 964 struct pmu *pmu; 965 struct perf_event_context *ctx; 966 967 struct list_head pmu_ctx_entry; 968 969 struct list_head pinned_active; 970 struct list_head flexible_active; 971 972 /* Used to identify the per-cpu perf_event_pmu_context */ 973 unsigned int embedded : 1; 974 975 unsigned int nr_events; 976 unsigned int nr_cgroups; 977 unsigned int nr_freq; 978 979 atomic_t refcount; /* event <-> epc */ 980 struct rcu_head rcu_head; 981 982 /* 983 * Set when one or more (plausibly active) event can't be scheduled 984 * due to pmu overcommit or pmu constraints, except tolerant to 985 * events not necessary to be active due to scheduling constraints, 986 * such as cgroups. 987 */ 988 int rotate_necessary; 989}; 990 991static inline bool perf_pmu_ctx_is_active(struct perf_event_pmu_context *epc) 992{ 993 return !list_empty(&epc->flexible_active) || !list_empty(&epc->pinned_active); 994} 995 996struct perf_event_groups { 997 struct rb_root tree; 998 u64 index; 999}; 1000 1001 1002/** 1003 * struct perf_event_context - event context structure 1004 * 1005 * Used as a container for task events and CPU events as well: 1006 */ 1007struct perf_event_context { 1008 /* 1009 * Protect the states of the events in the list, 1010 * nr_active, and the list: 1011 */ 1012 raw_spinlock_t lock; 1013 /* 1014 * Protect the list of events. Locking either mutex or lock 1015 * is sufficient to ensure the list doesn't change; to change 1016 * the list you need to lock both the mutex and the spinlock. 1017 */ 1018 struct mutex mutex; 1019 1020 struct list_head pmu_ctx_list; 1021 struct perf_event_groups pinned_groups; 1022 struct perf_event_groups flexible_groups; 1023 struct list_head event_list; 1024 1025 int nr_events; 1026 int nr_user; 1027 int is_active; 1028 1029 int nr_stat; 1030 int nr_freq; 1031 int rotate_disable; 1032 1033 refcount_t refcount; /* event <-> ctx */ 1034 struct task_struct *task; 1035 1036 /* 1037 * Context clock, runs when context enabled. 1038 */ 1039 u64 time; 1040 u64 timestamp; 1041 u64 timeoffset; 1042 1043 /* 1044 * These fields let us detect when two contexts have both 1045 * been cloned (inherited) from a common ancestor. 1046 */ 1047 struct perf_event_context *parent_ctx; 1048 u64 parent_gen; 1049 u64 generation; 1050 int pin_count; 1051#ifdef CONFIG_CGROUP_PERF 1052 int nr_cgroups; /* cgroup evts */ 1053#endif 1054 struct rcu_head rcu_head; 1055 1056 /* 1057 * The count of events for which using the switch-out fast path 1058 * should be avoided. 1059 * 1060 * Sum (event->pending_work + events with 1061 * (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))) 1062 * 1063 * The SIGTRAP is targeted at ctx->task, as such it won't do changing 1064 * that until the signal is delivered. 1065 */ 1066 local_t nr_no_switch_fast; 1067}; 1068 1069/** 1070 * struct perf_ctx_data - PMU specific data for a task 1071 * @rcu_head: To avoid the race on free PMU specific data 1072 * @refcount: To track users 1073 * @global: To track system-wide users 1074 * @ctx_cache: Kmem cache of PMU specific data 1075 * @data: PMU specific data 1076 * 1077 * Currently, the struct is only used in Intel LBR call stack mode to 1078 * save/restore the call stack of a task on context switches. 1079 * 1080 * The rcu_head is used to prevent the race on free the data. 1081 * The data only be allocated when Intel LBR call stack mode is enabled. 1082 * The data will be freed when the mode is disabled. 1083 * The content of the data will only be accessed in context switch, which 1084 * should be protected by rcu_read_lock(). 1085 * 1086 * Because of the alignment requirement of Intel Arch LBR, the Kmem cache 1087 * is used to allocate the PMU specific data. The ctx_cache is to track 1088 * the Kmem cache. 1089 * 1090 * Careful: Struct perf_ctx_data is added as a pointer in struct task_struct. 1091 * When system-wide Intel LBR call stack mode is enabled, a buffer with 1092 * constant size will be allocated for each task. 1093 * Also, system memory consumption can further grow when the size of 1094 * struct perf_ctx_data enlarges. 1095 */ 1096struct perf_ctx_data { 1097 struct rcu_head rcu_head; 1098 refcount_t refcount; 1099 int global; 1100 struct kmem_cache *ctx_cache; 1101 void *data; 1102}; 1103 1104struct perf_cpu_pmu_context { 1105 struct perf_event_pmu_context epc; 1106 struct perf_event_pmu_context *task_epc; 1107 1108 struct list_head sched_cb_entry; 1109 int sched_cb_usage; 1110 1111 int active_oncpu; 1112 int exclusive; 1113 int pmu_disable_count; 1114 1115 raw_spinlock_t hrtimer_lock; 1116 struct hrtimer hrtimer; 1117 ktime_t hrtimer_interval; 1118 unsigned int hrtimer_active; 1119}; 1120 1121/** 1122 * struct perf_event_cpu_context - per cpu event context structure 1123 */ 1124struct perf_cpu_context { 1125 struct perf_event_context ctx; 1126 struct perf_event_context *task_ctx; 1127 int online; 1128 1129#ifdef CONFIG_CGROUP_PERF 1130 struct perf_cgroup *cgrp; 1131#endif 1132 1133 /* 1134 * Per-CPU storage for iterators used in visit_groups_merge. The default 1135 * storage is of size 2 to hold the CPU and any CPU event iterators. 1136 */ 1137 int heap_size; 1138 struct perf_event **heap; 1139 struct perf_event *heap_default[2]; 1140}; 1141 1142struct perf_output_handle { 1143 struct perf_event *event; 1144 struct perf_buffer *rb; 1145 unsigned long wakeup; 1146 unsigned long size; 1147 union { 1148 u64 flags; /* perf_output*() */ 1149 u64 aux_flags; /* perf_aux_output*() */ 1150 struct { 1151 u64 skip_read : 1; 1152 }; 1153 }; 1154 union { 1155 void *addr; 1156 unsigned long head; 1157 }; 1158 int page; 1159}; 1160 1161struct bpf_perf_event_data_kern { 1162 bpf_user_pt_regs_t *regs; 1163 struct perf_sample_data *data; 1164 struct perf_event *event; 1165}; 1166 1167#ifdef CONFIG_CGROUP_PERF 1168 1169/* 1170 * perf_cgroup_info keeps track of time_enabled for a cgroup. 1171 * This is a per-cpu dynamically allocated data structure. 1172 */ 1173struct perf_cgroup_info { 1174 u64 time; 1175 u64 timestamp; 1176 u64 timeoffset; 1177 int active; 1178}; 1179 1180struct perf_cgroup { 1181 struct cgroup_subsys_state css; 1182 struct perf_cgroup_info __percpu *info; 1183}; 1184 1185/* 1186 * Must ensure cgroup is pinned (css_get) before calling 1187 * this function. In other words, we cannot call this function 1188 * if there is no cgroup event for the current CPU context. 1189 */ 1190static inline struct perf_cgroup * 1191perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx) 1192{ 1193 return container_of(task_css_check(task, perf_event_cgrp_id, 1194 ctx ? lockdep_is_held(&ctx->lock) 1195 : true), 1196 struct perf_cgroup, css); 1197} 1198#endif /* CONFIG_CGROUP_PERF */ 1199 1200#ifdef CONFIG_PERF_EVENTS 1201 1202extern struct perf_event_context *perf_cpu_task_ctx(void); 1203 1204extern void *perf_aux_output_begin(struct perf_output_handle *handle, 1205 struct perf_event *event); 1206extern void perf_aux_output_end(struct perf_output_handle *handle, 1207 unsigned long size); 1208extern int perf_aux_output_skip(struct perf_output_handle *handle, 1209 unsigned long size); 1210extern void *perf_get_aux(struct perf_output_handle *handle); 1211extern void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags); 1212extern void perf_event_itrace_started(struct perf_event *event); 1213 1214extern int perf_pmu_register(struct pmu *pmu, const char *name, int type); 1215extern int perf_pmu_unregister(struct pmu *pmu); 1216 1217extern void __perf_event_task_sched_in(struct task_struct *prev, 1218 struct task_struct *task); 1219extern void __perf_event_task_sched_out(struct task_struct *prev, 1220 struct task_struct *next); 1221extern int perf_event_init_task(struct task_struct *child, u64 clone_flags); 1222extern void perf_event_exit_task(struct task_struct *child); 1223extern void perf_event_free_task(struct task_struct *task); 1224extern void perf_event_delayed_put(struct task_struct *task); 1225extern struct file *perf_event_get(unsigned int fd); 1226extern const struct perf_event *perf_get_event(struct file *file); 1227extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event); 1228extern void perf_event_print_debug(void); 1229extern void perf_pmu_disable(struct pmu *pmu); 1230extern void perf_pmu_enable(struct pmu *pmu); 1231extern void perf_sched_cb_dec(struct pmu *pmu); 1232extern void perf_sched_cb_inc(struct pmu *pmu); 1233extern int perf_event_task_disable(void); 1234extern int perf_event_task_enable(void); 1235 1236extern void perf_pmu_resched(struct pmu *pmu); 1237 1238extern int perf_event_refresh(struct perf_event *event, int refresh); 1239extern void perf_event_update_userpage(struct perf_event *event); 1240extern int perf_event_release_kernel(struct perf_event *event); 1241 1242extern struct perf_event * 1243perf_event_create_kernel_counter(struct perf_event_attr *attr, 1244 int cpu, 1245 struct task_struct *task, 1246 perf_overflow_handler_t callback, 1247 void *context); 1248 1249extern void perf_pmu_migrate_context(struct pmu *pmu, 1250 int src_cpu, int dst_cpu); 1251extern int perf_event_read_local(struct perf_event *event, u64 *value, 1252 u64 *enabled, u64 *running); 1253extern u64 perf_event_read_value(struct perf_event *event, 1254 u64 *enabled, u64 *running); 1255 1256extern struct perf_callchain_entry *perf_callchain(struct perf_event *event, struct pt_regs *regs); 1257 1258static inline bool branch_sample_no_flags(const struct perf_event *event) 1259{ 1260 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_NO_FLAGS; 1261} 1262 1263static inline bool branch_sample_no_cycles(const struct perf_event *event) 1264{ 1265 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_NO_CYCLES; 1266} 1267 1268static inline bool branch_sample_type(const struct perf_event *event) 1269{ 1270 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_TYPE_SAVE; 1271} 1272 1273static inline bool branch_sample_hw_index(const struct perf_event *event) 1274{ 1275 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX; 1276} 1277 1278static inline bool branch_sample_priv(const struct perf_event *event) 1279{ 1280 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_PRIV_SAVE; 1281} 1282 1283static inline bool branch_sample_counters(const struct perf_event *event) 1284{ 1285 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_COUNTERS; 1286} 1287 1288static inline bool branch_sample_call_stack(const struct perf_event *event) 1289{ 1290 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK; 1291} 1292 1293struct perf_sample_data { 1294 /* 1295 * Fields set by perf_sample_data_init() unconditionally, 1296 * group so as to minimize the cachelines touched. 1297 */ 1298 u64 sample_flags; 1299 u64 period; 1300 u64 dyn_size; 1301 1302 /* 1303 * Fields commonly set by __perf_event_header__init_id(), 1304 * group so as to minimize the cachelines touched. 1305 */ 1306 u64 type; 1307 struct { 1308 u32 pid; 1309 u32 tid; 1310 } tid_entry; 1311 u64 time; 1312 u64 id; 1313 struct { 1314 u32 cpu; 1315 u32 reserved; 1316 } cpu_entry; 1317 1318 /* 1319 * The other fields, optionally {set,used} by 1320 * perf_{prepare,output}_sample(). 1321 */ 1322 u64 ip; 1323 struct perf_callchain_entry *callchain; 1324 struct perf_raw_record *raw; 1325 struct perf_branch_stack *br_stack; 1326 u64 *br_stack_cntr; 1327 union perf_sample_weight weight; 1328 union perf_mem_data_src data_src; 1329 u64 txn; 1330 1331 struct perf_regs regs_user; 1332 struct perf_regs regs_intr; 1333 u64 stack_user_size; 1334 1335 u64 stream_id; 1336 u64 cgroup; 1337 u64 addr; 1338 u64 phys_addr; 1339 u64 data_page_size; 1340 u64 code_page_size; 1341 u64 aux_size; 1342} ____cacheline_aligned; 1343 1344/* default value for data source */ 1345#define PERF_MEM_NA (PERF_MEM_S(OP, NA) |\ 1346 PERF_MEM_S(LVL, NA) |\ 1347 PERF_MEM_S(SNOOP, NA) |\ 1348 PERF_MEM_S(LOCK, NA) |\ 1349 PERF_MEM_S(TLB, NA) |\ 1350 PERF_MEM_S(LVLNUM, NA)) 1351 1352static inline void perf_sample_data_init(struct perf_sample_data *data, 1353 u64 addr, u64 period) 1354{ 1355 /* remaining struct members initialized in perf_prepare_sample() */ 1356 data->sample_flags = PERF_SAMPLE_PERIOD; 1357 data->period = period; 1358 data->dyn_size = 0; 1359 1360 if (addr) { 1361 data->addr = addr; 1362 data->sample_flags |= PERF_SAMPLE_ADDR; 1363 } 1364} 1365 1366static inline void perf_sample_save_callchain(struct perf_sample_data *data, 1367 struct perf_event *event, 1368 struct pt_regs *regs) 1369{ 1370 int size = 1; 1371 1372 if (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)) 1373 return; 1374 if (WARN_ON_ONCE(data->sample_flags & PERF_SAMPLE_CALLCHAIN)) 1375 return; 1376 1377 data->callchain = perf_callchain(event, regs); 1378 size += data->callchain->nr; 1379 1380 data->dyn_size += size * sizeof(u64); 1381 data->sample_flags |= PERF_SAMPLE_CALLCHAIN; 1382} 1383 1384static inline void perf_sample_save_raw_data(struct perf_sample_data *data, 1385 struct perf_event *event, 1386 struct perf_raw_record *raw) 1387{ 1388 struct perf_raw_frag *frag = &raw->frag; 1389 u32 sum = 0; 1390 int size; 1391 1392 if (!(event->attr.sample_type & PERF_SAMPLE_RAW)) 1393 return; 1394 if (WARN_ON_ONCE(data->sample_flags & PERF_SAMPLE_RAW)) 1395 return; 1396 1397 do { 1398 sum += frag->size; 1399 if (perf_raw_frag_last(frag)) 1400 break; 1401 frag = frag->next; 1402 } while (1); 1403 1404 size = round_up(sum + sizeof(u32), sizeof(u64)); 1405 raw->size = size - sizeof(u32); 1406 frag->pad = raw->size - sum; 1407 1408 data->raw = raw; 1409 data->dyn_size += size; 1410 data->sample_flags |= PERF_SAMPLE_RAW; 1411} 1412 1413static inline bool has_branch_stack(struct perf_event *event) 1414{ 1415 return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK; 1416} 1417 1418static inline void perf_sample_save_brstack(struct perf_sample_data *data, 1419 struct perf_event *event, 1420 struct perf_branch_stack *brs, 1421 u64 *brs_cntr) 1422{ 1423 int size = sizeof(u64); /* nr */ 1424 1425 if (!has_branch_stack(event)) 1426 return; 1427 if (WARN_ON_ONCE(data->sample_flags & PERF_SAMPLE_BRANCH_STACK)) 1428 return; 1429 1430 if (branch_sample_hw_index(event)) 1431 size += sizeof(u64); 1432 1433 brs->nr = min_t(u16, event->attr.sample_max_stack, brs->nr); 1434 1435 size += brs->nr * sizeof(struct perf_branch_entry); 1436 1437 /* 1438 * The extension space for counters is appended after the 1439 * struct perf_branch_stack. It is used to store the occurrences 1440 * of events of each branch. 1441 */ 1442 if (brs_cntr) 1443 size += brs->nr * sizeof(u64); 1444 1445 data->br_stack = brs; 1446 data->br_stack_cntr = brs_cntr; 1447 data->dyn_size += size; 1448 data->sample_flags |= PERF_SAMPLE_BRANCH_STACK; 1449} 1450 1451static inline u32 perf_sample_data_size(struct perf_sample_data *data, 1452 struct perf_event *event) 1453{ 1454 u32 size = sizeof(struct perf_event_header); 1455 1456 size += event->header_size + event->id_header_size; 1457 size += data->dyn_size; 1458 1459 return size; 1460} 1461 1462/* 1463 * Clear all bitfields in the perf_branch_entry. 1464 * The to and from fields are not cleared because they are 1465 * systematically modified by caller. 1466 */ 1467static inline void perf_clear_branch_entry_bitfields(struct perf_branch_entry *br) 1468{ 1469 br->mispred = 0; 1470 br->predicted = 0; 1471 br->in_tx = 0; 1472 br->abort = 0; 1473 br->cycles = 0; 1474 br->type = 0; 1475 br->spec = PERF_BR_SPEC_NA; 1476 br->reserved = 0; 1477} 1478 1479extern void perf_output_sample(struct perf_output_handle *handle, 1480 struct perf_event_header *header, 1481 struct perf_sample_data *data, 1482 struct perf_event *event); 1483extern void perf_prepare_sample(struct perf_sample_data *data, 1484 struct perf_event *event, 1485 struct pt_regs *regs); 1486extern void perf_prepare_header(struct perf_event_header *header, 1487 struct perf_sample_data *data, 1488 struct perf_event *event, 1489 struct pt_regs *regs); 1490 1491extern int perf_event_overflow(struct perf_event *event, 1492 struct perf_sample_data *data, 1493 struct pt_regs *regs); 1494 1495extern void perf_event_output_forward(struct perf_event *event, 1496 struct perf_sample_data *data, 1497 struct pt_regs *regs); 1498extern void perf_event_output_backward(struct perf_event *event, 1499 struct perf_sample_data *data, 1500 struct pt_regs *regs); 1501extern int perf_event_output(struct perf_event *event, 1502 struct perf_sample_data *data, 1503 struct pt_regs *regs); 1504 1505static inline bool 1506is_default_overflow_handler(struct perf_event *event) 1507{ 1508 perf_overflow_handler_t overflow_handler = event->overflow_handler; 1509 1510 if (likely(overflow_handler == perf_event_output_forward)) 1511 return true; 1512 if (unlikely(overflow_handler == perf_event_output_backward)) 1513 return true; 1514 return false; 1515} 1516 1517extern void 1518perf_event_header__init_id(struct perf_event_header *header, 1519 struct perf_sample_data *data, 1520 struct perf_event *event); 1521extern void 1522perf_event__output_id_sample(struct perf_event *event, 1523 struct perf_output_handle *handle, 1524 struct perf_sample_data *sample); 1525 1526extern void 1527perf_log_lost_samples(struct perf_event *event, u64 lost); 1528 1529static inline bool event_has_any_exclude_flag(struct perf_event *event) 1530{ 1531 struct perf_event_attr *attr = &event->attr; 1532 1533 return attr->exclude_idle || attr->exclude_user || 1534 attr->exclude_kernel || attr->exclude_hv || 1535 attr->exclude_guest || attr->exclude_host; 1536} 1537 1538static inline bool is_sampling_event(struct perf_event *event) 1539{ 1540 return event->attr.sample_period != 0; 1541} 1542 1543/* 1544 * Return 1 for a software event, 0 for a hardware event 1545 */ 1546static inline int is_software_event(struct perf_event *event) 1547{ 1548 return event->event_caps & PERF_EV_CAP_SOFTWARE; 1549} 1550 1551/* 1552 * Return 1 for event in sw context, 0 for event in hw context 1553 */ 1554static inline int in_software_context(struct perf_event *event) 1555{ 1556 return event->pmu_ctx->pmu->task_ctx_nr == perf_sw_context; 1557} 1558 1559static inline int is_exclusive_pmu(struct pmu *pmu) 1560{ 1561 return pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE; 1562} 1563 1564extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 1565 1566extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64); 1567extern void __perf_sw_event(u32, u64, struct pt_regs *, u64); 1568 1569#ifndef perf_arch_fetch_caller_regs 1570static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { } 1571#endif 1572 1573/* 1574 * When generating a perf sample in-line, instead of from an interrupt / 1575 * exception, we lack a pt_regs. This is typically used from software events 1576 * like: SW_CONTEXT_SWITCHES, SW_MIGRATIONS and the tie-in with tracepoints. 1577 * 1578 * We typically don't need a full set, but (for x86) do require: 1579 * - ip for PERF_SAMPLE_IP 1580 * - cs for user_mode() tests 1581 * - sp for PERF_SAMPLE_CALLCHAIN 1582 * - eflags for MISC bits and CALLCHAIN (see: perf_hw_regs()) 1583 * 1584 * NOTE: assumes @regs is otherwise already 0 filled; this is important for 1585 * things like PERF_SAMPLE_REGS_INTR. 1586 */ 1587static inline void perf_fetch_caller_regs(struct pt_regs *regs) 1588{ 1589 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0); 1590} 1591 1592static __always_inline void 1593perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 1594{ 1595 if (static_key_false(&perf_swevent_enabled[event_id])) 1596 __perf_sw_event(event_id, nr, regs, addr); 1597} 1598 1599DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]); 1600 1601/* 1602 * 'Special' version for the scheduler, it hard assumes no recursion, 1603 * which is guaranteed by us not actually scheduling inside other swevents 1604 * because those disable preemption. 1605 */ 1606static __always_inline void __perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) 1607{ 1608 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]); 1609 1610 perf_fetch_caller_regs(regs); 1611 ___perf_sw_event(event_id, nr, regs, addr); 1612} 1613 1614extern struct static_key_false perf_sched_events; 1615 1616static __always_inline bool __perf_sw_enabled(int swevt) 1617{ 1618 return static_key_false(&perf_swevent_enabled[swevt]); 1619} 1620 1621static inline void perf_event_task_migrate(struct task_struct *task) 1622{ 1623 if (__perf_sw_enabled(PERF_COUNT_SW_CPU_MIGRATIONS)) 1624 task->sched_migrated = 1; 1625} 1626 1627static inline void perf_event_task_sched_in(struct task_struct *prev, 1628 struct task_struct *task) 1629{ 1630 if (static_branch_unlikely(&perf_sched_events)) 1631 __perf_event_task_sched_in(prev, task); 1632 1633 if (__perf_sw_enabled(PERF_COUNT_SW_CPU_MIGRATIONS) && 1634 task->sched_migrated) { 1635 __perf_sw_event_sched(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 0); 1636 task->sched_migrated = 0; 1637 } 1638} 1639 1640static inline void perf_event_task_sched_out(struct task_struct *prev, 1641 struct task_struct *next) 1642{ 1643 if (__perf_sw_enabled(PERF_COUNT_SW_CONTEXT_SWITCHES)) 1644 __perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0); 1645 1646#ifdef CONFIG_CGROUP_PERF 1647 if (__perf_sw_enabled(PERF_COUNT_SW_CGROUP_SWITCHES) && 1648 perf_cgroup_from_task(prev, NULL) != 1649 perf_cgroup_from_task(next, NULL)) 1650 __perf_sw_event_sched(PERF_COUNT_SW_CGROUP_SWITCHES, 1, 0); 1651#endif 1652 1653 if (static_branch_unlikely(&perf_sched_events)) 1654 __perf_event_task_sched_out(prev, next); 1655} 1656 1657extern void perf_event_mmap(struct vm_area_struct *vma); 1658 1659extern void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, 1660 bool unregister, const char *sym); 1661extern void perf_event_bpf_event(struct bpf_prog *prog, 1662 enum perf_bpf_event_type type, 1663 u16 flags); 1664 1665#define PERF_GUEST_ACTIVE 0x01 1666#define PERF_GUEST_USER 0x02 1667 1668struct perf_guest_info_callbacks { 1669 unsigned int (*state)(void); 1670 unsigned long (*get_ip)(void); 1671 unsigned int (*handle_intel_pt_intr)(void); 1672}; 1673 1674#ifdef CONFIG_GUEST_PERF_EVENTS 1675 1676extern struct perf_guest_info_callbacks __rcu *perf_guest_cbs; 1677 1678DECLARE_STATIC_CALL(__perf_guest_state, *perf_guest_cbs->state); 1679DECLARE_STATIC_CALL(__perf_guest_get_ip, *perf_guest_cbs->get_ip); 1680DECLARE_STATIC_CALL(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr); 1681 1682static inline unsigned int perf_guest_state(void) 1683{ 1684 return static_call(__perf_guest_state)(); 1685} 1686 1687static inline unsigned long perf_guest_get_ip(void) 1688{ 1689 return static_call(__perf_guest_get_ip)(); 1690} 1691 1692static inline unsigned int perf_guest_handle_intel_pt_intr(void) 1693{ 1694 return static_call(__perf_guest_handle_intel_pt_intr)(); 1695} 1696 1697extern void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs); 1698extern void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs); 1699 1700#else /* !CONFIG_GUEST_PERF_EVENTS: */ 1701 1702static inline unsigned int perf_guest_state(void) { return 0; } 1703static inline unsigned long perf_guest_get_ip(void) { return 0; } 1704static inline unsigned int perf_guest_handle_intel_pt_intr(void) { return 0; } 1705 1706#endif /* !CONFIG_GUEST_PERF_EVENTS */ 1707 1708extern void perf_event_exec(void); 1709extern void perf_event_comm(struct task_struct *tsk, bool exec); 1710extern void perf_event_namespaces(struct task_struct *tsk); 1711extern void perf_event_fork(struct task_struct *tsk); 1712extern void perf_event_text_poke(const void *addr, 1713 const void *old_bytes, size_t old_len, 1714 const void *new_bytes, size_t new_len); 1715 1716/* Callchains */ 1717DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry); 1718 1719extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs); 1720extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs); 1721extern struct perf_callchain_entry * 1722get_perf_callchain(struct pt_regs *regs, bool kernel, bool user, 1723 u32 max_stack, bool crosstask, bool add_mark, u64 defer_cookie); 1724extern int get_callchain_buffers(int max_stack); 1725extern void put_callchain_buffers(void); 1726extern struct perf_callchain_entry *get_callchain_entry(int *rctx); 1727extern void put_callchain_entry(int rctx); 1728 1729extern int sysctl_perf_event_max_stack; 1730extern int sysctl_perf_event_max_contexts_per_stack; 1731 1732static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip) 1733{ 1734 if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) { 1735 struct perf_callchain_entry *entry = ctx->entry; 1736 1737 entry->ip[entry->nr++] = ip; 1738 ++ctx->contexts; 1739 return 0; 1740 } else { 1741 ctx->contexts_maxed = true; 1742 return -1; /* no more room, stop walking the stack */ 1743 } 1744} 1745 1746static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip) 1747{ 1748 if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) { 1749 struct perf_callchain_entry *entry = ctx->entry; 1750 1751 entry->ip[entry->nr++] = ip; 1752 ++ctx->nr; 1753 return 0; 1754 } else { 1755 return -1; /* no more room, stop walking the stack */ 1756 } 1757} 1758 1759extern int sysctl_perf_event_paranoid; 1760extern int sysctl_perf_event_sample_rate; 1761 1762extern void perf_sample_event_took(u64 sample_len_ns); 1763 1764/* Access to perf_event_open(2) syscall. */ 1765#define PERF_SECURITY_OPEN 0 1766 1767/* Finer grained perf_event_open(2) access control. */ 1768#define PERF_SECURITY_CPU 1 1769#define PERF_SECURITY_KERNEL 2 1770#define PERF_SECURITY_TRACEPOINT 3 1771 1772static inline int perf_is_paranoid(void) 1773{ 1774 return sysctl_perf_event_paranoid > -1; 1775} 1776 1777extern int perf_allow_kernel(void); 1778 1779static inline int perf_allow_cpu(void) 1780{ 1781 if (sysctl_perf_event_paranoid > 0 && !perfmon_capable()) 1782 return -EACCES; 1783 1784 return security_perf_event_open(PERF_SECURITY_CPU); 1785} 1786 1787static inline int perf_allow_tracepoint(void) 1788{ 1789 if (sysctl_perf_event_paranoid > -1 && !perfmon_capable()) 1790 return -EPERM; 1791 1792 return security_perf_event_open(PERF_SECURITY_TRACEPOINT); 1793} 1794 1795extern int perf_exclude_event(struct perf_event *event, struct pt_regs *regs); 1796 1797extern void perf_event_init(void); 1798extern void perf_tp_event(u16 event_type, u64 count, void *record, 1799 int entry_size, struct pt_regs *regs, 1800 struct hlist_head *head, int rctx, 1801 struct task_struct *task); 1802extern void perf_bp_event(struct perf_event *event, void *data); 1803 1804extern unsigned long perf_misc_flags(struct perf_event *event, struct pt_regs *regs); 1805extern unsigned long perf_instruction_pointer(struct perf_event *event, 1806 struct pt_regs *regs); 1807 1808#ifndef perf_arch_misc_flags 1809# define perf_arch_misc_flags(regs) \ 1810 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL) 1811# define perf_arch_instruction_pointer(regs) instruction_pointer(regs) 1812#endif 1813#ifndef perf_arch_bpf_user_pt_regs 1814# define perf_arch_bpf_user_pt_regs(regs) regs 1815#endif 1816 1817#ifndef perf_arch_guest_misc_flags 1818static inline unsigned long perf_arch_guest_misc_flags(struct pt_regs *regs) 1819{ 1820 unsigned long guest_state = perf_guest_state(); 1821 1822 if (!(guest_state & PERF_GUEST_ACTIVE)) 1823 return 0; 1824 1825 if (guest_state & PERF_GUEST_USER) 1826 return PERF_RECORD_MISC_GUEST_USER; 1827 else 1828 return PERF_RECORD_MISC_GUEST_KERNEL; 1829} 1830# define perf_arch_guest_misc_flags(regs) perf_arch_guest_misc_flags(regs) 1831#endif 1832 1833static inline bool needs_branch_stack(struct perf_event *event) 1834{ 1835 return event->attr.branch_sample_type != 0; 1836} 1837 1838static inline bool has_aux(struct perf_event *event) 1839{ 1840 return event->pmu && event->pmu->setup_aux; 1841} 1842 1843static inline bool has_aux_action(struct perf_event *event) 1844{ 1845 return event->attr.aux_sample_size || 1846 event->attr.aux_pause || 1847 event->attr.aux_resume; 1848} 1849 1850static inline bool is_write_backward(struct perf_event *event) 1851{ 1852 return !!event->attr.write_backward; 1853} 1854 1855static inline bool has_addr_filter(struct perf_event *event) 1856{ 1857 return event->pmu->nr_addr_filters; 1858} 1859 1860/* 1861 * An inherited event uses parent's filters 1862 */ 1863static inline struct perf_addr_filters_head * 1864perf_event_addr_filters(struct perf_event *event) 1865{ 1866 struct perf_addr_filters_head *ifh = &event->addr_filters; 1867 1868 if (event->parent) 1869 ifh = &event->parent->addr_filters; 1870 1871 return ifh; 1872} 1873 1874static inline struct fasync_struct **perf_event_fasync(struct perf_event *event) 1875{ 1876 /* Only the parent has fasync state */ 1877 if (event->parent) 1878 event = event->parent; 1879 return &event->fasync; 1880} 1881 1882extern void perf_event_addr_filters_sync(struct perf_event *event); 1883extern void perf_report_aux_output_id(struct perf_event *event, u64 hw_id); 1884 1885extern int perf_output_begin(struct perf_output_handle *handle, 1886 struct perf_sample_data *data, 1887 struct perf_event *event, unsigned int size); 1888extern int perf_output_begin_forward(struct perf_output_handle *handle, 1889 struct perf_sample_data *data, 1890 struct perf_event *event, 1891 unsigned int size); 1892extern int perf_output_begin_backward(struct perf_output_handle *handle, 1893 struct perf_sample_data *data, 1894 struct perf_event *event, 1895 unsigned int size); 1896 1897extern void perf_output_end(struct perf_output_handle *handle); 1898extern unsigned int perf_output_copy(struct perf_output_handle *handle, 1899 const void *buf, unsigned int len); 1900extern unsigned int perf_output_skip(struct perf_output_handle *handle, 1901 unsigned int len); 1902extern long perf_output_copy_aux(struct perf_output_handle *aux_handle, 1903 struct perf_output_handle *handle, 1904 unsigned long from, unsigned long to); 1905extern int perf_swevent_get_recursion_context(void); 1906extern void perf_swevent_put_recursion_context(int rctx); 1907extern u64 perf_swevent_set_period(struct perf_event *event); 1908extern void perf_event_enable(struct perf_event *event); 1909extern void perf_event_disable(struct perf_event *event); 1910extern void perf_event_disable_local(struct perf_event *event); 1911extern void perf_event_disable_inatomic(struct perf_event *event); 1912extern void perf_event_task_tick(void); 1913extern int perf_event_account_interrupt(struct perf_event *event); 1914extern int perf_event_period(struct perf_event *event, u64 value); 1915extern u64 perf_event_pause(struct perf_event *event, bool reset); 1916 1917#else /* !CONFIG_PERF_EVENTS: */ 1918 1919static inline void * 1920perf_aux_output_begin(struct perf_output_handle *handle, 1921 struct perf_event *event) { return NULL; } 1922static inline void 1923perf_aux_output_end(struct perf_output_handle *handle, unsigned long size) 1924 { } 1925static inline int 1926perf_aux_output_skip(struct perf_output_handle *handle, 1927 unsigned long size) { return -EINVAL; } 1928static inline void * 1929perf_get_aux(struct perf_output_handle *handle) { return NULL; } 1930static inline void 1931perf_event_task_migrate(struct task_struct *task) { } 1932static inline void 1933perf_event_task_sched_in(struct task_struct *prev, 1934 struct task_struct *task) { } 1935static inline void 1936perf_event_task_sched_out(struct task_struct *prev, 1937 struct task_struct *next) { } 1938static inline int perf_event_init_task(struct task_struct *child, 1939 u64 clone_flags) { return 0; } 1940static inline void perf_event_exit_task(struct task_struct *child) { } 1941static inline void perf_event_free_task(struct task_struct *task) { } 1942static inline void perf_event_delayed_put(struct task_struct *task) { } 1943static inline struct file *perf_event_get(unsigned int fd) { return ERR_PTR(-EINVAL); } 1944static inline const struct perf_event *perf_get_event(struct file *file) 1945{ 1946 return ERR_PTR(-EINVAL); 1947} 1948static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 1949{ 1950 return ERR_PTR(-EINVAL); 1951} 1952static inline int perf_event_read_local(struct perf_event *event, u64 *value, 1953 u64 *enabled, u64 *running) 1954{ 1955 return -EINVAL; 1956} 1957static inline void perf_event_print_debug(void) { } 1958static inline int perf_event_task_disable(void) { return -EINVAL; } 1959static inline int perf_event_task_enable(void) { return -EINVAL; } 1960static inline int perf_event_refresh(struct perf_event *event, int refresh) 1961{ 1962 return -EINVAL; 1963} 1964 1965static inline void 1966perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { } 1967static inline void 1968perf_bp_event(struct perf_event *event, void *data) { } 1969 1970static inline void perf_event_mmap(struct vm_area_struct *vma) { } 1971 1972typedef int (perf_ksymbol_get_name_f)(char *name, int name_len, void *data); 1973static inline void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, 1974 bool unregister, const char *sym) { } 1975static inline void perf_event_bpf_event(struct bpf_prog *prog, 1976 enum perf_bpf_event_type type, 1977 u16 flags) { } 1978static inline void perf_event_exec(void) { } 1979static inline void perf_event_comm(struct task_struct *tsk, bool exec) { } 1980static inline void perf_event_namespaces(struct task_struct *tsk) { } 1981static inline void perf_event_fork(struct task_struct *tsk) { } 1982static inline void perf_event_text_poke(const void *addr, 1983 const void *old_bytes, 1984 size_t old_len, 1985 const void *new_bytes, 1986 size_t new_len) { } 1987static inline void perf_event_init(void) { } 1988static inline int perf_swevent_get_recursion_context(void) { return -1; } 1989static inline void perf_swevent_put_recursion_context(int rctx) { } 1990static inline u64 perf_swevent_set_period(struct perf_event *event) { return 0; } 1991static inline void perf_event_enable(struct perf_event *event) { } 1992static inline void perf_event_disable(struct perf_event *event) { } 1993static inline int __perf_event_disable(void *info) { return -1; } 1994static inline void perf_event_task_tick(void) { } 1995static inline int perf_event_release_kernel(struct perf_event *event) { return 0; } 1996static inline int 1997perf_event_period(struct perf_event *event, u64 value) { return -EINVAL; } 1998static inline u64 1999perf_event_pause(struct perf_event *event, bool reset) { return 0; } 2000static inline int 2001perf_exclude_event(struct perf_event *event, struct pt_regs *regs) { return 0; } 2002 2003#endif /* !CONFIG_PERF_EVENTS */ 2004 2005#if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL) 2006extern void perf_restore_debug_store(void); 2007#else 2008static inline void perf_restore_debug_store(void) { } 2009#endif 2010 2011#define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x)) 2012 2013struct perf_pmu_events_attr { 2014 struct device_attribute attr; 2015 u64 id; 2016 const char *event_str; 2017}; 2018 2019struct perf_pmu_events_ht_attr { 2020 struct device_attribute attr; 2021 u64 id; 2022 const char *event_str_ht; 2023 const char *event_str_noht; 2024}; 2025 2026struct perf_pmu_events_hybrid_attr { 2027 struct device_attribute attr; 2028 u64 id; 2029 const char *event_str; 2030 u64 pmu_type; 2031}; 2032 2033struct perf_pmu_format_hybrid_attr { 2034 struct device_attribute attr; 2035 u64 pmu_type; 2036}; 2037 2038ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 2039 char *page); 2040 2041#define PMU_EVENT_ATTR(_name, _var, _id, _show) \ 2042static struct perf_pmu_events_attr _var = { \ 2043 .attr = __ATTR(_name, 0444, _show, NULL), \ 2044 .id = _id, \ 2045}; 2046 2047#define PMU_EVENT_ATTR_STRING(_name, _var, _str) \ 2048static struct perf_pmu_events_attr _var = { \ 2049 .attr = __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \ 2050 .id = 0, \ 2051 .event_str = _str, \ 2052}; 2053 2054#define PMU_EVENT_ATTR_ID(_name, _show, _id) \ 2055 (&((struct perf_pmu_events_attr[]) { \ 2056 { .attr = __ATTR(_name, 0444, _show, NULL), \ 2057 .id = _id, } \ 2058 })[0].attr.attr) 2059 2060#define PMU_FORMAT_ATTR_SHOW(_name, _format) \ 2061static ssize_t \ 2062_name##_show(struct device *dev, \ 2063 struct device_attribute *attr, \ 2064 char *page) \ 2065{ \ 2066 BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \ 2067 return sprintf(page, _format "\n"); \ 2068} \ 2069 2070#define PMU_FORMAT_ATTR(_name, _format) \ 2071 PMU_FORMAT_ATTR_SHOW(_name, _format) \ 2072 \ 2073static struct device_attribute format_attr_##_name = __ATTR_RO(_name) 2074 2075/* Performance counter hotplug functions */ 2076#ifdef CONFIG_PERF_EVENTS 2077extern int perf_event_init_cpu(unsigned int cpu); 2078extern int perf_event_exit_cpu(unsigned int cpu); 2079#else 2080# define perf_event_init_cpu NULL 2081# define perf_event_exit_cpu NULL 2082#endif 2083 2084extern void arch_perf_update_userpage(struct perf_event *event, 2085 struct perf_event_mmap_page *userpg, 2086 u64 now); 2087 2088/* 2089 * Snapshot branch stack on software events. 2090 * 2091 * Branch stack can be very useful in understanding software events. For 2092 * example, when a long function, e.g. sys_perf_event_open, returns an 2093 * errno, it is not obvious why the function failed. Branch stack could 2094 * provide very helpful information in this type of scenarios. 2095 * 2096 * On software event, it is necessary to stop the hardware branch recorder 2097 * fast. Otherwise, the hardware register/buffer will be flushed with 2098 * entries of the triggering event. Therefore, static call is used to 2099 * stop the hardware recorder. 2100 */ 2101 2102/* 2103 * cnt is the number of entries allocated for entries. 2104 * Return number of entries copied to . 2105 */ 2106typedef int (perf_snapshot_branch_stack_t)(struct perf_branch_entry *entries, 2107 unsigned int cnt); 2108DECLARE_STATIC_CALL(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t); 2109 2110#ifndef PERF_NEEDS_LOPWR_CB 2111static inline void perf_lopwr_cb(bool mode) 2112{ 2113} 2114#endif 2115 2116#endif /* _LINUX_PERF_EVENT_H */