Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0-or-later */
2/* memcontrol.h - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 */
10
11#ifndef _LINUX_MEMCONTROL_H
12#define _LINUX_MEMCONTROL_H
13#include <linux/cgroup.h>
14#include <linux/vm_event_item.h>
15#include <linux/hardirq.h>
16#include <linux/jump_label.h>
17#include <linux/kernel.h>
18#include <linux/page_counter.h>
19#include <linux/vmpressure.h>
20#include <linux/eventfd.h>
21#include <linux/mm.h>
22#include <linux/vmstat.h>
23#include <linux/writeback.h>
24#include <linux/page-flags.h>
25#include <linux/shrinker.h>
26
27struct mem_cgroup;
28struct obj_cgroup;
29struct page;
30struct mm_struct;
31struct kmem_cache;
32
33/* Cgroup-specific page state, on top of universal node page state */
34enum memcg_stat_item {
35 MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS,
36 MEMCG_SOCK,
37 MEMCG_PERCPU_B,
38 MEMCG_VMALLOC,
39 MEMCG_KMEM,
40 MEMCG_ZSWAP_B,
41 MEMCG_ZSWAPPED,
42 MEMCG_NR_STAT,
43};
44
45enum memcg_memory_event {
46 MEMCG_LOW,
47 MEMCG_HIGH,
48 MEMCG_MAX,
49 MEMCG_OOM,
50 MEMCG_OOM_KILL,
51 MEMCG_OOM_GROUP_KILL,
52 MEMCG_SWAP_HIGH,
53 MEMCG_SWAP_MAX,
54 MEMCG_SWAP_FAIL,
55 MEMCG_SOCK_THROTTLED,
56 MEMCG_NR_MEMORY_EVENTS,
57};
58
59struct mem_cgroup_reclaim_cookie {
60 pg_data_t *pgdat;
61 int generation;
62};
63
64#ifdef CONFIG_MEMCG
65
66#define MEM_CGROUP_ID_SHIFT 16
67
68struct mem_cgroup_id {
69 int id;
70 refcount_t ref;
71};
72
73struct memcg_vmstats_percpu;
74struct memcg1_events_percpu;
75struct memcg_vmstats;
76struct lruvec_stats_percpu;
77struct lruvec_stats;
78
79struct mem_cgroup_reclaim_iter {
80 struct mem_cgroup *position;
81 /* scan generation, increased every round-trip */
82 atomic_t generation;
83};
84
85/*
86 * per-node information in memory controller.
87 */
88struct mem_cgroup_per_node {
89 /* Keep the read-only fields at the start */
90 struct mem_cgroup *memcg; /* Back pointer, we cannot */
91 /* use container_of */
92
93 struct lruvec_stats_percpu __percpu *lruvec_stats_percpu;
94 struct lruvec_stats *lruvec_stats;
95 struct shrinker_info __rcu *shrinker_info;
96
97#ifdef CONFIG_MEMCG_V1
98 /*
99 * Memcg-v1 only stuff in middle as buffer between read mostly fields
100 * and update often fields to avoid false sharing. If v1 stuff is
101 * not present, an explicit padding is needed.
102 */
103
104 struct rb_node tree_node; /* RB tree node */
105 unsigned long usage_in_excess;/* Set to the value by which */
106 /* the soft limit is exceeded*/
107 bool on_tree;
108#else
109 CACHELINE_PADDING(_pad1_);
110#endif
111
112 /* Fields which get updated often at the end. */
113 struct lruvec lruvec;
114 CACHELINE_PADDING(_pad2_);
115 unsigned long lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS];
116 struct mem_cgroup_reclaim_iter iter;
117
118#ifdef CONFIG_MEMCG_NMI_SAFETY_REQUIRES_ATOMIC
119 /* slab stats for nmi context */
120 atomic_t slab_reclaimable;
121 atomic_t slab_unreclaimable;
122#endif
123};
124
125struct mem_cgroup_threshold {
126 struct eventfd_ctx *eventfd;
127 unsigned long threshold;
128};
129
130/* For threshold */
131struct mem_cgroup_threshold_ary {
132 /* An array index points to threshold just below or equal to usage. */
133 int current_threshold;
134 /* Size of entries[] */
135 unsigned int size;
136 /* Array of thresholds */
137 struct mem_cgroup_threshold entries[] __counted_by(size);
138};
139
140struct mem_cgroup_thresholds {
141 /* Primary thresholds array */
142 struct mem_cgroup_threshold_ary *primary;
143 /*
144 * Spare threshold array.
145 * This is needed to make mem_cgroup_unregister_event() "never fail".
146 * It must be able to store at least primary->size - 1 entries.
147 */
148 struct mem_cgroup_threshold_ary *spare;
149};
150
151/*
152 * Remember four most recent foreign writebacks with dirty pages in this
153 * cgroup. Inode sharing is expected to be uncommon and, even if we miss
154 * one in a given round, we're likely to catch it later if it keeps
155 * foreign-dirtying, so a fairly low count should be enough.
156 *
157 * See mem_cgroup_track_foreign_dirty_slowpath() for details.
158 */
159#define MEMCG_CGWB_FRN_CNT 4
160
161struct memcg_cgwb_frn {
162 u64 bdi_id; /* bdi->id of the foreign inode */
163 int memcg_id; /* memcg->css.id of foreign inode */
164 u64 at; /* jiffies_64 at the time of dirtying */
165 struct wb_completion done; /* tracks in-flight foreign writebacks */
166};
167
168/*
169 * Bucket for arbitrarily byte-sized objects charged to a memory
170 * cgroup. The bucket can be reparented in one piece when the cgroup
171 * is destroyed, without having to round up the individual references
172 * of all live memory objects in the wild.
173 */
174struct obj_cgroup {
175 struct percpu_ref refcnt;
176 struct mem_cgroup *memcg;
177 atomic_t nr_charged_bytes;
178 union {
179 struct list_head list; /* protected by objcg_lock */
180 struct rcu_head rcu;
181 };
182};
183
184/*
185 * The memory controller data structure. The memory controller controls both
186 * page cache and RSS per cgroup. We would eventually like to provide
187 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
188 * to help the administrator determine what knobs to tune.
189 */
190struct mem_cgroup {
191 struct cgroup_subsys_state css;
192
193 /* Private memcg ID. Used to ID objects that outlive the cgroup */
194 struct mem_cgroup_id id;
195
196 /* Accounted resources */
197 struct page_counter memory; /* Both v1 & v2 */
198
199 union {
200 struct page_counter swap; /* v2 only */
201 struct page_counter memsw; /* v1 only */
202 };
203
204 /* registered local peak watchers */
205 struct list_head memory_peaks;
206 struct list_head swap_peaks;
207 spinlock_t peaks_lock;
208
209 /* Range enforcement for interrupt charges */
210 struct work_struct high_work;
211
212#ifdef CONFIG_ZSWAP
213 unsigned long zswap_max;
214
215 /*
216 * Prevent pages from this memcg from being written back from zswap to
217 * swap, and from being swapped out on zswap store failures.
218 */
219 bool zswap_writeback;
220#endif
221
222 /* vmpressure notifications */
223 struct vmpressure vmpressure;
224
225 /*
226 * Should the OOM killer kill all belonging tasks, had it kill one?
227 */
228 bool oom_group;
229
230 int swappiness;
231
232 /* memory.events and memory.events.local */
233 struct cgroup_file events_file;
234 struct cgroup_file events_local_file;
235
236 /* handle for "memory.swap.events" */
237 struct cgroup_file swap_events_file;
238
239 /* memory.stat */
240 struct memcg_vmstats *vmstats;
241
242 /* memory.events */
243 atomic_long_t memory_events[MEMCG_NR_MEMORY_EVENTS];
244 atomic_long_t memory_events_local[MEMCG_NR_MEMORY_EVENTS];
245
246#ifdef CONFIG_MEMCG_NMI_SAFETY_REQUIRES_ATOMIC
247 /* MEMCG_KMEM for nmi context */
248 atomic_t kmem_stat;
249#endif
250 /*
251 * Hint of reclaim pressure for socket memroy management. Note
252 * that this indicator should NOT be used in legacy cgroup mode
253 * where socket memory is accounted/charged separately.
254 */
255 u64 socket_pressure;
256#if BITS_PER_LONG < 64
257 seqlock_t socket_pressure_seqlock;
258#endif
259 int kmemcg_id;
260 /*
261 * memcg->objcg is wiped out as a part of the objcg repaprenting
262 * process. memcg->orig_objcg preserves a pointer (and a reference)
263 * to the original objcg until the end of live of memcg.
264 */
265 struct obj_cgroup __rcu *objcg;
266 struct obj_cgroup *orig_objcg;
267 /* list of inherited objcgs, protected by objcg_lock */
268 struct list_head objcg_list;
269
270 struct memcg_vmstats_percpu __percpu *vmstats_percpu;
271
272#ifdef CONFIG_CGROUP_WRITEBACK
273 struct list_head cgwb_list;
274 struct wb_domain cgwb_domain;
275 struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT];
276#endif
277
278#ifdef CONFIG_TRANSPARENT_HUGEPAGE
279 struct deferred_split deferred_split_queue;
280#endif
281
282#ifdef CONFIG_LRU_GEN_WALKS_MMU
283 /* per-memcg mm_struct list */
284 struct lru_gen_mm_list mm_list;
285#endif
286
287#ifdef CONFIG_MEMCG_V1
288 /* Legacy consumer-oriented counters */
289 struct page_counter kmem; /* v1 only */
290 struct page_counter tcpmem; /* v1 only */
291
292 struct memcg1_events_percpu __percpu *events_percpu;
293
294 unsigned long soft_limit;
295
296 /* protected by memcg_oom_lock */
297 bool oom_lock;
298 int under_oom;
299
300 /* OOM-Killer disable */
301 int oom_kill_disable;
302
303 /* protect arrays of thresholds */
304 struct mutex thresholds_lock;
305
306 /* thresholds for memory usage. RCU-protected */
307 struct mem_cgroup_thresholds thresholds;
308
309 /* thresholds for mem+swap usage. RCU-protected */
310 struct mem_cgroup_thresholds memsw_thresholds;
311
312 /* For oom notifier event fd */
313 struct list_head oom_notify;
314
315 /* Legacy tcp memory accounting */
316 bool tcpmem_active;
317 int tcpmem_pressure;
318
319 /* List of events which userspace want to receive */
320 struct list_head event_list;
321 spinlock_t event_list_lock;
322#endif /* CONFIG_MEMCG_V1 */
323
324 struct mem_cgroup_per_node *nodeinfo[];
325};
326
327/*
328 * size of first charge trial.
329 * TODO: maybe necessary to use big numbers in big irons or dynamic based of the
330 * workload.
331 */
332#define MEMCG_CHARGE_BATCH 64U
333
334extern struct mem_cgroup *root_mem_cgroup;
335
336enum page_memcg_data_flags {
337 /* page->memcg_data is a pointer to an slabobj_ext vector */
338 MEMCG_DATA_OBJEXTS = (1UL << 0),
339 /* page has been accounted as a non-slab kernel page */
340 MEMCG_DATA_KMEM = (1UL << 1),
341 /* the next bit after the last actual flag */
342 __NR_MEMCG_DATA_FLAGS = (1UL << 2),
343};
344
345#define __OBJEXTS_ALLOC_FAIL MEMCG_DATA_OBJEXTS
346#define __FIRST_OBJEXT_FLAG __NR_MEMCG_DATA_FLAGS
347
348#else /* CONFIG_MEMCG */
349
350#define __OBJEXTS_ALLOC_FAIL (1UL << 0)
351#define __FIRST_OBJEXT_FLAG (1UL << 0)
352
353#endif /* CONFIG_MEMCG */
354
355enum objext_flags {
356 /*
357 * Use bit 0 with zero other bits to signal that slabobj_ext vector
358 * failed to allocate. The same bit 0 with valid upper bits means
359 * MEMCG_DATA_OBJEXTS.
360 */
361 OBJEXTS_ALLOC_FAIL = __OBJEXTS_ALLOC_FAIL,
362 /* slabobj_ext vector allocated with kmalloc_nolock() */
363 OBJEXTS_NOSPIN_ALLOC = __FIRST_OBJEXT_FLAG,
364 /* the next bit after the last actual flag */
365 __NR_OBJEXTS_FLAGS = (__FIRST_OBJEXT_FLAG << 1),
366};
367
368#define OBJEXTS_FLAGS_MASK (__NR_OBJEXTS_FLAGS - 1)
369
370#ifdef CONFIG_MEMCG
371
372static inline bool folio_memcg_kmem(struct folio *folio);
373
374/*
375 * After the initialization objcg->memcg is always pointing at
376 * a valid memcg, but can be atomically swapped to the parent memcg.
377 *
378 * The caller must ensure that the returned memcg won't be released.
379 */
380static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg)
381{
382 lockdep_assert_once(rcu_read_lock_held() || lockdep_is_held(&cgroup_mutex));
383 return READ_ONCE(objcg->memcg);
384}
385
386/*
387 * __folio_memcg - Get the memory cgroup associated with a non-kmem folio
388 * @folio: Pointer to the folio.
389 *
390 * Returns a pointer to the memory cgroup associated with the folio,
391 * or NULL. This function assumes that the folio is known to have a
392 * proper memory cgroup pointer. It's not safe to call this function
393 * against some type of folios, e.g. slab folios or ex-slab folios or
394 * kmem folios.
395 */
396static inline struct mem_cgroup *__folio_memcg(struct folio *folio)
397{
398 unsigned long memcg_data = folio->memcg_data;
399
400 VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
401 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJEXTS, folio);
402 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_KMEM, folio);
403
404 return (struct mem_cgroup *)(memcg_data & ~OBJEXTS_FLAGS_MASK);
405}
406
407/*
408 * __folio_objcg - get the object cgroup associated with a kmem folio.
409 * @folio: Pointer to the folio.
410 *
411 * Returns a pointer to the object cgroup associated with the folio,
412 * or NULL. This function assumes that the folio is known to have a
413 * proper object cgroup pointer. It's not safe to call this function
414 * against some type of folios, e.g. slab folios or ex-slab folios or
415 * LRU folios.
416 */
417static inline struct obj_cgroup *__folio_objcg(struct folio *folio)
418{
419 unsigned long memcg_data = folio->memcg_data;
420
421 VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
422 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJEXTS, folio);
423 VM_BUG_ON_FOLIO(!(memcg_data & MEMCG_DATA_KMEM), folio);
424
425 return (struct obj_cgroup *)(memcg_data & ~OBJEXTS_FLAGS_MASK);
426}
427
428/*
429 * folio_memcg - Get the memory cgroup associated with a folio.
430 * @folio: Pointer to the folio.
431 *
432 * Returns a pointer to the memory cgroup associated with the folio,
433 * or NULL. This function assumes that the folio is known to have a
434 * proper memory cgroup pointer. It's not safe to call this function
435 * against some type of folios, e.g. slab folios or ex-slab folios.
436 *
437 * For a non-kmem folio any of the following ensures folio and memcg binding
438 * stability:
439 *
440 * - the folio lock
441 * - LRU isolation
442 * - exclusive reference
443 *
444 * For a kmem folio a caller should hold an rcu read lock to protect memcg
445 * associated with a kmem folio from being released.
446 */
447static inline struct mem_cgroup *folio_memcg(struct folio *folio)
448{
449 if (folio_memcg_kmem(folio))
450 return obj_cgroup_memcg(__folio_objcg(folio));
451 return __folio_memcg(folio);
452}
453
454/*
455 * folio_memcg_charged - If a folio is charged to a memory cgroup.
456 * @folio: Pointer to the folio.
457 *
458 * Returns true if folio is charged to a memory cgroup, otherwise returns false.
459 */
460static inline bool folio_memcg_charged(struct folio *folio)
461{
462 return folio->memcg_data != 0;
463}
464
465/*
466 * folio_memcg_check - Get the memory cgroup associated with a folio.
467 * @folio: Pointer to the folio.
468 *
469 * Returns a pointer to the memory cgroup associated with the folio,
470 * or NULL. This function unlike folio_memcg() can take any folio
471 * as an argument. It has to be used in cases when it's not known if a folio
472 * has an associated memory cgroup pointer or an object cgroups vector or
473 * an object cgroup.
474 *
475 * For a non-kmem folio any of the following ensures folio and memcg binding
476 * stability:
477 *
478 * - the folio lock
479 * - LRU isolation
480 * - exclusive reference
481 *
482 * For a kmem folio a caller should hold an rcu read lock to protect memcg
483 * associated with a kmem folio from being released.
484 */
485static inline struct mem_cgroup *folio_memcg_check(struct folio *folio)
486{
487 /*
488 * Because folio->memcg_data might be changed asynchronously
489 * for slabs, READ_ONCE() should be used here.
490 */
491 unsigned long memcg_data = READ_ONCE(folio->memcg_data);
492
493 if (memcg_data & MEMCG_DATA_OBJEXTS)
494 return NULL;
495
496 if (memcg_data & MEMCG_DATA_KMEM) {
497 struct obj_cgroup *objcg;
498
499 objcg = (void *)(memcg_data & ~OBJEXTS_FLAGS_MASK);
500 return obj_cgroup_memcg(objcg);
501 }
502
503 return (struct mem_cgroup *)(memcg_data & ~OBJEXTS_FLAGS_MASK);
504}
505
506static inline struct mem_cgroup *page_memcg_check(struct page *page)
507{
508 if (PageTail(page))
509 return NULL;
510 return folio_memcg_check((struct folio *)page);
511}
512
513static inline struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
514{
515 struct mem_cgroup *memcg;
516
517 rcu_read_lock();
518retry:
519 memcg = obj_cgroup_memcg(objcg);
520 if (unlikely(!css_tryget(&memcg->css)))
521 goto retry;
522 rcu_read_unlock();
523
524 return memcg;
525}
526
527/*
528 * folio_memcg_kmem - Check if the folio has the memcg_kmem flag set.
529 * @folio: Pointer to the folio.
530 *
531 * Checks if the folio has MemcgKmem flag set. The caller must ensure
532 * that the folio has an associated memory cgroup. It's not safe to call
533 * this function against some types of folios, e.g. slab folios.
534 */
535static inline bool folio_memcg_kmem(struct folio *folio)
536{
537 VM_BUG_ON_PGFLAGS(PageTail(&folio->page), &folio->page);
538 VM_BUG_ON_FOLIO(folio->memcg_data & MEMCG_DATA_OBJEXTS, folio);
539 return folio->memcg_data & MEMCG_DATA_KMEM;
540}
541
542static inline bool PageMemcgKmem(struct page *page)
543{
544 return folio_memcg_kmem(page_folio(page));
545}
546
547static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
548{
549 return (memcg == root_mem_cgroup);
550}
551
552static inline bool mem_cgroup_disabled(void)
553{
554 return !cgroup_subsys_enabled(memory_cgrp_subsys);
555}
556
557static inline void mem_cgroup_protection(struct mem_cgroup *root,
558 struct mem_cgroup *memcg,
559 unsigned long *min,
560 unsigned long *low)
561{
562 *min = *low = 0;
563
564 if (mem_cgroup_disabled())
565 return;
566
567 /*
568 * There is no reclaim protection applied to a targeted reclaim.
569 * We are special casing this specific case here because
570 * mem_cgroup_calculate_protection is not robust enough to keep
571 * the protection invariant for calculated effective values for
572 * parallel reclaimers with different reclaim target. This is
573 * especially a problem for tail memcgs (as they have pages on LRU)
574 * which would want to have effective values 0 for targeted reclaim
575 * but a different value for external reclaim.
576 *
577 * Example
578 * Let's have global and A's reclaim in parallel:
579 * |
580 * A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G)
581 * |\
582 * | C (low = 1G, usage = 2.5G)
583 * B (low = 1G, usage = 0.5G)
584 *
585 * For the global reclaim
586 * A.elow = A.low
587 * B.elow = min(B.usage, B.low) because children_low_usage <= A.elow
588 * C.elow = min(C.usage, C.low)
589 *
590 * With the effective values resetting we have A reclaim
591 * A.elow = 0
592 * B.elow = B.low
593 * C.elow = C.low
594 *
595 * If the global reclaim races with A's reclaim then
596 * B.elow = C.elow = 0 because children_low_usage > A.elow)
597 * is possible and reclaiming B would be violating the protection.
598 *
599 */
600 if (root == memcg)
601 return;
602
603 *min = READ_ONCE(memcg->memory.emin);
604 *low = READ_ONCE(memcg->memory.elow);
605}
606
607void mem_cgroup_calculate_protection(struct mem_cgroup *root,
608 struct mem_cgroup *memcg);
609
610static inline bool mem_cgroup_unprotected(struct mem_cgroup *target,
611 struct mem_cgroup *memcg)
612{
613 /*
614 * The root memcg doesn't account charges, and doesn't support
615 * protection. The target memcg's protection is ignored, see
616 * mem_cgroup_calculate_protection() and mem_cgroup_protection()
617 */
618 return mem_cgroup_disabled() || mem_cgroup_is_root(memcg) ||
619 memcg == target;
620}
621
622static inline bool mem_cgroup_below_low(struct mem_cgroup *target,
623 struct mem_cgroup *memcg)
624{
625 if (mem_cgroup_unprotected(target, memcg))
626 return false;
627
628 return READ_ONCE(memcg->memory.elow) >=
629 page_counter_read(&memcg->memory);
630}
631
632static inline bool mem_cgroup_below_min(struct mem_cgroup *target,
633 struct mem_cgroup *memcg)
634{
635 if (mem_cgroup_unprotected(target, memcg))
636 return false;
637
638 return READ_ONCE(memcg->memory.emin) >=
639 page_counter_read(&memcg->memory);
640}
641
642int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp);
643
644/**
645 * mem_cgroup_charge - Charge a newly allocated folio to a cgroup.
646 * @folio: Folio to charge.
647 * @mm: mm context of the allocating task.
648 * @gfp: Reclaim mode.
649 *
650 * Try to charge @folio to the memcg that @mm belongs to, reclaiming
651 * pages according to @gfp if necessary. If @mm is NULL, try to
652 * charge to the active memcg.
653 *
654 * Do not use this for folios allocated for swapin.
655 *
656 * Return: 0 on success. Otherwise, an error code is returned.
657 */
658static inline int mem_cgroup_charge(struct folio *folio, struct mm_struct *mm,
659 gfp_t gfp)
660{
661 if (mem_cgroup_disabled())
662 return 0;
663 return __mem_cgroup_charge(folio, mm, gfp);
664}
665
666int mem_cgroup_charge_hugetlb(struct folio* folio, gfp_t gfp);
667
668int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
669 gfp_t gfp, swp_entry_t entry);
670
671void __mem_cgroup_uncharge(struct folio *folio);
672
673/**
674 * mem_cgroup_uncharge - Uncharge a folio.
675 * @folio: Folio to uncharge.
676 *
677 * Uncharge a folio previously charged with mem_cgroup_charge().
678 */
679static inline void mem_cgroup_uncharge(struct folio *folio)
680{
681 if (mem_cgroup_disabled())
682 return;
683 __mem_cgroup_uncharge(folio);
684}
685
686void __mem_cgroup_uncharge_folios(struct folio_batch *folios);
687static inline void mem_cgroup_uncharge_folios(struct folio_batch *folios)
688{
689 if (mem_cgroup_disabled())
690 return;
691 __mem_cgroup_uncharge_folios(folios);
692}
693
694void mem_cgroup_replace_folio(struct folio *old, struct folio *new);
695void mem_cgroup_migrate(struct folio *old, struct folio *new);
696
697/**
698 * mem_cgroup_lruvec - get the lru list vector for a memcg & node
699 * @memcg: memcg of the wanted lruvec
700 * @pgdat: pglist_data
701 *
702 * Returns the lru list vector holding pages for a given @memcg &
703 * @pgdat combination. This can be the node lruvec, if the memory
704 * controller is disabled.
705 */
706static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
707 struct pglist_data *pgdat)
708{
709 struct mem_cgroup_per_node *mz;
710 struct lruvec *lruvec;
711
712 if (mem_cgroup_disabled()) {
713 lruvec = &pgdat->__lruvec;
714 goto out;
715 }
716
717 if (!memcg)
718 memcg = root_mem_cgroup;
719
720 mz = memcg->nodeinfo[pgdat->node_id];
721 lruvec = &mz->lruvec;
722out:
723 /*
724 * Since a node can be onlined after the mem_cgroup was created,
725 * we have to be prepared to initialize lruvec->pgdat here;
726 * and if offlined then reonlined, we need to reinitialize it.
727 */
728 if (unlikely(lruvec->pgdat != pgdat))
729 lruvec->pgdat = pgdat;
730 return lruvec;
731}
732
733/**
734 * folio_lruvec - return lruvec for isolating/putting an LRU folio
735 * @folio: Pointer to the folio.
736 *
737 * This function relies on folio->mem_cgroup being stable.
738 */
739static inline struct lruvec *folio_lruvec(struct folio *folio)
740{
741 struct mem_cgroup *memcg = folio_memcg(folio);
742
743 VM_WARN_ON_ONCE_FOLIO(!memcg && !mem_cgroup_disabled(), folio);
744 return mem_cgroup_lruvec(memcg, folio_pgdat(folio));
745}
746
747struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
748
749struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm);
750
751struct mem_cgroup *get_mem_cgroup_from_current(void);
752
753struct mem_cgroup *get_mem_cgroup_from_folio(struct folio *folio);
754
755struct lruvec *folio_lruvec_lock(struct folio *folio);
756struct lruvec *folio_lruvec_lock_irq(struct folio *folio);
757struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
758 unsigned long *flags);
759
760#ifdef CONFIG_DEBUG_VM
761void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio);
762#else
763static inline
764void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
765{
766}
767#endif
768
769static inline
770struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
771 return css ? container_of(css, struct mem_cgroup, css) : NULL;
772}
773
774static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg)
775{
776 return percpu_ref_tryget(&objcg->refcnt);
777}
778
779static inline void obj_cgroup_get(struct obj_cgroup *objcg)
780{
781 percpu_ref_get(&objcg->refcnt);
782}
783
784static inline void obj_cgroup_get_many(struct obj_cgroup *objcg,
785 unsigned long nr)
786{
787 percpu_ref_get_many(&objcg->refcnt, nr);
788}
789
790static inline void obj_cgroup_put(struct obj_cgroup *objcg)
791{
792 if (objcg)
793 percpu_ref_put(&objcg->refcnt);
794}
795
796static inline bool mem_cgroup_tryget(struct mem_cgroup *memcg)
797{
798 return !memcg || css_tryget(&memcg->css);
799}
800
801static inline bool mem_cgroup_tryget_online(struct mem_cgroup *memcg)
802{
803 return !memcg || css_tryget_online(&memcg->css);
804}
805
806static inline void mem_cgroup_put(struct mem_cgroup *memcg)
807{
808 if (memcg)
809 css_put(&memcg->css);
810}
811
812#define mem_cgroup_from_counter(counter, member) \
813 container_of(counter, struct mem_cgroup, member)
814
815struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
816 struct mem_cgroup *,
817 struct mem_cgroup_reclaim_cookie *);
818void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
819void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
820 int (*)(struct task_struct *, void *), void *arg);
821
822static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
823{
824 if (mem_cgroup_disabled())
825 return 0;
826
827 return memcg->id.id;
828}
829struct mem_cgroup *mem_cgroup_from_id(unsigned short id);
830
831#ifdef CONFIG_SHRINKER_DEBUG
832static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg)
833{
834 return memcg ? cgroup_ino(memcg->css.cgroup) : 0;
835}
836
837struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino);
838#endif
839
840static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
841{
842 return mem_cgroup_from_css(seq_css(m));
843}
844
845static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
846{
847 struct mem_cgroup_per_node *mz;
848
849 if (mem_cgroup_disabled())
850 return NULL;
851
852 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
853 return mz->memcg;
854}
855
856/**
857 * parent_mem_cgroup - find the accounting parent of a memcg
858 * @memcg: memcg whose parent to find
859 *
860 * Returns the parent memcg, or NULL if this is the root.
861 */
862static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
863{
864 return mem_cgroup_from_css(memcg->css.parent);
865}
866
867static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
868 struct mem_cgroup *root)
869{
870 if (root == memcg)
871 return true;
872 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
873}
874
875static inline bool mm_match_cgroup(struct mm_struct *mm,
876 struct mem_cgroup *memcg)
877{
878 struct mem_cgroup *task_memcg;
879 bool match = false;
880
881 rcu_read_lock();
882 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
883 if (task_memcg)
884 match = mem_cgroup_is_descendant(task_memcg, memcg);
885 rcu_read_unlock();
886 return match;
887}
888
889struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio);
890ino_t page_cgroup_ino(struct page *page);
891
892static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
893{
894 if (mem_cgroup_disabled())
895 return true;
896 return !!(memcg->css.flags & CSS_ONLINE);
897}
898
899void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
900 int zid, int nr_pages);
901
902static inline
903unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
904 enum lru_list lru, int zone_idx)
905{
906 struct mem_cgroup_per_node *mz;
907
908 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
909 return READ_ONCE(mz->lru_zone_size[zone_idx][lru]);
910}
911
912void __mem_cgroup_handle_over_high(gfp_t gfp_mask);
913
914static inline void mem_cgroup_handle_over_high(gfp_t gfp_mask)
915{
916 if (unlikely(current->memcg_nr_pages_over_high))
917 __mem_cgroup_handle_over_high(gfp_mask);
918}
919
920unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg);
921
922unsigned long mem_cgroup_size(struct mem_cgroup *memcg);
923
924void mem_cgroup_print_oom_context(struct mem_cgroup *memcg,
925 struct task_struct *p);
926
927void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg);
928
929struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
930 struct mem_cgroup *oom_domain);
931void mem_cgroup_print_oom_group(struct mem_cgroup *memcg);
932
933/* idx can be of type enum memcg_stat_item or node_stat_item */
934void mod_memcg_state(struct mem_cgroup *memcg,
935 enum memcg_stat_item idx, int val);
936
937static inline void mod_memcg_page_state(struct page *page,
938 enum memcg_stat_item idx, int val)
939{
940 struct mem_cgroup *memcg;
941
942 if (mem_cgroup_disabled())
943 return;
944
945 rcu_read_lock();
946 memcg = folio_memcg(page_folio(page));
947 if (memcg)
948 mod_memcg_state(memcg, idx, val);
949 rcu_read_unlock();
950}
951
952unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx);
953unsigned long lruvec_page_state(struct lruvec *lruvec, enum node_stat_item idx);
954unsigned long lruvec_page_state_local(struct lruvec *lruvec,
955 enum node_stat_item idx);
956
957void mem_cgroup_flush_stats(struct mem_cgroup *memcg);
958void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg);
959
960void mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val);
961
962void count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
963 unsigned long count);
964
965static inline void count_memcg_folio_events(struct folio *folio,
966 enum vm_event_item idx, unsigned long nr)
967{
968 struct mem_cgroup *memcg = folio_memcg(folio);
969
970 if (memcg)
971 count_memcg_events(memcg, idx, nr);
972}
973
974static inline void count_memcg_events_mm(struct mm_struct *mm,
975 enum vm_event_item idx, unsigned long count)
976{
977 struct mem_cgroup *memcg;
978
979 if (mem_cgroup_disabled())
980 return;
981
982 rcu_read_lock();
983 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
984 if (likely(memcg))
985 count_memcg_events(memcg, idx, count);
986 rcu_read_unlock();
987}
988
989static inline void count_memcg_event_mm(struct mm_struct *mm,
990 enum vm_event_item idx)
991{
992 count_memcg_events_mm(mm, idx, 1);
993}
994
995void __memcg_memory_event(struct mem_cgroup *memcg,
996 enum memcg_memory_event event, bool allow_spinning);
997
998static inline void memcg_memory_event(struct mem_cgroup *memcg,
999 enum memcg_memory_event event)
1000{
1001 __memcg_memory_event(memcg, event, true);
1002}
1003
1004static inline void memcg_memory_event_mm(struct mm_struct *mm,
1005 enum memcg_memory_event event)
1006{
1007 struct mem_cgroup *memcg;
1008
1009 if (mem_cgroup_disabled())
1010 return;
1011
1012 rcu_read_lock();
1013 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1014 if (likely(memcg))
1015 memcg_memory_event(memcg, event);
1016 rcu_read_unlock();
1017}
1018
1019void split_page_memcg(struct page *first, unsigned order);
1020void folio_split_memcg_refs(struct folio *folio, unsigned old_order,
1021 unsigned new_order);
1022
1023static inline u64 cgroup_id_from_mm(struct mm_struct *mm)
1024{
1025 struct mem_cgroup *memcg;
1026 u64 id;
1027
1028 if (mem_cgroup_disabled())
1029 return 0;
1030
1031 rcu_read_lock();
1032 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1033 if (!memcg)
1034 memcg = root_mem_cgroup;
1035 id = cgroup_id(memcg->css.cgroup);
1036 rcu_read_unlock();
1037 return id;
1038}
1039
1040extern int mem_cgroup_init(void);
1041#else /* CONFIG_MEMCG */
1042
1043#define MEM_CGROUP_ID_SHIFT 0
1044
1045#define root_mem_cgroup (NULL)
1046
1047static inline struct mem_cgroup *folio_memcg(struct folio *folio)
1048{
1049 return NULL;
1050}
1051
1052static inline bool folio_memcg_charged(struct folio *folio)
1053{
1054 return false;
1055}
1056
1057static inline struct mem_cgroup *folio_memcg_check(struct folio *folio)
1058{
1059 return NULL;
1060}
1061
1062static inline struct mem_cgroup *page_memcg_check(struct page *page)
1063{
1064 return NULL;
1065}
1066
1067static inline struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
1068{
1069 return NULL;
1070}
1071
1072static inline bool folio_memcg_kmem(struct folio *folio)
1073{
1074 return false;
1075}
1076
1077static inline bool PageMemcgKmem(struct page *page)
1078{
1079 return false;
1080}
1081
1082static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
1083{
1084 return true;
1085}
1086
1087static inline bool mem_cgroup_disabled(void)
1088{
1089 return true;
1090}
1091
1092static inline void memcg_memory_event(struct mem_cgroup *memcg,
1093 enum memcg_memory_event event)
1094{
1095}
1096
1097static inline void memcg_memory_event_mm(struct mm_struct *mm,
1098 enum memcg_memory_event event)
1099{
1100}
1101
1102static inline void mem_cgroup_protection(struct mem_cgroup *root,
1103 struct mem_cgroup *memcg,
1104 unsigned long *min,
1105 unsigned long *low)
1106{
1107 *min = *low = 0;
1108}
1109
1110static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root,
1111 struct mem_cgroup *memcg)
1112{
1113}
1114
1115static inline bool mem_cgroup_unprotected(struct mem_cgroup *target,
1116 struct mem_cgroup *memcg)
1117{
1118 return true;
1119}
1120static inline bool mem_cgroup_below_low(struct mem_cgroup *target,
1121 struct mem_cgroup *memcg)
1122{
1123 return false;
1124}
1125
1126static inline bool mem_cgroup_below_min(struct mem_cgroup *target,
1127 struct mem_cgroup *memcg)
1128{
1129 return false;
1130}
1131
1132static inline int mem_cgroup_charge(struct folio *folio,
1133 struct mm_struct *mm, gfp_t gfp)
1134{
1135 return 0;
1136}
1137
1138static inline int mem_cgroup_charge_hugetlb(struct folio* folio, gfp_t gfp)
1139{
1140 return 0;
1141}
1142
1143static inline int mem_cgroup_swapin_charge_folio(struct folio *folio,
1144 struct mm_struct *mm, gfp_t gfp, swp_entry_t entry)
1145{
1146 return 0;
1147}
1148
1149static inline void mem_cgroup_uncharge(struct folio *folio)
1150{
1151}
1152
1153static inline void mem_cgroup_uncharge_folios(struct folio_batch *folios)
1154{
1155}
1156
1157static inline void mem_cgroup_replace_folio(struct folio *old,
1158 struct folio *new)
1159{
1160}
1161
1162static inline void mem_cgroup_migrate(struct folio *old, struct folio *new)
1163{
1164}
1165
1166static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
1167 struct pglist_data *pgdat)
1168{
1169 return &pgdat->__lruvec;
1170}
1171
1172static inline struct lruvec *folio_lruvec(struct folio *folio)
1173{
1174 struct pglist_data *pgdat = folio_pgdat(folio);
1175 return &pgdat->__lruvec;
1176}
1177
1178static inline
1179void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1180{
1181}
1182
1183static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
1184{
1185 return NULL;
1186}
1187
1188static inline bool mm_match_cgroup(struct mm_struct *mm,
1189 struct mem_cgroup *memcg)
1190{
1191 return true;
1192}
1193
1194static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1195{
1196 return NULL;
1197}
1198
1199static inline struct mem_cgroup *get_mem_cgroup_from_current(void)
1200{
1201 return NULL;
1202}
1203
1204static inline struct mem_cgroup *get_mem_cgroup_from_folio(struct folio *folio)
1205{
1206 return NULL;
1207}
1208
1209static inline
1210struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css)
1211{
1212 return NULL;
1213}
1214
1215static inline void obj_cgroup_get(struct obj_cgroup *objcg)
1216{
1217}
1218
1219static inline void obj_cgroup_put(struct obj_cgroup *objcg)
1220{
1221}
1222
1223static inline bool mem_cgroup_tryget(struct mem_cgroup *memcg)
1224{
1225 return true;
1226}
1227
1228static inline bool mem_cgroup_tryget_online(struct mem_cgroup *memcg)
1229{
1230 return true;
1231}
1232
1233static inline void mem_cgroup_put(struct mem_cgroup *memcg)
1234{
1235}
1236
1237static inline struct lruvec *folio_lruvec_lock(struct folio *folio)
1238{
1239 struct pglist_data *pgdat = folio_pgdat(folio);
1240
1241 spin_lock(&pgdat->__lruvec.lru_lock);
1242 return &pgdat->__lruvec;
1243}
1244
1245static inline struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1246{
1247 struct pglist_data *pgdat = folio_pgdat(folio);
1248
1249 spin_lock_irq(&pgdat->__lruvec.lru_lock);
1250 return &pgdat->__lruvec;
1251}
1252
1253static inline struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1254 unsigned long *flagsp)
1255{
1256 struct pglist_data *pgdat = folio_pgdat(folio);
1257
1258 spin_lock_irqsave(&pgdat->__lruvec.lru_lock, *flagsp);
1259 return &pgdat->__lruvec;
1260}
1261
1262static inline struct mem_cgroup *
1263mem_cgroup_iter(struct mem_cgroup *root,
1264 struct mem_cgroup *prev,
1265 struct mem_cgroup_reclaim_cookie *reclaim)
1266{
1267 return NULL;
1268}
1269
1270static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
1271 struct mem_cgroup *prev)
1272{
1273}
1274
1275static inline void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1276 int (*fn)(struct task_struct *, void *), void *arg)
1277{
1278}
1279
1280static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
1281{
1282 return 0;
1283}
1284
1285static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
1286{
1287 WARN_ON_ONCE(id);
1288 /* XXX: This should always return root_mem_cgroup */
1289 return NULL;
1290}
1291
1292#ifdef CONFIG_SHRINKER_DEBUG
1293static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg)
1294{
1295 return 0;
1296}
1297
1298static inline struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
1299{
1300 return NULL;
1301}
1302#endif
1303
1304static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
1305{
1306 return NULL;
1307}
1308
1309static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
1310{
1311 return NULL;
1312}
1313
1314static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
1315{
1316 return true;
1317}
1318
1319static inline
1320unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
1321 enum lru_list lru, int zone_idx)
1322{
1323 return 0;
1324}
1325
1326static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1327{
1328 return 0;
1329}
1330
1331static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1332{
1333 return 0;
1334}
1335
1336static inline void
1337mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1338{
1339}
1340
1341static inline void
1342mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1343{
1344}
1345
1346static inline void mem_cgroup_handle_over_high(gfp_t gfp_mask)
1347{
1348}
1349
1350static inline struct mem_cgroup *mem_cgroup_get_oom_group(
1351 struct task_struct *victim, struct mem_cgroup *oom_domain)
1352{
1353 return NULL;
1354}
1355
1356static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1357{
1358}
1359
1360static inline void mod_memcg_state(struct mem_cgroup *memcg,
1361 enum memcg_stat_item idx,
1362 int nr)
1363{
1364}
1365
1366static inline void mod_memcg_page_state(struct page *page,
1367 enum memcg_stat_item idx, int val)
1368{
1369}
1370
1371static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
1372{
1373 return 0;
1374}
1375
1376static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1377 enum node_stat_item idx)
1378{
1379 return node_page_state(lruvec_pgdat(lruvec), idx);
1380}
1381
1382static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1383 enum node_stat_item idx)
1384{
1385 return node_page_state(lruvec_pgdat(lruvec), idx);
1386}
1387
1388static inline void mem_cgroup_flush_stats(struct mem_cgroup *memcg)
1389{
1390}
1391
1392static inline void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg)
1393{
1394}
1395
1396static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1397 int val)
1398{
1399 struct page *page = virt_to_head_page(p);
1400
1401 mod_node_page_state(page_pgdat(page), idx, val);
1402}
1403
1404static inline void count_memcg_events(struct mem_cgroup *memcg,
1405 enum vm_event_item idx,
1406 unsigned long count)
1407{
1408}
1409
1410static inline void count_memcg_folio_events(struct folio *folio,
1411 enum vm_event_item idx, unsigned long nr)
1412{
1413}
1414
1415static inline void count_memcg_events_mm(struct mm_struct *mm,
1416 enum vm_event_item idx, unsigned long count)
1417{
1418}
1419
1420static inline
1421void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx)
1422{
1423}
1424
1425static inline void split_page_memcg(struct page *first, unsigned order)
1426{
1427}
1428
1429static inline void folio_split_memcg_refs(struct folio *folio,
1430 unsigned old_order, unsigned new_order)
1431{
1432}
1433
1434static inline u64 cgroup_id_from_mm(struct mm_struct *mm)
1435{
1436 return 0;
1437}
1438
1439static inline int mem_cgroup_init(void) { return 0; }
1440#endif /* CONFIG_MEMCG */
1441
1442/*
1443 * Extended information for slab objects stored as an array in page->memcg_data
1444 * if MEMCG_DATA_OBJEXTS is set.
1445 */
1446struct slabobj_ext {
1447#ifdef CONFIG_MEMCG
1448 struct obj_cgroup *objcg;
1449#endif
1450#ifdef CONFIG_MEM_ALLOC_PROFILING
1451 union codetag_ref ref;
1452#endif
1453} __aligned(8);
1454
1455static inline struct lruvec *parent_lruvec(struct lruvec *lruvec)
1456{
1457 struct mem_cgroup *memcg;
1458
1459 memcg = lruvec_memcg(lruvec);
1460 if (!memcg)
1461 return NULL;
1462 memcg = parent_mem_cgroup(memcg);
1463 if (!memcg)
1464 return NULL;
1465 return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec));
1466}
1467
1468static inline void unlock_page_lruvec(struct lruvec *lruvec)
1469{
1470 spin_unlock(&lruvec->lru_lock);
1471}
1472
1473static inline void unlock_page_lruvec_irq(struct lruvec *lruvec)
1474{
1475 spin_unlock_irq(&lruvec->lru_lock);
1476}
1477
1478static inline void unlock_page_lruvec_irqrestore(struct lruvec *lruvec,
1479 unsigned long flags)
1480{
1481 spin_unlock_irqrestore(&lruvec->lru_lock, flags);
1482}
1483
1484/* Test requires a stable folio->memcg binding, see folio_memcg() */
1485static inline bool folio_matches_lruvec(struct folio *folio,
1486 struct lruvec *lruvec)
1487{
1488 return lruvec_pgdat(lruvec) == folio_pgdat(folio) &&
1489 lruvec_memcg(lruvec) == folio_memcg(folio);
1490}
1491
1492/* Don't lock again iff page's lruvec locked */
1493static inline struct lruvec *folio_lruvec_relock_irq(struct folio *folio,
1494 struct lruvec *locked_lruvec)
1495{
1496 if (locked_lruvec) {
1497 if (folio_matches_lruvec(folio, locked_lruvec))
1498 return locked_lruvec;
1499
1500 unlock_page_lruvec_irq(locked_lruvec);
1501 }
1502
1503 return folio_lruvec_lock_irq(folio);
1504}
1505
1506/* Don't lock again iff folio's lruvec locked */
1507static inline void folio_lruvec_relock_irqsave(struct folio *folio,
1508 struct lruvec **lruvecp, unsigned long *flags)
1509{
1510 if (*lruvecp) {
1511 if (folio_matches_lruvec(folio, *lruvecp))
1512 return;
1513
1514 unlock_page_lruvec_irqrestore(*lruvecp, *flags);
1515 }
1516
1517 *lruvecp = folio_lruvec_lock_irqsave(folio, flags);
1518}
1519
1520#ifdef CONFIG_CGROUP_WRITEBACK
1521
1522struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
1523void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
1524 unsigned long *pheadroom, unsigned long *pdirty,
1525 unsigned long *pwriteback);
1526
1527void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
1528 struct bdi_writeback *wb);
1529
1530static inline void mem_cgroup_track_foreign_dirty(struct folio *folio,
1531 struct bdi_writeback *wb)
1532{
1533 struct mem_cgroup *memcg;
1534
1535 if (mem_cgroup_disabled())
1536 return;
1537
1538 memcg = folio_memcg(folio);
1539 if (unlikely(memcg && &memcg->css != wb->memcg_css))
1540 mem_cgroup_track_foreign_dirty_slowpath(folio, wb);
1541}
1542
1543void mem_cgroup_flush_foreign(struct bdi_writeback *wb);
1544
1545#else /* CONFIG_CGROUP_WRITEBACK */
1546
1547static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
1548{
1549 return NULL;
1550}
1551
1552static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
1553 unsigned long *pfilepages,
1554 unsigned long *pheadroom,
1555 unsigned long *pdirty,
1556 unsigned long *pwriteback)
1557{
1558}
1559
1560static inline void mem_cgroup_track_foreign_dirty(struct folio *folio,
1561 struct bdi_writeback *wb)
1562{
1563}
1564
1565static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
1566{
1567}
1568
1569#endif /* CONFIG_CGROUP_WRITEBACK */
1570
1571struct sock;
1572#ifdef CONFIG_MEMCG
1573extern struct static_key_false memcg_sockets_enabled_key;
1574#define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key)
1575
1576void mem_cgroup_sk_alloc(struct sock *sk);
1577void mem_cgroup_sk_free(struct sock *sk);
1578void mem_cgroup_sk_inherit(const struct sock *sk, struct sock *newsk);
1579bool mem_cgroup_sk_charge(const struct sock *sk, unsigned int nr_pages,
1580 gfp_t gfp_mask);
1581void mem_cgroup_sk_uncharge(const struct sock *sk, unsigned int nr_pages);
1582
1583#if BITS_PER_LONG < 64
1584static inline void mem_cgroup_set_socket_pressure(struct mem_cgroup *memcg)
1585{
1586 u64 val = get_jiffies_64() + HZ;
1587 unsigned long flags;
1588
1589 write_seqlock_irqsave(&memcg->socket_pressure_seqlock, flags);
1590 memcg->socket_pressure = val;
1591 write_sequnlock_irqrestore(&memcg->socket_pressure_seqlock, flags);
1592}
1593
1594static inline u64 mem_cgroup_get_socket_pressure(struct mem_cgroup *memcg)
1595{
1596 unsigned int seq;
1597 u64 val;
1598
1599 do {
1600 seq = read_seqbegin(&memcg->socket_pressure_seqlock);
1601 val = memcg->socket_pressure;
1602 } while (read_seqretry(&memcg->socket_pressure_seqlock, seq));
1603
1604 return val;
1605}
1606#else
1607static inline void mem_cgroup_set_socket_pressure(struct mem_cgroup *memcg)
1608{
1609 WRITE_ONCE(memcg->socket_pressure, jiffies + HZ);
1610}
1611
1612static inline u64 mem_cgroup_get_socket_pressure(struct mem_cgroup *memcg)
1613{
1614 return READ_ONCE(memcg->socket_pressure);
1615}
1616#endif
1617
1618int alloc_shrinker_info(struct mem_cgroup *memcg);
1619void free_shrinker_info(struct mem_cgroup *memcg);
1620void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id);
1621void reparent_shrinker_deferred(struct mem_cgroup *memcg);
1622
1623static inline int shrinker_id(struct shrinker *shrinker)
1624{
1625 return shrinker->id;
1626}
1627#else
1628#define mem_cgroup_sockets_enabled 0
1629
1630static inline void mem_cgroup_sk_alloc(struct sock *sk)
1631{
1632}
1633
1634static inline void mem_cgroup_sk_free(struct sock *sk)
1635{
1636}
1637
1638static inline void mem_cgroup_sk_inherit(const struct sock *sk, struct sock *newsk)
1639{
1640}
1641
1642static inline bool mem_cgroup_sk_charge(const struct sock *sk,
1643 unsigned int nr_pages,
1644 gfp_t gfp_mask)
1645{
1646 return false;
1647}
1648
1649static inline void mem_cgroup_sk_uncharge(const struct sock *sk,
1650 unsigned int nr_pages)
1651{
1652}
1653
1654static inline void set_shrinker_bit(struct mem_cgroup *memcg,
1655 int nid, int shrinker_id)
1656{
1657}
1658
1659static inline int shrinker_id(struct shrinker *shrinker)
1660{
1661 return -1;
1662}
1663#endif
1664
1665#ifdef CONFIG_MEMCG
1666bool mem_cgroup_kmem_disabled(void);
1667int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order);
1668void __memcg_kmem_uncharge_page(struct page *page, int order);
1669
1670/*
1671 * The returned objcg pointer is safe to use without additional
1672 * protection within a scope. The scope is defined either by
1673 * the current task (similar to the "current" global variable)
1674 * or by set_active_memcg() pair.
1675 * Please, use obj_cgroup_get() to get a reference if the pointer
1676 * needs to be used outside of the local scope.
1677 */
1678struct obj_cgroup *current_obj_cgroup(void);
1679struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio);
1680
1681static inline struct obj_cgroup *get_obj_cgroup_from_current(void)
1682{
1683 struct obj_cgroup *objcg = current_obj_cgroup();
1684
1685 if (objcg)
1686 obj_cgroup_get(objcg);
1687
1688 return objcg;
1689}
1690
1691int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size);
1692void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size);
1693
1694extern struct static_key_false memcg_bpf_enabled_key;
1695static inline bool memcg_bpf_enabled(void)
1696{
1697 return static_branch_likely(&memcg_bpf_enabled_key);
1698}
1699
1700extern struct static_key_false memcg_kmem_online_key;
1701
1702static inline bool memcg_kmem_online(void)
1703{
1704 return static_branch_likely(&memcg_kmem_online_key);
1705}
1706
1707static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1708 int order)
1709{
1710 if (memcg_kmem_online())
1711 return __memcg_kmem_charge_page(page, gfp, order);
1712 return 0;
1713}
1714
1715static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1716{
1717 if (memcg_kmem_online())
1718 __memcg_kmem_uncharge_page(page, order);
1719}
1720
1721/*
1722 * A helper for accessing memcg's kmem_id, used for getting
1723 * corresponding LRU lists.
1724 */
1725static inline int memcg_kmem_id(struct mem_cgroup *memcg)
1726{
1727 return memcg ? memcg->kmemcg_id : -1;
1728}
1729
1730struct mem_cgroup *mem_cgroup_from_slab_obj(void *p);
1731
1732static inline void count_objcg_events(struct obj_cgroup *objcg,
1733 enum vm_event_item idx,
1734 unsigned long count)
1735{
1736 struct mem_cgroup *memcg;
1737
1738 if (!memcg_kmem_online())
1739 return;
1740
1741 rcu_read_lock();
1742 memcg = obj_cgroup_memcg(objcg);
1743 count_memcg_events(memcg, idx, count);
1744 rcu_read_unlock();
1745}
1746
1747bool mem_cgroup_node_allowed(struct mem_cgroup *memcg, int nid);
1748
1749void mem_cgroup_show_protected_memory(struct mem_cgroup *memcg);
1750
1751static inline bool memcg_is_dying(struct mem_cgroup *memcg)
1752{
1753 return memcg ? css_is_dying(&memcg->css) : false;
1754}
1755
1756#else
1757static inline bool mem_cgroup_kmem_disabled(void)
1758{
1759 return true;
1760}
1761
1762static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1763 int order)
1764{
1765 return 0;
1766}
1767
1768static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1769{
1770}
1771
1772static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1773 int order)
1774{
1775 return 0;
1776}
1777
1778static inline void __memcg_kmem_uncharge_page(struct page *page, int order)
1779{
1780}
1781
1782static inline struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio)
1783{
1784 return NULL;
1785}
1786
1787static inline bool memcg_bpf_enabled(void)
1788{
1789 return false;
1790}
1791
1792static inline bool memcg_kmem_online(void)
1793{
1794 return false;
1795}
1796
1797static inline int memcg_kmem_id(struct mem_cgroup *memcg)
1798{
1799 return -1;
1800}
1801
1802static inline struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
1803{
1804 return NULL;
1805}
1806
1807static inline void count_objcg_events(struct obj_cgroup *objcg,
1808 enum vm_event_item idx,
1809 unsigned long count)
1810{
1811}
1812
1813static inline ino_t page_cgroup_ino(struct page *page)
1814{
1815 return 0;
1816}
1817
1818static inline bool mem_cgroup_node_allowed(struct mem_cgroup *memcg, int nid)
1819{
1820 return true;
1821}
1822
1823static inline void mem_cgroup_show_protected_memory(struct mem_cgroup *memcg)
1824{
1825}
1826
1827static inline bool memcg_is_dying(struct mem_cgroup *memcg)
1828{
1829 return false;
1830}
1831#endif /* CONFIG_MEMCG */
1832
1833#if defined(CONFIG_MEMCG) && defined(CONFIG_ZSWAP)
1834bool obj_cgroup_may_zswap(struct obj_cgroup *objcg);
1835void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size);
1836void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size);
1837bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg);
1838#else
1839static inline bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
1840{
1841 return true;
1842}
1843static inline void obj_cgroup_charge_zswap(struct obj_cgroup *objcg,
1844 size_t size)
1845{
1846}
1847static inline void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg,
1848 size_t size)
1849{
1850}
1851static inline bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg)
1852{
1853 /* if zswap is disabled, do not block pages going to the swapping device */
1854 return true;
1855}
1856#endif
1857
1858
1859/* Cgroup v1-related declarations */
1860
1861#ifdef CONFIG_MEMCG_V1
1862unsigned long memcg1_soft_limit_reclaim(pg_data_t *pgdat, int order,
1863 gfp_t gfp_mask,
1864 unsigned long *total_scanned);
1865
1866bool mem_cgroup_oom_synchronize(bool wait);
1867
1868static inline bool task_in_memcg_oom(struct task_struct *p)
1869{
1870 return p->memcg_in_oom;
1871}
1872
1873static inline void mem_cgroup_enter_user_fault(void)
1874{
1875 WARN_ON(current->in_user_fault);
1876 current->in_user_fault = 1;
1877}
1878
1879static inline void mem_cgroup_exit_user_fault(void)
1880{
1881 WARN_ON(!current->in_user_fault);
1882 current->in_user_fault = 0;
1883}
1884
1885void memcg1_swapout(struct folio *folio, swp_entry_t entry);
1886void memcg1_swapin(swp_entry_t entry, unsigned int nr_pages);
1887
1888#else /* CONFIG_MEMCG_V1 */
1889static inline
1890unsigned long memcg1_soft_limit_reclaim(pg_data_t *pgdat, int order,
1891 gfp_t gfp_mask,
1892 unsigned long *total_scanned)
1893{
1894 return 0;
1895}
1896
1897static inline bool task_in_memcg_oom(struct task_struct *p)
1898{
1899 return false;
1900}
1901
1902static inline bool mem_cgroup_oom_synchronize(bool wait)
1903{
1904 return false;
1905}
1906
1907static inline void mem_cgroup_enter_user_fault(void)
1908{
1909}
1910
1911static inline void mem_cgroup_exit_user_fault(void)
1912{
1913}
1914
1915static inline void memcg1_swapout(struct folio *folio, swp_entry_t entry)
1916{
1917}
1918
1919static inline void memcg1_swapin(swp_entry_t entry, unsigned int nr_pages)
1920{
1921}
1922
1923#endif /* CONFIG_MEMCG_V1 */
1924
1925#endif /* _LINUX_MEMCONTROL_H */