at master 11 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_MATH64_H 3#define _LINUX_MATH64_H 4 5#include <linux/types.h> 6#include <linux/math.h> 7#include <asm/div64.h> 8#include <vdso/math64.h> 9 10#if BITS_PER_LONG == 64 11 12#define div64_long(x, y) div64_s64((x), (y)) 13#define div64_ul(x, y) div64_u64((x), (y)) 14 15/** 16 * div_u64_rem - unsigned 64bit divide with 32bit divisor with remainder 17 * @dividend: unsigned 64bit dividend 18 * @divisor: unsigned 32bit divisor 19 * @remainder: pointer to unsigned 32bit remainder 20 * 21 * Return: sets ``*remainder``, then returns dividend / divisor 22 * 23 * This is commonly provided by 32bit archs to provide an optimized 64bit 24 * divide. 25 */ 26static inline u64 div_u64_rem(u64 dividend, u32 divisor, u32 *remainder) 27{ 28 *remainder = dividend % divisor; 29 return dividend / divisor; 30} 31 32/** 33 * div_s64_rem - signed 64bit divide with 32bit divisor with remainder 34 * @dividend: signed 64bit dividend 35 * @divisor: signed 32bit divisor 36 * @remainder: pointer to signed 32bit remainder 37 * 38 * Return: sets ``*remainder``, then returns dividend / divisor 39 */ 40static inline s64 div_s64_rem(s64 dividend, s32 divisor, s32 *remainder) 41{ 42 *remainder = dividend % divisor; 43 return dividend / divisor; 44} 45 46/** 47 * div64_u64_rem - unsigned 64bit divide with 64bit divisor and remainder 48 * @dividend: unsigned 64bit dividend 49 * @divisor: unsigned 64bit divisor 50 * @remainder: pointer to unsigned 64bit remainder 51 * 52 * Return: sets ``*remainder``, then returns dividend / divisor 53 */ 54static inline u64 div64_u64_rem(u64 dividend, u64 divisor, u64 *remainder) 55{ 56 *remainder = dividend % divisor; 57 return dividend / divisor; 58} 59 60/** 61 * div64_u64 - unsigned 64bit divide with 64bit divisor 62 * @dividend: unsigned 64bit dividend 63 * @divisor: unsigned 64bit divisor 64 * 65 * Return: dividend / divisor 66 */ 67static inline u64 div64_u64(u64 dividend, u64 divisor) 68{ 69 return dividend / divisor; 70} 71 72/** 73 * div64_s64 - signed 64bit divide with 64bit divisor 74 * @dividend: signed 64bit dividend 75 * @divisor: signed 64bit divisor 76 * 77 * Return: dividend / divisor 78 */ 79static inline s64 div64_s64(s64 dividend, s64 divisor) 80{ 81 return dividend / divisor; 82} 83 84#elif BITS_PER_LONG == 32 85 86#define div64_long(x, y) div_s64((x), (y)) 87#define div64_ul(x, y) div_u64((x), (y)) 88 89#ifndef div_u64_rem 90static inline u64 div_u64_rem(u64 dividend, u32 divisor, u32 *remainder) 91{ 92 *remainder = do_div(dividend, divisor); 93 return dividend; 94} 95#endif 96 97#ifndef div_s64_rem 98extern s64 div_s64_rem(s64 dividend, s32 divisor, s32 *remainder); 99#endif 100 101#ifndef div64_u64_rem 102extern u64 div64_u64_rem(u64 dividend, u64 divisor, u64 *remainder); 103#endif 104 105#ifndef div64_u64 106extern u64 div64_u64(u64 dividend, u64 divisor); 107#endif 108 109#ifndef div64_s64 110extern s64 div64_s64(s64 dividend, s64 divisor); 111#endif 112 113#endif /* BITS_PER_LONG */ 114 115/** 116 * div_u64 - unsigned 64bit divide with 32bit divisor 117 * @dividend: unsigned 64bit dividend 118 * @divisor: unsigned 32bit divisor 119 * 120 * This is the most common 64bit divide and should be used if possible, 121 * as many 32bit archs can optimize this variant better than a full 64bit 122 * divide. 123 * 124 * Return: dividend / divisor 125 */ 126#ifndef div_u64 127static inline u64 div_u64(u64 dividend, u32 divisor) 128{ 129 u32 remainder; 130 return div_u64_rem(dividend, divisor, &remainder); 131} 132#endif 133 134/** 135 * div_s64 - signed 64bit divide with 32bit divisor 136 * @dividend: signed 64bit dividend 137 * @divisor: signed 32bit divisor 138 * 139 * Return: dividend / divisor 140 */ 141#ifndef div_s64 142static inline s64 div_s64(s64 dividend, s32 divisor) 143{ 144 s32 remainder; 145 return div_s64_rem(dividend, divisor, &remainder); 146} 147#endif 148 149u32 iter_div_u64_rem(u64 dividend, u32 divisor, u64 *remainder); 150 151#ifndef mul_u32_u32 152/* 153 * Many a GCC version messes this up and generates a 64x64 mult :-( 154 */ 155static inline u64 mul_u32_u32(u32 a, u32 b) 156{ 157 return (u64)a * b; 158} 159#endif 160 161#ifndef add_u64_u32 162/* 163 * Many a GCC version also messes this up. 164 * Zero extending b and then spilling everything to stack. 165 */ 166static inline u64 add_u64_u32(u64 a, u32 b) 167{ 168 return a + b; 169} 170#endif 171 172#if defined(CONFIG_ARCH_SUPPORTS_INT128) && defined(__SIZEOF_INT128__) 173 174#ifndef mul_u64_u32_shr 175static __always_inline u64 mul_u64_u32_shr(u64 a, u32 mul, unsigned int shift) 176{ 177 return (u64)(((unsigned __int128)a * mul) >> shift); 178} 179#endif /* mul_u64_u32_shr */ 180 181#ifndef mul_u64_u64_shr 182static __always_inline u64 mul_u64_u64_shr(u64 a, u64 mul, unsigned int shift) 183{ 184 return (u64)(((unsigned __int128)a * mul) >> shift); 185} 186#endif /* mul_u64_u64_shr */ 187 188#else 189 190#ifndef mul_u64_u32_shr 191static __always_inline u64 mul_u64_u32_shr(u64 a, u32 mul, unsigned int shift) 192{ 193 u32 ah = a >> 32, al = a; 194 u64 ret; 195 196 ret = mul_u32_u32(al, mul) >> shift; 197 if (ah) 198 ret += mul_u32_u32(ah, mul) << (32 - shift); 199 return ret; 200} 201#endif /* mul_u64_u32_shr */ 202 203#ifndef mul_u64_u64_shr 204static inline u64 mul_u64_u64_shr(u64 a, u64 b, unsigned int shift) 205{ 206 union { 207 u64 ll; 208 struct { 209#ifdef __BIG_ENDIAN 210 u32 high, low; 211#else 212 u32 low, high; 213#endif 214 } l; 215 } rl, rm, rn, rh, a0, b0; 216 u64 c; 217 218 a0.ll = a; 219 b0.ll = b; 220 221 rl.ll = mul_u32_u32(a0.l.low, b0.l.low); 222 rm.ll = mul_u32_u32(a0.l.low, b0.l.high); 223 rn.ll = mul_u32_u32(a0.l.high, b0.l.low); 224 rh.ll = mul_u32_u32(a0.l.high, b0.l.high); 225 226 /* 227 * Each of these lines computes a 64-bit intermediate result into "c", 228 * starting at bits 32-95. The low 32-bits go into the result of the 229 * multiplication, the high 32-bits are carried into the next step. 230 */ 231 rl.l.high = c = (u64)rl.l.high + rm.l.low + rn.l.low; 232 rh.l.low = c = (c >> 32) + rm.l.high + rn.l.high + rh.l.low; 233 rh.l.high = (c >> 32) + rh.l.high; 234 235 /* 236 * The 128-bit result of the multiplication is in rl.ll and rh.ll, 237 * shift it right and throw away the high part of the result. 238 */ 239 if (shift == 0) 240 return rl.ll; 241 if (shift < 64) 242 return (rl.ll >> shift) | (rh.ll << (64 - shift)); 243 return rh.ll >> (shift & 63); 244} 245#endif /* mul_u64_u64_shr */ 246 247#endif 248 249#ifndef mul_s64_u64_shr 250static inline u64 mul_s64_u64_shr(s64 a, u64 b, unsigned int shift) 251{ 252 u64 ret; 253 254 /* 255 * Extract the sign before the multiplication and put it back 256 * afterwards if needed. 257 */ 258 ret = mul_u64_u64_shr(abs(a), b, shift); 259 260 if (a < 0) 261 ret = -((s64) ret); 262 263 return ret; 264} 265#endif /* mul_s64_u64_shr */ 266 267#ifndef mul_u64_u32_div 268static inline u64 mul_u64_u32_div(u64 a, u32 mul, u32 divisor) 269{ 270 union { 271 u64 ll; 272 struct { 273#ifdef __BIG_ENDIAN 274 u32 high, low; 275#else 276 u32 low, high; 277#endif 278 } l; 279 } u, rl, rh; 280 281 u.ll = a; 282 rl.ll = mul_u32_u32(u.l.low, mul); 283 rh.ll = mul_u32_u32(u.l.high, mul) + rl.l.high; 284 285 /* Bits 32-63 of the result will be in rh.l.low. */ 286 rl.l.high = do_div(rh.ll, divisor); 287 288 /* Bits 0-31 of the result will be in rl.l.low. */ 289 do_div(rl.ll, divisor); 290 291 rl.l.high = rh.l.low; 292 return rl.ll; 293} 294#endif /* mul_u64_u32_div */ 295 296/** 297 * mul_u64_add_u64_div_u64 - unsigned 64bit multiply, add, and divide 298 * @a: first unsigned 64bit multiplicand 299 * @b: second unsigned 64bit multiplicand 300 * @c: unsigned 64bit addend 301 * @d: unsigned 64bit divisor 302 * 303 * Multiply two 64bit values together to generate a 128bit product 304 * add a third value and then divide by a fourth. 305 * The Generic code divides by 0 if @d is zero and returns ~0 on overflow. 306 * Architecture specific code may trap on zero or overflow. 307 * 308 * Return: (@a * @b + @c) / @d 309 */ 310u64 mul_u64_add_u64_div_u64(u64 a, u64 b, u64 c, u64 d); 311 312/** 313 * mul_u64_u64_div_u64 - unsigned 64bit multiply and divide 314 * @a: first unsigned 64bit multiplicand 315 * @b: second unsigned 64bit multiplicand 316 * @d: unsigned 64bit divisor 317 * 318 * Multiply two 64bit values together to generate a 128bit product 319 * and then divide by a third value. 320 * The Generic code divides by 0 if @d is zero and returns ~0 on overflow. 321 * Architecture specific code may trap on zero or overflow. 322 * 323 * Return: @a * @b / @d 324 */ 325#define mul_u64_u64_div_u64(a, b, d) mul_u64_add_u64_div_u64(a, b, 0, d) 326 327/** 328 * mul_u64_u64_div_u64_roundup - unsigned 64bit multiply and divide rounded up 329 * @a: first unsigned 64bit multiplicand 330 * @b: second unsigned 64bit multiplicand 331 * @d: unsigned 64bit divisor 332 * 333 * Multiply two 64bit values together to generate a 128bit product 334 * and then divide and round up. 335 * The Generic code divides by 0 if @d is zero and returns ~0 on overflow. 336 * Architecture specific code may trap on zero or overflow. 337 * 338 * Return: (@a * @b + @d - 1) / @d 339 */ 340#define mul_u64_u64_div_u64_roundup(a, b, d) \ 341 ({ u64 _tmp = (d); mul_u64_add_u64_div_u64(a, b, _tmp - 1, _tmp); }) 342 343 344/** 345 * DIV64_U64_ROUND_UP - unsigned 64bit divide with 64bit divisor rounded up 346 * @ll: unsigned 64bit dividend 347 * @d: unsigned 64bit divisor 348 * 349 * Divide unsigned 64bit dividend by unsigned 64bit divisor 350 * and round up. 351 * 352 * Return: dividend / divisor rounded up 353 */ 354#define DIV64_U64_ROUND_UP(ll, d) \ 355 ({ u64 _tmp = (d); div64_u64((ll) + _tmp - 1, _tmp); }) 356 357/** 358 * DIV_U64_ROUND_UP - unsigned 64bit divide with 32bit divisor rounded up 359 * @ll: unsigned 64bit dividend 360 * @d: unsigned 32bit divisor 361 * 362 * Divide unsigned 64bit dividend by unsigned 32bit divisor 363 * and round up. 364 * 365 * Return: dividend / divisor rounded up 366 */ 367#define DIV_U64_ROUND_UP(ll, d) \ 368 ({ u32 _tmp = (d); div_u64((ll) + _tmp - 1, _tmp); }) 369 370/** 371 * DIV64_U64_ROUND_CLOSEST - unsigned 64bit divide with 64bit divisor rounded to nearest integer 372 * @dividend: unsigned 64bit dividend 373 * @divisor: unsigned 64bit divisor 374 * 375 * Divide unsigned 64bit dividend by unsigned 64bit divisor 376 * and round to closest integer. 377 * 378 * Return: dividend / divisor rounded to nearest integer 379 */ 380#define DIV64_U64_ROUND_CLOSEST(dividend, divisor) \ 381 ({ u64 _tmp = (divisor); div64_u64((dividend) + _tmp / 2, _tmp); }) 382 383/** 384 * DIV_U64_ROUND_CLOSEST - unsigned 64bit divide with 32bit divisor rounded to nearest integer 385 * @dividend: unsigned 64bit dividend 386 * @divisor: unsigned 32bit divisor 387 * 388 * Divide unsigned 64bit dividend by unsigned 32bit divisor 389 * and round to closest integer. 390 * 391 * Return: dividend / divisor rounded to nearest integer 392 */ 393#define DIV_U64_ROUND_CLOSEST(dividend, divisor) \ 394 ({ u32 _tmp = (divisor); div_u64((u64)(dividend) + _tmp / 2, _tmp); }) 395 396/** 397 * DIV_S64_ROUND_CLOSEST - signed 64bit divide with 32bit divisor rounded to nearest integer 398 * @dividend: signed 64bit dividend 399 * @divisor: signed 32bit divisor 400 * 401 * Divide signed 64bit dividend by signed 32bit divisor 402 * and round to closest integer. 403 * 404 * Return: dividend / divisor rounded to nearest integer 405 */ 406#define DIV_S64_ROUND_CLOSEST(dividend, divisor)( \ 407{ \ 408 s64 __x = (dividend); \ 409 s32 __d = (divisor); \ 410 ((__x > 0) == (__d > 0)) ? \ 411 div_s64((__x + (__d / 2)), __d) : \ 412 div_s64((__x - (__d / 2)), __d); \ 413} \ 414) 415 416/** 417 * roundup_u64 - Round up a 64bit value to the next specified 32bit multiple 418 * @x: the value to up 419 * @y: 32bit multiple to round up to 420 * 421 * Rounds @x to the next multiple of @y. For 32bit @x values, see roundup and 422 * the faster round_up() for powers of 2. 423 * 424 * Return: rounded up value. 425 */ 426static inline u64 roundup_u64(u64 x, u32 y) 427{ 428 return DIV_U64_ROUND_UP(x, y) * y; 429} 430#endif /* _LINUX_MATH64_H */