at master 179 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-or-later */ 2/* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Definitions for the Interfaces handler. 8 * 9 * Version: @(#)dev.h 1.0.10 08/12/93 10 * 11 * Authors: Ross Biro 12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 13 * Corey Minyard <wf-rch!minyard@relay.EU.net> 14 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov> 15 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 16 * Bjorn Ekwall. <bj0rn@blox.se> 17 * Pekka Riikonen <priikone@poseidon.pspt.fi> 18 * 19 * Moved to /usr/include/linux for NET3 20 */ 21#ifndef _LINUX_NETDEVICE_H 22#define _LINUX_NETDEVICE_H 23 24#include <linux/timer.h> 25#include <linux/bug.h> 26#include <linux/delay.h> 27#include <linux/atomic.h> 28#include <linux/prefetch.h> 29#include <asm/cache.h> 30#include <asm/byteorder.h> 31#include <asm/local.h> 32 33#include <linux/percpu.h> 34#include <linux/rculist.h> 35#include <linux/workqueue.h> 36#include <linux/dynamic_queue_limits.h> 37 38#include <net/net_namespace.h> 39#ifdef CONFIG_DCB 40#include <net/dcbnl.h> 41#endif 42#include <net/netprio_cgroup.h> 43#include <linux/netdev_features.h> 44#include <linux/neighbour.h> 45#include <linux/netdevice_xmit.h> 46#include <uapi/linux/netdevice.h> 47#include <uapi/linux/if_bonding.h> 48#include <uapi/linux/pkt_cls.h> 49#include <uapi/linux/netdev.h> 50#include <linux/hashtable.h> 51#include <linux/rbtree.h> 52#include <net/net_trackers.h> 53#include <net/net_debug.h> 54#include <net/dropreason-core.h> 55#include <net/neighbour_tables.h> 56 57struct netpoll_info; 58struct device; 59struct ethtool_ops; 60struct kernel_hwtstamp_config; 61struct phy_device; 62struct dsa_port; 63struct ip_tunnel_parm_kern; 64struct macsec_context; 65struct macsec_ops; 66struct netdev_config; 67struct netdev_name_node; 68struct sd_flow_limit; 69struct sfp_bus; 70/* 802.11 specific */ 71struct wireless_dev; 72/* 802.15.4 specific */ 73struct wpan_dev; 74struct mpls_dev; 75/* UDP Tunnel offloads */ 76struct udp_tunnel_info; 77struct udp_tunnel_nic_info; 78struct udp_tunnel_nic; 79struct bpf_prog; 80struct xdp_buff; 81struct xdp_frame; 82struct xdp_metadata_ops; 83struct xdp_md; 84struct ethtool_netdev_state; 85struct phy_link_topology; 86struct hwtstamp_provider; 87 88typedef u32 xdp_features_t; 89 90void synchronize_net(void); 91void netdev_set_default_ethtool_ops(struct net_device *dev, 92 const struct ethtool_ops *ops); 93void netdev_sw_irq_coalesce_default_on(struct net_device *dev); 94 95/* Backlog congestion levels */ 96#define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ 97#define NET_RX_DROP 1 /* packet dropped */ 98 99#define MAX_NEST_DEV 8 100 101/* 102 * Transmit return codes: transmit return codes originate from three different 103 * namespaces: 104 * 105 * - qdisc return codes 106 * - driver transmit return codes 107 * - errno values 108 * 109 * Drivers are allowed to return any one of those in their hard_start_xmit() 110 * function. Real network devices commonly used with qdiscs should only return 111 * the driver transmit return codes though - when qdiscs are used, the actual 112 * transmission happens asynchronously, so the value is not propagated to 113 * higher layers. Virtual network devices transmit synchronously; in this case 114 * the driver transmit return codes are consumed by dev_queue_xmit(), and all 115 * others are propagated to higher layers. 116 */ 117 118/* qdisc ->enqueue() return codes. */ 119#define NET_XMIT_SUCCESS 0x00 120#define NET_XMIT_DROP 0x01 /* skb dropped */ 121#define NET_XMIT_CN 0x02 /* congestion notification */ 122#define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ 123 124/* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It 125 * indicates that the device will soon be dropping packets, or already drops 126 * some packets of the same priority; prompting us to send less aggressively. */ 127#define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) 128#define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) 129 130/* Driver transmit return codes */ 131#define NETDEV_TX_MASK 0xf0 132 133enum netdev_tx { 134 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ 135 NETDEV_TX_OK = 0x00, /* driver took care of packet */ 136 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ 137}; 138typedef enum netdev_tx netdev_tx_t; 139 140/* 141 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; 142 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. 143 */ 144static inline bool dev_xmit_complete(int rc) 145{ 146 /* 147 * Positive cases with an skb consumed by a driver: 148 * - successful transmission (rc == NETDEV_TX_OK) 149 * - error while transmitting (rc < 0) 150 * - error while queueing to a different device (rc & NET_XMIT_MASK) 151 */ 152 if (likely(rc < NET_XMIT_MASK)) 153 return true; 154 155 return false; 156} 157 158/* 159 * Compute the worst-case header length according to the protocols 160 * used. 161 */ 162 163#if defined(CONFIG_HYPERV_NET) 164# define LL_MAX_HEADER 128 165#elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25) 166# if defined(CONFIG_MAC80211_MESH) 167# define LL_MAX_HEADER 128 168# else 169# define LL_MAX_HEADER 96 170# endif 171#else 172# define LL_MAX_HEADER 32 173#endif 174 175#if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \ 176 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL) 177#define MAX_HEADER LL_MAX_HEADER 178#else 179#define MAX_HEADER (LL_MAX_HEADER + 48) 180#endif 181 182/* 183 * Old network device statistics. Fields are native words 184 * (unsigned long) so they can be read and written atomically. 185 */ 186 187#define NET_DEV_STAT(FIELD) \ 188 union { \ 189 unsigned long FIELD; \ 190 atomic_long_t __##FIELD; \ 191 } 192 193struct net_device_stats { 194 NET_DEV_STAT(rx_packets); 195 NET_DEV_STAT(tx_packets); 196 NET_DEV_STAT(rx_bytes); 197 NET_DEV_STAT(tx_bytes); 198 NET_DEV_STAT(rx_errors); 199 NET_DEV_STAT(tx_errors); 200 NET_DEV_STAT(rx_dropped); 201 NET_DEV_STAT(tx_dropped); 202 NET_DEV_STAT(multicast); 203 NET_DEV_STAT(collisions); 204 NET_DEV_STAT(rx_length_errors); 205 NET_DEV_STAT(rx_over_errors); 206 NET_DEV_STAT(rx_crc_errors); 207 NET_DEV_STAT(rx_frame_errors); 208 NET_DEV_STAT(rx_fifo_errors); 209 NET_DEV_STAT(rx_missed_errors); 210 NET_DEV_STAT(tx_aborted_errors); 211 NET_DEV_STAT(tx_carrier_errors); 212 NET_DEV_STAT(tx_fifo_errors); 213 NET_DEV_STAT(tx_heartbeat_errors); 214 NET_DEV_STAT(tx_window_errors); 215 NET_DEV_STAT(rx_compressed); 216 NET_DEV_STAT(tx_compressed); 217}; 218#undef NET_DEV_STAT 219 220/* per-cpu stats, allocated on demand. 221 * Try to fit them in a single cache line, for dev_get_stats() sake. 222 */ 223struct net_device_core_stats { 224 unsigned long rx_dropped; 225 unsigned long tx_dropped; 226 unsigned long rx_nohandler; 227 unsigned long rx_otherhost_dropped; 228} __aligned(4 * sizeof(unsigned long)); 229 230#include <linux/cache.h> 231#include <linux/skbuff.h> 232 233struct neighbour; 234struct neigh_parms; 235struct sk_buff; 236 237struct netdev_hw_addr { 238 struct list_head list; 239 struct rb_node node; 240 unsigned char addr[MAX_ADDR_LEN]; 241 unsigned char type; 242#define NETDEV_HW_ADDR_T_LAN 1 243#define NETDEV_HW_ADDR_T_SAN 2 244#define NETDEV_HW_ADDR_T_UNICAST 3 245#define NETDEV_HW_ADDR_T_MULTICAST 4 246 bool global_use; 247 int sync_cnt; 248 int refcount; 249 int synced; 250 struct rcu_head rcu_head; 251}; 252 253struct netdev_hw_addr_list { 254 struct list_head list; 255 int count; 256 257 /* Auxiliary tree for faster lookup on addition and deletion */ 258 struct rb_root tree; 259}; 260 261#define netdev_hw_addr_list_count(l) ((l)->count) 262#define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) 263#define netdev_hw_addr_list_for_each(ha, l) \ 264 list_for_each_entry(ha, &(l)->list, list) 265 266#define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) 267#define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) 268#define netdev_for_each_uc_addr(ha, dev) \ 269 netdev_hw_addr_list_for_each(ha, &(dev)->uc) 270#define netdev_for_each_synced_uc_addr(_ha, _dev) \ 271 netdev_for_each_uc_addr((_ha), (_dev)) \ 272 if ((_ha)->sync_cnt) 273 274#define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) 275#define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) 276#define netdev_for_each_mc_addr(ha, dev) \ 277 netdev_hw_addr_list_for_each(ha, &(dev)->mc) 278#define netdev_for_each_synced_mc_addr(_ha, _dev) \ 279 netdev_for_each_mc_addr((_ha), (_dev)) \ 280 if ((_ha)->sync_cnt) 281 282struct hh_cache { 283 unsigned int hh_len; 284 seqlock_t hh_lock; 285 286 /* cached hardware header; allow for machine alignment needs. */ 287#define HH_DATA_MOD 16 288#define HH_DATA_OFF(__len) \ 289 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) 290#define HH_DATA_ALIGN(__len) \ 291 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) 292 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; 293}; 294 295/* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much. 296 * Alternative is: 297 * dev->hard_header_len ? (dev->hard_header_len + 298 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 299 * 300 * We could use other alignment values, but we must maintain the 301 * relationship HH alignment <= LL alignment. 302 */ 303#define LL_RESERVED_SPACE(dev) \ 304 ((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom)) \ 305 & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 306#define LL_RESERVED_SPACE_EXTRA(dev,extra) \ 307 ((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom) + (extra)) \ 308 & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 309 310struct header_ops { 311 int (*create) (struct sk_buff *skb, struct net_device *dev, 312 unsigned short type, const void *daddr, 313 const void *saddr, unsigned int len); 314 int (*parse)(const struct sk_buff *skb, unsigned char *haddr); 315 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type); 316 void (*cache_update)(struct hh_cache *hh, 317 const struct net_device *dev, 318 const unsigned char *haddr); 319 bool (*validate)(const char *ll_header, unsigned int len); 320 __be16 (*parse_protocol)(const struct sk_buff *skb); 321}; 322 323/* These flag bits are private to the generic network queueing 324 * layer; they may not be explicitly referenced by any other 325 * code. 326 */ 327 328enum netdev_state_t { 329 __LINK_STATE_START, 330 __LINK_STATE_PRESENT, 331 __LINK_STATE_NOCARRIER, 332 __LINK_STATE_LINKWATCH_PENDING, 333 __LINK_STATE_DORMANT, 334 __LINK_STATE_TESTING, 335}; 336 337struct gro_list { 338 struct list_head list; 339 int count; 340}; 341 342/* 343 * size of gro hash buckets, must be <= the number of bits in 344 * gro_node::bitmask 345 */ 346#define GRO_HASH_BUCKETS 8 347 348/** 349 * struct gro_node - structure to support Generic Receive Offload 350 * @bitmask: bitmask to indicate used buckets in @hash 351 * @hash: hashtable of pending aggregated skbs, separated by flows 352 * @rx_list: list of pending ``GRO_NORMAL`` skbs 353 * @rx_count: cached current length of @rx_list 354 * @cached_napi_id: napi_struct::napi_id cached for hotpath, 0 for standalone 355 */ 356struct gro_node { 357 unsigned long bitmask; 358 struct gro_list hash[GRO_HASH_BUCKETS]; 359 struct list_head rx_list; 360 u32 rx_count; 361 u32 cached_napi_id; 362}; 363 364/* 365 * Structure for per-NAPI config 366 */ 367struct napi_config { 368 u64 gro_flush_timeout; 369 u64 irq_suspend_timeout; 370 u32 defer_hard_irqs; 371 cpumask_t affinity_mask; 372 u8 threaded; 373 unsigned int napi_id; 374}; 375 376/* 377 * Structure for NAPI scheduling similar to tasklet but with weighting 378 */ 379struct napi_struct { 380 /* This field should be first or softnet_data.backlog needs tweaks. */ 381 unsigned long state; 382 /* The poll_list must only be managed by the entity which 383 * changes the state of the NAPI_STATE_SCHED bit. This means 384 * whoever atomically sets that bit can add this napi_struct 385 * to the per-CPU poll_list, and whoever clears that bit 386 * can remove from the list right before clearing the bit. 387 */ 388 struct list_head poll_list; 389 390 int weight; 391 u32 defer_hard_irqs_count; 392 int (*poll)(struct napi_struct *, int); 393#ifdef CONFIG_NETPOLL 394 /* CPU actively polling if netpoll is configured */ 395 int poll_owner; 396#endif 397 /* CPU on which NAPI has been scheduled for processing */ 398 int list_owner; 399 struct net_device *dev; 400 struct sk_buff *skb; 401 struct gro_node gro; 402 struct hrtimer timer; 403 /* all fields past this point are write-protected by netdev_lock */ 404 struct task_struct *thread; 405 unsigned long gro_flush_timeout; 406 unsigned long irq_suspend_timeout; 407 u32 defer_hard_irqs; 408 /* control-path-only fields follow */ 409 u32 napi_id; 410 struct list_head dev_list; 411 struct hlist_node napi_hash_node; 412 int irq; 413 struct irq_affinity_notify notify; 414 int napi_rmap_idx; 415 int index; 416 struct napi_config *config; 417}; 418 419enum { 420 NAPI_STATE_SCHED, /* Poll is scheduled */ 421 NAPI_STATE_MISSED, /* reschedule a napi */ 422 NAPI_STATE_DISABLE, /* Disable pending */ 423 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ 424 NAPI_STATE_LISTED, /* NAPI added to system lists */ 425 NAPI_STATE_NO_BUSY_POLL, /* Do not add in napi_hash, no busy polling */ 426 NAPI_STATE_IN_BUSY_POLL, /* Do not rearm NAPI interrupt */ 427 NAPI_STATE_PREFER_BUSY_POLL, /* prefer busy-polling over softirq processing*/ 428 NAPI_STATE_THREADED, /* The poll is performed inside its own thread*/ 429 NAPI_STATE_SCHED_THREADED, /* Napi is currently scheduled in threaded mode */ 430 NAPI_STATE_HAS_NOTIFIER, /* Napi has an IRQ notifier */ 431 NAPI_STATE_THREADED_BUSY_POLL, /* The threaded NAPI poller will busy poll */ 432}; 433 434enum { 435 NAPIF_STATE_SCHED = BIT(NAPI_STATE_SCHED), 436 NAPIF_STATE_MISSED = BIT(NAPI_STATE_MISSED), 437 NAPIF_STATE_DISABLE = BIT(NAPI_STATE_DISABLE), 438 NAPIF_STATE_NPSVC = BIT(NAPI_STATE_NPSVC), 439 NAPIF_STATE_LISTED = BIT(NAPI_STATE_LISTED), 440 NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL), 441 NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL), 442 NAPIF_STATE_PREFER_BUSY_POLL = BIT(NAPI_STATE_PREFER_BUSY_POLL), 443 NAPIF_STATE_THREADED = BIT(NAPI_STATE_THREADED), 444 NAPIF_STATE_SCHED_THREADED = BIT(NAPI_STATE_SCHED_THREADED), 445 NAPIF_STATE_HAS_NOTIFIER = BIT(NAPI_STATE_HAS_NOTIFIER), 446 NAPIF_STATE_THREADED_BUSY_POLL = BIT(NAPI_STATE_THREADED_BUSY_POLL), 447}; 448 449enum gro_result { 450 GRO_MERGED, 451 GRO_MERGED_FREE, 452 GRO_HELD, 453 GRO_NORMAL, 454 GRO_CONSUMED, 455}; 456typedef enum gro_result gro_result_t; 457 458/* 459 * enum rx_handler_result - Possible return values for rx_handlers. 460 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it 461 * further. 462 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in 463 * case skb->dev was changed by rx_handler. 464 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard. 465 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called. 466 * 467 * rx_handlers are functions called from inside __netif_receive_skb(), to do 468 * special processing of the skb, prior to delivery to protocol handlers. 469 * 470 * Currently, a net_device can only have a single rx_handler registered. Trying 471 * to register a second rx_handler will return -EBUSY. 472 * 473 * To register a rx_handler on a net_device, use netdev_rx_handler_register(). 474 * To unregister a rx_handler on a net_device, use 475 * netdev_rx_handler_unregister(). 476 * 477 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to 478 * do with the skb. 479 * 480 * If the rx_handler consumed the skb in some way, it should return 481 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for 482 * the skb to be delivered in some other way. 483 * 484 * If the rx_handler changed skb->dev, to divert the skb to another 485 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the 486 * new device will be called if it exists. 487 * 488 * If the rx_handler decides the skb should be ignored, it should return 489 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that 490 * are registered on exact device (ptype->dev == skb->dev). 491 * 492 * If the rx_handler didn't change skb->dev, but wants the skb to be normally 493 * delivered, it should return RX_HANDLER_PASS. 494 * 495 * A device without a registered rx_handler will behave as if rx_handler 496 * returned RX_HANDLER_PASS. 497 */ 498 499enum rx_handler_result { 500 RX_HANDLER_CONSUMED, 501 RX_HANDLER_ANOTHER, 502 RX_HANDLER_EXACT, 503 RX_HANDLER_PASS, 504}; 505typedef enum rx_handler_result rx_handler_result_t; 506typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb); 507 508void __napi_schedule(struct napi_struct *n); 509void __napi_schedule_irqoff(struct napi_struct *n); 510 511static inline bool napi_disable_pending(struct napi_struct *n) 512{ 513 return test_bit(NAPI_STATE_DISABLE, &n->state); 514} 515 516static inline bool napi_prefer_busy_poll(struct napi_struct *n) 517{ 518 return test_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state); 519} 520 521/** 522 * napi_is_scheduled - test if NAPI is scheduled 523 * @n: NAPI context 524 * 525 * This check is "best-effort". With no locking implemented, 526 * a NAPI can be scheduled or terminate right after this check 527 * and produce not precise results. 528 * 529 * NAPI_STATE_SCHED is an internal state, napi_is_scheduled 530 * should not be used normally and napi_schedule should be 531 * used instead. 532 * 533 * Use only if the driver really needs to check if a NAPI 534 * is scheduled for example in the context of delayed timer 535 * that can be skipped if a NAPI is already scheduled. 536 * 537 * Return: True if NAPI is scheduled, False otherwise. 538 */ 539static inline bool napi_is_scheduled(struct napi_struct *n) 540{ 541 return test_bit(NAPI_STATE_SCHED, &n->state); 542} 543 544bool napi_schedule_prep(struct napi_struct *n); 545 546/** 547 * napi_schedule - schedule NAPI poll 548 * @n: NAPI context 549 * 550 * Schedule NAPI poll routine to be called if it is not already 551 * running. 552 * Return: true if we schedule a NAPI or false if not. 553 * Refer to napi_schedule_prep() for additional reason on why 554 * a NAPI might not be scheduled. 555 */ 556static inline bool napi_schedule(struct napi_struct *n) 557{ 558 if (napi_schedule_prep(n)) { 559 __napi_schedule(n); 560 return true; 561 } 562 563 return false; 564} 565 566/** 567 * napi_schedule_irqoff - schedule NAPI poll 568 * @n: NAPI context 569 * 570 * Variant of napi_schedule(), assuming hard irqs are masked. 571 */ 572static inline void napi_schedule_irqoff(struct napi_struct *n) 573{ 574 if (napi_schedule_prep(n)) 575 __napi_schedule_irqoff(n); 576} 577 578/** 579 * napi_complete_done - NAPI processing complete 580 * @n: NAPI context 581 * @work_done: number of packets processed 582 * 583 * Mark NAPI processing as complete. Should only be called if poll budget 584 * has not been completely consumed. 585 * Prefer over napi_complete(). 586 * Return: false if device should avoid rearming interrupts. 587 */ 588bool napi_complete_done(struct napi_struct *n, int work_done); 589 590static inline bool napi_complete(struct napi_struct *n) 591{ 592 return napi_complete_done(n, 0); 593} 594 595void netif_threaded_enable(struct net_device *dev); 596int dev_set_threaded(struct net_device *dev, 597 enum netdev_napi_threaded threaded); 598 599void napi_disable(struct napi_struct *n); 600void napi_disable_locked(struct napi_struct *n); 601 602void napi_enable(struct napi_struct *n); 603void napi_enable_locked(struct napi_struct *n); 604 605/** 606 * napi_synchronize - wait until NAPI is not running 607 * @n: NAPI context 608 * 609 * Wait until NAPI is done being scheduled on this context. 610 * Waits till any outstanding processing completes but 611 * does not disable future activations. 612 */ 613static inline void napi_synchronize(const struct napi_struct *n) 614{ 615 if (IS_ENABLED(CONFIG_SMP)) 616 while (test_bit(NAPI_STATE_SCHED, &n->state)) 617 msleep(1); 618 else 619 barrier(); 620} 621 622/** 623 * napi_if_scheduled_mark_missed - if napi is running, set the 624 * NAPIF_STATE_MISSED 625 * @n: NAPI context 626 * 627 * If napi is running, set the NAPIF_STATE_MISSED, and return true if 628 * NAPI is scheduled. 629 **/ 630static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n) 631{ 632 unsigned long val, new; 633 634 val = READ_ONCE(n->state); 635 do { 636 if (val & NAPIF_STATE_DISABLE) 637 return true; 638 639 if (!(val & NAPIF_STATE_SCHED)) 640 return false; 641 642 new = val | NAPIF_STATE_MISSED; 643 } while (!try_cmpxchg(&n->state, &val, new)); 644 645 return true; 646} 647 648enum netdev_queue_state_t { 649 __QUEUE_STATE_DRV_XOFF, 650 __QUEUE_STATE_STACK_XOFF, 651 __QUEUE_STATE_FROZEN, 652}; 653 654#define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF) 655#define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF) 656#define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN) 657 658#define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF) 659#define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \ 660 QUEUE_STATE_FROZEN) 661#define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \ 662 QUEUE_STATE_FROZEN) 663 664/* 665 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The 666 * netif_tx_* functions below are used to manipulate this flag. The 667 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit 668 * queue independently. The netif_xmit_*stopped functions below are called 669 * to check if the queue has been stopped by the driver or stack (either 670 * of the XOFF bits are set in the state). Drivers should not need to call 671 * netif_xmit*stopped functions, they should only be using netif_tx_*. 672 */ 673 674struct netdev_queue { 675/* 676 * read-mostly part 677 */ 678 struct net_device *dev; 679 netdevice_tracker dev_tracker; 680 681 struct Qdisc __rcu *qdisc; 682 struct Qdisc __rcu *qdisc_sleeping; 683#ifdef CONFIG_SYSFS 684 struct kobject kobj; 685 const struct attribute_group **groups; 686#endif 687 unsigned long tx_maxrate; 688 /* 689 * Number of TX timeouts for this queue 690 * (/sys/class/net/DEV/Q/trans_timeout) 691 */ 692 atomic_long_t trans_timeout; 693 694 /* Subordinate device that the queue has been assigned to */ 695 struct net_device *sb_dev; 696#ifdef CONFIG_XDP_SOCKETS 697 /* "ops protected", see comment about net_device::lock */ 698 struct xsk_buff_pool *pool; 699#endif 700 701/* 702 * write-mostly part 703 */ 704#ifdef CONFIG_BQL 705 struct dql dql; 706#endif 707 spinlock_t _xmit_lock ____cacheline_aligned_in_smp; 708 int xmit_lock_owner; 709 /* 710 * Time (in jiffies) of last Tx 711 */ 712 unsigned long trans_start; 713 714 unsigned long state; 715 716/* 717 * slow- / control-path part 718 */ 719 /* NAPI instance for the queue 720 * "ops protected", see comment about net_device::lock 721 */ 722 struct napi_struct *napi; 723 724#if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 725 int numa_node; 726#endif 727} ____cacheline_aligned_in_smp; 728 729extern int sysctl_fb_tunnels_only_for_init_net; 730extern int sysctl_devconf_inherit_init_net; 731 732/* 733 * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns 734 * == 1 : For initns only 735 * == 2 : For none. 736 */ 737static inline bool net_has_fallback_tunnels(const struct net *net) 738{ 739#if IS_ENABLED(CONFIG_SYSCTL) 740 int fb_tunnels_only_for_init_net = READ_ONCE(sysctl_fb_tunnels_only_for_init_net); 741 742 return !fb_tunnels_only_for_init_net || 743 (net_eq(net, &init_net) && fb_tunnels_only_for_init_net == 1); 744#else 745 return true; 746#endif 747} 748 749static inline int net_inherit_devconf(void) 750{ 751#if IS_ENABLED(CONFIG_SYSCTL) 752 return READ_ONCE(sysctl_devconf_inherit_init_net); 753#else 754 return 0; 755#endif 756} 757 758static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) 759{ 760#if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 761 return q->numa_node; 762#else 763 return NUMA_NO_NODE; 764#endif 765} 766 767static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) 768{ 769#if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 770 q->numa_node = node; 771#endif 772} 773 774#ifdef CONFIG_RFS_ACCEL 775bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id, 776 u16 filter_id); 777#endif 778 779/* XPS map type and offset of the xps map within net_device->xps_maps[]. */ 780enum xps_map_type { 781 XPS_CPUS = 0, 782 XPS_RXQS, 783 XPS_MAPS_MAX, 784}; 785 786#ifdef CONFIG_XPS 787/* 788 * This structure holds an XPS map which can be of variable length. The 789 * map is an array of queues. 790 */ 791struct xps_map { 792 unsigned int len; 793 unsigned int alloc_len; 794 struct rcu_head rcu; 795 u16 queues[]; 796}; 797#define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16))) 798#define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \ 799 - sizeof(struct xps_map)) / sizeof(u16)) 800 801/* 802 * This structure holds all XPS maps for device. Maps are indexed by CPU. 803 * 804 * We keep track of the number of cpus/rxqs used when the struct is allocated, 805 * in nr_ids. This will help not accessing out-of-bound memory. 806 * 807 * We keep track of the number of traffic classes used when the struct is 808 * allocated, in num_tc. This will be used to navigate the maps, to ensure we're 809 * not crossing its upper bound, as the original dev->num_tc can be updated in 810 * the meantime. 811 */ 812struct xps_dev_maps { 813 struct rcu_head rcu; 814 unsigned int nr_ids; 815 s16 num_tc; 816 struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */ 817}; 818 819#define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) + \ 820 (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *))) 821 822#define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\ 823 (_rxqs * (_tcs) * sizeof(struct xps_map *))) 824 825#endif /* CONFIG_XPS */ 826 827#define TC_MAX_QUEUE 16 828#define TC_BITMASK 15 829/* HW offloaded queuing disciplines txq count and offset maps */ 830struct netdev_tc_txq { 831 u16 count; 832 u16 offset; 833}; 834 835#if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 836/* 837 * This structure is to hold information about the device 838 * configured to run FCoE protocol stack. 839 */ 840struct netdev_fcoe_hbainfo { 841 char manufacturer[64]; 842 char serial_number[64]; 843 char hardware_version[64]; 844 char driver_version[64]; 845 char optionrom_version[64]; 846 char firmware_version[64]; 847 char model[256]; 848 char model_description[256]; 849}; 850#endif 851 852#define MAX_PHYS_ITEM_ID_LEN 32 853 854/* This structure holds a unique identifier to identify some 855 * physical item (port for example) used by a netdevice. 856 */ 857struct netdev_phys_item_id { 858 unsigned char id[MAX_PHYS_ITEM_ID_LEN]; 859 unsigned char id_len; 860}; 861 862static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a, 863 struct netdev_phys_item_id *b) 864{ 865 return a->id_len == b->id_len && 866 memcmp(a->id, b->id, a->id_len) == 0; 867} 868 869typedef u16 (*select_queue_fallback_t)(struct net_device *dev, 870 struct sk_buff *skb, 871 struct net_device *sb_dev); 872 873enum net_device_path_type { 874 DEV_PATH_ETHERNET = 0, 875 DEV_PATH_VLAN, 876 DEV_PATH_BRIDGE, 877 DEV_PATH_PPPOE, 878 DEV_PATH_DSA, 879 DEV_PATH_MTK_WDMA, 880 DEV_PATH_TUN, 881}; 882 883struct net_device_path { 884 enum net_device_path_type type; 885 const struct net_device *dev; 886 union { 887 struct { 888 u16 id; 889 __be16 proto; 890 u8 h_dest[ETH_ALEN]; 891 } encap; 892 struct { 893 union { 894 struct in_addr src_v4; 895 struct in6_addr src_v6; 896 }; 897 union { 898 struct in_addr dst_v4; 899 struct in6_addr dst_v6; 900 }; 901 902 u8 l3_proto; 903 } tun; 904 struct { 905 enum { 906 DEV_PATH_BR_VLAN_KEEP, 907 DEV_PATH_BR_VLAN_TAG, 908 DEV_PATH_BR_VLAN_UNTAG, 909 DEV_PATH_BR_VLAN_UNTAG_HW, 910 } vlan_mode; 911 u16 vlan_id; 912 __be16 vlan_proto; 913 } bridge; 914 struct { 915 int port; 916 u16 proto; 917 } dsa; 918 struct { 919 u8 wdma_idx; 920 u8 queue; 921 u16 wcid; 922 u8 bss; 923 u8 amsdu; 924 } mtk_wdma; 925 }; 926}; 927 928#define NET_DEVICE_PATH_STACK_MAX 5 929#define NET_DEVICE_PATH_VLAN_MAX 2 930 931struct net_device_path_stack { 932 int num_paths; 933 struct net_device_path path[NET_DEVICE_PATH_STACK_MAX]; 934}; 935 936struct net_device_path_ctx { 937 const struct net_device *dev; 938 u8 daddr[ETH_ALEN]; 939 940 int num_vlans; 941 struct { 942 u16 id; 943 __be16 proto; 944 } vlan[NET_DEVICE_PATH_VLAN_MAX]; 945}; 946 947enum tc_setup_type { 948 TC_QUERY_CAPS, 949 TC_SETUP_QDISC_MQPRIO, 950 TC_SETUP_CLSU32, 951 TC_SETUP_CLSFLOWER, 952 TC_SETUP_CLSMATCHALL, 953 TC_SETUP_CLSBPF, 954 TC_SETUP_BLOCK, 955 TC_SETUP_QDISC_CBS, 956 TC_SETUP_QDISC_RED, 957 TC_SETUP_QDISC_PRIO, 958 TC_SETUP_QDISC_MQ, 959 TC_SETUP_QDISC_ETF, 960 TC_SETUP_ROOT_QDISC, 961 TC_SETUP_QDISC_GRED, 962 TC_SETUP_QDISC_TAPRIO, 963 TC_SETUP_FT, 964 TC_SETUP_QDISC_ETS, 965 TC_SETUP_QDISC_TBF, 966 TC_SETUP_QDISC_FIFO, 967 TC_SETUP_QDISC_HTB, 968 TC_SETUP_ACT, 969}; 970 971/* These structures hold the attributes of bpf state that are being passed 972 * to the netdevice through the bpf op. 973 */ 974enum bpf_netdev_command { 975 /* Set or clear a bpf program used in the earliest stages of packet 976 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee 977 * is responsible for calling bpf_prog_put on any old progs that are 978 * stored. In case of error, the callee need not release the new prog 979 * reference, but on success it takes ownership and must bpf_prog_put 980 * when it is no longer used. 981 */ 982 XDP_SETUP_PROG, 983 XDP_SETUP_PROG_HW, 984 /* BPF program for offload callbacks, invoked at program load time. */ 985 BPF_OFFLOAD_MAP_ALLOC, 986 BPF_OFFLOAD_MAP_FREE, 987 XDP_SETUP_XSK_POOL, 988}; 989 990struct bpf_prog_offload_ops; 991struct netlink_ext_ack; 992struct xdp_umem; 993struct xdp_dev_bulk_queue; 994struct bpf_xdp_link; 995 996enum bpf_xdp_mode { 997 XDP_MODE_SKB = 0, 998 XDP_MODE_DRV = 1, 999 XDP_MODE_HW = 2, 1000 __MAX_XDP_MODE 1001}; 1002 1003struct bpf_xdp_entity { 1004 struct bpf_prog *prog; 1005 struct bpf_xdp_link *link; 1006}; 1007 1008struct netdev_bpf { 1009 enum bpf_netdev_command command; 1010 union { 1011 /* XDP_SETUP_PROG */ 1012 struct { 1013 u32 flags; 1014 struct bpf_prog *prog; 1015 struct netlink_ext_ack *extack; 1016 }; 1017 /* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */ 1018 struct { 1019 struct bpf_offloaded_map *offmap; 1020 }; 1021 /* XDP_SETUP_XSK_POOL */ 1022 struct { 1023 struct xsk_buff_pool *pool; 1024 u16 queue_id; 1025 } xsk; 1026 }; 1027}; 1028 1029/* Flags for ndo_xsk_wakeup. */ 1030#define XDP_WAKEUP_RX (1 << 0) 1031#define XDP_WAKEUP_TX (1 << 1) 1032 1033#ifdef CONFIG_XFRM_OFFLOAD 1034struct xfrmdev_ops { 1035 int (*xdo_dev_state_add)(struct net_device *dev, 1036 struct xfrm_state *x, 1037 struct netlink_ext_ack *extack); 1038 void (*xdo_dev_state_delete)(struct net_device *dev, 1039 struct xfrm_state *x); 1040 void (*xdo_dev_state_free)(struct net_device *dev, 1041 struct xfrm_state *x); 1042 bool (*xdo_dev_offload_ok) (struct sk_buff *skb, 1043 struct xfrm_state *x); 1044 void (*xdo_dev_state_advance_esn) (struct xfrm_state *x); 1045 void (*xdo_dev_state_update_stats) (struct xfrm_state *x); 1046 int (*xdo_dev_policy_add) (struct xfrm_policy *x, struct netlink_ext_ack *extack); 1047 void (*xdo_dev_policy_delete) (struct xfrm_policy *x); 1048 void (*xdo_dev_policy_free) (struct xfrm_policy *x); 1049}; 1050#endif 1051 1052struct dev_ifalias { 1053 struct rcu_head rcuhead; 1054 char ifalias[]; 1055}; 1056 1057struct devlink; 1058struct tlsdev_ops; 1059 1060struct netdev_net_notifier { 1061 struct list_head list; 1062 struct notifier_block *nb; 1063}; 1064 1065/* 1066 * This structure defines the management hooks for network devices. 1067 * The following hooks can be defined; unless noted otherwise, they are 1068 * optional and can be filled with a null pointer. 1069 * 1070 * int (*ndo_init)(struct net_device *dev); 1071 * This function is called once when a network device is registered. 1072 * The network device can use this for any late stage initialization 1073 * or semantic validation. It can fail with an error code which will 1074 * be propagated back to register_netdev. 1075 * 1076 * void (*ndo_uninit)(struct net_device *dev); 1077 * This function is called when device is unregistered or when registration 1078 * fails. It is not called if init fails. 1079 * 1080 * int (*ndo_open)(struct net_device *dev); 1081 * This function is called when a network device transitions to the up 1082 * state. 1083 * 1084 * int (*ndo_stop)(struct net_device *dev); 1085 * This function is called when a network device transitions to the down 1086 * state. 1087 * 1088 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 1089 * struct net_device *dev); 1090 * Called when a packet needs to be transmitted. 1091 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop 1092 * the queue before that can happen; it's for obsolete devices and weird 1093 * corner cases, but the stack really does a non-trivial amount 1094 * of useless work if you return NETDEV_TX_BUSY. 1095 * Required; cannot be NULL. 1096 * 1097 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1098 * struct net_device *dev 1099 * netdev_features_t features); 1100 * Called by core transmit path to determine if device is capable of 1101 * performing offload operations on a given packet. This is to give 1102 * the device an opportunity to implement any restrictions that cannot 1103 * be otherwise expressed by feature flags. The check is called with 1104 * the set of features that the stack has calculated and it returns 1105 * those the driver believes to be appropriate. 1106 * 1107 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb, 1108 * struct net_device *sb_dev); 1109 * Called to decide which queue to use when device supports multiple 1110 * transmit queues. 1111 * 1112 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); 1113 * This function is called to allow device receiver to make 1114 * changes to configuration when multicast or promiscuous is enabled. 1115 * 1116 * void (*ndo_set_rx_mode)(struct net_device *dev); 1117 * This function is called device changes address list filtering. 1118 * If driver handles unicast address filtering, it should set 1119 * IFF_UNICAST_FLT in its priv_flags. 1120 * 1121 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); 1122 * This function is called when the Media Access Control address 1123 * needs to be changed. If this interface is not defined, the 1124 * MAC address can not be changed. 1125 * 1126 * int (*ndo_validate_addr)(struct net_device *dev); 1127 * Test if Media Access Control address is valid for the device. 1128 * 1129 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 1130 * Old-style ioctl entry point. This is used internally by the 1131 * ieee802154 subsystem but is no longer called by the device 1132 * ioctl handler. 1133 * 1134 * int (*ndo_siocbond)(struct net_device *dev, struct ifreq *ifr, int cmd); 1135 * Used by the bonding driver for its device specific ioctls: 1136 * SIOCBONDENSLAVE, SIOCBONDRELEASE, SIOCBONDSETHWADDR, SIOCBONDCHANGEACTIVE, 1137 * SIOCBONDSLAVEINFOQUERY, and SIOCBONDINFOQUERY 1138 * 1139 * * int (*ndo_eth_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 1140 * Called for ethernet specific ioctls: SIOCGMIIPHY, SIOCGMIIREG, 1141 * SIOCSMIIREG, SIOCSHWTSTAMP and SIOCGHWTSTAMP. 1142 * 1143 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); 1144 * Used to set network devices bus interface parameters. This interface 1145 * is retained for legacy reasons; new devices should use the bus 1146 * interface (PCI) for low level management. 1147 * 1148 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); 1149 * Called when a user wants to change the Maximum Transfer Unit 1150 * of a device. 1151 * 1152 * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue); 1153 * Callback used when the transmitter has not made any progress 1154 * for dev->watchdog ticks. 1155 * 1156 * void (*ndo_get_stats64)(struct net_device *dev, 1157 * struct rtnl_link_stats64 *storage); 1158 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1159 * Called when a user wants to get the network device usage 1160 * statistics. Drivers must do one of the following: 1161 * 1. Define @ndo_get_stats64 to fill in a zero-initialised 1162 * rtnl_link_stats64 structure passed by the caller. 1163 * 2. Define @ndo_get_stats to update a net_device_stats structure 1164 * (which should normally be dev->stats) and return a pointer to 1165 * it. The structure may be changed asynchronously only if each 1166 * field is written atomically. 1167 * 3. Update dev->stats asynchronously and atomically, and define 1168 * neither operation. 1169 * 1170 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id) 1171 * Return true if this device supports offload stats of this attr_id. 1172 * 1173 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev, 1174 * void *attr_data) 1175 * Get statistics for offload operations by attr_id. Write it into the 1176 * attr_data pointer. 1177 * 1178 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid); 1179 * If device supports VLAN filtering this function is called when a 1180 * VLAN id is registered. 1181 * 1182 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid); 1183 * If device supports VLAN filtering this function is called when a 1184 * VLAN id is unregistered. 1185 * 1186 * void (*ndo_poll_controller)(struct net_device *dev); 1187 * 1188 * SR-IOV management functions. 1189 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); 1190 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, 1191 * u8 qos, __be16 proto); 1192 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate, 1193 * int max_tx_rate); 1194 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting); 1195 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting); 1196 * int (*ndo_get_vf_config)(struct net_device *dev, 1197 * int vf, struct ifla_vf_info *ivf); 1198 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state); 1199 * int (*ndo_set_vf_port)(struct net_device *dev, int vf, 1200 * struct nlattr *port[]); 1201 * 1202 * Enable or disable the VF ability to query its RSS Redirection Table and 1203 * Hash Key. This is needed since on some devices VF share this information 1204 * with PF and querying it may introduce a theoretical security risk. 1205 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting); 1206 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); 1207 * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type, 1208 * void *type_data); 1209 * Called to setup any 'tc' scheduler, classifier or action on @dev. 1210 * This is always called from the stack with the rtnl lock held and netif 1211 * tx queues stopped. This allows the netdevice to perform queue 1212 * management safely. 1213 * 1214 * Fiber Channel over Ethernet (FCoE) offload functions. 1215 * int (*ndo_fcoe_enable)(struct net_device *dev); 1216 * Called when the FCoE protocol stack wants to start using LLD for FCoE 1217 * so the underlying device can perform whatever needed configuration or 1218 * initialization to support acceleration of FCoE traffic. 1219 * 1220 * int (*ndo_fcoe_disable)(struct net_device *dev); 1221 * Called when the FCoE protocol stack wants to stop using LLD for FCoE 1222 * so the underlying device can perform whatever needed clean-ups to 1223 * stop supporting acceleration of FCoE traffic. 1224 * 1225 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, 1226 * struct scatterlist *sgl, unsigned int sgc); 1227 * Called when the FCoE Initiator wants to initialize an I/O that 1228 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1229 * perform necessary setup and returns 1 to indicate the device is set up 1230 * successfully to perform DDP on this I/O, otherwise this returns 0. 1231 * 1232 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); 1233 * Called when the FCoE Initiator/Target is done with the DDPed I/O as 1234 * indicated by the FC exchange id 'xid', so the underlying device can 1235 * clean up and reuse resources for later DDP requests. 1236 * 1237 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, 1238 * struct scatterlist *sgl, unsigned int sgc); 1239 * Called when the FCoE Target wants to initialize an I/O that 1240 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1241 * perform necessary setup and returns 1 to indicate the device is set up 1242 * successfully to perform DDP on this I/O, otherwise this returns 0. 1243 * 1244 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1245 * struct netdev_fcoe_hbainfo *hbainfo); 1246 * Called when the FCoE Protocol stack wants information on the underlying 1247 * device. This information is utilized by the FCoE protocol stack to 1248 * register attributes with Fiber Channel management service as per the 1249 * FC-GS Fabric Device Management Information(FDMI) specification. 1250 * 1251 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); 1252 * Called when the underlying device wants to override default World Wide 1253 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own 1254 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE 1255 * protocol stack to use. 1256 * 1257 * RFS acceleration. 1258 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, 1259 * u16 rxq_index, u32 flow_id); 1260 * Set hardware filter for RFS. rxq_index is the target queue index; 1261 * flow_id is a flow ID to be passed to rps_may_expire_flow() later. 1262 * Return the filter ID on success, or a negative error code. 1263 * 1264 * Slave management functions (for bridge, bonding, etc). 1265 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); 1266 * Called to make another netdev an underling. 1267 * 1268 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); 1269 * Called to release previously enslaved netdev. 1270 * 1271 * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev, 1272 * struct sk_buff *skb, 1273 * bool all_slaves); 1274 * Get the xmit slave of master device. If all_slaves is true, function 1275 * assume all the slaves can transmit. 1276 * 1277 * Feature/offload setting functions. 1278 * netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1279 * netdev_features_t features); 1280 * Adjusts the requested feature flags according to device-specific 1281 * constraints, and returns the resulting flags. Must not modify 1282 * the device state. 1283 * 1284 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features); 1285 * Called to update device configuration to new features. Passed 1286 * feature set might be less than what was returned by ndo_fix_features()). 1287 * Must return >0 or -errno if it changed dev->features itself. 1288 * 1289 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[], 1290 * struct net_device *dev, 1291 * const unsigned char *addr, u16 vid, u16 flags, 1292 * bool *notified, struct netlink_ext_ack *extack); 1293 * Adds an FDB entry to dev for addr. 1294 * Callee shall set *notified to true if it sent any appropriate 1295 * notification(s). Otherwise core will send a generic one. 1296 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[], 1297 * struct net_device *dev, 1298 * const unsigned char *addr, u16 vid 1299 * bool *notified, struct netlink_ext_ack *extack); 1300 * Deletes the FDB entry from dev corresponding to addr. 1301 * Callee shall set *notified to true if it sent any appropriate 1302 * notification(s). Otherwise core will send a generic one. 1303 * int (*ndo_fdb_del_bulk)(struct nlmsghdr *nlh, struct net_device *dev, 1304 * struct netlink_ext_ack *extack); 1305 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb, 1306 * struct net_device *dev, struct net_device *filter_dev, 1307 * int *idx) 1308 * Used to add FDB entries to dump requests. Implementers should add 1309 * entries to skb and update idx with the number of entries. 1310 * 1311 * int (*ndo_mdb_add)(struct net_device *dev, struct nlattr *tb[], 1312 * u16 nlmsg_flags, struct netlink_ext_ack *extack); 1313 * Adds an MDB entry to dev. 1314 * int (*ndo_mdb_del)(struct net_device *dev, struct nlattr *tb[], 1315 * struct netlink_ext_ack *extack); 1316 * Deletes the MDB entry from dev. 1317 * int (*ndo_mdb_del_bulk)(struct net_device *dev, struct nlattr *tb[], 1318 * struct netlink_ext_ack *extack); 1319 * Bulk deletes MDB entries from dev. 1320 * int (*ndo_mdb_dump)(struct net_device *dev, struct sk_buff *skb, 1321 * struct netlink_callback *cb); 1322 * Dumps MDB entries from dev. The first argument (marker) in the netlink 1323 * callback is used by core rtnetlink code. 1324 * 1325 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh, 1326 * u16 flags, struct netlink_ext_ack *extack) 1327 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq, 1328 * struct net_device *dev, u32 filter_mask, 1329 * int nlflags) 1330 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh, 1331 * u16 flags); 1332 * 1333 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier); 1334 * Called to change device carrier. Soft-devices (like dummy, team, etc) 1335 * which do not represent real hardware may define this to allow their 1336 * userspace components to manage their virtual carrier state. Devices 1337 * that determine carrier state from physical hardware properties (eg 1338 * network cables) or protocol-dependent mechanisms (eg 1339 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function. 1340 * 1341 * int (*ndo_get_phys_port_id)(struct net_device *dev, 1342 * struct netdev_phys_item_id *ppid); 1343 * Called to get ID of physical port of this device. If driver does 1344 * not implement this, it is assumed that the hw is not able to have 1345 * multiple net devices on single physical port. 1346 * 1347 * int (*ndo_get_port_parent_id)(struct net_device *dev, 1348 * struct netdev_phys_item_id *ppid) 1349 * Called to get the parent ID of the physical port of this device. 1350 * 1351 * void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1352 * struct net_device *dev) 1353 * Called by upper layer devices to accelerate switching or other 1354 * station functionality into hardware. 'pdev is the lowerdev 1355 * to use for the offload and 'dev' is the net device that will 1356 * back the offload. Returns a pointer to the private structure 1357 * the upper layer will maintain. 1358 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv) 1359 * Called by upper layer device to delete the station created 1360 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing 1361 * the station and priv is the structure returned by the add 1362 * operation. 1363 * int (*ndo_set_tx_maxrate)(struct net_device *dev, 1364 * int queue_index, u32 maxrate); 1365 * Called when a user wants to set a max-rate limitation of specific 1366 * TX queue. 1367 * int (*ndo_get_iflink)(const struct net_device *dev); 1368 * Called to get the iflink value of this device. 1369 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb); 1370 * This function is used to get egress tunnel information for given skb. 1371 * This is useful for retrieving outer tunnel header parameters while 1372 * sampling packet. 1373 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom); 1374 * This function is used to specify the headroom that the skb must 1375 * consider when allocation skb during packet reception. Setting 1376 * appropriate rx headroom value allows avoiding skb head copy on 1377 * forward. Setting a negative value resets the rx headroom to the 1378 * default value. 1379 * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf); 1380 * This function is used to set or query state related to XDP on the 1381 * netdevice and manage BPF offload. See definition of 1382 * enum bpf_netdev_command for details. 1383 * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp, 1384 * u32 flags); 1385 * This function is used to submit @n XDP packets for transmit on a 1386 * netdevice. Returns number of frames successfully transmitted, frames 1387 * that got dropped are freed/returned via xdp_return_frame(). 1388 * Returns negative number, means general error invoking ndo, meaning 1389 * no frames were xmit'ed and core-caller will free all frames. 1390 * struct net_device *(*ndo_xdp_get_xmit_slave)(struct net_device *dev, 1391 * struct xdp_buff *xdp); 1392 * Get the xmit slave of master device based on the xdp_buff. 1393 * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags); 1394 * This function is used to wake up the softirq, ksoftirqd or kthread 1395 * responsible for sending and/or receiving packets on a specific 1396 * queue id bound to an AF_XDP socket. The flags field specifies if 1397 * only RX, only Tx, or both should be woken up using the flags 1398 * XDP_WAKEUP_RX and XDP_WAKEUP_TX. 1399 * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm_kern *p, 1400 * int cmd); 1401 * Add, change, delete or get information on an IPv4 tunnel. 1402 * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev); 1403 * If a device is paired with a peer device, return the peer instance. 1404 * The caller must be under RCU read context. 1405 * int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, struct net_device_path *path); 1406 * Get the forwarding path to reach the real device from the HW destination address 1407 * ktime_t (*ndo_get_tstamp)(struct net_device *dev, 1408 * const struct skb_shared_hwtstamps *hwtstamps, 1409 * bool cycles); 1410 * Get hardware timestamp based on normal/adjustable time or free running 1411 * cycle counter. This function is required if physical clock supports a 1412 * free running cycle counter. 1413 * 1414 * int (*ndo_hwtstamp_get)(struct net_device *dev, 1415 * struct kernel_hwtstamp_config *kernel_config); 1416 * Get the currently configured hardware timestamping parameters for the 1417 * NIC device. 1418 * 1419 * int (*ndo_hwtstamp_set)(struct net_device *dev, 1420 * struct kernel_hwtstamp_config *kernel_config, 1421 * struct netlink_ext_ack *extack); 1422 * Change the hardware timestamping parameters for NIC device. 1423 */ 1424struct net_device_ops { 1425 int (*ndo_init)(struct net_device *dev); 1426 void (*ndo_uninit)(struct net_device *dev); 1427 int (*ndo_open)(struct net_device *dev); 1428 int (*ndo_stop)(struct net_device *dev); 1429 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 1430 struct net_device *dev); 1431 netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1432 struct net_device *dev, 1433 netdev_features_t features); 1434 u16 (*ndo_select_queue)(struct net_device *dev, 1435 struct sk_buff *skb, 1436 struct net_device *sb_dev); 1437 void (*ndo_change_rx_flags)(struct net_device *dev, 1438 int flags); 1439 void (*ndo_set_rx_mode)(struct net_device *dev); 1440 int (*ndo_set_mac_address)(struct net_device *dev, 1441 void *addr); 1442 int (*ndo_validate_addr)(struct net_device *dev); 1443 int (*ndo_do_ioctl)(struct net_device *dev, 1444 struct ifreq *ifr, int cmd); 1445 int (*ndo_eth_ioctl)(struct net_device *dev, 1446 struct ifreq *ifr, int cmd); 1447 int (*ndo_siocbond)(struct net_device *dev, 1448 struct ifreq *ifr, int cmd); 1449 int (*ndo_siocwandev)(struct net_device *dev, 1450 struct if_settings *ifs); 1451 int (*ndo_siocdevprivate)(struct net_device *dev, 1452 struct ifreq *ifr, 1453 void __user *data, int cmd); 1454 int (*ndo_set_config)(struct net_device *dev, 1455 struct ifmap *map); 1456 int (*ndo_change_mtu)(struct net_device *dev, 1457 int new_mtu); 1458 int (*ndo_neigh_setup)(struct net_device *dev, 1459 struct neigh_parms *); 1460 void (*ndo_tx_timeout) (struct net_device *dev, 1461 unsigned int txqueue); 1462 1463 void (*ndo_get_stats64)(struct net_device *dev, 1464 struct rtnl_link_stats64 *storage); 1465 bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id); 1466 int (*ndo_get_offload_stats)(int attr_id, 1467 const struct net_device *dev, 1468 void *attr_data); 1469 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1470 1471 int (*ndo_vlan_rx_add_vid)(struct net_device *dev, 1472 __be16 proto, u16 vid); 1473 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, 1474 __be16 proto, u16 vid); 1475#ifdef CONFIG_NET_POLL_CONTROLLER 1476 void (*ndo_poll_controller)(struct net_device *dev); 1477 int (*ndo_netpoll_setup)(struct net_device *dev); 1478 void (*ndo_netpoll_cleanup)(struct net_device *dev); 1479#endif 1480 int (*ndo_set_vf_mac)(struct net_device *dev, 1481 int queue, u8 *mac); 1482 int (*ndo_set_vf_vlan)(struct net_device *dev, 1483 int queue, u16 vlan, 1484 u8 qos, __be16 proto); 1485 int (*ndo_set_vf_rate)(struct net_device *dev, 1486 int vf, int min_tx_rate, 1487 int max_tx_rate); 1488 int (*ndo_set_vf_spoofchk)(struct net_device *dev, 1489 int vf, bool setting); 1490 int (*ndo_set_vf_trust)(struct net_device *dev, 1491 int vf, bool setting); 1492 int (*ndo_get_vf_config)(struct net_device *dev, 1493 int vf, 1494 struct ifla_vf_info *ivf); 1495 int (*ndo_set_vf_link_state)(struct net_device *dev, 1496 int vf, int link_state); 1497 int (*ndo_get_vf_stats)(struct net_device *dev, 1498 int vf, 1499 struct ifla_vf_stats 1500 *vf_stats); 1501 int (*ndo_set_vf_port)(struct net_device *dev, 1502 int vf, 1503 struct nlattr *port[]); 1504 int (*ndo_get_vf_port)(struct net_device *dev, 1505 int vf, struct sk_buff *skb); 1506 int (*ndo_get_vf_guid)(struct net_device *dev, 1507 int vf, 1508 struct ifla_vf_guid *node_guid, 1509 struct ifla_vf_guid *port_guid); 1510 int (*ndo_set_vf_guid)(struct net_device *dev, 1511 int vf, u64 guid, 1512 int guid_type); 1513 int (*ndo_set_vf_rss_query_en)( 1514 struct net_device *dev, 1515 int vf, bool setting); 1516 int (*ndo_setup_tc)(struct net_device *dev, 1517 enum tc_setup_type type, 1518 void *type_data); 1519#if IS_ENABLED(CONFIG_FCOE) 1520 int (*ndo_fcoe_enable)(struct net_device *dev); 1521 int (*ndo_fcoe_disable)(struct net_device *dev); 1522 int (*ndo_fcoe_ddp_setup)(struct net_device *dev, 1523 u16 xid, 1524 struct scatterlist *sgl, 1525 unsigned int sgc); 1526 int (*ndo_fcoe_ddp_done)(struct net_device *dev, 1527 u16 xid); 1528 int (*ndo_fcoe_ddp_target)(struct net_device *dev, 1529 u16 xid, 1530 struct scatterlist *sgl, 1531 unsigned int sgc); 1532 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1533 struct netdev_fcoe_hbainfo *hbainfo); 1534#endif 1535 1536#if IS_ENABLED(CONFIG_LIBFCOE) 1537#define NETDEV_FCOE_WWNN 0 1538#define NETDEV_FCOE_WWPN 1 1539 int (*ndo_fcoe_get_wwn)(struct net_device *dev, 1540 u64 *wwn, int type); 1541#endif 1542 1543#ifdef CONFIG_RFS_ACCEL 1544 int (*ndo_rx_flow_steer)(struct net_device *dev, 1545 const struct sk_buff *skb, 1546 u16 rxq_index, 1547 u32 flow_id); 1548#endif 1549 int (*ndo_add_slave)(struct net_device *dev, 1550 struct net_device *slave_dev, 1551 struct netlink_ext_ack *extack); 1552 int (*ndo_del_slave)(struct net_device *dev, 1553 struct net_device *slave_dev); 1554 struct net_device* (*ndo_get_xmit_slave)(struct net_device *dev, 1555 struct sk_buff *skb, 1556 bool all_slaves); 1557 struct net_device* (*ndo_sk_get_lower_dev)(struct net_device *dev, 1558 struct sock *sk); 1559 netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1560 netdev_features_t features); 1561 int (*ndo_set_features)(struct net_device *dev, 1562 netdev_features_t features); 1563 int (*ndo_neigh_construct)(struct net_device *dev, 1564 struct neighbour *n); 1565 void (*ndo_neigh_destroy)(struct net_device *dev, 1566 struct neighbour *n); 1567 1568 int (*ndo_fdb_add)(struct ndmsg *ndm, 1569 struct nlattr *tb[], 1570 struct net_device *dev, 1571 const unsigned char *addr, 1572 u16 vid, 1573 u16 flags, 1574 bool *notified, 1575 struct netlink_ext_ack *extack); 1576 int (*ndo_fdb_del)(struct ndmsg *ndm, 1577 struct nlattr *tb[], 1578 struct net_device *dev, 1579 const unsigned char *addr, 1580 u16 vid, 1581 bool *notified, 1582 struct netlink_ext_ack *extack); 1583 int (*ndo_fdb_del_bulk)(struct nlmsghdr *nlh, 1584 struct net_device *dev, 1585 struct netlink_ext_ack *extack); 1586 int (*ndo_fdb_dump)(struct sk_buff *skb, 1587 struct netlink_callback *cb, 1588 struct net_device *dev, 1589 struct net_device *filter_dev, 1590 int *idx); 1591 int (*ndo_fdb_get)(struct sk_buff *skb, 1592 struct nlattr *tb[], 1593 struct net_device *dev, 1594 const unsigned char *addr, 1595 u16 vid, u32 portid, u32 seq, 1596 struct netlink_ext_ack *extack); 1597 int (*ndo_mdb_add)(struct net_device *dev, 1598 struct nlattr *tb[], 1599 u16 nlmsg_flags, 1600 struct netlink_ext_ack *extack); 1601 int (*ndo_mdb_del)(struct net_device *dev, 1602 struct nlattr *tb[], 1603 struct netlink_ext_ack *extack); 1604 int (*ndo_mdb_del_bulk)(struct net_device *dev, 1605 struct nlattr *tb[], 1606 struct netlink_ext_ack *extack); 1607 int (*ndo_mdb_dump)(struct net_device *dev, 1608 struct sk_buff *skb, 1609 struct netlink_callback *cb); 1610 int (*ndo_mdb_get)(struct net_device *dev, 1611 struct nlattr *tb[], u32 portid, 1612 u32 seq, 1613 struct netlink_ext_ack *extack); 1614 int (*ndo_bridge_setlink)(struct net_device *dev, 1615 struct nlmsghdr *nlh, 1616 u16 flags, 1617 struct netlink_ext_ack *extack); 1618 int (*ndo_bridge_getlink)(struct sk_buff *skb, 1619 u32 pid, u32 seq, 1620 struct net_device *dev, 1621 u32 filter_mask, 1622 int nlflags); 1623 int (*ndo_bridge_dellink)(struct net_device *dev, 1624 struct nlmsghdr *nlh, 1625 u16 flags); 1626 int (*ndo_change_carrier)(struct net_device *dev, 1627 bool new_carrier); 1628 int (*ndo_get_phys_port_id)(struct net_device *dev, 1629 struct netdev_phys_item_id *ppid); 1630 int (*ndo_get_port_parent_id)(struct net_device *dev, 1631 struct netdev_phys_item_id *ppid); 1632 int (*ndo_get_phys_port_name)(struct net_device *dev, 1633 char *name, size_t len); 1634 void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1635 struct net_device *dev); 1636 void (*ndo_dfwd_del_station)(struct net_device *pdev, 1637 void *priv); 1638 1639 int (*ndo_set_tx_maxrate)(struct net_device *dev, 1640 int queue_index, 1641 u32 maxrate); 1642 int (*ndo_get_iflink)(const struct net_device *dev); 1643 int (*ndo_fill_metadata_dst)(struct net_device *dev, 1644 struct sk_buff *skb); 1645 void (*ndo_set_rx_headroom)(struct net_device *dev, 1646 int needed_headroom); 1647 int (*ndo_bpf)(struct net_device *dev, 1648 struct netdev_bpf *bpf); 1649 int (*ndo_xdp_xmit)(struct net_device *dev, int n, 1650 struct xdp_frame **xdp, 1651 u32 flags); 1652 struct net_device * (*ndo_xdp_get_xmit_slave)(struct net_device *dev, 1653 struct xdp_buff *xdp); 1654 int (*ndo_xsk_wakeup)(struct net_device *dev, 1655 u32 queue_id, u32 flags); 1656 int (*ndo_tunnel_ctl)(struct net_device *dev, 1657 struct ip_tunnel_parm_kern *p, 1658 int cmd); 1659 struct net_device * (*ndo_get_peer_dev)(struct net_device *dev); 1660 int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, 1661 struct net_device_path *path); 1662 ktime_t (*ndo_get_tstamp)(struct net_device *dev, 1663 const struct skb_shared_hwtstamps *hwtstamps, 1664 bool cycles); 1665 int (*ndo_hwtstamp_get)(struct net_device *dev, 1666 struct kernel_hwtstamp_config *kernel_config); 1667 int (*ndo_hwtstamp_set)(struct net_device *dev, 1668 struct kernel_hwtstamp_config *kernel_config, 1669 struct netlink_ext_ack *extack); 1670 1671#if IS_ENABLED(CONFIG_NET_SHAPER) 1672 /** 1673 * @net_shaper_ops: Device shaping offload operations 1674 * see include/net/net_shapers.h 1675 */ 1676 const struct net_shaper_ops *net_shaper_ops; 1677#endif 1678}; 1679 1680/** 1681 * enum netdev_priv_flags - &struct net_device priv_flags 1682 * 1683 * These are the &struct net_device, they are only set internally 1684 * by drivers and used in the kernel. These flags are invisible to 1685 * userspace; this means that the order of these flags can change 1686 * during any kernel release. 1687 * 1688 * You should add bitfield booleans after either net_device::priv_flags 1689 * (hotpath) or ::threaded (slowpath) instead of extending these flags. 1690 * 1691 * @IFF_802_1Q_VLAN: 802.1Q VLAN device 1692 * @IFF_EBRIDGE: Ethernet bridging device 1693 * @IFF_BONDING: bonding master or slave 1694 * @IFF_ISATAP: ISATAP interface (RFC4214) 1695 * @IFF_WAN_HDLC: WAN HDLC device 1696 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to 1697 * release skb->dst 1698 * @IFF_DONT_BRIDGE: disallow bridging this ether dev 1699 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time 1700 * @IFF_MACVLAN_PORT: device used as macvlan port 1701 * @IFF_BRIDGE_PORT: device used as bridge port 1702 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port 1703 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit 1704 * @IFF_UNICAST_FLT: Supports unicast filtering 1705 * @IFF_TEAM_PORT: device used as team port 1706 * @IFF_SUPP_NOFCS: device supports sending custom FCS 1707 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address 1708 * change when it's running 1709 * @IFF_MACVLAN: Macvlan device 1710 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account 1711 * underlying stacked devices 1712 * @IFF_L3MDEV_MASTER: device is an L3 master device 1713 * @IFF_NO_QUEUE: device can run without qdisc attached 1714 * @IFF_OPENVSWITCH: device is a Open vSwitch master 1715 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device 1716 * @IFF_TEAM: device is a team device 1717 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured 1718 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external 1719 * entity (i.e. the master device for bridged veth) 1720 * @IFF_MACSEC: device is a MACsec device 1721 * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook 1722 * @IFF_FAILOVER: device is a failover master device 1723 * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device 1724 * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device 1725 * @IFF_NO_ADDRCONF: prevent ipv6 addrconf 1726 * @IFF_TX_SKB_NO_LINEAR: device/driver is capable of xmitting frames with 1727 * skb_headlen(skb) == 0 (data starts from frag0) 1728 */ 1729enum netdev_priv_flags { 1730 IFF_802_1Q_VLAN = 1<<0, 1731 IFF_EBRIDGE = 1<<1, 1732 IFF_BONDING = 1<<2, 1733 IFF_ISATAP = 1<<3, 1734 IFF_WAN_HDLC = 1<<4, 1735 IFF_XMIT_DST_RELEASE = 1<<5, 1736 IFF_DONT_BRIDGE = 1<<6, 1737 IFF_DISABLE_NETPOLL = 1<<7, 1738 IFF_MACVLAN_PORT = 1<<8, 1739 IFF_BRIDGE_PORT = 1<<9, 1740 IFF_OVS_DATAPATH = 1<<10, 1741 IFF_TX_SKB_SHARING = 1<<11, 1742 IFF_UNICAST_FLT = 1<<12, 1743 IFF_TEAM_PORT = 1<<13, 1744 IFF_SUPP_NOFCS = 1<<14, 1745 IFF_LIVE_ADDR_CHANGE = 1<<15, 1746 IFF_MACVLAN = 1<<16, 1747 IFF_XMIT_DST_RELEASE_PERM = 1<<17, 1748 IFF_L3MDEV_MASTER = 1<<18, 1749 IFF_NO_QUEUE = 1<<19, 1750 IFF_OPENVSWITCH = 1<<20, 1751 IFF_L3MDEV_SLAVE = 1<<21, 1752 IFF_TEAM = 1<<22, 1753 IFF_RXFH_CONFIGURED = 1<<23, 1754 IFF_PHONY_HEADROOM = 1<<24, 1755 IFF_MACSEC = 1<<25, 1756 IFF_NO_RX_HANDLER = 1<<26, 1757 IFF_FAILOVER = 1<<27, 1758 IFF_FAILOVER_SLAVE = 1<<28, 1759 IFF_L3MDEV_RX_HANDLER = 1<<29, 1760 IFF_NO_ADDRCONF = BIT_ULL(30), 1761 IFF_TX_SKB_NO_LINEAR = BIT_ULL(31), 1762}; 1763 1764/* Specifies the type of the struct net_device::ml_priv pointer */ 1765enum netdev_ml_priv_type { 1766 ML_PRIV_NONE, 1767 ML_PRIV_CAN, 1768}; 1769 1770enum netdev_stat_type { 1771 NETDEV_PCPU_STAT_NONE, 1772 NETDEV_PCPU_STAT_LSTATS, /* struct pcpu_lstats */ 1773 NETDEV_PCPU_STAT_TSTATS, /* struct pcpu_sw_netstats */ 1774 NETDEV_PCPU_STAT_DSTATS, /* struct pcpu_dstats */ 1775}; 1776 1777enum netdev_reg_state { 1778 NETREG_UNINITIALIZED = 0, 1779 NETREG_REGISTERED, /* completed register_netdevice */ 1780 NETREG_UNREGISTERING, /* called unregister_netdevice */ 1781 NETREG_UNREGISTERED, /* completed unregister todo */ 1782 NETREG_RELEASED, /* called free_netdev */ 1783 NETREG_DUMMY, /* dummy device for NAPI poll */ 1784}; 1785 1786/** 1787 * struct net_device - The DEVICE structure. 1788 * 1789 * Actually, this whole structure is a big mistake. It mixes I/O 1790 * data with strictly "high-level" data, and it has to know about 1791 * almost every data structure used in the INET module. 1792 * 1793 * @priv_flags: flags invisible to userspace defined as bits, see 1794 * enum netdev_priv_flags for the definitions 1795 * @lltx: device supports lockless Tx. Deprecated for real HW 1796 * drivers. Mainly used by logical interfaces, such as 1797 * bonding and tunnels 1798 * @netmem_tx: device support netmem_tx. 1799 * 1800 * @name: This is the first field of the "visible" part of this structure 1801 * (i.e. as seen by users in the "Space.c" file). It is the name 1802 * of the interface. 1803 * 1804 * @name_node: Name hashlist node 1805 * @ifalias: SNMP alias 1806 * @mem_end: Shared memory end 1807 * @mem_start: Shared memory start 1808 * @base_addr: Device I/O address 1809 * @irq: Device IRQ number 1810 * 1811 * @state: Generic network queuing layer state, see netdev_state_t 1812 * @dev_list: The global list of network devices 1813 * @napi_list: List entry used for polling NAPI devices 1814 * @unreg_list: List entry when we are unregistering the 1815 * device; see the function unregister_netdev 1816 * @close_list: List entry used when we are closing the device 1817 * @ptype_all: Device-specific packet handlers for all protocols 1818 * @ptype_specific: Device-specific, protocol-specific packet handlers 1819 * 1820 * @adj_list: Directly linked devices, like slaves for bonding 1821 * @features: Currently active device features 1822 * @hw_features: User-changeable features 1823 * 1824 * @wanted_features: User-requested features 1825 * @vlan_features: Mask of features inheritable by VLAN devices 1826 * 1827 * @hw_enc_features: Mask of features inherited by encapsulating devices 1828 * This field indicates what encapsulation 1829 * offloads the hardware is capable of doing, 1830 * and drivers will need to set them appropriately. 1831 * 1832 * @mpls_features: Mask of features inheritable by MPLS 1833 * @gso_partial_features: value(s) from NETIF_F_GSO\* 1834 * 1835 * @ifindex: interface index 1836 * @group: The group the device belongs to 1837 * 1838 * @stats: Statistics struct, which was left as a legacy, use 1839 * rtnl_link_stats64 instead 1840 * 1841 * @core_stats: core networking counters, 1842 * do not use this in drivers 1843 * @carrier_up_count: Number of times the carrier has been up 1844 * @carrier_down_count: Number of times the carrier has been down 1845 * 1846 * @wireless_handlers: List of functions to handle Wireless Extensions, 1847 * instead of ioctl, 1848 * see <net/iw_handler.h> for details. 1849 * 1850 * @netdev_ops: Includes several pointers to callbacks, 1851 * if one wants to override the ndo_*() functions 1852 * @xdp_metadata_ops: Includes pointers to XDP metadata callbacks. 1853 * @xsk_tx_metadata_ops: Includes pointers to AF_XDP TX metadata callbacks. 1854 * @ethtool_ops: Management operations 1855 * @l3mdev_ops: Layer 3 master device operations 1856 * @ndisc_ops: Includes callbacks for different IPv6 neighbour 1857 * discovery handling. Necessary for e.g. 6LoWPAN. 1858 * @xfrmdev_ops: Transformation offload operations 1859 * @tlsdev_ops: Transport Layer Security offload operations 1860 * @header_ops: Includes callbacks for creating,parsing,caching,etc 1861 * of Layer 2 headers. 1862 * 1863 * @flags: Interface flags (a la BSD) 1864 * @xdp_features: XDP capability supported by the device 1865 * @gflags: Global flags ( kept as legacy ) 1866 * @priv_len: Size of the ->priv flexible array 1867 * @priv: Flexible array containing private data 1868 * @operstate: RFC2863 operstate 1869 * @link_mode: Mapping policy to operstate 1870 * @if_port: Selectable AUI, TP, ... 1871 * @dma: DMA channel 1872 * @mtu: Interface MTU value 1873 * @min_mtu: Interface Minimum MTU value 1874 * @max_mtu: Interface Maximum MTU value 1875 * @type: Interface hardware type 1876 * @hard_header_len: Maximum hardware header length. 1877 * @min_header_len: Minimum hardware header length 1878 * 1879 * @needed_headroom: Extra headroom the hardware may need, but not in all 1880 * cases can this be guaranteed 1881 * @needed_tailroom: Extra tailroom the hardware may need, but not in all 1882 * cases can this be guaranteed. Some cases also use 1883 * LL_MAX_HEADER instead to allocate the skb 1884 * 1885 * interface address info: 1886 * 1887 * @perm_addr: Permanent hw address 1888 * @addr_assign_type: Hw address assignment type 1889 * @addr_len: Hardware address length 1890 * @upper_level: Maximum depth level of upper devices. 1891 * @lower_level: Maximum depth level of lower devices. 1892 * @threaded: napi threaded state. 1893 * @neigh_priv_len: Used in neigh_alloc() 1894 * @dev_id: Used to differentiate devices that share 1895 * the same link layer address 1896 * @dev_port: Used to differentiate devices that share 1897 * the same function 1898 * @addr_list_lock: XXX: need comments on this one 1899 * @name_assign_type: network interface name assignment type 1900 * @uc_promisc: Counter that indicates promiscuous mode 1901 * has been enabled due to the need to listen to 1902 * additional unicast addresses in a device that 1903 * does not implement ndo_set_rx_mode() 1904 * @uc: unicast mac addresses 1905 * @mc: multicast mac addresses 1906 * @dev_addrs: list of device hw addresses 1907 * @queues_kset: Group of all Kobjects in the Tx and RX queues 1908 * @promiscuity: Number of times the NIC is told to work in 1909 * promiscuous mode; if it becomes 0 the NIC will 1910 * exit promiscuous mode 1911 * @allmulti: Counter, enables or disables allmulticast mode 1912 * 1913 * @vlan_info: VLAN info 1914 * @dsa_ptr: dsa specific data 1915 * @tipc_ptr: TIPC specific data 1916 * @atalk_ptr: AppleTalk link 1917 * @ip_ptr: IPv4 specific data 1918 * @ip6_ptr: IPv6 specific data 1919 * @ax25_ptr: AX.25 specific data 1920 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering 1921 * @ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network 1922 * device struct 1923 * @mpls_ptr: mpls_dev struct pointer 1924 * @mctp_ptr: MCTP specific data 1925 * @psp_dev: PSP crypto device registered for this netdev 1926 * 1927 * @dev_addr: Hw address (before bcast, 1928 * because most packets are unicast) 1929 * 1930 * @_rx: Array of RX queues 1931 * @num_rx_queues: Number of RX queues 1932 * allocated at register_netdev() time 1933 * @real_num_rx_queues: Number of RX queues currently active in device 1934 * @xdp_prog: XDP sockets filter program pointer 1935 * 1936 * @rx_handler: handler for received packets 1937 * @rx_handler_data: XXX: need comments on this one 1938 * @tcx_ingress: BPF & clsact qdisc specific data for ingress processing 1939 * @ingress_queue: XXX: need comments on this one 1940 * @nf_hooks_ingress: netfilter hooks executed for ingress packets 1941 * @broadcast: hw bcast address 1942 * 1943 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts, 1944 * indexed by RX queue number. Assigned by driver. 1945 * This must only be set if the ndo_rx_flow_steer 1946 * operation is defined 1947 * @index_hlist: Device index hash chain 1948 * 1949 * @_tx: Array of TX queues 1950 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time 1951 * @real_num_tx_queues: Number of TX queues currently active in device 1952 * @qdisc: Root qdisc from userspace point of view 1953 * @tx_queue_len: Max frames per queue allowed 1954 * @tx_global_lock: XXX: need comments on this one 1955 * @xdp_bulkq: XDP device bulk queue 1956 * @xps_maps: all CPUs/RXQs maps for XPS device 1957 * 1958 * @xps_maps: XXX: need comments on this one 1959 * @tcx_egress: BPF & clsact qdisc specific data for egress processing 1960 * @nf_hooks_egress: netfilter hooks executed for egress packets 1961 * @qdisc_hash: qdisc hash table 1962 * @watchdog_timeo: Represents the timeout that is used by 1963 * the watchdog (see dev_watchdog()) 1964 * @watchdog_timer: List of timers 1965 * 1966 * @proto_down_reason: reason a netdev interface is held down 1967 * @pcpu_refcnt: Number of references to this device 1968 * @dev_refcnt: Number of references to this device 1969 * @refcnt_tracker: Tracker directory for tracked references to this device 1970 * @todo_list: Delayed register/unregister 1971 * @link_watch_list: XXX: need comments on this one 1972 * 1973 * @reg_state: Register/unregister state machine 1974 * @dismantle: Device is going to be freed 1975 * @needs_free_netdev: Should unregister perform free_netdev? 1976 * @priv_destructor: Called from unregister 1977 * @npinfo: XXX: need comments on this one 1978 * @nd_net: Network namespace this network device is inside 1979 * protected by @lock 1980 * 1981 * @ml_priv: Mid-layer private 1982 * @ml_priv_type: Mid-layer private type 1983 * 1984 * @pcpu_stat_type: Type of device statistics which the core should 1985 * allocate/free: none, lstats, tstats, dstats. none 1986 * means the driver is handling statistics allocation/ 1987 * freeing internally. 1988 * @lstats: Loopback statistics: packets, bytes 1989 * @tstats: Tunnel statistics: RX/TX packets, RX/TX bytes 1990 * @dstats: Dummy statistics: RX/TX/drop packets, RX/TX bytes 1991 * 1992 * @garp_port: GARP 1993 * @mrp_port: MRP 1994 * 1995 * @dm_private: Drop monitor private 1996 * 1997 * @dev: Class/net/name entry 1998 * @sysfs_groups: Space for optional device, statistics and wireless 1999 * sysfs groups 2000 * 2001 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes 2002 * @rtnl_link_ops: Rtnl_link_ops 2003 * @stat_ops: Optional ops for queue-aware statistics 2004 * @queue_mgmt_ops: Optional ops for queue management 2005 * 2006 * @gso_max_size: Maximum size of generic segmentation offload 2007 * @tso_max_size: Device (as in HW) limit on the max TSO request size 2008 * @gso_max_segs: Maximum number of segments that can be passed to the 2009 * NIC for GSO 2010 * @tso_max_segs: Device (as in HW) limit on the max TSO segment count 2011 * @gso_ipv4_max_size: Maximum size of generic segmentation offload, 2012 * for IPv4. 2013 * 2014 * @dcbnl_ops: Data Center Bridging netlink ops 2015 * @num_tc: Number of traffic classes in the net device 2016 * @tc_to_txq: XXX: need comments on this one 2017 * @prio_tc_map: XXX: need comments on this one 2018 * 2019 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp 2020 * 2021 * @priomap: XXX: need comments on this one 2022 * @link_topo: Physical link topology tracking attached PHYs 2023 * @phydev: Physical device may attach itself 2024 * for hardware timestamping 2025 * @sfp_bus: attached &struct sfp_bus structure. 2026 * 2027 * @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock 2028 * 2029 * @proto_down: protocol port state information can be sent to the 2030 * switch driver and used to set the phys state of the 2031 * switch port. 2032 * 2033 * @irq_affinity_auto: driver wants the core to store and re-assign the IRQ 2034 * affinity. Set by netif_enable_irq_affinity(), then 2035 * the driver must create a persistent napi by 2036 * netif_napi_add_config() and finally bind the napi to 2037 * IRQ (via netif_napi_set_irq()). 2038 * 2039 * @rx_cpu_rmap_auto: driver wants the core to manage the ARFS rmap. 2040 * Set by calling netif_enable_cpu_rmap(). 2041 * 2042 * @see_all_hwtstamp_requests: device wants to see calls to 2043 * ndo_hwtstamp_set() for all timestamp requests 2044 * regardless of source, even if those aren't 2045 * HWTSTAMP_SOURCE_NETDEV 2046 * @change_proto_down: device supports setting carrier via IFLA_PROTO_DOWN 2047 * @netns_immutable: interface can't change network namespaces 2048 * @fcoe_mtu: device supports maximum FCoE MTU, 2158 bytes 2049 * 2050 * @net_notifier_list: List of per-net netdev notifier block 2051 * that follow this device when it is moved 2052 * to another network namespace. 2053 * 2054 * @macsec_ops: MACsec offloading ops 2055 * 2056 * @udp_tunnel_nic_info: static structure describing the UDP tunnel 2057 * offload capabilities of the device 2058 * @udp_tunnel_nic: UDP tunnel offload state 2059 * @ethtool: ethtool related state 2060 * @xdp_state: stores info on attached XDP BPF programs 2061 * 2062 * @nested_level: Used as a parameter of spin_lock_nested() of 2063 * dev->addr_list_lock. 2064 * @unlink_list: As netif_addr_lock() can be called recursively, 2065 * keep a list of interfaces to be deleted. 2066 * @gro_max_size: Maximum size of aggregated packet in generic 2067 * receive offload (GRO) 2068 * @gro_ipv4_max_size: Maximum size of aggregated packet in generic 2069 * receive offload (GRO), for IPv4. 2070 * @xdp_zc_max_segs: Maximum number of segments supported by AF_XDP 2071 * zero copy driver 2072 * 2073 * @dev_addr_shadow: Copy of @dev_addr to catch direct writes. 2074 * @linkwatch_dev_tracker: refcount tracker used by linkwatch. 2075 * @watchdog_dev_tracker: refcount tracker used by watchdog. 2076 * @dev_registered_tracker: tracker for reference held while 2077 * registered 2078 * @offload_xstats_l3: L3 HW stats for this netdevice. 2079 * 2080 * @devlink_port: Pointer to related devlink port structure. 2081 * Assigned by a driver before netdev registration using 2082 * SET_NETDEV_DEVLINK_PORT macro. This pointer is static 2083 * during the time netdevice is registered. 2084 * 2085 * @dpll_pin: Pointer to the SyncE source pin of a DPLL subsystem, 2086 * where the clock is recovered. 2087 * 2088 * @max_pacing_offload_horizon: max EDT offload horizon in nsec. 2089 * @napi_config: An array of napi_config structures containing per-NAPI 2090 * settings. 2091 * @num_napi_configs: number of allocated NAPI config structs, 2092 * always >= max(num_rx_queues, num_tx_queues). 2093 * @gro_flush_timeout: timeout for GRO layer in NAPI 2094 * @napi_defer_hard_irqs: If not zero, provides a counter that would 2095 * allow to avoid NIC hard IRQ, on busy queues. 2096 * 2097 * @neighbours: List heads pointing to this device's neighbours' 2098 * dev_list, one per address-family. 2099 * @hwprov: Tracks which PTP performs hardware packet time stamping. 2100 * 2101 * FIXME: cleanup struct net_device such that network protocol info 2102 * moves out. 2103 */ 2104 2105struct net_device { 2106 /* Cacheline organization can be found documented in 2107 * Documentation/networking/net_cachelines/net_device.rst. 2108 * Please update the document when adding new fields. 2109 */ 2110 2111 /* TX read-mostly hotpath */ 2112 __cacheline_group_begin(net_device_read_tx); 2113 struct_group(priv_flags_fast, 2114 unsigned long priv_flags:32; 2115 unsigned long lltx:1; 2116 unsigned long netmem_tx:1; 2117 ); 2118 const struct net_device_ops *netdev_ops; 2119 const struct header_ops *header_ops; 2120 struct netdev_queue *_tx; 2121 netdev_features_t gso_partial_features; 2122 unsigned int real_num_tx_queues; 2123 unsigned int gso_max_size; 2124 unsigned int gso_ipv4_max_size; 2125 u16 gso_max_segs; 2126 s16 num_tc; 2127 /* Note : dev->mtu is often read without holding a lock. 2128 * Writers usually hold RTNL. 2129 * It is recommended to use READ_ONCE() to annotate the reads, 2130 * and to use WRITE_ONCE() to annotate the writes. 2131 */ 2132 unsigned int mtu; 2133 unsigned short needed_headroom; 2134 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]; 2135#ifdef CONFIG_XPS 2136 struct xps_dev_maps __rcu *xps_maps[XPS_MAPS_MAX]; 2137#endif 2138#ifdef CONFIG_NETFILTER_EGRESS 2139 struct nf_hook_entries __rcu *nf_hooks_egress; 2140#endif 2141#ifdef CONFIG_NET_XGRESS 2142 struct bpf_mprog_entry __rcu *tcx_egress; 2143#endif 2144 __cacheline_group_end(net_device_read_tx); 2145 2146 /* TXRX read-mostly hotpath */ 2147 __cacheline_group_begin(net_device_read_txrx); 2148 union { 2149 struct pcpu_lstats __percpu *lstats; 2150 struct pcpu_sw_netstats __percpu *tstats; 2151 struct pcpu_dstats __percpu *dstats; 2152 }; 2153 unsigned long state; 2154 unsigned int flags; 2155 unsigned short hard_header_len; 2156 netdev_features_t features; 2157 struct inet6_dev __rcu *ip6_ptr; 2158 __cacheline_group_end(net_device_read_txrx); 2159 2160 /* RX read-mostly hotpath */ 2161 __cacheline_group_begin(net_device_read_rx); 2162 struct bpf_prog __rcu *xdp_prog; 2163 struct list_head ptype_specific; 2164 int ifindex; 2165 unsigned int real_num_rx_queues; 2166 struct netdev_rx_queue *_rx; 2167 unsigned int gro_max_size; 2168 unsigned int gro_ipv4_max_size; 2169 rx_handler_func_t __rcu *rx_handler; 2170 void __rcu *rx_handler_data; 2171 possible_net_t nd_net; 2172#ifdef CONFIG_NETPOLL 2173 struct netpoll_info __rcu *npinfo; 2174#endif 2175#ifdef CONFIG_NET_XGRESS 2176 struct bpf_mprog_entry __rcu *tcx_ingress; 2177#endif 2178 __cacheline_group_end(net_device_read_rx); 2179 2180 char name[IFNAMSIZ]; 2181 struct netdev_name_node *name_node; 2182 struct dev_ifalias __rcu *ifalias; 2183 /* 2184 * I/O specific fields 2185 * FIXME: Merge these and struct ifmap into one 2186 */ 2187 unsigned long mem_end; 2188 unsigned long mem_start; 2189 unsigned long base_addr; 2190 2191 /* 2192 * Some hardware also needs these fields (state,dev_list, 2193 * napi_list,unreg_list,close_list) but they are not 2194 * part of the usual set specified in Space.c. 2195 */ 2196 2197 2198 struct list_head dev_list; 2199 struct list_head napi_list; 2200 struct list_head unreg_list; 2201 struct list_head close_list; 2202 struct list_head ptype_all; 2203 2204 struct { 2205 struct list_head upper; 2206 struct list_head lower; 2207 } adj_list; 2208 2209 /* Read-mostly cache-line for fast-path access */ 2210 xdp_features_t xdp_features; 2211 const struct xdp_metadata_ops *xdp_metadata_ops; 2212 const struct xsk_tx_metadata_ops *xsk_tx_metadata_ops; 2213 unsigned short gflags; 2214 2215 unsigned short needed_tailroom; 2216 2217 netdev_features_t hw_features; 2218 netdev_features_t wanted_features; 2219 netdev_features_t vlan_features; 2220 netdev_features_t hw_enc_features; 2221 netdev_features_t mpls_features; 2222 2223 unsigned int min_mtu; 2224 unsigned int max_mtu; 2225 unsigned short type; 2226 unsigned char min_header_len; 2227 unsigned char name_assign_type; 2228 2229 int group; 2230 2231 struct net_device_stats stats; /* not used by modern drivers */ 2232 2233 struct net_device_core_stats __percpu *core_stats; 2234 2235 /* Stats to monitor link on/off, flapping */ 2236 atomic_t carrier_up_count; 2237 atomic_t carrier_down_count; 2238 2239#ifdef CONFIG_WIRELESS_EXT 2240 const struct iw_handler_def *wireless_handlers; 2241#endif 2242 const struct ethtool_ops *ethtool_ops; 2243#ifdef CONFIG_NET_L3_MASTER_DEV 2244 const struct l3mdev_ops *l3mdev_ops; 2245#endif 2246#if IS_ENABLED(CONFIG_IPV6) 2247 const struct ndisc_ops *ndisc_ops; 2248#endif 2249 2250#ifdef CONFIG_XFRM_OFFLOAD 2251 const struct xfrmdev_ops *xfrmdev_ops; 2252#endif 2253 2254#if IS_ENABLED(CONFIG_TLS_DEVICE) 2255 const struct tlsdev_ops *tlsdev_ops; 2256#endif 2257 2258 unsigned int operstate; 2259 unsigned char link_mode; 2260 2261 unsigned char if_port; 2262 unsigned char dma; 2263 2264 /* Interface address info. */ 2265 unsigned char perm_addr[MAX_ADDR_LEN]; 2266 unsigned char addr_assign_type; 2267 unsigned char addr_len; 2268 unsigned char upper_level; 2269 unsigned char lower_level; 2270 u8 threaded; 2271 2272 unsigned short neigh_priv_len; 2273 unsigned short dev_id; 2274 unsigned short dev_port; 2275 int irq; 2276 u32 priv_len; 2277 2278 spinlock_t addr_list_lock; 2279 2280 struct netdev_hw_addr_list uc; 2281 struct netdev_hw_addr_list mc; 2282 struct netdev_hw_addr_list dev_addrs; 2283 2284#ifdef CONFIG_SYSFS 2285 struct kset *queues_kset; 2286#endif 2287#ifdef CONFIG_LOCKDEP 2288 struct list_head unlink_list; 2289#endif 2290 unsigned int promiscuity; 2291 unsigned int allmulti; 2292 bool uc_promisc; 2293#ifdef CONFIG_LOCKDEP 2294 unsigned char nested_level; 2295#endif 2296 2297 2298 /* Protocol-specific pointers */ 2299 struct in_device __rcu *ip_ptr; 2300 /** @fib_nh_head: nexthops associated with this netdev */ 2301 struct hlist_head fib_nh_head; 2302 2303#if IS_ENABLED(CONFIG_VLAN_8021Q) 2304 struct vlan_info __rcu *vlan_info; 2305#endif 2306#if IS_ENABLED(CONFIG_NET_DSA) 2307 struct dsa_port *dsa_ptr; 2308#endif 2309#if IS_ENABLED(CONFIG_TIPC) 2310 struct tipc_bearer __rcu *tipc_ptr; 2311#endif 2312#if IS_ENABLED(CONFIG_ATALK) 2313 void *atalk_ptr; 2314#endif 2315#if IS_ENABLED(CONFIG_AX25) 2316 struct ax25_dev __rcu *ax25_ptr; 2317#endif 2318#if IS_ENABLED(CONFIG_CFG80211) 2319 struct wireless_dev *ieee80211_ptr; 2320#endif 2321#if IS_ENABLED(CONFIG_IEEE802154) || IS_ENABLED(CONFIG_6LOWPAN) 2322 struct wpan_dev *ieee802154_ptr; 2323#endif 2324#if IS_ENABLED(CONFIG_MPLS_ROUTING) 2325 struct mpls_dev __rcu *mpls_ptr; 2326#endif 2327#if IS_ENABLED(CONFIG_MCTP) 2328 struct mctp_dev __rcu *mctp_ptr; 2329#endif 2330#if IS_ENABLED(CONFIG_INET_PSP) 2331 struct psp_dev __rcu *psp_dev; 2332#endif 2333 2334/* 2335 * Cache lines mostly used on receive path (including eth_type_trans()) 2336 */ 2337 /* Interface address info used in eth_type_trans() */ 2338 const unsigned char *dev_addr; 2339 2340 unsigned int num_rx_queues; 2341#define GRO_LEGACY_MAX_SIZE 65536u 2342/* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE), 2343 * and shinfo->gso_segs is a 16bit field. 2344 */ 2345#define GRO_MAX_SIZE (8 * 65535u) 2346 unsigned int xdp_zc_max_segs; 2347 struct netdev_queue __rcu *ingress_queue; 2348#ifdef CONFIG_NETFILTER_INGRESS 2349 struct nf_hook_entries __rcu *nf_hooks_ingress; 2350#endif 2351 2352 unsigned char broadcast[MAX_ADDR_LEN]; 2353#ifdef CONFIG_RFS_ACCEL 2354 struct cpu_rmap *rx_cpu_rmap; 2355#endif 2356 struct hlist_node index_hlist; 2357 2358/* 2359 * Cache lines mostly used on transmit path 2360 */ 2361 unsigned int num_tx_queues; 2362 struct Qdisc __rcu *qdisc; 2363 unsigned int tx_queue_len; 2364 spinlock_t tx_global_lock; 2365 2366 struct xdp_dev_bulk_queue __percpu *xdp_bulkq; 2367 2368#ifdef CONFIG_NET_SCHED 2369 DECLARE_HASHTABLE (qdisc_hash, 4); 2370#endif 2371 /* These may be needed for future network-power-down code. */ 2372 struct timer_list watchdog_timer; 2373 int watchdog_timeo; 2374 2375 u32 proto_down_reason; 2376 2377 struct list_head todo_list; 2378 2379#ifdef CONFIG_PCPU_DEV_REFCNT 2380 int __percpu *pcpu_refcnt; 2381#else 2382 refcount_t dev_refcnt; 2383#endif 2384 struct ref_tracker_dir refcnt_tracker; 2385 2386 struct list_head link_watch_list; 2387 2388 u8 reg_state; 2389 2390 bool dismantle; 2391 2392 /** @moving_ns: device is changing netns, protected by @lock */ 2393 bool moving_ns; 2394 /** @rtnl_link_initializing: Device being created, suppress events */ 2395 bool rtnl_link_initializing; 2396 2397 bool needs_free_netdev; 2398 void (*priv_destructor)(struct net_device *dev); 2399 2400 /* mid-layer private */ 2401 void *ml_priv; 2402 enum netdev_ml_priv_type ml_priv_type; 2403 2404 enum netdev_stat_type pcpu_stat_type:8; 2405 2406#if IS_ENABLED(CONFIG_GARP) 2407 struct garp_port __rcu *garp_port; 2408#endif 2409#if IS_ENABLED(CONFIG_MRP) 2410 struct mrp_port __rcu *mrp_port; 2411#endif 2412#if IS_ENABLED(CONFIG_NET_DROP_MONITOR) 2413 struct dm_hw_stat_delta __rcu *dm_private; 2414#endif 2415 struct device dev; 2416 const struct attribute_group *sysfs_groups[5]; 2417 const struct attribute_group *sysfs_rx_queue_group; 2418 2419 const struct rtnl_link_ops *rtnl_link_ops; 2420 2421 const struct netdev_stat_ops *stat_ops; 2422 2423 const struct netdev_queue_mgmt_ops *queue_mgmt_ops; 2424 2425 /* for setting kernel sock attribute on TCP connection setup */ 2426#define GSO_MAX_SEGS 65535u 2427#define GSO_LEGACY_MAX_SIZE 65536u 2428/* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE), 2429 * and shinfo->gso_segs is a 16bit field. 2430 */ 2431#define GSO_MAX_SIZE (8 * GSO_MAX_SEGS) 2432 2433#define TSO_LEGACY_MAX_SIZE 65536 2434#define TSO_MAX_SIZE UINT_MAX 2435 unsigned int tso_max_size; 2436#define TSO_MAX_SEGS U16_MAX 2437 u16 tso_max_segs; 2438 2439#ifdef CONFIG_DCB 2440 const struct dcbnl_rtnl_ops *dcbnl_ops; 2441#endif 2442 u8 prio_tc_map[TC_BITMASK + 1]; 2443 2444#if IS_ENABLED(CONFIG_FCOE) 2445 unsigned int fcoe_ddp_xid; 2446#endif 2447#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 2448 struct netprio_map __rcu *priomap; 2449#endif 2450 struct phy_link_topology *link_topo; 2451 struct phy_device *phydev; 2452 struct sfp_bus *sfp_bus; 2453 struct lock_class_key *qdisc_tx_busylock; 2454 bool proto_down; 2455 bool irq_affinity_auto; 2456 bool rx_cpu_rmap_auto; 2457 2458 /* priv_flags_slow, ungrouped to save space */ 2459 unsigned long see_all_hwtstamp_requests:1; 2460 unsigned long change_proto_down:1; 2461 unsigned long netns_immutable:1; 2462 unsigned long fcoe_mtu:1; 2463 2464 struct list_head net_notifier_list; 2465 2466#if IS_ENABLED(CONFIG_MACSEC) 2467 /* MACsec management functions */ 2468 const struct macsec_ops *macsec_ops; 2469#endif 2470 const struct udp_tunnel_nic_info *udp_tunnel_nic_info; 2471 struct udp_tunnel_nic *udp_tunnel_nic; 2472 2473 /** @cfg: net_device queue-related configuration */ 2474 struct netdev_config *cfg; 2475 /** 2476 * @cfg_pending: same as @cfg but when device is being actively 2477 * reconfigured includes any changes to the configuration 2478 * requested by the user, but which may or may not be rejected. 2479 */ 2480 struct netdev_config *cfg_pending; 2481 struct ethtool_netdev_state *ethtool; 2482 2483 /* protected by rtnl_lock */ 2484 struct bpf_xdp_entity xdp_state[__MAX_XDP_MODE]; 2485 2486 u8 dev_addr_shadow[MAX_ADDR_LEN]; 2487 netdevice_tracker linkwatch_dev_tracker; 2488 netdevice_tracker watchdog_dev_tracker; 2489 netdevice_tracker dev_registered_tracker; 2490 struct rtnl_hw_stats64 *offload_xstats_l3; 2491 2492 struct devlink_port *devlink_port; 2493 2494#if IS_ENABLED(CONFIG_DPLL) 2495 struct dpll_pin __rcu *dpll_pin; 2496#endif 2497#if IS_ENABLED(CONFIG_PAGE_POOL) 2498 /** @page_pools: page pools created for this netdevice */ 2499 struct hlist_head page_pools; 2500#endif 2501 2502 /** @irq_moder: dim parameters used if IS_ENABLED(CONFIG_DIMLIB). */ 2503 struct dim_irq_moder *irq_moder; 2504 2505 u64 max_pacing_offload_horizon; 2506 struct napi_config *napi_config; 2507 u32 num_napi_configs; 2508 u32 napi_defer_hard_irqs; 2509 unsigned long gro_flush_timeout; 2510 2511 /** 2512 * @up: copy of @state's IFF_UP, but safe to read with just @lock. 2513 * May report false negatives while the device is being opened 2514 * or closed (@lock does not protect .ndo_open, or .ndo_close). 2515 */ 2516 bool up; 2517 2518 /** 2519 * @request_ops_lock: request the core to run all @netdev_ops and 2520 * @ethtool_ops under the @lock. 2521 */ 2522 bool request_ops_lock; 2523 2524 /** 2525 * @lock: netdev-scope lock, protects a small selection of fields. 2526 * Should always be taken using netdev_lock() / netdev_unlock() helpers. 2527 * Drivers are free to use it for other protection. 2528 * 2529 * For the drivers that implement shaper or queue API, the scope 2530 * of this lock is expanded to cover most ndo/queue/ethtool/sysfs 2531 * operations. Drivers may opt-in to this behavior by setting 2532 * @request_ops_lock. 2533 * 2534 * @lock protection mixes with rtnl_lock in multiple ways, fields are 2535 * either: 2536 * 2537 * - simply protected by the instance @lock; 2538 * 2539 * - double protected - writers hold both locks, readers hold either; 2540 * 2541 * - ops protected - protected by the lock held around the NDOs 2542 * and other callbacks, that is the instance lock on devices for 2543 * which netdev_need_ops_lock() returns true, otherwise by rtnl_lock; 2544 * 2545 * - double ops protected - always protected by rtnl_lock but for 2546 * devices for which netdev_need_ops_lock() returns true - also 2547 * the instance lock. 2548 * 2549 * Simply protects: 2550 * @gro_flush_timeout, @napi_defer_hard_irqs, @napi_list, 2551 * @net_shaper_hierarchy, @reg_state, @threaded 2552 * 2553 * Double protects: 2554 * @up, @moving_ns, @nd_net, @xdp_features 2555 * 2556 * Double ops protects: 2557 * @real_num_rx_queues, @real_num_tx_queues 2558 * 2559 * Also protects some fields in: 2560 * struct napi_struct, struct netdev_queue, struct netdev_rx_queue 2561 * 2562 * Ordering: take after rtnl_lock. 2563 */ 2564 struct mutex lock; 2565 2566#if IS_ENABLED(CONFIG_NET_SHAPER) 2567 /** 2568 * @net_shaper_hierarchy: data tracking the current shaper status 2569 * see include/net/net_shapers.h 2570 */ 2571 struct net_shaper_hierarchy *net_shaper_hierarchy; 2572#endif 2573 2574 struct hlist_head neighbours[NEIGH_NR_TABLES]; 2575 2576 struct hwtstamp_provider __rcu *hwprov; 2577 2578 u8 priv[] ____cacheline_aligned 2579 __counted_by(priv_len); 2580} ____cacheline_aligned; 2581#define to_net_dev(d) container_of(d, struct net_device, dev) 2582 2583/* 2584 * Driver should use this to assign devlink port instance to a netdevice 2585 * before it registers the netdevice. Therefore devlink_port is static 2586 * during the netdev lifetime after it is registered. 2587 */ 2588#define SET_NETDEV_DEVLINK_PORT(dev, port) \ 2589({ \ 2590 WARN_ON((dev)->reg_state != NETREG_UNINITIALIZED); \ 2591 ((dev)->devlink_port = (port)); \ 2592}) 2593 2594static inline bool netif_elide_gro(const struct net_device *dev) 2595{ 2596 if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog) 2597 return true; 2598 return false; 2599} 2600 2601#define NETDEV_ALIGN 32 2602 2603static inline 2604int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio) 2605{ 2606 return dev->prio_tc_map[prio & TC_BITMASK]; 2607} 2608 2609static inline 2610int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc) 2611{ 2612 if (tc >= dev->num_tc) 2613 return -EINVAL; 2614 2615 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK; 2616 return 0; 2617} 2618 2619int netdev_txq_to_tc(struct net_device *dev, unsigned int txq); 2620void netdev_reset_tc(struct net_device *dev); 2621int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset); 2622int netdev_set_num_tc(struct net_device *dev, u8 num_tc); 2623 2624static inline 2625int netdev_get_num_tc(struct net_device *dev) 2626{ 2627 return dev->num_tc; 2628} 2629 2630static inline void net_prefetch(void *p) 2631{ 2632 prefetch(p); 2633#if L1_CACHE_BYTES < 128 2634 prefetch((u8 *)p + L1_CACHE_BYTES); 2635#endif 2636} 2637 2638static inline void net_prefetchw(void *p) 2639{ 2640 prefetchw(p); 2641#if L1_CACHE_BYTES < 128 2642 prefetchw((u8 *)p + L1_CACHE_BYTES); 2643#endif 2644} 2645 2646void netdev_unbind_sb_channel(struct net_device *dev, 2647 struct net_device *sb_dev); 2648int netdev_bind_sb_channel_queue(struct net_device *dev, 2649 struct net_device *sb_dev, 2650 u8 tc, u16 count, u16 offset); 2651int netdev_set_sb_channel(struct net_device *dev, u16 channel); 2652static inline int netdev_get_sb_channel(struct net_device *dev) 2653{ 2654 return max_t(int, -dev->num_tc, 0); 2655} 2656 2657static inline 2658struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, 2659 unsigned int index) 2660{ 2661 DEBUG_NET_WARN_ON_ONCE(index >= dev->num_tx_queues); 2662 return &dev->_tx[index]; 2663} 2664 2665static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev, 2666 const struct sk_buff *skb) 2667{ 2668 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb)); 2669} 2670 2671static inline void netdev_for_each_tx_queue(struct net_device *dev, 2672 void (*f)(struct net_device *, 2673 struct netdev_queue *, 2674 void *), 2675 void *arg) 2676{ 2677 unsigned int i; 2678 2679 for (i = 0; i < dev->num_tx_queues; i++) 2680 f(dev, &dev->_tx[i], arg); 2681} 2682 2683u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 2684 struct net_device *sb_dev); 2685struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, 2686 struct sk_buff *skb, 2687 struct net_device *sb_dev); 2688 2689/* returns the headroom that the master device needs to take in account 2690 * when forwarding to this dev 2691 */ 2692static inline unsigned netdev_get_fwd_headroom(struct net_device *dev) 2693{ 2694 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom; 2695} 2696 2697static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr) 2698{ 2699 if (dev->netdev_ops->ndo_set_rx_headroom) 2700 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr); 2701} 2702 2703/* set the device rx headroom to the dev's default */ 2704static inline void netdev_reset_rx_headroom(struct net_device *dev) 2705{ 2706 netdev_set_rx_headroom(dev, -1); 2707} 2708 2709static inline void *netdev_get_ml_priv(struct net_device *dev, 2710 enum netdev_ml_priv_type type) 2711{ 2712 if (dev->ml_priv_type != type) 2713 return NULL; 2714 2715 return dev->ml_priv; 2716} 2717 2718static inline void netdev_set_ml_priv(struct net_device *dev, 2719 void *ml_priv, 2720 enum netdev_ml_priv_type type) 2721{ 2722 WARN(dev->ml_priv_type && dev->ml_priv_type != type, 2723 "Overwriting already set ml_priv_type (%u) with different ml_priv_type (%u)!\n", 2724 dev->ml_priv_type, type); 2725 WARN(!dev->ml_priv_type && dev->ml_priv, 2726 "Overwriting already set ml_priv and ml_priv_type is ML_PRIV_NONE!\n"); 2727 2728 dev->ml_priv = ml_priv; 2729 dev->ml_priv_type = type; 2730} 2731 2732/* 2733 * Net namespace inlines 2734 */ 2735static inline 2736struct net *dev_net(const struct net_device *dev) 2737{ 2738 return read_pnet(&dev->nd_net); 2739} 2740 2741static inline 2742struct net *dev_net_rcu(const struct net_device *dev) 2743{ 2744 return read_pnet_rcu(&dev->nd_net); 2745} 2746 2747static inline 2748void dev_net_set(struct net_device *dev, struct net *net) 2749{ 2750 write_pnet(&dev->nd_net, net); 2751} 2752 2753/** 2754 * netdev_priv - access network device private data 2755 * @dev: network device 2756 * 2757 * Get network device private data 2758 */ 2759static inline void *netdev_priv(const struct net_device *dev) 2760{ 2761 return (void *)dev->priv; 2762} 2763 2764/* Set the sysfs physical device reference for the network logical device 2765 * if set prior to registration will cause a symlink during initialization. 2766 */ 2767#define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) 2768 2769/* Set the sysfs device type for the network logical device to allow 2770 * fine-grained identification of different network device types. For 2771 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc. 2772 */ 2773#define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) 2774 2775void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index, 2776 enum netdev_queue_type type, 2777 struct napi_struct *napi); 2778 2779static inline void netdev_lock(struct net_device *dev) 2780{ 2781 mutex_lock(&dev->lock); 2782} 2783 2784static inline void netdev_unlock(struct net_device *dev) 2785{ 2786 mutex_unlock(&dev->lock); 2787} 2788/* Additional netdev_lock()-related helpers are in net/netdev_lock.h */ 2789 2790void netif_napi_set_irq_locked(struct napi_struct *napi, int irq); 2791 2792static inline void netif_napi_set_irq(struct napi_struct *napi, int irq) 2793{ 2794 netdev_lock(napi->dev); 2795 netif_napi_set_irq_locked(napi, irq); 2796 netdev_unlock(napi->dev); 2797} 2798 2799/* Default NAPI poll() weight 2800 * Device drivers are strongly advised to not use bigger value 2801 */ 2802#define NAPI_POLL_WEIGHT 64 2803 2804void netif_napi_add_weight_locked(struct net_device *dev, 2805 struct napi_struct *napi, 2806 int (*poll)(struct napi_struct *, int), 2807 int weight); 2808 2809static inline void 2810netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi, 2811 int (*poll)(struct napi_struct *, int), int weight) 2812{ 2813 netdev_lock(dev); 2814 netif_napi_add_weight_locked(dev, napi, poll, weight); 2815 netdev_unlock(dev); 2816} 2817 2818/** 2819 * netif_napi_add() - initialize a NAPI context 2820 * @dev: network device 2821 * @napi: NAPI context 2822 * @poll: polling function 2823 * 2824 * netif_napi_add() must be used to initialize a NAPI context prior to calling 2825 * *any* of the other NAPI-related functions. 2826 */ 2827static inline void 2828netif_napi_add(struct net_device *dev, struct napi_struct *napi, 2829 int (*poll)(struct napi_struct *, int)) 2830{ 2831 netif_napi_add_weight(dev, napi, poll, NAPI_POLL_WEIGHT); 2832} 2833 2834static inline void 2835netif_napi_add_locked(struct net_device *dev, struct napi_struct *napi, 2836 int (*poll)(struct napi_struct *, int)) 2837{ 2838 netif_napi_add_weight_locked(dev, napi, poll, NAPI_POLL_WEIGHT); 2839} 2840 2841static inline void 2842netif_napi_add_tx_weight(struct net_device *dev, 2843 struct napi_struct *napi, 2844 int (*poll)(struct napi_struct *, int), 2845 int weight) 2846{ 2847 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state); 2848 netif_napi_add_weight(dev, napi, poll, weight); 2849} 2850 2851static inline void 2852netif_napi_add_config_locked(struct net_device *dev, struct napi_struct *napi, 2853 int (*poll)(struct napi_struct *, int), int index) 2854{ 2855 napi->index = index; 2856 napi->config = &dev->napi_config[index]; 2857 netif_napi_add_weight_locked(dev, napi, poll, NAPI_POLL_WEIGHT); 2858} 2859 2860/** 2861 * netif_napi_add_config - initialize a NAPI context with persistent config 2862 * @dev: network device 2863 * @napi: NAPI context 2864 * @poll: polling function 2865 * @index: the NAPI index 2866 */ 2867static inline void 2868netif_napi_add_config(struct net_device *dev, struct napi_struct *napi, 2869 int (*poll)(struct napi_struct *, int), int index) 2870{ 2871 netdev_lock(dev); 2872 netif_napi_add_config_locked(dev, napi, poll, index); 2873 netdev_unlock(dev); 2874} 2875 2876/** 2877 * netif_napi_add_tx() - initialize a NAPI context to be used for Tx only 2878 * @dev: network device 2879 * @napi: NAPI context 2880 * @poll: polling function 2881 * 2882 * This variant of netif_napi_add() should be used from drivers using NAPI 2883 * to exclusively poll a TX queue. 2884 * This will avoid we add it into napi_hash[], thus polluting this hash table. 2885 */ 2886static inline void netif_napi_add_tx(struct net_device *dev, 2887 struct napi_struct *napi, 2888 int (*poll)(struct napi_struct *, int)) 2889{ 2890 netif_napi_add_tx_weight(dev, napi, poll, NAPI_POLL_WEIGHT); 2891} 2892 2893void __netif_napi_del_locked(struct napi_struct *napi); 2894 2895/** 2896 * __netif_napi_del - remove a NAPI context 2897 * @napi: NAPI context 2898 * 2899 * Warning: caller must observe RCU grace period before freeing memory 2900 * containing @napi. Drivers might want to call this helper to combine 2901 * all the needed RCU grace periods into a single one. 2902 */ 2903static inline void __netif_napi_del(struct napi_struct *napi) 2904{ 2905 netdev_lock(napi->dev); 2906 __netif_napi_del_locked(napi); 2907 netdev_unlock(napi->dev); 2908} 2909 2910static inline void netif_napi_del_locked(struct napi_struct *napi) 2911{ 2912 __netif_napi_del_locked(napi); 2913 synchronize_net(); 2914} 2915 2916/** 2917 * netif_napi_del - remove a NAPI context 2918 * @napi: NAPI context 2919 * 2920 * netif_napi_del() removes a NAPI context from the network device NAPI list 2921 */ 2922static inline void netif_napi_del(struct napi_struct *napi) 2923{ 2924 __netif_napi_del(napi); 2925 synchronize_net(); 2926} 2927 2928int netif_enable_cpu_rmap(struct net_device *dev, unsigned int num_irqs); 2929void netif_set_affinity_auto(struct net_device *dev); 2930 2931struct packet_type { 2932 __be16 type; /* This is really htons(ether_type). */ 2933 bool ignore_outgoing; 2934 struct net_device *dev; /* NULL is wildcarded here */ 2935 netdevice_tracker dev_tracker; 2936 int (*func) (struct sk_buff *, 2937 struct net_device *, 2938 struct packet_type *, 2939 struct net_device *); 2940 void (*list_func) (struct list_head *, 2941 struct packet_type *, 2942 struct net_device *); 2943 bool (*id_match)(struct packet_type *ptype, 2944 struct sock *sk); 2945 struct net *af_packet_net; 2946 void *af_packet_priv; 2947 struct list_head list; 2948}; 2949 2950struct offload_callbacks { 2951 struct sk_buff *(*gso_segment)(struct sk_buff *skb, 2952 netdev_features_t features); 2953 struct sk_buff *(*gro_receive)(struct list_head *head, 2954 struct sk_buff *skb); 2955 int (*gro_complete)(struct sk_buff *skb, int nhoff); 2956}; 2957 2958struct packet_offload { 2959 __be16 type; /* This is really htons(ether_type). */ 2960 u16 priority; 2961 struct offload_callbacks callbacks; 2962 struct list_head list; 2963}; 2964 2965/* often modified stats are per-CPU, other are shared (netdev->stats) */ 2966struct pcpu_sw_netstats { 2967 u64_stats_t rx_packets; 2968 u64_stats_t rx_bytes; 2969 u64_stats_t tx_packets; 2970 u64_stats_t tx_bytes; 2971 struct u64_stats_sync syncp; 2972} __aligned(4 * sizeof(u64)); 2973 2974struct pcpu_dstats { 2975 u64_stats_t rx_packets; 2976 u64_stats_t rx_bytes; 2977 u64_stats_t tx_packets; 2978 u64_stats_t tx_bytes; 2979 u64_stats_t rx_drops; 2980 u64_stats_t tx_drops; 2981 struct u64_stats_sync syncp; 2982} __aligned(8 * sizeof(u64)); 2983 2984struct pcpu_lstats { 2985 u64_stats_t packets; 2986 u64_stats_t bytes; 2987 struct u64_stats_sync syncp; 2988} __aligned(2 * sizeof(u64)); 2989 2990void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes); 2991 2992static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len) 2993{ 2994 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats); 2995 2996 u64_stats_update_begin(&tstats->syncp); 2997 u64_stats_add(&tstats->rx_bytes, len); 2998 u64_stats_inc(&tstats->rx_packets); 2999 u64_stats_update_end(&tstats->syncp); 3000} 3001 3002static inline void dev_sw_netstats_tx_add(struct net_device *dev, 3003 unsigned int packets, 3004 unsigned int len) 3005{ 3006 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats); 3007 3008 u64_stats_update_begin(&tstats->syncp); 3009 u64_stats_add(&tstats->tx_bytes, len); 3010 u64_stats_add(&tstats->tx_packets, packets); 3011 u64_stats_update_end(&tstats->syncp); 3012} 3013 3014static inline void dev_lstats_add(struct net_device *dev, unsigned int len) 3015{ 3016 struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats); 3017 3018 u64_stats_update_begin(&lstats->syncp); 3019 u64_stats_add(&lstats->bytes, len); 3020 u64_stats_inc(&lstats->packets); 3021 u64_stats_update_end(&lstats->syncp); 3022} 3023 3024static inline void dev_dstats_rx_add(struct net_device *dev, 3025 unsigned int len) 3026{ 3027 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats); 3028 3029 u64_stats_update_begin(&dstats->syncp); 3030 u64_stats_inc(&dstats->rx_packets); 3031 u64_stats_add(&dstats->rx_bytes, len); 3032 u64_stats_update_end(&dstats->syncp); 3033} 3034 3035static inline void dev_dstats_rx_dropped(struct net_device *dev) 3036{ 3037 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats); 3038 3039 u64_stats_update_begin(&dstats->syncp); 3040 u64_stats_inc(&dstats->rx_drops); 3041 u64_stats_update_end(&dstats->syncp); 3042} 3043 3044static inline void dev_dstats_rx_dropped_add(struct net_device *dev, 3045 unsigned int packets) 3046{ 3047 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats); 3048 3049 u64_stats_update_begin(&dstats->syncp); 3050 u64_stats_add(&dstats->rx_drops, packets); 3051 u64_stats_update_end(&dstats->syncp); 3052} 3053 3054static inline void dev_dstats_tx_add(struct net_device *dev, 3055 unsigned int len) 3056{ 3057 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats); 3058 3059 u64_stats_update_begin(&dstats->syncp); 3060 u64_stats_inc(&dstats->tx_packets); 3061 u64_stats_add(&dstats->tx_bytes, len); 3062 u64_stats_update_end(&dstats->syncp); 3063} 3064 3065static inline void dev_dstats_tx_dropped(struct net_device *dev) 3066{ 3067 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats); 3068 3069 u64_stats_update_begin(&dstats->syncp); 3070 u64_stats_inc(&dstats->tx_drops); 3071 u64_stats_update_end(&dstats->syncp); 3072} 3073 3074#define __netdev_alloc_pcpu_stats(type, gfp) \ 3075({ \ 3076 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\ 3077 if (pcpu_stats) { \ 3078 int __cpu; \ 3079 for_each_possible_cpu(__cpu) { \ 3080 typeof(type) *stat; \ 3081 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 3082 u64_stats_init(&stat->syncp); \ 3083 } \ 3084 } \ 3085 pcpu_stats; \ 3086}) 3087 3088#define netdev_alloc_pcpu_stats(type) \ 3089 __netdev_alloc_pcpu_stats(type, GFP_KERNEL) 3090 3091#define devm_netdev_alloc_pcpu_stats(dev, type) \ 3092({ \ 3093 typeof(type) __percpu *pcpu_stats = devm_alloc_percpu(dev, type);\ 3094 if (pcpu_stats) { \ 3095 int __cpu; \ 3096 for_each_possible_cpu(__cpu) { \ 3097 typeof(type) *stat; \ 3098 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 3099 u64_stats_init(&stat->syncp); \ 3100 } \ 3101 } \ 3102 pcpu_stats; \ 3103}) 3104 3105enum netdev_lag_tx_type { 3106 NETDEV_LAG_TX_TYPE_UNKNOWN, 3107 NETDEV_LAG_TX_TYPE_RANDOM, 3108 NETDEV_LAG_TX_TYPE_BROADCAST, 3109 NETDEV_LAG_TX_TYPE_ROUNDROBIN, 3110 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP, 3111 NETDEV_LAG_TX_TYPE_HASH, 3112}; 3113 3114enum netdev_lag_hash { 3115 NETDEV_LAG_HASH_NONE, 3116 NETDEV_LAG_HASH_L2, 3117 NETDEV_LAG_HASH_L34, 3118 NETDEV_LAG_HASH_L23, 3119 NETDEV_LAG_HASH_E23, 3120 NETDEV_LAG_HASH_E34, 3121 NETDEV_LAG_HASH_VLAN_SRCMAC, 3122 NETDEV_LAG_HASH_UNKNOWN, 3123}; 3124 3125struct netdev_lag_upper_info { 3126 enum netdev_lag_tx_type tx_type; 3127 enum netdev_lag_hash hash_type; 3128}; 3129 3130struct netdev_lag_lower_state_info { 3131 u8 link_up : 1, 3132 tx_enabled : 1; 3133}; 3134 3135#include <linux/notifier.h> 3136 3137/* netdevice notifier chain. Please remember to update netdev_cmd_to_name() 3138 * and the rtnetlink notification exclusion list in rtnetlink_event() when 3139 * adding new types. 3140 */ 3141enum netdev_cmd { 3142 NETDEV_UP = 1, /* For now you can't veto a device up/down */ 3143 NETDEV_DOWN, 3144 NETDEV_REBOOT, /* Tell a protocol stack a network interface 3145 detected a hardware crash and restarted 3146 - we can use this eg to kick tcp sessions 3147 once done */ 3148 NETDEV_CHANGE, /* Notify device state change */ 3149 NETDEV_REGISTER, 3150 NETDEV_UNREGISTER, 3151 NETDEV_CHANGEMTU, /* notify after mtu change happened */ 3152 NETDEV_CHANGEADDR, /* notify after the address change */ 3153 NETDEV_PRE_CHANGEADDR, /* notify before the address change */ 3154 NETDEV_GOING_DOWN, 3155 NETDEV_CHANGENAME, 3156 NETDEV_FEAT_CHANGE, 3157 NETDEV_BONDING_FAILOVER, 3158 NETDEV_PRE_UP, 3159 NETDEV_PRE_TYPE_CHANGE, 3160 NETDEV_POST_TYPE_CHANGE, 3161 NETDEV_POST_INIT, 3162 NETDEV_PRE_UNINIT, 3163 NETDEV_RELEASE, 3164 NETDEV_NOTIFY_PEERS, 3165 NETDEV_JOIN, 3166 NETDEV_CHANGEUPPER, 3167 NETDEV_RESEND_IGMP, 3168 NETDEV_PRECHANGEMTU, /* notify before mtu change happened */ 3169 NETDEV_CHANGEINFODATA, 3170 NETDEV_BONDING_INFO, 3171 NETDEV_PRECHANGEUPPER, 3172 NETDEV_CHANGELOWERSTATE, 3173 NETDEV_UDP_TUNNEL_PUSH_INFO, 3174 NETDEV_UDP_TUNNEL_DROP_INFO, 3175 NETDEV_CHANGE_TX_QUEUE_LEN, 3176 NETDEV_CVLAN_FILTER_PUSH_INFO, 3177 NETDEV_CVLAN_FILTER_DROP_INFO, 3178 NETDEV_SVLAN_FILTER_PUSH_INFO, 3179 NETDEV_SVLAN_FILTER_DROP_INFO, 3180 NETDEV_OFFLOAD_XSTATS_ENABLE, 3181 NETDEV_OFFLOAD_XSTATS_DISABLE, 3182 NETDEV_OFFLOAD_XSTATS_REPORT_USED, 3183 NETDEV_OFFLOAD_XSTATS_REPORT_DELTA, 3184 NETDEV_XDP_FEAT_CHANGE, 3185}; 3186const char *netdev_cmd_to_name(enum netdev_cmd cmd); 3187 3188int register_netdevice_notifier(struct notifier_block *nb); 3189int unregister_netdevice_notifier(struct notifier_block *nb); 3190int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb); 3191int unregister_netdevice_notifier_net(struct net *net, 3192 struct notifier_block *nb); 3193int register_netdevice_notifier_dev_net(struct net_device *dev, 3194 struct notifier_block *nb, 3195 struct netdev_net_notifier *nn); 3196int unregister_netdevice_notifier_dev_net(struct net_device *dev, 3197 struct notifier_block *nb, 3198 struct netdev_net_notifier *nn); 3199 3200struct netdev_notifier_info { 3201 struct net_device *dev; 3202 struct netlink_ext_ack *extack; 3203}; 3204 3205struct netdev_notifier_info_ext { 3206 struct netdev_notifier_info info; /* must be first */ 3207 union { 3208 u32 mtu; 3209 } ext; 3210}; 3211 3212struct netdev_notifier_change_info { 3213 struct netdev_notifier_info info; /* must be first */ 3214 unsigned int flags_changed; 3215}; 3216 3217struct netdev_notifier_changeupper_info { 3218 struct netdev_notifier_info info; /* must be first */ 3219 struct net_device *upper_dev; /* new upper dev */ 3220 bool master; /* is upper dev master */ 3221 bool linking; /* is the notification for link or unlink */ 3222 void *upper_info; /* upper dev info */ 3223}; 3224 3225struct netdev_notifier_changelowerstate_info { 3226 struct netdev_notifier_info info; /* must be first */ 3227 void *lower_state_info; /* is lower dev state */ 3228}; 3229 3230struct netdev_notifier_pre_changeaddr_info { 3231 struct netdev_notifier_info info; /* must be first */ 3232 const unsigned char *dev_addr; 3233}; 3234 3235enum netdev_offload_xstats_type { 3236 NETDEV_OFFLOAD_XSTATS_TYPE_L3 = 1, 3237}; 3238 3239struct netdev_notifier_offload_xstats_info { 3240 struct netdev_notifier_info info; /* must be first */ 3241 enum netdev_offload_xstats_type type; 3242 3243 union { 3244 /* NETDEV_OFFLOAD_XSTATS_REPORT_DELTA */ 3245 struct netdev_notifier_offload_xstats_rd *report_delta; 3246 /* NETDEV_OFFLOAD_XSTATS_REPORT_USED */ 3247 struct netdev_notifier_offload_xstats_ru *report_used; 3248 }; 3249}; 3250 3251int netdev_offload_xstats_enable(struct net_device *dev, 3252 enum netdev_offload_xstats_type type, 3253 struct netlink_ext_ack *extack); 3254int netdev_offload_xstats_disable(struct net_device *dev, 3255 enum netdev_offload_xstats_type type); 3256bool netdev_offload_xstats_enabled(const struct net_device *dev, 3257 enum netdev_offload_xstats_type type); 3258int netdev_offload_xstats_get(struct net_device *dev, 3259 enum netdev_offload_xstats_type type, 3260 struct rtnl_hw_stats64 *stats, bool *used, 3261 struct netlink_ext_ack *extack); 3262void 3263netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *rd, 3264 const struct rtnl_hw_stats64 *stats); 3265void 3266netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *ru); 3267void netdev_offload_xstats_push_delta(struct net_device *dev, 3268 enum netdev_offload_xstats_type type, 3269 const struct rtnl_hw_stats64 *stats); 3270 3271static inline void netdev_notifier_info_init(struct netdev_notifier_info *info, 3272 struct net_device *dev) 3273{ 3274 info->dev = dev; 3275 info->extack = NULL; 3276} 3277 3278static inline struct net_device * 3279netdev_notifier_info_to_dev(const struct netdev_notifier_info *info) 3280{ 3281 return info->dev; 3282} 3283 3284static inline struct netlink_ext_ack * 3285netdev_notifier_info_to_extack(const struct netdev_notifier_info *info) 3286{ 3287 return info->extack; 3288} 3289 3290int call_netdevice_notifiers(unsigned long val, struct net_device *dev); 3291int call_netdevice_notifiers_info(unsigned long val, 3292 struct netdev_notifier_info *info); 3293 3294#define for_each_netdev(net, d) \ 3295 list_for_each_entry(d, &(net)->dev_base_head, dev_list) 3296#define for_each_netdev_reverse(net, d) \ 3297 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) 3298#define for_each_netdev_rcu(net, d) \ 3299 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) 3300#define for_each_netdev_safe(net, d, n) \ 3301 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) 3302#define for_each_netdev_continue(net, d) \ 3303 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) 3304#define for_each_netdev_continue_reverse(net, d) \ 3305 list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \ 3306 dev_list) 3307#define for_each_netdev_continue_rcu(net, d) \ 3308 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) 3309#define for_each_netdev_in_bond_rcu(bond, slave) \ 3310 for_each_netdev_rcu(dev_net_rcu(bond), slave) \ 3311 if (netdev_master_upper_dev_get_rcu(slave) == (bond)) 3312#define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) 3313 3314#define for_each_netdev_dump(net, d, ifindex) \ 3315 for (; (d = xa_find(&(net)->dev_by_index, &ifindex, \ 3316 ULONG_MAX, XA_PRESENT)); ifindex++) 3317 3318static inline struct net_device *next_net_device(struct net_device *dev) 3319{ 3320 struct list_head *lh; 3321 struct net *net; 3322 3323 net = dev_net(dev); 3324 lh = dev->dev_list.next; 3325 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 3326} 3327 3328static inline struct net_device *next_net_device_rcu(struct net_device *dev) 3329{ 3330 struct list_head *lh; 3331 struct net *net; 3332 3333 net = dev_net(dev); 3334 lh = rcu_dereference(list_next_rcu(&dev->dev_list)); 3335 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 3336} 3337 3338static inline struct net_device *first_net_device(struct net *net) 3339{ 3340 return list_empty(&net->dev_base_head) ? NULL : 3341 net_device_entry(net->dev_base_head.next); 3342} 3343 3344int netdev_boot_setup_check(struct net_device *dev); 3345struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, 3346 const char *hwaddr); 3347struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 3348 const char *hwaddr); 3349struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); 3350void dev_add_pack(struct packet_type *pt); 3351void dev_remove_pack(struct packet_type *pt); 3352void __dev_remove_pack(struct packet_type *pt); 3353void dev_add_offload(struct packet_offload *po); 3354void dev_remove_offload(struct packet_offload *po); 3355 3356int dev_get_iflink(const struct net_device *dev); 3357int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb); 3358int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr, 3359 struct net_device_path_stack *stack); 3360struct net_device *dev_get_by_name(struct net *net, const char *name); 3361struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); 3362struct net_device *__dev_get_by_name(struct net *net, const char *name); 3363bool netdev_name_in_use(struct net *net, const char *name); 3364int dev_alloc_name(struct net_device *dev, const char *name); 3365int netif_open(struct net_device *dev, struct netlink_ext_ack *extack); 3366int dev_open(struct net_device *dev, struct netlink_ext_ack *extack); 3367void netif_close(struct net_device *dev); 3368void dev_close(struct net_device *dev); 3369void netif_close_many(struct list_head *head, bool unlink); 3370void netif_disable_lro(struct net_device *dev); 3371void dev_disable_lro(struct net_device *dev); 3372int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb); 3373u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 3374 struct net_device *sb_dev); 3375 3376int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev); 3377int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id); 3378 3379static inline int dev_queue_xmit(struct sk_buff *skb) 3380{ 3381 return __dev_queue_xmit(skb, NULL); 3382} 3383 3384static inline int dev_queue_xmit_accel(struct sk_buff *skb, 3385 struct net_device *sb_dev) 3386{ 3387 return __dev_queue_xmit(skb, sb_dev); 3388} 3389 3390static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id) 3391{ 3392 int ret; 3393 3394 ret = __dev_direct_xmit(skb, queue_id); 3395 if (!dev_xmit_complete(ret)) 3396 kfree_skb(skb); 3397 return ret; 3398} 3399 3400int register_netdevice(struct net_device *dev); 3401void unregister_netdevice_queue(struct net_device *dev, struct list_head *head); 3402void unregister_netdevice_many(struct list_head *head); 3403static inline void unregister_netdevice(struct net_device *dev) 3404{ 3405 unregister_netdevice_queue(dev, NULL); 3406} 3407 3408int netdev_refcnt_read(const struct net_device *dev); 3409void free_netdev(struct net_device *dev); 3410 3411struct net_device *netdev_get_xmit_slave(struct net_device *dev, 3412 struct sk_buff *skb, 3413 bool all_slaves); 3414struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev, 3415 struct sock *sk); 3416struct net_device *dev_get_by_index(struct net *net, int ifindex); 3417struct net_device *__dev_get_by_index(struct net *net, int ifindex); 3418struct net_device *netdev_get_by_index(struct net *net, int ifindex, 3419 netdevice_tracker *tracker, gfp_t gfp); 3420struct net_device *netdev_get_by_index_lock(struct net *net, int ifindex); 3421struct net_device *netdev_get_by_name(struct net *net, const char *name, 3422 netdevice_tracker *tracker, gfp_t gfp); 3423struct net_device *netdev_get_by_flags_rcu(struct net *net, netdevice_tracker *tracker, 3424 unsigned short flags, unsigned short mask); 3425struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); 3426void netdev_copy_name(struct net_device *dev, char *name); 3427 3428static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, 3429 unsigned short type, 3430 const void *daddr, const void *saddr, 3431 unsigned int len) 3432{ 3433 if (!dev->header_ops || !dev->header_ops->create) 3434 return 0; 3435 3436 return dev->header_ops->create(skb, dev, type, daddr, saddr, len); 3437} 3438 3439static inline int dev_parse_header(const struct sk_buff *skb, 3440 unsigned char *haddr) 3441{ 3442 const struct net_device *dev = skb->dev; 3443 3444 if (!dev->header_ops || !dev->header_ops->parse) 3445 return 0; 3446 return dev->header_ops->parse(skb, haddr); 3447} 3448 3449static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb) 3450{ 3451 const struct net_device *dev = skb->dev; 3452 3453 if (!dev->header_ops || !dev->header_ops->parse_protocol) 3454 return 0; 3455 return dev->header_ops->parse_protocol(skb); 3456} 3457 3458/* ll_header must have at least hard_header_len allocated */ 3459static inline bool dev_validate_header(const struct net_device *dev, 3460 char *ll_header, int len) 3461{ 3462 if (likely(len >= dev->hard_header_len)) 3463 return true; 3464 if (len < dev->min_header_len) 3465 return false; 3466 3467 if (capable(CAP_SYS_RAWIO)) { 3468 memset(ll_header + len, 0, dev->hard_header_len - len); 3469 return true; 3470 } 3471 3472 if (dev->header_ops && dev->header_ops->validate) 3473 return dev->header_ops->validate(ll_header, len); 3474 3475 return false; 3476} 3477 3478static inline bool dev_has_header(const struct net_device *dev) 3479{ 3480 return dev->header_ops && dev->header_ops->create; 3481} 3482 3483struct numa_drop_counters { 3484 atomic_t drops0 ____cacheline_aligned_in_smp; 3485 atomic_t drops1 ____cacheline_aligned_in_smp; 3486}; 3487 3488static inline int numa_drop_read(const struct numa_drop_counters *ndc) 3489{ 3490 return atomic_read(&ndc->drops0) + atomic_read(&ndc->drops1); 3491} 3492 3493static inline void numa_drop_add(struct numa_drop_counters *ndc, int val) 3494{ 3495 int n = numa_node_id() % 2; 3496 3497 if (n) 3498 atomic_add(val, &ndc->drops1); 3499 else 3500 atomic_add(val, &ndc->drops0); 3501} 3502 3503static inline void numa_drop_reset(struct numa_drop_counters *ndc) 3504{ 3505 atomic_set(&ndc->drops0, 0); 3506 atomic_set(&ndc->drops1, 0); 3507} 3508 3509/* 3510 * Incoming packets are placed on per-CPU queues 3511 */ 3512struct softnet_data { 3513 struct list_head poll_list; 3514 struct sk_buff_head process_queue; 3515 local_lock_t process_queue_bh_lock; 3516 3517 /* stats */ 3518 unsigned int processed; 3519 unsigned int time_squeeze; 3520#ifdef CONFIG_RPS 3521 struct softnet_data *rps_ipi_list; 3522#endif 3523 3524 unsigned int received_rps; 3525 bool in_net_rx_action; 3526 bool in_napi_threaded_poll; 3527 3528#ifdef CONFIG_NET_FLOW_LIMIT 3529 struct sd_flow_limit __rcu *flow_limit; 3530#endif 3531 struct Qdisc *output_queue; 3532 struct Qdisc **output_queue_tailp; 3533 struct sk_buff *completion_queue; 3534#ifdef CONFIG_XFRM_OFFLOAD 3535 struct sk_buff_head xfrm_backlog; 3536#endif 3537 /* written and read only by owning cpu: */ 3538 struct netdev_xmit xmit; 3539#ifdef CONFIG_RPS 3540 /* input_queue_head should be written by cpu owning this struct, 3541 * and only read by other cpus. Worth using a cache line. 3542 */ 3543 unsigned int input_queue_head ____cacheline_aligned_in_smp; 3544 3545 /* Elements below can be accessed between CPUs for RPS/RFS */ 3546 call_single_data_t csd ____cacheline_aligned_in_smp; 3547 struct softnet_data *rps_ipi_next; 3548 unsigned int cpu; 3549 3550 /* We force a cacheline alignment from here, to hold together 3551 * input_queue_tail, input_pkt_queue and backlog.state. 3552 * We add holes so that backlog.state is the last field 3553 * of this cache line. 3554 */ 3555 long pad[3] ____cacheline_aligned_in_smp; 3556 unsigned int input_queue_tail; 3557#endif 3558 struct sk_buff_head input_pkt_queue; 3559 3560 struct napi_struct backlog; 3561 3562 struct numa_drop_counters drop_counters; 3563 3564 int defer_ipi_scheduled ____cacheline_aligned_in_smp; 3565 call_single_data_t defer_csd; 3566}; 3567 3568DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 3569 3570struct page_pool_bh { 3571 struct page_pool *pool; 3572 local_lock_t bh_lock; 3573}; 3574DECLARE_PER_CPU(struct page_pool_bh, system_page_pool); 3575 3576#ifndef CONFIG_PREEMPT_RT 3577static inline int dev_recursion_level(void) 3578{ 3579 return this_cpu_read(softnet_data.xmit.recursion); 3580} 3581#else 3582static inline int dev_recursion_level(void) 3583{ 3584 return current->net_xmit.recursion; 3585} 3586 3587#endif 3588 3589void __netif_schedule(struct Qdisc *q); 3590void netif_schedule_queue(struct netdev_queue *txq); 3591 3592static inline void netif_tx_schedule_all(struct net_device *dev) 3593{ 3594 unsigned int i; 3595 3596 for (i = 0; i < dev->num_tx_queues; i++) 3597 netif_schedule_queue(netdev_get_tx_queue(dev, i)); 3598} 3599 3600static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue) 3601{ 3602 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3603} 3604 3605/** 3606 * netif_start_queue - allow transmit 3607 * @dev: network device 3608 * 3609 * Allow upper layers to call the device hard_start_xmit routine. 3610 */ 3611static inline void netif_start_queue(struct net_device *dev) 3612{ 3613 netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); 3614} 3615 3616static inline void netif_tx_start_all_queues(struct net_device *dev) 3617{ 3618 unsigned int i; 3619 3620 for (i = 0; i < dev->num_tx_queues; i++) { 3621 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3622 netif_tx_start_queue(txq); 3623 } 3624} 3625 3626void netif_tx_wake_queue(struct netdev_queue *dev_queue); 3627 3628/** 3629 * netif_wake_queue - restart transmit 3630 * @dev: network device 3631 * 3632 * Allow upper layers to call the device hard_start_xmit routine. 3633 * Used for flow control when transmit resources are available. 3634 */ 3635static inline void netif_wake_queue(struct net_device *dev) 3636{ 3637 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); 3638} 3639 3640static inline void netif_tx_wake_all_queues(struct net_device *dev) 3641{ 3642 unsigned int i; 3643 3644 for (i = 0; i < dev->num_tx_queues; i++) { 3645 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3646 netif_tx_wake_queue(txq); 3647 } 3648} 3649 3650static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) 3651{ 3652 /* Paired with READ_ONCE() from dev_watchdog() */ 3653 WRITE_ONCE(dev_queue->trans_start, jiffies); 3654 3655 /* This barrier is paired with smp_mb() from dev_watchdog() */ 3656 smp_mb__before_atomic(); 3657 3658 /* Must be an atomic op see netif_txq_try_stop() */ 3659 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3660} 3661 3662/** 3663 * netif_stop_queue - stop transmitted packets 3664 * @dev: network device 3665 * 3666 * Stop upper layers calling the device hard_start_xmit routine. 3667 * Used for flow control when transmit resources are unavailable. 3668 */ 3669static inline void netif_stop_queue(struct net_device *dev) 3670{ 3671 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); 3672} 3673 3674void netif_tx_stop_all_queues(struct net_device *dev); 3675 3676static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue) 3677{ 3678 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3679} 3680 3681/** 3682 * netif_queue_stopped - test if transmit queue is flowblocked 3683 * @dev: network device 3684 * 3685 * Test if transmit queue on device is currently unable to send. 3686 */ 3687static inline bool netif_queue_stopped(const struct net_device *dev) 3688{ 3689 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); 3690} 3691 3692static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue) 3693{ 3694 return dev_queue->state & QUEUE_STATE_ANY_XOFF; 3695} 3696 3697static inline bool 3698netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue) 3699{ 3700 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN; 3701} 3702 3703static inline bool 3704netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue) 3705{ 3706 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN; 3707} 3708 3709/** 3710 * netdev_queue_set_dql_min_limit - set dql minimum limit 3711 * @dev_queue: pointer to transmit queue 3712 * @min_limit: dql minimum limit 3713 * 3714 * Forces xmit_more() to return true until the minimum threshold 3715 * defined by @min_limit is reached (or until the tx queue is 3716 * empty). Warning: to be use with care, misuse will impact the 3717 * latency. 3718 */ 3719static inline void netdev_queue_set_dql_min_limit(struct netdev_queue *dev_queue, 3720 unsigned int min_limit) 3721{ 3722#ifdef CONFIG_BQL 3723 dev_queue->dql.min_limit = min_limit; 3724#endif 3725} 3726 3727static inline int netdev_queue_dql_avail(const struct netdev_queue *txq) 3728{ 3729#ifdef CONFIG_BQL 3730 /* Non-BQL migrated drivers will return 0, too. */ 3731 return dql_avail(&txq->dql); 3732#else 3733 return 0; 3734#endif 3735} 3736 3737/** 3738 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write 3739 * @dev_queue: pointer to transmit queue 3740 * 3741 * BQL enabled drivers might use this helper in their ndo_start_xmit(), 3742 * to give appropriate hint to the CPU. 3743 */ 3744static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue) 3745{ 3746#ifdef CONFIG_BQL 3747 prefetchw(&dev_queue->dql.num_queued); 3748#endif 3749} 3750 3751/** 3752 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write 3753 * @dev_queue: pointer to transmit queue 3754 * 3755 * BQL enabled drivers might use this helper in their TX completion path, 3756 * to give appropriate hint to the CPU. 3757 */ 3758static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue) 3759{ 3760#ifdef CONFIG_BQL 3761 prefetchw(&dev_queue->dql.limit); 3762#endif 3763} 3764 3765/** 3766 * netdev_tx_sent_queue - report the number of bytes queued to a given tx queue 3767 * @dev_queue: network device queue 3768 * @bytes: number of bytes queued to the device queue 3769 * 3770 * Report the number of bytes queued for sending/completion to the network 3771 * device hardware queue. @bytes should be a good approximation and should 3772 * exactly match netdev_completed_queue() @bytes. 3773 * This is typically called once per packet, from ndo_start_xmit(). 3774 */ 3775static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue, 3776 unsigned int bytes) 3777{ 3778#ifdef CONFIG_BQL 3779 dql_queued(&dev_queue->dql, bytes); 3780 3781 if (likely(dql_avail(&dev_queue->dql) >= 0)) 3782 return; 3783 3784 /* Paired with READ_ONCE() from dev_watchdog() */ 3785 WRITE_ONCE(dev_queue->trans_start, jiffies); 3786 3787 /* This barrier is paired with smp_mb() from dev_watchdog() */ 3788 smp_mb__before_atomic(); 3789 3790 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3791 3792 /* 3793 * The XOFF flag must be set before checking the dql_avail below, 3794 * because in netdev_tx_completed_queue we update the dql_completed 3795 * before checking the XOFF flag. 3796 */ 3797 smp_mb__after_atomic(); 3798 3799 /* check again in case another CPU has just made room avail */ 3800 if (unlikely(dql_avail(&dev_queue->dql) >= 0)) 3801 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3802#endif 3803} 3804 3805/* Variant of netdev_tx_sent_queue() for drivers that are aware 3806 * that they should not test BQL status themselves. 3807 * We do want to change __QUEUE_STATE_STACK_XOFF only for the last 3808 * skb of a batch. 3809 * Returns true if the doorbell must be used to kick the NIC. 3810 */ 3811static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue, 3812 unsigned int bytes, 3813 bool xmit_more) 3814{ 3815 if (xmit_more) { 3816#ifdef CONFIG_BQL 3817 dql_queued(&dev_queue->dql, bytes); 3818#endif 3819 return netif_tx_queue_stopped(dev_queue); 3820 } 3821 netdev_tx_sent_queue(dev_queue, bytes); 3822 return true; 3823} 3824 3825/** 3826 * netdev_sent_queue - report the number of bytes queued to hardware 3827 * @dev: network device 3828 * @bytes: number of bytes queued to the hardware device queue 3829 * 3830 * Report the number of bytes queued for sending/completion to the network 3831 * device hardware queue#0. @bytes should be a good approximation and should 3832 * exactly match netdev_completed_queue() @bytes. 3833 * This is typically called once per packet, from ndo_start_xmit(). 3834 */ 3835static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes) 3836{ 3837 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes); 3838} 3839 3840static inline bool __netdev_sent_queue(struct net_device *dev, 3841 unsigned int bytes, 3842 bool xmit_more) 3843{ 3844 return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes, 3845 xmit_more); 3846} 3847 3848/** 3849 * netdev_tx_completed_queue - report number of packets/bytes at TX completion. 3850 * @dev_queue: network device queue 3851 * @pkts: number of packets (currently ignored) 3852 * @bytes: number of bytes dequeued from the device queue 3853 * 3854 * Must be called at most once per TX completion round (and not per 3855 * individual packet), so that BQL can adjust its limits appropriately. 3856 */ 3857static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue, 3858 unsigned int pkts, unsigned int bytes) 3859{ 3860#ifdef CONFIG_BQL 3861 if (unlikely(!bytes)) 3862 return; 3863 3864 dql_completed(&dev_queue->dql, bytes); 3865 3866 /* 3867 * Without the memory barrier there is a small possibility that 3868 * netdev_tx_sent_queue will miss the update and cause the queue to 3869 * be stopped forever 3870 */ 3871 smp_mb(); /* NOTE: netdev_txq_completed_mb() assumes this exists */ 3872 3873 if (unlikely(dql_avail(&dev_queue->dql) < 0)) 3874 return; 3875 3876 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state)) 3877 netif_schedule_queue(dev_queue); 3878#endif 3879} 3880 3881/** 3882 * netdev_completed_queue - report bytes and packets completed by device 3883 * @dev: network device 3884 * @pkts: actual number of packets sent over the medium 3885 * @bytes: actual number of bytes sent over the medium 3886 * 3887 * Report the number of bytes and packets transmitted by the network device 3888 * hardware queue over the physical medium, @bytes must exactly match the 3889 * @bytes amount passed to netdev_sent_queue() 3890 */ 3891static inline void netdev_completed_queue(struct net_device *dev, 3892 unsigned int pkts, unsigned int bytes) 3893{ 3894 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes); 3895} 3896 3897static inline void netdev_tx_reset_queue(struct netdev_queue *q) 3898{ 3899#ifdef CONFIG_BQL 3900 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state); 3901 dql_reset(&q->dql); 3902#endif 3903} 3904 3905/** 3906 * netdev_tx_reset_subqueue - reset the BQL stats and state of a netdev queue 3907 * @dev: network device 3908 * @qid: stack index of the queue to reset 3909 */ 3910static inline void netdev_tx_reset_subqueue(const struct net_device *dev, 3911 u32 qid) 3912{ 3913 netdev_tx_reset_queue(netdev_get_tx_queue(dev, qid)); 3914} 3915 3916/** 3917 * netdev_reset_queue - reset the packets and bytes count of a network device 3918 * @dev_queue: network device 3919 * 3920 * Reset the bytes and packet count of a network device and clear the 3921 * software flow control OFF bit for this network device 3922 */ 3923static inline void netdev_reset_queue(struct net_device *dev_queue) 3924{ 3925 netdev_tx_reset_subqueue(dev_queue, 0); 3926} 3927 3928/** 3929 * netdev_cap_txqueue - check if selected tx queue exceeds device queues 3930 * @dev: network device 3931 * @queue_index: given tx queue index 3932 * 3933 * Returns 0 if given tx queue index >= number of device tx queues, 3934 * otherwise returns the originally passed tx queue index. 3935 */ 3936static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index) 3937{ 3938 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 3939 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n", 3940 dev->name, queue_index, 3941 dev->real_num_tx_queues); 3942 return 0; 3943 } 3944 3945 return queue_index; 3946} 3947 3948/** 3949 * netif_running - test if up 3950 * @dev: network device 3951 * 3952 * Test if the device has been brought up. 3953 */ 3954static inline bool netif_running(const struct net_device *dev) 3955{ 3956 return test_bit(__LINK_STATE_START, &dev->state); 3957} 3958 3959/* 3960 * Routines to manage the subqueues on a device. We only need start, 3961 * stop, and a check if it's stopped. All other device management is 3962 * done at the overall netdevice level. 3963 * Also test the device if we're multiqueue. 3964 */ 3965 3966/** 3967 * netif_start_subqueue - allow sending packets on subqueue 3968 * @dev: network device 3969 * @queue_index: sub queue index 3970 * 3971 * Start individual transmit queue of a device with multiple transmit queues. 3972 */ 3973static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) 3974{ 3975 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3976 3977 netif_tx_start_queue(txq); 3978} 3979 3980/** 3981 * netif_stop_subqueue - stop sending packets on subqueue 3982 * @dev: network device 3983 * @queue_index: sub queue index 3984 * 3985 * Stop individual transmit queue of a device with multiple transmit queues. 3986 */ 3987static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) 3988{ 3989 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3990 netif_tx_stop_queue(txq); 3991} 3992 3993/** 3994 * __netif_subqueue_stopped - test status of subqueue 3995 * @dev: network device 3996 * @queue_index: sub queue index 3997 * 3998 * Check individual transmit queue of a device with multiple transmit queues. 3999 */ 4000static inline bool __netif_subqueue_stopped(const struct net_device *dev, 4001 u16 queue_index) 4002{ 4003 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 4004 4005 return netif_tx_queue_stopped(txq); 4006} 4007 4008/** 4009 * netif_subqueue_stopped - test status of subqueue 4010 * @dev: network device 4011 * @skb: sub queue buffer pointer 4012 * 4013 * Check individual transmit queue of a device with multiple transmit queues. 4014 */ 4015static inline bool netif_subqueue_stopped(const struct net_device *dev, 4016 struct sk_buff *skb) 4017{ 4018 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); 4019} 4020 4021/** 4022 * netif_wake_subqueue - allow sending packets on subqueue 4023 * @dev: network device 4024 * @queue_index: sub queue index 4025 * 4026 * Resume individual transmit queue of a device with multiple transmit queues. 4027 */ 4028static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 4029{ 4030 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 4031 4032 netif_tx_wake_queue(txq); 4033} 4034 4035#ifdef CONFIG_XPS 4036int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 4037 u16 index); 4038int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 4039 u16 index, enum xps_map_type type); 4040 4041/** 4042 * netif_attr_test_mask - Test a CPU or Rx queue set in a mask 4043 * @j: CPU/Rx queue index 4044 * @mask: bitmask of all cpus/rx queues 4045 * @nr_bits: number of bits in the bitmask 4046 * 4047 * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues. 4048 */ 4049static inline bool netif_attr_test_mask(unsigned long j, 4050 const unsigned long *mask, 4051 unsigned int nr_bits) 4052{ 4053 cpu_max_bits_warn(j, nr_bits); 4054 return test_bit(j, mask); 4055} 4056 4057/** 4058 * netif_attr_test_online - Test for online CPU/Rx queue 4059 * @j: CPU/Rx queue index 4060 * @online_mask: bitmask for CPUs/Rx queues that are online 4061 * @nr_bits: number of bits in the bitmask 4062 * 4063 * Returns: true if a CPU/Rx queue is online. 4064 */ 4065static inline bool netif_attr_test_online(unsigned long j, 4066 const unsigned long *online_mask, 4067 unsigned int nr_bits) 4068{ 4069 cpu_max_bits_warn(j, nr_bits); 4070 4071 if (online_mask) 4072 return test_bit(j, online_mask); 4073 4074 return (j < nr_bits); 4075} 4076 4077/** 4078 * netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask 4079 * @n: CPU/Rx queue index 4080 * @srcp: the cpumask/Rx queue mask pointer 4081 * @nr_bits: number of bits in the bitmask 4082 * 4083 * Returns: next (after n) CPU/Rx queue index in the mask; 4084 * >= nr_bits if no further CPUs/Rx queues set. 4085 */ 4086static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp, 4087 unsigned int nr_bits) 4088{ 4089 /* -1 is a legal arg here. */ 4090 if (n != -1) 4091 cpu_max_bits_warn(n, nr_bits); 4092 4093 if (srcp) 4094 return find_next_bit(srcp, nr_bits, n + 1); 4095 4096 return n + 1; 4097} 4098 4099/** 4100 * netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p 4101 * @n: CPU/Rx queue index 4102 * @src1p: the first CPUs/Rx queues mask pointer 4103 * @src2p: the second CPUs/Rx queues mask pointer 4104 * @nr_bits: number of bits in the bitmask 4105 * 4106 * Returns: next (after n) CPU/Rx queue index set in both masks; 4107 * >= nr_bits if no further CPUs/Rx queues set in both. 4108 */ 4109static inline int netif_attrmask_next_and(int n, const unsigned long *src1p, 4110 const unsigned long *src2p, 4111 unsigned int nr_bits) 4112{ 4113 /* -1 is a legal arg here. */ 4114 if (n != -1) 4115 cpu_max_bits_warn(n, nr_bits); 4116 4117 if (src1p && src2p) 4118 return find_next_and_bit(src1p, src2p, nr_bits, n + 1); 4119 else if (src1p) 4120 return find_next_bit(src1p, nr_bits, n + 1); 4121 else if (src2p) 4122 return find_next_bit(src2p, nr_bits, n + 1); 4123 4124 return n + 1; 4125} 4126#else 4127static inline int netif_set_xps_queue(struct net_device *dev, 4128 const struct cpumask *mask, 4129 u16 index) 4130{ 4131 return 0; 4132} 4133 4134static inline int __netif_set_xps_queue(struct net_device *dev, 4135 const unsigned long *mask, 4136 u16 index, enum xps_map_type type) 4137{ 4138 return 0; 4139} 4140#endif 4141 4142/** 4143 * netif_is_multiqueue - test if device has multiple transmit queues 4144 * @dev: network device 4145 * 4146 * Check if device has multiple transmit queues 4147 */ 4148static inline bool netif_is_multiqueue(const struct net_device *dev) 4149{ 4150 return dev->num_tx_queues > 1; 4151} 4152 4153int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq); 4154int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq); 4155int netif_set_real_num_queues(struct net_device *dev, 4156 unsigned int txq, unsigned int rxq); 4157 4158int netif_get_num_default_rss_queues(void); 4159 4160void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason); 4161void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason); 4162 4163/* 4164 * It is not allowed to call kfree_skb() or consume_skb() from hardware 4165 * interrupt context or with hardware interrupts being disabled. 4166 * (in_hardirq() || irqs_disabled()) 4167 * 4168 * We provide four helpers that can be used in following contexts : 4169 * 4170 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context, 4171 * replacing kfree_skb(skb) 4172 * 4173 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context. 4174 * Typically used in place of consume_skb(skb) in TX completion path 4175 * 4176 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context, 4177 * replacing kfree_skb(skb) 4178 * 4179 * dev_consume_skb_any(skb) when caller doesn't know its current irq context, 4180 * and consumed a packet. Used in place of consume_skb(skb) 4181 */ 4182static inline void dev_kfree_skb_irq(struct sk_buff *skb) 4183{ 4184 dev_kfree_skb_irq_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED); 4185} 4186 4187static inline void dev_consume_skb_irq(struct sk_buff *skb) 4188{ 4189 dev_kfree_skb_irq_reason(skb, SKB_CONSUMED); 4190} 4191 4192static inline void dev_kfree_skb_any(struct sk_buff *skb) 4193{ 4194 dev_kfree_skb_any_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED); 4195} 4196 4197static inline void dev_consume_skb_any(struct sk_buff *skb) 4198{ 4199 dev_kfree_skb_any_reason(skb, SKB_CONSUMED); 4200} 4201 4202u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp, 4203 const struct bpf_prog *xdp_prog); 4204void generic_xdp_tx(struct sk_buff *skb, const struct bpf_prog *xdp_prog); 4205int do_xdp_generic(const struct bpf_prog *xdp_prog, struct sk_buff **pskb); 4206int netif_rx(struct sk_buff *skb); 4207int __netif_rx(struct sk_buff *skb); 4208 4209int netif_receive_skb(struct sk_buff *skb); 4210int netif_receive_skb_core(struct sk_buff *skb); 4211void netif_receive_skb_list_internal(struct list_head *head); 4212void netif_receive_skb_list(struct list_head *head); 4213gro_result_t gro_receive_skb(struct gro_node *gro, struct sk_buff *skb); 4214 4215static inline gro_result_t napi_gro_receive(struct napi_struct *napi, 4216 struct sk_buff *skb) 4217{ 4218 return gro_receive_skb(&napi->gro, skb); 4219} 4220 4221struct sk_buff *napi_get_frags(struct napi_struct *napi); 4222gro_result_t napi_gro_frags(struct napi_struct *napi); 4223 4224static inline void napi_free_frags(struct napi_struct *napi) 4225{ 4226 kfree_skb(napi->skb); 4227 napi->skb = NULL; 4228} 4229 4230bool netdev_is_rx_handler_busy(struct net_device *dev); 4231int netdev_rx_handler_register(struct net_device *dev, 4232 rx_handler_func_t *rx_handler, 4233 void *rx_handler_data); 4234void netdev_rx_handler_unregister(struct net_device *dev); 4235 4236bool dev_valid_name(const char *name); 4237static inline bool is_socket_ioctl_cmd(unsigned int cmd) 4238{ 4239 return _IOC_TYPE(cmd) == SOCK_IOC_TYPE; 4240} 4241int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg); 4242int put_user_ifreq(struct ifreq *ifr, void __user *arg); 4243int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr, 4244 void __user *data, bool *need_copyout); 4245int dev_ifconf(struct net *net, struct ifconf __user *ifc); 4246int dev_eth_ioctl(struct net_device *dev, 4247 struct ifreq *ifr, unsigned int cmd); 4248int generic_hwtstamp_get_lower(struct net_device *dev, 4249 struct kernel_hwtstamp_config *kernel_cfg); 4250int generic_hwtstamp_set_lower(struct net_device *dev, 4251 struct kernel_hwtstamp_config *kernel_cfg, 4252 struct netlink_ext_ack *extack); 4253int dev_ethtool(struct net *net, struct ifreq *ifr, void __user *userdata); 4254unsigned int netif_get_flags(const struct net_device *dev); 4255int __dev_change_flags(struct net_device *dev, unsigned int flags, 4256 struct netlink_ext_ack *extack); 4257int netif_change_flags(struct net_device *dev, unsigned int flags, 4258 struct netlink_ext_ack *extack); 4259int dev_change_flags(struct net_device *dev, unsigned int flags, 4260 struct netlink_ext_ack *extack); 4261int netif_set_alias(struct net_device *dev, const char *alias, size_t len); 4262int dev_set_alias(struct net_device *, const char *, size_t); 4263int dev_get_alias(const struct net_device *, char *, size_t); 4264int __dev_change_net_namespace(struct net_device *dev, struct net *net, 4265 const char *pat, int new_ifindex, 4266 struct netlink_ext_ack *extack); 4267int dev_change_net_namespace(struct net_device *dev, struct net *net, 4268 const char *pat); 4269int __netif_set_mtu(struct net_device *dev, int new_mtu); 4270int netif_set_mtu(struct net_device *dev, int new_mtu); 4271int dev_set_mtu(struct net_device *, int); 4272int netif_pre_changeaddr_notify(struct net_device *dev, const char *addr, 4273 struct netlink_ext_ack *extack); 4274int netif_set_mac_address(struct net_device *dev, struct sockaddr_storage *ss, 4275 struct netlink_ext_ack *extack); 4276int dev_set_mac_address(struct net_device *dev, struct sockaddr_storage *ss, 4277 struct netlink_ext_ack *extack); 4278int dev_set_mac_address_user(struct net_device *dev, struct sockaddr_storage *ss, 4279 struct netlink_ext_ack *extack); 4280int netif_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name); 4281int netif_get_port_parent_id(struct net_device *dev, 4282 struct netdev_phys_item_id *ppid, bool recurse); 4283bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b); 4284 4285struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again); 4286struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 4287 struct netdev_queue *txq, int *ret); 4288 4289int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog); 4290u8 dev_xdp_prog_count(struct net_device *dev); 4291int netif_xdp_propagate(struct net_device *dev, struct netdev_bpf *bpf); 4292int dev_xdp_propagate(struct net_device *dev, struct netdev_bpf *bpf); 4293u8 dev_xdp_sb_prog_count(struct net_device *dev); 4294u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode); 4295 4296u32 dev_get_min_mp_channel_count(const struct net_device *dev); 4297 4298int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 4299int dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 4300int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb); 4301bool is_skb_forwardable(const struct net_device *dev, 4302 const struct sk_buff *skb); 4303 4304static __always_inline bool __is_skb_forwardable(const struct net_device *dev, 4305 const struct sk_buff *skb, 4306 const bool check_mtu) 4307{ 4308 const u32 vlan_hdr_len = 4; /* VLAN_HLEN */ 4309 unsigned int len; 4310 4311 if (!(dev->flags & IFF_UP)) 4312 return false; 4313 4314 if (!check_mtu) 4315 return true; 4316 4317 len = dev->mtu + dev->hard_header_len + vlan_hdr_len; 4318 if (skb->len <= len) 4319 return true; 4320 4321 /* if TSO is enabled, we don't care about the length as the packet 4322 * could be forwarded without being segmented before 4323 */ 4324 if (skb_is_gso(skb)) 4325 return true; 4326 4327 return false; 4328} 4329 4330void netdev_core_stats_inc(struct net_device *dev, u32 offset); 4331 4332#define DEV_CORE_STATS_INC(FIELD) \ 4333static inline void dev_core_stats_##FIELD##_inc(struct net_device *dev) \ 4334{ \ 4335 netdev_core_stats_inc(dev, \ 4336 offsetof(struct net_device_core_stats, FIELD)); \ 4337} 4338DEV_CORE_STATS_INC(rx_dropped) 4339DEV_CORE_STATS_INC(tx_dropped) 4340DEV_CORE_STATS_INC(rx_nohandler) 4341DEV_CORE_STATS_INC(rx_otherhost_dropped) 4342#undef DEV_CORE_STATS_INC 4343 4344static __always_inline int ____dev_forward_skb(struct net_device *dev, 4345 struct sk_buff *skb, 4346 const bool check_mtu) 4347{ 4348 if (skb_orphan_frags(skb, GFP_ATOMIC) || 4349 unlikely(!__is_skb_forwardable(dev, skb, check_mtu))) { 4350 dev_core_stats_rx_dropped_inc(dev); 4351 kfree_skb(skb); 4352 return NET_RX_DROP; 4353 } 4354 4355 skb_scrub_packet(skb, !net_eq(dev_net(dev), dev_net(skb->dev))); 4356 skb->priority = 0; 4357 return 0; 4358} 4359 4360bool dev_nit_active_rcu(const struct net_device *dev); 4361static inline bool dev_nit_active(const struct net_device *dev) 4362{ 4363 bool ret; 4364 4365 rcu_read_lock(); 4366 ret = dev_nit_active_rcu(dev); 4367 rcu_read_unlock(); 4368 return ret; 4369} 4370 4371void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev); 4372 4373static inline void __dev_put(struct net_device *dev) 4374{ 4375 if (dev) { 4376#ifdef CONFIG_PCPU_DEV_REFCNT 4377 this_cpu_dec(*dev->pcpu_refcnt); 4378#else 4379 refcount_dec(&dev->dev_refcnt); 4380#endif 4381 } 4382} 4383 4384static inline void __dev_hold(struct net_device *dev) 4385{ 4386 if (dev) { 4387#ifdef CONFIG_PCPU_DEV_REFCNT 4388 this_cpu_inc(*dev->pcpu_refcnt); 4389#else 4390 refcount_inc(&dev->dev_refcnt); 4391#endif 4392 } 4393} 4394 4395static inline void __netdev_tracker_alloc(struct net_device *dev, 4396 netdevice_tracker *tracker, 4397 gfp_t gfp) 4398{ 4399#ifdef CONFIG_NET_DEV_REFCNT_TRACKER 4400 ref_tracker_alloc(&dev->refcnt_tracker, tracker, gfp); 4401#endif 4402} 4403 4404/* netdev_tracker_alloc() can upgrade a prior untracked reference 4405 * taken by dev_get_by_name()/dev_get_by_index() to a tracked one. 4406 */ 4407static inline void netdev_tracker_alloc(struct net_device *dev, 4408 netdevice_tracker *tracker, gfp_t gfp) 4409{ 4410#ifdef CONFIG_NET_DEV_REFCNT_TRACKER 4411 refcount_dec(&dev->refcnt_tracker.no_tracker); 4412 __netdev_tracker_alloc(dev, tracker, gfp); 4413#endif 4414} 4415 4416static inline void netdev_tracker_free(struct net_device *dev, 4417 netdevice_tracker *tracker) 4418{ 4419#ifdef CONFIG_NET_DEV_REFCNT_TRACKER 4420 ref_tracker_free(&dev->refcnt_tracker, tracker); 4421#endif 4422} 4423 4424static inline void netdev_hold(struct net_device *dev, 4425 netdevice_tracker *tracker, gfp_t gfp) 4426{ 4427 if (dev) { 4428 __dev_hold(dev); 4429 __netdev_tracker_alloc(dev, tracker, gfp); 4430 } 4431} 4432 4433static inline void netdev_put(struct net_device *dev, 4434 netdevice_tracker *tracker) 4435{ 4436 if (dev) { 4437 netdev_tracker_free(dev, tracker); 4438 __dev_put(dev); 4439 } 4440} 4441 4442/** 4443 * dev_hold - get reference to device 4444 * @dev: network device 4445 * 4446 * Hold reference to device to keep it from being freed. 4447 * Try using netdev_hold() instead. 4448 */ 4449static inline void dev_hold(struct net_device *dev) 4450{ 4451 netdev_hold(dev, NULL, GFP_ATOMIC); 4452} 4453 4454/** 4455 * dev_put - release reference to device 4456 * @dev: network device 4457 * 4458 * Release reference to device to allow it to be freed. 4459 * Try using netdev_put() instead. 4460 */ 4461static inline void dev_put(struct net_device *dev) 4462{ 4463 netdev_put(dev, NULL); 4464} 4465 4466DEFINE_FREE(dev_put, struct net_device *, if (_T) dev_put(_T)) 4467 4468static inline void netdev_ref_replace(struct net_device *odev, 4469 struct net_device *ndev, 4470 netdevice_tracker *tracker, 4471 gfp_t gfp) 4472{ 4473 if (odev) 4474 netdev_tracker_free(odev, tracker); 4475 4476 __dev_hold(ndev); 4477 __dev_put(odev); 4478 4479 if (ndev) 4480 __netdev_tracker_alloc(ndev, tracker, gfp); 4481} 4482 4483/* Carrier loss detection, dial on demand. The functions netif_carrier_on 4484 * and _off may be called from IRQ context, but it is caller 4485 * who is responsible for serialization of these calls. 4486 * 4487 * The name carrier is inappropriate, these functions should really be 4488 * called netif_lowerlayer_*() because they represent the state of any 4489 * kind of lower layer not just hardware media. 4490 */ 4491void linkwatch_fire_event(struct net_device *dev); 4492 4493/** 4494 * linkwatch_sync_dev - sync linkwatch for the given device 4495 * @dev: network device to sync linkwatch for 4496 * 4497 * Sync linkwatch for the given device, removing it from the 4498 * pending work list (if queued). 4499 */ 4500void linkwatch_sync_dev(struct net_device *dev); 4501void __linkwatch_sync_dev(struct net_device *dev); 4502 4503/** 4504 * netif_carrier_ok - test if carrier present 4505 * @dev: network device 4506 * 4507 * Check if carrier is present on device 4508 */ 4509static inline bool netif_carrier_ok(const struct net_device *dev) 4510{ 4511 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); 4512} 4513 4514unsigned long dev_trans_start(struct net_device *dev); 4515 4516void netdev_watchdog_up(struct net_device *dev); 4517 4518void netif_carrier_on(struct net_device *dev); 4519void netif_carrier_off(struct net_device *dev); 4520void netif_carrier_event(struct net_device *dev); 4521 4522/** 4523 * netif_dormant_on - mark device as dormant. 4524 * @dev: network device 4525 * 4526 * Mark device as dormant (as per RFC2863). 4527 * 4528 * The dormant state indicates that the relevant interface is not 4529 * actually in a condition to pass packets (i.e., it is not 'up') but is 4530 * in a "pending" state, waiting for some external event. For "on- 4531 * demand" interfaces, this new state identifies the situation where the 4532 * interface is waiting for events to place it in the up state. 4533 */ 4534static inline void netif_dormant_on(struct net_device *dev) 4535{ 4536 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) 4537 linkwatch_fire_event(dev); 4538} 4539 4540/** 4541 * netif_dormant_off - set device as not dormant. 4542 * @dev: network device 4543 * 4544 * Device is not in dormant state. 4545 */ 4546static inline void netif_dormant_off(struct net_device *dev) 4547{ 4548 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) 4549 linkwatch_fire_event(dev); 4550} 4551 4552/** 4553 * netif_dormant - test if device is dormant 4554 * @dev: network device 4555 * 4556 * Check if device is dormant. 4557 */ 4558static inline bool netif_dormant(const struct net_device *dev) 4559{ 4560 return test_bit(__LINK_STATE_DORMANT, &dev->state); 4561} 4562 4563 4564/** 4565 * netif_testing_on - mark device as under test. 4566 * @dev: network device 4567 * 4568 * Mark device as under test (as per RFC2863). 4569 * 4570 * The testing state indicates that some test(s) must be performed on 4571 * the interface. After completion, of the test, the interface state 4572 * will change to up, dormant, or down, as appropriate. 4573 */ 4574static inline void netif_testing_on(struct net_device *dev) 4575{ 4576 if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state)) 4577 linkwatch_fire_event(dev); 4578} 4579 4580/** 4581 * netif_testing_off - set device as not under test. 4582 * @dev: network device 4583 * 4584 * Device is not in testing state. 4585 */ 4586static inline void netif_testing_off(struct net_device *dev) 4587{ 4588 if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state)) 4589 linkwatch_fire_event(dev); 4590} 4591 4592/** 4593 * netif_testing - test if device is under test 4594 * @dev: network device 4595 * 4596 * Check if device is under test 4597 */ 4598static inline bool netif_testing(const struct net_device *dev) 4599{ 4600 return test_bit(__LINK_STATE_TESTING, &dev->state); 4601} 4602 4603 4604/** 4605 * netif_oper_up - test if device is operational 4606 * @dev: network device 4607 * 4608 * Check if carrier is operational 4609 */ 4610static inline bool netif_oper_up(const struct net_device *dev) 4611{ 4612 unsigned int operstate = READ_ONCE(dev->operstate); 4613 4614 return operstate == IF_OPER_UP || 4615 operstate == IF_OPER_UNKNOWN /* backward compat */; 4616} 4617 4618/** 4619 * netif_device_present - is device available or removed 4620 * @dev: network device 4621 * 4622 * Check if device has not been removed from system. 4623 */ 4624static inline bool netif_device_present(const struct net_device *dev) 4625{ 4626 return test_bit(__LINK_STATE_PRESENT, &dev->state); 4627} 4628 4629void netif_device_detach(struct net_device *dev); 4630 4631void netif_device_attach(struct net_device *dev); 4632 4633/* 4634 * Network interface message level settings 4635 */ 4636 4637enum { 4638 NETIF_MSG_DRV_BIT, 4639 NETIF_MSG_PROBE_BIT, 4640 NETIF_MSG_LINK_BIT, 4641 NETIF_MSG_TIMER_BIT, 4642 NETIF_MSG_IFDOWN_BIT, 4643 NETIF_MSG_IFUP_BIT, 4644 NETIF_MSG_RX_ERR_BIT, 4645 NETIF_MSG_TX_ERR_BIT, 4646 NETIF_MSG_TX_QUEUED_BIT, 4647 NETIF_MSG_INTR_BIT, 4648 NETIF_MSG_TX_DONE_BIT, 4649 NETIF_MSG_RX_STATUS_BIT, 4650 NETIF_MSG_PKTDATA_BIT, 4651 NETIF_MSG_HW_BIT, 4652 NETIF_MSG_WOL_BIT, 4653 4654 /* When you add a new bit above, update netif_msg_class_names array 4655 * in net/ethtool/common.c 4656 */ 4657 NETIF_MSG_CLASS_COUNT, 4658}; 4659/* Both ethtool_ops interface and internal driver implementation use u32 */ 4660static_assert(NETIF_MSG_CLASS_COUNT <= 32); 4661 4662#define __NETIF_MSG_BIT(bit) ((u32)1 << (bit)) 4663#define __NETIF_MSG(name) __NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT) 4664 4665#define NETIF_MSG_DRV __NETIF_MSG(DRV) 4666#define NETIF_MSG_PROBE __NETIF_MSG(PROBE) 4667#define NETIF_MSG_LINK __NETIF_MSG(LINK) 4668#define NETIF_MSG_TIMER __NETIF_MSG(TIMER) 4669#define NETIF_MSG_IFDOWN __NETIF_MSG(IFDOWN) 4670#define NETIF_MSG_IFUP __NETIF_MSG(IFUP) 4671#define NETIF_MSG_RX_ERR __NETIF_MSG(RX_ERR) 4672#define NETIF_MSG_TX_ERR __NETIF_MSG(TX_ERR) 4673#define NETIF_MSG_TX_QUEUED __NETIF_MSG(TX_QUEUED) 4674#define NETIF_MSG_INTR __NETIF_MSG(INTR) 4675#define NETIF_MSG_TX_DONE __NETIF_MSG(TX_DONE) 4676#define NETIF_MSG_RX_STATUS __NETIF_MSG(RX_STATUS) 4677#define NETIF_MSG_PKTDATA __NETIF_MSG(PKTDATA) 4678#define NETIF_MSG_HW __NETIF_MSG(HW) 4679#define NETIF_MSG_WOL __NETIF_MSG(WOL) 4680 4681#define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) 4682#define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) 4683#define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) 4684#define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) 4685#define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) 4686#define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) 4687#define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) 4688#define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) 4689#define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) 4690#define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) 4691#define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) 4692#define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) 4693#define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) 4694#define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) 4695#define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) 4696 4697static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) 4698{ 4699 /* use default */ 4700 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) 4701 return default_msg_enable_bits; 4702 if (debug_value == 0) /* no output */ 4703 return 0; 4704 /* set low N bits */ 4705 return (1U << debug_value) - 1; 4706} 4707 4708static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) 4709{ 4710 spin_lock(&txq->_xmit_lock); 4711 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4712 WRITE_ONCE(txq->xmit_lock_owner, cpu); 4713} 4714 4715static inline bool __netif_tx_acquire(struct netdev_queue *txq) 4716{ 4717 __acquire(&txq->_xmit_lock); 4718 return true; 4719} 4720 4721static inline void __netif_tx_release(struct netdev_queue *txq) 4722{ 4723 __release(&txq->_xmit_lock); 4724} 4725 4726static inline void __netif_tx_lock_bh(struct netdev_queue *txq) 4727{ 4728 spin_lock_bh(&txq->_xmit_lock); 4729 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4730 WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id()); 4731} 4732 4733static inline bool __netif_tx_trylock(struct netdev_queue *txq) 4734{ 4735 bool ok = spin_trylock(&txq->_xmit_lock); 4736 4737 if (likely(ok)) { 4738 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4739 WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id()); 4740 } 4741 return ok; 4742} 4743 4744static inline void __netif_tx_unlock(struct netdev_queue *txq) 4745{ 4746 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4747 WRITE_ONCE(txq->xmit_lock_owner, -1); 4748 spin_unlock(&txq->_xmit_lock); 4749} 4750 4751static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) 4752{ 4753 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4754 WRITE_ONCE(txq->xmit_lock_owner, -1); 4755 spin_unlock_bh(&txq->_xmit_lock); 4756} 4757 4758/* 4759 * txq->trans_start can be read locklessly from dev_watchdog() 4760 */ 4761static inline void txq_trans_update(const struct net_device *dev, 4762 struct netdev_queue *txq) 4763{ 4764 if (!dev->lltx) 4765 WRITE_ONCE(txq->trans_start, jiffies); 4766} 4767 4768static inline void txq_trans_cond_update(struct netdev_queue *txq) 4769{ 4770 unsigned long now = jiffies; 4771 4772 if (READ_ONCE(txq->trans_start) != now) 4773 WRITE_ONCE(txq->trans_start, now); 4774} 4775 4776/* legacy drivers only, netdev_start_xmit() sets txq->trans_start */ 4777static inline void netif_trans_update(struct net_device *dev) 4778{ 4779 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0); 4780 4781 txq_trans_cond_update(txq); 4782} 4783 4784/** 4785 * netif_tx_lock - grab network device transmit lock 4786 * @dev: network device 4787 * 4788 * Get network device transmit lock 4789 */ 4790void netif_tx_lock(struct net_device *dev); 4791 4792static inline void netif_tx_lock_bh(struct net_device *dev) 4793{ 4794 local_bh_disable(); 4795 netif_tx_lock(dev); 4796} 4797 4798void netif_tx_unlock(struct net_device *dev); 4799 4800static inline void netif_tx_unlock_bh(struct net_device *dev) 4801{ 4802 netif_tx_unlock(dev); 4803 local_bh_enable(); 4804} 4805 4806#define HARD_TX_LOCK(dev, txq, cpu) { \ 4807 if (!(dev)->lltx) { \ 4808 __netif_tx_lock(txq, cpu); \ 4809 } else { \ 4810 __netif_tx_acquire(txq); \ 4811 } \ 4812} 4813 4814#define HARD_TX_TRYLOCK(dev, txq) \ 4815 (!(dev)->lltx ? \ 4816 __netif_tx_trylock(txq) : \ 4817 __netif_tx_acquire(txq)) 4818 4819#define HARD_TX_UNLOCK(dev, txq) { \ 4820 if (!(dev)->lltx) { \ 4821 __netif_tx_unlock(txq); \ 4822 } else { \ 4823 __netif_tx_release(txq); \ 4824 } \ 4825} 4826 4827static inline void netif_tx_disable(struct net_device *dev) 4828{ 4829 unsigned int i; 4830 int cpu; 4831 4832 local_bh_disable(); 4833 cpu = smp_processor_id(); 4834 spin_lock(&dev->tx_global_lock); 4835 for (i = 0; i < dev->num_tx_queues; i++) { 4836 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 4837 4838 __netif_tx_lock(txq, cpu); 4839 netif_tx_stop_queue(txq); 4840 __netif_tx_unlock(txq); 4841 } 4842 spin_unlock(&dev->tx_global_lock); 4843 local_bh_enable(); 4844} 4845 4846static inline void netif_addr_lock(struct net_device *dev) 4847{ 4848 unsigned char nest_level = 0; 4849 4850#ifdef CONFIG_LOCKDEP 4851 nest_level = dev->nested_level; 4852#endif 4853 spin_lock_nested(&dev->addr_list_lock, nest_level); 4854} 4855 4856static inline void netif_addr_lock_bh(struct net_device *dev) 4857{ 4858 unsigned char nest_level = 0; 4859 4860#ifdef CONFIG_LOCKDEP 4861 nest_level = dev->nested_level; 4862#endif 4863 local_bh_disable(); 4864 spin_lock_nested(&dev->addr_list_lock, nest_level); 4865} 4866 4867static inline void netif_addr_unlock(struct net_device *dev) 4868{ 4869 spin_unlock(&dev->addr_list_lock); 4870} 4871 4872static inline void netif_addr_unlock_bh(struct net_device *dev) 4873{ 4874 spin_unlock_bh(&dev->addr_list_lock); 4875} 4876 4877/* 4878 * dev_addrs walker. Should be used only for read access. Call with 4879 * rcu_read_lock held. 4880 */ 4881#define for_each_dev_addr(dev, ha) \ 4882 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) 4883 4884/* These functions live elsewhere (drivers/net/net_init.c, but related) */ 4885 4886void ether_setup(struct net_device *dev); 4887 4888/* Allocate dummy net_device */ 4889struct net_device *alloc_netdev_dummy(int sizeof_priv); 4890 4891/* Support for loadable net-drivers */ 4892struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 4893 unsigned char name_assign_type, 4894 void (*setup)(struct net_device *), 4895 unsigned int txqs, unsigned int rxqs); 4896#define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \ 4897 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1) 4898 4899#define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \ 4900 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \ 4901 count) 4902 4903int register_netdev(struct net_device *dev); 4904void unregister_netdev(struct net_device *dev); 4905 4906int devm_register_netdev(struct device *dev, struct net_device *ndev); 4907 4908/* General hardware address lists handling functions */ 4909int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 4910 struct netdev_hw_addr_list *from_list, int addr_len); 4911int __hw_addr_sync_multiple(struct netdev_hw_addr_list *to_list, 4912 struct netdev_hw_addr_list *from_list, 4913 int addr_len); 4914void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 4915 struct netdev_hw_addr_list *from_list, int addr_len); 4916int __hw_addr_sync_dev(struct netdev_hw_addr_list *list, 4917 struct net_device *dev, 4918 int (*sync)(struct net_device *, const unsigned char *), 4919 int (*unsync)(struct net_device *, 4920 const unsigned char *)); 4921int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list, 4922 struct net_device *dev, 4923 int (*sync)(struct net_device *, 4924 const unsigned char *, int), 4925 int (*unsync)(struct net_device *, 4926 const unsigned char *, int)); 4927void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list, 4928 struct net_device *dev, 4929 int (*unsync)(struct net_device *, 4930 const unsigned char *, int)); 4931void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list, 4932 struct net_device *dev, 4933 int (*unsync)(struct net_device *, 4934 const unsigned char *)); 4935void __hw_addr_init(struct netdev_hw_addr_list *list); 4936 4937/* Functions used for device addresses handling */ 4938void dev_addr_mod(struct net_device *dev, unsigned int offset, 4939 const void *addr, size_t len); 4940 4941static inline void 4942__dev_addr_set(struct net_device *dev, const void *addr, size_t len) 4943{ 4944 dev_addr_mod(dev, 0, addr, len); 4945} 4946 4947static inline void dev_addr_set(struct net_device *dev, const u8 *addr) 4948{ 4949 __dev_addr_set(dev, addr, dev->addr_len); 4950} 4951 4952int dev_addr_add(struct net_device *dev, const unsigned char *addr, 4953 unsigned char addr_type); 4954int dev_addr_del(struct net_device *dev, const unsigned char *addr, 4955 unsigned char addr_type); 4956 4957/* Functions used for unicast addresses handling */ 4958int dev_uc_add(struct net_device *dev, const unsigned char *addr); 4959int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr); 4960int dev_uc_del(struct net_device *dev, const unsigned char *addr); 4961int dev_uc_sync(struct net_device *to, struct net_device *from); 4962int dev_uc_sync_multiple(struct net_device *to, struct net_device *from); 4963void dev_uc_unsync(struct net_device *to, struct net_device *from); 4964void dev_uc_flush(struct net_device *dev); 4965void dev_uc_init(struct net_device *dev); 4966 4967/** 4968 * __dev_uc_sync - Synchronize device's unicast list 4969 * @dev: device to sync 4970 * @sync: function to call if address should be added 4971 * @unsync: function to call if address should be removed 4972 * 4973 * Add newly added addresses to the interface, and release 4974 * addresses that have been deleted. 4975 */ 4976static inline int __dev_uc_sync(struct net_device *dev, 4977 int (*sync)(struct net_device *, 4978 const unsigned char *), 4979 int (*unsync)(struct net_device *, 4980 const unsigned char *)) 4981{ 4982 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync); 4983} 4984 4985/** 4986 * __dev_uc_unsync - Remove synchronized addresses from device 4987 * @dev: device to sync 4988 * @unsync: function to call if address should be removed 4989 * 4990 * Remove all addresses that were added to the device by dev_uc_sync(). 4991 */ 4992static inline void __dev_uc_unsync(struct net_device *dev, 4993 int (*unsync)(struct net_device *, 4994 const unsigned char *)) 4995{ 4996 __hw_addr_unsync_dev(&dev->uc, dev, unsync); 4997} 4998 4999/* Functions used for multicast addresses handling */ 5000int dev_mc_add(struct net_device *dev, const unsigned char *addr); 5001int dev_mc_add_global(struct net_device *dev, const unsigned char *addr); 5002int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr); 5003int dev_mc_del(struct net_device *dev, const unsigned char *addr); 5004int dev_mc_del_global(struct net_device *dev, const unsigned char *addr); 5005int dev_mc_sync(struct net_device *to, struct net_device *from); 5006int dev_mc_sync_multiple(struct net_device *to, struct net_device *from); 5007void dev_mc_unsync(struct net_device *to, struct net_device *from); 5008void dev_mc_flush(struct net_device *dev); 5009void dev_mc_init(struct net_device *dev); 5010 5011/** 5012 * __dev_mc_sync - Synchronize device's multicast list 5013 * @dev: device to sync 5014 * @sync: function to call if address should be added 5015 * @unsync: function to call if address should be removed 5016 * 5017 * Add newly added addresses to the interface, and release 5018 * addresses that have been deleted. 5019 */ 5020static inline int __dev_mc_sync(struct net_device *dev, 5021 int (*sync)(struct net_device *, 5022 const unsigned char *), 5023 int (*unsync)(struct net_device *, 5024 const unsigned char *)) 5025{ 5026 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync); 5027} 5028 5029/** 5030 * __dev_mc_unsync - Remove synchronized addresses from device 5031 * @dev: device to sync 5032 * @unsync: function to call if address should be removed 5033 * 5034 * Remove all addresses that were added to the device by dev_mc_sync(). 5035 */ 5036static inline void __dev_mc_unsync(struct net_device *dev, 5037 int (*unsync)(struct net_device *, 5038 const unsigned char *)) 5039{ 5040 __hw_addr_unsync_dev(&dev->mc, dev, unsync); 5041} 5042 5043/* Functions used for secondary unicast and multicast support */ 5044void dev_set_rx_mode(struct net_device *dev); 5045int netif_set_promiscuity(struct net_device *dev, int inc); 5046int dev_set_promiscuity(struct net_device *dev, int inc); 5047int netif_set_allmulti(struct net_device *dev, int inc, bool notify); 5048int dev_set_allmulti(struct net_device *dev, int inc); 5049void netif_state_change(struct net_device *dev); 5050void netdev_state_change(struct net_device *dev); 5051void __netdev_notify_peers(struct net_device *dev); 5052void netdev_notify_peers(struct net_device *dev); 5053void netdev_features_change(struct net_device *dev); 5054/* Load a device via the kmod */ 5055void dev_load(struct net *net, const char *name); 5056struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 5057 struct rtnl_link_stats64 *storage); 5058void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 5059 const struct net_device_stats *netdev_stats); 5060void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s, 5061 const struct pcpu_sw_netstats __percpu *netstats); 5062void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s); 5063 5064enum { 5065 NESTED_SYNC_IMM_BIT, 5066 NESTED_SYNC_TODO_BIT, 5067}; 5068 5069#define __NESTED_SYNC_BIT(bit) ((u32)1 << (bit)) 5070#define __NESTED_SYNC(name) __NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT) 5071 5072#define NESTED_SYNC_IMM __NESTED_SYNC(IMM) 5073#define NESTED_SYNC_TODO __NESTED_SYNC(TODO) 5074 5075struct netdev_nested_priv { 5076 unsigned char flags; 5077 void *data; 5078}; 5079 5080bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev); 5081struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 5082 struct list_head **iter); 5083 5084/* iterate through upper list, must be called under RCU read lock */ 5085#define netdev_for_each_upper_dev_rcu(dev, updev, iter) \ 5086 for (iter = &(dev)->adj_list.upper, \ 5087 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \ 5088 updev; \ 5089 updev = netdev_upper_get_next_dev_rcu(dev, &(iter))) 5090 5091int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 5092 int (*fn)(struct net_device *upper_dev, 5093 struct netdev_nested_priv *priv), 5094 struct netdev_nested_priv *priv); 5095 5096bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 5097 struct net_device *upper_dev); 5098 5099bool netdev_has_any_upper_dev(struct net_device *dev); 5100 5101void *netdev_lower_get_next_private(struct net_device *dev, 5102 struct list_head **iter); 5103void *netdev_lower_get_next_private_rcu(struct net_device *dev, 5104 struct list_head **iter); 5105 5106#define netdev_for_each_lower_private(dev, priv, iter) \ 5107 for (iter = (dev)->adj_list.lower.next, \ 5108 priv = netdev_lower_get_next_private(dev, &(iter)); \ 5109 priv; \ 5110 priv = netdev_lower_get_next_private(dev, &(iter))) 5111 5112#define netdev_for_each_lower_private_rcu(dev, priv, iter) \ 5113 for (iter = &(dev)->adj_list.lower, \ 5114 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \ 5115 priv; \ 5116 priv = netdev_lower_get_next_private_rcu(dev, &(iter))) 5117 5118void *netdev_lower_get_next(struct net_device *dev, 5119 struct list_head **iter); 5120 5121#define netdev_for_each_lower_dev(dev, ldev, iter) \ 5122 for (iter = (dev)->adj_list.lower.next, \ 5123 ldev = netdev_lower_get_next(dev, &(iter)); \ 5124 ldev; \ 5125 ldev = netdev_lower_get_next(dev, &(iter))) 5126 5127struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 5128 struct list_head **iter); 5129int netdev_walk_all_lower_dev(struct net_device *dev, 5130 int (*fn)(struct net_device *lower_dev, 5131 struct netdev_nested_priv *priv), 5132 struct netdev_nested_priv *priv); 5133int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 5134 int (*fn)(struct net_device *lower_dev, 5135 struct netdev_nested_priv *priv), 5136 struct netdev_nested_priv *priv); 5137 5138void *netdev_adjacent_get_private(struct list_head *adj_list); 5139void *netdev_lower_get_first_private_rcu(struct net_device *dev); 5140struct net_device *netdev_master_upper_dev_get(struct net_device *dev); 5141struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev); 5142int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev, 5143 struct netlink_ext_ack *extack); 5144int netdev_master_upper_dev_link(struct net_device *dev, 5145 struct net_device *upper_dev, 5146 void *upper_priv, void *upper_info, 5147 struct netlink_ext_ack *extack); 5148void netdev_upper_dev_unlink(struct net_device *dev, 5149 struct net_device *upper_dev); 5150int netdev_adjacent_change_prepare(struct net_device *old_dev, 5151 struct net_device *new_dev, 5152 struct net_device *dev, 5153 struct netlink_ext_ack *extack); 5154void netdev_adjacent_change_commit(struct net_device *old_dev, 5155 struct net_device *new_dev, 5156 struct net_device *dev); 5157void netdev_adjacent_change_abort(struct net_device *old_dev, 5158 struct net_device *new_dev, 5159 struct net_device *dev); 5160void netdev_adjacent_rename_links(struct net_device *dev, char *oldname); 5161void *netdev_lower_dev_get_private(struct net_device *dev, 5162 struct net_device *lower_dev); 5163void netdev_lower_state_changed(struct net_device *lower_dev, 5164 void *lower_state_info); 5165 5166/* RSS keys are 40 or 52 bytes long */ 5167#define NETDEV_RSS_KEY_LEN 52 5168extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly; 5169void netdev_rss_key_fill(void *buffer, size_t len); 5170 5171int skb_checksum_help(struct sk_buff *skb); 5172int skb_crc32c_csum_help(struct sk_buff *skb); 5173int skb_csum_hwoffload_help(struct sk_buff *skb, 5174 const netdev_features_t features); 5175 5176struct netdev_bonding_info { 5177 ifslave slave; 5178 ifbond master; 5179}; 5180 5181struct netdev_notifier_bonding_info { 5182 struct netdev_notifier_info info; /* must be first */ 5183 struct netdev_bonding_info bonding_info; 5184}; 5185 5186void netdev_bonding_info_change(struct net_device *dev, 5187 struct netdev_bonding_info *bonding_info); 5188 5189#if IS_ENABLED(CONFIG_ETHTOOL_NETLINK) 5190void ethtool_notify(struct net_device *dev, unsigned int cmd); 5191#else 5192static inline void ethtool_notify(struct net_device *dev, unsigned int cmd) 5193{ 5194} 5195#endif 5196 5197__be16 skb_network_protocol(struct sk_buff *skb, int *depth); 5198 5199static inline bool can_checksum_protocol(netdev_features_t features, 5200 __be16 protocol) 5201{ 5202 if (protocol == htons(ETH_P_FCOE)) 5203 return !!(features & NETIF_F_FCOE_CRC); 5204 5205 /* Assume this is an IP checksum (not SCTP CRC) */ 5206 5207 if (features & NETIF_F_HW_CSUM) { 5208 /* Can checksum everything */ 5209 return true; 5210 } 5211 5212 switch (protocol) { 5213 case htons(ETH_P_IP): 5214 return !!(features & NETIF_F_IP_CSUM); 5215 case htons(ETH_P_IPV6): 5216 return !!(features & NETIF_F_IPV6_CSUM); 5217 default: 5218 return false; 5219 } 5220} 5221 5222#ifdef CONFIG_BUG 5223void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb); 5224#else 5225static inline void netdev_rx_csum_fault(struct net_device *dev, 5226 struct sk_buff *skb) 5227{ 5228} 5229#endif 5230/* rx skb timestamps */ 5231void net_enable_timestamp(void); 5232void net_disable_timestamp(void); 5233 5234static inline ktime_t netdev_get_tstamp(struct net_device *dev, 5235 const struct skb_shared_hwtstamps *hwtstamps, 5236 bool cycles) 5237{ 5238 const struct net_device_ops *ops = dev->netdev_ops; 5239 5240 if (ops->ndo_get_tstamp) 5241 return ops->ndo_get_tstamp(dev, hwtstamps, cycles); 5242 5243 return hwtstamps->hwtstamp; 5244} 5245 5246#ifndef CONFIG_PREEMPT_RT 5247static inline void netdev_xmit_set_more(bool more) 5248{ 5249 __this_cpu_write(softnet_data.xmit.more, more); 5250} 5251 5252static inline bool netdev_xmit_more(void) 5253{ 5254 return __this_cpu_read(softnet_data.xmit.more); 5255} 5256#else 5257static inline void netdev_xmit_set_more(bool more) 5258{ 5259 current->net_xmit.more = more; 5260} 5261 5262static inline bool netdev_xmit_more(void) 5263{ 5264 return current->net_xmit.more; 5265} 5266#endif 5267 5268static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops, 5269 struct sk_buff *skb, struct net_device *dev, 5270 bool more) 5271{ 5272 netdev_xmit_set_more(more); 5273 return ops->ndo_start_xmit(skb, dev); 5274} 5275 5276static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev, 5277 struct netdev_queue *txq, bool more) 5278{ 5279 const struct net_device_ops *ops = dev->netdev_ops; 5280 netdev_tx_t rc; 5281 5282 rc = __netdev_start_xmit(ops, skb, dev, more); 5283 if (rc == NETDEV_TX_OK) 5284 txq_trans_update(dev, txq); 5285 5286 return rc; 5287} 5288 5289int netdev_class_create_file_ns(const struct class_attribute *class_attr, 5290 const void *ns); 5291void netdev_class_remove_file_ns(const struct class_attribute *class_attr, 5292 const void *ns); 5293 5294extern const struct kobj_ns_type_operations net_ns_type_operations; 5295 5296const char *netdev_drivername(const struct net_device *dev); 5297 5298static inline netdev_features_t netdev_intersect_features(netdev_features_t f1, 5299 netdev_features_t f2) 5300{ 5301 if ((f1 ^ f2) & NETIF_F_HW_CSUM) { 5302 if (f1 & NETIF_F_HW_CSUM) 5303 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 5304 else 5305 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 5306 } 5307 5308 return f1 & f2; 5309} 5310 5311static inline netdev_features_t netdev_get_wanted_features( 5312 struct net_device *dev) 5313{ 5314 return (dev->features & ~dev->hw_features) | dev->wanted_features; 5315} 5316netdev_features_t netdev_increment_features(netdev_features_t all, 5317 netdev_features_t one, netdev_features_t mask); 5318 5319/* Allow TSO being used on stacked device : 5320 * Performing the GSO segmentation before last device 5321 * is a performance improvement. 5322 */ 5323static inline netdev_features_t netdev_add_tso_features(netdev_features_t features, 5324 netdev_features_t mask) 5325{ 5326 return netdev_increment_features(features, NETIF_F_ALL_TSO | 5327 NETIF_F_ALL_FOR_ALL, mask); 5328} 5329 5330int __netdev_update_features(struct net_device *dev); 5331void netdev_update_features(struct net_device *dev); 5332void netdev_change_features(struct net_device *dev); 5333void netdev_compute_master_upper_features(struct net_device *dev, bool update_header); 5334 5335void netif_stacked_transfer_operstate(const struct net_device *rootdev, 5336 struct net_device *dev); 5337 5338netdev_features_t passthru_features_check(struct sk_buff *skb, 5339 struct net_device *dev, 5340 netdev_features_t features); 5341netdev_features_t netif_skb_features(struct sk_buff *skb); 5342void skb_warn_bad_offload(const struct sk_buff *skb); 5343 5344static inline bool net_gso_ok(netdev_features_t features, int gso_type) 5345{ 5346 netdev_features_t feature; 5347 5348 if (gso_type & (SKB_GSO_TCP_FIXEDID | SKB_GSO_TCP_FIXEDID_INNER)) 5349 gso_type |= __SKB_GSO_TCP_FIXEDID; 5350 5351 feature = ((netdev_features_t)gso_type << NETIF_F_GSO_SHIFT) & NETIF_F_GSO_MASK; 5352 5353 /* check flags correspondence */ 5354 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT)); 5355 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT)); 5356 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT)); 5357 BUILD_BUG_ON(__SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT)); 5358 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT)); 5359 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT)); 5360 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT)); 5361 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT)); 5362 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT)); 5363 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT)); 5364 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT)); 5365 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT)); 5366 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT)); 5367 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT)); 5368 BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT)); 5369 BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT)); 5370 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT)); 5371 BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT)); 5372 BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT)); 5373 BUILD_BUG_ON(SKB_GSO_TCP_ACCECN != 5374 (NETIF_F_GSO_ACCECN >> NETIF_F_GSO_SHIFT)); 5375 5376 return (features & feature) == feature; 5377} 5378 5379static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features) 5380{ 5381 return net_gso_ok(features, skb_shinfo(skb)->gso_type) && 5382 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); 5383} 5384 5385static inline bool netif_needs_gso(struct sk_buff *skb, 5386 netdev_features_t features) 5387{ 5388 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) || 5389 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) && 5390 (skb->ip_summed != CHECKSUM_UNNECESSARY))); 5391} 5392 5393void netif_set_tso_max_size(struct net_device *dev, unsigned int size); 5394void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs); 5395void netif_inherit_tso_max(struct net_device *to, 5396 const struct net_device *from); 5397 5398static inline unsigned int 5399netif_get_gro_max_size(const struct net_device *dev, const struct sk_buff *skb) 5400{ 5401 /* pairs with WRITE_ONCE() in netif_set_gro(_ipv4)_max_size() */ 5402 return skb->protocol == htons(ETH_P_IPV6) ? 5403 READ_ONCE(dev->gro_max_size) : 5404 READ_ONCE(dev->gro_ipv4_max_size); 5405} 5406 5407static inline unsigned int 5408netif_get_gso_max_size(const struct net_device *dev, const struct sk_buff *skb) 5409{ 5410 /* pairs with WRITE_ONCE() in netif_set_gso(_ipv4)_max_size() */ 5411 return skb->protocol == htons(ETH_P_IPV6) ? 5412 READ_ONCE(dev->gso_max_size) : 5413 READ_ONCE(dev->gso_ipv4_max_size); 5414} 5415 5416static inline bool netif_is_macsec(const struct net_device *dev) 5417{ 5418 return dev->priv_flags & IFF_MACSEC; 5419} 5420 5421static inline bool netif_is_macvlan(const struct net_device *dev) 5422{ 5423 return dev->priv_flags & IFF_MACVLAN; 5424} 5425 5426static inline bool netif_is_macvlan_port(const struct net_device *dev) 5427{ 5428 return dev->priv_flags & IFF_MACVLAN_PORT; 5429} 5430 5431static inline bool netif_is_bond_master(const struct net_device *dev) 5432{ 5433 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING; 5434} 5435 5436static inline bool netif_is_bond_slave(const struct net_device *dev) 5437{ 5438 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING; 5439} 5440 5441static inline bool netif_supports_nofcs(struct net_device *dev) 5442{ 5443 return dev->priv_flags & IFF_SUPP_NOFCS; 5444} 5445 5446static inline bool netif_has_l3_rx_handler(const struct net_device *dev) 5447{ 5448 return dev->priv_flags & IFF_L3MDEV_RX_HANDLER; 5449} 5450 5451static inline bool netif_is_l3_master(const struct net_device *dev) 5452{ 5453 return dev->priv_flags & IFF_L3MDEV_MASTER; 5454} 5455 5456static inline bool netif_is_l3_slave(const struct net_device *dev) 5457{ 5458 return dev->priv_flags & IFF_L3MDEV_SLAVE; 5459} 5460 5461static inline int dev_sdif(const struct net_device *dev) 5462{ 5463#ifdef CONFIG_NET_L3_MASTER_DEV 5464 if (netif_is_l3_slave(dev)) 5465 return dev->ifindex; 5466#endif 5467 return 0; 5468} 5469 5470static inline bool netif_is_bridge_master(const struct net_device *dev) 5471{ 5472 return dev->priv_flags & IFF_EBRIDGE; 5473} 5474 5475static inline bool netif_is_bridge_port(const struct net_device *dev) 5476{ 5477 return dev->priv_flags & IFF_BRIDGE_PORT; 5478} 5479 5480static inline bool netif_is_ovs_master(const struct net_device *dev) 5481{ 5482 return dev->priv_flags & IFF_OPENVSWITCH; 5483} 5484 5485static inline bool netif_is_ovs_port(const struct net_device *dev) 5486{ 5487 return dev->priv_flags & IFF_OVS_DATAPATH; 5488} 5489 5490static inline bool netif_is_any_bridge_master(const struct net_device *dev) 5491{ 5492 return netif_is_bridge_master(dev) || netif_is_ovs_master(dev); 5493} 5494 5495static inline bool netif_is_any_bridge_port(const struct net_device *dev) 5496{ 5497 return netif_is_bridge_port(dev) || netif_is_ovs_port(dev); 5498} 5499 5500static inline bool netif_is_team_master(const struct net_device *dev) 5501{ 5502 return dev->priv_flags & IFF_TEAM; 5503} 5504 5505static inline bool netif_is_team_port(const struct net_device *dev) 5506{ 5507 return dev->priv_flags & IFF_TEAM_PORT; 5508} 5509 5510static inline bool netif_is_lag_master(const struct net_device *dev) 5511{ 5512 return netif_is_bond_master(dev) || netif_is_team_master(dev); 5513} 5514 5515static inline bool netif_is_lag_port(const struct net_device *dev) 5516{ 5517 return netif_is_bond_slave(dev) || netif_is_team_port(dev); 5518} 5519 5520static inline bool netif_is_rxfh_configured(const struct net_device *dev) 5521{ 5522 return dev->priv_flags & IFF_RXFH_CONFIGURED; 5523} 5524 5525static inline bool netif_is_failover(const struct net_device *dev) 5526{ 5527 return dev->priv_flags & IFF_FAILOVER; 5528} 5529 5530static inline bool netif_is_failover_slave(const struct net_device *dev) 5531{ 5532 return dev->priv_flags & IFF_FAILOVER_SLAVE; 5533} 5534 5535/* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */ 5536static inline void netif_keep_dst(struct net_device *dev) 5537{ 5538 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM); 5539} 5540 5541/* return true if dev can't cope with mtu frames that need vlan tag insertion */ 5542static inline bool netif_reduces_vlan_mtu(struct net_device *dev) 5543{ 5544 /* TODO: reserve and use an additional IFF bit, if we get more users */ 5545 return netif_is_macsec(dev); 5546} 5547 5548extern struct pernet_operations __net_initdata loopback_net_ops; 5549 5550/* Logging, debugging and troubleshooting/diagnostic helpers. */ 5551 5552/* netdev_printk helpers, similar to dev_printk */ 5553 5554static inline const char *netdev_name(const struct net_device *dev) 5555{ 5556 if (!dev->name[0] || strchr(dev->name, '%')) 5557 return "(unnamed net_device)"; 5558 return dev->name; 5559} 5560 5561static inline const char *netdev_reg_state(const struct net_device *dev) 5562{ 5563 u8 reg_state = READ_ONCE(dev->reg_state); 5564 5565 switch (reg_state) { 5566 case NETREG_UNINITIALIZED: return " (uninitialized)"; 5567 case NETREG_REGISTERED: return ""; 5568 case NETREG_UNREGISTERING: return " (unregistering)"; 5569 case NETREG_UNREGISTERED: return " (unregistered)"; 5570 case NETREG_RELEASED: return " (released)"; 5571 case NETREG_DUMMY: return " (dummy)"; 5572 } 5573 5574 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, reg_state); 5575 return " (unknown)"; 5576} 5577 5578#define MODULE_ALIAS_NETDEV(device) \ 5579 MODULE_ALIAS("netdev-" device) 5580 5581/* 5582 * netdev_WARN() acts like dev_printk(), but with the key difference 5583 * of using a WARN/WARN_ON to get the message out, including the 5584 * file/line information and a backtrace. 5585 */ 5586#define netdev_WARN(dev, format, args...) \ 5587 WARN(1, "netdevice: %s%s: " format, netdev_name(dev), \ 5588 netdev_reg_state(dev), ##args) 5589 5590#define netdev_WARN_ONCE(dev, format, args...) \ 5591 WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev), \ 5592 netdev_reg_state(dev), ##args) 5593 5594/* 5595 * The list of packet types we will receive (as opposed to discard) 5596 * and the routines to invoke. 5597 * 5598 * Why 16. Because with 16 the only overlap we get on a hash of the 5599 * low nibble of the protocol value is RARP/SNAP/X.25. 5600 * 5601 * 0800 IP 5602 * 0001 802.3 5603 * 0002 AX.25 5604 * 0004 802.2 5605 * 8035 RARP 5606 * 0005 SNAP 5607 * 0805 X.25 5608 * 0806 ARP 5609 * 8137 IPX 5610 * 0009 Localtalk 5611 * 86DD IPv6 5612 */ 5613#define PTYPE_HASH_SIZE (16) 5614#define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 5615 5616extern struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 5617 5618extern struct net_device *blackhole_netdev; 5619 5620/* Note: Avoid these macros in fast path, prefer per-cpu or per-queue counters. */ 5621#define DEV_STATS_INC(DEV, FIELD) atomic_long_inc(&(DEV)->stats.__##FIELD) 5622#define DEV_STATS_ADD(DEV, FIELD, VAL) \ 5623 atomic_long_add((VAL), &(DEV)->stats.__##FIELD) 5624#define DEV_STATS_READ(DEV, FIELD) atomic_long_read(&(DEV)->stats.__##FIELD) 5625 5626#endif /* _LINUX_NETDEVICE_H */