Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_PAGEMAP_H
3#define _LINUX_PAGEMAP_H
4
5/*
6 * Copyright 1995 Linus Torvalds
7 */
8#include <linux/mm.h>
9#include <linux/fs.h>
10#include <linux/list.h>
11#include <linux/highmem.h>
12#include <linux/compiler.h>
13#include <linux/uaccess.h>
14#include <linux/gfp.h>
15#include <linux/bitops.h>
16#include <linux/hardirq.h> /* for in_interrupt() */
17#include <linux/hugetlb_inline.h>
18
19struct folio_batch;
20
21unsigned long invalidate_mapping_pages(struct address_space *mapping,
22 pgoff_t start, pgoff_t end);
23
24static inline void invalidate_remote_inode(struct inode *inode)
25{
26 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
27 S_ISLNK(inode->i_mode))
28 invalidate_mapping_pages(inode->i_mapping, 0, -1);
29}
30int invalidate_inode_pages2(struct address_space *mapping);
31int invalidate_inode_pages2_range(struct address_space *mapping,
32 pgoff_t start, pgoff_t end);
33int kiocb_invalidate_pages(struct kiocb *iocb, size_t count);
34void kiocb_invalidate_post_direct_write(struct kiocb *iocb, size_t count);
35int filemap_invalidate_pages(struct address_space *mapping,
36 loff_t pos, loff_t end, bool nowait);
37
38int write_inode_now(struct inode *, int sync);
39int filemap_fdatawrite(struct address_space *);
40int filemap_flush(struct address_space *);
41int filemap_flush_nr(struct address_space *mapping, long *nr_to_write);
42int filemap_fdatawait_keep_errors(struct address_space *mapping);
43int filemap_fdatawait_range(struct address_space *, loff_t lstart, loff_t lend);
44int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
45 loff_t start_byte, loff_t end_byte);
46int filemap_invalidate_inode(struct inode *inode, bool flush,
47 loff_t start, loff_t end);
48
49static inline int filemap_fdatawait(struct address_space *mapping)
50{
51 return filemap_fdatawait_range(mapping, 0, LLONG_MAX);
52}
53
54bool filemap_range_has_page(struct address_space *, loff_t lstart, loff_t lend);
55int filemap_write_and_wait_range(struct address_space *mapping,
56 loff_t lstart, loff_t lend);
57int filemap_fdatawrite_range(struct address_space *mapping,
58 loff_t start, loff_t end);
59int filemap_check_errors(struct address_space *mapping);
60void __filemap_set_wb_err(struct address_space *mapping, int err);
61int kiocb_write_and_wait(struct kiocb *iocb, size_t count);
62
63static inline int filemap_write_and_wait(struct address_space *mapping)
64{
65 return filemap_write_and_wait_range(mapping, 0, LLONG_MAX);
66}
67
68/**
69 * filemap_set_wb_err - set a writeback error on an address_space
70 * @mapping: mapping in which to set writeback error
71 * @err: error to be set in mapping
72 *
73 * When writeback fails in some way, we must record that error so that
74 * userspace can be informed when fsync and the like are called. We endeavor
75 * to report errors on any file that was open at the time of the error. Some
76 * internal callers also need to know when writeback errors have occurred.
77 *
78 * When a writeback error occurs, most filesystems will want to call
79 * filemap_set_wb_err to record the error in the mapping so that it will be
80 * automatically reported whenever fsync is called on the file.
81 */
82static inline void filemap_set_wb_err(struct address_space *mapping, int err)
83{
84 /* Fastpath for common case of no error */
85 if (unlikely(err))
86 __filemap_set_wb_err(mapping, err);
87}
88
89/**
90 * filemap_check_wb_err - has an error occurred since the mark was sampled?
91 * @mapping: mapping to check for writeback errors
92 * @since: previously-sampled errseq_t
93 *
94 * Grab the errseq_t value from the mapping, and see if it has changed "since"
95 * the given value was sampled.
96 *
97 * If it has then report the latest error set, otherwise return 0.
98 */
99static inline int filemap_check_wb_err(struct address_space *mapping,
100 errseq_t since)
101{
102 return errseq_check(&mapping->wb_err, since);
103}
104
105/**
106 * filemap_sample_wb_err - sample the current errseq_t to test for later errors
107 * @mapping: mapping to be sampled
108 *
109 * Writeback errors are always reported relative to a particular sample point
110 * in the past. This function provides those sample points.
111 */
112static inline errseq_t filemap_sample_wb_err(struct address_space *mapping)
113{
114 return errseq_sample(&mapping->wb_err);
115}
116
117/**
118 * file_sample_sb_err - sample the current errseq_t to test for later errors
119 * @file: file pointer to be sampled
120 *
121 * Grab the most current superblock-level errseq_t value for the given
122 * struct file.
123 */
124static inline errseq_t file_sample_sb_err(struct file *file)
125{
126 return errseq_sample(&file->f_path.dentry->d_sb->s_wb_err);
127}
128
129/*
130 * Flush file data before changing attributes. Caller must hold any locks
131 * required to prevent further writes to this file until we're done setting
132 * flags.
133 */
134static inline int inode_drain_writes(struct inode *inode)
135{
136 inode_dio_wait(inode);
137 return filemap_write_and_wait(inode->i_mapping);
138}
139
140static inline bool mapping_empty(const struct address_space *mapping)
141{
142 return xa_empty(&mapping->i_pages);
143}
144
145/*
146 * mapping_shrinkable - test if page cache state allows inode reclaim
147 * @mapping: the page cache mapping
148 *
149 * This checks the mapping's cache state for the pupose of inode
150 * reclaim and LRU management.
151 *
152 * The caller is expected to hold the i_lock, but is not required to
153 * hold the i_pages lock, which usually protects cache state. That's
154 * because the i_lock and the list_lru lock that protect the inode and
155 * its LRU state don't nest inside the irq-safe i_pages lock.
156 *
157 * Cache deletions are performed under the i_lock, which ensures that
158 * when an inode goes empty, it will reliably get queued on the LRU.
159 *
160 * Cache additions do not acquire the i_lock and may race with this
161 * check, in which case we'll report the inode as shrinkable when it
162 * has cache pages. This is okay: the shrinker also checks the
163 * refcount and the referenced bit, which will be elevated or set in
164 * the process of adding new cache pages to an inode.
165 */
166static inline bool mapping_shrinkable(const struct address_space *mapping)
167{
168 void *head;
169
170 /*
171 * On highmem systems, there could be lowmem pressure from the
172 * inodes before there is highmem pressure from the page
173 * cache. Make inodes shrinkable regardless of cache state.
174 */
175 if (IS_ENABLED(CONFIG_HIGHMEM))
176 return true;
177
178 /* Cache completely empty? Shrink away. */
179 head = rcu_access_pointer(mapping->i_pages.xa_head);
180 if (!head)
181 return true;
182
183 /*
184 * The xarray stores single offset-0 entries directly in the
185 * head pointer, which allows non-resident page cache entries
186 * to escape the shadow shrinker's list of xarray nodes. The
187 * inode shrinker needs to pick them up under memory pressure.
188 */
189 if (!xa_is_node(head) && xa_is_value(head))
190 return true;
191
192 return false;
193}
194
195/*
196 * Bits in mapping->flags.
197 */
198enum mapping_flags {
199 AS_EIO = 0, /* IO error on async write */
200 AS_ENOSPC = 1, /* ENOSPC on async write */
201 AS_MM_ALL_LOCKS = 2, /* under mm_take_all_locks() */
202 AS_UNEVICTABLE = 3, /* e.g., ramdisk, SHM_LOCK */
203 AS_EXITING = 4, /* final truncate in progress */
204 /* writeback related tags are not used */
205 AS_NO_WRITEBACK_TAGS = 5,
206 AS_RELEASE_ALWAYS = 6, /* Call ->release_folio(), even if no private data */
207 AS_STABLE_WRITES = 7, /* must wait for writeback before modifying
208 folio contents */
209 AS_INACCESSIBLE = 8, /* Do not attempt direct R/W access to the mapping */
210 AS_WRITEBACK_MAY_DEADLOCK_ON_RECLAIM = 9,
211 AS_KERNEL_FILE = 10, /* mapping for a fake kernel file that shouldn't
212 account usage to user cgroups */
213 /* Bits 16-25 are used for FOLIO_ORDER */
214 AS_FOLIO_ORDER_BITS = 5,
215 AS_FOLIO_ORDER_MIN = 16,
216 AS_FOLIO_ORDER_MAX = AS_FOLIO_ORDER_MIN + AS_FOLIO_ORDER_BITS,
217};
218
219#define AS_FOLIO_ORDER_BITS_MASK ((1u << AS_FOLIO_ORDER_BITS) - 1)
220#define AS_FOLIO_ORDER_MIN_MASK (AS_FOLIO_ORDER_BITS_MASK << AS_FOLIO_ORDER_MIN)
221#define AS_FOLIO_ORDER_MAX_MASK (AS_FOLIO_ORDER_BITS_MASK << AS_FOLIO_ORDER_MAX)
222#define AS_FOLIO_ORDER_MASK (AS_FOLIO_ORDER_MIN_MASK | AS_FOLIO_ORDER_MAX_MASK)
223
224/**
225 * mapping_set_error - record a writeback error in the address_space
226 * @mapping: the mapping in which an error should be set
227 * @error: the error to set in the mapping
228 *
229 * When writeback fails in some way, we must record that error so that
230 * userspace can be informed when fsync and the like are called. We endeavor
231 * to report errors on any file that was open at the time of the error. Some
232 * internal callers also need to know when writeback errors have occurred.
233 *
234 * When a writeback error occurs, most filesystems will want to call
235 * mapping_set_error to record the error in the mapping so that it can be
236 * reported when the application calls fsync(2).
237 */
238static inline void mapping_set_error(struct address_space *mapping, int error)
239{
240 if (likely(!error))
241 return;
242
243 /* Record in wb_err for checkers using errseq_t based tracking */
244 __filemap_set_wb_err(mapping, error);
245
246 /* Record it in superblock */
247 if (mapping->host)
248 errseq_set(&mapping->host->i_sb->s_wb_err, error);
249
250 /* Record it in flags for now, for legacy callers */
251 if (error == -ENOSPC)
252 set_bit(AS_ENOSPC, &mapping->flags);
253 else
254 set_bit(AS_EIO, &mapping->flags);
255}
256
257static inline void mapping_set_unevictable(struct address_space *mapping)
258{
259 set_bit(AS_UNEVICTABLE, &mapping->flags);
260}
261
262static inline void mapping_clear_unevictable(struct address_space *mapping)
263{
264 clear_bit(AS_UNEVICTABLE, &mapping->flags);
265}
266
267static inline bool mapping_unevictable(const struct address_space *mapping)
268{
269 return mapping && test_bit(AS_UNEVICTABLE, &mapping->flags);
270}
271
272static inline void mapping_set_exiting(struct address_space *mapping)
273{
274 set_bit(AS_EXITING, &mapping->flags);
275}
276
277static inline int mapping_exiting(const struct address_space *mapping)
278{
279 return test_bit(AS_EXITING, &mapping->flags);
280}
281
282static inline void mapping_set_no_writeback_tags(struct address_space *mapping)
283{
284 set_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
285}
286
287static inline int mapping_use_writeback_tags(const struct address_space *mapping)
288{
289 return !test_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
290}
291
292static inline bool mapping_release_always(const struct address_space *mapping)
293{
294 return test_bit(AS_RELEASE_ALWAYS, &mapping->flags);
295}
296
297static inline void mapping_set_release_always(struct address_space *mapping)
298{
299 set_bit(AS_RELEASE_ALWAYS, &mapping->flags);
300}
301
302static inline void mapping_clear_release_always(struct address_space *mapping)
303{
304 clear_bit(AS_RELEASE_ALWAYS, &mapping->flags);
305}
306
307static inline bool mapping_stable_writes(const struct address_space *mapping)
308{
309 return test_bit(AS_STABLE_WRITES, &mapping->flags);
310}
311
312static inline void mapping_set_stable_writes(struct address_space *mapping)
313{
314 set_bit(AS_STABLE_WRITES, &mapping->flags);
315}
316
317static inline void mapping_clear_stable_writes(struct address_space *mapping)
318{
319 clear_bit(AS_STABLE_WRITES, &mapping->flags);
320}
321
322static inline void mapping_set_inaccessible(struct address_space *mapping)
323{
324 /*
325 * It's expected inaccessible mappings are also unevictable. Compaction
326 * migrate scanner (isolate_migratepages_block()) relies on this to
327 * reduce page locking.
328 */
329 set_bit(AS_UNEVICTABLE, &mapping->flags);
330 set_bit(AS_INACCESSIBLE, &mapping->flags);
331}
332
333static inline bool mapping_inaccessible(const struct address_space *mapping)
334{
335 return test_bit(AS_INACCESSIBLE, &mapping->flags);
336}
337
338static inline void mapping_set_writeback_may_deadlock_on_reclaim(struct address_space *mapping)
339{
340 set_bit(AS_WRITEBACK_MAY_DEADLOCK_ON_RECLAIM, &mapping->flags);
341}
342
343static inline bool mapping_writeback_may_deadlock_on_reclaim(const struct address_space *mapping)
344{
345 return test_bit(AS_WRITEBACK_MAY_DEADLOCK_ON_RECLAIM, &mapping->flags);
346}
347
348static inline gfp_t mapping_gfp_mask(const struct address_space *mapping)
349{
350 return mapping->gfp_mask;
351}
352
353/* Restricts the given gfp_mask to what the mapping allows. */
354static inline gfp_t mapping_gfp_constraint(const struct address_space *mapping,
355 gfp_t gfp_mask)
356{
357 return mapping_gfp_mask(mapping) & gfp_mask;
358}
359
360/*
361 * This is non-atomic. Only to be used before the mapping is activated.
362 * Probably needs a barrier...
363 */
364static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask)
365{
366 m->gfp_mask = mask;
367}
368
369/*
370 * There are some parts of the kernel which assume that PMD entries
371 * are exactly HPAGE_PMD_ORDER. Those should be fixed, but until then,
372 * limit the maximum allocation order to PMD size. I'm not aware of any
373 * assumptions about maximum order if THP are disabled, but 8 seems like
374 * a good order (that's 1MB if you're using 4kB pages)
375 */
376#ifdef CONFIG_TRANSPARENT_HUGEPAGE
377#define PREFERRED_MAX_PAGECACHE_ORDER HPAGE_PMD_ORDER
378#else
379#define PREFERRED_MAX_PAGECACHE_ORDER 8
380#endif
381
382/*
383 * xas_split_alloc() does not support arbitrary orders. This implies no
384 * 512MB THP on ARM64 with 64KB base page size.
385 */
386#define MAX_XAS_ORDER (XA_CHUNK_SHIFT * 2 - 1)
387#define MAX_PAGECACHE_ORDER min(MAX_XAS_ORDER, PREFERRED_MAX_PAGECACHE_ORDER)
388
389/*
390 * mapping_max_folio_size_supported() - Check the max folio size supported
391 *
392 * The filesystem should call this function at mount time if there is a
393 * requirement on the folio mapping size in the page cache.
394 */
395static inline size_t mapping_max_folio_size_supported(void)
396{
397 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
398 return 1U << (PAGE_SHIFT + MAX_PAGECACHE_ORDER);
399 return PAGE_SIZE;
400}
401
402/*
403 * mapping_set_folio_order_range() - Set the orders supported by a file.
404 * @mapping: The address space of the file.
405 * @min: Minimum folio order (between 0-MAX_PAGECACHE_ORDER inclusive).
406 * @max: Maximum folio order (between @min-MAX_PAGECACHE_ORDER inclusive).
407 *
408 * The filesystem should call this function in its inode constructor to
409 * indicate which base size (min) and maximum size (max) of folio the VFS
410 * can use to cache the contents of the file. This should only be used
411 * if the filesystem needs special handling of folio sizes (ie there is
412 * something the core cannot know).
413 * Do not tune it based on, eg, i_size.
414 *
415 * Context: This should not be called while the inode is active as it
416 * is non-atomic.
417 */
418static inline void mapping_set_folio_order_range(struct address_space *mapping,
419 unsigned int min,
420 unsigned int max)
421{
422 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
423 return;
424
425 if (min > MAX_PAGECACHE_ORDER)
426 min = MAX_PAGECACHE_ORDER;
427
428 if (max > MAX_PAGECACHE_ORDER)
429 max = MAX_PAGECACHE_ORDER;
430
431 if (max < min)
432 max = min;
433
434 mapping->flags = (mapping->flags & ~AS_FOLIO_ORDER_MASK) |
435 (min << AS_FOLIO_ORDER_MIN) | (max << AS_FOLIO_ORDER_MAX);
436}
437
438static inline void mapping_set_folio_min_order(struct address_space *mapping,
439 unsigned int min)
440{
441 mapping_set_folio_order_range(mapping, min, MAX_PAGECACHE_ORDER);
442}
443
444/**
445 * mapping_set_large_folios() - Indicate the file supports large folios.
446 * @mapping: The address space of the file.
447 *
448 * The filesystem should call this function in its inode constructor to
449 * indicate that the VFS can use large folios to cache the contents of
450 * the file.
451 *
452 * Context: This should not be called while the inode is active as it
453 * is non-atomic.
454 */
455static inline void mapping_set_large_folios(struct address_space *mapping)
456{
457 mapping_set_folio_order_range(mapping, 0, MAX_PAGECACHE_ORDER);
458}
459
460static inline unsigned int
461mapping_max_folio_order(const struct address_space *mapping)
462{
463 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
464 return 0;
465 return (mapping->flags & AS_FOLIO_ORDER_MAX_MASK) >> AS_FOLIO_ORDER_MAX;
466}
467
468static inline unsigned int
469mapping_min_folio_order(const struct address_space *mapping)
470{
471 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
472 return 0;
473 return (mapping->flags & AS_FOLIO_ORDER_MIN_MASK) >> AS_FOLIO_ORDER_MIN;
474}
475
476static inline unsigned long
477mapping_min_folio_nrpages(const struct address_space *mapping)
478{
479 return 1UL << mapping_min_folio_order(mapping);
480}
481
482static inline unsigned long
483mapping_min_folio_nrbytes(const struct address_space *mapping)
484{
485 return mapping_min_folio_nrpages(mapping) << PAGE_SHIFT;
486}
487
488/**
489 * mapping_align_index() - Align index for this mapping.
490 * @mapping: The address_space.
491 * @index: The page index.
492 *
493 * The index of a folio must be naturally aligned. If you are adding a
494 * new folio to the page cache and need to know what index to give it,
495 * call this function.
496 */
497static inline pgoff_t mapping_align_index(const struct address_space *mapping,
498 pgoff_t index)
499{
500 return round_down(index, mapping_min_folio_nrpages(mapping));
501}
502
503/*
504 * Large folio support currently depends on THP. These dependencies are
505 * being worked on but are not yet fixed.
506 */
507static inline bool mapping_large_folio_support(const struct address_space *mapping)
508{
509 /* AS_FOLIO_ORDER is only reasonable for pagecache folios */
510 VM_WARN_ONCE((unsigned long)mapping & FOLIO_MAPPING_ANON,
511 "Anonymous mapping always supports large folio");
512
513 return mapping_max_folio_order(mapping) > 0;
514}
515
516/* Return the maximum folio size for this pagecache mapping, in bytes. */
517static inline size_t mapping_max_folio_size(const struct address_space *mapping)
518{
519 return PAGE_SIZE << mapping_max_folio_order(mapping);
520}
521
522static inline int filemap_nr_thps(const struct address_space *mapping)
523{
524#ifdef CONFIG_READ_ONLY_THP_FOR_FS
525 return atomic_read(&mapping->nr_thps);
526#else
527 return 0;
528#endif
529}
530
531static inline void filemap_nr_thps_inc(struct address_space *mapping)
532{
533#ifdef CONFIG_READ_ONLY_THP_FOR_FS
534 if (!mapping_large_folio_support(mapping))
535 atomic_inc(&mapping->nr_thps);
536#else
537 WARN_ON_ONCE(mapping_large_folio_support(mapping) == 0);
538#endif
539}
540
541static inline void filemap_nr_thps_dec(struct address_space *mapping)
542{
543#ifdef CONFIG_READ_ONLY_THP_FOR_FS
544 if (!mapping_large_folio_support(mapping))
545 atomic_dec(&mapping->nr_thps);
546#else
547 WARN_ON_ONCE(mapping_large_folio_support(mapping) == 0);
548#endif
549}
550
551struct address_space *folio_mapping(const struct folio *folio);
552
553/**
554 * folio_flush_mapping - Find the file mapping this folio belongs to.
555 * @folio: The folio.
556 *
557 * For folios which are in the page cache, return the mapping that this
558 * page belongs to. Anonymous folios return NULL, even if they're in
559 * the swap cache. Other kinds of folio also return NULL.
560 *
561 * This is ONLY used by architecture cache flushing code. If you aren't
562 * writing cache flushing code, you want either folio_mapping() or
563 * folio_file_mapping().
564 */
565static inline struct address_space *folio_flush_mapping(struct folio *folio)
566{
567 if (unlikely(folio_test_swapcache(folio)))
568 return NULL;
569
570 return folio_mapping(folio);
571}
572
573/**
574 * folio_inode - Get the host inode for this folio.
575 * @folio: The folio.
576 *
577 * For folios which are in the page cache, return the inode that this folio
578 * belongs to.
579 *
580 * Do not call this for folios which aren't in the page cache.
581 */
582static inline struct inode *folio_inode(struct folio *folio)
583{
584 return folio->mapping->host;
585}
586
587/**
588 * folio_attach_private - Attach private data to a folio.
589 * @folio: Folio to attach data to.
590 * @data: Data to attach to folio.
591 *
592 * Attaching private data to a folio increments the page's reference count.
593 * The data must be detached before the folio will be freed.
594 */
595static inline void folio_attach_private(struct folio *folio, void *data)
596{
597 folio_get(folio);
598 folio->private = data;
599 folio_set_private(folio);
600}
601
602/**
603 * folio_change_private - Change private data on a folio.
604 * @folio: Folio to change the data on.
605 * @data: Data to set on the folio.
606 *
607 * Change the private data attached to a folio and return the old
608 * data. The page must previously have had data attached and the data
609 * must be detached before the folio will be freed.
610 *
611 * Return: Data that was previously attached to the folio.
612 */
613static inline void *folio_change_private(struct folio *folio, void *data)
614{
615 void *old = folio_get_private(folio);
616
617 folio->private = data;
618 return old;
619}
620
621/**
622 * folio_detach_private - Detach private data from a folio.
623 * @folio: Folio to detach data from.
624 *
625 * Removes the data that was previously attached to the folio and decrements
626 * the refcount on the page.
627 *
628 * Return: Data that was attached to the folio.
629 */
630static inline void *folio_detach_private(struct folio *folio)
631{
632 void *data = folio_get_private(folio);
633
634 if (!folio_test_private(folio))
635 return NULL;
636 folio_clear_private(folio);
637 folio->private = NULL;
638 folio_put(folio);
639
640 return data;
641}
642
643static inline void attach_page_private(struct page *page, void *data)
644{
645 folio_attach_private(page_folio(page), data);
646}
647
648static inline void *detach_page_private(struct page *page)
649{
650 return folio_detach_private(page_folio(page));
651}
652
653#ifdef CONFIG_NUMA
654struct folio *filemap_alloc_folio_noprof(gfp_t gfp, unsigned int order,
655 struct mempolicy *policy);
656#else
657static inline struct folio *filemap_alloc_folio_noprof(gfp_t gfp, unsigned int order,
658 struct mempolicy *policy)
659{
660 return folio_alloc_noprof(gfp, order);
661}
662#endif
663
664#define filemap_alloc_folio(...) \
665 alloc_hooks(filemap_alloc_folio_noprof(__VA_ARGS__))
666
667static inline struct page *__page_cache_alloc(gfp_t gfp)
668{
669 return &filemap_alloc_folio(gfp, 0, NULL)->page;
670}
671
672static inline gfp_t readahead_gfp_mask(struct address_space *x)
673{
674 return mapping_gfp_mask(x) | __GFP_NORETRY | __GFP_NOWARN;
675}
676
677typedef int filler_t(struct file *, struct folio *);
678
679pgoff_t page_cache_next_miss(struct address_space *mapping,
680 pgoff_t index, unsigned long max_scan);
681pgoff_t page_cache_prev_miss(struct address_space *mapping,
682 pgoff_t index, unsigned long max_scan);
683
684/**
685 * typedef fgf_t - Flags for getting folios from the page cache.
686 *
687 * Most users of the page cache will not need to use these flags;
688 * there are convenience functions such as filemap_get_folio() and
689 * filemap_lock_folio(). For users which need more control over exactly
690 * what is done with the folios, these flags to __filemap_get_folio()
691 * are available.
692 *
693 * * %FGP_ACCESSED - The folio will be marked accessed.
694 * * %FGP_LOCK - The folio is returned locked.
695 * * %FGP_CREAT - If no folio is present then a new folio is allocated,
696 * added to the page cache and the VM's LRU list. The folio is
697 * returned locked.
698 * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
699 * folio is already in cache. If the folio was allocated, unlock it
700 * before returning so the caller can do the same dance.
701 * * %FGP_WRITE - The folio will be written to by the caller.
702 * * %FGP_NOFS - __GFP_FS will get cleared in gfp.
703 * * %FGP_NOWAIT - Don't block on the folio lock.
704 * * %FGP_STABLE - Wait for the folio to be stable (finished writeback)
705 * * %FGP_DONTCACHE - Uncached buffered IO
706 * * %FGP_WRITEBEGIN - The flags to use in a filesystem write_begin()
707 * implementation.
708 */
709typedef unsigned int __bitwise fgf_t;
710
711#define FGP_ACCESSED ((__force fgf_t)0x00000001)
712#define FGP_LOCK ((__force fgf_t)0x00000002)
713#define FGP_CREAT ((__force fgf_t)0x00000004)
714#define FGP_WRITE ((__force fgf_t)0x00000008)
715#define FGP_NOFS ((__force fgf_t)0x00000010)
716#define FGP_NOWAIT ((__force fgf_t)0x00000020)
717#define FGP_FOR_MMAP ((__force fgf_t)0x00000040)
718#define FGP_STABLE ((__force fgf_t)0x00000080)
719#define FGP_DONTCACHE ((__force fgf_t)0x00000100)
720#define FGF_GET_ORDER(fgf) (((__force unsigned)fgf) >> 26) /* top 6 bits */
721
722#define FGP_WRITEBEGIN (FGP_LOCK | FGP_WRITE | FGP_CREAT | FGP_STABLE)
723
724static inline unsigned int filemap_get_order(size_t size)
725{
726 unsigned int shift = ilog2(size);
727
728 if (shift <= PAGE_SHIFT)
729 return 0;
730
731 return shift - PAGE_SHIFT;
732}
733
734/**
735 * fgf_set_order - Encode a length in the fgf_t flags.
736 * @size: The suggested size of the folio to create.
737 *
738 * The caller of __filemap_get_folio() can use this to suggest a preferred
739 * size for the folio that is created. If there is already a folio at
740 * the index, it will be returned, no matter what its size. If a folio
741 * is freshly created, it may be of a different size than requested
742 * due to alignment constraints, memory pressure, or the presence of
743 * other folios at nearby indices.
744 */
745static inline fgf_t fgf_set_order(size_t size)
746{
747 unsigned int order = filemap_get_order(size);
748
749 if (!order)
750 return 0;
751 return (__force fgf_t)(order << 26);
752}
753
754void *filemap_get_entry(struct address_space *mapping, pgoff_t index);
755struct folio *__filemap_get_folio_mpol(struct address_space *mapping,
756 pgoff_t index, fgf_t fgf_flags, gfp_t gfp, struct mempolicy *policy);
757struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index,
758 fgf_t fgp_flags, gfp_t gfp);
759
760static inline struct folio *__filemap_get_folio(struct address_space *mapping,
761 pgoff_t index, fgf_t fgf_flags, gfp_t gfp)
762{
763 return __filemap_get_folio_mpol(mapping, index, fgf_flags, gfp, NULL);
764}
765
766/**
767 * write_begin_get_folio - Get folio for write_begin with flags.
768 * @iocb: The kiocb passed from write_begin (may be NULL).
769 * @mapping: The address space to search.
770 * @index: The page cache index.
771 * @len: Length of data being written.
772 *
773 * This is a helper for filesystem write_begin() implementations.
774 * It wraps __filemap_get_folio(), setting appropriate flags in
775 * the write begin context.
776 *
777 * Return: A folio or an ERR_PTR.
778 */
779static inline struct folio *write_begin_get_folio(const struct kiocb *iocb,
780 struct address_space *mapping, pgoff_t index, size_t len)
781{
782 fgf_t fgp_flags = FGP_WRITEBEGIN;
783
784 fgp_flags |= fgf_set_order(len);
785
786 if (iocb && iocb->ki_flags & IOCB_DONTCACHE)
787 fgp_flags |= FGP_DONTCACHE;
788
789 return __filemap_get_folio(mapping, index, fgp_flags,
790 mapping_gfp_mask(mapping));
791}
792
793/**
794 * filemap_get_folio - Find and get a folio.
795 * @mapping: The address_space to search.
796 * @index: The page index.
797 *
798 * Looks up the page cache entry at @mapping & @index. If a folio is
799 * present, it is returned with an increased refcount.
800 *
801 * Return: A folio or ERR_PTR(-ENOENT) if there is no folio in the cache for
802 * this index. Will not return a shadow, swap or DAX entry.
803 */
804static inline struct folio *filemap_get_folio(struct address_space *mapping,
805 pgoff_t index)
806{
807 return __filemap_get_folio(mapping, index, 0, 0);
808}
809
810/**
811 * filemap_lock_folio - Find and lock a folio.
812 * @mapping: The address_space to search.
813 * @index: The page index.
814 *
815 * Looks up the page cache entry at @mapping & @index. If a folio is
816 * present, it is returned locked with an increased refcount.
817 *
818 * Context: May sleep.
819 * Return: A folio or ERR_PTR(-ENOENT) if there is no folio in the cache for
820 * this index. Will not return a shadow, swap or DAX entry.
821 */
822static inline struct folio *filemap_lock_folio(struct address_space *mapping,
823 pgoff_t index)
824{
825 return __filemap_get_folio(mapping, index, FGP_LOCK, 0);
826}
827
828/**
829 * filemap_grab_folio - grab a folio from the page cache
830 * @mapping: The address space to search
831 * @index: The page index
832 *
833 * Looks up the page cache entry at @mapping & @index. If no folio is found,
834 * a new folio is created. The folio is locked, marked as accessed, and
835 * returned.
836 *
837 * Return: A found or created folio. ERR_PTR(-ENOMEM) if no folio is found
838 * and failed to create a folio.
839 */
840static inline struct folio *filemap_grab_folio(struct address_space *mapping,
841 pgoff_t index)
842{
843 return __filemap_get_folio(mapping, index,
844 FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
845 mapping_gfp_mask(mapping));
846}
847
848/**
849 * find_get_page - find and get a page reference
850 * @mapping: the address_space to search
851 * @offset: the page index
852 *
853 * Looks up the page cache slot at @mapping & @offset. If there is a
854 * page cache page, it is returned with an increased refcount.
855 *
856 * Otherwise, %NULL is returned.
857 */
858static inline struct page *find_get_page(struct address_space *mapping,
859 pgoff_t offset)
860{
861 return pagecache_get_page(mapping, offset, 0, 0);
862}
863
864static inline struct page *find_get_page_flags(struct address_space *mapping,
865 pgoff_t offset, fgf_t fgp_flags)
866{
867 return pagecache_get_page(mapping, offset, fgp_flags, 0);
868}
869
870/**
871 * find_lock_page - locate, pin and lock a pagecache page
872 * @mapping: the address_space to search
873 * @index: the page index
874 *
875 * Looks up the page cache entry at @mapping & @index. If there is a
876 * page cache page, it is returned locked and with an increased
877 * refcount.
878 *
879 * Context: May sleep.
880 * Return: A struct page or %NULL if there is no page in the cache for this
881 * index.
882 */
883static inline struct page *find_lock_page(struct address_space *mapping,
884 pgoff_t index)
885{
886 return pagecache_get_page(mapping, index, FGP_LOCK, 0);
887}
888
889/**
890 * find_or_create_page - locate or add a pagecache page
891 * @mapping: the page's address_space
892 * @index: the page's index into the mapping
893 * @gfp_mask: page allocation mode
894 *
895 * Looks up the page cache slot at @mapping & @offset. If there is a
896 * page cache page, it is returned locked and with an increased
897 * refcount.
898 *
899 * If the page is not present, a new page is allocated using @gfp_mask
900 * and added to the page cache and the VM's LRU list. The page is
901 * returned locked and with an increased refcount.
902 *
903 * On memory exhaustion, %NULL is returned.
904 *
905 * find_or_create_page() may sleep, even if @gfp_flags specifies an
906 * atomic allocation!
907 */
908static inline struct page *find_or_create_page(struct address_space *mapping,
909 pgoff_t index, gfp_t gfp_mask)
910{
911 return pagecache_get_page(mapping, index,
912 FGP_LOCK|FGP_ACCESSED|FGP_CREAT,
913 gfp_mask);
914}
915
916/**
917 * grab_cache_page_nowait - returns locked page at given index in given cache
918 * @mapping: target address_space
919 * @index: the page index
920 *
921 * Returns locked page at given index in given cache, creating it if
922 * needed, but do not wait if the page is locked or to reclaim memory.
923 * This is intended for speculative data generators, where the data can
924 * be regenerated if the page couldn't be grabbed. This routine should
925 * be safe to call while holding the lock for another page.
926 *
927 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
928 * and deadlock against the caller's locked page.
929 */
930static inline struct page *grab_cache_page_nowait(struct address_space *mapping,
931 pgoff_t index)
932{
933 return pagecache_get_page(mapping, index,
934 FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT,
935 mapping_gfp_mask(mapping));
936}
937
938/**
939 * folio_next_index - Get the index of the next folio.
940 * @folio: The current folio.
941 *
942 * Return: The index of the folio which follows this folio in the file.
943 */
944static inline pgoff_t folio_next_index(const struct folio *folio)
945{
946 return folio->index + folio_nr_pages(folio);
947}
948
949/**
950 * folio_next_pos - Get the file position of the next folio.
951 * @folio: The current folio.
952 *
953 * Return: The position of the folio which follows this folio in the file.
954 */
955static inline loff_t folio_next_pos(const struct folio *folio)
956{
957 return (loff_t)folio_next_index(folio) << PAGE_SHIFT;
958}
959
960/**
961 * folio_file_page - The page for a particular index.
962 * @folio: The folio which contains this index.
963 * @index: The index we want to look up.
964 *
965 * Sometimes after looking up a folio in the page cache, we need to
966 * obtain the specific page for an index (eg a page fault).
967 *
968 * Return: The page containing the file data for this index.
969 */
970static inline struct page *folio_file_page(struct folio *folio, pgoff_t index)
971{
972 return folio_page(folio, index & (folio_nr_pages(folio) - 1));
973}
974
975/**
976 * folio_contains - Does this folio contain this index?
977 * @folio: The folio.
978 * @index: The page index within the file.
979 *
980 * Context: The caller should have the folio locked and ensure
981 * e.g., shmem did not move this folio to the swap cache.
982 * Return: true or false.
983 */
984static inline bool folio_contains(const struct folio *folio, pgoff_t index)
985{
986 VM_WARN_ON_ONCE_FOLIO(folio_test_swapcache(folio), folio);
987 return index - folio->index < folio_nr_pages(folio);
988}
989
990unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start,
991 pgoff_t end, struct folio_batch *fbatch);
992unsigned filemap_get_folios_contig(struct address_space *mapping,
993 pgoff_t *start, pgoff_t end, struct folio_batch *fbatch);
994unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start,
995 pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch);
996unsigned filemap_get_folios_dirty(struct address_space *mapping,
997 pgoff_t *start, pgoff_t end, struct folio_batch *fbatch);
998
999struct folio *read_cache_folio(struct address_space *, pgoff_t index,
1000 filler_t *filler, struct file *file);
1001struct folio *mapping_read_folio_gfp(struct address_space *, pgoff_t index,
1002 gfp_t flags);
1003struct page *read_cache_page(struct address_space *, pgoff_t index,
1004 filler_t *filler, struct file *file);
1005extern struct page * read_cache_page_gfp(struct address_space *mapping,
1006 pgoff_t index, gfp_t gfp_mask);
1007
1008static inline struct page *read_mapping_page(struct address_space *mapping,
1009 pgoff_t index, struct file *file)
1010{
1011 return read_cache_page(mapping, index, NULL, file);
1012}
1013
1014static inline struct folio *read_mapping_folio(struct address_space *mapping,
1015 pgoff_t index, struct file *file)
1016{
1017 return read_cache_folio(mapping, index, NULL, file);
1018}
1019
1020/**
1021 * page_pgoff - Calculate the logical page offset of this page.
1022 * @folio: The folio containing this page.
1023 * @page: The page which we need the offset of.
1024 *
1025 * For file pages, this is the offset from the beginning of the file
1026 * in units of PAGE_SIZE. For anonymous pages, this is the offset from
1027 * the beginning of the anon_vma in units of PAGE_SIZE. This will
1028 * return nonsense for KSM pages.
1029 *
1030 * Context: Caller must have a reference on the folio or otherwise
1031 * prevent it from being split or freed.
1032 *
1033 * Return: The offset in units of PAGE_SIZE.
1034 */
1035static inline pgoff_t page_pgoff(const struct folio *folio,
1036 const struct page *page)
1037{
1038 return folio->index + folio_page_idx(folio, page);
1039}
1040
1041/**
1042 * folio_pos - Returns the byte position of this folio in its file.
1043 * @folio: The folio.
1044 */
1045static inline loff_t folio_pos(const struct folio *folio)
1046{
1047 return ((loff_t)folio->index) * PAGE_SIZE;
1048}
1049
1050/*
1051 * Return byte-offset into filesystem object for page.
1052 */
1053static inline loff_t page_offset(struct page *page)
1054{
1055 struct folio *folio = page_folio(page);
1056
1057 return folio_pos(folio) + folio_page_idx(folio, page) * PAGE_SIZE;
1058}
1059
1060/*
1061 * Get the offset in PAGE_SIZE (even for hugetlb folios).
1062 */
1063static inline pgoff_t folio_pgoff(const struct folio *folio)
1064{
1065 return folio->index;
1066}
1067
1068static inline pgoff_t linear_page_index(const struct vm_area_struct *vma,
1069 const unsigned long address)
1070{
1071 pgoff_t pgoff;
1072 pgoff = (address - vma->vm_start) >> PAGE_SHIFT;
1073 pgoff += vma->vm_pgoff;
1074 return pgoff;
1075}
1076
1077struct wait_page_key {
1078 struct folio *folio;
1079 int bit_nr;
1080 int page_match;
1081};
1082
1083struct wait_page_queue {
1084 struct folio *folio;
1085 int bit_nr;
1086 wait_queue_entry_t wait;
1087};
1088
1089static inline bool wake_page_match(struct wait_page_queue *wait_page,
1090 struct wait_page_key *key)
1091{
1092 if (wait_page->folio != key->folio)
1093 return false;
1094 key->page_match = 1;
1095
1096 if (wait_page->bit_nr != key->bit_nr)
1097 return false;
1098
1099 return true;
1100}
1101
1102void __folio_lock(struct folio *folio);
1103int __folio_lock_killable(struct folio *folio);
1104vm_fault_t __folio_lock_or_retry(struct folio *folio, struct vm_fault *vmf);
1105void unlock_page(struct page *page);
1106void folio_unlock(struct folio *folio);
1107
1108/**
1109 * folio_trylock() - Attempt to lock a folio.
1110 * @folio: The folio to attempt to lock.
1111 *
1112 * Sometimes it is undesirable to wait for a folio to be unlocked (eg
1113 * when the locks are being taken in the wrong order, or if making
1114 * progress through a batch of folios is more important than processing
1115 * them in order). Usually folio_lock() is the correct function to call.
1116 *
1117 * Context: Any context.
1118 * Return: Whether the lock was successfully acquired.
1119 */
1120static inline bool folio_trylock(struct folio *folio)
1121{
1122 return likely(!test_and_set_bit_lock(PG_locked, folio_flags(folio, 0)));
1123}
1124
1125/*
1126 * Return true if the page was successfully locked
1127 */
1128static inline bool trylock_page(struct page *page)
1129{
1130 return folio_trylock(page_folio(page));
1131}
1132
1133/**
1134 * folio_lock() - Lock this folio.
1135 * @folio: The folio to lock.
1136 *
1137 * The folio lock protects against many things, probably more than it
1138 * should. It is primarily held while a folio is being brought uptodate,
1139 * either from its backing file or from swap. It is also held while a
1140 * folio is being truncated from its address_space, so holding the lock
1141 * is sufficient to keep folio->mapping stable.
1142 *
1143 * The folio lock is also held while write() is modifying the page to
1144 * provide POSIX atomicity guarantees (as long as the write does not
1145 * cross a page boundary). Other modifications to the data in the folio
1146 * do not hold the folio lock and can race with writes, eg DMA and stores
1147 * to mapped pages.
1148 *
1149 * Context: May sleep. If you need to acquire the locks of two or
1150 * more folios, they must be in order of ascending index, if they are
1151 * in the same address_space. If they are in different address_spaces,
1152 * acquire the lock of the folio which belongs to the address_space which
1153 * has the lowest address in memory first.
1154 */
1155static inline void folio_lock(struct folio *folio)
1156{
1157 might_sleep();
1158 if (!folio_trylock(folio))
1159 __folio_lock(folio);
1160}
1161
1162/**
1163 * lock_page() - Lock the folio containing this page.
1164 * @page: The page to lock.
1165 *
1166 * See folio_lock() for a description of what the lock protects.
1167 * This is a legacy function and new code should probably use folio_lock()
1168 * instead.
1169 *
1170 * Context: May sleep. Pages in the same folio share a lock, so do not
1171 * attempt to lock two pages which share a folio.
1172 */
1173static inline void lock_page(struct page *page)
1174{
1175 struct folio *folio;
1176 might_sleep();
1177
1178 folio = page_folio(page);
1179 if (!folio_trylock(folio))
1180 __folio_lock(folio);
1181}
1182
1183/**
1184 * folio_lock_killable() - Lock this folio, interruptible by a fatal signal.
1185 * @folio: The folio to lock.
1186 *
1187 * Attempts to lock the folio, like folio_lock(), except that the sleep
1188 * to acquire the lock is interruptible by a fatal signal.
1189 *
1190 * Context: May sleep; see folio_lock().
1191 * Return: 0 if the lock was acquired; -EINTR if a fatal signal was received.
1192 */
1193static inline int folio_lock_killable(struct folio *folio)
1194{
1195 might_sleep();
1196 if (!folio_trylock(folio))
1197 return __folio_lock_killable(folio);
1198 return 0;
1199}
1200
1201/*
1202 * folio_lock_or_retry - Lock the folio, unless this would block and the
1203 * caller indicated that it can handle a retry.
1204 *
1205 * Return value and mmap_lock implications depend on flags; see
1206 * __folio_lock_or_retry().
1207 */
1208static inline vm_fault_t folio_lock_or_retry(struct folio *folio,
1209 struct vm_fault *vmf)
1210{
1211 might_sleep();
1212 if (!folio_trylock(folio))
1213 return __folio_lock_or_retry(folio, vmf);
1214 return 0;
1215}
1216
1217/*
1218 * This is exported only for folio_wait_locked/folio_wait_writeback, etc.,
1219 * and should not be used directly.
1220 */
1221void folio_wait_bit(struct folio *folio, int bit_nr);
1222int folio_wait_bit_killable(struct folio *folio, int bit_nr);
1223
1224/*
1225 * Wait for a folio to be unlocked.
1226 *
1227 * This must be called with the caller "holding" the folio,
1228 * ie with increased folio reference count so that the folio won't
1229 * go away during the wait.
1230 */
1231static inline void folio_wait_locked(struct folio *folio)
1232{
1233 if (folio_test_locked(folio))
1234 folio_wait_bit(folio, PG_locked);
1235}
1236
1237static inline int folio_wait_locked_killable(struct folio *folio)
1238{
1239 if (!folio_test_locked(folio))
1240 return 0;
1241 return folio_wait_bit_killable(folio, PG_locked);
1242}
1243
1244void folio_end_read(struct folio *folio, bool success);
1245void wait_on_page_writeback(struct page *page);
1246void folio_wait_writeback(struct folio *folio);
1247int folio_wait_writeback_killable(struct folio *folio);
1248void end_page_writeback(struct page *page);
1249void folio_end_writeback(struct folio *folio);
1250void folio_end_writeback_no_dropbehind(struct folio *folio);
1251void folio_end_dropbehind(struct folio *folio);
1252void folio_wait_stable(struct folio *folio);
1253void __folio_mark_dirty(struct folio *folio, struct address_space *, int warn);
1254void folio_account_cleaned(struct folio *folio, struct bdi_writeback *wb);
1255void __folio_cancel_dirty(struct folio *folio);
1256static inline void folio_cancel_dirty(struct folio *folio)
1257{
1258 /* Avoid atomic ops, locking, etc. when not actually needed. */
1259 if (folio_test_dirty(folio))
1260 __folio_cancel_dirty(folio);
1261}
1262bool folio_clear_dirty_for_io(struct folio *folio);
1263bool clear_page_dirty_for_io(struct page *page);
1264void folio_invalidate(struct folio *folio, size_t offset, size_t length);
1265bool noop_dirty_folio(struct address_space *mapping, struct folio *folio);
1266
1267#ifdef CONFIG_MIGRATION
1268int filemap_migrate_folio(struct address_space *mapping, struct folio *dst,
1269 struct folio *src, enum migrate_mode mode);
1270#else
1271#define filemap_migrate_folio NULL
1272#endif
1273void folio_end_private_2(struct folio *folio);
1274void folio_wait_private_2(struct folio *folio);
1275int folio_wait_private_2_killable(struct folio *folio);
1276
1277/*
1278 * Fault in userspace address range.
1279 */
1280size_t fault_in_writeable(char __user *uaddr, size_t size);
1281size_t fault_in_subpage_writeable(char __user *uaddr, size_t size);
1282size_t fault_in_safe_writeable(const char __user *uaddr, size_t size);
1283size_t fault_in_readable(const char __user *uaddr, size_t size);
1284
1285int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
1286 pgoff_t index, gfp_t gfp);
1287int filemap_add_folio(struct address_space *mapping, struct folio *folio,
1288 pgoff_t index, gfp_t gfp);
1289void filemap_remove_folio(struct folio *folio);
1290void __filemap_remove_folio(struct folio *folio, void *shadow);
1291void replace_page_cache_folio(struct folio *old, struct folio *new);
1292void delete_from_page_cache_batch(struct address_space *mapping,
1293 struct folio_batch *fbatch);
1294bool filemap_release_folio(struct folio *folio, gfp_t gfp);
1295loff_t mapping_seek_hole_data(struct address_space *, loff_t start, loff_t end,
1296 int whence);
1297
1298/* Must be non-static for BPF error injection */
1299int __filemap_add_folio(struct address_space *mapping, struct folio *folio,
1300 pgoff_t index, gfp_t gfp, void **shadowp);
1301
1302bool filemap_range_has_writeback(struct address_space *mapping,
1303 loff_t start_byte, loff_t end_byte);
1304
1305/**
1306 * filemap_range_needs_writeback - check if range potentially needs writeback
1307 * @mapping: address space within which to check
1308 * @start_byte: offset in bytes where the range starts
1309 * @end_byte: offset in bytes where the range ends (inclusive)
1310 *
1311 * Find at least one page in the range supplied, usually used to check if
1312 * direct writing in this range will trigger a writeback. Used by O_DIRECT
1313 * read/write with IOCB_NOWAIT, to see if the caller needs to do
1314 * filemap_write_and_wait_range() before proceeding.
1315 *
1316 * Return: %true if the caller should do filemap_write_and_wait_range() before
1317 * doing O_DIRECT to a page in this range, %false otherwise.
1318 */
1319static inline bool filemap_range_needs_writeback(struct address_space *mapping,
1320 loff_t start_byte,
1321 loff_t end_byte)
1322{
1323 if (!mapping->nrpages)
1324 return false;
1325 if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
1326 !mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
1327 return false;
1328 return filemap_range_has_writeback(mapping, start_byte, end_byte);
1329}
1330
1331/**
1332 * struct readahead_control - Describes a readahead request.
1333 *
1334 * A readahead request is for consecutive pages. Filesystems which
1335 * implement the ->readahead method should call readahead_folio() or
1336 * __readahead_batch() in a loop and attempt to start reads into each
1337 * folio in the request.
1338 *
1339 * Most of the fields in this struct are private and should be accessed
1340 * by the functions below.
1341 *
1342 * @file: The file, used primarily by network filesystems for authentication.
1343 * May be NULL if invoked internally by the filesystem.
1344 * @mapping: Readahead this filesystem object.
1345 * @ra: File readahead state. May be NULL.
1346 */
1347struct readahead_control {
1348 struct file *file;
1349 struct address_space *mapping;
1350 struct file_ra_state *ra;
1351/* private: use the readahead_* accessors instead */
1352 pgoff_t _index;
1353 unsigned int _nr_pages;
1354 unsigned int _batch_count;
1355 bool dropbehind;
1356 bool _workingset;
1357 unsigned long _pflags;
1358};
1359
1360#define DEFINE_READAHEAD(ractl, f, r, m, i) \
1361 struct readahead_control ractl = { \
1362 .file = f, \
1363 .mapping = m, \
1364 .ra = r, \
1365 ._index = i, \
1366 }
1367
1368#define VM_READAHEAD_PAGES (SZ_128K / PAGE_SIZE)
1369
1370void page_cache_ra_unbounded(struct readahead_control *,
1371 unsigned long nr_to_read, unsigned long lookahead_count);
1372void page_cache_sync_ra(struct readahead_control *, unsigned long req_count);
1373void page_cache_async_ra(struct readahead_control *, struct folio *,
1374 unsigned long req_count);
1375void readahead_expand(struct readahead_control *ractl,
1376 loff_t new_start, size_t new_len);
1377
1378/**
1379 * page_cache_sync_readahead - generic file readahead
1380 * @mapping: address_space which holds the pagecache and I/O vectors
1381 * @ra: file_ra_state which holds the readahead state
1382 * @file: Used by the filesystem for authentication.
1383 * @index: Index of first page to be read.
1384 * @req_count: Total number of pages being read by the caller.
1385 *
1386 * page_cache_sync_readahead() should be called when a cache miss happened:
1387 * it will submit the read. The readahead logic may decide to piggyback more
1388 * pages onto the read request if access patterns suggest it will improve
1389 * performance.
1390 */
1391static inline
1392void page_cache_sync_readahead(struct address_space *mapping,
1393 struct file_ra_state *ra, struct file *file, pgoff_t index,
1394 unsigned long req_count)
1395{
1396 DEFINE_READAHEAD(ractl, file, ra, mapping, index);
1397 page_cache_sync_ra(&ractl, req_count);
1398}
1399
1400/**
1401 * page_cache_async_readahead - file readahead for marked pages
1402 * @mapping: address_space which holds the pagecache and I/O vectors
1403 * @ra: file_ra_state which holds the readahead state
1404 * @file: Used by the filesystem for authentication.
1405 * @folio: The folio which triggered the readahead call.
1406 * @req_count: Total number of pages being read by the caller.
1407 *
1408 * page_cache_async_readahead() should be called when a page is used which
1409 * is marked as PageReadahead; this is a marker to suggest that the application
1410 * has used up enough of the readahead window that we should start pulling in
1411 * more pages.
1412 */
1413static inline
1414void page_cache_async_readahead(struct address_space *mapping,
1415 struct file_ra_state *ra, struct file *file,
1416 struct folio *folio, unsigned long req_count)
1417{
1418 DEFINE_READAHEAD(ractl, file, ra, mapping, folio->index);
1419 page_cache_async_ra(&ractl, folio, req_count);
1420}
1421
1422static inline struct folio *__readahead_folio(struct readahead_control *ractl)
1423{
1424 struct folio *folio;
1425
1426 BUG_ON(ractl->_batch_count > ractl->_nr_pages);
1427 ractl->_nr_pages -= ractl->_batch_count;
1428 ractl->_index += ractl->_batch_count;
1429
1430 if (!ractl->_nr_pages) {
1431 ractl->_batch_count = 0;
1432 return NULL;
1433 }
1434
1435 folio = xa_load(&ractl->mapping->i_pages, ractl->_index);
1436 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1437 ractl->_batch_count = folio_nr_pages(folio);
1438
1439 return folio;
1440}
1441
1442/**
1443 * readahead_folio - Get the next folio to read.
1444 * @ractl: The current readahead request.
1445 *
1446 * Context: The folio is locked. The caller should unlock the folio once
1447 * all I/O to that folio has completed.
1448 * Return: A pointer to the next folio, or %NULL if we are done.
1449 */
1450static inline struct folio *readahead_folio(struct readahead_control *ractl)
1451{
1452 struct folio *folio = __readahead_folio(ractl);
1453
1454 if (folio)
1455 folio_put(folio);
1456 return folio;
1457}
1458
1459static inline unsigned int __readahead_batch(struct readahead_control *rac,
1460 struct page **array, unsigned int array_sz)
1461{
1462 unsigned int i = 0;
1463 XA_STATE(xas, &rac->mapping->i_pages, 0);
1464 struct folio *folio;
1465
1466 BUG_ON(rac->_batch_count > rac->_nr_pages);
1467 rac->_nr_pages -= rac->_batch_count;
1468 rac->_index += rac->_batch_count;
1469 rac->_batch_count = 0;
1470
1471 xas_set(&xas, rac->_index);
1472 rcu_read_lock();
1473 xas_for_each(&xas, folio, rac->_index + rac->_nr_pages - 1) {
1474 if (xas_retry(&xas, folio))
1475 continue;
1476 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1477 array[i++] = folio_page(folio, 0);
1478 rac->_batch_count += folio_nr_pages(folio);
1479 if (i == array_sz)
1480 break;
1481 }
1482 rcu_read_unlock();
1483
1484 return i;
1485}
1486
1487/**
1488 * readahead_pos - The byte offset into the file of this readahead request.
1489 * @rac: The readahead request.
1490 */
1491static inline loff_t readahead_pos(const struct readahead_control *rac)
1492{
1493 return (loff_t)rac->_index * PAGE_SIZE;
1494}
1495
1496/**
1497 * readahead_length - The number of bytes in this readahead request.
1498 * @rac: The readahead request.
1499 */
1500static inline size_t readahead_length(const struct readahead_control *rac)
1501{
1502 return rac->_nr_pages * PAGE_SIZE;
1503}
1504
1505/**
1506 * readahead_index - The index of the first page in this readahead request.
1507 * @rac: The readahead request.
1508 */
1509static inline pgoff_t readahead_index(const struct readahead_control *rac)
1510{
1511 return rac->_index;
1512}
1513
1514/**
1515 * readahead_count - The number of pages in this readahead request.
1516 * @rac: The readahead request.
1517 */
1518static inline unsigned int readahead_count(const struct readahead_control *rac)
1519{
1520 return rac->_nr_pages;
1521}
1522
1523/**
1524 * readahead_batch_length - The number of bytes in the current batch.
1525 * @rac: The readahead request.
1526 */
1527static inline size_t readahead_batch_length(const struct readahead_control *rac)
1528{
1529 return rac->_batch_count * PAGE_SIZE;
1530}
1531
1532static inline unsigned long dir_pages(const struct inode *inode)
1533{
1534 return (unsigned long)(inode->i_size + PAGE_SIZE - 1) >>
1535 PAGE_SHIFT;
1536}
1537
1538/**
1539 * folio_mkwrite_check_truncate - check if folio was truncated
1540 * @folio: the folio to check
1541 * @inode: the inode to check the folio against
1542 *
1543 * Return: the number of bytes in the folio up to EOF,
1544 * or -EFAULT if the folio was truncated.
1545 */
1546static inline ssize_t folio_mkwrite_check_truncate(const struct folio *folio,
1547 const struct inode *inode)
1548{
1549 loff_t size = i_size_read(inode);
1550 pgoff_t index = size >> PAGE_SHIFT;
1551 size_t offset = offset_in_folio(folio, size);
1552
1553 if (!folio->mapping)
1554 return -EFAULT;
1555
1556 /* folio is wholly inside EOF */
1557 if (folio_next_index(folio) - 1 < index)
1558 return folio_size(folio);
1559 /* folio is wholly past EOF */
1560 if (folio->index > index || !offset)
1561 return -EFAULT;
1562 /* folio is partially inside EOF */
1563 return offset;
1564}
1565
1566/**
1567 * i_blocks_per_folio - How many blocks fit in this folio.
1568 * @inode: The inode which contains the blocks.
1569 * @folio: The folio.
1570 *
1571 * If the block size is larger than the size of this folio, return zero.
1572 *
1573 * Context: The caller should hold a refcount on the folio to prevent it
1574 * from being split.
1575 * Return: The number of filesystem blocks covered by this folio.
1576 */
1577static inline
1578unsigned int i_blocks_per_folio(const struct inode *inode,
1579 const struct folio *folio)
1580{
1581 return folio_size(folio) >> inode->i_blkbits;
1582}
1583#endif /* _LINUX_PAGEMAP_H */