at master 61 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_MM_TYPES_H 3#define _LINUX_MM_TYPES_H 4 5#include <linux/mm_types_task.h> 6 7#include <linux/auxvec.h> 8#include <linux/kref.h> 9#include <linux/list.h> 10#include <linux/spinlock.h> 11#include <linux/rbtree.h> 12#include <linux/maple_tree.h> 13#include <linux/rwsem.h> 14#include <linux/completion.h> 15#include <linux/cpumask.h> 16#include <linux/uprobes.h> 17#include <linux/rcupdate.h> 18#include <linux/page-flags-layout.h> 19#include <linux/workqueue.h> 20#include <linux/seqlock.h> 21#include <linux/percpu_counter.h> 22#include <linux/types.h> 23#include <linux/rseq_types.h> 24#include <linux/bitmap.h> 25 26#include <asm/mmu.h> 27 28#ifndef AT_VECTOR_SIZE_ARCH 29#define AT_VECTOR_SIZE_ARCH 0 30#endif 31#define AT_VECTOR_SIZE (2*(AT_VECTOR_SIZE_ARCH + AT_VECTOR_SIZE_BASE + 1)) 32 33 34struct address_space; 35struct futex_private_hash; 36struct mem_cgroup; 37 38typedef struct { 39 unsigned long f; 40} memdesc_flags_t; 41 42/* 43 * Each physical page in the system has a struct page associated with 44 * it to keep track of whatever it is we are using the page for at the 45 * moment. Note that we have no way to track which tasks are using 46 * a page, though if it is a pagecache page, rmap structures can tell us 47 * who is mapping it. 48 * 49 * If you allocate the page using alloc_pages(), you can use some of the 50 * space in struct page for your own purposes. The five words in the main 51 * union are available, except for bit 0 of the first word which must be 52 * kept clear. Many users use this word to store a pointer to an object 53 * which is guaranteed to be aligned. If you use the same storage as 54 * page->mapping, you must restore it to NULL before freeing the page. 55 * 56 * The mapcount field must not be used for own purposes. 57 * 58 * If you want to use the refcount field, it must be used in such a way 59 * that other CPUs temporarily incrementing and then decrementing the 60 * refcount does not cause problems. On receiving the page from 61 * alloc_pages(), the refcount will be positive. 62 * 63 * If you allocate pages of order > 0, you can use some of the fields 64 * in each subpage, but you may need to restore some of their values 65 * afterwards. 66 * 67 * SLUB uses cmpxchg_double() to atomically update its freelist and counters. 68 * That requires that freelist & counters in struct slab be adjacent and 69 * double-word aligned. Because struct slab currently just reinterprets the 70 * bits of struct page, we align all struct pages to double-word boundaries, 71 * and ensure that 'freelist' is aligned within struct slab. 72 */ 73#ifdef CONFIG_HAVE_ALIGNED_STRUCT_PAGE 74#define _struct_page_alignment __aligned(2 * sizeof(unsigned long)) 75#else 76#define _struct_page_alignment __aligned(sizeof(unsigned long)) 77#endif 78 79struct page { 80 memdesc_flags_t flags; /* Atomic flags, some possibly 81 * updated asynchronously */ 82 /* 83 * Five words (20/40 bytes) are available in this union. 84 * WARNING: bit 0 of the first word is used for PageTail(). That 85 * means the other users of this union MUST NOT use the bit to 86 * avoid collision and false-positive PageTail(). 87 */ 88 union { 89 struct { /* Page cache and anonymous pages */ 90 /** 91 * @lru: Pageout list, eg. active_list protected by 92 * lruvec->lru_lock. Sometimes used as a generic list 93 * by the page owner. 94 */ 95 union { 96 struct list_head lru; 97 98 /* Or, free page */ 99 struct list_head buddy_list; 100 struct list_head pcp_list; 101 struct llist_node pcp_llist; 102 }; 103 struct address_space *mapping; 104 union { 105 pgoff_t __folio_index; /* Our offset within mapping. */ 106 unsigned long share; /* share count for fsdax */ 107 }; 108 /** 109 * @private: Mapping-private opaque data. 110 * Usually used for buffer_heads if PagePrivate. 111 * Used for swp_entry_t if swapcache flag set. 112 * Indicates order in the buddy system if PageBuddy 113 * or on pcp_llist. 114 */ 115 unsigned long private; 116 }; 117 struct { /* page_pool used by netstack */ 118 /** 119 * @pp_magic: magic value to avoid recycling non 120 * page_pool allocated pages. 121 */ 122 unsigned long pp_magic; 123 struct page_pool *pp; 124 unsigned long _pp_mapping_pad; 125 unsigned long dma_addr; 126 atomic_long_t pp_ref_count; 127 }; 128 struct { /* Tail pages of compound page */ 129 unsigned long compound_head; /* Bit zero is set */ 130 }; 131 struct { /* ZONE_DEVICE pages */ 132 /* 133 * The first word is used for compound_head or folio 134 * pgmap 135 */ 136 void *_unused_pgmap_compound_head; 137 void *zone_device_data; 138 /* 139 * ZONE_DEVICE private pages are counted as being 140 * mapped so the next 3 words hold the mapping, index, 141 * and private fields from the source anonymous or 142 * page cache page while the page is migrated to device 143 * private memory. 144 * ZONE_DEVICE MEMORY_DEVICE_FS_DAX pages also 145 * use the mapping, index, and private fields when 146 * pmem backed DAX files are mapped. 147 */ 148 }; 149 150 /** @rcu_head: You can use this to free a page by RCU. */ 151 struct rcu_head rcu_head; 152 }; 153 154 union { /* This union is 4 bytes in size. */ 155 /* 156 * For head pages of typed folios, the value stored here 157 * allows for determining what this page is used for. The 158 * tail pages of typed folios will not store a type 159 * (page_type == _mapcount == -1). 160 * 161 * See page-flags.h for a list of page types which are currently 162 * stored here. 163 * 164 * Owners of typed folios may reuse the lower 16 bit of the 165 * head page page_type field after setting the page type, 166 * but must reset these 16 bit to -1 before clearing the 167 * page type. 168 */ 169 unsigned int page_type; 170 171 /* 172 * For pages that are part of non-typed folios for which mappings 173 * are tracked via the RMAP, encodes the number of times this page 174 * is directly referenced by a page table. 175 * 176 * Note that the mapcount is always initialized to -1, so that 177 * transitions both from it and to it can be tracked, using 178 * atomic_inc_and_test() and atomic_add_negative(-1). 179 */ 180 atomic_t _mapcount; 181 }; 182 183 /* Usage count. *DO NOT USE DIRECTLY*. See page_ref.h */ 184 atomic_t _refcount; 185 186#ifdef CONFIG_MEMCG 187 unsigned long memcg_data; 188#elif defined(CONFIG_SLAB_OBJ_EXT) 189 unsigned long _unused_slab_obj_exts; 190#endif 191 192 /* 193 * On machines where all RAM is mapped into kernel address space, 194 * we can simply calculate the virtual address. On machines with 195 * highmem some memory is mapped into kernel virtual memory 196 * dynamically, so we need a place to store that address. 197 * Note that this field could be 16 bits on x86 ... ;) 198 * 199 * Architectures with slow multiplication can define 200 * WANT_PAGE_VIRTUAL in asm/page.h 201 */ 202#if defined(WANT_PAGE_VIRTUAL) 203 void *virtual; /* Kernel virtual address (NULL if 204 not kmapped, ie. highmem) */ 205#endif /* WANT_PAGE_VIRTUAL */ 206 207#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 208 int _last_cpupid; 209#endif 210 211#ifdef CONFIG_KMSAN 212 /* 213 * KMSAN metadata for this page: 214 * - shadow page: every bit indicates whether the corresponding 215 * bit of the original page is initialized (0) or not (1); 216 * - origin page: every 4 bytes contain an id of the stack trace 217 * where the uninitialized value was created. 218 */ 219 struct page *kmsan_shadow; 220 struct page *kmsan_origin; 221#endif 222} _struct_page_alignment; 223 224/* 225 * struct encoded_page - a nonexistent type marking this pointer 226 * 227 * An 'encoded_page' pointer is a pointer to a regular 'struct page', but 228 * with the low bits of the pointer indicating extra context-dependent 229 * information. Only used in mmu_gather handling, and this acts as a type 230 * system check on that use. 231 * 232 * We only really have two guaranteed bits in general, although you could 233 * play with 'struct page' alignment (see CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 234 * for more. 235 * 236 * Use the supplied helper functions to endcode/decode the pointer and bits. 237 */ 238struct encoded_page; 239 240#define ENCODED_PAGE_BITS 3ul 241 242/* Perform rmap removal after we have flushed the TLB. */ 243#define ENCODED_PAGE_BIT_DELAY_RMAP 1ul 244 245/* 246 * The next item in an encoded_page array is the "nr_pages" argument, specifying 247 * the number of consecutive pages starting from this page, that all belong to 248 * the same folio. For example, "nr_pages" corresponds to the number of folio 249 * references that must be dropped. If this bit is not set, "nr_pages" is 250 * implicitly 1. 251 */ 252#define ENCODED_PAGE_BIT_NR_PAGES_NEXT 2ul 253 254static __always_inline struct encoded_page *encode_page(struct page *page, unsigned long flags) 255{ 256 BUILD_BUG_ON(flags > ENCODED_PAGE_BITS); 257 return (struct encoded_page *)(flags | (unsigned long)page); 258} 259 260static inline unsigned long encoded_page_flags(struct encoded_page *page) 261{ 262 return ENCODED_PAGE_BITS & (unsigned long)page; 263} 264 265static inline struct page *encoded_page_ptr(struct encoded_page *page) 266{ 267 return (struct page *)(~ENCODED_PAGE_BITS & (unsigned long)page); 268} 269 270static __always_inline struct encoded_page *encode_nr_pages(unsigned long nr) 271{ 272 VM_WARN_ON_ONCE((nr << 2) >> 2 != nr); 273 return (struct encoded_page *)(nr << 2); 274} 275 276static __always_inline unsigned long encoded_nr_pages(struct encoded_page *page) 277{ 278 return ((unsigned long)page) >> 2; 279} 280 281/* 282 * A swap entry has to fit into a "unsigned long", as the entry is hidden 283 * in the "index" field of the swapper address space. 284 */ 285typedef struct { 286 unsigned long val; 287} swp_entry_t; 288 289/** 290 * typedef softleaf_t - Describes a page table software leaf entry, abstracted 291 * from its architecture-specific encoding. 292 * 293 * Page table leaf entries are those which do not reference any descendent page 294 * tables but rather either reference a data page, are an empty (or 'none' 295 * entry), or contain a non-present entry. 296 * 297 * If referencing another page table or a data page then the page table entry is 298 * pertinent to hardware - that is it tells the hardware how to decode the page 299 * table entry. 300 * 301 * Otherwise it is a software-defined leaf page table entry, which this type 302 * describes. See leafops.h and specifically @softleaf_type for a list of all 303 * possible kinds of software leaf entry. 304 * 305 * A softleaf_t entry is abstracted from the hardware page table entry, so is 306 * not architecture-specific. 307 * 308 * NOTE: While we transition from the confusing swp_entry_t type used for this 309 * purpose, we simply alias this type. This will be removed once the 310 * transition is complete. 311 */ 312typedef swp_entry_t softleaf_t; 313 314#if defined(CONFIG_MEMCG) || defined(CONFIG_SLAB_OBJ_EXT) 315/* We have some extra room after the refcount in tail pages. */ 316#define NR_PAGES_IN_LARGE_FOLIO 317#endif 318 319/* 320 * On 32bit, we can cut the required metadata in half, because: 321 * (a) PID_MAX_LIMIT implicitly limits the number of MMs we could ever have, 322 * so we can limit MM IDs to 15 bit (32767). 323 * (b) We don't expect folios where even a single complete PTE mapping by 324 * one MM would exceed 15 bits (order-15). 325 */ 326#ifdef CONFIG_64BIT 327typedef int mm_id_mapcount_t; 328#define MM_ID_MAPCOUNT_MAX INT_MAX 329typedef unsigned int mm_id_t; 330#else /* !CONFIG_64BIT */ 331typedef short mm_id_mapcount_t; 332#define MM_ID_MAPCOUNT_MAX SHRT_MAX 333typedef unsigned short mm_id_t; 334#endif /* CONFIG_64BIT */ 335 336/* We implicitly use the dummy ID for init-mm etc. where we never rmap pages. */ 337#define MM_ID_DUMMY 0 338#define MM_ID_MIN (MM_ID_DUMMY + 1) 339 340/* 341 * We leave the highest bit of each MM id unused, so we can store a flag 342 * in the highest bit of each folio->_mm_id[]. 343 */ 344#define MM_ID_BITS ((sizeof(mm_id_t) * BITS_PER_BYTE) - 1) 345#define MM_ID_MASK ((1U << MM_ID_BITS) - 1) 346#define MM_ID_MAX MM_ID_MASK 347 348/* 349 * In order to use bit_spin_lock(), which requires an unsigned long, we 350 * operate on folio->_mm_ids when working on flags. 351 */ 352#define FOLIO_MM_IDS_LOCK_BITNUM MM_ID_BITS 353#define FOLIO_MM_IDS_LOCK_BIT BIT(FOLIO_MM_IDS_LOCK_BITNUM) 354#define FOLIO_MM_IDS_SHARED_BITNUM (2 * MM_ID_BITS + 1) 355#define FOLIO_MM_IDS_SHARED_BIT BIT(FOLIO_MM_IDS_SHARED_BITNUM) 356 357/** 358 * struct folio - Represents a contiguous set of bytes. 359 * @flags: Identical to the page flags. 360 * @lru: Least Recently Used list; tracks how recently this folio was used. 361 * @mlock_count: Number of times this folio has been pinned by mlock(). 362 * @mapping: The file this page belongs to, or refers to the anon_vma for 363 * anonymous memory. 364 * @index: Offset within the file, in units of pages. For anonymous memory, 365 * this is the index from the beginning of the mmap. 366 * @share: number of DAX mappings that reference this folio. See 367 * dax_associate_entry. 368 * @private: Filesystem per-folio data (see folio_attach_private()). 369 * @swap: Used for swp_entry_t if folio_test_swapcache(). 370 * @_mapcount: Do not access this member directly. Use folio_mapcount() to 371 * find out how many times this folio is mapped by userspace. 372 * @_refcount: Do not access this member directly. Use folio_ref_count() 373 * to find how many references there are to this folio. 374 * @memcg_data: Memory Control Group data. 375 * @pgmap: Metadata for ZONE_DEVICE mappings 376 * @virtual: Virtual address in the kernel direct map. 377 * @_last_cpupid: IDs of last CPU and last process that accessed the folio. 378 * @_entire_mapcount: Do not use directly, call folio_entire_mapcount(). 379 * @_large_mapcount: Do not use directly, call folio_mapcount(). 380 * @_nr_pages_mapped: Do not use outside of rmap and debug code. 381 * @_pincount: Do not use directly, call folio_maybe_dma_pinned(). 382 * @_nr_pages: Do not use directly, call folio_nr_pages(). 383 * @_mm_id: Do not use outside of rmap code. 384 * @_mm_ids: Do not use outside of rmap code. 385 * @_mm_id_mapcount: Do not use outside of rmap code. 386 * @_hugetlb_subpool: Do not use directly, use accessor in hugetlb.h. 387 * @_hugetlb_cgroup: Do not use directly, use accessor in hugetlb_cgroup.h. 388 * @_hugetlb_cgroup_rsvd: Do not use directly, use accessor in hugetlb_cgroup.h. 389 * @_hugetlb_hwpoison: Do not use directly, call raw_hwp_list_head(). 390 * @_deferred_list: Folios to be split under memory pressure. 391 * @_unused_slab_obj_exts: Placeholder to match obj_exts in struct slab. 392 * 393 * A folio is a physically, virtually and logically contiguous set 394 * of bytes. It is a power-of-two in size, and it is aligned to that 395 * same power-of-two. It is at least as large as %PAGE_SIZE. If it is 396 * in the page cache, it is at a file offset which is a multiple of that 397 * power-of-two. It may be mapped into userspace at an address which is 398 * at an arbitrary page offset, but its kernel virtual address is aligned 399 * to its size. 400 */ 401struct folio { 402 /* private: don't document the anon union */ 403 union { 404 struct { 405 /* public: */ 406 memdesc_flags_t flags; 407 union { 408 struct list_head lru; 409 /* private: avoid cluttering the output */ 410 /* For the Unevictable "LRU list" slot */ 411 struct { 412 /* Avoid compound_head */ 413 void *__filler; 414 /* public: */ 415 unsigned int mlock_count; 416 /* private: */ 417 }; 418 /* public: */ 419 struct dev_pagemap *pgmap; 420 }; 421 struct address_space *mapping; 422 union { 423 pgoff_t index; 424 unsigned long share; 425 }; 426 union { 427 void *private; 428 swp_entry_t swap; 429 }; 430 atomic_t _mapcount; 431 atomic_t _refcount; 432#ifdef CONFIG_MEMCG 433 unsigned long memcg_data; 434#elif defined(CONFIG_SLAB_OBJ_EXT) 435 unsigned long _unused_slab_obj_exts; 436#endif 437#if defined(WANT_PAGE_VIRTUAL) 438 void *virtual; 439#endif 440#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 441 int _last_cpupid; 442#endif 443 /* private: the union with struct page is transitional */ 444 }; 445 struct page page; 446 }; 447 union { 448 struct { 449 unsigned long _flags_1; 450 unsigned long _head_1; 451 union { 452 struct { 453 /* public: */ 454 atomic_t _large_mapcount; 455 atomic_t _nr_pages_mapped; 456#ifdef CONFIG_64BIT 457 atomic_t _entire_mapcount; 458 atomic_t _pincount; 459#endif /* CONFIG_64BIT */ 460 mm_id_mapcount_t _mm_id_mapcount[2]; 461 union { 462 mm_id_t _mm_id[2]; 463 unsigned long _mm_ids; 464 }; 465 /* private: the union with struct page is transitional */ 466 }; 467 unsigned long _usable_1[4]; 468 }; 469 atomic_t _mapcount_1; 470 atomic_t _refcount_1; 471 /* public: */ 472#ifdef NR_PAGES_IN_LARGE_FOLIO 473 unsigned int _nr_pages; 474#endif /* NR_PAGES_IN_LARGE_FOLIO */ 475 /* private: the union with struct page is transitional */ 476 }; 477 struct page __page_1; 478 }; 479 union { 480 struct { 481 unsigned long _flags_2; 482 unsigned long _head_2; 483 /* public: */ 484 struct list_head _deferred_list; 485#ifndef CONFIG_64BIT 486 atomic_t _entire_mapcount; 487 atomic_t _pincount; 488#endif /* !CONFIG_64BIT */ 489 /* private: the union with struct page is transitional */ 490 }; 491 struct page __page_2; 492 }; 493 union { 494 struct { 495 unsigned long _flags_3; 496 unsigned long _head_3; 497 /* public: */ 498 void *_hugetlb_subpool; 499 void *_hugetlb_cgroup; 500 void *_hugetlb_cgroup_rsvd; 501 void *_hugetlb_hwpoison; 502 /* private: the union with struct page is transitional */ 503 }; 504 struct page __page_3; 505 }; 506}; 507 508#define FOLIO_MATCH(pg, fl) \ 509 static_assert(offsetof(struct page, pg) == offsetof(struct folio, fl)) 510FOLIO_MATCH(flags, flags); 511FOLIO_MATCH(lru, lru); 512FOLIO_MATCH(mapping, mapping); 513FOLIO_MATCH(compound_head, lru); 514FOLIO_MATCH(__folio_index, index); 515FOLIO_MATCH(private, private); 516FOLIO_MATCH(_mapcount, _mapcount); 517FOLIO_MATCH(_refcount, _refcount); 518#ifdef CONFIG_MEMCG 519FOLIO_MATCH(memcg_data, memcg_data); 520#endif 521#if defined(WANT_PAGE_VIRTUAL) 522FOLIO_MATCH(virtual, virtual); 523#endif 524#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 525FOLIO_MATCH(_last_cpupid, _last_cpupid); 526#endif 527#undef FOLIO_MATCH 528#define FOLIO_MATCH(pg, fl) \ 529 static_assert(offsetof(struct folio, fl) == \ 530 offsetof(struct page, pg) + sizeof(struct page)) 531FOLIO_MATCH(flags, _flags_1); 532FOLIO_MATCH(compound_head, _head_1); 533FOLIO_MATCH(_mapcount, _mapcount_1); 534FOLIO_MATCH(_refcount, _refcount_1); 535#undef FOLIO_MATCH 536#define FOLIO_MATCH(pg, fl) \ 537 static_assert(offsetof(struct folio, fl) == \ 538 offsetof(struct page, pg) + 2 * sizeof(struct page)) 539FOLIO_MATCH(flags, _flags_2); 540FOLIO_MATCH(compound_head, _head_2); 541#undef FOLIO_MATCH 542#define FOLIO_MATCH(pg, fl) \ 543 static_assert(offsetof(struct folio, fl) == \ 544 offsetof(struct page, pg) + 3 * sizeof(struct page)) 545FOLIO_MATCH(flags, _flags_3); 546FOLIO_MATCH(compound_head, _head_3); 547#undef FOLIO_MATCH 548 549/** 550 * struct ptdesc - Memory descriptor for page tables. 551 * @pt_flags: enum pt_flags plus zone/node/section. 552 * @pt_rcu_head: For freeing page table pages. 553 * @pt_list: List of used page tables. Used for s390 gmap shadow pages 554 * (which are not linked into the user page tables) and x86 555 * pgds. 556 * @_pt_pad_1: Padding that aliases with page's compound head. 557 * @pmd_huge_pte: Protected by ptdesc->ptl, used for THPs. 558 * @__page_mapping: Aliases with page->mapping. Unused for page tables. 559 * @pt_index: Used for s390 gmap. 560 * @pt_mm: Used for x86 pgds. 561 * @pt_frag_refcount: For fragmented page table tracking. Powerpc only. 562 * @pt_share_count: Used for HugeTLB PMD page table share count. 563 * @_pt_pad_2: Padding to ensure proper alignment. 564 * @ptl: Lock for the page table. 565 * @__page_type: Same as page->page_type. Unused for page tables. 566 * @__page_refcount: Same as page refcount. 567 * @pt_memcg_data: Memcg data. Tracked for page tables here. 568 * 569 * This struct overlays struct page for now. Do not modify without a good 570 * understanding of the issues. 571 */ 572struct ptdesc { 573 memdesc_flags_t pt_flags; 574 575 union { 576 struct rcu_head pt_rcu_head; 577 struct list_head pt_list; 578 struct { 579 unsigned long _pt_pad_1; 580 pgtable_t pmd_huge_pte; 581 }; 582 }; 583 unsigned long __page_mapping; 584 585 union { 586 pgoff_t pt_index; 587 struct mm_struct *pt_mm; 588 atomic_t pt_frag_refcount; 589#ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING 590 atomic_t pt_share_count; 591#endif 592 }; 593 594 union { 595 unsigned long _pt_pad_2; 596#if ALLOC_SPLIT_PTLOCKS 597 spinlock_t *ptl; 598#else 599 spinlock_t ptl; 600#endif 601 }; 602 unsigned int __page_type; 603 atomic_t __page_refcount; 604#ifdef CONFIG_MEMCG 605 unsigned long pt_memcg_data; 606#endif 607}; 608 609#define TABLE_MATCH(pg, pt) \ 610 static_assert(offsetof(struct page, pg) == offsetof(struct ptdesc, pt)) 611TABLE_MATCH(flags, pt_flags); 612TABLE_MATCH(compound_head, pt_list); 613TABLE_MATCH(compound_head, _pt_pad_1); 614TABLE_MATCH(mapping, __page_mapping); 615TABLE_MATCH(__folio_index, pt_index); 616TABLE_MATCH(rcu_head, pt_rcu_head); 617TABLE_MATCH(page_type, __page_type); 618TABLE_MATCH(_refcount, __page_refcount); 619#ifdef CONFIG_MEMCG 620TABLE_MATCH(memcg_data, pt_memcg_data); 621#endif 622#undef TABLE_MATCH 623static_assert(sizeof(struct ptdesc) <= sizeof(struct page)); 624 625#define ptdesc_page(pt) (_Generic((pt), \ 626 const struct ptdesc *: (const struct page *)(pt), \ 627 struct ptdesc *: (struct page *)(pt))) 628 629#define ptdesc_folio(pt) (_Generic((pt), \ 630 const struct ptdesc *: (const struct folio *)(pt), \ 631 struct ptdesc *: (struct folio *)(pt))) 632 633#define page_ptdesc(p) (_Generic((p), \ 634 const struct page *: (const struct ptdesc *)(p), \ 635 struct page *: (struct ptdesc *)(p))) 636 637#ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING 638static inline void ptdesc_pmd_pts_init(struct ptdesc *ptdesc) 639{ 640 atomic_set(&ptdesc->pt_share_count, 0); 641} 642 643static inline void ptdesc_pmd_pts_inc(struct ptdesc *ptdesc) 644{ 645 atomic_inc(&ptdesc->pt_share_count); 646} 647 648static inline void ptdesc_pmd_pts_dec(struct ptdesc *ptdesc) 649{ 650 atomic_dec(&ptdesc->pt_share_count); 651} 652 653static inline int ptdesc_pmd_pts_count(const struct ptdesc *ptdesc) 654{ 655 return atomic_read(&ptdesc->pt_share_count); 656} 657 658static inline bool ptdesc_pmd_is_shared(struct ptdesc *ptdesc) 659{ 660 return !!ptdesc_pmd_pts_count(ptdesc); 661} 662#else 663static inline void ptdesc_pmd_pts_init(struct ptdesc *ptdesc) 664{ 665} 666#endif 667 668/* 669 * Used for sizing the vmemmap region on some architectures 670 */ 671#define STRUCT_PAGE_MAX_SHIFT (order_base_2(sizeof(struct page))) 672 673/* 674 * page_private can be used on tail pages. However, PagePrivate is only 675 * checked by the VM on the head page. So page_private on the tail pages 676 * should be used for data that's ancillary to the head page (eg attaching 677 * buffer heads to tail pages after attaching buffer heads to the head page) 678 */ 679#define page_private(page) ((page)->private) 680 681static inline void set_page_private(struct page *page, unsigned long private) 682{ 683 page->private = private; 684} 685 686static inline void *folio_get_private(const struct folio *folio) 687{ 688 return folio->private; 689} 690 691typedef unsigned long vm_flags_t; 692 693/* 694 * freeptr_t represents a SLUB freelist pointer, which might be encoded 695 * and not dereferenceable if CONFIG_SLAB_FREELIST_HARDENED is enabled. 696 */ 697typedef struct { unsigned long v; } freeptr_t; 698 699/* 700 * A region containing a mapping of a non-memory backed file under NOMMU 701 * conditions. These are held in a global tree and are pinned by the VMAs that 702 * map parts of them. 703 */ 704struct vm_region { 705 struct rb_node vm_rb; /* link in global region tree */ 706 vm_flags_t vm_flags; /* VMA vm_flags */ 707 unsigned long vm_start; /* start address of region */ 708 unsigned long vm_end; /* region initialised to here */ 709 unsigned long vm_top; /* region allocated to here */ 710 unsigned long vm_pgoff; /* the offset in vm_file corresponding to vm_start */ 711 struct file *vm_file; /* the backing file or NULL */ 712 713 int vm_usage; /* region usage count (access under nommu_region_sem) */ 714 bool vm_icache_flushed : 1; /* true if the icache has been flushed for 715 * this region */ 716}; 717 718#ifdef CONFIG_USERFAULTFD 719#define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) { NULL, }) 720struct vm_userfaultfd_ctx { 721 struct userfaultfd_ctx *ctx; 722}; 723#else /* CONFIG_USERFAULTFD */ 724#define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) {}) 725struct vm_userfaultfd_ctx {}; 726#endif /* CONFIG_USERFAULTFD */ 727 728struct anon_vma_name { 729 struct kref kref; 730 /* The name needs to be at the end because it is dynamically sized. */ 731 char name[]; 732}; 733 734#ifdef CONFIG_ANON_VMA_NAME 735/* 736 * mmap_lock should be read-locked when calling anon_vma_name(). Caller should 737 * either keep holding the lock while using the returned pointer or it should 738 * raise anon_vma_name refcount before releasing the lock. 739 */ 740struct anon_vma_name *anon_vma_name(struct vm_area_struct *vma); 741struct anon_vma_name *anon_vma_name_alloc(const char *name); 742void anon_vma_name_free(struct kref *kref); 743#else /* CONFIG_ANON_VMA_NAME */ 744static inline struct anon_vma_name *anon_vma_name(struct vm_area_struct *vma) 745{ 746 return NULL; 747} 748 749static inline struct anon_vma_name *anon_vma_name_alloc(const char *name) 750{ 751 return NULL; 752} 753#endif 754 755#define VMA_LOCK_OFFSET 0x40000000 756#define VMA_REF_LIMIT (VMA_LOCK_OFFSET - 1) 757 758struct vma_numab_state { 759 /* 760 * Initialised as time in 'jiffies' after which VMA 761 * should be scanned. Delays first scan of new VMA by at 762 * least sysctl_numa_balancing_scan_delay: 763 */ 764 unsigned long next_scan; 765 766 /* 767 * Time in jiffies when pids_active[] is reset to 768 * detect phase change behaviour: 769 */ 770 unsigned long pids_active_reset; 771 772 /* 773 * Approximate tracking of PIDs that trapped a NUMA hinting 774 * fault. May produce false positives due to hash collisions. 775 * 776 * [0] Previous PID tracking 777 * [1] Current PID tracking 778 * 779 * Window moves after next_pid_reset has expired approximately 780 * every VMA_PID_RESET_PERIOD jiffies: 781 */ 782 unsigned long pids_active[2]; 783 784 /* MM scan sequence ID when scan first started after VMA creation */ 785 int start_scan_seq; 786 787 /* 788 * MM scan sequence ID when the VMA was last completely scanned. 789 * A VMA is not eligible for scanning if prev_scan_seq == numa_scan_seq 790 */ 791 int prev_scan_seq; 792}; 793 794#ifdef __HAVE_PFNMAP_TRACKING 795struct pfnmap_track_ctx { 796 struct kref kref; 797 unsigned long pfn; 798 unsigned long size; /* in bytes */ 799}; 800#endif 801 802/* What action should be taken after an .mmap_prepare call is complete? */ 803enum mmap_action_type { 804 MMAP_NOTHING, /* Mapping is complete, no further action. */ 805 MMAP_REMAP_PFN, /* Remap PFN range. */ 806 MMAP_IO_REMAP_PFN, /* I/O remap PFN range. */ 807}; 808 809/* 810 * Describes an action an mmap_prepare hook can instruct to be taken to complete 811 * the mapping of a VMA. Specified in vm_area_desc. 812 */ 813struct mmap_action { 814 union { 815 /* Remap range. */ 816 struct { 817 unsigned long start; 818 unsigned long start_pfn; 819 unsigned long size; 820 pgprot_t pgprot; 821 } remap; 822 }; 823 enum mmap_action_type type; 824 825 /* 826 * If specified, this hook is invoked after the selected action has been 827 * successfully completed. Note that the VMA write lock still held. 828 * 829 * The absolute minimum ought to be done here. 830 * 831 * Returns 0 on success, or an error code. 832 */ 833 int (*success_hook)(const struct vm_area_struct *vma); 834 835 /* 836 * If specified, this hook is invoked when an error occurred when 837 * attempting the selection action. 838 * 839 * The hook can return an error code in order to filter the error, but 840 * it is not valid to clear the error here. 841 */ 842 int (*error_hook)(int err); 843 844 /* 845 * This should be set in rare instances where the operation required 846 * that the rmap should not be able to access the VMA until 847 * completely set up. 848 */ 849 bool hide_from_rmap_until_complete :1; 850}; 851 852/* 853 * Opaque type representing current VMA (vm_area_struct) flag state. Must be 854 * accessed via vma_flags_xxx() helper functions. 855 */ 856#define NUM_VMA_FLAG_BITS BITS_PER_LONG 857typedef struct { 858 DECLARE_BITMAP(__vma_flags, NUM_VMA_FLAG_BITS); 859} __private vma_flags_t; 860 861/* 862 * Describes a VMA that is about to be mmap()'ed. Drivers may choose to 863 * manipulate mutable fields which will cause those fields to be updated in the 864 * resultant VMA. 865 * 866 * Helper functions are not required for manipulating any field. 867 */ 868struct vm_area_desc { 869 /* Immutable state. */ 870 const struct mm_struct *const mm; 871 struct file *const file; /* May vary from vm_file in stacked callers. */ 872 unsigned long start; 873 unsigned long end; 874 875 /* Mutable fields. Populated with initial state. */ 876 pgoff_t pgoff; 877 struct file *vm_file; 878 union { 879 vm_flags_t vm_flags; 880 vma_flags_t vma_flags; 881 }; 882 pgprot_t page_prot; 883 884 /* Write-only fields. */ 885 const struct vm_operations_struct *vm_ops; 886 void *private_data; 887 888 /* Take further action? */ 889 struct mmap_action action; 890}; 891 892/* 893 * This struct describes a virtual memory area. There is one of these 894 * per VM-area/task. A VM area is any part of the process virtual memory 895 * space that has a special rule for the page-fault handlers (ie a shared 896 * library, the executable area etc). 897 * 898 * Only explicitly marked struct members may be accessed by RCU readers before 899 * getting a stable reference. 900 * 901 * WARNING: when adding new members, please update vm_area_init_from() to copy 902 * them during vm_area_struct content duplication. 903 */ 904struct vm_area_struct { 905 /* The first cache line has the info for VMA tree walking. */ 906 907 union { 908 struct { 909 /* VMA covers [vm_start; vm_end) addresses within mm */ 910 unsigned long vm_start; 911 unsigned long vm_end; 912 }; 913 freeptr_t vm_freeptr; /* Pointer used by SLAB_TYPESAFE_BY_RCU */ 914 }; 915 916 /* 917 * The address space we belong to. 918 * Unstable RCU readers are allowed to read this. 919 */ 920 struct mm_struct *vm_mm; 921 pgprot_t vm_page_prot; /* Access permissions of this VMA. */ 922 923 /* 924 * Flags, see mm.h. 925 * To modify use vm_flags_{init|reset|set|clear|mod} functions. 926 * Preferably, use vma_flags_xxx() functions. 927 */ 928 union { 929 /* Temporary while VMA flags are being converted. */ 930 const vm_flags_t vm_flags; 931 vma_flags_t flags; 932 }; 933 934#ifdef CONFIG_PER_VMA_LOCK 935 /* 936 * Can only be written (using WRITE_ONCE()) while holding both: 937 * - mmap_lock (in write mode) 938 * - vm_refcnt bit at VMA_LOCK_OFFSET is set 939 * Can be read reliably while holding one of: 940 * - mmap_lock (in read or write mode) 941 * - vm_refcnt bit at VMA_LOCK_OFFSET is set or vm_refcnt > 1 942 * Can be read unreliably (using READ_ONCE()) for pessimistic bailout 943 * while holding nothing (except RCU to keep the VMA struct allocated). 944 * 945 * This sequence counter is explicitly allowed to overflow; sequence 946 * counter reuse can only lead to occasional unnecessary use of the 947 * slowpath. 948 */ 949 unsigned int vm_lock_seq; 950#endif 951 /* 952 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma 953 * list, after a COW of one of the file pages. A MAP_SHARED vma 954 * can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack 955 * or brk vma (with NULL file) can only be in an anon_vma list. 956 */ 957 struct list_head anon_vma_chain; /* Serialized by mmap_lock & 958 * page_table_lock */ 959 struct anon_vma *anon_vma; /* Serialized by page_table_lock */ 960 961 /* Function pointers to deal with this struct. */ 962 const struct vm_operations_struct *vm_ops; 963 964 /* Information about our backing store: */ 965 unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE 966 units */ 967 struct file * vm_file; /* File we map to (can be NULL). */ 968 void * vm_private_data; /* was vm_pte (shared mem) */ 969 970#ifdef CONFIG_SWAP 971 atomic_long_t swap_readahead_info; 972#endif 973#ifndef CONFIG_MMU 974 struct vm_region *vm_region; /* NOMMU mapping region */ 975#endif 976#ifdef CONFIG_NUMA 977 struct mempolicy *vm_policy; /* NUMA policy for the VMA */ 978#endif 979#ifdef CONFIG_NUMA_BALANCING 980 struct vma_numab_state *numab_state; /* NUMA Balancing state */ 981#endif 982#ifdef CONFIG_PER_VMA_LOCK 983 /* Unstable RCU readers are allowed to read this. */ 984 refcount_t vm_refcnt ____cacheline_aligned_in_smp; 985#ifdef CONFIG_DEBUG_LOCK_ALLOC 986 struct lockdep_map vmlock_dep_map; 987#endif 988#endif 989 /* 990 * For areas with an address space and backing store, 991 * linkage into the address_space->i_mmap interval tree. 992 * 993 */ 994 struct { 995 struct rb_node rb; 996 unsigned long rb_subtree_last; 997 } shared; 998#ifdef CONFIG_ANON_VMA_NAME 999 /* 1000 * For private and shared anonymous mappings, a pointer to a null 1001 * terminated string containing the name given to the vma, or NULL if 1002 * unnamed. Serialized by mmap_lock. Use anon_vma_name to access. 1003 */ 1004 struct anon_vma_name *anon_name; 1005#endif 1006 struct vm_userfaultfd_ctx vm_userfaultfd_ctx; 1007#ifdef __HAVE_PFNMAP_TRACKING 1008 struct pfnmap_track_ctx *pfnmap_track_ctx; 1009#endif 1010} __randomize_layout; 1011 1012/* Clears all bits in the VMA flags bitmap, non-atomically. */ 1013static inline void vma_flags_clear_all(vma_flags_t *flags) 1014{ 1015 bitmap_zero(ACCESS_PRIVATE(flags, __vma_flags), NUM_VMA_FLAG_BITS); 1016} 1017 1018/* 1019 * Copy value to the first system word of VMA flags, non-atomically. 1020 * 1021 * IMPORTANT: This does not overwrite bytes past the first system word. The 1022 * caller must account for this. 1023 */ 1024static inline void vma_flags_overwrite_word(vma_flags_t *flags, unsigned long value) 1025{ 1026 *ACCESS_PRIVATE(flags, __vma_flags) = value; 1027} 1028 1029/* 1030 * Copy value to the first system word of VMA flags ONCE, non-atomically. 1031 * 1032 * IMPORTANT: This does not overwrite bytes past the first system word. The 1033 * caller must account for this. 1034 */ 1035static inline void vma_flags_overwrite_word_once(vma_flags_t *flags, unsigned long value) 1036{ 1037 unsigned long *bitmap = ACCESS_PRIVATE(flags, __vma_flags); 1038 1039 WRITE_ONCE(*bitmap, value); 1040} 1041 1042/* Update the first system word of VMA flags setting bits, non-atomically. */ 1043static inline void vma_flags_set_word(vma_flags_t *flags, unsigned long value) 1044{ 1045 unsigned long *bitmap = ACCESS_PRIVATE(flags, __vma_flags); 1046 1047 *bitmap |= value; 1048} 1049 1050/* Update the first system word of VMA flags clearing bits, non-atomically. */ 1051static inline void vma_flags_clear_word(vma_flags_t *flags, unsigned long value) 1052{ 1053 unsigned long *bitmap = ACCESS_PRIVATE(flags, __vma_flags); 1054 1055 *bitmap &= ~value; 1056} 1057 1058#ifdef CONFIG_NUMA 1059#define vma_policy(vma) ((vma)->vm_policy) 1060#else 1061#define vma_policy(vma) NULL 1062#endif 1063 1064/* 1065 * Opaque type representing current mm_struct flag state. Must be accessed via 1066 * mm_flags_xxx() helper functions. 1067 */ 1068#define NUM_MM_FLAG_BITS (64) 1069typedef struct { 1070 DECLARE_BITMAP(__mm_flags, NUM_MM_FLAG_BITS); 1071} __private mm_flags_t; 1072 1073struct kioctx_table; 1074struct iommu_mm_data; 1075struct mm_struct { 1076 struct { 1077 /* 1078 * Fields which are often written to are placed in a separate 1079 * cache line. 1080 */ 1081 struct { 1082 /** 1083 * @mm_count: The number of references to &struct 1084 * mm_struct (@mm_users count as 1). 1085 * 1086 * Use mmgrab()/mmdrop() to modify. When this drops to 1087 * 0, the &struct mm_struct is freed. 1088 */ 1089 atomic_t mm_count; 1090 } ____cacheline_aligned_in_smp; 1091 1092 struct maple_tree mm_mt; 1093 1094 unsigned long mmap_base; /* base of mmap area */ 1095 unsigned long mmap_legacy_base; /* base of mmap area in bottom-up allocations */ 1096#ifdef CONFIG_HAVE_ARCH_COMPAT_MMAP_BASES 1097 /* Base addresses for compatible mmap() */ 1098 unsigned long mmap_compat_base; 1099 unsigned long mmap_compat_legacy_base; 1100#endif 1101 unsigned long task_size; /* size of task vm space */ 1102 pgd_t * pgd; 1103 1104#ifdef CONFIG_MEMBARRIER 1105 /** 1106 * @membarrier_state: Flags controlling membarrier behavior. 1107 * 1108 * This field is close to @pgd to hopefully fit in the same 1109 * cache-line, which needs to be touched by switch_mm(). 1110 */ 1111 atomic_t membarrier_state; 1112#endif 1113 1114 /** 1115 * @mm_users: The number of users including userspace. 1116 * 1117 * Use mmget()/mmget_not_zero()/mmput() to modify. When this 1118 * drops to 0 (i.e. when the task exits and there are no other 1119 * temporary reference holders), we also release a reference on 1120 * @mm_count (which may then free the &struct mm_struct if 1121 * @mm_count also drops to 0). 1122 */ 1123 atomic_t mm_users; 1124 1125 /* MM CID related storage */ 1126 struct mm_mm_cid mm_cid; 1127 1128#ifdef CONFIG_MMU 1129 atomic_long_t pgtables_bytes; /* size of all page tables */ 1130#endif 1131 int map_count; /* number of VMAs */ 1132 1133 spinlock_t page_table_lock; /* Protects page tables and some 1134 * counters 1135 */ 1136 /* 1137 * Typically the current mmap_lock's offset is 56 bytes from 1138 * the last cacheline boundary, which is very optimal, as 1139 * its two hot fields 'count' and 'owner' sit in 2 different 1140 * cachelines, and when mmap_lock is highly contended, both 1141 * of the 2 fields will be accessed frequently, current layout 1142 * will help to reduce cache bouncing. 1143 * 1144 * So please be careful with adding new fields before 1145 * mmap_lock, which can easily push the 2 fields into one 1146 * cacheline. 1147 */ 1148 struct rw_semaphore mmap_lock; 1149 1150 struct list_head mmlist; /* List of maybe swapped mm's. These 1151 * are globally strung together off 1152 * init_mm.mmlist, and are protected 1153 * by mmlist_lock 1154 */ 1155#ifdef CONFIG_PER_VMA_LOCK 1156 struct rcuwait vma_writer_wait; 1157 /* 1158 * This field has lock-like semantics, meaning it is sometimes 1159 * accessed with ACQUIRE/RELEASE semantics. 1160 * Roughly speaking, incrementing the sequence number is 1161 * equivalent to releasing locks on VMAs; reading the sequence 1162 * number can be part of taking a read lock on a VMA. 1163 * Incremented every time mmap_lock is write-locked/unlocked. 1164 * Initialized to 0, therefore odd values indicate mmap_lock 1165 * is write-locked and even values that it's released. 1166 * 1167 * Can be modified under write mmap_lock using RELEASE 1168 * semantics. 1169 * Can be read with no other protection when holding write 1170 * mmap_lock. 1171 * Can be read with ACQUIRE semantics if not holding write 1172 * mmap_lock. 1173 */ 1174 seqcount_t mm_lock_seq; 1175#endif 1176#ifdef CONFIG_FUTEX_PRIVATE_HASH 1177 struct mutex futex_hash_lock; 1178 struct futex_private_hash __rcu *futex_phash; 1179 struct futex_private_hash *futex_phash_new; 1180 /* futex-ref */ 1181 unsigned long futex_batches; 1182 struct rcu_head futex_rcu; 1183 atomic_long_t futex_atomic; 1184 unsigned int __percpu *futex_ref; 1185#endif 1186 1187 unsigned long hiwater_rss; /* High-watermark of RSS usage */ 1188 unsigned long hiwater_vm; /* High-water virtual memory usage */ 1189 1190 unsigned long total_vm; /* Total pages mapped */ 1191 unsigned long locked_vm; /* Pages that have PG_mlocked set */ 1192 atomic64_t pinned_vm; /* Refcount permanently increased */ 1193 unsigned long data_vm; /* VM_WRITE & ~VM_SHARED & ~VM_STACK */ 1194 unsigned long exec_vm; /* VM_EXEC & ~VM_WRITE & ~VM_STACK */ 1195 unsigned long stack_vm; /* VM_STACK */ 1196 vm_flags_t def_flags; 1197 1198 /** 1199 * @write_protect_seq: Locked when any thread is write 1200 * protecting pages mapped by this mm to enforce a later COW, 1201 * for instance during page table copying for fork(). 1202 */ 1203 seqcount_t write_protect_seq; 1204 1205 spinlock_t arg_lock; /* protect the below fields */ 1206 1207 unsigned long start_code, end_code, start_data, end_data; 1208 unsigned long start_brk, brk, start_stack; 1209 unsigned long arg_start, arg_end, env_start, env_end; 1210 1211 unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */ 1212 1213#ifdef CONFIG_ARCH_HAS_ELF_CORE_EFLAGS 1214 /* the ABI-related flags from the ELF header. Used for core dump */ 1215 unsigned long saved_e_flags; 1216#endif 1217 1218 struct percpu_counter rss_stat[NR_MM_COUNTERS]; 1219 1220 struct linux_binfmt *binfmt; 1221 1222 /* Architecture-specific MM context */ 1223 mm_context_t context; 1224 1225 mm_flags_t flags; /* Must use mm_flags_* hlpers to access */ 1226 1227#ifdef CONFIG_AIO 1228 spinlock_t ioctx_lock; 1229 struct kioctx_table __rcu *ioctx_table; 1230#endif 1231#ifdef CONFIG_MEMCG 1232 /* 1233 * "owner" points to a task that is regarded as the canonical 1234 * user/owner of this mm. All of the following must be true in 1235 * order for it to be changed: 1236 * 1237 * current == mm->owner 1238 * current->mm != mm 1239 * new_owner->mm == mm 1240 * new_owner->alloc_lock is held 1241 */ 1242 struct task_struct __rcu *owner; 1243#endif 1244 struct user_namespace *user_ns; 1245 1246 /* store ref to file /proc/<pid>/exe symlink points to */ 1247 struct file __rcu *exe_file; 1248#ifdef CONFIG_MMU_NOTIFIER 1249 struct mmu_notifier_subscriptions *notifier_subscriptions; 1250#endif 1251#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !defined(CONFIG_SPLIT_PMD_PTLOCKS) 1252 pgtable_t pmd_huge_pte; /* protected by page_table_lock */ 1253#endif 1254#ifdef CONFIG_NUMA_BALANCING 1255 /* 1256 * numa_next_scan is the next time that PTEs will be remapped 1257 * PROT_NONE to trigger NUMA hinting faults; such faults gather 1258 * statistics and migrate pages to new nodes if necessary. 1259 */ 1260 unsigned long numa_next_scan; 1261 1262 /* Restart point for scanning and remapping PTEs. */ 1263 unsigned long numa_scan_offset; 1264 1265 /* numa_scan_seq prevents two threads remapping PTEs. */ 1266 int numa_scan_seq; 1267#endif 1268 /* 1269 * An operation with batched TLB flushing is going on. Anything 1270 * that can move process memory needs to flush the TLB when 1271 * moving a PROT_NONE mapped page. 1272 */ 1273 atomic_t tlb_flush_pending; 1274#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 1275 /* See flush_tlb_batched_pending() */ 1276 atomic_t tlb_flush_batched; 1277#endif 1278 struct uprobes_state uprobes_state; 1279#ifdef CONFIG_PREEMPT_RT 1280 struct rcu_head delayed_drop; 1281#endif 1282#ifdef CONFIG_HUGETLB_PAGE 1283 atomic_long_t hugetlb_usage; 1284#endif 1285 struct work_struct async_put_work; 1286 1287#ifdef CONFIG_IOMMU_MM_DATA 1288 struct iommu_mm_data *iommu_mm; 1289#endif 1290#ifdef CONFIG_KSM 1291 /* 1292 * Represent how many pages of this process are involved in KSM 1293 * merging (not including ksm_zero_pages). 1294 */ 1295 unsigned long ksm_merging_pages; 1296 /* 1297 * Represent how many pages are checked for ksm merging 1298 * including merged and not merged. 1299 */ 1300 unsigned long ksm_rmap_items; 1301 /* 1302 * Represent how many empty pages are merged with kernel zero 1303 * pages when enabling KSM use_zero_pages. 1304 */ 1305 atomic_long_t ksm_zero_pages; 1306#endif /* CONFIG_KSM */ 1307#ifdef CONFIG_LRU_GEN_WALKS_MMU 1308 struct { 1309 /* this mm_struct is on lru_gen_mm_list */ 1310 struct list_head list; 1311 /* 1312 * Set when switching to this mm_struct, as a hint of 1313 * whether it has been used since the last time per-node 1314 * page table walkers cleared the corresponding bits. 1315 */ 1316 unsigned long bitmap; 1317#ifdef CONFIG_MEMCG 1318 /* points to the memcg of "owner" above */ 1319 struct mem_cgroup *memcg; 1320#endif 1321 } lru_gen; 1322#endif /* CONFIG_LRU_GEN_WALKS_MMU */ 1323#ifdef CONFIG_MM_ID 1324 mm_id_t mm_id; 1325#endif /* CONFIG_MM_ID */ 1326 } __randomize_layout; 1327 1328 /* 1329 * The mm_cpumask needs to be at the end of mm_struct, because it 1330 * is dynamically sized based on nr_cpu_ids. 1331 */ 1332 unsigned long cpu_bitmap[]; 1333}; 1334 1335/* Copy value to the first system word of mm flags, non-atomically. */ 1336static inline void __mm_flags_overwrite_word(struct mm_struct *mm, unsigned long value) 1337{ 1338 *ACCESS_PRIVATE(&mm->flags, __mm_flags) = value; 1339} 1340 1341/* Obtain a read-only view of the mm flags bitmap. */ 1342static inline const unsigned long *__mm_flags_get_bitmap(const struct mm_struct *mm) 1343{ 1344 return (const unsigned long *)ACCESS_PRIVATE(&mm->flags, __mm_flags); 1345} 1346 1347/* Read the first system word of mm flags, non-atomically. */ 1348static inline unsigned long __mm_flags_get_word(const struct mm_struct *mm) 1349{ 1350 return *__mm_flags_get_bitmap(mm); 1351} 1352 1353/* 1354 * Update the first system word of mm flags ONLY, applying the specified mask to 1355 * it, then setting all flags specified by bits. 1356 */ 1357static inline void __mm_flags_set_mask_bits_word(struct mm_struct *mm, 1358 unsigned long mask, unsigned long bits) 1359{ 1360 unsigned long *bitmap = ACCESS_PRIVATE(&mm->flags, __mm_flags); 1361 1362 set_mask_bits(bitmap, mask, bits); 1363} 1364 1365#define MM_MT_FLAGS (MT_FLAGS_ALLOC_RANGE | MT_FLAGS_LOCK_EXTERN | \ 1366 MT_FLAGS_USE_RCU) 1367extern struct mm_struct init_mm; 1368 1369/* Pointer magic because the dynamic array size confuses some compilers. */ 1370static inline void mm_init_cpumask(struct mm_struct *mm) 1371{ 1372 unsigned long cpu_bitmap = (unsigned long)mm; 1373 1374 cpu_bitmap += offsetof(struct mm_struct, cpu_bitmap); 1375 cpumask_clear((struct cpumask *)cpu_bitmap); 1376} 1377 1378/* Future-safe accessor for struct mm_struct's cpu_vm_mask. */ 1379static inline cpumask_t *mm_cpumask(struct mm_struct *mm) 1380{ 1381 return (struct cpumask *)&mm->cpu_bitmap; 1382} 1383 1384#ifdef CONFIG_LRU_GEN 1385 1386struct lru_gen_mm_list { 1387 /* mm_struct list for page table walkers */ 1388 struct list_head fifo; 1389 /* protects the list above */ 1390 spinlock_t lock; 1391}; 1392 1393#endif /* CONFIG_LRU_GEN */ 1394 1395#ifdef CONFIG_LRU_GEN_WALKS_MMU 1396 1397void lru_gen_add_mm(struct mm_struct *mm); 1398void lru_gen_del_mm(struct mm_struct *mm); 1399void lru_gen_migrate_mm(struct mm_struct *mm); 1400 1401static inline void lru_gen_init_mm(struct mm_struct *mm) 1402{ 1403 INIT_LIST_HEAD(&mm->lru_gen.list); 1404 mm->lru_gen.bitmap = 0; 1405#ifdef CONFIG_MEMCG 1406 mm->lru_gen.memcg = NULL; 1407#endif 1408} 1409 1410static inline void lru_gen_use_mm(struct mm_struct *mm) 1411{ 1412 /* 1413 * When the bitmap is set, page reclaim knows this mm_struct has been 1414 * used since the last time it cleared the bitmap. So it might be worth 1415 * walking the page tables of this mm_struct to clear the accessed bit. 1416 */ 1417 WRITE_ONCE(mm->lru_gen.bitmap, -1); 1418} 1419 1420#else /* !CONFIG_LRU_GEN_WALKS_MMU */ 1421 1422static inline void lru_gen_add_mm(struct mm_struct *mm) 1423{ 1424} 1425 1426static inline void lru_gen_del_mm(struct mm_struct *mm) 1427{ 1428} 1429 1430static inline void lru_gen_migrate_mm(struct mm_struct *mm) 1431{ 1432} 1433 1434static inline void lru_gen_init_mm(struct mm_struct *mm) 1435{ 1436} 1437 1438static inline void lru_gen_use_mm(struct mm_struct *mm) 1439{ 1440} 1441 1442#endif /* CONFIG_LRU_GEN_WALKS_MMU */ 1443 1444struct vma_iterator { 1445 struct ma_state mas; 1446}; 1447 1448#define VMA_ITERATOR(name, __mm, __addr) \ 1449 struct vma_iterator name = { \ 1450 .mas = { \ 1451 .tree = &(__mm)->mm_mt, \ 1452 .index = __addr, \ 1453 .node = NULL, \ 1454 .status = ma_start, \ 1455 }, \ 1456 } 1457 1458static inline void vma_iter_init(struct vma_iterator *vmi, 1459 struct mm_struct *mm, unsigned long addr) 1460{ 1461 mas_init(&vmi->mas, &mm->mm_mt, addr); 1462} 1463 1464#ifdef CONFIG_SCHED_MM_CID 1465/* 1466 * mm_cpus_allowed: Union of all mm's threads allowed CPUs. 1467 */ 1468static inline cpumask_t *mm_cpus_allowed(struct mm_struct *mm) 1469{ 1470 unsigned long bitmap = (unsigned long)mm; 1471 1472 bitmap += offsetof(struct mm_struct, cpu_bitmap); 1473 /* Skip cpu_bitmap */ 1474 bitmap += cpumask_size(); 1475 return (struct cpumask *)bitmap; 1476} 1477 1478/* Accessor for struct mm_struct's cidmask. */ 1479static inline unsigned long *mm_cidmask(struct mm_struct *mm) 1480{ 1481 unsigned long cid_bitmap = (unsigned long)mm_cpus_allowed(mm); 1482 1483 /* Skip mm_cpus_allowed */ 1484 cid_bitmap += cpumask_size(); 1485 return (unsigned long *)cid_bitmap; 1486} 1487 1488void mm_init_cid(struct mm_struct *mm, struct task_struct *p); 1489 1490static inline int mm_alloc_cid_noprof(struct mm_struct *mm, struct task_struct *p) 1491{ 1492 mm->mm_cid.pcpu = alloc_percpu_noprof(struct mm_cid_pcpu); 1493 if (!mm->mm_cid.pcpu) 1494 return -ENOMEM; 1495 mm_init_cid(mm, p); 1496 return 0; 1497} 1498#define mm_alloc_cid(...) alloc_hooks(mm_alloc_cid_noprof(__VA_ARGS__)) 1499 1500static inline void mm_destroy_cid(struct mm_struct *mm) 1501{ 1502 free_percpu(mm->mm_cid.pcpu); 1503 mm->mm_cid.pcpu = NULL; 1504} 1505 1506static inline unsigned int mm_cid_size(void) 1507{ 1508 /* mm_cpus_allowed(), mm_cidmask(). */ 1509 return cpumask_size() + bitmap_size(num_possible_cpus()); 1510} 1511 1512#else /* CONFIG_SCHED_MM_CID */ 1513static inline void mm_init_cid(struct mm_struct *mm, struct task_struct *p) { } 1514static inline int mm_alloc_cid(struct mm_struct *mm, struct task_struct *p) { return 0; } 1515static inline void mm_destroy_cid(struct mm_struct *mm) { } 1516static inline unsigned int mm_cid_size(void) 1517{ 1518 return 0; 1519} 1520#endif /* CONFIG_SCHED_MM_CID */ 1521 1522struct mmu_gather; 1523extern void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm); 1524extern void tlb_gather_mmu_fullmm(struct mmu_gather *tlb, struct mm_struct *mm); 1525extern void tlb_finish_mmu(struct mmu_gather *tlb); 1526 1527struct vm_fault; 1528 1529/** 1530 * typedef vm_fault_t - Return type for page fault handlers. 1531 * 1532 * Page fault handlers return a bitmask of %VM_FAULT values. 1533 */ 1534typedef __bitwise unsigned int vm_fault_t; 1535 1536/** 1537 * enum vm_fault_reason - Page fault handlers return a bitmask of 1538 * these values to tell the core VM what happened when handling the 1539 * fault. Used to decide whether a process gets delivered SIGBUS or 1540 * just gets major/minor fault counters bumped up. 1541 * 1542 * @VM_FAULT_OOM: Out Of Memory 1543 * @VM_FAULT_SIGBUS: Bad access 1544 * @VM_FAULT_MAJOR: Page read from storage 1545 * @VM_FAULT_HWPOISON: Hit poisoned small page 1546 * @VM_FAULT_HWPOISON_LARGE: Hit poisoned large page. Index encoded 1547 * in upper bits 1548 * @VM_FAULT_SIGSEGV: segmentation fault 1549 * @VM_FAULT_NOPAGE: ->fault installed the pte, not return page 1550 * @VM_FAULT_LOCKED: ->fault locked the returned page 1551 * @VM_FAULT_RETRY: ->fault blocked, must retry 1552 * @VM_FAULT_FALLBACK: huge page fault failed, fall back to small 1553 * @VM_FAULT_DONE_COW: ->fault has fully handled COW 1554 * @VM_FAULT_NEEDDSYNC: ->fault did not modify page tables and needs 1555 * fsync() to complete (for synchronous page faults 1556 * in DAX) 1557 * @VM_FAULT_COMPLETED: ->fault completed, meanwhile mmap lock released 1558 * @VM_FAULT_HINDEX_MASK: mask HINDEX value 1559 * 1560 */ 1561enum vm_fault_reason { 1562 VM_FAULT_OOM = (__force vm_fault_t)0x000001, 1563 VM_FAULT_SIGBUS = (__force vm_fault_t)0x000002, 1564 VM_FAULT_MAJOR = (__force vm_fault_t)0x000004, 1565 VM_FAULT_HWPOISON = (__force vm_fault_t)0x000010, 1566 VM_FAULT_HWPOISON_LARGE = (__force vm_fault_t)0x000020, 1567 VM_FAULT_SIGSEGV = (__force vm_fault_t)0x000040, 1568 VM_FAULT_NOPAGE = (__force vm_fault_t)0x000100, 1569 VM_FAULT_LOCKED = (__force vm_fault_t)0x000200, 1570 VM_FAULT_RETRY = (__force vm_fault_t)0x000400, 1571 VM_FAULT_FALLBACK = (__force vm_fault_t)0x000800, 1572 VM_FAULT_DONE_COW = (__force vm_fault_t)0x001000, 1573 VM_FAULT_NEEDDSYNC = (__force vm_fault_t)0x002000, 1574 VM_FAULT_COMPLETED = (__force vm_fault_t)0x004000, 1575 VM_FAULT_HINDEX_MASK = (__force vm_fault_t)0x0f0000, 1576}; 1577 1578/* Encode hstate index for a hwpoisoned large page */ 1579#define VM_FAULT_SET_HINDEX(x) ((__force vm_fault_t)((x) << 16)) 1580#define VM_FAULT_GET_HINDEX(x) (((__force unsigned int)(x) >> 16) & 0xf) 1581 1582#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | \ 1583 VM_FAULT_SIGSEGV | VM_FAULT_HWPOISON | \ 1584 VM_FAULT_HWPOISON_LARGE | VM_FAULT_FALLBACK) 1585 1586#define VM_FAULT_RESULT_TRACE \ 1587 { VM_FAULT_OOM, "OOM" }, \ 1588 { VM_FAULT_SIGBUS, "SIGBUS" }, \ 1589 { VM_FAULT_MAJOR, "MAJOR" }, \ 1590 { VM_FAULT_HWPOISON, "HWPOISON" }, \ 1591 { VM_FAULT_HWPOISON_LARGE, "HWPOISON_LARGE" }, \ 1592 { VM_FAULT_SIGSEGV, "SIGSEGV" }, \ 1593 { VM_FAULT_NOPAGE, "NOPAGE" }, \ 1594 { VM_FAULT_LOCKED, "LOCKED" }, \ 1595 { VM_FAULT_RETRY, "RETRY" }, \ 1596 { VM_FAULT_FALLBACK, "FALLBACK" }, \ 1597 { VM_FAULT_DONE_COW, "DONE_COW" }, \ 1598 { VM_FAULT_NEEDDSYNC, "NEEDDSYNC" }, \ 1599 { VM_FAULT_COMPLETED, "COMPLETED" } 1600 1601struct vm_special_mapping { 1602 const char *name; /* The name, e.g. "[vdso]". */ 1603 1604 /* 1605 * If .fault is not provided, this points to a 1606 * NULL-terminated array of pages that back the special mapping. 1607 * 1608 * This must not be NULL unless .fault is provided. 1609 */ 1610 struct page **pages; 1611 1612 /* 1613 * If non-NULL, then this is called to resolve page faults 1614 * on the special mapping. If used, .pages is not checked. 1615 */ 1616 vm_fault_t (*fault)(const struct vm_special_mapping *sm, 1617 struct vm_area_struct *vma, 1618 struct vm_fault *vmf); 1619 1620 int (*mremap)(const struct vm_special_mapping *sm, 1621 struct vm_area_struct *new_vma); 1622 1623 void (*close)(const struct vm_special_mapping *sm, 1624 struct vm_area_struct *vma); 1625}; 1626 1627enum tlb_flush_reason { 1628 TLB_FLUSH_ON_TASK_SWITCH, 1629 TLB_REMOTE_SHOOTDOWN, 1630 TLB_LOCAL_SHOOTDOWN, 1631 TLB_LOCAL_MM_SHOOTDOWN, 1632 TLB_REMOTE_SEND_IPI, 1633 TLB_REMOTE_WRONG_CPU, 1634}; 1635 1636/** 1637 * enum fault_flag - Fault flag definitions. 1638 * @FAULT_FLAG_WRITE: Fault was a write fault. 1639 * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE. 1640 * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked. 1641 * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying. 1642 * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region. 1643 * @FAULT_FLAG_TRIED: The fault has been tried once. 1644 * @FAULT_FLAG_USER: The fault originated in userspace. 1645 * @FAULT_FLAG_REMOTE: The fault is not for current task/mm. 1646 * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch. 1647 * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals. 1648 * @FAULT_FLAG_UNSHARE: The fault is an unsharing request to break COW in a 1649 * COW mapping, making sure that an exclusive anon page is 1650 * mapped after the fault. 1651 * @FAULT_FLAG_ORIG_PTE_VALID: whether the fault has vmf->orig_pte cached. 1652 * We should only access orig_pte if this flag set. 1653 * @FAULT_FLAG_VMA_LOCK: The fault is handled under VMA lock. 1654 * 1655 * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify 1656 * whether we would allow page faults to retry by specifying these two 1657 * fault flags correctly. Currently there can be three legal combinations: 1658 * 1659 * (a) ALLOW_RETRY and !TRIED: this means the page fault allows retry, and 1660 * this is the first try 1661 * 1662 * (b) ALLOW_RETRY and TRIED: this means the page fault allows retry, and 1663 * we've already tried at least once 1664 * 1665 * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry 1666 * 1667 * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never 1668 * be used. Note that page faults can be allowed to retry for multiple times, 1669 * in which case we'll have an initial fault with flags (a) then later on 1670 * continuous faults with flags (b). We should always try to detect pending 1671 * signals before a retry to make sure the continuous page faults can still be 1672 * interrupted if necessary. 1673 * 1674 * The combination FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE is illegal. 1675 * FAULT_FLAG_UNSHARE is ignored and treated like an ordinary read fault when 1676 * applied to mappings that are not COW mappings. 1677 */ 1678enum fault_flag { 1679 FAULT_FLAG_WRITE = 1 << 0, 1680 FAULT_FLAG_MKWRITE = 1 << 1, 1681 FAULT_FLAG_ALLOW_RETRY = 1 << 2, 1682 FAULT_FLAG_RETRY_NOWAIT = 1 << 3, 1683 FAULT_FLAG_KILLABLE = 1 << 4, 1684 FAULT_FLAG_TRIED = 1 << 5, 1685 FAULT_FLAG_USER = 1 << 6, 1686 FAULT_FLAG_REMOTE = 1 << 7, 1687 FAULT_FLAG_INSTRUCTION = 1 << 8, 1688 FAULT_FLAG_INTERRUPTIBLE = 1 << 9, 1689 FAULT_FLAG_UNSHARE = 1 << 10, 1690 FAULT_FLAG_ORIG_PTE_VALID = 1 << 11, 1691 FAULT_FLAG_VMA_LOCK = 1 << 12, 1692}; 1693 1694typedef unsigned int __bitwise zap_flags_t; 1695 1696/* Flags for clear_young_dirty_ptes(). */ 1697typedef int __bitwise cydp_t; 1698 1699/* Clear the access bit */ 1700#define CYDP_CLEAR_YOUNG ((__force cydp_t)BIT(0)) 1701 1702/* Clear the dirty bit */ 1703#define CYDP_CLEAR_DIRTY ((__force cydp_t)BIT(1)) 1704 1705/* 1706 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each 1707 * other. Here is what they mean, and how to use them: 1708 * 1709 * 1710 * FIXME: For pages which are part of a filesystem, mappings are subject to the 1711 * lifetime enforced by the filesystem and we need guarantees that longterm 1712 * users like RDMA and V4L2 only establish mappings which coordinate usage with 1713 * the filesystem. Ideas for this coordination include revoking the longterm 1714 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was 1715 * added after the problem with filesystems was found FS DAX VMAs are 1716 * specifically failed. Filesystem pages are still subject to bugs and use of 1717 * FOLL_LONGTERM should be avoided on those pages. 1718 * 1719 * In the CMA case: long term pins in a CMA region would unnecessarily fragment 1720 * that region. And so, CMA attempts to migrate the page before pinning, when 1721 * FOLL_LONGTERM is specified. 1722 * 1723 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount, 1724 * but an additional pin counting system) will be invoked. This is intended for 1725 * anything that gets a page reference and then touches page data (for example, 1726 * Direct IO). This lets the filesystem know that some non-file-system entity is 1727 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages 1728 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by 1729 * a call to unpin_user_page(). 1730 * 1731 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different 1732 * and separate refcounting mechanisms, however, and that means that each has 1733 * its own acquire and release mechanisms: 1734 * 1735 * FOLL_GET: get_user_pages*() to acquire, and put_page() to release. 1736 * 1737 * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release. 1738 * 1739 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call. 1740 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based 1741 * calls applied to them, and that's perfectly OK. This is a constraint on the 1742 * callers, not on the pages.) 1743 * 1744 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never 1745 * directly by the caller. That's in order to help avoid mismatches when 1746 * releasing pages: get_user_pages*() pages must be released via put_page(), 1747 * while pin_user_pages*() pages must be released via unpin_user_page(). 1748 * 1749 * Please see Documentation/core-api/pin_user_pages.rst for more information. 1750 */ 1751 1752enum { 1753 /* check pte is writable */ 1754 FOLL_WRITE = 1 << 0, 1755 /* do get_page on page */ 1756 FOLL_GET = 1 << 1, 1757 /* give error on hole if it would be zero */ 1758 FOLL_DUMP = 1 << 2, 1759 /* get_user_pages read/write w/o permission */ 1760 FOLL_FORCE = 1 << 3, 1761 /* 1762 * if a disk transfer is needed, start the IO and return without waiting 1763 * upon it 1764 */ 1765 FOLL_NOWAIT = 1 << 4, 1766 /* do not fault in pages */ 1767 FOLL_NOFAULT = 1 << 5, 1768 /* check page is hwpoisoned */ 1769 FOLL_HWPOISON = 1 << 6, 1770 /* don't do file mappings */ 1771 FOLL_ANON = 1 << 7, 1772 /* 1773 * FOLL_LONGTERM indicates that the page will be held for an indefinite 1774 * time period _often_ under userspace control. This is in contrast to 1775 * iov_iter_get_pages(), whose usages are transient. 1776 */ 1777 FOLL_LONGTERM = 1 << 8, 1778 /* split huge pmd before returning */ 1779 FOLL_SPLIT_PMD = 1 << 9, 1780 /* allow returning PCI P2PDMA pages */ 1781 FOLL_PCI_P2PDMA = 1 << 10, 1782 /* allow interrupts from generic signals */ 1783 FOLL_INTERRUPTIBLE = 1 << 11, 1784 /* 1785 * Always honor (trigger) NUMA hinting faults. 1786 * 1787 * FOLL_WRITE implicitly honors NUMA hinting faults because a 1788 * PROT_NONE-mapped page is not writable (exceptions with FOLL_FORCE 1789 * apply). get_user_pages_fast_only() always implicitly honors NUMA 1790 * hinting faults. 1791 */ 1792 FOLL_HONOR_NUMA_FAULT = 1 << 12, 1793 1794 /* See also internal only FOLL flags in mm/internal.h */ 1795}; 1796 1797/* mm flags */ 1798 1799/* 1800 * The first two bits represent core dump modes for set-user-ID, 1801 * the modes are SUID_DUMP_* defined in linux/sched/coredump.h 1802 */ 1803#define MMF_DUMPABLE_BITS 2 1804#define MMF_DUMPABLE_MASK (BIT(MMF_DUMPABLE_BITS) - 1) 1805/* coredump filter bits */ 1806#define MMF_DUMP_ANON_PRIVATE 2 1807#define MMF_DUMP_ANON_SHARED 3 1808#define MMF_DUMP_MAPPED_PRIVATE 4 1809#define MMF_DUMP_MAPPED_SHARED 5 1810#define MMF_DUMP_ELF_HEADERS 6 1811#define MMF_DUMP_HUGETLB_PRIVATE 7 1812#define MMF_DUMP_HUGETLB_SHARED 8 1813#define MMF_DUMP_DAX_PRIVATE 9 1814#define MMF_DUMP_DAX_SHARED 10 1815 1816#define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS 1817#define MMF_DUMP_FILTER_BITS 9 1818#define MMF_DUMP_FILTER_MASK \ 1819 ((BIT(MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT) 1820#define MMF_DUMP_FILTER_DEFAULT \ 1821 (BIT(MMF_DUMP_ANON_PRIVATE) | BIT(MMF_DUMP_ANON_SHARED) | \ 1822 BIT(MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF) 1823 1824#ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS 1825# define MMF_DUMP_MASK_DEFAULT_ELF BIT(MMF_DUMP_ELF_HEADERS) 1826#else 1827# define MMF_DUMP_MASK_DEFAULT_ELF 0 1828#endif 1829 /* leave room for more dump flags */ 1830#define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */ 1831#define MMF_VM_HUGEPAGE 17 /* set when mm is available for khugepaged */ 1832 1833#define MMF_HUGE_ZERO_FOLIO 18 /* mm has ever used the global huge zero folio */ 1834 1835#define MMF_HAS_UPROBES 19 /* has uprobes */ 1836#define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */ 1837#define MMF_OOM_SKIP 21 /* mm is of no interest for the OOM killer */ 1838#define MMF_UNSTABLE 22 /* mm is unstable for copy_from_user */ 1839#define MMF_DISABLE_THP_EXCEPT_ADVISED 23 /* no THP except when advised (e.g., VM_HUGEPAGE) */ 1840#define MMF_DISABLE_THP_COMPLETELY 24 /* no THP for all VMAs */ 1841#define MMF_DISABLE_THP_MASK (BIT(MMF_DISABLE_THP_COMPLETELY) | \ 1842 BIT(MMF_DISABLE_THP_EXCEPT_ADVISED)) 1843#define MMF_OOM_REAP_QUEUED 25 /* mm was queued for oom_reaper */ 1844#define MMF_MULTIPROCESS 26 /* mm is shared between processes */ 1845/* 1846 * MMF_HAS_PINNED: Whether this mm has pinned any pages. This can be either 1847 * replaced in the future by mm.pinned_vm when it becomes stable, or grow into 1848 * a counter on its own. We're aggresive on this bit for now: even if the 1849 * pinned pages were unpinned later on, we'll still keep this bit set for the 1850 * lifecycle of this mm, just for simplicity. 1851 */ 1852#define MMF_HAS_PINNED 27 /* FOLL_PIN has run, never cleared */ 1853 1854#define MMF_HAS_MDWE 28 1855#define MMF_HAS_MDWE_MASK BIT(MMF_HAS_MDWE) 1856 1857#define MMF_HAS_MDWE_NO_INHERIT 29 1858 1859#define MMF_VM_MERGE_ANY 30 1860#define MMF_VM_MERGE_ANY_MASK BIT(MMF_VM_MERGE_ANY) 1861 1862#define MMF_TOPDOWN 31 /* mm searches top down by default */ 1863#define MMF_TOPDOWN_MASK BIT(MMF_TOPDOWN) 1864 1865#define MMF_INIT_LEGACY_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK |\ 1866 MMF_DISABLE_THP_MASK | MMF_HAS_MDWE_MASK |\ 1867 MMF_VM_MERGE_ANY_MASK | MMF_TOPDOWN_MASK) 1868 1869/* Legacy flags must fit within 32 bits. */ 1870static_assert((u64)MMF_INIT_LEGACY_MASK <= (u64)UINT_MAX); 1871 1872/* 1873 * Initialise legacy flags according to masks, propagating selected flags on 1874 * fork. Further flag manipulation can be performed by the caller. 1875 */ 1876static inline unsigned long mmf_init_legacy_flags(unsigned long flags) 1877{ 1878 if (flags & (1UL << MMF_HAS_MDWE_NO_INHERIT)) 1879 flags &= ~((1UL << MMF_HAS_MDWE) | 1880 (1UL << MMF_HAS_MDWE_NO_INHERIT)); 1881 return flags & MMF_INIT_LEGACY_MASK; 1882} 1883 1884#endif /* _LINUX_MM_TYPES_H */