at master 144 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_MM_H 3#define _LINUX_MM_H 4 5#include <linux/errno.h> 6#include <linux/mmdebug.h> 7#include <linux/gfp.h> 8#include <linux/pgalloc_tag.h> 9#include <linux/bug.h> 10#include <linux/list.h> 11#include <linux/mmzone.h> 12#include <linux/rbtree.h> 13#include <linux/atomic.h> 14#include <linux/debug_locks.h> 15#include <linux/compiler.h> 16#include <linux/mm_types.h> 17#include <linux/mmap_lock.h> 18#include <linux/range.h> 19#include <linux/pfn.h> 20#include <linux/percpu-refcount.h> 21#include <linux/bit_spinlock.h> 22#include <linux/shrinker.h> 23#include <linux/resource.h> 24#include <linux/page_ext.h> 25#include <linux/err.h> 26#include <linux/page-flags.h> 27#include <linux/page_ref.h> 28#include <linux/overflow.h> 29#include <linux/sizes.h> 30#include <linux/sched.h> 31#include <linux/pgtable.h> 32#include <linux/kasan.h> 33#include <linux/memremap.h> 34#include <linux/slab.h> 35#include <linux/cacheinfo.h> 36#include <linux/rcuwait.h> 37#include <linux/bitmap.h> 38#include <linux/bitops.h> 39 40struct mempolicy; 41struct anon_vma; 42struct anon_vma_chain; 43struct user_struct; 44struct pt_regs; 45struct folio_batch; 46 47void arch_mm_preinit(void); 48void mm_core_init(void); 49void init_mm_internals(void); 50 51extern atomic_long_t _totalram_pages; 52static inline unsigned long totalram_pages(void) 53{ 54 return (unsigned long)atomic_long_read(&_totalram_pages); 55} 56 57static inline void totalram_pages_inc(void) 58{ 59 atomic_long_inc(&_totalram_pages); 60} 61 62static inline void totalram_pages_dec(void) 63{ 64 atomic_long_dec(&_totalram_pages); 65} 66 67static inline void totalram_pages_add(long count) 68{ 69 atomic_long_add(count, &_totalram_pages); 70} 71 72extern void * high_memory; 73 74/* 75 * Convert between pages and MB 76 * 20 is the shift for 1MB (2^20 = 1MB) 77 * PAGE_SHIFT is the shift for page size (e.g., 12 for 4KB pages) 78 * So (20 - PAGE_SHIFT) converts between pages and MB 79 */ 80#define PAGES_TO_MB(pages) ((pages) >> (20 - PAGE_SHIFT)) 81#define MB_TO_PAGES(mb) ((mb) << (20 - PAGE_SHIFT)) 82 83#ifdef CONFIG_SYSCTL 84extern int sysctl_legacy_va_layout; 85#else 86#define sysctl_legacy_va_layout 0 87#endif 88 89#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 90extern const int mmap_rnd_bits_min; 91extern int mmap_rnd_bits_max __ro_after_init; 92extern int mmap_rnd_bits __read_mostly; 93#endif 94#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 95extern const int mmap_rnd_compat_bits_min; 96extern const int mmap_rnd_compat_bits_max; 97extern int mmap_rnd_compat_bits __read_mostly; 98#endif 99 100#ifndef DIRECT_MAP_PHYSMEM_END 101# ifdef MAX_PHYSMEM_BITS 102# define DIRECT_MAP_PHYSMEM_END ((1ULL << MAX_PHYSMEM_BITS) - 1) 103# else 104# define DIRECT_MAP_PHYSMEM_END (((phys_addr_t)-1)&~(1ULL<<63)) 105# endif 106#endif 107 108#define INVALID_PHYS_ADDR (~(phys_addr_t)0) 109 110#include <asm/page.h> 111#include <asm/processor.h> 112 113#ifndef __pa_symbol 114#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 115#endif 116 117#ifndef page_to_virt 118#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 119#endif 120 121#ifndef lm_alias 122#define lm_alias(x) __va(__pa_symbol(x)) 123#endif 124 125/* 126 * To prevent common memory management code establishing 127 * a zero page mapping on a read fault. 128 * This macro should be defined within <asm/pgtable.h>. 129 * s390 does this to prevent multiplexing of hardware bits 130 * related to the physical page in case of virtualization. 131 */ 132#ifndef mm_forbids_zeropage 133#define mm_forbids_zeropage(X) (0) 134#endif 135 136/* 137 * On some architectures it is expensive to call memset() for small sizes. 138 * If an architecture decides to implement their own version of 139 * mm_zero_struct_page they should wrap the defines below in a #ifndef and 140 * define their own version of this macro in <asm/pgtable.h> 141 */ 142#if BITS_PER_LONG == 64 143/* This function must be updated when the size of struct page grows above 96 144 * or reduces below 56. The idea that compiler optimizes out switch() 145 * statement, and only leaves move/store instructions. Also the compiler can 146 * combine write statements if they are both assignments and can be reordered, 147 * this can result in several of the writes here being dropped. 148 */ 149#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp) 150static inline void __mm_zero_struct_page(struct page *page) 151{ 152 unsigned long *_pp = (void *)page; 153 154 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */ 155 BUILD_BUG_ON(sizeof(struct page) & 7); 156 BUILD_BUG_ON(sizeof(struct page) < 56); 157 BUILD_BUG_ON(sizeof(struct page) > 96); 158 159 switch (sizeof(struct page)) { 160 case 96: 161 _pp[11] = 0; 162 fallthrough; 163 case 88: 164 _pp[10] = 0; 165 fallthrough; 166 case 80: 167 _pp[9] = 0; 168 fallthrough; 169 case 72: 170 _pp[8] = 0; 171 fallthrough; 172 case 64: 173 _pp[7] = 0; 174 fallthrough; 175 case 56: 176 _pp[6] = 0; 177 _pp[5] = 0; 178 _pp[4] = 0; 179 _pp[3] = 0; 180 _pp[2] = 0; 181 _pp[1] = 0; 182 _pp[0] = 0; 183 } 184} 185#else 186#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page))) 187#endif 188 189/* 190 * Default maximum number of active map areas, this limits the number of vmas 191 * per mm struct. Users can overwrite this number by sysctl but there is a 192 * problem. 193 * 194 * When a program's coredump is generated as ELF format, a section is created 195 * per a vma. In ELF, the number of sections is represented in unsigned short. 196 * This means the number of sections should be smaller than 65535 at coredump. 197 * Because the kernel adds some informative sections to a image of program at 198 * generating coredump, we need some margin. The number of extra sections is 199 * 1-3 now and depends on arch. We use "5" as safe margin, here. 200 * 201 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 202 * not a hard limit any more. Although some userspace tools can be surprised by 203 * that. 204 */ 205#define MAPCOUNT_ELF_CORE_MARGIN (5) 206#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 207 208extern int sysctl_max_map_count; 209 210extern unsigned long sysctl_user_reserve_kbytes; 211extern unsigned long sysctl_admin_reserve_kbytes; 212 213#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 214bool page_range_contiguous(const struct page *page, unsigned long nr_pages); 215#else 216static inline bool page_range_contiguous(const struct page *page, 217 unsigned long nr_pages) 218{ 219 return true; 220} 221#endif 222 223/* to align the pointer to the (next) page boundary */ 224#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 225 226/* to align the pointer to the (prev) page boundary */ 227#define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE) 228 229/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 230#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) 231 232/** 233 * folio_page_idx - Return the number of a page in a folio. 234 * @folio: The folio. 235 * @page: The folio page. 236 * 237 * This function expects that the page is actually part of the folio. 238 * The returned number is relative to the start of the folio. 239 */ 240static inline unsigned long folio_page_idx(const struct folio *folio, 241 const struct page *page) 242{ 243 return page - &folio->page; 244} 245 246static inline struct folio *lru_to_folio(struct list_head *head) 247{ 248 return list_entry((head)->prev, struct folio, lru); 249} 250 251void setup_initial_init_mm(void *start_code, void *end_code, 252 void *end_data, void *brk); 253 254/* 255 * Linux kernel virtual memory manager primitives. 256 * The idea being to have a "virtual" mm in the same way 257 * we have a virtual fs - giving a cleaner interface to the 258 * mm details, and allowing different kinds of memory mappings 259 * (from shared memory to executable loading to arbitrary 260 * mmap() functions). 261 */ 262 263struct vm_area_struct *vm_area_alloc(struct mm_struct *); 264struct vm_area_struct *vm_area_dup(struct vm_area_struct *); 265void vm_area_free(struct vm_area_struct *); 266 267#ifndef CONFIG_MMU 268extern struct rb_root nommu_region_tree; 269extern struct rw_semaphore nommu_region_sem; 270 271extern unsigned int kobjsize(const void *objp); 272#endif 273 274/* 275 * vm_flags in vm_area_struct, see mm_types.h. 276 * When changing, update also include/trace/events/mmflags.h 277 */ 278 279#define VM_NONE 0x00000000 280 281/** 282 * typedef vma_flag_t - specifies an individual VMA flag by bit number. 283 * 284 * This value is made type safe by sparse to avoid passing invalid flag values 285 * around. 286 */ 287typedef int __bitwise vma_flag_t; 288 289#define DECLARE_VMA_BIT(name, bitnum) \ 290 VMA_ ## name ## _BIT = ((__force vma_flag_t)bitnum) 291#define DECLARE_VMA_BIT_ALIAS(name, aliased) \ 292 VMA_ ## name ## _BIT = (VMA_ ## aliased ## _BIT) 293enum { 294 DECLARE_VMA_BIT(READ, 0), 295 DECLARE_VMA_BIT(WRITE, 1), 296 DECLARE_VMA_BIT(EXEC, 2), 297 DECLARE_VMA_BIT(SHARED, 3), 298 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 299 DECLARE_VMA_BIT(MAYREAD, 4), /* limits for mprotect() etc. */ 300 DECLARE_VMA_BIT(MAYWRITE, 5), 301 DECLARE_VMA_BIT(MAYEXEC, 6), 302 DECLARE_VMA_BIT(MAYSHARE, 7), 303 DECLARE_VMA_BIT(GROWSDOWN, 8), /* general info on the segment */ 304#ifdef CONFIG_MMU 305 DECLARE_VMA_BIT(UFFD_MISSING, 9),/* missing pages tracking */ 306#else 307 /* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */ 308 DECLARE_VMA_BIT(MAYOVERLAY, 9), 309#endif /* CONFIG_MMU */ 310 /* Page-ranges managed without "struct page", just pure PFN */ 311 DECLARE_VMA_BIT(PFNMAP, 10), 312 DECLARE_VMA_BIT(MAYBE_GUARD, 11), 313 DECLARE_VMA_BIT(UFFD_WP, 12), /* wrprotect pages tracking */ 314 DECLARE_VMA_BIT(LOCKED, 13), 315 DECLARE_VMA_BIT(IO, 14), /* Memory mapped I/O or similar */ 316 DECLARE_VMA_BIT(SEQ_READ, 15), /* App will access data sequentially */ 317 DECLARE_VMA_BIT(RAND_READ, 16), /* App will not benefit from clustered reads */ 318 DECLARE_VMA_BIT(DONTCOPY, 17), /* Do not copy this vma on fork */ 319 DECLARE_VMA_BIT(DONTEXPAND, 18),/* Cannot expand with mremap() */ 320 DECLARE_VMA_BIT(LOCKONFAULT, 19),/* Lock pages covered when faulted in */ 321 DECLARE_VMA_BIT(ACCOUNT, 20), /* Is a VM accounted object */ 322 DECLARE_VMA_BIT(NORESERVE, 21), /* should the VM suppress accounting */ 323 DECLARE_VMA_BIT(HUGETLB, 22), /* Huge TLB Page VM */ 324 DECLARE_VMA_BIT(SYNC, 23), /* Synchronous page faults */ 325 DECLARE_VMA_BIT(ARCH_1, 24), /* Architecture-specific flag */ 326 DECLARE_VMA_BIT(WIPEONFORK, 25),/* Wipe VMA contents in child. */ 327 DECLARE_VMA_BIT(DONTDUMP, 26), /* Do not include in the core dump */ 328 DECLARE_VMA_BIT(SOFTDIRTY, 27), /* NOT soft dirty clean area */ 329 DECLARE_VMA_BIT(MIXEDMAP, 28), /* Can contain struct page and pure PFN pages */ 330 DECLARE_VMA_BIT(HUGEPAGE, 29), /* MADV_HUGEPAGE marked this vma */ 331 DECLARE_VMA_BIT(NOHUGEPAGE, 30),/* MADV_NOHUGEPAGE marked this vma */ 332 DECLARE_VMA_BIT(MERGEABLE, 31), /* KSM may merge identical pages */ 333 /* These bits are reused, we define specific uses below. */ 334 DECLARE_VMA_BIT(HIGH_ARCH_0, 32), 335 DECLARE_VMA_BIT(HIGH_ARCH_1, 33), 336 DECLARE_VMA_BIT(HIGH_ARCH_2, 34), 337 DECLARE_VMA_BIT(HIGH_ARCH_3, 35), 338 DECLARE_VMA_BIT(HIGH_ARCH_4, 36), 339 DECLARE_VMA_BIT(HIGH_ARCH_5, 37), 340 DECLARE_VMA_BIT(HIGH_ARCH_6, 38), 341 /* 342 * This flag is used to connect VFIO to arch specific KVM code. It 343 * indicates that the memory under this VMA is safe for use with any 344 * non-cachable memory type inside KVM. Some VFIO devices, on some 345 * platforms, are thought to be unsafe and can cause machine crashes 346 * if KVM does not lock down the memory type. 347 */ 348 DECLARE_VMA_BIT(ALLOW_ANY_UNCACHED, 39), 349#ifdef CONFIG_PPC32 350 DECLARE_VMA_BIT_ALIAS(DROPPABLE, ARCH_1), 351#else 352 DECLARE_VMA_BIT(DROPPABLE, 40), 353#endif 354 DECLARE_VMA_BIT(UFFD_MINOR, 41), 355 DECLARE_VMA_BIT(SEALED, 42), 356 /* Flags that reuse flags above. */ 357 DECLARE_VMA_BIT_ALIAS(PKEY_BIT0, HIGH_ARCH_0), 358 DECLARE_VMA_BIT_ALIAS(PKEY_BIT1, HIGH_ARCH_1), 359 DECLARE_VMA_BIT_ALIAS(PKEY_BIT2, HIGH_ARCH_2), 360 DECLARE_VMA_BIT_ALIAS(PKEY_BIT3, HIGH_ARCH_3), 361 DECLARE_VMA_BIT_ALIAS(PKEY_BIT4, HIGH_ARCH_4), 362#if defined(CONFIG_X86_USER_SHADOW_STACK) 363 /* 364 * VM_SHADOW_STACK should not be set with VM_SHARED because of lack of 365 * support core mm. 366 * 367 * These VMAs will get a single end guard page. This helps userspace 368 * protect itself from attacks. A single page is enough for current 369 * shadow stack archs (x86). See the comments near alloc_shstk() in 370 * arch/x86/kernel/shstk.c for more details on the guard size. 371 */ 372 DECLARE_VMA_BIT_ALIAS(SHADOW_STACK, HIGH_ARCH_5), 373#elif defined(CONFIG_ARM64_GCS) 374 /* 375 * arm64's Guarded Control Stack implements similar functionality and 376 * has similar constraints to shadow stacks. 377 */ 378 DECLARE_VMA_BIT_ALIAS(SHADOW_STACK, HIGH_ARCH_6), 379#endif 380 DECLARE_VMA_BIT_ALIAS(SAO, ARCH_1), /* Strong Access Ordering (powerpc) */ 381 DECLARE_VMA_BIT_ALIAS(GROWSUP, ARCH_1), /* parisc */ 382 DECLARE_VMA_BIT_ALIAS(SPARC_ADI, ARCH_1), /* sparc64 */ 383 DECLARE_VMA_BIT_ALIAS(ARM64_BTI, ARCH_1), /* arm64 */ 384 DECLARE_VMA_BIT_ALIAS(ARCH_CLEAR, ARCH_1), /* sparc64, arm64 */ 385 DECLARE_VMA_BIT_ALIAS(MAPPED_COPY, ARCH_1), /* !CONFIG_MMU */ 386 DECLARE_VMA_BIT_ALIAS(MTE, HIGH_ARCH_4), /* arm64 */ 387 DECLARE_VMA_BIT_ALIAS(MTE_ALLOWED, HIGH_ARCH_5),/* arm64 */ 388#ifdef CONFIG_STACK_GROWSUP 389 DECLARE_VMA_BIT_ALIAS(STACK, GROWSUP), 390 DECLARE_VMA_BIT_ALIAS(STACK_EARLY, GROWSDOWN), 391#else 392 DECLARE_VMA_BIT_ALIAS(STACK, GROWSDOWN), 393#endif 394}; 395#undef DECLARE_VMA_BIT 396#undef DECLARE_VMA_BIT_ALIAS 397 398#define INIT_VM_FLAG(name) BIT((__force int) VMA_ ## name ## _BIT) 399#define VM_READ INIT_VM_FLAG(READ) 400#define VM_WRITE INIT_VM_FLAG(WRITE) 401#define VM_EXEC INIT_VM_FLAG(EXEC) 402#define VM_SHARED INIT_VM_FLAG(SHARED) 403#define VM_MAYREAD INIT_VM_FLAG(MAYREAD) 404#define VM_MAYWRITE INIT_VM_FLAG(MAYWRITE) 405#define VM_MAYEXEC INIT_VM_FLAG(MAYEXEC) 406#define VM_MAYSHARE INIT_VM_FLAG(MAYSHARE) 407#define VM_GROWSDOWN INIT_VM_FLAG(GROWSDOWN) 408#ifdef CONFIG_MMU 409#define VM_UFFD_MISSING INIT_VM_FLAG(UFFD_MISSING) 410#else 411#define VM_UFFD_MISSING VM_NONE 412#define VM_MAYOVERLAY INIT_VM_FLAG(MAYOVERLAY) 413#endif 414#define VM_PFNMAP INIT_VM_FLAG(PFNMAP) 415#define VM_MAYBE_GUARD INIT_VM_FLAG(MAYBE_GUARD) 416#define VM_UFFD_WP INIT_VM_FLAG(UFFD_WP) 417#define VM_LOCKED INIT_VM_FLAG(LOCKED) 418#define VM_IO INIT_VM_FLAG(IO) 419#define VM_SEQ_READ INIT_VM_FLAG(SEQ_READ) 420#define VM_RAND_READ INIT_VM_FLAG(RAND_READ) 421#define VM_DONTCOPY INIT_VM_FLAG(DONTCOPY) 422#define VM_DONTEXPAND INIT_VM_FLAG(DONTEXPAND) 423#define VM_LOCKONFAULT INIT_VM_FLAG(LOCKONFAULT) 424#define VM_ACCOUNT INIT_VM_FLAG(ACCOUNT) 425#define VM_NORESERVE INIT_VM_FLAG(NORESERVE) 426#define VM_HUGETLB INIT_VM_FLAG(HUGETLB) 427#define VM_SYNC INIT_VM_FLAG(SYNC) 428#define VM_ARCH_1 INIT_VM_FLAG(ARCH_1) 429#define VM_WIPEONFORK INIT_VM_FLAG(WIPEONFORK) 430#define VM_DONTDUMP INIT_VM_FLAG(DONTDUMP) 431#ifdef CONFIG_MEM_SOFT_DIRTY 432#define VM_SOFTDIRTY INIT_VM_FLAG(SOFTDIRTY) 433#else 434#define VM_SOFTDIRTY VM_NONE 435#endif 436#define VM_MIXEDMAP INIT_VM_FLAG(MIXEDMAP) 437#define VM_HUGEPAGE INIT_VM_FLAG(HUGEPAGE) 438#define VM_NOHUGEPAGE INIT_VM_FLAG(NOHUGEPAGE) 439#define VM_MERGEABLE INIT_VM_FLAG(MERGEABLE) 440#define VM_STACK INIT_VM_FLAG(STACK) 441#ifdef CONFIG_STACK_GROWSUP 442#define VM_STACK_EARLY INIT_VM_FLAG(STACK_EARLY) 443#else 444#define VM_STACK_EARLY VM_NONE 445#endif 446#ifdef CONFIG_ARCH_HAS_PKEYS 447#define VM_PKEY_SHIFT ((__force int)VMA_HIGH_ARCH_0_BIT) 448/* Despite the naming, these are FLAGS not bits. */ 449#define VM_PKEY_BIT0 INIT_VM_FLAG(PKEY_BIT0) 450#define VM_PKEY_BIT1 INIT_VM_FLAG(PKEY_BIT1) 451#define VM_PKEY_BIT2 INIT_VM_FLAG(PKEY_BIT2) 452#if CONFIG_ARCH_PKEY_BITS > 3 453#define VM_PKEY_BIT3 INIT_VM_FLAG(PKEY_BIT3) 454#else 455#define VM_PKEY_BIT3 VM_NONE 456#endif /* CONFIG_ARCH_PKEY_BITS > 3 */ 457#if CONFIG_ARCH_PKEY_BITS > 4 458#define VM_PKEY_BIT4 INIT_VM_FLAG(PKEY_BIT4) 459#else 460#define VM_PKEY_BIT4 VM_NONE 461#endif /* CONFIG_ARCH_PKEY_BITS > 4 */ 462#endif /* CONFIG_ARCH_HAS_PKEYS */ 463#if defined(CONFIG_X86_USER_SHADOW_STACK) || defined(CONFIG_ARM64_GCS) 464#define VM_SHADOW_STACK INIT_VM_FLAG(SHADOW_STACK) 465#else 466#define VM_SHADOW_STACK VM_NONE 467#endif 468#if defined(CONFIG_PPC64) 469#define VM_SAO INIT_VM_FLAG(SAO) 470#elif defined(CONFIG_PARISC) 471#define VM_GROWSUP INIT_VM_FLAG(GROWSUP) 472#elif defined(CONFIG_SPARC64) 473#define VM_SPARC_ADI INIT_VM_FLAG(SPARC_ADI) 474#define VM_ARCH_CLEAR INIT_VM_FLAG(ARCH_CLEAR) 475#elif defined(CONFIG_ARM64) 476#define VM_ARM64_BTI INIT_VM_FLAG(ARM64_BTI) 477#define VM_ARCH_CLEAR INIT_VM_FLAG(ARCH_CLEAR) 478#elif !defined(CONFIG_MMU) 479#define VM_MAPPED_COPY INIT_VM_FLAG(MAPPED_COPY) 480#endif 481#ifndef VM_GROWSUP 482#define VM_GROWSUP VM_NONE 483#endif 484#ifdef CONFIG_ARM64_MTE 485#define VM_MTE INIT_VM_FLAG(MTE) 486#define VM_MTE_ALLOWED INIT_VM_FLAG(MTE_ALLOWED) 487#else 488#define VM_MTE VM_NONE 489#define VM_MTE_ALLOWED VM_NONE 490#endif 491#ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 492#define VM_UFFD_MINOR INIT_VM_FLAG(UFFD_MINOR) 493#else 494#define VM_UFFD_MINOR VM_NONE 495#endif 496#ifdef CONFIG_64BIT 497#define VM_ALLOW_ANY_UNCACHED INIT_VM_FLAG(ALLOW_ANY_UNCACHED) 498#define VM_SEALED INIT_VM_FLAG(SEALED) 499#else 500#define VM_ALLOW_ANY_UNCACHED VM_NONE 501#define VM_SEALED VM_NONE 502#endif 503#if defined(CONFIG_64BIT) || defined(CONFIG_PPC32) 504#define VM_DROPPABLE INIT_VM_FLAG(DROPPABLE) 505#else 506#define VM_DROPPABLE VM_NONE 507#endif 508 509/* Bits set in the VMA until the stack is in its final location */ 510#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY) 511 512#define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0) 513 514/* Common data flag combinations */ 515#define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \ 516 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 517#define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \ 518 VM_MAYWRITE | VM_MAYEXEC) 519#define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \ 520 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 521 522#ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */ 523#define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC 524#endif 525 526#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 527#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 528#endif 529 530#define VM_STARTGAP_FLAGS (VM_GROWSDOWN | VM_SHADOW_STACK) 531 532#ifdef CONFIG_MSEAL_SYSTEM_MAPPINGS 533#define VM_SEALED_SYSMAP VM_SEALED 534#else 535#define VM_SEALED_SYSMAP VM_NONE 536#endif 537 538#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 539 540/* VMA basic access permission flags */ 541#define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC) 542 543/* 544 * Special vmas that are non-mergable, non-mlock()able. 545 */ 546#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 547 548/* 549 * Physically remapped pages are special. Tell the 550 * rest of the world about it: 551 * VM_IO tells people not to look at these pages 552 * (accesses can have side effects). 553 * VM_PFNMAP tells the core MM that the base pages are just 554 * raw PFN mappings, and do not have a "struct page" associated 555 * with them. 556 * VM_DONTEXPAND 557 * Disable vma merging and expanding with mremap(). 558 * VM_DONTDUMP 559 * Omit vma from core dump, even when VM_IO turned off. 560 */ 561#define VM_REMAP_FLAGS (VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP) 562 563/* This mask prevents VMA from being scanned with khugepaged */ 564#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB) 565 566/* This mask defines which mm->def_flags a process can inherit its parent */ 567#define VM_INIT_DEF_MASK VM_NOHUGEPAGE 568 569/* This mask represents all the VMA flag bits used by mlock */ 570#define VM_LOCKED_MASK (VM_LOCKED | VM_LOCKONFAULT) 571 572/* These flags can be updated atomically via VMA/mmap read lock. */ 573#define VM_ATOMIC_SET_ALLOWED VM_MAYBE_GUARD 574 575/* Arch-specific flags to clear when updating VM flags on protection change */ 576#ifndef VM_ARCH_CLEAR 577#define VM_ARCH_CLEAR VM_NONE 578#endif 579#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR) 580 581/* 582 * Flags which should be 'sticky' on merge - that is, flags which, when one VMA 583 * possesses it but the other does not, the merged VMA should nonetheless have 584 * applied to it: 585 * 586 * VM_SOFTDIRTY - if a VMA is marked soft-dirty, that is has not had its 587 * references cleared via /proc/$pid/clear_refs, any merged VMA 588 * should be considered soft-dirty also as it operates at a VMA 589 * granularity. 590 * 591 * VM_MAYBE_GUARD - If a VMA may have guard regions in place it implies that 592 * mapped page tables may contain metadata not described by the 593 * VMA and thus any merged VMA may also contain this metadata, 594 * and thus we must make this flag sticky. 595 */ 596#define VM_STICKY (VM_SOFTDIRTY | VM_MAYBE_GUARD) 597 598/* 599 * VMA flags we ignore for the purposes of merge, i.e. one VMA possessing one 600 * of these flags and the other not does not preclude a merge. 601 * 602 * VM_STICKY - When merging VMAs, VMA flags must match, unless they are 603 * 'sticky'. If any sticky flags exist in either VMA, we simply 604 * set all of them on the merged VMA. 605 */ 606#define VM_IGNORE_MERGE VM_STICKY 607 608/* 609 * Flags which should result in page tables being copied on fork. These are 610 * flags which indicate that the VMA maps page tables which cannot be 611 * reconsistuted upon page fault, so necessitate page table copying upon 612 * 613 * VM_PFNMAP / VM_MIXEDMAP - These contain kernel-mapped data which cannot be 614 * reasonably reconstructed on page fault. 615 * 616 * VM_UFFD_WP - Encodes metadata about an installed uffd 617 * write protect handler, which cannot be 618 * reconstructed on page fault. 619 * 620 * We always copy pgtables when dst_vma has uffd-wp 621 * enabled even if it's file-backed 622 * (e.g. shmem). Because when uffd-wp is enabled, 623 * pgtable contains uffd-wp protection information, 624 * that's something we can't retrieve from page cache, 625 * and skip copying will lose those info. 626 * 627 * VM_MAYBE_GUARD - Could contain page guard region markers which 628 * by design are a property of the page tables 629 * only and thus cannot be reconstructed on page 630 * fault. 631 */ 632#define VM_COPY_ON_FORK (VM_PFNMAP | VM_MIXEDMAP | VM_UFFD_WP | VM_MAYBE_GUARD) 633 634/* 635 * mapping from the currently active vm_flags protection bits (the 636 * low four bits) to a page protection mask.. 637 */ 638 639/* 640 * The default fault flags that should be used by most of the 641 * arch-specific page fault handlers. 642 */ 643#define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \ 644 FAULT_FLAG_KILLABLE | \ 645 FAULT_FLAG_INTERRUPTIBLE) 646 647/** 648 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time 649 * @flags: Fault flags. 650 * 651 * This is mostly used for places where we want to try to avoid taking 652 * the mmap_lock for too long a time when waiting for another condition 653 * to change, in which case we can try to be polite to release the 654 * mmap_lock in the first round to avoid potential starvation of other 655 * processes that would also want the mmap_lock. 656 * 657 * Return: true if the page fault allows retry and this is the first 658 * attempt of the fault handling; false otherwise. 659 */ 660static inline bool fault_flag_allow_retry_first(enum fault_flag flags) 661{ 662 return (flags & FAULT_FLAG_ALLOW_RETRY) && 663 (!(flags & FAULT_FLAG_TRIED)); 664} 665 666#define FAULT_FLAG_TRACE \ 667 { FAULT_FLAG_WRITE, "WRITE" }, \ 668 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ 669 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ 670 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ 671 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ 672 { FAULT_FLAG_TRIED, "TRIED" }, \ 673 { FAULT_FLAG_USER, "USER" }, \ 674 { FAULT_FLAG_REMOTE, "REMOTE" }, \ 675 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \ 676 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }, \ 677 { FAULT_FLAG_VMA_LOCK, "VMA_LOCK" } 678 679/* 680 * vm_fault is filled by the pagefault handler and passed to the vma's 681 * ->fault function. The vma's ->fault is responsible for returning a bitmask 682 * of VM_FAULT_xxx flags that give details about how the fault was handled. 683 * 684 * MM layer fills up gfp_mask for page allocations but fault handler might 685 * alter it if its implementation requires a different allocation context. 686 * 687 * pgoff should be used in favour of virtual_address, if possible. 688 */ 689struct vm_fault { 690 const struct { 691 struct vm_area_struct *vma; /* Target VMA */ 692 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 693 pgoff_t pgoff; /* Logical page offset based on vma */ 694 unsigned long address; /* Faulting virtual address - masked */ 695 unsigned long real_address; /* Faulting virtual address - unmasked */ 696 }; 697 enum fault_flag flags; /* FAULT_FLAG_xxx flags 698 * XXX: should really be 'const' */ 699 pmd_t *pmd; /* Pointer to pmd entry matching 700 * the 'address' */ 701 pud_t *pud; /* Pointer to pud entry matching 702 * the 'address' 703 */ 704 union { 705 pte_t orig_pte; /* Value of PTE at the time of fault */ 706 pmd_t orig_pmd; /* Value of PMD at the time of fault, 707 * used by PMD fault only. 708 */ 709 }; 710 711 struct page *cow_page; /* Page handler may use for COW fault */ 712 struct page *page; /* ->fault handlers should return a 713 * page here, unless VM_FAULT_NOPAGE 714 * is set (which is also implied by 715 * VM_FAULT_ERROR). 716 */ 717 /* These three entries are valid only while holding ptl lock */ 718 pte_t *pte; /* Pointer to pte entry matching 719 * the 'address'. NULL if the page 720 * table hasn't been allocated. 721 */ 722 spinlock_t *ptl; /* Page table lock. 723 * Protects pte page table if 'pte' 724 * is not NULL, otherwise pmd. 725 */ 726 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 727 * vm_ops->map_pages() sets up a page 728 * table from atomic context. 729 * do_fault_around() pre-allocates 730 * page table to avoid allocation from 731 * atomic context. 732 */ 733}; 734 735/* 736 * These are the virtual MM functions - opening of an area, closing and 737 * unmapping it (needed to keep files on disk up-to-date etc), pointer 738 * to the functions called when a no-page or a wp-page exception occurs. 739 */ 740struct vm_operations_struct { 741 void (*open)(struct vm_area_struct * area); 742 /** 743 * @close: Called when the VMA is being removed from the MM. 744 * Context: User context. May sleep. Caller holds mmap_lock. 745 */ 746 void (*close)(struct vm_area_struct * area); 747 /* Called any time before splitting to check if it's allowed */ 748 int (*may_split)(struct vm_area_struct *area, unsigned long addr); 749 int (*mremap)(struct vm_area_struct *area); 750 /* 751 * Called by mprotect() to make driver-specific permission 752 * checks before mprotect() is finalised. The VMA must not 753 * be modified. Returns 0 if mprotect() can proceed. 754 */ 755 int (*mprotect)(struct vm_area_struct *vma, unsigned long start, 756 unsigned long end, unsigned long newflags); 757 vm_fault_t (*fault)(struct vm_fault *vmf); 758 vm_fault_t (*huge_fault)(struct vm_fault *vmf, unsigned int order); 759 vm_fault_t (*map_pages)(struct vm_fault *vmf, 760 pgoff_t start_pgoff, pgoff_t end_pgoff); 761 unsigned long (*pagesize)(struct vm_area_struct * area); 762 763 /* notification that a previously read-only page is about to become 764 * writable, if an error is returned it will cause a SIGBUS */ 765 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf); 766 767 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 768 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf); 769 770 /* called by access_process_vm when get_user_pages() fails, typically 771 * for use by special VMAs. See also generic_access_phys() for a generic 772 * implementation useful for any iomem mapping. 773 */ 774 int (*access)(struct vm_area_struct *vma, unsigned long addr, 775 void *buf, int len, int write); 776 777 /* Called by the /proc/PID/maps code to ask the vma whether it 778 * has a special name. Returning non-NULL will also cause this 779 * vma to be dumped unconditionally. */ 780 const char *(*name)(struct vm_area_struct *vma); 781 782#ifdef CONFIG_NUMA 783 /* 784 * set_policy() op must add a reference to any non-NULL @new mempolicy 785 * to hold the policy upon return. Caller should pass NULL @new to 786 * remove a policy and fall back to surrounding context--i.e. do not 787 * install a MPOL_DEFAULT policy, nor the task or system default 788 * mempolicy. 789 */ 790 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 791 792 /* 793 * get_policy() op must add reference [mpol_get()] to any policy at 794 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 795 * in mm/mempolicy.c will do this automatically. 796 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 797 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock. 798 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 799 * must return NULL--i.e., do not "fallback" to task or system default 800 * policy. 801 */ 802 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 803 unsigned long addr, pgoff_t *ilx); 804#endif 805#ifdef CONFIG_FIND_NORMAL_PAGE 806 /* 807 * Called by vm_normal_page() for special PTEs in @vma at @addr. This 808 * allows for returning a "normal" page from vm_normal_page() even 809 * though the PTE indicates that the "struct page" either does not exist 810 * or should not be touched: "special". 811 * 812 * Do not add new users: this really only works when a "normal" page 813 * was mapped, but then the PTE got changed to something weird (+ 814 * marked special) that would not make pte_pfn() identify the originally 815 * inserted page. 816 */ 817 struct page *(*find_normal_page)(struct vm_area_struct *vma, 818 unsigned long addr); 819#endif /* CONFIG_FIND_NORMAL_PAGE */ 820}; 821 822#ifdef CONFIG_NUMA_BALANCING 823static inline void vma_numab_state_init(struct vm_area_struct *vma) 824{ 825 vma->numab_state = NULL; 826} 827static inline void vma_numab_state_free(struct vm_area_struct *vma) 828{ 829 kfree(vma->numab_state); 830} 831#else 832static inline void vma_numab_state_init(struct vm_area_struct *vma) {} 833static inline void vma_numab_state_free(struct vm_area_struct *vma) {} 834#endif /* CONFIG_NUMA_BALANCING */ 835 836/* 837 * These must be here rather than mmap_lock.h as dependent on vm_fault type, 838 * declared in this header. 839 */ 840#ifdef CONFIG_PER_VMA_LOCK 841static inline void release_fault_lock(struct vm_fault *vmf) 842{ 843 if (vmf->flags & FAULT_FLAG_VMA_LOCK) 844 vma_end_read(vmf->vma); 845 else 846 mmap_read_unlock(vmf->vma->vm_mm); 847} 848 849static inline void assert_fault_locked(const struct vm_fault *vmf) 850{ 851 if (vmf->flags & FAULT_FLAG_VMA_LOCK) 852 vma_assert_locked(vmf->vma); 853 else 854 mmap_assert_locked(vmf->vma->vm_mm); 855} 856#else 857static inline void release_fault_lock(struct vm_fault *vmf) 858{ 859 mmap_read_unlock(vmf->vma->vm_mm); 860} 861 862static inline void assert_fault_locked(const struct vm_fault *vmf) 863{ 864 mmap_assert_locked(vmf->vma->vm_mm); 865} 866#endif /* CONFIG_PER_VMA_LOCK */ 867 868static inline bool mm_flags_test(int flag, const struct mm_struct *mm) 869{ 870 return test_bit(flag, ACCESS_PRIVATE(&mm->flags, __mm_flags)); 871} 872 873static inline bool mm_flags_test_and_set(int flag, struct mm_struct *mm) 874{ 875 return test_and_set_bit(flag, ACCESS_PRIVATE(&mm->flags, __mm_flags)); 876} 877 878static inline bool mm_flags_test_and_clear(int flag, struct mm_struct *mm) 879{ 880 return test_and_clear_bit(flag, ACCESS_PRIVATE(&mm->flags, __mm_flags)); 881} 882 883static inline void mm_flags_set(int flag, struct mm_struct *mm) 884{ 885 set_bit(flag, ACCESS_PRIVATE(&mm->flags, __mm_flags)); 886} 887 888static inline void mm_flags_clear(int flag, struct mm_struct *mm) 889{ 890 clear_bit(flag, ACCESS_PRIVATE(&mm->flags, __mm_flags)); 891} 892 893static inline void mm_flags_clear_all(struct mm_struct *mm) 894{ 895 bitmap_zero(ACCESS_PRIVATE(&mm->flags, __mm_flags), NUM_MM_FLAG_BITS); 896} 897 898extern const struct vm_operations_struct vma_dummy_vm_ops; 899 900static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm) 901{ 902 memset(vma, 0, sizeof(*vma)); 903 vma->vm_mm = mm; 904 vma->vm_ops = &vma_dummy_vm_ops; 905 INIT_LIST_HEAD(&vma->anon_vma_chain); 906 vma_lock_init(vma, false); 907} 908 909/* Use when VMA is not part of the VMA tree and needs no locking */ 910static inline void vm_flags_init(struct vm_area_struct *vma, 911 vm_flags_t flags) 912{ 913 VM_WARN_ON_ONCE(!pgtable_supports_soft_dirty() && (flags & VM_SOFTDIRTY)); 914 vma_flags_clear_all(&vma->flags); 915 vma_flags_overwrite_word(&vma->flags, flags); 916} 917 918/* 919 * Use when VMA is part of the VMA tree and modifications need coordination 920 * Note: vm_flags_reset and vm_flags_reset_once do not lock the vma and 921 * it should be locked explicitly beforehand. 922 */ 923static inline void vm_flags_reset(struct vm_area_struct *vma, 924 vm_flags_t flags) 925{ 926 VM_WARN_ON_ONCE(!pgtable_supports_soft_dirty() && (flags & VM_SOFTDIRTY)); 927 vma_assert_write_locked(vma); 928 vm_flags_init(vma, flags); 929} 930 931static inline void vm_flags_reset_once(struct vm_area_struct *vma, 932 vm_flags_t flags) 933{ 934 vma_assert_write_locked(vma); 935 /* 936 * If VMA flags exist beyond the first system word, also clear these. It 937 * is assumed the write once behaviour is required only for the first 938 * system word. 939 */ 940 if (NUM_VMA_FLAG_BITS > BITS_PER_LONG) { 941 unsigned long *bitmap = ACCESS_PRIVATE(&vma->flags, __vma_flags); 942 943 bitmap_zero(&bitmap[1], NUM_VMA_FLAG_BITS - BITS_PER_LONG); 944 } 945 946 vma_flags_overwrite_word_once(&vma->flags, flags); 947} 948 949static inline void vm_flags_set(struct vm_area_struct *vma, 950 vm_flags_t flags) 951{ 952 vma_start_write(vma); 953 vma_flags_set_word(&vma->flags, flags); 954} 955 956static inline void vm_flags_clear(struct vm_area_struct *vma, 957 vm_flags_t flags) 958{ 959 VM_WARN_ON_ONCE(!pgtable_supports_soft_dirty() && (flags & VM_SOFTDIRTY)); 960 vma_start_write(vma); 961 vma_flags_clear_word(&vma->flags, flags); 962} 963 964/* 965 * Use only if VMA is not part of the VMA tree or has no other users and 966 * therefore needs no locking. 967 */ 968static inline void __vm_flags_mod(struct vm_area_struct *vma, 969 vm_flags_t set, vm_flags_t clear) 970{ 971 vm_flags_init(vma, (vma->vm_flags | set) & ~clear); 972} 973 974/* 975 * Use only when the order of set/clear operations is unimportant, otherwise 976 * use vm_flags_{set|clear} explicitly. 977 */ 978static inline void vm_flags_mod(struct vm_area_struct *vma, 979 vm_flags_t set, vm_flags_t clear) 980{ 981 vma_start_write(vma); 982 __vm_flags_mod(vma, set, clear); 983} 984 985static inline bool __vma_flag_atomic_valid(struct vm_area_struct *vma, 986 vma_flag_t bit) 987{ 988 const vm_flags_t mask = BIT((__force int)bit); 989 990 /* Only specific flags are permitted */ 991 if (WARN_ON_ONCE(!(mask & VM_ATOMIC_SET_ALLOWED))) 992 return false; 993 994 return true; 995} 996 997/* 998 * Set VMA flag atomically. Requires only VMA/mmap read lock. Only specific 999 * valid flags are allowed to do this. 1000 */ 1001static inline void vma_flag_set_atomic(struct vm_area_struct *vma, 1002 vma_flag_t bit) 1003{ 1004 unsigned long *bitmap = ACCESS_PRIVATE(&vma->flags, __vma_flags); 1005 1006 /* mmap read lock/VMA read lock must be held. */ 1007 if (!rwsem_is_locked(&vma->vm_mm->mmap_lock)) 1008 vma_assert_locked(vma); 1009 1010 if (__vma_flag_atomic_valid(vma, bit)) 1011 set_bit((__force int)bit, bitmap); 1012} 1013 1014/* 1015 * Test for VMA flag atomically. Requires no locks. Only specific valid flags 1016 * are allowed to do this. 1017 * 1018 * This is necessarily racey, so callers must ensure that serialisation is 1019 * achieved through some other means, or that races are permissible. 1020 */ 1021static inline bool vma_flag_test_atomic(struct vm_area_struct *vma, 1022 vma_flag_t bit) 1023{ 1024 if (__vma_flag_atomic_valid(vma, bit)) 1025 return test_bit((__force int)bit, &vma->vm_flags); 1026 1027 return false; 1028} 1029 1030static inline void vma_set_anonymous(struct vm_area_struct *vma) 1031{ 1032 vma->vm_ops = NULL; 1033} 1034 1035static inline bool vma_is_anonymous(struct vm_area_struct *vma) 1036{ 1037 return !vma->vm_ops; 1038} 1039 1040/* 1041 * Indicate if the VMA is a heap for the given task; for 1042 * /proc/PID/maps that is the heap of the main task. 1043 */ 1044static inline bool vma_is_initial_heap(const struct vm_area_struct *vma) 1045{ 1046 return vma->vm_start < vma->vm_mm->brk && 1047 vma->vm_end > vma->vm_mm->start_brk; 1048} 1049 1050/* 1051 * Indicate if the VMA is a stack for the given task; for 1052 * /proc/PID/maps that is the stack of the main task. 1053 */ 1054static inline bool vma_is_initial_stack(const struct vm_area_struct *vma) 1055{ 1056 /* 1057 * We make no effort to guess what a given thread considers to be 1058 * its "stack". It's not even well-defined for programs written 1059 * languages like Go. 1060 */ 1061 return vma->vm_start <= vma->vm_mm->start_stack && 1062 vma->vm_end >= vma->vm_mm->start_stack; 1063} 1064 1065static inline bool vma_is_temporary_stack(const struct vm_area_struct *vma) 1066{ 1067 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); 1068 1069 if (!maybe_stack) 1070 return false; 1071 1072 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == 1073 VM_STACK_INCOMPLETE_SETUP) 1074 return true; 1075 1076 return false; 1077} 1078 1079static inline bool vma_is_foreign(const struct vm_area_struct *vma) 1080{ 1081 if (!current->mm) 1082 return true; 1083 1084 if (current->mm != vma->vm_mm) 1085 return true; 1086 1087 return false; 1088} 1089 1090static inline bool vma_is_accessible(const struct vm_area_struct *vma) 1091{ 1092 return vma->vm_flags & VM_ACCESS_FLAGS; 1093} 1094 1095static inline bool is_shared_maywrite(vm_flags_t vm_flags) 1096{ 1097 return (vm_flags & (VM_SHARED | VM_MAYWRITE)) == 1098 (VM_SHARED | VM_MAYWRITE); 1099} 1100 1101static inline bool vma_is_shared_maywrite(const struct vm_area_struct *vma) 1102{ 1103 return is_shared_maywrite(vma->vm_flags); 1104} 1105 1106static inline 1107struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max) 1108{ 1109 return mas_find(&vmi->mas, max - 1); 1110} 1111 1112static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi) 1113{ 1114 /* 1115 * Uses mas_find() to get the first VMA when the iterator starts. 1116 * Calling mas_next() could skip the first entry. 1117 */ 1118 return mas_find(&vmi->mas, ULONG_MAX); 1119} 1120 1121static inline 1122struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi) 1123{ 1124 return mas_next_range(&vmi->mas, ULONG_MAX); 1125} 1126 1127 1128static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi) 1129{ 1130 return mas_prev(&vmi->mas, 0); 1131} 1132 1133static inline int vma_iter_clear_gfp(struct vma_iterator *vmi, 1134 unsigned long start, unsigned long end, gfp_t gfp) 1135{ 1136 __mas_set_range(&vmi->mas, start, end - 1); 1137 mas_store_gfp(&vmi->mas, NULL, gfp); 1138 if (unlikely(mas_is_err(&vmi->mas))) 1139 return -ENOMEM; 1140 1141 return 0; 1142} 1143 1144/* Free any unused preallocations */ 1145static inline void vma_iter_free(struct vma_iterator *vmi) 1146{ 1147 mas_destroy(&vmi->mas); 1148} 1149 1150static inline int vma_iter_bulk_store(struct vma_iterator *vmi, 1151 struct vm_area_struct *vma) 1152{ 1153 vmi->mas.index = vma->vm_start; 1154 vmi->mas.last = vma->vm_end - 1; 1155 mas_store(&vmi->mas, vma); 1156 if (unlikely(mas_is_err(&vmi->mas))) 1157 return -ENOMEM; 1158 1159 vma_mark_attached(vma); 1160 return 0; 1161} 1162 1163static inline void vma_iter_invalidate(struct vma_iterator *vmi) 1164{ 1165 mas_pause(&vmi->mas); 1166} 1167 1168static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr) 1169{ 1170 mas_set(&vmi->mas, addr); 1171} 1172 1173#define for_each_vma(__vmi, __vma) \ 1174 while (((__vma) = vma_next(&(__vmi))) != NULL) 1175 1176/* The MM code likes to work with exclusive end addresses */ 1177#define for_each_vma_range(__vmi, __vma, __end) \ 1178 while (((__vma) = vma_find(&(__vmi), (__end))) != NULL) 1179 1180#ifdef CONFIG_SHMEM 1181/* 1182 * The vma_is_shmem is not inline because it is used only by slow 1183 * paths in userfault. 1184 */ 1185bool vma_is_shmem(const struct vm_area_struct *vma); 1186bool vma_is_anon_shmem(const struct vm_area_struct *vma); 1187#else 1188static inline bool vma_is_shmem(const struct vm_area_struct *vma) { return false; } 1189static inline bool vma_is_anon_shmem(const struct vm_area_struct *vma) { return false; } 1190#endif 1191 1192int vma_is_stack_for_current(const struct vm_area_struct *vma); 1193 1194/* flush_tlb_range() takes a vma, not a mm, and can care about flags */ 1195#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) } 1196 1197struct mmu_gather; 1198struct inode; 1199 1200extern void prep_compound_page(struct page *page, unsigned int order); 1201 1202static inline unsigned int folio_large_order(const struct folio *folio) 1203{ 1204 return folio->_flags_1 & 0xff; 1205} 1206 1207#ifdef NR_PAGES_IN_LARGE_FOLIO 1208static inline unsigned long folio_large_nr_pages(const struct folio *folio) 1209{ 1210 return folio->_nr_pages; 1211} 1212#else 1213static inline unsigned long folio_large_nr_pages(const struct folio *folio) 1214{ 1215 return 1L << folio_large_order(folio); 1216} 1217#endif 1218 1219/* 1220 * compound_order() can be called without holding a reference, which means 1221 * that niceties like page_folio() don't work. These callers should be 1222 * prepared to handle wild return values. For example, PG_head may be 1223 * set before the order is initialised, or this may be a tail page. 1224 * See compaction.c for some good examples. 1225 */ 1226static inline unsigned int compound_order(const struct page *page) 1227{ 1228 const struct folio *folio = (struct folio *)page; 1229 1230 if (!test_bit(PG_head, &folio->flags.f)) 1231 return 0; 1232 return folio_large_order(folio); 1233} 1234 1235/** 1236 * folio_order - The allocation order of a folio. 1237 * @folio: The folio. 1238 * 1239 * A folio is composed of 2^order pages. See get_order() for the definition 1240 * of order. 1241 * 1242 * Return: The order of the folio. 1243 */ 1244static inline unsigned int folio_order(const struct folio *folio) 1245{ 1246 if (!folio_test_large(folio)) 1247 return 0; 1248 return folio_large_order(folio); 1249} 1250 1251/** 1252 * folio_reset_order - Reset the folio order and derived _nr_pages 1253 * @folio: The folio. 1254 * 1255 * Reset the order and derived _nr_pages to 0. Must only be used in the 1256 * process of splitting large folios. 1257 */ 1258static inline void folio_reset_order(struct folio *folio) 1259{ 1260 if (WARN_ON_ONCE(!folio_test_large(folio))) 1261 return; 1262 folio->_flags_1 &= ~0xffUL; 1263#ifdef NR_PAGES_IN_LARGE_FOLIO 1264 folio->_nr_pages = 0; 1265#endif 1266} 1267 1268#include <linux/huge_mm.h> 1269 1270/* 1271 * Methods to modify the page usage count. 1272 * 1273 * What counts for a page usage: 1274 * - cache mapping (page->mapping) 1275 * - private data (page->private) 1276 * - page mapped in a task's page tables, each mapping 1277 * is counted separately 1278 * 1279 * Also, many kernel routines increase the page count before a critical 1280 * routine so they can be sure the page doesn't go away from under them. 1281 */ 1282 1283/* 1284 * Drop a ref, return true if the refcount fell to zero (the page has no users) 1285 */ 1286static inline int put_page_testzero(struct page *page) 1287{ 1288 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 1289 return page_ref_dec_and_test(page); 1290} 1291 1292static inline int folio_put_testzero(struct folio *folio) 1293{ 1294 return put_page_testzero(&folio->page); 1295} 1296 1297/* 1298 * Try to grab a ref unless the page has a refcount of zero, return false if 1299 * that is the case. 1300 * This can be called when MMU is off so it must not access 1301 * any of the virtual mappings. 1302 */ 1303static inline bool get_page_unless_zero(struct page *page) 1304{ 1305 return page_ref_add_unless(page, 1, 0); 1306} 1307 1308static inline struct folio *folio_get_nontail_page(struct page *page) 1309{ 1310 if (unlikely(!get_page_unless_zero(page))) 1311 return NULL; 1312 return (struct folio *)page; 1313} 1314 1315extern int page_is_ram(unsigned long pfn); 1316 1317enum { 1318 REGION_INTERSECTS, 1319 REGION_DISJOINT, 1320 REGION_MIXED, 1321}; 1322 1323int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 1324 unsigned long desc); 1325 1326/* Support for virtually mapped pages */ 1327struct page *vmalloc_to_page(const void *addr); 1328unsigned long vmalloc_to_pfn(const void *addr); 1329 1330/* 1331 * Determine if an address is within the vmalloc range 1332 * 1333 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 1334 * is no special casing required. 1335 */ 1336#ifdef CONFIG_MMU 1337extern bool is_vmalloc_addr(const void *x); 1338extern int is_vmalloc_or_module_addr(const void *x); 1339#else 1340static inline bool is_vmalloc_addr(const void *x) 1341{ 1342 return false; 1343} 1344static inline int is_vmalloc_or_module_addr(const void *x) 1345{ 1346 return 0; 1347} 1348#endif 1349 1350/* 1351 * How many times the entire folio is mapped as a single unit (eg by a 1352 * PMD or PUD entry). This is probably not what you want, except for 1353 * debugging purposes or implementation of other core folio_*() primitives. 1354 */ 1355static inline int folio_entire_mapcount(const struct folio *folio) 1356{ 1357 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); 1358 if (!IS_ENABLED(CONFIG_64BIT) && unlikely(folio_large_order(folio) == 1)) 1359 return 0; 1360 return atomic_read(&folio->_entire_mapcount) + 1; 1361} 1362 1363static inline int folio_large_mapcount(const struct folio *folio) 1364{ 1365 VM_WARN_ON_FOLIO(!folio_test_large(folio), folio); 1366 return atomic_read(&folio->_large_mapcount) + 1; 1367} 1368 1369/** 1370 * folio_mapcount() - Number of mappings of this folio. 1371 * @folio: The folio. 1372 * 1373 * The folio mapcount corresponds to the number of present user page table 1374 * entries that reference any part of a folio. Each such present user page 1375 * table entry must be paired with exactly on folio reference. 1376 * 1377 * For ordindary folios, each user page table entry (PTE/PMD/PUD/...) counts 1378 * exactly once. 1379 * 1380 * For hugetlb folios, each abstracted "hugetlb" user page table entry that 1381 * references the entire folio counts exactly once, even when such special 1382 * page table entries are comprised of multiple ordinary page table entries. 1383 * 1384 * Will report 0 for pages which cannot be mapped into userspace, such as 1385 * slab, page tables and similar. 1386 * 1387 * Return: The number of times this folio is mapped. 1388 */ 1389static inline int folio_mapcount(const struct folio *folio) 1390{ 1391 int mapcount; 1392 1393 if (likely(!folio_test_large(folio))) { 1394 mapcount = atomic_read(&folio->_mapcount) + 1; 1395 if (page_mapcount_is_type(mapcount)) 1396 mapcount = 0; 1397 return mapcount; 1398 } 1399 return folio_large_mapcount(folio); 1400} 1401 1402/** 1403 * folio_mapped - Is this folio mapped into userspace? 1404 * @folio: The folio. 1405 * 1406 * Return: True if any page in this folio is referenced by user page tables. 1407 */ 1408static inline bool folio_mapped(const struct folio *folio) 1409{ 1410 return folio_mapcount(folio) >= 1; 1411} 1412 1413/* 1414 * Return true if this page is mapped into pagetables. 1415 * For compound page it returns true if any sub-page of compound page is mapped, 1416 * even if this particular sub-page is not itself mapped by any PTE or PMD. 1417 */ 1418static inline bool page_mapped(const struct page *page) 1419{ 1420 return folio_mapped(page_folio(page)); 1421} 1422 1423static inline struct page *virt_to_head_page(const void *x) 1424{ 1425 struct page *page = virt_to_page(x); 1426 1427 return compound_head(page); 1428} 1429 1430static inline struct folio *virt_to_folio(const void *x) 1431{ 1432 struct page *page = virt_to_page(x); 1433 1434 return page_folio(page); 1435} 1436 1437void __folio_put(struct folio *folio); 1438 1439void split_page(struct page *page, unsigned int order); 1440void folio_copy(struct folio *dst, struct folio *src); 1441int folio_mc_copy(struct folio *dst, struct folio *src); 1442 1443unsigned long nr_free_buffer_pages(void); 1444 1445/* Returns the number of bytes in this potentially compound page. */ 1446static inline unsigned long page_size(const struct page *page) 1447{ 1448 return PAGE_SIZE << compound_order(page); 1449} 1450 1451/* Returns the number of bits needed for the number of bytes in a page */ 1452static inline unsigned int page_shift(struct page *page) 1453{ 1454 return PAGE_SHIFT + compound_order(page); 1455} 1456 1457/** 1458 * thp_order - Order of a transparent huge page. 1459 * @page: Head page of a transparent huge page. 1460 */ 1461static inline unsigned int thp_order(struct page *page) 1462{ 1463 VM_BUG_ON_PGFLAGS(PageTail(page), page); 1464 return compound_order(page); 1465} 1466 1467/** 1468 * thp_size - Size of a transparent huge page. 1469 * @page: Head page of a transparent huge page. 1470 * 1471 * Return: Number of bytes in this page. 1472 */ 1473static inline unsigned long thp_size(struct page *page) 1474{ 1475 return PAGE_SIZE << thp_order(page); 1476} 1477 1478#ifdef CONFIG_MMU 1479/* 1480 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 1481 * servicing faults for write access. In the normal case, do always want 1482 * pte_mkwrite. But get_user_pages can cause write faults for mappings 1483 * that do not have writing enabled, when used by access_process_vm. 1484 */ 1485static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 1486{ 1487 if (likely(vma->vm_flags & VM_WRITE)) 1488 pte = pte_mkwrite(pte, vma); 1489 return pte; 1490} 1491 1492vm_fault_t do_set_pmd(struct vm_fault *vmf, struct folio *folio, struct page *page); 1493void set_pte_range(struct vm_fault *vmf, struct folio *folio, 1494 struct page *page, unsigned int nr, unsigned long addr); 1495 1496vm_fault_t finish_fault(struct vm_fault *vmf); 1497#endif 1498 1499/* 1500 * Multiple processes may "see" the same page. E.g. for untouched 1501 * mappings of /dev/null, all processes see the same page full of 1502 * zeroes, and text pages of executables and shared libraries have 1503 * only one copy in memory, at most, normally. 1504 * 1505 * For the non-reserved pages, page_count(page) denotes a reference count. 1506 * page_count() == 0 means the page is free. page->lru is then used for 1507 * freelist management in the buddy allocator. 1508 * page_count() > 0 means the page has been allocated. 1509 * 1510 * Pages are allocated by the slab allocator in order to provide memory 1511 * to kmalloc and kmem_cache_alloc. In this case, the management of the 1512 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 1513 * unless a particular usage is carefully commented. (the responsibility of 1514 * freeing the kmalloc memory is the caller's, of course). 1515 * 1516 * A page may be used by anyone else who does a __get_free_page(). 1517 * In this case, page_count still tracks the references, and should only 1518 * be used through the normal accessor functions. The top bits of page->flags 1519 * and page->virtual store page management information, but all other fields 1520 * are unused and could be used privately, carefully. The management of this 1521 * page is the responsibility of the one who allocated it, and those who have 1522 * subsequently been given references to it. 1523 * 1524 * The other pages (we may call them "pagecache pages") are completely 1525 * managed by the Linux memory manager: I/O, buffers, swapping etc. 1526 * The following discussion applies only to them. 1527 * 1528 * A pagecache page contains an opaque `private' member, which belongs to the 1529 * page's address_space. Usually, this is the address of a circular list of 1530 * the page's disk buffers. PG_private must be set to tell the VM to call 1531 * into the filesystem to release these pages. 1532 * 1533 * A folio may belong to an inode's memory mapping. In this case, 1534 * folio->mapping points to the inode, and folio->index is the file 1535 * offset of the folio, in units of PAGE_SIZE. 1536 * 1537 * If pagecache pages are not associated with an inode, they are said to be 1538 * anonymous pages. These may become associated with the swapcache, and in that 1539 * case PG_swapcache is set, and page->private is an offset into the swapcache. 1540 * 1541 * In either case (swapcache or inode backed), the pagecache itself holds one 1542 * reference to the page. Setting PG_private should also increment the 1543 * refcount. The each user mapping also has a reference to the page. 1544 * 1545 * The pagecache pages are stored in a per-mapping radix tree, which is 1546 * rooted at mapping->i_pages, and indexed by offset. 1547 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 1548 * lists, we instead now tag pages as dirty/writeback in the radix tree. 1549 * 1550 * All pagecache pages may be subject to I/O: 1551 * - inode pages may need to be read from disk, 1552 * - inode pages which have been modified and are MAP_SHARED may need 1553 * to be written back to the inode on disk, 1554 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 1555 * modified may need to be swapped out to swap space and (later) to be read 1556 * back into memory. 1557 */ 1558 1559/* 127: arbitrary random number, small enough to assemble well */ 1560#define folio_ref_zero_or_close_to_overflow(folio) \ 1561 ((unsigned int) folio_ref_count(folio) + 127u <= 127u) 1562 1563/** 1564 * folio_get - Increment the reference count on a folio. 1565 * @folio: The folio. 1566 * 1567 * Context: May be called in any context, as long as you know that 1568 * you have a refcount on the folio. If you do not already have one, 1569 * folio_try_get() may be the right interface for you to use. 1570 */ 1571static inline void folio_get(struct folio *folio) 1572{ 1573 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio); 1574 folio_ref_inc(folio); 1575} 1576 1577static inline void get_page(struct page *page) 1578{ 1579 struct folio *folio = page_folio(page); 1580 if (WARN_ON_ONCE(folio_test_slab(folio))) 1581 return; 1582 if (WARN_ON_ONCE(folio_test_large_kmalloc(folio))) 1583 return; 1584 folio_get(folio); 1585} 1586 1587static inline __must_check bool try_get_page(struct page *page) 1588{ 1589 page = compound_head(page); 1590 if (WARN_ON_ONCE(page_ref_count(page) <= 0)) 1591 return false; 1592 page_ref_inc(page); 1593 return true; 1594} 1595 1596/** 1597 * folio_put - Decrement the reference count on a folio. 1598 * @folio: The folio. 1599 * 1600 * If the folio's reference count reaches zero, the memory will be 1601 * released back to the page allocator and may be used by another 1602 * allocation immediately. Do not access the memory or the struct folio 1603 * after calling folio_put() unless you can be sure that it wasn't the 1604 * last reference. 1605 * 1606 * Context: May be called in process or interrupt context, but not in NMI 1607 * context. May be called while holding a spinlock. 1608 */ 1609static inline void folio_put(struct folio *folio) 1610{ 1611 if (folio_put_testzero(folio)) 1612 __folio_put(folio); 1613} 1614 1615/** 1616 * folio_put_refs - Reduce the reference count on a folio. 1617 * @folio: The folio. 1618 * @refs: The amount to subtract from the folio's reference count. 1619 * 1620 * If the folio's reference count reaches zero, the memory will be 1621 * released back to the page allocator and may be used by another 1622 * allocation immediately. Do not access the memory or the struct folio 1623 * after calling folio_put_refs() unless you can be sure that these weren't 1624 * the last references. 1625 * 1626 * Context: May be called in process or interrupt context, but not in NMI 1627 * context. May be called while holding a spinlock. 1628 */ 1629static inline void folio_put_refs(struct folio *folio, int refs) 1630{ 1631 if (folio_ref_sub_and_test(folio, refs)) 1632 __folio_put(folio); 1633} 1634 1635void folios_put_refs(struct folio_batch *folios, unsigned int *refs); 1636 1637/* 1638 * union release_pages_arg - an array of pages or folios 1639 * 1640 * release_pages() releases a simple array of multiple pages, and 1641 * accepts various different forms of said page array: either 1642 * a regular old boring array of pages, an array of folios, or 1643 * an array of encoded page pointers. 1644 * 1645 * The transparent union syntax for this kind of "any of these 1646 * argument types" is all kinds of ugly, so look away. 1647 */ 1648typedef union { 1649 struct page **pages; 1650 struct folio **folios; 1651 struct encoded_page **encoded_pages; 1652} release_pages_arg __attribute__ ((__transparent_union__)); 1653 1654void release_pages(release_pages_arg, int nr); 1655 1656/** 1657 * folios_put - Decrement the reference count on an array of folios. 1658 * @folios: The folios. 1659 * 1660 * Like folio_put(), but for a batch of folios. This is more efficient 1661 * than writing the loop yourself as it will optimise the locks which need 1662 * to be taken if the folios are freed. The folios batch is returned 1663 * empty and ready to be reused for another batch; there is no need to 1664 * reinitialise it. 1665 * 1666 * Context: May be called in process or interrupt context, but not in NMI 1667 * context. May be called while holding a spinlock. 1668 */ 1669static inline void folios_put(struct folio_batch *folios) 1670{ 1671 folios_put_refs(folios, NULL); 1672} 1673 1674static inline void put_page(struct page *page) 1675{ 1676 struct folio *folio = page_folio(page); 1677 1678 if (folio_test_slab(folio) || folio_test_large_kmalloc(folio)) 1679 return; 1680 1681 folio_put(folio); 1682} 1683 1684/* 1685 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload 1686 * the page's refcount so that two separate items are tracked: the original page 1687 * reference count, and also a new count of how many pin_user_pages() calls were 1688 * made against the page. ("gup-pinned" is another term for the latter). 1689 * 1690 * With this scheme, pin_user_pages() becomes special: such pages are marked as 1691 * distinct from normal pages. As such, the unpin_user_page() call (and its 1692 * variants) must be used in order to release gup-pinned pages. 1693 * 1694 * Choice of value: 1695 * 1696 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference 1697 * counts with respect to pin_user_pages() and unpin_user_page() becomes 1698 * simpler, due to the fact that adding an even power of two to the page 1699 * refcount has the effect of using only the upper N bits, for the code that 1700 * counts up using the bias value. This means that the lower bits are left for 1701 * the exclusive use of the original code that increments and decrements by one 1702 * (or at least, by much smaller values than the bias value). 1703 * 1704 * Of course, once the lower bits overflow into the upper bits (and this is 1705 * OK, because subtraction recovers the original values), then visual inspection 1706 * no longer suffices to directly view the separate counts. However, for normal 1707 * applications that don't have huge page reference counts, this won't be an 1708 * issue. 1709 * 1710 * Locking: the lockless algorithm described in folio_try_get_rcu() 1711 * provides safe operation for get_user_pages(), folio_mkclean() and 1712 * other calls that race to set up page table entries. 1713 */ 1714#define GUP_PIN_COUNTING_BIAS (1U << 10) 1715 1716void unpin_user_page(struct page *page); 1717void unpin_folio(struct folio *folio); 1718void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 1719 bool make_dirty); 1720void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, 1721 bool make_dirty); 1722void unpin_user_pages(struct page **pages, unsigned long npages); 1723void unpin_user_folio(struct folio *folio, unsigned long npages); 1724void unpin_folios(struct folio **folios, unsigned long nfolios); 1725 1726static inline bool is_cow_mapping(vm_flags_t flags) 1727{ 1728 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 1729} 1730 1731#ifndef CONFIG_MMU 1732static inline bool is_nommu_shared_mapping(vm_flags_t flags) 1733{ 1734 /* 1735 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected 1736 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of 1737 * a file mapping. R/O MAP_PRIVATE mappings might still modify 1738 * underlying memory if ptrace is active, so this is only possible if 1739 * ptrace does not apply. Note that there is no mprotect() to upgrade 1740 * write permissions later. 1741 */ 1742 return flags & (VM_MAYSHARE | VM_MAYOVERLAY); 1743} 1744#endif 1745 1746#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 1747#define SECTION_IN_PAGE_FLAGS 1748#endif 1749 1750/* 1751 * The identification function is mainly used by the buddy allocator for 1752 * determining if two pages could be buddies. We are not really identifying 1753 * the zone since we could be using the section number id if we do not have 1754 * node id available in page flags. 1755 * We only guarantee that it will return the same value for two combinable 1756 * pages in a zone. 1757 */ 1758static inline int page_zone_id(struct page *page) 1759{ 1760 return (page->flags.f >> ZONEID_PGSHIFT) & ZONEID_MASK; 1761} 1762 1763#ifdef NODE_NOT_IN_PAGE_FLAGS 1764int memdesc_nid(memdesc_flags_t mdf); 1765#else 1766static inline int memdesc_nid(memdesc_flags_t mdf) 1767{ 1768 return (mdf.f >> NODES_PGSHIFT) & NODES_MASK; 1769} 1770#endif 1771 1772static inline int page_to_nid(const struct page *page) 1773{ 1774 return memdesc_nid(PF_POISONED_CHECK(page)->flags); 1775} 1776 1777static inline int folio_nid(const struct folio *folio) 1778{ 1779 return memdesc_nid(folio->flags); 1780} 1781 1782#ifdef CONFIG_NUMA_BALANCING 1783/* page access time bits needs to hold at least 4 seconds */ 1784#define PAGE_ACCESS_TIME_MIN_BITS 12 1785#if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS 1786#define PAGE_ACCESS_TIME_BUCKETS \ 1787 (PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT) 1788#else 1789#define PAGE_ACCESS_TIME_BUCKETS 0 1790#endif 1791 1792#define PAGE_ACCESS_TIME_MASK \ 1793 (LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS) 1794 1795static inline int cpu_pid_to_cpupid(int cpu, int pid) 1796{ 1797 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 1798} 1799 1800static inline int cpupid_to_pid(int cpupid) 1801{ 1802 return cpupid & LAST__PID_MASK; 1803} 1804 1805static inline int cpupid_to_cpu(int cpupid) 1806{ 1807 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 1808} 1809 1810static inline int cpupid_to_nid(int cpupid) 1811{ 1812 return cpu_to_node(cpupid_to_cpu(cpupid)); 1813} 1814 1815static inline bool cpupid_pid_unset(int cpupid) 1816{ 1817 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 1818} 1819 1820static inline bool cpupid_cpu_unset(int cpupid) 1821{ 1822 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 1823} 1824 1825static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 1826{ 1827 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 1828} 1829 1830#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 1831#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 1832static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid) 1833{ 1834 return xchg(&folio->_last_cpupid, cpupid & LAST_CPUPID_MASK); 1835} 1836 1837static inline int folio_last_cpupid(struct folio *folio) 1838{ 1839 return folio->_last_cpupid; 1840} 1841static inline void page_cpupid_reset_last(struct page *page) 1842{ 1843 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 1844} 1845#else 1846static inline int folio_last_cpupid(struct folio *folio) 1847{ 1848 return (folio->flags.f >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 1849} 1850 1851int folio_xchg_last_cpupid(struct folio *folio, int cpupid); 1852 1853static inline void page_cpupid_reset_last(struct page *page) 1854{ 1855 page->flags.f |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 1856} 1857#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 1858 1859static inline int folio_xchg_access_time(struct folio *folio, int time) 1860{ 1861 int last_time; 1862 1863 last_time = folio_xchg_last_cpupid(folio, 1864 time >> PAGE_ACCESS_TIME_BUCKETS); 1865 return last_time << PAGE_ACCESS_TIME_BUCKETS; 1866} 1867 1868static inline void vma_set_access_pid_bit(struct vm_area_struct *vma) 1869{ 1870 unsigned int pid_bit; 1871 1872 pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG)); 1873 if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->pids_active[1])) { 1874 __set_bit(pid_bit, &vma->numab_state->pids_active[1]); 1875 } 1876} 1877 1878bool folio_use_access_time(struct folio *folio); 1879#else /* !CONFIG_NUMA_BALANCING */ 1880static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid) 1881{ 1882 return folio_nid(folio); /* XXX */ 1883} 1884 1885static inline int folio_xchg_access_time(struct folio *folio, int time) 1886{ 1887 return 0; 1888} 1889 1890static inline int folio_last_cpupid(struct folio *folio) 1891{ 1892 return folio_nid(folio); /* XXX */ 1893} 1894 1895static inline int cpupid_to_nid(int cpupid) 1896{ 1897 return -1; 1898} 1899 1900static inline int cpupid_to_pid(int cpupid) 1901{ 1902 return -1; 1903} 1904 1905static inline int cpupid_to_cpu(int cpupid) 1906{ 1907 return -1; 1908} 1909 1910static inline int cpu_pid_to_cpupid(int nid, int pid) 1911{ 1912 return -1; 1913} 1914 1915static inline bool cpupid_pid_unset(int cpupid) 1916{ 1917 return true; 1918} 1919 1920static inline void page_cpupid_reset_last(struct page *page) 1921{ 1922} 1923 1924static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 1925{ 1926 return false; 1927} 1928 1929static inline void vma_set_access_pid_bit(struct vm_area_struct *vma) 1930{ 1931} 1932static inline bool folio_use_access_time(struct folio *folio) 1933{ 1934 return false; 1935} 1936#endif /* CONFIG_NUMA_BALANCING */ 1937 1938#if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS) 1939 1940/* 1941 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid 1942 * setting tags for all pages to native kernel tag value 0xff, as the default 1943 * value 0x00 maps to 0xff. 1944 */ 1945 1946static inline u8 page_kasan_tag(const struct page *page) 1947{ 1948 u8 tag = KASAN_TAG_KERNEL; 1949 1950 if (kasan_enabled()) { 1951 tag = (page->flags.f >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK; 1952 tag ^= 0xff; 1953 } 1954 1955 return tag; 1956} 1957 1958static inline void page_kasan_tag_set(struct page *page, u8 tag) 1959{ 1960 unsigned long old_flags, flags; 1961 1962 if (!kasan_enabled()) 1963 return; 1964 1965 tag ^= 0xff; 1966 old_flags = READ_ONCE(page->flags.f); 1967 do { 1968 flags = old_flags; 1969 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT); 1970 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT; 1971 } while (unlikely(!try_cmpxchg(&page->flags.f, &old_flags, flags))); 1972} 1973 1974static inline void page_kasan_tag_reset(struct page *page) 1975{ 1976 if (kasan_enabled()) 1977 page_kasan_tag_set(page, KASAN_TAG_KERNEL); 1978} 1979 1980#else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1981 1982static inline u8 page_kasan_tag(const struct page *page) 1983{ 1984 return 0xff; 1985} 1986 1987static inline void page_kasan_tag_set(struct page *page, u8 tag) { } 1988static inline void page_kasan_tag_reset(struct page *page) { } 1989 1990#endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1991 1992static inline struct zone *page_zone(const struct page *page) 1993{ 1994 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 1995} 1996 1997static inline pg_data_t *page_pgdat(const struct page *page) 1998{ 1999 return NODE_DATA(page_to_nid(page)); 2000} 2001 2002static inline pg_data_t *folio_pgdat(const struct folio *folio) 2003{ 2004 return NODE_DATA(folio_nid(folio)); 2005} 2006 2007static inline struct zone *folio_zone(const struct folio *folio) 2008{ 2009 return &folio_pgdat(folio)->node_zones[folio_zonenum(folio)]; 2010} 2011 2012#ifdef SECTION_IN_PAGE_FLAGS 2013static inline void set_page_section(struct page *page, unsigned long section) 2014{ 2015 page->flags.f &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 2016 page->flags.f |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 2017} 2018 2019static inline unsigned long memdesc_section(memdesc_flags_t mdf) 2020{ 2021 return (mdf.f >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 2022} 2023#else /* !SECTION_IN_PAGE_FLAGS */ 2024static inline unsigned long memdesc_section(memdesc_flags_t mdf) 2025{ 2026 return 0; 2027} 2028#endif /* SECTION_IN_PAGE_FLAGS */ 2029 2030/** 2031 * folio_pfn - Return the Page Frame Number of a folio. 2032 * @folio: The folio. 2033 * 2034 * A folio may contain multiple pages. The pages have consecutive 2035 * Page Frame Numbers. 2036 * 2037 * Return: The Page Frame Number of the first page in the folio. 2038 */ 2039static inline unsigned long folio_pfn(const struct folio *folio) 2040{ 2041 return page_to_pfn(&folio->page); 2042} 2043 2044static inline struct folio *pfn_folio(unsigned long pfn) 2045{ 2046 return page_folio(pfn_to_page(pfn)); 2047} 2048 2049#ifdef CONFIG_MMU 2050static inline pte_t mk_pte(const struct page *page, pgprot_t pgprot) 2051{ 2052 return pfn_pte(page_to_pfn(page), pgprot); 2053} 2054 2055/** 2056 * folio_mk_pte - Create a PTE for this folio 2057 * @folio: The folio to create a PTE for 2058 * @pgprot: The page protection bits to use 2059 * 2060 * Create a page table entry for the first page of this folio. 2061 * This is suitable for passing to set_ptes(). 2062 * 2063 * Return: A page table entry suitable for mapping this folio. 2064 */ 2065static inline pte_t folio_mk_pte(const struct folio *folio, pgprot_t pgprot) 2066{ 2067 return pfn_pte(folio_pfn(folio), pgprot); 2068} 2069 2070#ifdef CONFIG_TRANSPARENT_HUGEPAGE 2071/** 2072 * folio_mk_pmd - Create a PMD for this folio 2073 * @folio: The folio to create a PMD for 2074 * @pgprot: The page protection bits to use 2075 * 2076 * Create a page table entry for the first page of this folio. 2077 * This is suitable for passing to set_pmd_at(). 2078 * 2079 * Return: A page table entry suitable for mapping this folio. 2080 */ 2081static inline pmd_t folio_mk_pmd(const struct folio *folio, pgprot_t pgprot) 2082{ 2083 return pmd_mkhuge(pfn_pmd(folio_pfn(folio), pgprot)); 2084} 2085 2086#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 2087/** 2088 * folio_mk_pud - Create a PUD for this folio 2089 * @folio: The folio to create a PUD for 2090 * @pgprot: The page protection bits to use 2091 * 2092 * Create a page table entry for the first page of this folio. 2093 * This is suitable for passing to set_pud_at(). 2094 * 2095 * Return: A page table entry suitable for mapping this folio. 2096 */ 2097static inline pud_t folio_mk_pud(const struct folio *folio, pgprot_t pgprot) 2098{ 2099 return pud_mkhuge(pfn_pud(folio_pfn(folio), pgprot)); 2100} 2101#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 2102#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 2103#endif /* CONFIG_MMU */ 2104 2105static inline bool folio_has_pincount(const struct folio *folio) 2106{ 2107 if (IS_ENABLED(CONFIG_64BIT)) 2108 return folio_test_large(folio); 2109 return folio_order(folio) > 1; 2110} 2111 2112/** 2113 * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA. 2114 * @folio: The folio. 2115 * 2116 * This function checks if a folio has been pinned via a call to 2117 * a function in the pin_user_pages() family. 2118 * 2119 * For small folios, the return value is partially fuzzy: false is not fuzzy, 2120 * because it means "definitely not pinned for DMA", but true means "probably 2121 * pinned for DMA, but possibly a false positive due to having at least 2122 * GUP_PIN_COUNTING_BIAS worth of normal folio references". 2123 * 2124 * False positives are OK, because: a) it's unlikely for a folio to 2125 * get that many refcounts, and b) all the callers of this routine are 2126 * expected to be able to deal gracefully with a false positive. 2127 * 2128 * For most large folios, the result will be exactly correct. That's because 2129 * we have more tracking data available: the _pincount field is used 2130 * instead of the GUP_PIN_COUNTING_BIAS scheme. 2131 * 2132 * For more information, please see Documentation/core-api/pin_user_pages.rst. 2133 * 2134 * Return: True, if it is likely that the folio has been "dma-pinned". 2135 * False, if the folio is definitely not dma-pinned. 2136 */ 2137static inline bool folio_maybe_dma_pinned(struct folio *folio) 2138{ 2139 if (folio_has_pincount(folio)) 2140 return atomic_read(&folio->_pincount) > 0; 2141 2142 /* 2143 * folio_ref_count() is signed. If that refcount overflows, then 2144 * folio_ref_count() returns a negative value, and callers will avoid 2145 * further incrementing the refcount. 2146 * 2147 * Here, for that overflow case, use the sign bit to count a little 2148 * bit higher via unsigned math, and thus still get an accurate result. 2149 */ 2150 return ((unsigned int)folio_ref_count(folio)) >= 2151 GUP_PIN_COUNTING_BIAS; 2152} 2153 2154/* 2155 * This should most likely only be called during fork() to see whether we 2156 * should break the cow immediately for an anon page on the src mm. 2157 * 2158 * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq. 2159 */ 2160static inline bool folio_needs_cow_for_dma(struct vm_area_struct *vma, 2161 struct folio *folio) 2162{ 2163 VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1)); 2164 2165 if (!mm_flags_test(MMF_HAS_PINNED, vma->vm_mm)) 2166 return false; 2167 2168 return folio_maybe_dma_pinned(folio); 2169} 2170 2171/** 2172 * is_zero_page - Query if a page is a zero page 2173 * @page: The page to query 2174 * 2175 * This returns true if @page is one of the permanent zero pages. 2176 */ 2177static inline bool is_zero_page(const struct page *page) 2178{ 2179 return is_zero_pfn(page_to_pfn(page)); 2180} 2181 2182/** 2183 * is_zero_folio - Query if a folio is a zero page 2184 * @folio: The folio to query 2185 * 2186 * This returns true if @folio is one of the permanent zero pages. 2187 */ 2188static inline bool is_zero_folio(const struct folio *folio) 2189{ 2190 return is_zero_page(&folio->page); 2191} 2192 2193/* MIGRATE_CMA and ZONE_MOVABLE do not allow pin folios */ 2194#ifdef CONFIG_MIGRATION 2195static inline bool folio_is_longterm_pinnable(struct folio *folio) 2196{ 2197#ifdef CONFIG_CMA 2198 int mt = folio_migratetype(folio); 2199 2200 if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE) 2201 return false; 2202#endif 2203 /* The zero page can be "pinned" but gets special handling. */ 2204 if (is_zero_folio(folio)) 2205 return true; 2206 2207 /* Coherent device memory must always allow eviction. */ 2208 if (folio_is_device_coherent(folio)) 2209 return false; 2210 2211 /* 2212 * Filesystems can only tolerate transient delays to truncate and 2213 * hole-punch operations 2214 */ 2215 if (folio_is_fsdax(folio)) 2216 return false; 2217 2218 /* Otherwise, non-movable zone folios can be pinned. */ 2219 return !folio_is_zone_movable(folio); 2220 2221} 2222#else 2223static inline bool folio_is_longterm_pinnable(struct folio *folio) 2224{ 2225 return true; 2226} 2227#endif 2228 2229static inline void set_page_zone(struct page *page, enum zone_type zone) 2230{ 2231 page->flags.f &= ~(ZONES_MASK << ZONES_PGSHIFT); 2232 page->flags.f |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 2233} 2234 2235static inline void set_page_node(struct page *page, unsigned long node) 2236{ 2237 page->flags.f &= ~(NODES_MASK << NODES_PGSHIFT); 2238 page->flags.f |= (node & NODES_MASK) << NODES_PGSHIFT; 2239} 2240 2241static inline void set_page_links(struct page *page, enum zone_type zone, 2242 unsigned long node, unsigned long pfn) 2243{ 2244 set_page_zone(page, zone); 2245 set_page_node(page, node); 2246#ifdef SECTION_IN_PAGE_FLAGS 2247 set_page_section(page, pfn_to_section_nr(pfn)); 2248#endif 2249} 2250 2251/** 2252 * folio_nr_pages - The number of pages in the folio. 2253 * @folio: The folio. 2254 * 2255 * Return: A positive power of two. 2256 */ 2257static inline unsigned long folio_nr_pages(const struct folio *folio) 2258{ 2259 if (!folio_test_large(folio)) 2260 return 1; 2261 return folio_large_nr_pages(folio); 2262} 2263 2264#if !defined(CONFIG_HAVE_GIGANTIC_FOLIOS) 2265/* 2266 * We don't expect any folios that exceed buddy sizes (and consequently 2267 * memory sections). 2268 */ 2269#define MAX_FOLIO_ORDER MAX_PAGE_ORDER 2270#elif defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 2271/* 2272 * Only pages within a single memory section are guaranteed to be 2273 * contiguous. By limiting folios to a single memory section, all folio 2274 * pages are guaranteed to be contiguous. 2275 */ 2276#define MAX_FOLIO_ORDER PFN_SECTION_SHIFT 2277#elif defined(CONFIG_HUGETLB_PAGE) 2278/* 2279 * There is no real limit on the folio size. We limit them to the maximum we 2280 * currently expect (see CONFIG_HAVE_GIGANTIC_FOLIOS): with hugetlb, we expect 2281 * no folios larger than 16 GiB on 64bit and 1 GiB on 32bit. 2282 */ 2283#define MAX_FOLIO_ORDER get_order(IS_ENABLED(CONFIG_64BIT) ? SZ_16G : SZ_1G) 2284#else 2285/* 2286 * Without hugetlb, gigantic folios that are bigger than a single PUD are 2287 * currently impossible. 2288 */ 2289#define MAX_FOLIO_ORDER PUD_ORDER 2290#endif 2291 2292#define MAX_FOLIO_NR_PAGES (1UL << MAX_FOLIO_ORDER) 2293 2294/* 2295 * compound_nr() returns the number of pages in this potentially compound 2296 * page. compound_nr() can be called on a tail page, and is defined to 2297 * return 1 in that case. 2298 */ 2299static inline unsigned long compound_nr(const struct page *page) 2300{ 2301 const struct folio *folio = (struct folio *)page; 2302 2303 if (!test_bit(PG_head, &folio->flags.f)) 2304 return 1; 2305 return folio_large_nr_pages(folio); 2306} 2307 2308/** 2309 * folio_next - Move to the next physical folio. 2310 * @folio: The folio we're currently operating on. 2311 * 2312 * If you have physically contiguous memory which may span more than 2313 * one folio (eg a &struct bio_vec), use this function to move from one 2314 * folio to the next. Do not use it if the memory is only virtually 2315 * contiguous as the folios are almost certainly not adjacent to each 2316 * other. This is the folio equivalent to writing ``page++``. 2317 * 2318 * Context: We assume that the folios are refcounted and/or locked at a 2319 * higher level and do not adjust the reference counts. 2320 * Return: The next struct folio. 2321 */ 2322static inline struct folio *folio_next(struct folio *folio) 2323{ 2324 return (struct folio *)folio_page(folio, folio_nr_pages(folio)); 2325} 2326 2327/** 2328 * folio_shift - The size of the memory described by this folio. 2329 * @folio: The folio. 2330 * 2331 * A folio represents a number of bytes which is a power-of-two in size. 2332 * This function tells you which power-of-two the folio is. See also 2333 * folio_size() and folio_order(). 2334 * 2335 * Context: The caller should have a reference on the folio to prevent 2336 * it from being split. It is not necessary for the folio to be locked. 2337 * Return: The base-2 logarithm of the size of this folio. 2338 */ 2339static inline unsigned int folio_shift(const struct folio *folio) 2340{ 2341 return PAGE_SHIFT + folio_order(folio); 2342} 2343 2344/** 2345 * folio_size - The number of bytes in a folio. 2346 * @folio: The folio. 2347 * 2348 * Context: The caller should have a reference on the folio to prevent 2349 * it from being split. It is not necessary for the folio to be locked. 2350 * Return: The number of bytes in this folio. 2351 */ 2352static inline size_t folio_size(const struct folio *folio) 2353{ 2354 return PAGE_SIZE << folio_order(folio); 2355} 2356 2357/** 2358 * folio_maybe_mapped_shared - Whether the folio is mapped into the page 2359 * tables of more than one MM 2360 * @folio: The folio. 2361 * 2362 * This function checks if the folio maybe currently mapped into more than one 2363 * MM ("maybe mapped shared"), or if the folio is certainly mapped into a single 2364 * MM ("mapped exclusively"). 2365 * 2366 * For KSM folios, this function also returns "mapped shared" when a folio is 2367 * mapped multiple times into the same MM, because the individual page mappings 2368 * are independent. 2369 * 2370 * For small anonymous folios and anonymous hugetlb folios, the return 2371 * value will be exactly correct: non-KSM folios can only be mapped at most once 2372 * into an MM, and they cannot be partially mapped. KSM folios are 2373 * considered shared even if mapped multiple times into the same MM. 2374 * 2375 * For other folios, the result can be fuzzy: 2376 * #. For partially-mappable large folios (THP), the return value can wrongly 2377 * indicate "mapped shared" (false positive) if a folio was mapped by 2378 * more than two MMs at one point in time. 2379 * #. For pagecache folios (including hugetlb), the return value can wrongly 2380 * indicate "mapped shared" (false positive) when two VMAs in the same MM 2381 * cover the same file range. 2382 * 2383 * Further, this function only considers current page table mappings that 2384 * are tracked using the folio mapcount(s). 2385 * 2386 * This function does not consider: 2387 * #. If the folio might get mapped in the (near) future (e.g., swapcache, 2388 * pagecache, temporary unmapping for migration). 2389 * #. If the folio is mapped differently (VM_PFNMAP). 2390 * #. If hugetlb page table sharing applies. Callers might want to check 2391 * hugetlb_pmd_shared(). 2392 * 2393 * Return: Whether the folio is estimated to be mapped into more than one MM. 2394 */ 2395static inline bool folio_maybe_mapped_shared(struct folio *folio) 2396{ 2397 int mapcount = folio_mapcount(folio); 2398 2399 /* Only partially-mappable folios require more care. */ 2400 if (!folio_test_large(folio) || unlikely(folio_test_hugetlb(folio))) 2401 return mapcount > 1; 2402 2403 /* 2404 * vm_insert_page() without CONFIG_TRANSPARENT_HUGEPAGE ... 2405 * simply assume "mapped shared", nobody should really care 2406 * about this for arbitrary kernel allocations. 2407 */ 2408 if (!IS_ENABLED(CONFIG_MM_ID)) 2409 return true; 2410 2411 /* 2412 * A single mapping implies "mapped exclusively", even if the 2413 * folio flag says something different: it's easier to handle this 2414 * case here instead of on the RMAP hot path. 2415 */ 2416 if (mapcount <= 1) 2417 return false; 2418 return test_bit(FOLIO_MM_IDS_SHARED_BITNUM, &folio->_mm_ids); 2419} 2420 2421/** 2422 * folio_expected_ref_count - calculate the expected folio refcount 2423 * @folio: the folio 2424 * 2425 * Calculate the expected folio refcount, taking references from the pagecache, 2426 * swapcache, PG_private and page table mappings into account. Useful in 2427 * combination with folio_ref_count() to detect unexpected references (e.g., 2428 * GUP or other temporary references). 2429 * 2430 * Does currently not consider references from the LRU cache. If the folio 2431 * was isolated from the LRU (which is the case during migration or split), 2432 * the LRU cache does not apply. 2433 * 2434 * Calling this function on an unmapped folio -- !folio_mapped() -- that is 2435 * locked will return a stable result. 2436 * 2437 * Calling this function on a mapped folio will not result in a stable result, 2438 * because nothing stops additional page table mappings from coming (e.g., 2439 * fork()) or going (e.g., munmap()). 2440 * 2441 * Calling this function without the folio lock will also not result in a 2442 * stable result: for example, the folio might get dropped from the swapcache 2443 * concurrently. 2444 * 2445 * However, even when called without the folio lock or on a mapped folio, 2446 * this function can be used to detect unexpected references early (for example, 2447 * if it makes sense to even lock the folio and unmap it). 2448 * 2449 * The caller must add any reference (e.g., from folio_try_get()) it might be 2450 * holding itself to the result. 2451 * 2452 * Returns the expected folio refcount. 2453 */ 2454static inline int folio_expected_ref_count(const struct folio *folio) 2455{ 2456 const int order = folio_order(folio); 2457 int ref_count = 0; 2458 2459 if (WARN_ON_ONCE(page_has_type(&folio->page) && !folio_test_hugetlb(folio))) 2460 return 0; 2461 2462 /* One reference per page from the swapcache. */ 2463 ref_count += folio_test_swapcache(folio) << order; 2464 2465 if (!folio_test_anon(folio)) { 2466 /* One reference per page from the pagecache. */ 2467 ref_count += !!folio->mapping << order; 2468 /* One reference from PG_private. */ 2469 ref_count += folio_test_private(folio); 2470 } 2471 2472 /* One reference per page table mapping. */ 2473 return ref_count + folio_mapcount(folio); 2474} 2475 2476#ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE 2477static inline int arch_make_folio_accessible(struct folio *folio) 2478{ 2479 return 0; 2480} 2481#endif 2482 2483/* 2484 * Some inline functions in vmstat.h depend on page_zone() 2485 */ 2486#include <linux/vmstat.h> 2487 2488#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 2489#define HASHED_PAGE_VIRTUAL 2490#endif 2491 2492#if defined(WANT_PAGE_VIRTUAL) 2493static inline void *page_address(const struct page *page) 2494{ 2495 return page->virtual; 2496} 2497static inline void set_page_address(struct page *page, void *address) 2498{ 2499 page->virtual = address; 2500} 2501#define page_address_init() do { } while(0) 2502#endif 2503 2504#if defined(HASHED_PAGE_VIRTUAL) 2505void *page_address(const struct page *page); 2506void set_page_address(struct page *page, void *virtual); 2507void page_address_init(void); 2508#endif 2509 2510static __always_inline void *lowmem_page_address(const struct page *page) 2511{ 2512 return page_to_virt(page); 2513} 2514 2515#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 2516#define page_address(page) lowmem_page_address(page) 2517#define set_page_address(page, address) do { } while(0) 2518#define page_address_init() do { } while(0) 2519#endif 2520 2521static inline void *folio_address(const struct folio *folio) 2522{ 2523 return page_address(&folio->page); 2524} 2525 2526/* 2527 * Return true only if the page has been allocated with 2528 * ALLOC_NO_WATERMARKS and the low watermark was not 2529 * met implying that the system is under some pressure. 2530 */ 2531static inline bool page_is_pfmemalloc(const struct page *page) 2532{ 2533 /* 2534 * lru.next has bit 1 set if the page is allocated from the 2535 * pfmemalloc reserves. Callers may simply overwrite it if 2536 * they do not need to preserve that information. 2537 */ 2538 return (uintptr_t)page->lru.next & BIT(1); 2539} 2540 2541/* 2542 * Return true only if the folio has been allocated with 2543 * ALLOC_NO_WATERMARKS and the low watermark was not 2544 * met implying that the system is under some pressure. 2545 */ 2546static inline bool folio_is_pfmemalloc(const struct folio *folio) 2547{ 2548 /* 2549 * lru.next has bit 1 set if the page is allocated from the 2550 * pfmemalloc reserves. Callers may simply overwrite it if 2551 * they do not need to preserve that information. 2552 */ 2553 return (uintptr_t)folio->lru.next & BIT(1); 2554} 2555 2556/* 2557 * Only to be called by the page allocator on a freshly allocated 2558 * page. 2559 */ 2560static inline void set_page_pfmemalloc(struct page *page) 2561{ 2562 page->lru.next = (void *)BIT(1); 2563} 2564 2565static inline void clear_page_pfmemalloc(struct page *page) 2566{ 2567 page->lru.next = NULL; 2568} 2569 2570/* 2571 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 2572 */ 2573extern void pagefault_out_of_memory(void); 2574 2575#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 2576#define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1)) 2577 2578/* 2579 * Parameter block passed down to zap_pte_range in exceptional cases. 2580 */ 2581struct zap_details { 2582 struct folio *single_folio; /* Locked folio to be unmapped */ 2583 bool even_cows; /* Zap COWed private pages too? */ 2584 bool reclaim_pt; /* Need reclaim page tables? */ 2585 zap_flags_t zap_flags; /* Extra flags for zapping */ 2586}; 2587 2588/* 2589 * Whether to drop the pte markers, for example, the uffd-wp information for 2590 * file-backed memory. This should only be specified when we will completely 2591 * drop the page in the mm, either by truncation or unmapping of the vma. By 2592 * default, the flag is not set. 2593 */ 2594#define ZAP_FLAG_DROP_MARKER ((__force zap_flags_t) BIT(0)) 2595/* Set in unmap_vmas() to indicate a final unmap call. Only used by hugetlb */ 2596#define ZAP_FLAG_UNMAP ((__force zap_flags_t) BIT(1)) 2597 2598#ifdef CONFIG_MMU 2599extern bool can_do_mlock(void); 2600#else 2601static inline bool can_do_mlock(void) { return false; } 2602#endif 2603extern int user_shm_lock(size_t, struct ucounts *); 2604extern void user_shm_unlock(size_t, struct ucounts *); 2605 2606struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr, 2607 pte_t pte); 2608struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 2609 pte_t pte); 2610struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma, 2611 unsigned long addr, pmd_t pmd); 2612struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 2613 pmd_t pmd); 2614struct page *vm_normal_page_pud(struct vm_area_struct *vma, unsigned long addr, 2615 pud_t pud); 2616 2617void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 2618 unsigned long size); 2619void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 2620 unsigned long size, struct zap_details *details); 2621static inline void zap_vma_pages(struct vm_area_struct *vma) 2622{ 2623 zap_page_range_single(vma, vma->vm_start, 2624 vma->vm_end - vma->vm_start, NULL); 2625} 2626void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas, 2627 struct vm_area_struct *start_vma, unsigned long start, 2628 unsigned long end, unsigned long tree_end); 2629 2630struct mmu_notifier_range; 2631 2632void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 2633 unsigned long end, unsigned long floor, unsigned long ceiling); 2634int 2635copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma); 2636int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 2637 void *buf, int len, int write); 2638 2639struct follow_pfnmap_args { 2640 /** 2641 * Inputs: 2642 * @vma: Pointer to @vm_area_struct struct 2643 * @address: the virtual address to walk 2644 */ 2645 struct vm_area_struct *vma; 2646 unsigned long address; 2647 /** 2648 * Internals: 2649 * 2650 * The caller shouldn't touch any of these. 2651 */ 2652 spinlock_t *lock; 2653 pte_t *ptep; 2654 /** 2655 * Outputs: 2656 * 2657 * @pfn: the PFN of the address 2658 * @addr_mask: address mask covering pfn 2659 * @pgprot: the pgprot_t of the mapping 2660 * @writable: whether the mapping is writable 2661 * @special: whether the mapping is a special mapping (real PFN maps) 2662 */ 2663 unsigned long pfn; 2664 unsigned long addr_mask; 2665 pgprot_t pgprot; 2666 bool writable; 2667 bool special; 2668}; 2669int follow_pfnmap_start(struct follow_pfnmap_args *args); 2670void follow_pfnmap_end(struct follow_pfnmap_args *args); 2671 2672extern void truncate_pagecache(struct inode *inode, loff_t new); 2673extern void truncate_setsize(struct inode *inode, loff_t newsize); 2674void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 2675void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 2676int generic_error_remove_folio(struct address_space *mapping, 2677 struct folio *folio); 2678 2679struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm, 2680 unsigned long address, struct pt_regs *regs); 2681 2682#ifdef CONFIG_MMU 2683extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 2684 unsigned long address, unsigned int flags, 2685 struct pt_regs *regs); 2686extern int fixup_user_fault(struct mm_struct *mm, 2687 unsigned long address, unsigned int fault_flags, 2688 bool *unlocked); 2689void unmap_mapping_pages(struct address_space *mapping, 2690 pgoff_t start, pgoff_t nr, bool even_cows); 2691void unmap_mapping_range(struct address_space *mapping, 2692 loff_t const holebegin, loff_t const holelen, int even_cows); 2693#else 2694static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 2695 unsigned long address, unsigned int flags, 2696 struct pt_regs *regs) 2697{ 2698 /* should never happen if there's no MMU */ 2699 BUG(); 2700 return VM_FAULT_SIGBUS; 2701} 2702static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address, 2703 unsigned int fault_flags, bool *unlocked) 2704{ 2705 /* should never happen if there's no MMU */ 2706 BUG(); 2707 return -EFAULT; 2708} 2709static inline void unmap_mapping_pages(struct address_space *mapping, 2710 pgoff_t start, pgoff_t nr, bool even_cows) { } 2711static inline void unmap_mapping_range(struct address_space *mapping, 2712 loff_t const holebegin, loff_t const holelen, int even_cows) { } 2713#endif 2714 2715static inline void unmap_shared_mapping_range(struct address_space *mapping, 2716 loff_t const holebegin, loff_t const holelen) 2717{ 2718 unmap_mapping_range(mapping, holebegin, holelen, 0); 2719} 2720 2721static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm, 2722 unsigned long addr); 2723 2724extern int access_process_vm(struct task_struct *tsk, unsigned long addr, 2725 void *buf, int len, unsigned int gup_flags); 2726extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 2727 void *buf, int len, unsigned int gup_flags); 2728 2729#ifdef CONFIG_BPF_SYSCALL 2730extern int copy_remote_vm_str(struct task_struct *tsk, unsigned long addr, 2731 void *buf, int len, unsigned int gup_flags); 2732#endif 2733 2734long get_user_pages_remote(struct mm_struct *mm, 2735 unsigned long start, unsigned long nr_pages, 2736 unsigned int gup_flags, struct page **pages, 2737 int *locked); 2738long pin_user_pages_remote(struct mm_struct *mm, 2739 unsigned long start, unsigned long nr_pages, 2740 unsigned int gup_flags, struct page **pages, 2741 int *locked); 2742 2743/* 2744 * Retrieves a single page alongside its VMA. Does not support FOLL_NOWAIT. 2745 */ 2746static inline struct page *get_user_page_vma_remote(struct mm_struct *mm, 2747 unsigned long addr, 2748 int gup_flags, 2749 struct vm_area_struct **vmap) 2750{ 2751 struct page *page; 2752 struct vm_area_struct *vma; 2753 int got; 2754 2755 if (WARN_ON_ONCE(unlikely(gup_flags & FOLL_NOWAIT))) 2756 return ERR_PTR(-EINVAL); 2757 2758 got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL); 2759 2760 if (got < 0) 2761 return ERR_PTR(got); 2762 2763 vma = vma_lookup(mm, addr); 2764 if (WARN_ON_ONCE(!vma)) { 2765 put_page(page); 2766 return ERR_PTR(-EINVAL); 2767 } 2768 2769 *vmap = vma; 2770 return page; 2771} 2772 2773long get_user_pages(unsigned long start, unsigned long nr_pages, 2774 unsigned int gup_flags, struct page **pages); 2775long pin_user_pages(unsigned long start, unsigned long nr_pages, 2776 unsigned int gup_flags, struct page **pages); 2777long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2778 struct page **pages, unsigned int gup_flags); 2779long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2780 struct page **pages, unsigned int gup_flags); 2781long memfd_pin_folios(struct file *memfd, loff_t start, loff_t end, 2782 struct folio **folios, unsigned int max_folios, 2783 pgoff_t *offset); 2784int folio_add_pins(struct folio *folio, unsigned int pins); 2785 2786int get_user_pages_fast(unsigned long start, int nr_pages, 2787 unsigned int gup_flags, struct page **pages); 2788int pin_user_pages_fast(unsigned long start, int nr_pages, 2789 unsigned int gup_flags, struct page **pages); 2790void folio_add_pin(struct folio *folio); 2791 2792int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc); 2793int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, 2794 const struct task_struct *task, bool bypass_rlim); 2795 2796struct kvec; 2797struct page *get_dump_page(unsigned long addr, int *locked); 2798 2799bool folio_mark_dirty(struct folio *folio); 2800bool folio_mark_dirty_lock(struct folio *folio); 2801bool set_page_dirty(struct page *page); 2802int set_page_dirty_lock(struct page *page); 2803 2804int get_cmdline(struct task_struct *task, char *buffer, int buflen); 2805 2806/* 2807 * Flags used by change_protection(). For now we make it a bitmap so 2808 * that we can pass in multiple flags just like parameters. However 2809 * for now all the callers are only use one of the flags at the same 2810 * time. 2811 */ 2812/* 2813 * Whether we should manually check if we can map individual PTEs writable, 2814 * because something (e.g., COW, uffd-wp) blocks that from happening for all 2815 * PTEs automatically in a writable mapping. 2816 */ 2817#define MM_CP_TRY_CHANGE_WRITABLE (1UL << 0) 2818/* Whether this protection change is for NUMA hints */ 2819#define MM_CP_PROT_NUMA (1UL << 1) 2820/* Whether this change is for write protecting */ 2821#define MM_CP_UFFD_WP (1UL << 2) /* do wp */ 2822#define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */ 2823#define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \ 2824 MM_CP_UFFD_WP_RESOLVE) 2825 2826bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr, 2827 pte_t pte); 2828extern long change_protection(struct mmu_gather *tlb, 2829 struct vm_area_struct *vma, unsigned long start, 2830 unsigned long end, unsigned long cp_flags); 2831extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb, 2832 struct vm_area_struct *vma, struct vm_area_struct **pprev, 2833 unsigned long start, unsigned long end, vm_flags_t newflags); 2834 2835/* 2836 * doesn't attempt to fault and will return short. 2837 */ 2838int get_user_pages_fast_only(unsigned long start, int nr_pages, 2839 unsigned int gup_flags, struct page **pages); 2840 2841static inline bool get_user_page_fast_only(unsigned long addr, 2842 unsigned int gup_flags, struct page **pagep) 2843{ 2844 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1; 2845} 2846/* 2847 * per-process(per-mm_struct) statistics. 2848 */ 2849static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 2850{ 2851 return percpu_counter_read_positive(&mm->rss_stat[member]); 2852} 2853 2854static inline unsigned long get_mm_counter_sum(struct mm_struct *mm, int member) 2855{ 2856 return percpu_counter_sum_positive(&mm->rss_stat[member]); 2857} 2858 2859void mm_trace_rss_stat(struct mm_struct *mm, int member); 2860 2861static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 2862{ 2863 percpu_counter_add(&mm->rss_stat[member], value); 2864 2865 mm_trace_rss_stat(mm, member); 2866} 2867 2868static inline void inc_mm_counter(struct mm_struct *mm, int member) 2869{ 2870 percpu_counter_inc(&mm->rss_stat[member]); 2871 2872 mm_trace_rss_stat(mm, member); 2873} 2874 2875static inline void dec_mm_counter(struct mm_struct *mm, int member) 2876{ 2877 percpu_counter_dec(&mm->rss_stat[member]); 2878 2879 mm_trace_rss_stat(mm, member); 2880} 2881 2882/* Optimized variant when folio is already known not to be anon */ 2883static inline int mm_counter_file(struct folio *folio) 2884{ 2885 if (folio_test_swapbacked(folio)) 2886 return MM_SHMEMPAGES; 2887 return MM_FILEPAGES; 2888} 2889 2890static inline int mm_counter(struct folio *folio) 2891{ 2892 if (folio_test_anon(folio)) 2893 return MM_ANONPAGES; 2894 return mm_counter_file(folio); 2895} 2896 2897static inline unsigned long get_mm_rss(struct mm_struct *mm) 2898{ 2899 return get_mm_counter(mm, MM_FILEPAGES) + 2900 get_mm_counter(mm, MM_ANONPAGES) + 2901 get_mm_counter(mm, MM_SHMEMPAGES); 2902} 2903 2904static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 2905{ 2906 return max(mm->hiwater_rss, get_mm_rss(mm)); 2907} 2908 2909static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 2910{ 2911 return max(mm->hiwater_vm, mm->total_vm); 2912} 2913 2914static inline void update_hiwater_rss(struct mm_struct *mm) 2915{ 2916 unsigned long _rss = get_mm_rss(mm); 2917 2918 if (data_race(mm->hiwater_rss) < _rss) 2919 data_race(mm->hiwater_rss = _rss); 2920} 2921 2922static inline void update_hiwater_vm(struct mm_struct *mm) 2923{ 2924 if (mm->hiwater_vm < mm->total_vm) 2925 mm->hiwater_vm = mm->total_vm; 2926} 2927 2928static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 2929{ 2930 mm->hiwater_rss = get_mm_rss(mm); 2931} 2932 2933static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 2934 struct mm_struct *mm) 2935{ 2936 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 2937 2938 if (*maxrss < hiwater_rss) 2939 *maxrss = hiwater_rss; 2940} 2941 2942#ifndef CONFIG_ARCH_HAS_PTE_SPECIAL 2943static inline int pte_special(pte_t pte) 2944{ 2945 return 0; 2946} 2947 2948static inline pte_t pte_mkspecial(pte_t pte) 2949{ 2950 return pte; 2951} 2952#endif 2953 2954#ifndef CONFIG_ARCH_SUPPORTS_PMD_PFNMAP 2955static inline bool pmd_special(pmd_t pmd) 2956{ 2957 return false; 2958} 2959 2960static inline pmd_t pmd_mkspecial(pmd_t pmd) 2961{ 2962 return pmd; 2963} 2964#endif /* CONFIG_ARCH_SUPPORTS_PMD_PFNMAP */ 2965 2966#ifndef CONFIG_ARCH_SUPPORTS_PUD_PFNMAP 2967static inline bool pud_special(pud_t pud) 2968{ 2969 return false; 2970} 2971 2972static inline pud_t pud_mkspecial(pud_t pud) 2973{ 2974 return pud; 2975} 2976#endif /* CONFIG_ARCH_SUPPORTS_PUD_PFNMAP */ 2977 2978extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 2979 spinlock_t **ptl); 2980static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 2981 spinlock_t **ptl) 2982{ 2983 pte_t *ptep; 2984 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 2985 return ptep; 2986} 2987 2988#ifdef __PAGETABLE_P4D_FOLDED 2989static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2990 unsigned long address) 2991{ 2992 return 0; 2993} 2994#else 2995int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 2996#endif 2997 2998#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU) 2999static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, 3000 unsigned long address) 3001{ 3002 return 0; 3003} 3004static inline void mm_inc_nr_puds(struct mm_struct *mm) {} 3005static inline void mm_dec_nr_puds(struct mm_struct *mm) {} 3006 3007#else 3008int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); 3009 3010static inline void mm_inc_nr_puds(struct mm_struct *mm) 3011{ 3012 if (mm_pud_folded(mm)) 3013 return; 3014 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 3015} 3016 3017static inline void mm_dec_nr_puds(struct mm_struct *mm) 3018{ 3019 if (mm_pud_folded(mm)) 3020 return; 3021 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 3022} 3023#endif 3024 3025#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 3026static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 3027 unsigned long address) 3028{ 3029 return 0; 3030} 3031 3032static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 3033static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 3034 3035#else 3036int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 3037 3038static inline void mm_inc_nr_pmds(struct mm_struct *mm) 3039{ 3040 if (mm_pmd_folded(mm)) 3041 return; 3042 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 3043} 3044 3045static inline void mm_dec_nr_pmds(struct mm_struct *mm) 3046{ 3047 if (mm_pmd_folded(mm)) 3048 return; 3049 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 3050} 3051#endif 3052 3053#ifdef CONFIG_MMU 3054static inline void mm_pgtables_bytes_init(struct mm_struct *mm) 3055{ 3056 atomic_long_set(&mm->pgtables_bytes, 0); 3057} 3058 3059static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 3060{ 3061 return atomic_long_read(&mm->pgtables_bytes); 3062} 3063 3064static inline void mm_inc_nr_ptes(struct mm_struct *mm) 3065{ 3066 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 3067} 3068 3069static inline void mm_dec_nr_ptes(struct mm_struct *mm) 3070{ 3071 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 3072} 3073#else 3074 3075static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {} 3076static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 3077{ 3078 return 0; 3079} 3080 3081static inline void mm_inc_nr_ptes(struct mm_struct *mm) {} 3082static inline void mm_dec_nr_ptes(struct mm_struct *mm) {} 3083#endif 3084 3085int __pte_alloc(struct mm_struct *mm, pmd_t *pmd); 3086int __pte_alloc_kernel(pmd_t *pmd); 3087 3088#if defined(CONFIG_MMU) 3089 3090static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 3091 unsigned long address) 3092{ 3093 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? 3094 NULL : p4d_offset(pgd, address); 3095} 3096 3097static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, 3098 unsigned long address) 3099{ 3100 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? 3101 NULL : pud_offset(p4d, address); 3102} 3103 3104static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 3105{ 3106 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 3107 NULL: pmd_offset(pud, address); 3108} 3109#endif /* CONFIG_MMU */ 3110 3111enum pt_flags { 3112 PT_kernel = PG_referenced, 3113 PT_reserved = PG_reserved, 3114 /* High bits are used for zone/node/section */ 3115}; 3116 3117static inline struct ptdesc *virt_to_ptdesc(const void *x) 3118{ 3119 return page_ptdesc(virt_to_page(x)); 3120} 3121 3122/** 3123 * ptdesc_address - Virtual address of page table. 3124 * @pt: Page table descriptor. 3125 * 3126 * Return: The first byte of the page table described by @pt. 3127 */ 3128static inline void *ptdesc_address(const struct ptdesc *pt) 3129{ 3130 return folio_address(ptdesc_folio(pt)); 3131} 3132 3133static inline bool pagetable_is_reserved(struct ptdesc *pt) 3134{ 3135 return test_bit(PT_reserved, &pt->pt_flags.f); 3136} 3137 3138/** 3139 * ptdesc_set_kernel - Mark a ptdesc used to map the kernel 3140 * @ptdesc: The ptdesc to be marked 3141 * 3142 * Kernel page tables often need special handling. Set a flag so that 3143 * the handling code knows this ptdesc will not be used for userspace. 3144 */ 3145static inline void ptdesc_set_kernel(struct ptdesc *ptdesc) 3146{ 3147 set_bit(PT_kernel, &ptdesc->pt_flags.f); 3148} 3149 3150/** 3151 * ptdesc_clear_kernel - Mark a ptdesc as no longer used to map the kernel 3152 * @ptdesc: The ptdesc to be unmarked 3153 * 3154 * Use when the ptdesc is no longer used to map the kernel and no longer 3155 * needs special handling. 3156 */ 3157static inline void ptdesc_clear_kernel(struct ptdesc *ptdesc) 3158{ 3159 /* 3160 * Note: the 'PG_referenced' bit does not strictly need to be 3161 * cleared before freeing the page. But this is nice for 3162 * symmetry. 3163 */ 3164 clear_bit(PT_kernel, &ptdesc->pt_flags.f); 3165} 3166 3167/** 3168 * ptdesc_test_kernel - Check if a ptdesc is used to map the kernel 3169 * @ptdesc: The ptdesc being tested 3170 * 3171 * Call to tell if the ptdesc used to map the kernel. 3172 */ 3173static inline bool ptdesc_test_kernel(const struct ptdesc *ptdesc) 3174{ 3175 return test_bit(PT_kernel, &ptdesc->pt_flags.f); 3176} 3177 3178/** 3179 * pagetable_alloc - Allocate pagetables 3180 * @gfp: GFP flags 3181 * @order: desired pagetable order 3182 * 3183 * pagetable_alloc allocates memory for page tables as well as a page table 3184 * descriptor to describe that memory. 3185 * 3186 * Return: The ptdesc describing the allocated page tables. 3187 */ 3188static inline struct ptdesc *pagetable_alloc_noprof(gfp_t gfp, unsigned int order) 3189{ 3190 struct page *page = alloc_pages_noprof(gfp | __GFP_COMP, order); 3191 3192 return page_ptdesc(page); 3193} 3194#define pagetable_alloc(...) alloc_hooks(pagetable_alloc_noprof(__VA_ARGS__)) 3195 3196static inline void __pagetable_free(struct ptdesc *pt) 3197{ 3198 struct page *page = ptdesc_page(pt); 3199 3200 __free_pages(page, compound_order(page)); 3201} 3202 3203#ifdef CONFIG_ASYNC_KERNEL_PGTABLE_FREE 3204void pagetable_free_kernel(struct ptdesc *pt); 3205#else 3206static inline void pagetable_free_kernel(struct ptdesc *pt) 3207{ 3208 __pagetable_free(pt); 3209} 3210#endif 3211/** 3212 * pagetable_free - Free pagetables 3213 * @pt: The page table descriptor 3214 * 3215 * pagetable_free frees the memory of all page tables described by a page 3216 * table descriptor and the memory for the descriptor itself. 3217 */ 3218static inline void pagetable_free(struct ptdesc *pt) 3219{ 3220 if (ptdesc_test_kernel(pt)) { 3221 ptdesc_clear_kernel(pt); 3222 pagetable_free_kernel(pt); 3223 } else { 3224 __pagetable_free(pt); 3225 } 3226} 3227 3228#if defined(CONFIG_SPLIT_PTE_PTLOCKS) 3229#if ALLOC_SPLIT_PTLOCKS 3230void __init ptlock_cache_init(void); 3231bool ptlock_alloc(struct ptdesc *ptdesc); 3232void ptlock_free(struct ptdesc *ptdesc); 3233 3234static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc) 3235{ 3236 return ptdesc->ptl; 3237} 3238#else /* ALLOC_SPLIT_PTLOCKS */ 3239static inline void ptlock_cache_init(void) 3240{ 3241} 3242 3243static inline bool ptlock_alloc(struct ptdesc *ptdesc) 3244{ 3245 return true; 3246} 3247 3248static inline void ptlock_free(struct ptdesc *ptdesc) 3249{ 3250} 3251 3252static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc) 3253{ 3254 return &ptdesc->ptl; 3255} 3256#endif /* ALLOC_SPLIT_PTLOCKS */ 3257 3258static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 3259{ 3260 return ptlock_ptr(page_ptdesc(pmd_page(*pmd))); 3261} 3262 3263static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte) 3264{ 3265 BUILD_BUG_ON(IS_ENABLED(CONFIG_HIGHPTE)); 3266 BUILD_BUG_ON(MAX_PTRS_PER_PTE * sizeof(pte_t) > PAGE_SIZE); 3267 return ptlock_ptr(virt_to_ptdesc(pte)); 3268} 3269 3270static inline bool ptlock_init(struct ptdesc *ptdesc) 3271{ 3272 /* 3273 * prep_new_page() initialize page->private (and therefore page->ptl) 3274 * with 0. Make sure nobody took it in use in between. 3275 * 3276 * It can happen if arch try to use slab for page table allocation: 3277 * slab code uses page->slab_cache, which share storage with page->ptl. 3278 */ 3279 VM_BUG_ON_PAGE(*(unsigned long *)&ptdesc->ptl, ptdesc_page(ptdesc)); 3280 if (!ptlock_alloc(ptdesc)) 3281 return false; 3282 spin_lock_init(ptlock_ptr(ptdesc)); 3283 return true; 3284} 3285 3286#else /* !defined(CONFIG_SPLIT_PTE_PTLOCKS) */ 3287/* 3288 * We use mm->page_table_lock to guard all pagetable pages of the mm. 3289 */ 3290static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 3291{ 3292 return &mm->page_table_lock; 3293} 3294static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte) 3295{ 3296 return &mm->page_table_lock; 3297} 3298static inline void ptlock_cache_init(void) {} 3299static inline bool ptlock_init(struct ptdesc *ptdesc) { return true; } 3300static inline void ptlock_free(struct ptdesc *ptdesc) {} 3301#endif /* defined(CONFIG_SPLIT_PTE_PTLOCKS) */ 3302 3303static inline unsigned long ptdesc_nr_pages(const struct ptdesc *ptdesc) 3304{ 3305 return compound_nr(ptdesc_page(ptdesc)); 3306} 3307 3308static inline void __pagetable_ctor(struct ptdesc *ptdesc) 3309{ 3310 pg_data_t *pgdat = NODE_DATA(memdesc_nid(ptdesc->pt_flags)); 3311 3312 __SetPageTable(ptdesc_page(ptdesc)); 3313 mod_node_page_state(pgdat, NR_PAGETABLE, ptdesc_nr_pages(ptdesc)); 3314} 3315 3316static inline void pagetable_dtor(struct ptdesc *ptdesc) 3317{ 3318 pg_data_t *pgdat = NODE_DATA(memdesc_nid(ptdesc->pt_flags)); 3319 3320 ptlock_free(ptdesc); 3321 __ClearPageTable(ptdesc_page(ptdesc)); 3322 mod_node_page_state(pgdat, NR_PAGETABLE, -ptdesc_nr_pages(ptdesc)); 3323} 3324 3325static inline void pagetable_dtor_free(struct ptdesc *ptdesc) 3326{ 3327 pagetable_dtor(ptdesc); 3328 pagetable_free(ptdesc); 3329} 3330 3331static inline bool pagetable_pte_ctor(struct mm_struct *mm, 3332 struct ptdesc *ptdesc) 3333{ 3334 if (mm != &init_mm && !ptlock_init(ptdesc)) 3335 return false; 3336 __pagetable_ctor(ptdesc); 3337 return true; 3338} 3339 3340pte_t *___pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp); 3341static inline pte_t *__pte_offset_map(pmd_t *pmd, unsigned long addr, 3342 pmd_t *pmdvalp) 3343{ 3344 pte_t *pte; 3345 3346 __cond_lock(RCU, pte = ___pte_offset_map(pmd, addr, pmdvalp)); 3347 return pte; 3348} 3349static inline pte_t *pte_offset_map(pmd_t *pmd, unsigned long addr) 3350{ 3351 return __pte_offset_map(pmd, addr, NULL); 3352} 3353 3354pte_t *__pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd, 3355 unsigned long addr, spinlock_t **ptlp); 3356static inline pte_t *pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd, 3357 unsigned long addr, spinlock_t **ptlp) 3358{ 3359 pte_t *pte; 3360 3361 __cond_lock(RCU, __cond_lock(*ptlp, 3362 pte = __pte_offset_map_lock(mm, pmd, addr, ptlp))); 3363 return pte; 3364} 3365 3366pte_t *pte_offset_map_ro_nolock(struct mm_struct *mm, pmd_t *pmd, 3367 unsigned long addr, spinlock_t **ptlp); 3368pte_t *pte_offset_map_rw_nolock(struct mm_struct *mm, pmd_t *pmd, 3369 unsigned long addr, pmd_t *pmdvalp, 3370 spinlock_t **ptlp); 3371 3372#define pte_unmap_unlock(pte, ptl) do { \ 3373 spin_unlock(ptl); \ 3374 pte_unmap(pte); \ 3375} while (0) 3376 3377#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd)) 3378 3379#define pte_alloc_map(mm, pmd, address) \ 3380 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address)) 3381 3382#define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 3383 (pte_alloc(mm, pmd) ? \ 3384 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 3385 3386#define pte_alloc_kernel(pmd, address) \ 3387 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \ 3388 NULL: pte_offset_kernel(pmd, address)) 3389 3390#if defined(CONFIG_SPLIT_PMD_PTLOCKS) 3391 3392static inline struct page *pmd_pgtable_page(pmd_t *pmd) 3393{ 3394 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 3395 return virt_to_page((void *)((unsigned long) pmd & mask)); 3396} 3397 3398static inline struct ptdesc *pmd_ptdesc(pmd_t *pmd) 3399{ 3400 return page_ptdesc(pmd_pgtable_page(pmd)); 3401} 3402 3403static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 3404{ 3405 return ptlock_ptr(pmd_ptdesc(pmd)); 3406} 3407 3408static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) 3409{ 3410#ifdef CONFIG_TRANSPARENT_HUGEPAGE 3411 ptdesc->pmd_huge_pte = NULL; 3412#endif 3413 return ptlock_init(ptdesc); 3414} 3415 3416#define pmd_huge_pte(mm, pmd) (pmd_ptdesc(pmd)->pmd_huge_pte) 3417 3418#else 3419 3420static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 3421{ 3422 return &mm->page_table_lock; 3423} 3424 3425static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) { return true; } 3426 3427#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 3428 3429#endif 3430 3431static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 3432{ 3433 spinlock_t *ptl = pmd_lockptr(mm, pmd); 3434 spin_lock(ptl); 3435 return ptl; 3436} 3437 3438static inline bool pagetable_pmd_ctor(struct mm_struct *mm, 3439 struct ptdesc *ptdesc) 3440{ 3441 if (mm != &init_mm && !pmd_ptlock_init(ptdesc)) 3442 return false; 3443 ptdesc_pmd_pts_init(ptdesc); 3444 __pagetable_ctor(ptdesc); 3445 return true; 3446} 3447 3448/* 3449 * No scalability reason to split PUD locks yet, but follow the same pattern 3450 * as the PMD locks to make it easier if we decide to. The VM should not be 3451 * considered ready to switch to split PUD locks yet; there may be places 3452 * which need to be converted from page_table_lock. 3453 */ 3454static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) 3455{ 3456 return &mm->page_table_lock; 3457} 3458 3459static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) 3460{ 3461 spinlock_t *ptl = pud_lockptr(mm, pud); 3462 3463 spin_lock(ptl); 3464 return ptl; 3465} 3466 3467static inline void pagetable_pud_ctor(struct ptdesc *ptdesc) 3468{ 3469 __pagetable_ctor(ptdesc); 3470} 3471 3472static inline void pagetable_p4d_ctor(struct ptdesc *ptdesc) 3473{ 3474 __pagetable_ctor(ptdesc); 3475} 3476 3477static inline void pagetable_pgd_ctor(struct ptdesc *ptdesc) 3478{ 3479 __pagetable_ctor(ptdesc); 3480} 3481 3482extern void __init pagecache_init(void); 3483extern void free_initmem(void); 3484 3485/* 3486 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 3487 * into the buddy system. The freed pages will be poisoned with pattern 3488 * "poison" if it's within range [0, UCHAR_MAX]. 3489 * Return pages freed into the buddy system. 3490 */ 3491extern unsigned long free_reserved_area(void *start, void *end, 3492 int poison, const char *s); 3493 3494extern void adjust_managed_page_count(struct page *page, long count); 3495 3496extern void reserve_bootmem_region(phys_addr_t start, 3497 phys_addr_t end, int nid); 3498 3499/* Free the reserved page into the buddy system, so it gets managed. */ 3500void free_reserved_page(struct page *page); 3501 3502static inline void mark_page_reserved(struct page *page) 3503{ 3504 SetPageReserved(page); 3505 adjust_managed_page_count(page, -1); 3506} 3507 3508static inline void free_reserved_ptdesc(struct ptdesc *pt) 3509{ 3510 free_reserved_page(ptdesc_page(pt)); 3511} 3512 3513/* 3514 * Default method to free all the __init memory into the buddy system. 3515 * The freed pages will be poisoned with pattern "poison" if it's within 3516 * range [0, UCHAR_MAX]. 3517 * Return pages freed into the buddy system. 3518 */ 3519static inline unsigned long free_initmem_default(int poison) 3520{ 3521 extern char __init_begin[], __init_end[]; 3522 3523 return free_reserved_area(&__init_begin, &__init_end, 3524 poison, "unused kernel image (initmem)"); 3525} 3526 3527static inline unsigned long get_num_physpages(void) 3528{ 3529 int nid; 3530 unsigned long phys_pages = 0; 3531 3532 for_each_online_node(nid) 3533 phys_pages += node_present_pages(nid); 3534 3535 return phys_pages; 3536} 3537 3538/* 3539 * Using memblock node mappings, an architecture may initialise its 3540 * zones, allocate the backing mem_map and account for memory holes in an 3541 * architecture independent manner. 3542 * 3543 * An architecture is expected to register range of page frames backed by 3544 * physical memory with memblock_add[_node]() before calling 3545 * free_area_init() passing in the PFN each zone ends at. At a basic 3546 * usage, an architecture is expected to do something like 3547 * 3548 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 3549 * max_highmem_pfn}; 3550 * for_each_valid_physical_page_range() 3551 * memblock_add_node(base, size, nid, MEMBLOCK_NONE) 3552 * free_area_init(max_zone_pfns); 3553 */ 3554void free_area_init(unsigned long *max_zone_pfn); 3555unsigned long node_map_pfn_alignment(void); 3556extern unsigned long absent_pages_in_range(unsigned long start_pfn, 3557 unsigned long end_pfn); 3558extern void get_pfn_range_for_nid(unsigned int nid, 3559 unsigned long *start_pfn, unsigned long *end_pfn); 3560 3561#ifndef CONFIG_NUMA 3562static inline int early_pfn_to_nid(unsigned long pfn) 3563{ 3564 return 0; 3565} 3566#else 3567/* please see mm/page_alloc.c */ 3568extern int __meminit early_pfn_to_nid(unsigned long pfn); 3569#endif 3570 3571extern void mem_init(void); 3572extern void __init mmap_init(void); 3573 3574extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx); 3575static inline void show_mem(void) 3576{ 3577 __show_mem(0, NULL, MAX_NR_ZONES - 1); 3578} 3579extern long si_mem_available(void); 3580extern void si_meminfo(struct sysinfo * val); 3581extern void si_meminfo_node(struct sysinfo *val, int nid); 3582 3583extern __printf(3, 4) 3584void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); 3585 3586extern void setup_per_cpu_pageset(void); 3587 3588/* nommu.c */ 3589extern atomic_long_t mmap_pages_allocated; 3590extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 3591 3592/* interval_tree.c */ 3593void vma_interval_tree_insert(struct vm_area_struct *node, 3594 struct rb_root_cached *root); 3595void vma_interval_tree_insert_after(struct vm_area_struct *node, 3596 struct vm_area_struct *prev, 3597 struct rb_root_cached *root); 3598void vma_interval_tree_remove(struct vm_area_struct *node, 3599 struct rb_root_cached *root); 3600struct vm_area_struct *vma_interval_tree_subtree_search(struct vm_area_struct *node, 3601 unsigned long start, unsigned long last); 3602struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, 3603 unsigned long start, unsigned long last); 3604struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 3605 unsigned long start, unsigned long last); 3606 3607#define vma_interval_tree_foreach(vma, root, start, last) \ 3608 for (vma = vma_interval_tree_iter_first(root, start, last); \ 3609 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 3610 3611void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 3612 struct rb_root_cached *root); 3613void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 3614 struct rb_root_cached *root); 3615struct anon_vma_chain * 3616anon_vma_interval_tree_iter_first(struct rb_root_cached *root, 3617 unsigned long start, unsigned long last); 3618struct anon_vma_chain *anon_vma_interval_tree_iter_next( 3619 struct anon_vma_chain *node, unsigned long start, unsigned long last); 3620#ifdef CONFIG_DEBUG_VM_RB 3621void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 3622#endif 3623 3624#define anon_vma_interval_tree_foreach(avc, root, start, last) \ 3625 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 3626 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 3627 3628/* mmap.c */ 3629extern int __vm_enough_memory(const struct mm_struct *mm, long pages, int cap_sys_admin); 3630extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 3631extern void exit_mmap(struct mm_struct *); 3632bool mmap_read_lock_maybe_expand(struct mm_struct *mm, struct vm_area_struct *vma, 3633 unsigned long addr, bool write); 3634 3635static inline int check_data_rlimit(unsigned long rlim, 3636 unsigned long new, 3637 unsigned long start, 3638 unsigned long end_data, 3639 unsigned long start_data) 3640{ 3641 if (rlim < RLIM_INFINITY) { 3642 if (((new - start) + (end_data - start_data)) > rlim) 3643 return -ENOSPC; 3644 } 3645 3646 return 0; 3647} 3648 3649extern int mm_take_all_locks(struct mm_struct *mm); 3650extern void mm_drop_all_locks(struct mm_struct *mm); 3651 3652extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 3653extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 3654extern struct file *get_mm_exe_file(struct mm_struct *mm); 3655extern struct file *get_task_exe_file(struct task_struct *task); 3656 3657extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 3658extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 3659 3660extern bool vma_is_special_mapping(const struct vm_area_struct *vma, 3661 const struct vm_special_mapping *sm); 3662struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 3663 unsigned long addr, unsigned long len, 3664 vm_flags_t vm_flags, 3665 const struct vm_special_mapping *spec); 3666 3667unsigned long randomize_stack_top(unsigned long stack_top); 3668unsigned long randomize_page(unsigned long start, unsigned long range); 3669 3670unsigned long 3671__get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 3672 unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags); 3673 3674static inline unsigned long 3675get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 3676 unsigned long pgoff, unsigned long flags) 3677{ 3678 return __get_unmapped_area(file, addr, len, pgoff, flags, 0); 3679} 3680 3681extern unsigned long do_mmap(struct file *file, unsigned long addr, 3682 unsigned long len, unsigned long prot, unsigned long flags, 3683 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate, 3684 struct list_head *uf); 3685extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm, 3686 unsigned long start, size_t len, struct list_head *uf, 3687 bool unlock); 3688int do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma, 3689 struct mm_struct *mm, unsigned long start, 3690 unsigned long end, struct list_head *uf, bool unlock); 3691extern int do_munmap(struct mm_struct *, unsigned long, size_t, 3692 struct list_head *uf); 3693extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior); 3694 3695#ifdef CONFIG_MMU 3696extern int __mm_populate(unsigned long addr, unsigned long len, 3697 int ignore_errors); 3698static inline void mm_populate(unsigned long addr, unsigned long len) 3699{ 3700 /* Ignore errors */ 3701 (void) __mm_populate(addr, len, 1); 3702} 3703#else 3704static inline void mm_populate(unsigned long addr, unsigned long len) {} 3705#endif 3706 3707/* This takes the mm semaphore itself */ 3708extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); 3709extern int vm_munmap(unsigned long, size_t); 3710extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 3711 unsigned long, unsigned long, 3712 unsigned long, unsigned long); 3713 3714struct vm_unmapped_area_info { 3715#define VM_UNMAPPED_AREA_TOPDOWN 1 3716 unsigned long flags; 3717 unsigned long length; 3718 unsigned long low_limit; 3719 unsigned long high_limit; 3720 unsigned long align_mask; 3721 unsigned long align_offset; 3722 unsigned long start_gap; 3723}; 3724 3725extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info); 3726 3727/* truncate.c */ 3728void truncate_inode_pages(struct address_space *mapping, loff_t lstart); 3729void truncate_inode_pages_range(struct address_space *mapping, loff_t lstart, 3730 uoff_t lend); 3731void truncate_inode_pages_final(struct address_space *mapping); 3732 3733/* generic vm_area_ops exported for stackable file systems */ 3734extern vm_fault_t filemap_fault(struct vm_fault *vmf); 3735extern vm_fault_t filemap_map_pages(struct vm_fault *vmf, 3736 pgoff_t start_pgoff, pgoff_t end_pgoff); 3737extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf); 3738 3739extern unsigned long stack_guard_gap; 3740/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 3741int expand_stack_locked(struct vm_area_struct *vma, unsigned long address); 3742struct vm_area_struct *expand_stack(struct mm_struct * mm, unsigned long addr); 3743 3744/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 3745extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 3746extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 3747 struct vm_area_struct **pprev); 3748 3749/* 3750 * Look up the first VMA which intersects the interval [start_addr, end_addr) 3751 * NULL if none. Assume start_addr < end_addr. 3752 */ 3753struct vm_area_struct *find_vma_intersection(struct mm_struct *mm, 3754 unsigned long start_addr, unsigned long end_addr); 3755 3756/** 3757 * vma_lookup() - Find a VMA at a specific address 3758 * @mm: The process address space. 3759 * @addr: The user address. 3760 * 3761 * Return: The vm_area_struct at the given address, %NULL otherwise. 3762 */ 3763static inline 3764struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr) 3765{ 3766 return mtree_load(&mm->mm_mt, addr); 3767} 3768 3769static inline unsigned long stack_guard_start_gap(const struct vm_area_struct *vma) 3770{ 3771 if (vma->vm_flags & VM_GROWSDOWN) 3772 return stack_guard_gap; 3773 3774 /* See reasoning around the VM_SHADOW_STACK definition */ 3775 if (vma->vm_flags & VM_SHADOW_STACK) 3776 return PAGE_SIZE; 3777 3778 return 0; 3779} 3780 3781static inline unsigned long vm_start_gap(const struct vm_area_struct *vma) 3782{ 3783 unsigned long gap = stack_guard_start_gap(vma); 3784 unsigned long vm_start = vma->vm_start; 3785 3786 vm_start -= gap; 3787 if (vm_start > vma->vm_start) 3788 vm_start = 0; 3789 return vm_start; 3790} 3791 3792static inline unsigned long vm_end_gap(const struct vm_area_struct *vma) 3793{ 3794 unsigned long vm_end = vma->vm_end; 3795 3796 if (vma->vm_flags & VM_GROWSUP) { 3797 vm_end += stack_guard_gap; 3798 if (vm_end < vma->vm_end) 3799 vm_end = -PAGE_SIZE; 3800 } 3801 return vm_end; 3802} 3803 3804static inline unsigned long vma_pages(const struct vm_area_struct *vma) 3805{ 3806 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 3807} 3808 3809static inline unsigned long vma_desc_size(const struct vm_area_desc *desc) 3810{ 3811 return desc->end - desc->start; 3812} 3813 3814static inline unsigned long vma_desc_pages(const struct vm_area_desc *desc) 3815{ 3816 return vma_desc_size(desc) >> PAGE_SHIFT; 3817} 3818 3819/** 3820 * mmap_action_remap - helper for mmap_prepare hook to specify that a pure PFN 3821 * remap is required. 3822 * @desc: The VMA descriptor for the VMA requiring remap. 3823 * @start: The virtual address to start the remap from, must be within the VMA. 3824 * @start_pfn: The first PFN in the range to remap. 3825 * @size: The size of the range to remap, in bytes, at most spanning to the end 3826 * of the VMA. 3827 */ 3828static inline void mmap_action_remap(struct vm_area_desc *desc, 3829 unsigned long start, 3830 unsigned long start_pfn, 3831 unsigned long size) 3832{ 3833 struct mmap_action *action = &desc->action; 3834 3835 /* [start, start + size) must be within the VMA. */ 3836 WARN_ON_ONCE(start < desc->start || start >= desc->end); 3837 WARN_ON_ONCE(start + size > desc->end); 3838 3839 action->type = MMAP_REMAP_PFN; 3840 action->remap.start = start; 3841 action->remap.start_pfn = start_pfn; 3842 action->remap.size = size; 3843 action->remap.pgprot = desc->page_prot; 3844} 3845 3846/** 3847 * mmap_action_remap_full - helper for mmap_prepare hook to specify that the 3848 * entirety of a VMA should be PFN remapped. 3849 * @desc: The VMA descriptor for the VMA requiring remap. 3850 * @start_pfn: The first PFN in the range to remap. 3851 */ 3852static inline void mmap_action_remap_full(struct vm_area_desc *desc, 3853 unsigned long start_pfn) 3854{ 3855 mmap_action_remap(desc, desc->start, start_pfn, vma_desc_size(desc)); 3856} 3857 3858/** 3859 * mmap_action_ioremap - helper for mmap_prepare hook to specify that a pure PFN 3860 * I/O remap is required. 3861 * @desc: The VMA descriptor for the VMA requiring remap. 3862 * @start: The virtual address to start the remap from, must be within the VMA. 3863 * @start_pfn: The first PFN in the range to remap. 3864 * @size: The size of the range to remap, in bytes, at most spanning to the end 3865 * of the VMA. 3866 */ 3867static inline void mmap_action_ioremap(struct vm_area_desc *desc, 3868 unsigned long start, 3869 unsigned long start_pfn, 3870 unsigned long size) 3871{ 3872 mmap_action_remap(desc, start, start_pfn, size); 3873 desc->action.type = MMAP_IO_REMAP_PFN; 3874} 3875 3876/** 3877 * mmap_action_ioremap_full - helper for mmap_prepare hook to specify that the 3878 * entirety of a VMA should be PFN I/O remapped. 3879 * @desc: The VMA descriptor for the VMA requiring remap. 3880 * @start_pfn: The first PFN in the range to remap. 3881 */ 3882static inline void mmap_action_ioremap_full(struct vm_area_desc *desc, 3883 unsigned long start_pfn) 3884{ 3885 mmap_action_ioremap(desc, desc->start, start_pfn, vma_desc_size(desc)); 3886} 3887 3888void mmap_action_prepare(struct mmap_action *action, 3889 struct vm_area_desc *desc); 3890int mmap_action_complete(struct mmap_action *action, 3891 struct vm_area_struct *vma); 3892 3893/* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 3894static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 3895 unsigned long vm_start, unsigned long vm_end) 3896{ 3897 struct vm_area_struct *vma = vma_lookup(mm, vm_start); 3898 3899 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 3900 vma = NULL; 3901 3902 return vma; 3903} 3904 3905static inline bool range_in_vma(const struct vm_area_struct *vma, 3906 unsigned long start, unsigned long end) 3907{ 3908 return (vma && vma->vm_start <= start && end <= vma->vm_end); 3909} 3910 3911#ifdef CONFIG_MMU 3912pgprot_t vm_get_page_prot(vm_flags_t vm_flags); 3913void vma_set_page_prot(struct vm_area_struct *vma); 3914#else 3915static inline pgprot_t vm_get_page_prot(vm_flags_t vm_flags) 3916{ 3917 return __pgprot(0); 3918} 3919static inline void vma_set_page_prot(struct vm_area_struct *vma) 3920{ 3921 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 3922} 3923#endif 3924 3925void vma_set_file(struct vm_area_struct *vma, struct file *file); 3926 3927#ifdef CONFIG_NUMA_BALANCING 3928unsigned long change_prot_numa(struct vm_area_struct *vma, 3929 unsigned long start, unsigned long end); 3930#endif 3931 3932struct vm_area_struct *find_extend_vma_locked(struct mm_struct *, 3933 unsigned long addr); 3934int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 3935 unsigned long pfn, unsigned long size, pgprot_t pgprot); 3936 3937int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 3938int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 3939 struct page **pages, unsigned long *num); 3940int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 3941 unsigned long num); 3942int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 3943 unsigned long num); 3944vm_fault_t vmf_insert_page_mkwrite(struct vm_fault *vmf, struct page *page, 3945 bool write); 3946vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 3947 unsigned long pfn); 3948vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 3949 unsigned long pfn, pgprot_t pgprot); 3950vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 3951 unsigned long pfn); 3952vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 3953 unsigned long addr, unsigned long pfn); 3954int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 3955 3956static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma, 3957 unsigned long addr, struct page *page) 3958{ 3959 int err = vm_insert_page(vma, addr, page); 3960 3961 if (err == -ENOMEM) 3962 return VM_FAULT_OOM; 3963 if (err < 0 && err != -EBUSY) 3964 return VM_FAULT_SIGBUS; 3965 3966 return VM_FAULT_NOPAGE; 3967} 3968 3969#ifndef io_remap_pfn_range_pfn 3970static inline unsigned long io_remap_pfn_range_pfn(unsigned long pfn, 3971 unsigned long size) 3972{ 3973 return pfn; 3974} 3975#endif 3976 3977static inline int io_remap_pfn_range(struct vm_area_struct *vma, 3978 unsigned long addr, unsigned long orig_pfn, 3979 unsigned long size, pgprot_t orig_prot) 3980{ 3981 const unsigned long pfn = io_remap_pfn_range_pfn(orig_pfn, size); 3982 const pgprot_t prot = pgprot_decrypted(orig_prot); 3983 3984 return remap_pfn_range(vma, addr, pfn, size, prot); 3985} 3986 3987static inline vm_fault_t vmf_error(int err) 3988{ 3989 if (err == -ENOMEM) 3990 return VM_FAULT_OOM; 3991 else if (err == -EHWPOISON) 3992 return VM_FAULT_HWPOISON; 3993 return VM_FAULT_SIGBUS; 3994} 3995 3996/* 3997 * Convert errno to return value for ->page_mkwrite() calls. 3998 * 3999 * This should eventually be merged with vmf_error() above, but will need a 4000 * careful audit of all vmf_error() callers. 4001 */ 4002static inline vm_fault_t vmf_fs_error(int err) 4003{ 4004 if (err == 0) 4005 return VM_FAULT_LOCKED; 4006 if (err == -EFAULT || err == -EAGAIN) 4007 return VM_FAULT_NOPAGE; 4008 if (err == -ENOMEM) 4009 return VM_FAULT_OOM; 4010 /* -ENOSPC, -EDQUOT, -EIO ... */ 4011 return VM_FAULT_SIGBUS; 4012} 4013 4014static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags) 4015{ 4016 if (vm_fault & VM_FAULT_OOM) 4017 return -ENOMEM; 4018 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 4019 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; 4020 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 4021 return -EFAULT; 4022 return 0; 4023} 4024 4025/* 4026 * Indicates whether GUP can follow a PROT_NONE mapped page, or whether 4027 * a (NUMA hinting) fault is required. 4028 */ 4029static inline bool gup_can_follow_protnone(const struct vm_area_struct *vma, 4030 unsigned int flags) 4031{ 4032 /* 4033 * If callers don't want to honor NUMA hinting faults, no need to 4034 * determine if we would actually have to trigger a NUMA hinting fault. 4035 */ 4036 if (!(flags & FOLL_HONOR_NUMA_FAULT)) 4037 return true; 4038 4039 /* 4040 * NUMA hinting faults don't apply in inaccessible (PROT_NONE) VMAs. 4041 * 4042 * Requiring a fault here even for inaccessible VMAs would mean that 4043 * FOLL_FORCE cannot make any progress, because handle_mm_fault() 4044 * refuses to process NUMA hinting faults in inaccessible VMAs. 4045 */ 4046 return !vma_is_accessible(vma); 4047} 4048 4049typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data); 4050extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 4051 unsigned long size, pte_fn_t fn, void *data); 4052extern int apply_to_existing_page_range(struct mm_struct *mm, 4053 unsigned long address, unsigned long size, 4054 pte_fn_t fn, void *data); 4055 4056#ifdef CONFIG_PAGE_POISONING 4057extern void __kernel_poison_pages(struct page *page, int numpages); 4058extern void __kernel_unpoison_pages(struct page *page, int numpages); 4059extern bool _page_poisoning_enabled_early; 4060DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled); 4061static inline bool page_poisoning_enabled(void) 4062{ 4063 return _page_poisoning_enabled_early; 4064} 4065/* 4066 * For use in fast paths after init_mem_debugging() has run, or when a 4067 * false negative result is not harmful when called too early. 4068 */ 4069static inline bool page_poisoning_enabled_static(void) 4070{ 4071 return static_branch_unlikely(&_page_poisoning_enabled); 4072} 4073static inline void kernel_poison_pages(struct page *page, int numpages) 4074{ 4075 if (page_poisoning_enabled_static()) 4076 __kernel_poison_pages(page, numpages); 4077} 4078static inline void kernel_unpoison_pages(struct page *page, int numpages) 4079{ 4080 if (page_poisoning_enabled_static()) 4081 __kernel_unpoison_pages(page, numpages); 4082} 4083#else 4084static inline bool page_poisoning_enabled(void) { return false; } 4085static inline bool page_poisoning_enabled_static(void) { return false; } 4086static inline void __kernel_poison_pages(struct page *page, int nunmpages) { } 4087static inline void kernel_poison_pages(struct page *page, int numpages) { } 4088static inline void kernel_unpoison_pages(struct page *page, int numpages) { } 4089#endif 4090 4091DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc); 4092static inline bool want_init_on_alloc(gfp_t flags) 4093{ 4094 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, 4095 &init_on_alloc)) 4096 return true; 4097 return flags & __GFP_ZERO; 4098} 4099 4100DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free); 4101static inline bool want_init_on_free(void) 4102{ 4103 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON, 4104 &init_on_free); 4105} 4106 4107extern bool _debug_pagealloc_enabled_early; 4108DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 4109 4110static inline bool debug_pagealloc_enabled(void) 4111{ 4112 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && 4113 _debug_pagealloc_enabled_early; 4114} 4115 4116/* 4117 * For use in fast paths after mem_debugging_and_hardening_init() has run, 4118 * or when a false negative result is not harmful when called too early. 4119 */ 4120static inline bool debug_pagealloc_enabled_static(void) 4121{ 4122 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) 4123 return false; 4124 4125 return static_branch_unlikely(&_debug_pagealloc_enabled); 4126} 4127 4128/* 4129 * To support DEBUG_PAGEALLOC architecture must ensure that 4130 * __kernel_map_pages() never fails 4131 */ 4132extern void __kernel_map_pages(struct page *page, int numpages, int enable); 4133#ifdef CONFIG_DEBUG_PAGEALLOC 4134static inline void debug_pagealloc_map_pages(struct page *page, int numpages) 4135{ 4136 if (debug_pagealloc_enabled_static()) 4137 __kernel_map_pages(page, numpages, 1); 4138} 4139 4140static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) 4141{ 4142 if (debug_pagealloc_enabled_static()) 4143 __kernel_map_pages(page, numpages, 0); 4144} 4145 4146extern unsigned int _debug_guardpage_minorder; 4147DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 4148 4149static inline unsigned int debug_guardpage_minorder(void) 4150{ 4151 return _debug_guardpage_minorder; 4152} 4153 4154static inline bool debug_guardpage_enabled(void) 4155{ 4156 return static_branch_unlikely(&_debug_guardpage_enabled); 4157} 4158 4159static inline bool page_is_guard(const struct page *page) 4160{ 4161 if (!debug_guardpage_enabled()) 4162 return false; 4163 4164 return PageGuard(page); 4165} 4166 4167bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order); 4168static inline bool set_page_guard(struct zone *zone, struct page *page, 4169 unsigned int order) 4170{ 4171 if (!debug_guardpage_enabled()) 4172 return false; 4173 return __set_page_guard(zone, page, order); 4174} 4175 4176void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order); 4177static inline void clear_page_guard(struct zone *zone, struct page *page, 4178 unsigned int order) 4179{ 4180 if (!debug_guardpage_enabled()) 4181 return; 4182 __clear_page_guard(zone, page, order); 4183} 4184 4185#else /* CONFIG_DEBUG_PAGEALLOC */ 4186static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {} 4187static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {} 4188static inline unsigned int debug_guardpage_minorder(void) { return 0; } 4189static inline bool debug_guardpage_enabled(void) { return false; } 4190static inline bool page_is_guard(const struct page *page) { return false; } 4191static inline bool set_page_guard(struct zone *zone, struct page *page, 4192 unsigned int order) { return false; } 4193static inline void clear_page_guard(struct zone *zone, struct page *page, 4194 unsigned int order) {} 4195#endif /* CONFIG_DEBUG_PAGEALLOC */ 4196 4197#ifdef __HAVE_ARCH_GATE_AREA 4198extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 4199extern int in_gate_area_no_mm(unsigned long addr); 4200extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 4201#else 4202static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 4203{ 4204 return NULL; 4205} 4206static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 4207static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 4208{ 4209 return 0; 4210} 4211#endif /* __HAVE_ARCH_GATE_AREA */ 4212 4213bool process_shares_mm(const struct task_struct *p, const struct mm_struct *mm); 4214 4215void drop_slab(void); 4216 4217#ifndef CONFIG_MMU 4218#define randomize_va_space 0 4219#else 4220extern int randomize_va_space; 4221#endif 4222 4223const char * arch_vma_name(struct vm_area_struct *vma); 4224#ifdef CONFIG_MMU 4225void print_vma_addr(char *prefix, unsigned long rip); 4226#else 4227static inline void print_vma_addr(char *prefix, unsigned long rip) 4228{ 4229} 4230#endif 4231 4232void *sparse_buffer_alloc(unsigned long size); 4233unsigned long section_map_size(void); 4234struct page * __populate_section_memmap(unsigned long pfn, 4235 unsigned long nr_pages, int nid, struct vmem_altmap *altmap, 4236 struct dev_pagemap *pgmap); 4237pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 4238p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); 4239pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); 4240pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 4241pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node, 4242 struct vmem_altmap *altmap, unsigned long ptpfn, 4243 unsigned long flags); 4244void *vmemmap_alloc_block(unsigned long size, int node); 4245struct vmem_altmap; 4246void *vmemmap_alloc_block_buf(unsigned long size, int node, 4247 struct vmem_altmap *altmap); 4248void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 4249void vmemmap_set_pmd(pmd_t *pmd, void *p, int node, 4250 unsigned long addr, unsigned long next); 4251int vmemmap_check_pmd(pmd_t *pmd, int node, 4252 unsigned long addr, unsigned long next); 4253int vmemmap_populate_basepages(unsigned long start, unsigned long end, 4254 int node, struct vmem_altmap *altmap); 4255int vmemmap_populate_hugepages(unsigned long start, unsigned long end, 4256 int node, struct vmem_altmap *altmap); 4257int vmemmap_populate(unsigned long start, unsigned long end, int node, 4258 struct vmem_altmap *altmap); 4259int vmemmap_populate_hvo(unsigned long start, unsigned long end, int node, 4260 unsigned long headsize); 4261int vmemmap_undo_hvo(unsigned long start, unsigned long end, int node, 4262 unsigned long headsize); 4263void vmemmap_wrprotect_hvo(unsigned long start, unsigned long end, int node, 4264 unsigned long headsize); 4265void vmemmap_populate_print_last(void); 4266#ifdef CONFIG_MEMORY_HOTPLUG 4267void vmemmap_free(unsigned long start, unsigned long end, 4268 struct vmem_altmap *altmap); 4269#endif 4270 4271#ifdef CONFIG_SPARSEMEM_VMEMMAP 4272static inline unsigned long vmem_altmap_offset(const struct vmem_altmap *altmap) 4273{ 4274 /* number of pfns from base where pfn_to_page() is valid */ 4275 if (altmap) 4276 return altmap->reserve + altmap->free; 4277 return 0; 4278} 4279 4280static inline void vmem_altmap_free(struct vmem_altmap *altmap, 4281 unsigned long nr_pfns) 4282{ 4283 altmap->alloc -= nr_pfns; 4284} 4285#else 4286static inline unsigned long vmem_altmap_offset(const struct vmem_altmap *altmap) 4287{ 4288 return 0; 4289} 4290 4291static inline void vmem_altmap_free(struct vmem_altmap *altmap, 4292 unsigned long nr_pfns) 4293{ 4294} 4295#endif 4296 4297#define VMEMMAP_RESERVE_NR 2 4298#ifdef CONFIG_ARCH_WANT_OPTIMIZE_DAX_VMEMMAP 4299static inline bool __vmemmap_can_optimize(struct vmem_altmap *altmap, 4300 struct dev_pagemap *pgmap) 4301{ 4302 unsigned long nr_pages; 4303 unsigned long nr_vmemmap_pages; 4304 4305 if (!pgmap || !is_power_of_2(sizeof(struct page))) 4306 return false; 4307 4308 nr_pages = pgmap_vmemmap_nr(pgmap); 4309 nr_vmemmap_pages = ((nr_pages * sizeof(struct page)) >> PAGE_SHIFT); 4310 /* 4311 * For vmemmap optimization with DAX we need minimum 2 vmemmap 4312 * pages. See layout diagram in Documentation/mm/vmemmap_dedup.rst 4313 */ 4314 return !altmap && (nr_vmemmap_pages > VMEMMAP_RESERVE_NR); 4315} 4316/* 4317 * If we don't have an architecture override, use the generic rule 4318 */ 4319#ifndef vmemmap_can_optimize 4320#define vmemmap_can_optimize __vmemmap_can_optimize 4321#endif 4322 4323#else 4324static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap, 4325 struct dev_pagemap *pgmap) 4326{ 4327 return false; 4328} 4329#endif 4330 4331enum mf_flags { 4332 MF_COUNT_INCREASED = 1 << 0, 4333 MF_ACTION_REQUIRED = 1 << 1, 4334 MF_MUST_KILL = 1 << 2, 4335 MF_SOFT_OFFLINE = 1 << 3, 4336 MF_UNPOISON = 1 << 4, 4337 MF_SW_SIMULATED = 1 << 5, 4338 MF_NO_RETRY = 1 << 6, 4339 MF_MEM_PRE_REMOVE = 1 << 7, 4340}; 4341int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index, 4342 unsigned long count, int mf_flags); 4343extern int memory_failure(unsigned long pfn, int flags); 4344extern int unpoison_memory(unsigned long pfn); 4345extern atomic_long_t num_poisoned_pages __read_mostly; 4346extern int soft_offline_page(unsigned long pfn, int flags); 4347#ifdef CONFIG_MEMORY_FAILURE 4348/* 4349 * Sysfs entries for memory failure handling statistics. 4350 */ 4351extern const struct attribute_group memory_failure_attr_group; 4352extern void memory_failure_queue(unsigned long pfn, int flags); 4353extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, 4354 bool *migratable_cleared); 4355void num_poisoned_pages_inc(unsigned long pfn); 4356void num_poisoned_pages_sub(unsigned long pfn, long i); 4357#else 4358static inline void memory_failure_queue(unsigned long pfn, int flags) 4359{ 4360} 4361 4362static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, 4363 bool *migratable_cleared) 4364{ 4365 return 0; 4366} 4367 4368static inline void num_poisoned_pages_inc(unsigned long pfn) 4369{ 4370} 4371 4372static inline void num_poisoned_pages_sub(unsigned long pfn, long i) 4373{ 4374} 4375#endif 4376 4377#if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG) 4378extern void memblk_nr_poison_inc(unsigned long pfn); 4379extern void memblk_nr_poison_sub(unsigned long pfn, long i); 4380#else 4381static inline void memblk_nr_poison_inc(unsigned long pfn) 4382{ 4383} 4384 4385static inline void memblk_nr_poison_sub(unsigned long pfn, long i) 4386{ 4387} 4388#endif 4389 4390#ifndef arch_memory_failure 4391static inline int arch_memory_failure(unsigned long pfn, int flags) 4392{ 4393 return -ENXIO; 4394} 4395#endif 4396 4397#ifndef arch_is_platform_page 4398static inline bool arch_is_platform_page(u64 paddr) 4399{ 4400 return false; 4401} 4402#endif 4403 4404/* 4405 * Error handlers for various types of pages. 4406 */ 4407enum mf_result { 4408 MF_IGNORED, /* Error: cannot be handled */ 4409 MF_FAILED, /* Error: handling failed */ 4410 MF_DELAYED, /* Will be handled later */ 4411 MF_RECOVERED, /* Successfully recovered */ 4412}; 4413 4414enum mf_action_page_type { 4415 MF_MSG_KERNEL, 4416 MF_MSG_KERNEL_HIGH_ORDER, 4417 MF_MSG_DIFFERENT_COMPOUND, 4418 MF_MSG_HUGE, 4419 MF_MSG_FREE_HUGE, 4420 MF_MSG_GET_HWPOISON, 4421 MF_MSG_UNMAP_FAILED, 4422 MF_MSG_DIRTY_SWAPCACHE, 4423 MF_MSG_CLEAN_SWAPCACHE, 4424 MF_MSG_DIRTY_MLOCKED_LRU, 4425 MF_MSG_CLEAN_MLOCKED_LRU, 4426 MF_MSG_DIRTY_UNEVICTABLE_LRU, 4427 MF_MSG_CLEAN_UNEVICTABLE_LRU, 4428 MF_MSG_DIRTY_LRU, 4429 MF_MSG_CLEAN_LRU, 4430 MF_MSG_TRUNCATED_LRU, 4431 MF_MSG_BUDDY, 4432 MF_MSG_DAX, 4433 MF_MSG_UNSPLIT_THP, 4434 MF_MSG_ALREADY_POISONED, 4435 MF_MSG_PFN_MAP, 4436 MF_MSG_UNKNOWN, 4437}; 4438 4439#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 4440void folio_zero_user(struct folio *folio, unsigned long addr_hint); 4441int copy_user_large_folio(struct folio *dst, struct folio *src, 4442 unsigned long addr_hint, 4443 struct vm_area_struct *vma); 4444long copy_folio_from_user(struct folio *dst_folio, 4445 const void __user *usr_src, 4446 bool allow_pagefault); 4447 4448/** 4449 * vma_is_special_huge - Are transhuge page-table entries considered special? 4450 * @vma: Pointer to the struct vm_area_struct to consider 4451 * 4452 * Whether transhuge page-table entries are considered "special" following 4453 * the definition in vm_normal_page(). 4454 * 4455 * Return: true if transhuge page-table entries should be considered special, 4456 * false otherwise. 4457 */ 4458static inline bool vma_is_special_huge(const struct vm_area_struct *vma) 4459{ 4460 return vma_is_dax(vma) || (vma->vm_file && 4461 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))); 4462} 4463 4464#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 4465 4466#if MAX_NUMNODES > 1 4467void __init setup_nr_node_ids(void); 4468#else 4469static inline void setup_nr_node_ids(void) {} 4470#endif 4471 4472extern int memcmp_pages(struct page *page1, struct page *page2); 4473 4474static inline int pages_identical(struct page *page1, struct page *page2) 4475{ 4476 return !memcmp_pages(page1, page2); 4477} 4478 4479#ifdef CONFIG_MAPPING_DIRTY_HELPERS 4480unsigned long clean_record_shared_mapping_range(struct address_space *mapping, 4481 pgoff_t first_index, pgoff_t nr, 4482 pgoff_t bitmap_pgoff, 4483 unsigned long *bitmap, 4484 pgoff_t *start, 4485 pgoff_t *end); 4486 4487unsigned long wp_shared_mapping_range(struct address_space *mapping, 4488 pgoff_t first_index, pgoff_t nr); 4489#endif 4490 4491#ifdef CONFIG_ANON_VMA_NAME 4492int set_anon_vma_name(unsigned long addr, unsigned long size, 4493 const char __user *uname); 4494#else 4495static inline 4496int set_anon_vma_name(unsigned long addr, unsigned long size, 4497 const char __user *uname) 4498{ 4499 return -EINVAL; 4500} 4501#endif 4502 4503#ifdef CONFIG_UNACCEPTED_MEMORY 4504 4505bool range_contains_unaccepted_memory(phys_addr_t start, unsigned long size); 4506void accept_memory(phys_addr_t start, unsigned long size); 4507 4508#else 4509 4510static inline bool range_contains_unaccepted_memory(phys_addr_t start, 4511 unsigned long size) 4512{ 4513 return false; 4514} 4515 4516static inline void accept_memory(phys_addr_t start, unsigned long size) 4517{ 4518} 4519 4520#endif 4521 4522static inline bool pfn_is_unaccepted_memory(unsigned long pfn) 4523{ 4524 return range_contains_unaccepted_memory(pfn << PAGE_SHIFT, PAGE_SIZE); 4525} 4526 4527void vma_pgtable_walk_begin(struct vm_area_struct *vma); 4528void vma_pgtable_walk_end(struct vm_area_struct *vma); 4529 4530int reserve_mem_find_by_name(const char *name, phys_addr_t *start, phys_addr_t *size); 4531int reserve_mem_release_by_name(const char *name); 4532 4533#ifdef CONFIG_64BIT 4534int do_mseal(unsigned long start, size_t len_in, unsigned long flags); 4535#else 4536static inline int do_mseal(unsigned long start, size_t len_in, unsigned long flags) 4537{ 4538 /* noop on 32 bit */ 4539 return 0; 4540} 4541#endif 4542 4543/* 4544 * user_alloc_needs_zeroing checks if a user folio from page allocator needs to 4545 * be zeroed or not. 4546 */ 4547static inline bool user_alloc_needs_zeroing(void) 4548{ 4549 /* 4550 * for user folios, arch with cache aliasing requires cache flush and 4551 * arc changes folio->flags to make icache coherent with dcache, so 4552 * always return false to make caller use 4553 * clear_user_page()/clear_user_highpage(). 4554 */ 4555 return cpu_dcache_is_aliasing() || cpu_icache_is_aliasing() || 4556 !static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, 4557 &init_on_alloc); 4558} 4559 4560int arch_get_shadow_stack_status(struct task_struct *t, unsigned long __user *status); 4561int arch_set_shadow_stack_status(struct task_struct *t, unsigned long status); 4562int arch_lock_shadow_stack_status(struct task_struct *t, unsigned long status); 4563 4564/* 4565 * DMA mapping IDs for page_pool 4566 * 4567 * When DMA-mapping a page, page_pool allocates an ID (from an xarray) and 4568 * stashes it in the upper bits of page->pp_magic. We always want to be able to 4569 * unambiguously identify page pool pages (using page_pool_page_is_pp()). Non-PP 4570 * pages can have arbitrary kernel pointers stored in the same field as pp_magic 4571 * (since it overlaps with page->lru.next), so we must ensure that we cannot 4572 * mistake a valid kernel pointer with any of the values we write into this 4573 * field. 4574 * 4575 * On architectures that set POISON_POINTER_DELTA, this is already ensured, 4576 * since this value becomes part of PP_SIGNATURE; meaning we can just use the 4577 * space between the PP_SIGNATURE value (without POISON_POINTER_DELTA), and the 4578 * lowest bits of POISON_POINTER_DELTA. On arches where POISON_POINTER_DELTA is 4579 * 0, we use the lowest bit of PAGE_OFFSET as the boundary if that value is 4580 * known at compile-time. 4581 * 4582 * If the value of PAGE_OFFSET is not known at compile time, or if it is too 4583 * small to leave at least 8 bits available above PP_SIGNATURE, we define the 4584 * number of bits to be 0, which turns off the DMA index tracking altogether 4585 * (see page_pool_register_dma_index()). 4586 */ 4587#define PP_DMA_INDEX_SHIFT (1 + __fls(PP_SIGNATURE - POISON_POINTER_DELTA)) 4588#if POISON_POINTER_DELTA > 0 4589/* PP_SIGNATURE includes POISON_POINTER_DELTA, so limit the size of the DMA 4590 * index to not overlap with that if set 4591 */ 4592#define PP_DMA_INDEX_BITS MIN(32, __ffs(POISON_POINTER_DELTA) - PP_DMA_INDEX_SHIFT) 4593#else 4594/* Use the lowest bit of PAGE_OFFSET if there's at least 8 bits available; see above */ 4595#define PP_DMA_INDEX_MIN_OFFSET (1 << (PP_DMA_INDEX_SHIFT + 8)) 4596#define PP_DMA_INDEX_BITS ((__builtin_constant_p(PAGE_OFFSET) && \ 4597 PAGE_OFFSET >= PP_DMA_INDEX_MIN_OFFSET && \ 4598 !(PAGE_OFFSET & (PP_DMA_INDEX_MIN_OFFSET - 1))) ? \ 4599 MIN(32, __ffs(PAGE_OFFSET) - PP_DMA_INDEX_SHIFT) : 0) 4600 4601#endif 4602 4603#define PP_DMA_INDEX_MASK GENMASK(PP_DMA_INDEX_BITS + PP_DMA_INDEX_SHIFT - 1, \ 4604 PP_DMA_INDEX_SHIFT) 4605 4606/* Mask used for checking in page_pool_page_is_pp() below. page->pp_magic is 4607 * OR'ed with PP_SIGNATURE after the allocation in order to preserve bit 0 for 4608 * the head page of compound page and bit 1 for pfmemalloc page, as well as the 4609 * bits used for the DMA index. page_is_pfmemalloc() is checked in 4610 * __page_pool_put_page() to avoid recycling the pfmemalloc page. 4611 */ 4612#define PP_MAGIC_MASK ~(PP_DMA_INDEX_MASK | 0x3UL) 4613 4614#ifdef CONFIG_PAGE_POOL 4615static inline bool page_pool_page_is_pp(const struct page *page) 4616{ 4617 return (page->pp_magic & PP_MAGIC_MASK) == PP_SIGNATURE; 4618} 4619#else 4620static inline bool page_pool_page_is_pp(const struct page *page) 4621{ 4622 return false; 4623} 4624#endif 4625 4626#define PAGE_SNAPSHOT_FAITHFUL (1 << 0) 4627#define PAGE_SNAPSHOT_PG_BUDDY (1 << 1) 4628#define PAGE_SNAPSHOT_PG_IDLE (1 << 2) 4629 4630struct page_snapshot { 4631 struct folio folio_snapshot; 4632 struct page page_snapshot; 4633 unsigned long pfn; 4634 unsigned long idx; 4635 unsigned long flags; 4636}; 4637 4638static inline bool snapshot_page_is_faithful(const struct page_snapshot *ps) 4639{ 4640 return ps->flags & PAGE_SNAPSHOT_FAITHFUL; 4641} 4642 4643void snapshot_page(struct page_snapshot *ps, const struct page *page); 4644 4645#endif /* _LINUX_MM_H */