at master 18 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-only */ 2/* 3 * linux/percpu-defs.h - basic definitions for percpu areas 4 * 5 * DO NOT INCLUDE DIRECTLY OUTSIDE PERCPU IMPLEMENTATION PROPER. 6 * 7 * This file is separate from linux/percpu.h to avoid cyclic inclusion 8 * dependency from arch header files. Only to be included from 9 * asm/percpu.h. 10 * 11 * This file includes macros necessary to declare percpu sections and 12 * variables, and definitions of percpu accessors and operations. It 13 * should provide enough percpu features to arch header files even when 14 * they can only include asm/percpu.h to avoid cyclic inclusion dependency. 15 */ 16 17#ifndef _LINUX_PERCPU_DEFS_H 18#define _LINUX_PERCPU_DEFS_H 19 20#ifdef CONFIG_SMP 21 22#ifdef MODULE 23#define PER_CPU_SHARED_ALIGNED_SECTION "" 24#define PER_CPU_ALIGNED_SECTION "" 25#else 26#define PER_CPU_SHARED_ALIGNED_SECTION "..shared_aligned" 27#define PER_CPU_ALIGNED_SECTION "..shared_aligned" 28#endif 29 30#else 31 32#define PER_CPU_SHARED_ALIGNED_SECTION "" 33#define PER_CPU_ALIGNED_SECTION "..shared_aligned" 34 35#endif 36 37/* 38 * Base implementations of per-CPU variable declarations and definitions, where 39 * the section in which the variable is to be placed is provided by the 40 * 'sec' argument. This may be used to affect the parameters governing the 41 * variable's storage. 42 * 43 * NOTE! The sections for the DECLARE and for the DEFINE must match, lest 44 * linkage errors occur due the compiler generating the wrong code to access 45 * that section. 46 */ 47#define __PCPU_ATTRS(sec) \ 48 __percpu __attribute__((section(PER_CPU_BASE_SECTION sec))) \ 49 PER_CPU_ATTRIBUTES 50 51#define __PCPU_DUMMY_ATTRS \ 52 __section(".discard") __attribute__((unused)) 53 54/* 55 * alpha modules require percpu variables to be defined as 56 * weak to force the compiler to generate GOT based external 57 * references for them. This is necessary because percpu sections 58 * will be located outside of the usually addressable area. 59 * 60 * This definition puts the following two extra restrictions when 61 * defining percpu variables. 62 * 63 * 1. The symbol must be globally unique, even the static ones. 64 * 2. Static percpu variables cannot be defined inside a function. 65 * 66 * Archs which need weak percpu definitions should set 67 * CONFIG_ARCH_MODULE_NEEDS_WEAK_PER_CPU when necessary. 68 * 69 * To ensure that the generic code observes the above two 70 * restrictions, if CONFIG_DEBUG_FORCE_WEAK_PER_CPU is set weak 71 * definition is used for all cases. 72 */ 73#if (defined(CONFIG_ARCH_MODULE_NEEDS_WEAK_PER_CPU) && defined(MODULE)) || \ 74 defined(CONFIG_DEBUG_FORCE_WEAK_PER_CPU) 75/* 76 * __pcpu_scope_* dummy variable is used to enforce scope. It 77 * receives the static modifier when it's used in front of 78 * DEFINE_PER_CPU() and will trigger build failure if 79 * DECLARE_PER_CPU() is used for the same variable. 80 * 81 * __pcpu_unique_* dummy variable is used to enforce symbol uniqueness 82 * such that hidden weak symbol collision, which will cause unrelated 83 * variables to share the same address, can be detected during build. 84 */ 85#define DECLARE_PER_CPU_SECTION(type, name, sec) \ 86 extern __PCPU_DUMMY_ATTRS char __pcpu_scope_##name; \ 87 extern __PCPU_ATTRS(sec) __typeof__(type) name 88 89#define DEFINE_PER_CPU_SECTION(type, name, sec) \ 90 __PCPU_DUMMY_ATTRS char __pcpu_scope_##name; \ 91 extern __PCPU_DUMMY_ATTRS char __pcpu_unique_##name; \ 92 __PCPU_DUMMY_ATTRS char __pcpu_unique_##name; \ 93 extern __PCPU_ATTRS(sec) __typeof__(type) name; \ 94 __PCPU_ATTRS(sec) __weak __typeof__(type) name 95#else 96/* 97 * Normal declaration and definition macros. 98 */ 99#define DECLARE_PER_CPU_SECTION(type, name, sec) \ 100 extern __PCPU_ATTRS(sec) __typeof__(type) name 101 102#define DEFINE_PER_CPU_SECTION(type, name, sec) \ 103 __PCPU_ATTRS(sec) __typeof__(type) name 104#endif 105 106/* 107 * Variant on the per-CPU variable declaration/definition theme used for 108 * ordinary per-CPU variables. 109 */ 110#define DECLARE_PER_CPU(type, name) \ 111 DECLARE_PER_CPU_SECTION(type, name, "") 112 113#define DEFINE_PER_CPU(type, name) \ 114 DEFINE_PER_CPU_SECTION(type, name, "") 115 116/* 117 * Declaration/definition used for per-CPU variables that are frequently 118 * accessed and should be in a single cacheline. 119 * 120 * For use only by architecture and core code. Only use scalar or pointer 121 * types to maximize density. 122 */ 123#define DECLARE_PER_CPU_CACHE_HOT(type, name) \ 124 DECLARE_PER_CPU_SECTION(type, name, "..hot.." #name) 125 126#define DEFINE_PER_CPU_CACHE_HOT(type, name) \ 127 DEFINE_PER_CPU_SECTION(type, name, "..hot.." #name) 128 129/* 130 * Declaration/definition used for per-CPU variables that must be cacheline 131 * aligned under SMP conditions so that, whilst a particular instance of the 132 * data corresponds to a particular CPU, inefficiencies due to direct access by 133 * other CPUs are reduced by preventing the data from unnecessarily spanning 134 * cachelines. 135 * 136 * An example of this would be statistical data, where each CPU's set of data 137 * is updated by that CPU alone, but the data from across all CPUs is collated 138 * by a CPU processing a read from a proc file. 139 */ 140#define DECLARE_PER_CPU_SHARED_ALIGNED(type, name) \ 141 DECLARE_PER_CPU_SECTION(type, name, PER_CPU_SHARED_ALIGNED_SECTION) \ 142 ____cacheline_aligned_in_smp 143 144#define DEFINE_PER_CPU_SHARED_ALIGNED(type, name) \ 145 DEFINE_PER_CPU_SECTION(type, name, PER_CPU_SHARED_ALIGNED_SECTION) \ 146 ____cacheline_aligned_in_smp 147 148#define DECLARE_PER_CPU_ALIGNED(type, name) \ 149 DECLARE_PER_CPU_SECTION(type, name, PER_CPU_ALIGNED_SECTION) \ 150 ____cacheline_aligned 151 152#define DEFINE_PER_CPU_ALIGNED(type, name) \ 153 DEFINE_PER_CPU_SECTION(type, name, PER_CPU_ALIGNED_SECTION) \ 154 ____cacheline_aligned 155 156/* 157 * Declaration/definition used for per-CPU variables that must be page aligned. 158 */ 159#define DECLARE_PER_CPU_PAGE_ALIGNED(type, name) \ 160 DECLARE_PER_CPU_SECTION(type, name, "..page_aligned") \ 161 __aligned(PAGE_SIZE) 162 163#define DEFINE_PER_CPU_PAGE_ALIGNED(type, name) \ 164 DEFINE_PER_CPU_SECTION(type, name, "..page_aligned") \ 165 __aligned(PAGE_SIZE) 166 167/* 168 * Declaration/definition used for per-CPU variables that must be read mostly. 169 */ 170#define DECLARE_PER_CPU_READ_MOSTLY(type, name) \ 171 DECLARE_PER_CPU_SECTION(type, name, "..read_mostly") 172 173#define DEFINE_PER_CPU_READ_MOSTLY(type, name) \ 174 DEFINE_PER_CPU_SECTION(type, name, "..read_mostly") 175 176/* 177 * Declaration/definition used for per-CPU variables that should be accessed 178 * as decrypted when memory encryption is enabled in the guest. 179 */ 180#ifdef CONFIG_AMD_MEM_ENCRYPT 181#define DECLARE_PER_CPU_DECRYPTED(type, name) \ 182 DECLARE_PER_CPU_SECTION(type, name, "..decrypted") 183 184#define DEFINE_PER_CPU_DECRYPTED(type, name) \ 185 DEFINE_PER_CPU_SECTION(type, name, "..decrypted") 186#else 187#define DEFINE_PER_CPU_DECRYPTED(type, name) DEFINE_PER_CPU(type, name) 188#endif 189 190/* 191 * Intermodule exports for per-CPU variables. sparse forgets about 192 * address space across EXPORT_SYMBOL(), change EXPORT_SYMBOL() to 193 * noop if __CHECKER__. 194 */ 195#ifndef __CHECKER__ 196#define EXPORT_PER_CPU_SYMBOL(var) EXPORT_SYMBOL(var) 197#define EXPORT_PER_CPU_SYMBOL_GPL(var) EXPORT_SYMBOL_GPL(var) 198#else 199#define EXPORT_PER_CPU_SYMBOL(var) 200#define EXPORT_PER_CPU_SYMBOL_GPL(var) 201#endif 202 203/* 204 * Accessors and operations. 205 */ 206#ifndef __ASSEMBLY__ 207 208/* 209 * __verify_pcpu_ptr() verifies @ptr is a percpu pointer without evaluating 210 * @ptr and is invoked once before a percpu area is accessed by all 211 * accessors and operations. This is performed in the generic part of 212 * percpu and arch overrides don't need to worry about it; however, if an 213 * arch wants to implement an arch-specific percpu accessor or operation, 214 * it may use __verify_pcpu_ptr() to verify the parameters. 215 * 216 * + 0 is required in order to convert the pointer type from a 217 * potential array type to a pointer to a single item of the array. 218 */ 219#define __verify_pcpu_ptr(ptr) \ 220do { \ 221 const void __percpu *__vpp_verify = (typeof((ptr) + 0))NULL; \ 222 (void)__vpp_verify; \ 223} while (0) 224 225#define PERCPU_PTR(__p) \ 226 (TYPEOF_UNQUAL(*(__p)) __force __kernel *)((__force unsigned long)(__p)) 227 228#ifdef CONFIG_SMP 229 230/* 231 * Add an offset to a pointer. Use RELOC_HIDE() to prevent the compiler 232 * from making incorrect assumptions about the pointer value. 233 */ 234#define SHIFT_PERCPU_PTR(__p, __offset) \ 235 RELOC_HIDE(PERCPU_PTR(__p), (__offset)) 236 237#define per_cpu_ptr(ptr, cpu) \ 238({ \ 239 __verify_pcpu_ptr(ptr); \ 240 SHIFT_PERCPU_PTR((ptr), per_cpu_offset((cpu))); \ 241}) 242 243#define raw_cpu_ptr(ptr) \ 244({ \ 245 __verify_pcpu_ptr(ptr); \ 246 arch_raw_cpu_ptr(ptr); \ 247}) 248 249#ifdef CONFIG_DEBUG_PREEMPT 250#define this_cpu_ptr(ptr) \ 251({ \ 252 __verify_pcpu_ptr(ptr); \ 253 SHIFT_PERCPU_PTR(ptr, my_cpu_offset); \ 254}) 255#else 256#define this_cpu_ptr(ptr) raw_cpu_ptr(ptr) 257#endif 258 259#else /* CONFIG_SMP */ 260 261#define per_cpu_ptr(ptr, cpu) \ 262({ \ 263 (void)(cpu); \ 264 __verify_pcpu_ptr(ptr); \ 265 PERCPU_PTR(ptr); \ 266}) 267 268#define raw_cpu_ptr(ptr) per_cpu_ptr(ptr, 0) 269#define this_cpu_ptr(ptr) raw_cpu_ptr(ptr) 270 271#endif /* CONFIG_SMP */ 272 273#define per_cpu(var, cpu) (*per_cpu_ptr(&(var), cpu)) 274 275/* 276 * Must be an lvalue. Since @var must be a simple identifier, 277 * we force a syntax error here if it isn't. 278 */ 279#define get_cpu_var(var) \ 280(*({ \ 281 preempt_disable(); \ 282 this_cpu_ptr(&var); \ 283})) 284 285/* 286 * The weird & is necessary because sparse considers (void)(var) to be 287 * a direct dereference of percpu variable (var). 288 */ 289#define put_cpu_var(var) \ 290do { \ 291 (void)&(var); \ 292 preempt_enable(); \ 293} while (0) 294 295#define get_cpu_ptr(var) \ 296({ \ 297 preempt_disable(); \ 298 this_cpu_ptr(var); \ 299}) 300 301#define put_cpu_ptr(var) \ 302do { \ 303 (void)(var); \ 304 preempt_enable(); \ 305} while (0) 306 307/* 308 * Branching function to split up a function into a set of functions that 309 * are called for different scalar sizes of the objects handled. 310 */ 311 312extern void __bad_size_call_parameter(void); 313 314#ifdef CONFIG_DEBUG_PREEMPT 315extern void __this_cpu_preempt_check(const char *op); 316#else 317static __always_inline void __this_cpu_preempt_check(const char *op) { } 318#endif 319 320#define __pcpu_size_call_return(stem, variable) \ 321({ \ 322 TYPEOF_UNQUAL(variable) pscr_ret__; \ 323 __verify_pcpu_ptr(&(variable)); \ 324 switch(sizeof(variable)) { \ 325 case 1: pscr_ret__ = stem##1(variable); break; \ 326 case 2: pscr_ret__ = stem##2(variable); break; \ 327 case 4: pscr_ret__ = stem##4(variable); break; \ 328 case 8: pscr_ret__ = stem##8(variable); break; \ 329 default: \ 330 __bad_size_call_parameter(); break; \ 331 } \ 332 pscr_ret__; \ 333}) 334 335#define __pcpu_size_call_return2(stem, variable, ...) \ 336({ \ 337 TYPEOF_UNQUAL(variable) pscr2_ret__; \ 338 __verify_pcpu_ptr(&(variable)); \ 339 switch(sizeof(variable)) { \ 340 case 1: pscr2_ret__ = stem##1(variable, __VA_ARGS__); break; \ 341 case 2: pscr2_ret__ = stem##2(variable, __VA_ARGS__); break; \ 342 case 4: pscr2_ret__ = stem##4(variable, __VA_ARGS__); break; \ 343 case 8: pscr2_ret__ = stem##8(variable, __VA_ARGS__); break; \ 344 default: \ 345 __bad_size_call_parameter(); break; \ 346 } \ 347 pscr2_ret__; \ 348}) 349 350#define __pcpu_size_call_return2bool(stem, variable, ...) \ 351({ \ 352 bool pscr2_ret__; \ 353 __verify_pcpu_ptr(&(variable)); \ 354 switch(sizeof(variable)) { \ 355 case 1: pscr2_ret__ = stem##1(variable, __VA_ARGS__); break; \ 356 case 2: pscr2_ret__ = stem##2(variable, __VA_ARGS__); break; \ 357 case 4: pscr2_ret__ = stem##4(variable, __VA_ARGS__); break; \ 358 case 8: pscr2_ret__ = stem##8(variable, __VA_ARGS__); break; \ 359 default: \ 360 __bad_size_call_parameter(); break; \ 361 } \ 362 pscr2_ret__; \ 363}) 364 365#define __pcpu_size_call(stem, variable, ...) \ 366do { \ 367 __verify_pcpu_ptr(&(variable)); \ 368 switch(sizeof(variable)) { \ 369 case 1: stem##1(variable, __VA_ARGS__);break; \ 370 case 2: stem##2(variable, __VA_ARGS__);break; \ 371 case 4: stem##4(variable, __VA_ARGS__);break; \ 372 case 8: stem##8(variable, __VA_ARGS__);break; \ 373 default: \ 374 __bad_size_call_parameter();break; \ 375 } \ 376} while (0) 377 378/* 379 * this_cpu operations (C) 2008-2013 Christoph Lameter <cl@gentwo.org> 380 * 381 * Optimized manipulation for memory allocated through the per cpu 382 * allocator or for addresses of per cpu variables. 383 * 384 * These operation guarantee exclusivity of access for other operations 385 * on the *same* processor. The assumption is that per cpu data is only 386 * accessed by a single processor instance (the current one). 387 * 388 * The arch code can provide optimized implementation by defining macros 389 * for certain scalar sizes. F.e. provide this_cpu_add_2() to provide per 390 * cpu atomic operations for 2 byte sized RMW actions. If arch code does 391 * not provide operations for a scalar size then the fallback in the 392 * generic code will be used. 393 * 394 * cmpxchg_double replaces two adjacent scalars at once. The first two 395 * parameters are per cpu variables which have to be of the same size. A 396 * truth value is returned to indicate success or failure (since a double 397 * register result is difficult to handle). There is very limited hardware 398 * support for these operations, so only certain sizes may work. 399 */ 400 401/* 402 * Operations for contexts where we do not want to do any checks for 403 * preemptions. Unless strictly necessary, always use [__]this_cpu_*() 404 * instead. 405 * 406 * If there is no other protection through preempt disable and/or disabling 407 * interrupts then one of these RMW operations can show unexpected behavior 408 * because the execution thread was rescheduled on another processor or an 409 * interrupt occurred and the same percpu variable was modified from the 410 * interrupt context. 411 */ 412#define raw_cpu_read(pcp) __pcpu_size_call_return(raw_cpu_read_, pcp) 413#define raw_cpu_write(pcp, val) __pcpu_size_call(raw_cpu_write_, pcp, val) 414#define raw_cpu_add(pcp, val) __pcpu_size_call(raw_cpu_add_, pcp, val) 415#define raw_cpu_and(pcp, val) __pcpu_size_call(raw_cpu_and_, pcp, val) 416#define raw_cpu_or(pcp, val) __pcpu_size_call(raw_cpu_or_, pcp, val) 417#define raw_cpu_add_return(pcp, val) __pcpu_size_call_return2(raw_cpu_add_return_, pcp, val) 418#define raw_cpu_xchg(pcp, nval) __pcpu_size_call_return2(raw_cpu_xchg_, pcp, nval) 419#define raw_cpu_cmpxchg(pcp, oval, nval) \ 420 __pcpu_size_call_return2(raw_cpu_cmpxchg_, pcp, oval, nval) 421#define raw_cpu_try_cmpxchg(pcp, ovalp, nval) \ 422 __pcpu_size_call_return2bool(raw_cpu_try_cmpxchg_, pcp, ovalp, nval) 423#define raw_cpu_sub(pcp, val) raw_cpu_add(pcp, -(val)) 424#define raw_cpu_inc(pcp) raw_cpu_add(pcp, 1) 425#define raw_cpu_dec(pcp) raw_cpu_sub(pcp, 1) 426#define raw_cpu_sub_return(pcp, val) raw_cpu_add_return(pcp, -(typeof(pcp))(val)) 427#define raw_cpu_inc_return(pcp) raw_cpu_add_return(pcp, 1) 428#define raw_cpu_dec_return(pcp) raw_cpu_add_return(pcp, -1) 429 430/* 431 * Operations for contexts that are safe from preemption/interrupts. These 432 * operations verify that preemption is disabled. 433 */ 434#define __this_cpu_read(pcp) \ 435({ \ 436 __this_cpu_preempt_check("read"); \ 437 raw_cpu_read(pcp); \ 438}) 439 440#define __this_cpu_write(pcp, val) \ 441({ \ 442 __this_cpu_preempt_check("write"); \ 443 raw_cpu_write(pcp, val); \ 444}) 445 446#define __this_cpu_add(pcp, val) \ 447({ \ 448 __this_cpu_preempt_check("add"); \ 449 raw_cpu_add(pcp, val); \ 450}) 451 452#define __this_cpu_and(pcp, val) \ 453({ \ 454 __this_cpu_preempt_check("and"); \ 455 raw_cpu_and(pcp, val); \ 456}) 457 458#define __this_cpu_or(pcp, val) \ 459({ \ 460 __this_cpu_preempt_check("or"); \ 461 raw_cpu_or(pcp, val); \ 462}) 463 464#define __this_cpu_add_return(pcp, val) \ 465({ \ 466 __this_cpu_preempt_check("add_return"); \ 467 raw_cpu_add_return(pcp, val); \ 468}) 469 470#define __this_cpu_xchg(pcp, nval) \ 471({ \ 472 __this_cpu_preempt_check("xchg"); \ 473 raw_cpu_xchg(pcp, nval); \ 474}) 475 476#define __this_cpu_cmpxchg(pcp, oval, nval) \ 477({ \ 478 __this_cpu_preempt_check("cmpxchg"); \ 479 raw_cpu_cmpxchg(pcp, oval, nval); \ 480}) 481 482#define __this_cpu_try_cmpxchg(pcp, ovalp, nval) \ 483({ \ 484 __this_cpu_preempt_check("try_cmpxchg"); \ 485 raw_cpu_try_cmpxchg(pcp, ovalp, nval); \ 486}) 487 488#define __this_cpu_sub(pcp, val) __this_cpu_add(pcp, -(typeof(pcp))(val)) 489#define __this_cpu_inc(pcp) __this_cpu_add(pcp, 1) 490#define __this_cpu_dec(pcp) __this_cpu_sub(pcp, 1) 491#define __this_cpu_sub_return(pcp, val) __this_cpu_add_return(pcp, -(typeof(pcp))(val)) 492#define __this_cpu_inc_return(pcp) __this_cpu_add_return(pcp, 1) 493#define __this_cpu_dec_return(pcp) __this_cpu_add_return(pcp, -1) 494 495/* 496 * Operations with implied preemption/interrupt protection. These 497 * operations can be used without worrying about preemption or interrupt. 498 */ 499#define this_cpu_read(pcp) __pcpu_size_call_return(this_cpu_read_, pcp) 500#define this_cpu_write(pcp, val) __pcpu_size_call(this_cpu_write_, pcp, val) 501#define this_cpu_add(pcp, val) __pcpu_size_call(this_cpu_add_, pcp, val) 502#define this_cpu_and(pcp, val) __pcpu_size_call(this_cpu_and_, pcp, val) 503#define this_cpu_or(pcp, val) __pcpu_size_call(this_cpu_or_, pcp, val) 504#define this_cpu_add_return(pcp, val) __pcpu_size_call_return2(this_cpu_add_return_, pcp, val) 505#define this_cpu_xchg(pcp, nval) __pcpu_size_call_return2(this_cpu_xchg_, pcp, nval) 506#define this_cpu_cmpxchg(pcp, oval, nval) \ 507 __pcpu_size_call_return2(this_cpu_cmpxchg_, pcp, oval, nval) 508#define this_cpu_try_cmpxchg(pcp, ovalp, nval) \ 509 __pcpu_size_call_return2bool(this_cpu_try_cmpxchg_, pcp, ovalp, nval) 510#define this_cpu_sub(pcp, val) this_cpu_add(pcp, -(typeof(pcp))(val)) 511#define this_cpu_inc(pcp) this_cpu_add(pcp, 1) 512#define this_cpu_dec(pcp) this_cpu_sub(pcp, 1) 513#define this_cpu_sub_return(pcp, val) this_cpu_add_return(pcp, -(typeof(pcp))(val)) 514#define this_cpu_inc_return(pcp) this_cpu_add_return(pcp, 1) 515#define this_cpu_dec_return(pcp) this_cpu_add_return(pcp, -1) 516 517#endif /* __ASSEMBLY__ */ 518#endif /* _LINUX_PERCPU_DEFS_H */