at master 51 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_PAGEMAP_H 3#define _LINUX_PAGEMAP_H 4 5/* 6 * Copyright 1995 Linus Torvalds 7 */ 8#include <linux/mm.h> 9#include <linux/fs.h> 10#include <linux/list.h> 11#include <linux/highmem.h> 12#include <linux/compiler.h> 13#include <linux/uaccess.h> 14#include <linux/gfp.h> 15#include <linux/bitops.h> 16#include <linux/hardirq.h> /* for in_interrupt() */ 17#include <linux/hugetlb_inline.h> 18 19struct folio_batch; 20 21unsigned long invalidate_mapping_pages(struct address_space *mapping, 22 pgoff_t start, pgoff_t end); 23 24static inline void invalidate_remote_inode(struct inode *inode) 25{ 26 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 27 S_ISLNK(inode->i_mode)) 28 invalidate_mapping_pages(inode->i_mapping, 0, -1); 29} 30int invalidate_inode_pages2(struct address_space *mapping); 31int invalidate_inode_pages2_range(struct address_space *mapping, 32 pgoff_t start, pgoff_t end); 33int kiocb_invalidate_pages(struct kiocb *iocb, size_t count); 34void kiocb_invalidate_post_direct_write(struct kiocb *iocb, size_t count); 35int filemap_invalidate_pages(struct address_space *mapping, 36 loff_t pos, loff_t end, bool nowait); 37 38int write_inode_now(struct inode *, int sync); 39int filemap_fdatawrite(struct address_space *); 40int filemap_flush(struct address_space *); 41int filemap_flush_nr(struct address_space *mapping, long *nr_to_write); 42int filemap_fdatawait_keep_errors(struct address_space *mapping); 43int filemap_fdatawait_range(struct address_space *, loff_t lstart, loff_t lend); 44int filemap_fdatawait_range_keep_errors(struct address_space *mapping, 45 loff_t start_byte, loff_t end_byte); 46int filemap_invalidate_inode(struct inode *inode, bool flush, 47 loff_t start, loff_t end); 48 49static inline int filemap_fdatawait(struct address_space *mapping) 50{ 51 return filemap_fdatawait_range(mapping, 0, LLONG_MAX); 52} 53 54bool filemap_range_has_page(struct address_space *, loff_t lstart, loff_t lend); 55int filemap_write_and_wait_range(struct address_space *mapping, 56 loff_t lstart, loff_t lend); 57int filemap_fdatawrite_range(struct address_space *mapping, 58 loff_t start, loff_t end); 59int filemap_check_errors(struct address_space *mapping); 60void __filemap_set_wb_err(struct address_space *mapping, int err); 61int kiocb_write_and_wait(struct kiocb *iocb, size_t count); 62 63static inline int filemap_write_and_wait(struct address_space *mapping) 64{ 65 return filemap_write_and_wait_range(mapping, 0, LLONG_MAX); 66} 67 68/** 69 * filemap_set_wb_err - set a writeback error on an address_space 70 * @mapping: mapping in which to set writeback error 71 * @err: error to be set in mapping 72 * 73 * When writeback fails in some way, we must record that error so that 74 * userspace can be informed when fsync and the like are called. We endeavor 75 * to report errors on any file that was open at the time of the error. Some 76 * internal callers also need to know when writeback errors have occurred. 77 * 78 * When a writeback error occurs, most filesystems will want to call 79 * filemap_set_wb_err to record the error in the mapping so that it will be 80 * automatically reported whenever fsync is called on the file. 81 */ 82static inline void filemap_set_wb_err(struct address_space *mapping, int err) 83{ 84 /* Fastpath for common case of no error */ 85 if (unlikely(err)) 86 __filemap_set_wb_err(mapping, err); 87} 88 89/** 90 * filemap_check_wb_err - has an error occurred since the mark was sampled? 91 * @mapping: mapping to check for writeback errors 92 * @since: previously-sampled errseq_t 93 * 94 * Grab the errseq_t value from the mapping, and see if it has changed "since" 95 * the given value was sampled. 96 * 97 * If it has then report the latest error set, otherwise return 0. 98 */ 99static inline int filemap_check_wb_err(struct address_space *mapping, 100 errseq_t since) 101{ 102 return errseq_check(&mapping->wb_err, since); 103} 104 105/** 106 * filemap_sample_wb_err - sample the current errseq_t to test for later errors 107 * @mapping: mapping to be sampled 108 * 109 * Writeback errors are always reported relative to a particular sample point 110 * in the past. This function provides those sample points. 111 */ 112static inline errseq_t filemap_sample_wb_err(struct address_space *mapping) 113{ 114 return errseq_sample(&mapping->wb_err); 115} 116 117/** 118 * file_sample_sb_err - sample the current errseq_t to test for later errors 119 * @file: file pointer to be sampled 120 * 121 * Grab the most current superblock-level errseq_t value for the given 122 * struct file. 123 */ 124static inline errseq_t file_sample_sb_err(struct file *file) 125{ 126 return errseq_sample(&file->f_path.dentry->d_sb->s_wb_err); 127} 128 129/* 130 * Flush file data before changing attributes. Caller must hold any locks 131 * required to prevent further writes to this file until we're done setting 132 * flags. 133 */ 134static inline int inode_drain_writes(struct inode *inode) 135{ 136 inode_dio_wait(inode); 137 return filemap_write_and_wait(inode->i_mapping); 138} 139 140static inline bool mapping_empty(const struct address_space *mapping) 141{ 142 return xa_empty(&mapping->i_pages); 143} 144 145/* 146 * mapping_shrinkable - test if page cache state allows inode reclaim 147 * @mapping: the page cache mapping 148 * 149 * This checks the mapping's cache state for the pupose of inode 150 * reclaim and LRU management. 151 * 152 * The caller is expected to hold the i_lock, but is not required to 153 * hold the i_pages lock, which usually protects cache state. That's 154 * because the i_lock and the list_lru lock that protect the inode and 155 * its LRU state don't nest inside the irq-safe i_pages lock. 156 * 157 * Cache deletions are performed under the i_lock, which ensures that 158 * when an inode goes empty, it will reliably get queued on the LRU. 159 * 160 * Cache additions do not acquire the i_lock and may race with this 161 * check, in which case we'll report the inode as shrinkable when it 162 * has cache pages. This is okay: the shrinker also checks the 163 * refcount and the referenced bit, which will be elevated or set in 164 * the process of adding new cache pages to an inode. 165 */ 166static inline bool mapping_shrinkable(const struct address_space *mapping) 167{ 168 void *head; 169 170 /* 171 * On highmem systems, there could be lowmem pressure from the 172 * inodes before there is highmem pressure from the page 173 * cache. Make inodes shrinkable regardless of cache state. 174 */ 175 if (IS_ENABLED(CONFIG_HIGHMEM)) 176 return true; 177 178 /* Cache completely empty? Shrink away. */ 179 head = rcu_access_pointer(mapping->i_pages.xa_head); 180 if (!head) 181 return true; 182 183 /* 184 * The xarray stores single offset-0 entries directly in the 185 * head pointer, which allows non-resident page cache entries 186 * to escape the shadow shrinker's list of xarray nodes. The 187 * inode shrinker needs to pick them up under memory pressure. 188 */ 189 if (!xa_is_node(head) && xa_is_value(head)) 190 return true; 191 192 return false; 193} 194 195/* 196 * Bits in mapping->flags. 197 */ 198enum mapping_flags { 199 AS_EIO = 0, /* IO error on async write */ 200 AS_ENOSPC = 1, /* ENOSPC on async write */ 201 AS_MM_ALL_LOCKS = 2, /* under mm_take_all_locks() */ 202 AS_UNEVICTABLE = 3, /* e.g., ramdisk, SHM_LOCK */ 203 AS_EXITING = 4, /* final truncate in progress */ 204 /* writeback related tags are not used */ 205 AS_NO_WRITEBACK_TAGS = 5, 206 AS_RELEASE_ALWAYS = 6, /* Call ->release_folio(), even if no private data */ 207 AS_STABLE_WRITES = 7, /* must wait for writeback before modifying 208 folio contents */ 209 AS_INACCESSIBLE = 8, /* Do not attempt direct R/W access to the mapping */ 210 AS_WRITEBACK_MAY_DEADLOCK_ON_RECLAIM = 9, 211 AS_KERNEL_FILE = 10, /* mapping for a fake kernel file that shouldn't 212 account usage to user cgroups */ 213 /* Bits 16-25 are used for FOLIO_ORDER */ 214 AS_FOLIO_ORDER_BITS = 5, 215 AS_FOLIO_ORDER_MIN = 16, 216 AS_FOLIO_ORDER_MAX = AS_FOLIO_ORDER_MIN + AS_FOLIO_ORDER_BITS, 217}; 218 219#define AS_FOLIO_ORDER_BITS_MASK ((1u << AS_FOLIO_ORDER_BITS) - 1) 220#define AS_FOLIO_ORDER_MIN_MASK (AS_FOLIO_ORDER_BITS_MASK << AS_FOLIO_ORDER_MIN) 221#define AS_FOLIO_ORDER_MAX_MASK (AS_FOLIO_ORDER_BITS_MASK << AS_FOLIO_ORDER_MAX) 222#define AS_FOLIO_ORDER_MASK (AS_FOLIO_ORDER_MIN_MASK | AS_FOLIO_ORDER_MAX_MASK) 223 224/** 225 * mapping_set_error - record a writeback error in the address_space 226 * @mapping: the mapping in which an error should be set 227 * @error: the error to set in the mapping 228 * 229 * When writeback fails in some way, we must record that error so that 230 * userspace can be informed when fsync and the like are called. We endeavor 231 * to report errors on any file that was open at the time of the error. Some 232 * internal callers also need to know when writeback errors have occurred. 233 * 234 * When a writeback error occurs, most filesystems will want to call 235 * mapping_set_error to record the error in the mapping so that it can be 236 * reported when the application calls fsync(2). 237 */ 238static inline void mapping_set_error(struct address_space *mapping, int error) 239{ 240 if (likely(!error)) 241 return; 242 243 /* Record in wb_err for checkers using errseq_t based tracking */ 244 __filemap_set_wb_err(mapping, error); 245 246 /* Record it in superblock */ 247 if (mapping->host) 248 errseq_set(&mapping->host->i_sb->s_wb_err, error); 249 250 /* Record it in flags for now, for legacy callers */ 251 if (error == -ENOSPC) 252 set_bit(AS_ENOSPC, &mapping->flags); 253 else 254 set_bit(AS_EIO, &mapping->flags); 255} 256 257static inline void mapping_set_unevictable(struct address_space *mapping) 258{ 259 set_bit(AS_UNEVICTABLE, &mapping->flags); 260} 261 262static inline void mapping_clear_unevictable(struct address_space *mapping) 263{ 264 clear_bit(AS_UNEVICTABLE, &mapping->flags); 265} 266 267static inline bool mapping_unevictable(const struct address_space *mapping) 268{ 269 return mapping && test_bit(AS_UNEVICTABLE, &mapping->flags); 270} 271 272static inline void mapping_set_exiting(struct address_space *mapping) 273{ 274 set_bit(AS_EXITING, &mapping->flags); 275} 276 277static inline int mapping_exiting(const struct address_space *mapping) 278{ 279 return test_bit(AS_EXITING, &mapping->flags); 280} 281 282static inline void mapping_set_no_writeback_tags(struct address_space *mapping) 283{ 284 set_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags); 285} 286 287static inline int mapping_use_writeback_tags(const struct address_space *mapping) 288{ 289 return !test_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags); 290} 291 292static inline bool mapping_release_always(const struct address_space *mapping) 293{ 294 return test_bit(AS_RELEASE_ALWAYS, &mapping->flags); 295} 296 297static inline void mapping_set_release_always(struct address_space *mapping) 298{ 299 set_bit(AS_RELEASE_ALWAYS, &mapping->flags); 300} 301 302static inline void mapping_clear_release_always(struct address_space *mapping) 303{ 304 clear_bit(AS_RELEASE_ALWAYS, &mapping->flags); 305} 306 307static inline bool mapping_stable_writes(const struct address_space *mapping) 308{ 309 return test_bit(AS_STABLE_WRITES, &mapping->flags); 310} 311 312static inline void mapping_set_stable_writes(struct address_space *mapping) 313{ 314 set_bit(AS_STABLE_WRITES, &mapping->flags); 315} 316 317static inline void mapping_clear_stable_writes(struct address_space *mapping) 318{ 319 clear_bit(AS_STABLE_WRITES, &mapping->flags); 320} 321 322static inline void mapping_set_inaccessible(struct address_space *mapping) 323{ 324 /* 325 * It's expected inaccessible mappings are also unevictable. Compaction 326 * migrate scanner (isolate_migratepages_block()) relies on this to 327 * reduce page locking. 328 */ 329 set_bit(AS_UNEVICTABLE, &mapping->flags); 330 set_bit(AS_INACCESSIBLE, &mapping->flags); 331} 332 333static inline bool mapping_inaccessible(const struct address_space *mapping) 334{ 335 return test_bit(AS_INACCESSIBLE, &mapping->flags); 336} 337 338static inline void mapping_set_writeback_may_deadlock_on_reclaim(struct address_space *mapping) 339{ 340 set_bit(AS_WRITEBACK_MAY_DEADLOCK_ON_RECLAIM, &mapping->flags); 341} 342 343static inline bool mapping_writeback_may_deadlock_on_reclaim(const struct address_space *mapping) 344{ 345 return test_bit(AS_WRITEBACK_MAY_DEADLOCK_ON_RECLAIM, &mapping->flags); 346} 347 348static inline gfp_t mapping_gfp_mask(const struct address_space *mapping) 349{ 350 return mapping->gfp_mask; 351} 352 353/* Restricts the given gfp_mask to what the mapping allows. */ 354static inline gfp_t mapping_gfp_constraint(const struct address_space *mapping, 355 gfp_t gfp_mask) 356{ 357 return mapping_gfp_mask(mapping) & gfp_mask; 358} 359 360/* 361 * This is non-atomic. Only to be used before the mapping is activated. 362 * Probably needs a barrier... 363 */ 364static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask) 365{ 366 m->gfp_mask = mask; 367} 368 369/* 370 * There are some parts of the kernel which assume that PMD entries 371 * are exactly HPAGE_PMD_ORDER. Those should be fixed, but until then, 372 * limit the maximum allocation order to PMD size. I'm not aware of any 373 * assumptions about maximum order if THP are disabled, but 8 seems like 374 * a good order (that's 1MB if you're using 4kB pages) 375 */ 376#ifdef CONFIG_TRANSPARENT_HUGEPAGE 377#define PREFERRED_MAX_PAGECACHE_ORDER HPAGE_PMD_ORDER 378#else 379#define PREFERRED_MAX_PAGECACHE_ORDER 8 380#endif 381 382/* 383 * xas_split_alloc() does not support arbitrary orders. This implies no 384 * 512MB THP on ARM64 with 64KB base page size. 385 */ 386#define MAX_XAS_ORDER (XA_CHUNK_SHIFT * 2 - 1) 387#define MAX_PAGECACHE_ORDER min(MAX_XAS_ORDER, PREFERRED_MAX_PAGECACHE_ORDER) 388 389/* 390 * mapping_max_folio_size_supported() - Check the max folio size supported 391 * 392 * The filesystem should call this function at mount time if there is a 393 * requirement on the folio mapping size in the page cache. 394 */ 395static inline size_t mapping_max_folio_size_supported(void) 396{ 397 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 398 return 1U << (PAGE_SHIFT + MAX_PAGECACHE_ORDER); 399 return PAGE_SIZE; 400} 401 402/* 403 * mapping_set_folio_order_range() - Set the orders supported by a file. 404 * @mapping: The address space of the file. 405 * @min: Minimum folio order (between 0-MAX_PAGECACHE_ORDER inclusive). 406 * @max: Maximum folio order (between @min-MAX_PAGECACHE_ORDER inclusive). 407 * 408 * The filesystem should call this function in its inode constructor to 409 * indicate which base size (min) and maximum size (max) of folio the VFS 410 * can use to cache the contents of the file. This should only be used 411 * if the filesystem needs special handling of folio sizes (ie there is 412 * something the core cannot know). 413 * Do not tune it based on, eg, i_size. 414 * 415 * Context: This should not be called while the inode is active as it 416 * is non-atomic. 417 */ 418static inline void mapping_set_folio_order_range(struct address_space *mapping, 419 unsigned int min, 420 unsigned int max) 421{ 422 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 423 return; 424 425 if (min > MAX_PAGECACHE_ORDER) 426 min = MAX_PAGECACHE_ORDER; 427 428 if (max > MAX_PAGECACHE_ORDER) 429 max = MAX_PAGECACHE_ORDER; 430 431 if (max < min) 432 max = min; 433 434 mapping->flags = (mapping->flags & ~AS_FOLIO_ORDER_MASK) | 435 (min << AS_FOLIO_ORDER_MIN) | (max << AS_FOLIO_ORDER_MAX); 436} 437 438static inline void mapping_set_folio_min_order(struct address_space *mapping, 439 unsigned int min) 440{ 441 mapping_set_folio_order_range(mapping, min, MAX_PAGECACHE_ORDER); 442} 443 444/** 445 * mapping_set_large_folios() - Indicate the file supports large folios. 446 * @mapping: The address space of the file. 447 * 448 * The filesystem should call this function in its inode constructor to 449 * indicate that the VFS can use large folios to cache the contents of 450 * the file. 451 * 452 * Context: This should not be called while the inode is active as it 453 * is non-atomic. 454 */ 455static inline void mapping_set_large_folios(struct address_space *mapping) 456{ 457 mapping_set_folio_order_range(mapping, 0, MAX_PAGECACHE_ORDER); 458} 459 460static inline unsigned int 461mapping_max_folio_order(const struct address_space *mapping) 462{ 463 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 464 return 0; 465 return (mapping->flags & AS_FOLIO_ORDER_MAX_MASK) >> AS_FOLIO_ORDER_MAX; 466} 467 468static inline unsigned int 469mapping_min_folio_order(const struct address_space *mapping) 470{ 471 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 472 return 0; 473 return (mapping->flags & AS_FOLIO_ORDER_MIN_MASK) >> AS_FOLIO_ORDER_MIN; 474} 475 476static inline unsigned long 477mapping_min_folio_nrpages(const struct address_space *mapping) 478{ 479 return 1UL << mapping_min_folio_order(mapping); 480} 481 482static inline unsigned long 483mapping_min_folio_nrbytes(const struct address_space *mapping) 484{ 485 return mapping_min_folio_nrpages(mapping) << PAGE_SHIFT; 486} 487 488/** 489 * mapping_align_index() - Align index for this mapping. 490 * @mapping: The address_space. 491 * @index: The page index. 492 * 493 * The index of a folio must be naturally aligned. If you are adding a 494 * new folio to the page cache and need to know what index to give it, 495 * call this function. 496 */ 497static inline pgoff_t mapping_align_index(const struct address_space *mapping, 498 pgoff_t index) 499{ 500 return round_down(index, mapping_min_folio_nrpages(mapping)); 501} 502 503/* 504 * Large folio support currently depends on THP. These dependencies are 505 * being worked on but are not yet fixed. 506 */ 507static inline bool mapping_large_folio_support(const struct address_space *mapping) 508{ 509 /* AS_FOLIO_ORDER is only reasonable for pagecache folios */ 510 VM_WARN_ONCE((unsigned long)mapping & FOLIO_MAPPING_ANON, 511 "Anonymous mapping always supports large folio"); 512 513 return mapping_max_folio_order(mapping) > 0; 514} 515 516/* Return the maximum folio size for this pagecache mapping, in bytes. */ 517static inline size_t mapping_max_folio_size(const struct address_space *mapping) 518{ 519 return PAGE_SIZE << mapping_max_folio_order(mapping); 520} 521 522static inline int filemap_nr_thps(const struct address_space *mapping) 523{ 524#ifdef CONFIG_READ_ONLY_THP_FOR_FS 525 return atomic_read(&mapping->nr_thps); 526#else 527 return 0; 528#endif 529} 530 531static inline void filemap_nr_thps_inc(struct address_space *mapping) 532{ 533#ifdef CONFIG_READ_ONLY_THP_FOR_FS 534 if (!mapping_large_folio_support(mapping)) 535 atomic_inc(&mapping->nr_thps); 536#else 537 WARN_ON_ONCE(mapping_large_folio_support(mapping) == 0); 538#endif 539} 540 541static inline void filemap_nr_thps_dec(struct address_space *mapping) 542{ 543#ifdef CONFIG_READ_ONLY_THP_FOR_FS 544 if (!mapping_large_folio_support(mapping)) 545 atomic_dec(&mapping->nr_thps); 546#else 547 WARN_ON_ONCE(mapping_large_folio_support(mapping) == 0); 548#endif 549} 550 551struct address_space *folio_mapping(const struct folio *folio); 552 553/** 554 * folio_flush_mapping - Find the file mapping this folio belongs to. 555 * @folio: The folio. 556 * 557 * For folios which are in the page cache, return the mapping that this 558 * page belongs to. Anonymous folios return NULL, even if they're in 559 * the swap cache. Other kinds of folio also return NULL. 560 * 561 * This is ONLY used by architecture cache flushing code. If you aren't 562 * writing cache flushing code, you want either folio_mapping() or 563 * folio_file_mapping(). 564 */ 565static inline struct address_space *folio_flush_mapping(struct folio *folio) 566{ 567 if (unlikely(folio_test_swapcache(folio))) 568 return NULL; 569 570 return folio_mapping(folio); 571} 572 573/** 574 * folio_inode - Get the host inode for this folio. 575 * @folio: The folio. 576 * 577 * For folios which are in the page cache, return the inode that this folio 578 * belongs to. 579 * 580 * Do not call this for folios which aren't in the page cache. 581 */ 582static inline struct inode *folio_inode(struct folio *folio) 583{ 584 return folio->mapping->host; 585} 586 587/** 588 * folio_attach_private - Attach private data to a folio. 589 * @folio: Folio to attach data to. 590 * @data: Data to attach to folio. 591 * 592 * Attaching private data to a folio increments the page's reference count. 593 * The data must be detached before the folio will be freed. 594 */ 595static inline void folio_attach_private(struct folio *folio, void *data) 596{ 597 folio_get(folio); 598 folio->private = data; 599 folio_set_private(folio); 600} 601 602/** 603 * folio_change_private - Change private data on a folio. 604 * @folio: Folio to change the data on. 605 * @data: Data to set on the folio. 606 * 607 * Change the private data attached to a folio and return the old 608 * data. The page must previously have had data attached and the data 609 * must be detached before the folio will be freed. 610 * 611 * Return: Data that was previously attached to the folio. 612 */ 613static inline void *folio_change_private(struct folio *folio, void *data) 614{ 615 void *old = folio_get_private(folio); 616 617 folio->private = data; 618 return old; 619} 620 621/** 622 * folio_detach_private - Detach private data from a folio. 623 * @folio: Folio to detach data from. 624 * 625 * Removes the data that was previously attached to the folio and decrements 626 * the refcount on the page. 627 * 628 * Return: Data that was attached to the folio. 629 */ 630static inline void *folio_detach_private(struct folio *folio) 631{ 632 void *data = folio_get_private(folio); 633 634 if (!folio_test_private(folio)) 635 return NULL; 636 folio_clear_private(folio); 637 folio->private = NULL; 638 folio_put(folio); 639 640 return data; 641} 642 643static inline void attach_page_private(struct page *page, void *data) 644{ 645 folio_attach_private(page_folio(page), data); 646} 647 648static inline void *detach_page_private(struct page *page) 649{ 650 return folio_detach_private(page_folio(page)); 651} 652 653#ifdef CONFIG_NUMA 654struct folio *filemap_alloc_folio_noprof(gfp_t gfp, unsigned int order, 655 struct mempolicy *policy); 656#else 657static inline struct folio *filemap_alloc_folio_noprof(gfp_t gfp, unsigned int order, 658 struct mempolicy *policy) 659{ 660 return folio_alloc_noprof(gfp, order); 661} 662#endif 663 664#define filemap_alloc_folio(...) \ 665 alloc_hooks(filemap_alloc_folio_noprof(__VA_ARGS__)) 666 667static inline struct page *__page_cache_alloc(gfp_t gfp) 668{ 669 return &filemap_alloc_folio(gfp, 0, NULL)->page; 670} 671 672static inline gfp_t readahead_gfp_mask(struct address_space *x) 673{ 674 return mapping_gfp_mask(x) | __GFP_NORETRY | __GFP_NOWARN; 675} 676 677typedef int filler_t(struct file *, struct folio *); 678 679pgoff_t page_cache_next_miss(struct address_space *mapping, 680 pgoff_t index, unsigned long max_scan); 681pgoff_t page_cache_prev_miss(struct address_space *mapping, 682 pgoff_t index, unsigned long max_scan); 683 684/** 685 * typedef fgf_t - Flags for getting folios from the page cache. 686 * 687 * Most users of the page cache will not need to use these flags; 688 * there are convenience functions such as filemap_get_folio() and 689 * filemap_lock_folio(). For users which need more control over exactly 690 * what is done with the folios, these flags to __filemap_get_folio() 691 * are available. 692 * 693 * * %FGP_ACCESSED - The folio will be marked accessed. 694 * * %FGP_LOCK - The folio is returned locked. 695 * * %FGP_CREAT - If no folio is present then a new folio is allocated, 696 * added to the page cache and the VM's LRU list. The folio is 697 * returned locked. 698 * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the 699 * folio is already in cache. If the folio was allocated, unlock it 700 * before returning so the caller can do the same dance. 701 * * %FGP_WRITE - The folio will be written to by the caller. 702 * * %FGP_NOFS - __GFP_FS will get cleared in gfp. 703 * * %FGP_NOWAIT - Don't block on the folio lock. 704 * * %FGP_STABLE - Wait for the folio to be stable (finished writeback) 705 * * %FGP_DONTCACHE - Uncached buffered IO 706 * * %FGP_WRITEBEGIN - The flags to use in a filesystem write_begin() 707 * implementation. 708 */ 709typedef unsigned int __bitwise fgf_t; 710 711#define FGP_ACCESSED ((__force fgf_t)0x00000001) 712#define FGP_LOCK ((__force fgf_t)0x00000002) 713#define FGP_CREAT ((__force fgf_t)0x00000004) 714#define FGP_WRITE ((__force fgf_t)0x00000008) 715#define FGP_NOFS ((__force fgf_t)0x00000010) 716#define FGP_NOWAIT ((__force fgf_t)0x00000020) 717#define FGP_FOR_MMAP ((__force fgf_t)0x00000040) 718#define FGP_STABLE ((__force fgf_t)0x00000080) 719#define FGP_DONTCACHE ((__force fgf_t)0x00000100) 720#define FGF_GET_ORDER(fgf) (((__force unsigned)fgf) >> 26) /* top 6 bits */ 721 722#define FGP_WRITEBEGIN (FGP_LOCK | FGP_WRITE | FGP_CREAT | FGP_STABLE) 723 724static inline unsigned int filemap_get_order(size_t size) 725{ 726 unsigned int shift = ilog2(size); 727 728 if (shift <= PAGE_SHIFT) 729 return 0; 730 731 return shift - PAGE_SHIFT; 732} 733 734/** 735 * fgf_set_order - Encode a length in the fgf_t flags. 736 * @size: The suggested size of the folio to create. 737 * 738 * The caller of __filemap_get_folio() can use this to suggest a preferred 739 * size for the folio that is created. If there is already a folio at 740 * the index, it will be returned, no matter what its size. If a folio 741 * is freshly created, it may be of a different size than requested 742 * due to alignment constraints, memory pressure, or the presence of 743 * other folios at nearby indices. 744 */ 745static inline fgf_t fgf_set_order(size_t size) 746{ 747 unsigned int order = filemap_get_order(size); 748 749 if (!order) 750 return 0; 751 return (__force fgf_t)(order << 26); 752} 753 754void *filemap_get_entry(struct address_space *mapping, pgoff_t index); 755struct folio *__filemap_get_folio_mpol(struct address_space *mapping, 756 pgoff_t index, fgf_t fgf_flags, gfp_t gfp, struct mempolicy *policy); 757struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index, 758 fgf_t fgp_flags, gfp_t gfp); 759 760static inline struct folio *__filemap_get_folio(struct address_space *mapping, 761 pgoff_t index, fgf_t fgf_flags, gfp_t gfp) 762{ 763 return __filemap_get_folio_mpol(mapping, index, fgf_flags, gfp, NULL); 764} 765 766/** 767 * write_begin_get_folio - Get folio for write_begin with flags. 768 * @iocb: The kiocb passed from write_begin (may be NULL). 769 * @mapping: The address space to search. 770 * @index: The page cache index. 771 * @len: Length of data being written. 772 * 773 * This is a helper for filesystem write_begin() implementations. 774 * It wraps __filemap_get_folio(), setting appropriate flags in 775 * the write begin context. 776 * 777 * Return: A folio or an ERR_PTR. 778 */ 779static inline struct folio *write_begin_get_folio(const struct kiocb *iocb, 780 struct address_space *mapping, pgoff_t index, size_t len) 781{ 782 fgf_t fgp_flags = FGP_WRITEBEGIN; 783 784 fgp_flags |= fgf_set_order(len); 785 786 if (iocb && iocb->ki_flags & IOCB_DONTCACHE) 787 fgp_flags |= FGP_DONTCACHE; 788 789 return __filemap_get_folio(mapping, index, fgp_flags, 790 mapping_gfp_mask(mapping)); 791} 792 793/** 794 * filemap_get_folio - Find and get a folio. 795 * @mapping: The address_space to search. 796 * @index: The page index. 797 * 798 * Looks up the page cache entry at @mapping & @index. If a folio is 799 * present, it is returned with an increased refcount. 800 * 801 * Return: A folio or ERR_PTR(-ENOENT) if there is no folio in the cache for 802 * this index. Will not return a shadow, swap or DAX entry. 803 */ 804static inline struct folio *filemap_get_folio(struct address_space *mapping, 805 pgoff_t index) 806{ 807 return __filemap_get_folio(mapping, index, 0, 0); 808} 809 810/** 811 * filemap_lock_folio - Find and lock a folio. 812 * @mapping: The address_space to search. 813 * @index: The page index. 814 * 815 * Looks up the page cache entry at @mapping & @index. If a folio is 816 * present, it is returned locked with an increased refcount. 817 * 818 * Context: May sleep. 819 * Return: A folio or ERR_PTR(-ENOENT) if there is no folio in the cache for 820 * this index. Will not return a shadow, swap or DAX entry. 821 */ 822static inline struct folio *filemap_lock_folio(struct address_space *mapping, 823 pgoff_t index) 824{ 825 return __filemap_get_folio(mapping, index, FGP_LOCK, 0); 826} 827 828/** 829 * filemap_grab_folio - grab a folio from the page cache 830 * @mapping: The address space to search 831 * @index: The page index 832 * 833 * Looks up the page cache entry at @mapping & @index. If no folio is found, 834 * a new folio is created. The folio is locked, marked as accessed, and 835 * returned. 836 * 837 * Return: A found or created folio. ERR_PTR(-ENOMEM) if no folio is found 838 * and failed to create a folio. 839 */ 840static inline struct folio *filemap_grab_folio(struct address_space *mapping, 841 pgoff_t index) 842{ 843 return __filemap_get_folio(mapping, index, 844 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, 845 mapping_gfp_mask(mapping)); 846} 847 848/** 849 * find_get_page - find and get a page reference 850 * @mapping: the address_space to search 851 * @offset: the page index 852 * 853 * Looks up the page cache slot at @mapping & @offset. If there is a 854 * page cache page, it is returned with an increased refcount. 855 * 856 * Otherwise, %NULL is returned. 857 */ 858static inline struct page *find_get_page(struct address_space *mapping, 859 pgoff_t offset) 860{ 861 return pagecache_get_page(mapping, offset, 0, 0); 862} 863 864static inline struct page *find_get_page_flags(struct address_space *mapping, 865 pgoff_t offset, fgf_t fgp_flags) 866{ 867 return pagecache_get_page(mapping, offset, fgp_flags, 0); 868} 869 870/** 871 * find_lock_page - locate, pin and lock a pagecache page 872 * @mapping: the address_space to search 873 * @index: the page index 874 * 875 * Looks up the page cache entry at @mapping & @index. If there is a 876 * page cache page, it is returned locked and with an increased 877 * refcount. 878 * 879 * Context: May sleep. 880 * Return: A struct page or %NULL if there is no page in the cache for this 881 * index. 882 */ 883static inline struct page *find_lock_page(struct address_space *mapping, 884 pgoff_t index) 885{ 886 return pagecache_get_page(mapping, index, FGP_LOCK, 0); 887} 888 889/** 890 * find_or_create_page - locate or add a pagecache page 891 * @mapping: the page's address_space 892 * @index: the page's index into the mapping 893 * @gfp_mask: page allocation mode 894 * 895 * Looks up the page cache slot at @mapping & @offset. If there is a 896 * page cache page, it is returned locked and with an increased 897 * refcount. 898 * 899 * If the page is not present, a new page is allocated using @gfp_mask 900 * and added to the page cache and the VM's LRU list. The page is 901 * returned locked and with an increased refcount. 902 * 903 * On memory exhaustion, %NULL is returned. 904 * 905 * find_or_create_page() may sleep, even if @gfp_flags specifies an 906 * atomic allocation! 907 */ 908static inline struct page *find_or_create_page(struct address_space *mapping, 909 pgoff_t index, gfp_t gfp_mask) 910{ 911 return pagecache_get_page(mapping, index, 912 FGP_LOCK|FGP_ACCESSED|FGP_CREAT, 913 gfp_mask); 914} 915 916/** 917 * grab_cache_page_nowait - returns locked page at given index in given cache 918 * @mapping: target address_space 919 * @index: the page index 920 * 921 * Returns locked page at given index in given cache, creating it if 922 * needed, but do not wait if the page is locked or to reclaim memory. 923 * This is intended for speculative data generators, where the data can 924 * be regenerated if the page couldn't be grabbed. This routine should 925 * be safe to call while holding the lock for another page. 926 * 927 * Clear __GFP_FS when allocating the page to avoid recursion into the fs 928 * and deadlock against the caller's locked page. 929 */ 930static inline struct page *grab_cache_page_nowait(struct address_space *mapping, 931 pgoff_t index) 932{ 933 return pagecache_get_page(mapping, index, 934 FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT, 935 mapping_gfp_mask(mapping)); 936} 937 938/** 939 * folio_next_index - Get the index of the next folio. 940 * @folio: The current folio. 941 * 942 * Return: The index of the folio which follows this folio in the file. 943 */ 944static inline pgoff_t folio_next_index(const struct folio *folio) 945{ 946 return folio->index + folio_nr_pages(folio); 947} 948 949/** 950 * folio_next_pos - Get the file position of the next folio. 951 * @folio: The current folio. 952 * 953 * Return: The position of the folio which follows this folio in the file. 954 */ 955static inline loff_t folio_next_pos(const struct folio *folio) 956{ 957 return (loff_t)folio_next_index(folio) << PAGE_SHIFT; 958} 959 960/** 961 * folio_file_page - The page for a particular index. 962 * @folio: The folio which contains this index. 963 * @index: The index we want to look up. 964 * 965 * Sometimes after looking up a folio in the page cache, we need to 966 * obtain the specific page for an index (eg a page fault). 967 * 968 * Return: The page containing the file data for this index. 969 */ 970static inline struct page *folio_file_page(struct folio *folio, pgoff_t index) 971{ 972 return folio_page(folio, index & (folio_nr_pages(folio) - 1)); 973} 974 975/** 976 * folio_contains - Does this folio contain this index? 977 * @folio: The folio. 978 * @index: The page index within the file. 979 * 980 * Context: The caller should have the folio locked and ensure 981 * e.g., shmem did not move this folio to the swap cache. 982 * Return: true or false. 983 */ 984static inline bool folio_contains(const struct folio *folio, pgoff_t index) 985{ 986 VM_WARN_ON_ONCE_FOLIO(folio_test_swapcache(folio), folio); 987 return index - folio->index < folio_nr_pages(folio); 988} 989 990unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start, 991 pgoff_t end, struct folio_batch *fbatch); 992unsigned filemap_get_folios_contig(struct address_space *mapping, 993 pgoff_t *start, pgoff_t end, struct folio_batch *fbatch); 994unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start, 995 pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch); 996unsigned filemap_get_folios_dirty(struct address_space *mapping, 997 pgoff_t *start, pgoff_t end, struct folio_batch *fbatch); 998 999struct folio *read_cache_folio(struct address_space *, pgoff_t index, 1000 filler_t *filler, struct file *file); 1001struct folio *mapping_read_folio_gfp(struct address_space *, pgoff_t index, 1002 gfp_t flags); 1003struct page *read_cache_page(struct address_space *, pgoff_t index, 1004 filler_t *filler, struct file *file); 1005extern struct page * read_cache_page_gfp(struct address_space *mapping, 1006 pgoff_t index, gfp_t gfp_mask); 1007 1008static inline struct page *read_mapping_page(struct address_space *mapping, 1009 pgoff_t index, struct file *file) 1010{ 1011 return read_cache_page(mapping, index, NULL, file); 1012} 1013 1014static inline struct folio *read_mapping_folio(struct address_space *mapping, 1015 pgoff_t index, struct file *file) 1016{ 1017 return read_cache_folio(mapping, index, NULL, file); 1018} 1019 1020/** 1021 * page_pgoff - Calculate the logical page offset of this page. 1022 * @folio: The folio containing this page. 1023 * @page: The page which we need the offset of. 1024 * 1025 * For file pages, this is the offset from the beginning of the file 1026 * in units of PAGE_SIZE. For anonymous pages, this is the offset from 1027 * the beginning of the anon_vma in units of PAGE_SIZE. This will 1028 * return nonsense for KSM pages. 1029 * 1030 * Context: Caller must have a reference on the folio or otherwise 1031 * prevent it from being split or freed. 1032 * 1033 * Return: The offset in units of PAGE_SIZE. 1034 */ 1035static inline pgoff_t page_pgoff(const struct folio *folio, 1036 const struct page *page) 1037{ 1038 return folio->index + folio_page_idx(folio, page); 1039} 1040 1041/** 1042 * folio_pos - Returns the byte position of this folio in its file. 1043 * @folio: The folio. 1044 */ 1045static inline loff_t folio_pos(const struct folio *folio) 1046{ 1047 return ((loff_t)folio->index) * PAGE_SIZE; 1048} 1049 1050/* 1051 * Return byte-offset into filesystem object for page. 1052 */ 1053static inline loff_t page_offset(struct page *page) 1054{ 1055 struct folio *folio = page_folio(page); 1056 1057 return folio_pos(folio) + folio_page_idx(folio, page) * PAGE_SIZE; 1058} 1059 1060/* 1061 * Get the offset in PAGE_SIZE (even for hugetlb folios). 1062 */ 1063static inline pgoff_t folio_pgoff(const struct folio *folio) 1064{ 1065 return folio->index; 1066} 1067 1068static inline pgoff_t linear_page_index(const struct vm_area_struct *vma, 1069 const unsigned long address) 1070{ 1071 pgoff_t pgoff; 1072 pgoff = (address - vma->vm_start) >> PAGE_SHIFT; 1073 pgoff += vma->vm_pgoff; 1074 return pgoff; 1075} 1076 1077struct wait_page_key { 1078 struct folio *folio; 1079 int bit_nr; 1080 int page_match; 1081}; 1082 1083struct wait_page_queue { 1084 struct folio *folio; 1085 int bit_nr; 1086 wait_queue_entry_t wait; 1087}; 1088 1089static inline bool wake_page_match(struct wait_page_queue *wait_page, 1090 struct wait_page_key *key) 1091{ 1092 if (wait_page->folio != key->folio) 1093 return false; 1094 key->page_match = 1; 1095 1096 if (wait_page->bit_nr != key->bit_nr) 1097 return false; 1098 1099 return true; 1100} 1101 1102void __folio_lock(struct folio *folio); 1103int __folio_lock_killable(struct folio *folio); 1104vm_fault_t __folio_lock_or_retry(struct folio *folio, struct vm_fault *vmf); 1105void unlock_page(struct page *page); 1106void folio_unlock(struct folio *folio); 1107 1108/** 1109 * folio_trylock() - Attempt to lock a folio. 1110 * @folio: The folio to attempt to lock. 1111 * 1112 * Sometimes it is undesirable to wait for a folio to be unlocked (eg 1113 * when the locks are being taken in the wrong order, or if making 1114 * progress through a batch of folios is more important than processing 1115 * them in order). Usually folio_lock() is the correct function to call. 1116 * 1117 * Context: Any context. 1118 * Return: Whether the lock was successfully acquired. 1119 */ 1120static inline bool folio_trylock(struct folio *folio) 1121{ 1122 return likely(!test_and_set_bit_lock(PG_locked, folio_flags(folio, 0))); 1123} 1124 1125/* 1126 * Return true if the page was successfully locked 1127 */ 1128static inline bool trylock_page(struct page *page) 1129{ 1130 return folio_trylock(page_folio(page)); 1131} 1132 1133/** 1134 * folio_lock() - Lock this folio. 1135 * @folio: The folio to lock. 1136 * 1137 * The folio lock protects against many things, probably more than it 1138 * should. It is primarily held while a folio is being brought uptodate, 1139 * either from its backing file or from swap. It is also held while a 1140 * folio is being truncated from its address_space, so holding the lock 1141 * is sufficient to keep folio->mapping stable. 1142 * 1143 * The folio lock is also held while write() is modifying the page to 1144 * provide POSIX atomicity guarantees (as long as the write does not 1145 * cross a page boundary). Other modifications to the data in the folio 1146 * do not hold the folio lock and can race with writes, eg DMA and stores 1147 * to mapped pages. 1148 * 1149 * Context: May sleep. If you need to acquire the locks of two or 1150 * more folios, they must be in order of ascending index, if they are 1151 * in the same address_space. If they are in different address_spaces, 1152 * acquire the lock of the folio which belongs to the address_space which 1153 * has the lowest address in memory first. 1154 */ 1155static inline void folio_lock(struct folio *folio) 1156{ 1157 might_sleep(); 1158 if (!folio_trylock(folio)) 1159 __folio_lock(folio); 1160} 1161 1162/** 1163 * lock_page() - Lock the folio containing this page. 1164 * @page: The page to lock. 1165 * 1166 * See folio_lock() for a description of what the lock protects. 1167 * This is a legacy function and new code should probably use folio_lock() 1168 * instead. 1169 * 1170 * Context: May sleep. Pages in the same folio share a lock, so do not 1171 * attempt to lock two pages which share a folio. 1172 */ 1173static inline void lock_page(struct page *page) 1174{ 1175 struct folio *folio; 1176 might_sleep(); 1177 1178 folio = page_folio(page); 1179 if (!folio_trylock(folio)) 1180 __folio_lock(folio); 1181} 1182 1183/** 1184 * folio_lock_killable() - Lock this folio, interruptible by a fatal signal. 1185 * @folio: The folio to lock. 1186 * 1187 * Attempts to lock the folio, like folio_lock(), except that the sleep 1188 * to acquire the lock is interruptible by a fatal signal. 1189 * 1190 * Context: May sleep; see folio_lock(). 1191 * Return: 0 if the lock was acquired; -EINTR if a fatal signal was received. 1192 */ 1193static inline int folio_lock_killable(struct folio *folio) 1194{ 1195 might_sleep(); 1196 if (!folio_trylock(folio)) 1197 return __folio_lock_killable(folio); 1198 return 0; 1199} 1200 1201/* 1202 * folio_lock_or_retry - Lock the folio, unless this would block and the 1203 * caller indicated that it can handle a retry. 1204 * 1205 * Return value and mmap_lock implications depend on flags; see 1206 * __folio_lock_or_retry(). 1207 */ 1208static inline vm_fault_t folio_lock_or_retry(struct folio *folio, 1209 struct vm_fault *vmf) 1210{ 1211 might_sleep(); 1212 if (!folio_trylock(folio)) 1213 return __folio_lock_or_retry(folio, vmf); 1214 return 0; 1215} 1216 1217/* 1218 * This is exported only for folio_wait_locked/folio_wait_writeback, etc., 1219 * and should not be used directly. 1220 */ 1221void folio_wait_bit(struct folio *folio, int bit_nr); 1222int folio_wait_bit_killable(struct folio *folio, int bit_nr); 1223 1224/* 1225 * Wait for a folio to be unlocked. 1226 * 1227 * This must be called with the caller "holding" the folio, 1228 * ie with increased folio reference count so that the folio won't 1229 * go away during the wait. 1230 */ 1231static inline void folio_wait_locked(struct folio *folio) 1232{ 1233 if (folio_test_locked(folio)) 1234 folio_wait_bit(folio, PG_locked); 1235} 1236 1237static inline int folio_wait_locked_killable(struct folio *folio) 1238{ 1239 if (!folio_test_locked(folio)) 1240 return 0; 1241 return folio_wait_bit_killable(folio, PG_locked); 1242} 1243 1244void folio_end_read(struct folio *folio, bool success); 1245void wait_on_page_writeback(struct page *page); 1246void folio_wait_writeback(struct folio *folio); 1247int folio_wait_writeback_killable(struct folio *folio); 1248void end_page_writeback(struct page *page); 1249void folio_end_writeback(struct folio *folio); 1250void folio_end_writeback_no_dropbehind(struct folio *folio); 1251void folio_end_dropbehind(struct folio *folio); 1252void folio_wait_stable(struct folio *folio); 1253void __folio_mark_dirty(struct folio *folio, struct address_space *, int warn); 1254void folio_account_cleaned(struct folio *folio, struct bdi_writeback *wb); 1255void __folio_cancel_dirty(struct folio *folio); 1256static inline void folio_cancel_dirty(struct folio *folio) 1257{ 1258 /* Avoid atomic ops, locking, etc. when not actually needed. */ 1259 if (folio_test_dirty(folio)) 1260 __folio_cancel_dirty(folio); 1261} 1262bool folio_clear_dirty_for_io(struct folio *folio); 1263bool clear_page_dirty_for_io(struct page *page); 1264void folio_invalidate(struct folio *folio, size_t offset, size_t length); 1265bool noop_dirty_folio(struct address_space *mapping, struct folio *folio); 1266 1267#ifdef CONFIG_MIGRATION 1268int filemap_migrate_folio(struct address_space *mapping, struct folio *dst, 1269 struct folio *src, enum migrate_mode mode); 1270#else 1271#define filemap_migrate_folio NULL 1272#endif 1273void folio_end_private_2(struct folio *folio); 1274void folio_wait_private_2(struct folio *folio); 1275int folio_wait_private_2_killable(struct folio *folio); 1276 1277/* 1278 * Fault in userspace address range. 1279 */ 1280size_t fault_in_writeable(char __user *uaddr, size_t size); 1281size_t fault_in_subpage_writeable(char __user *uaddr, size_t size); 1282size_t fault_in_safe_writeable(const char __user *uaddr, size_t size); 1283size_t fault_in_readable(const char __user *uaddr, size_t size); 1284 1285int add_to_page_cache_lru(struct page *page, struct address_space *mapping, 1286 pgoff_t index, gfp_t gfp); 1287int filemap_add_folio(struct address_space *mapping, struct folio *folio, 1288 pgoff_t index, gfp_t gfp); 1289void filemap_remove_folio(struct folio *folio); 1290void __filemap_remove_folio(struct folio *folio, void *shadow); 1291void replace_page_cache_folio(struct folio *old, struct folio *new); 1292void delete_from_page_cache_batch(struct address_space *mapping, 1293 struct folio_batch *fbatch); 1294bool filemap_release_folio(struct folio *folio, gfp_t gfp); 1295loff_t mapping_seek_hole_data(struct address_space *, loff_t start, loff_t end, 1296 int whence); 1297 1298/* Must be non-static for BPF error injection */ 1299int __filemap_add_folio(struct address_space *mapping, struct folio *folio, 1300 pgoff_t index, gfp_t gfp, void **shadowp); 1301 1302bool filemap_range_has_writeback(struct address_space *mapping, 1303 loff_t start_byte, loff_t end_byte); 1304 1305/** 1306 * filemap_range_needs_writeback - check if range potentially needs writeback 1307 * @mapping: address space within which to check 1308 * @start_byte: offset in bytes where the range starts 1309 * @end_byte: offset in bytes where the range ends (inclusive) 1310 * 1311 * Find at least one page in the range supplied, usually used to check if 1312 * direct writing in this range will trigger a writeback. Used by O_DIRECT 1313 * read/write with IOCB_NOWAIT, to see if the caller needs to do 1314 * filemap_write_and_wait_range() before proceeding. 1315 * 1316 * Return: %true if the caller should do filemap_write_and_wait_range() before 1317 * doing O_DIRECT to a page in this range, %false otherwise. 1318 */ 1319static inline bool filemap_range_needs_writeback(struct address_space *mapping, 1320 loff_t start_byte, 1321 loff_t end_byte) 1322{ 1323 if (!mapping->nrpages) 1324 return false; 1325 if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 1326 !mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) 1327 return false; 1328 return filemap_range_has_writeback(mapping, start_byte, end_byte); 1329} 1330 1331/** 1332 * struct readahead_control - Describes a readahead request. 1333 * 1334 * A readahead request is for consecutive pages. Filesystems which 1335 * implement the ->readahead method should call readahead_folio() or 1336 * __readahead_batch() in a loop and attempt to start reads into each 1337 * folio in the request. 1338 * 1339 * Most of the fields in this struct are private and should be accessed 1340 * by the functions below. 1341 * 1342 * @file: The file, used primarily by network filesystems for authentication. 1343 * May be NULL if invoked internally by the filesystem. 1344 * @mapping: Readahead this filesystem object. 1345 * @ra: File readahead state. May be NULL. 1346 */ 1347struct readahead_control { 1348 struct file *file; 1349 struct address_space *mapping; 1350 struct file_ra_state *ra; 1351/* private: use the readahead_* accessors instead */ 1352 pgoff_t _index; 1353 unsigned int _nr_pages; 1354 unsigned int _batch_count; 1355 bool dropbehind; 1356 bool _workingset; 1357 unsigned long _pflags; 1358}; 1359 1360#define DEFINE_READAHEAD(ractl, f, r, m, i) \ 1361 struct readahead_control ractl = { \ 1362 .file = f, \ 1363 .mapping = m, \ 1364 .ra = r, \ 1365 ._index = i, \ 1366 } 1367 1368#define VM_READAHEAD_PAGES (SZ_128K / PAGE_SIZE) 1369 1370void page_cache_ra_unbounded(struct readahead_control *, 1371 unsigned long nr_to_read, unsigned long lookahead_count); 1372void page_cache_sync_ra(struct readahead_control *, unsigned long req_count); 1373void page_cache_async_ra(struct readahead_control *, struct folio *, 1374 unsigned long req_count); 1375void readahead_expand(struct readahead_control *ractl, 1376 loff_t new_start, size_t new_len); 1377 1378/** 1379 * page_cache_sync_readahead - generic file readahead 1380 * @mapping: address_space which holds the pagecache and I/O vectors 1381 * @ra: file_ra_state which holds the readahead state 1382 * @file: Used by the filesystem for authentication. 1383 * @index: Index of first page to be read. 1384 * @req_count: Total number of pages being read by the caller. 1385 * 1386 * page_cache_sync_readahead() should be called when a cache miss happened: 1387 * it will submit the read. The readahead logic may decide to piggyback more 1388 * pages onto the read request if access patterns suggest it will improve 1389 * performance. 1390 */ 1391static inline 1392void page_cache_sync_readahead(struct address_space *mapping, 1393 struct file_ra_state *ra, struct file *file, pgoff_t index, 1394 unsigned long req_count) 1395{ 1396 DEFINE_READAHEAD(ractl, file, ra, mapping, index); 1397 page_cache_sync_ra(&ractl, req_count); 1398} 1399 1400/** 1401 * page_cache_async_readahead - file readahead for marked pages 1402 * @mapping: address_space which holds the pagecache and I/O vectors 1403 * @ra: file_ra_state which holds the readahead state 1404 * @file: Used by the filesystem for authentication. 1405 * @folio: The folio which triggered the readahead call. 1406 * @req_count: Total number of pages being read by the caller. 1407 * 1408 * page_cache_async_readahead() should be called when a page is used which 1409 * is marked as PageReadahead; this is a marker to suggest that the application 1410 * has used up enough of the readahead window that we should start pulling in 1411 * more pages. 1412 */ 1413static inline 1414void page_cache_async_readahead(struct address_space *mapping, 1415 struct file_ra_state *ra, struct file *file, 1416 struct folio *folio, unsigned long req_count) 1417{ 1418 DEFINE_READAHEAD(ractl, file, ra, mapping, folio->index); 1419 page_cache_async_ra(&ractl, folio, req_count); 1420} 1421 1422static inline struct folio *__readahead_folio(struct readahead_control *ractl) 1423{ 1424 struct folio *folio; 1425 1426 BUG_ON(ractl->_batch_count > ractl->_nr_pages); 1427 ractl->_nr_pages -= ractl->_batch_count; 1428 ractl->_index += ractl->_batch_count; 1429 1430 if (!ractl->_nr_pages) { 1431 ractl->_batch_count = 0; 1432 return NULL; 1433 } 1434 1435 folio = xa_load(&ractl->mapping->i_pages, ractl->_index); 1436 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1437 ractl->_batch_count = folio_nr_pages(folio); 1438 1439 return folio; 1440} 1441 1442/** 1443 * readahead_folio - Get the next folio to read. 1444 * @ractl: The current readahead request. 1445 * 1446 * Context: The folio is locked. The caller should unlock the folio once 1447 * all I/O to that folio has completed. 1448 * Return: A pointer to the next folio, or %NULL if we are done. 1449 */ 1450static inline struct folio *readahead_folio(struct readahead_control *ractl) 1451{ 1452 struct folio *folio = __readahead_folio(ractl); 1453 1454 if (folio) 1455 folio_put(folio); 1456 return folio; 1457} 1458 1459static inline unsigned int __readahead_batch(struct readahead_control *rac, 1460 struct page **array, unsigned int array_sz) 1461{ 1462 unsigned int i = 0; 1463 XA_STATE(xas, &rac->mapping->i_pages, 0); 1464 struct folio *folio; 1465 1466 BUG_ON(rac->_batch_count > rac->_nr_pages); 1467 rac->_nr_pages -= rac->_batch_count; 1468 rac->_index += rac->_batch_count; 1469 rac->_batch_count = 0; 1470 1471 xas_set(&xas, rac->_index); 1472 rcu_read_lock(); 1473 xas_for_each(&xas, folio, rac->_index + rac->_nr_pages - 1) { 1474 if (xas_retry(&xas, folio)) 1475 continue; 1476 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1477 array[i++] = folio_page(folio, 0); 1478 rac->_batch_count += folio_nr_pages(folio); 1479 if (i == array_sz) 1480 break; 1481 } 1482 rcu_read_unlock(); 1483 1484 return i; 1485} 1486 1487/** 1488 * readahead_pos - The byte offset into the file of this readahead request. 1489 * @rac: The readahead request. 1490 */ 1491static inline loff_t readahead_pos(const struct readahead_control *rac) 1492{ 1493 return (loff_t)rac->_index * PAGE_SIZE; 1494} 1495 1496/** 1497 * readahead_length - The number of bytes in this readahead request. 1498 * @rac: The readahead request. 1499 */ 1500static inline size_t readahead_length(const struct readahead_control *rac) 1501{ 1502 return rac->_nr_pages * PAGE_SIZE; 1503} 1504 1505/** 1506 * readahead_index - The index of the first page in this readahead request. 1507 * @rac: The readahead request. 1508 */ 1509static inline pgoff_t readahead_index(const struct readahead_control *rac) 1510{ 1511 return rac->_index; 1512} 1513 1514/** 1515 * readahead_count - The number of pages in this readahead request. 1516 * @rac: The readahead request. 1517 */ 1518static inline unsigned int readahead_count(const struct readahead_control *rac) 1519{ 1520 return rac->_nr_pages; 1521} 1522 1523/** 1524 * readahead_batch_length - The number of bytes in the current batch. 1525 * @rac: The readahead request. 1526 */ 1527static inline size_t readahead_batch_length(const struct readahead_control *rac) 1528{ 1529 return rac->_batch_count * PAGE_SIZE; 1530} 1531 1532static inline unsigned long dir_pages(const struct inode *inode) 1533{ 1534 return (unsigned long)(inode->i_size + PAGE_SIZE - 1) >> 1535 PAGE_SHIFT; 1536} 1537 1538/** 1539 * folio_mkwrite_check_truncate - check if folio was truncated 1540 * @folio: the folio to check 1541 * @inode: the inode to check the folio against 1542 * 1543 * Return: the number of bytes in the folio up to EOF, 1544 * or -EFAULT if the folio was truncated. 1545 */ 1546static inline ssize_t folio_mkwrite_check_truncate(const struct folio *folio, 1547 const struct inode *inode) 1548{ 1549 loff_t size = i_size_read(inode); 1550 pgoff_t index = size >> PAGE_SHIFT; 1551 size_t offset = offset_in_folio(folio, size); 1552 1553 if (!folio->mapping) 1554 return -EFAULT; 1555 1556 /* folio is wholly inside EOF */ 1557 if (folio_next_index(folio) - 1 < index) 1558 return folio_size(folio); 1559 /* folio is wholly past EOF */ 1560 if (folio->index > index || !offset) 1561 return -EFAULT; 1562 /* folio is partially inside EOF */ 1563 return offset; 1564} 1565 1566/** 1567 * i_blocks_per_folio - How many blocks fit in this folio. 1568 * @inode: The inode which contains the blocks. 1569 * @folio: The folio. 1570 * 1571 * If the block size is larger than the size of this folio, return zero. 1572 * 1573 * Context: The caller should hold a refcount on the folio to prevent it 1574 * from being split. 1575 * Return: The number of filesystem blocks covered by this folio. 1576 */ 1577static inline 1578unsigned int i_blocks_per_folio(const struct inode *inode, 1579 const struct folio *folio) 1580{ 1581 return folio_size(folio) >> inode->i_blkbits; 1582} 1583#endif /* _LINUX_PAGEMAP_H */