Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_HUGETLB_H
3#define _LINUX_HUGETLB_H
4
5#include <linux/mm.h>
6#include <linux/mm_types.h>
7#include <linux/mmdebug.h>
8#include <linux/fs.h>
9#include <linux/hugetlb_inline.h>
10#include <linux/cgroup.h>
11#include <linux/page_ref.h>
12#include <linux/list.h>
13#include <linux/kref.h>
14#include <linux/pgtable.h>
15#include <linux/gfp.h>
16#include <linux/userfaultfd_k.h>
17#include <linux/nodemask.h>
18
19struct ctl_table;
20struct user_struct;
21struct mmu_gather;
22struct node;
23
24void free_huge_folio(struct folio *folio);
25
26#ifdef CONFIG_HUGETLB_PAGE
27
28#include <linux/pagemap.h>
29#include <linux/shm.h>
30#include <asm/tlbflush.h>
31
32/*
33 * For HugeTLB page, there are more metadata to save in the struct page. But
34 * the head struct page cannot meet our needs, so we have to abuse other tail
35 * struct page to store the metadata.
36 */
37#define __NR_USED_SUBPAGE 3
38
39struct hugepage_subpool {
40 spinlock_t lock;
41 long count;
42 long max_hpages; /* Maximum huge pages or -1 if no maximum. */
43 long used_hpages; /* Used count against maximum, includes */
44 /* both allocated and reserved pages. */
45 struct hstate *hstate;
46 long min_hpages; /* Minimum huge pages or -1 if no minimum. */
47 long rsv_hpages; /* Pages reserved against global pool to */
48 /* satisfy minimum size. */
49};
50
51struct resv_map {
52 struct kref refs;
53 spinlock_t lock;
54 struct list_head regions;
55 long adds_in_progress;
56 struct list_head region_cache;
57 long region_cache_count;
58 struct rw_semaphore rw_sema;
59#ifdef CONFIG_CGROUP_HUGETLB
60 /*
61 * On private mappings, the counter to uncharge reservations is stored
62 * here. If these fields are 0, then either the mapping is shared, or
63 * cgroup accounting is disabled for this resv_map.
64 */
65 struct page_counter *reservation_counter;
66 unsigned long pages_per_hpage;
67 struct cgroup_subsys_state *css;
68#endif
69};
70
71/*
72 * Region tracking -- allows tracking of reservations and instantiated pages
73 * across the pages in a mapping.
74 *
75 * The region data structures are embedded into a resv_map and protected
76 * by a resv_map's lock. The set of regions within the resv_map represent
77 * reservations for huge pages, or huge pages that have already been
78 * instantiated within the map. The from and to elements are huge page
79 * indices into the associated mapping. from indicates the starting index
80 * of the region. to represents the first index past the end of the region.
81 *
82 * For example, a file region structure with from == 0 and to == 4 represents
83 * four huge pages in a mapping. It is important to note that the to element
84 * represents the first element past the end of the region. This is used in
85 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
86 *
87 * Interval notation of the form [from, to) will be used to indicate that
88 * the endpoint from is inclusive and to is exclusive.
89 */
90struct file_region {
91 struct list_head link;
92 long from;
93 long to;
94#ifdef CONFIG_CGROUP_HUGETLB
95 /*
96 * On shared mappings, each reserved region appears as a struct
97 * file_region in resv_map. These fields hold the info needed to
98 * uncharge each reservation.
99 */
100 struct page_counter *reservation_counter;
101 struct cgroup_subsys_state *css;
102#endif
103};
104
105struct hugetlb_vma_lock {
106 struct kref refs;
107 struct rw_semaphore rw_sema;
108 struct vm_area_struct *vma;
109};
110
111extern struct resv_map *resv_map_alloc(void);
112void resv_map_release(struct kref *ref);
113
114extern spinlock_t hugetlb_lock;
115extern int hugetlb_max_hstate __read_mostly;
116#define for_each_hstate(h) \
117 for ((h) = hstates; (h) < &hstates[hugetlb_max_hstate]; (h)++)
118
119struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
120 long min_hpages);
121void hugepage_put_subpool(struct hugepage_subpool *spool);
122
123void hugetlb_dup_vma_private(struct vm_area_struct *vma);
124void clear_vma_resv_huge_pages(struct vm_area_struct *vma);
125int move_hugetlb_page_tables(struct vm_area_struct *vma,
126 struct vm_area_struct *new_vma,
127 unsigned long old_addr, unsigned long new_addr,
128 unsigned long len);
129int copy_hugetlb_page_range(struct mm_struct *, struct mm_struct *,
130 struct vm_area_struct *, struct vm_area_struct *);
131void unmap_hugepage_range(struct vm_area_struct *,
132 unsigned long start, unsigned long end,
133 struct folio *, zap_flags_t);
134void __unmap_hugepage_range(struct mmu_gather *tlb,
135 struct vm_area_struct *vma,
136 unsigned long start, unsigned long end,
137 struct folio *, zap_flags_t zap_flags);
138void hugetlb_report_meminfo(struct seq_file *);
139int hugetlb_report_node_meminfo(char *buf, int len, int nid);
140void hugetlb_show_meminfo_node(int nid);
141unsigned long hugetlb_total_pages(void);
142vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
143 unsigned long address, unsigned int flags);
144#ifdef CONFIG_USERFAULTFD
145int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
146 struct vm_area_struct *dst_vma,
147 unsigned long dst_addr,
148 unsigned long src_addr,
149 uffd_flags_t flags,
150 struct folio **foliop);
151#endif /* CONFIG_USERFAULTFD */
152long hugetlb_reserve_pages(struct inode *inode, long from, long to,
153 struct vm_area_desc *desc, vm_flags_t vm_flags);
154long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
155 long freed);
156bool folio_isolate_hugetlb(struct folio *folio, struct list_head *list);
157int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison);
158int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
159 bool *migratable_cleared);
160void folio_putback_hugetlb(struct folio *folio);
161void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason);
162void hugetlb_fix_reserve_counts(struct inode *inode);
163extern struct mutex *hugetlb_fault_mutex_table;
164u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx);
165
166pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
167 unsigned long addr, pud_t *pud);
168bool hugetlbfs_pagecache_present(struct hstate *h,
169 struct vm_area_struct *vma,
170 unsigned long address);
171
172struct address_space *hugetlb_folio_mapping_lock_write(struct folio *folio);
173
174extern int sysctl_hugetlb_shm_group __read_mostly;
175extern struct list_head huge_boot_pages[MAX_NUMNODES];
176
177void hugetlb_bootmem_alloc(void);
178bool hugetlb_bootmem_allocated(void);
179extern nodemask_t hugetlb_bootmem_nodes;
180void hugetlb_bootmem_set_nodes(void);
181
182/* arch callbacks */
183
184#ifndef CONFIG_HIGHPTE
185/*
186 * pte_offset_huge() and pte_alloc_huge() are helpers for those architectures
187 * which may go down to the lowest PTE level in their huge_pte_offset() and
188 * huge_pte_alloc(): to avoid reliance on pte_offset_map() without pte_unmap().
189 */
190static inline pte_t *pte_offset_huge(pmd_t *pmd, unsigned long address)
191{
192 return pte_offset_kernel(pmd, address);
193}
194static inline pte_t *pte_alloc_huge(struct mm_struct *mm, pmd_t *pmd,
195 unsigned long address)
196{
197 return pte_alloc(mm, pmd) ? NULL : pte_offset_huge(pmd, address);
198}
199#endif
200
201pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
202 unsigned long addr, unsigned long sz);
203/*
204 * huge_pte_offset(): Walk the hugetlb pgtable until the last level PTE.
205 * Returns the pte_t* if found, or NULL if the address is not mapped.
206 *
207 * IMPORTANT: we should normally not directly call this function, instead
208 * this is only a common interface to implement arch-specific
209 * walker. Please use hugetlb_walk() instead, because that will attempt to
210 * verify the locking for you.
211 *
212 * Since this function will walk all the pgtable pages (including not only
213 * high-level pgtable page, but also PUD entry that can be unshared
214 * concurrently for VM_SHARED), the caller of this function should be
215 * responsible of its thread safety. One can follow this rule:
216 *
217 * (1) For private mappings: pmd unsharing is not possible, so holding the
218 * mmap_lock for either read or write is sufficient. Most callers
219 * already hold the mmap_lock, so normally, no special action is
220 * required.
221 *
222 * (2) For shared mappings: pmd unsharing is possible (so the PUD-ranged
223 * pgtable page can go away from under us! It can be done by a pmd
224 * unshare with a follow up munmap() on the other process), then we
225 * need either:
226 *
227 * (2.1) hugetlb vma lock read or write held, to make sure pmd unshare
228 * won't happen upon the range (it also makes sure the pte_t we
229 * read is the right and stable one), or,
230 *
231 * (2.2) hugetlb mapping i_mmap_rwsem lock held read or write, to make
232 * sure even if unshare happened the racy unmap() will wait until
233 * i_mmap_rwsem is released.
234 *
235 * Option (2.1) is the safest, which guarantees pte stability from pmd
236 * sharing pov, until the vma lock released. Option (2.2) doesn't protect
237 * a concurrent pmd unshare, but it makes sure the pgtable page is safe to
238 * access.
239 */
240pte_t *huge_pte_offset(struct mm_struct *mm,
241 unsigned long addr, unsigned long sz);
242unsigned long hugetlb_mask_last_page(struct hstate *h);
243int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
244 unsigned long addr, pte_t *ptep);
245void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
246 unsigned long *start, unsigned long *end);
247
248extern void __hugetlb_zap_begin(struct vm_area_struct *vma,
249 unsigned long *begin, unsigned long *end);
250extern void __hugetlb_zap_end(struct vm_area_struct *vma,
251 struct zap_details *details);
252
253static inline void hugetlb_zap_begin(struct vm_area_struct *vma,
254 unsigned long *start, unsigned long *end)
255{
256 if (is_vm_hugetlb_page(vma))
257 __hugetlb_zap_begin(vma, start, end);
258}
259
260static inline void hugetlb_zap_end(struct vm_area_struct *vma,
261 struct zap_details *details)
262{
263 if (is_vm_hugetlb_page(vma))
264 __hugetlb_zap_end(vma, details);
265}
266
267void hugetlb_vma_lock_read(struct vm_area_struct *vma);
268void hugetlb_vma_unlock_read(struct vm_area_struct *vma);
269void hugetlb_vma_lock_write(struct vm_area_struct *vma);
270void hugetlb_vma_unlock_write(struct vm_area_struct *vma);
271int hugetlb_vma_trylock_write(struct vm_area_struct *vma);
272void hugetlb_vma_assert_locked(struct vm_area_struct *vma);
273void hugetlb_vma_lock_release(struct kref *kref);
274long hugetlb_change_protection(struct vm_area_struct *vma,
275 unsigned long address, unsigned long end, pgprot_t newprot,
276 unsigned long cp_flags);
277void hugetlb_unshare_all_pmds(struct vm_area_struct *vma);
278void fixup_hugetlb_reservations(struct vm_area_struct *vma);
279void hugetlb_split(struct vm_area_struct *vma, unsigned long addr);
280int hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
281
282#else /* !CONFIG_HUGETLB_PAGE */
283
284static inline void hugetlb_dup_vma_private(struct vm_area_struct *vma)
285{
286}
287
288static inline void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
289{
290}
291
292static inline unsigned long hugetlb_total_pages(void)
293{
294 return 0;
295}
296
297static inline struct address_space *hugetlb_folio_mapping_lock_write(
298 struct folio *folio)
299{
300 return NULL;
301}
302
303static inline int huge_pmd_unshare(struct mm_struct *mm,
304 struct vm_area_struct *vma,
305 unsigned long addr, pte_t *ptep)
306{
307 return 0;
308}
309
310static inline void adjust_range_if_pmd_sharing_possible(
311 struct vm_area_struct *vma,
312 unsigned long *start, unsigned long *end)
313{
314}
315
316static inline void hugetlb_zap_begin(
317 struct vm_area_struct *vma,
318 unsigned long *start, unsigned long *end)
319{
320}
321
322static inline void hugetlb_zap_end(
323 struct vm_area_struct *vma,
324 struct zap_details *details)
325{
326}
327
328static inline int copy_hugetlb_page_range(struct mm_struct *dst,
329 struct mm_struct *src,
330 struct vm_area_struct *dst_vma,
331 struct vm_area_struct *src_vma)
332{
333 BUG();
334 return 0;
335}
336
337static inline int move_hugetlb_page_tables(struct vm_area_struct *vma,
338 struct vm_area_struct *new_vma,
339 unsigned long old_addr,
340 unsigned long new_addr,
341 unsigned long len)
342{
343 BUG();
344 return 0;
345}
346
347static inline void hugetlb_report_meminfo(struct seq_file *m)
348{
349}
350
351static inline int hugetlb_report_node_meminfo(char *buf, int len, int nid)
352{
353 return 0;
354}
355
356static inline void hugetlb_show_meminfo_node(int nid)
357{
358}
359
360static inline void hugetlb_vma_lock_read(struct vm_area_struct *vma)
361{
362}
363
364static inline void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
365{
366}
367
368static inline void hugetlb_vma_lock_write(struct vm_area_struct *vma)
369{
370}
371
372static inline void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
373{
374}
375
376static inline int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
377{
378 return 1;
379}
380
381static inline void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
382{
383}
384
385static inline int is_hugepage_only_range(struct mm_struct *mm,
386 unsigned long addr, unsigned long len)
387{
388 return 0;
389}
390
391#ifdef CONFIG_USERFAULTFD
392static inline int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
393 struct vm_area_struct *dst_vma,
394 unsigned long dst_addr,
395 unsigned long src_addr,
396 uffd_flags_t flags,
397 struct folio **foliop)
398{
399 BUG();
400 return 0;
401}
402#endif /* CONFIG_USERFAULTFD */
403
404static inline pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr,
405 unsigned long sz)
406{
407 return NULL;
408}
409
410static inline bool folio_isolate_hugetlb(struct folio *folio, struct list_head *list)
411{
412 return false;
413}
414
415static inline int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
416{
417 return 0;
418}
419
420static inline int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
421 bool *migratable_cleared)
422{
423 return 0;
424}
425
426static inline void folio_putback_hugetlb(struct folio *folio)
427{
428}
429
430static inline void move_hugetlb_state(struct folio *old_folio,
431 struct folio *new_folio, int reason)
432{
433}
434
435static inline long hugetlb_change_protection(
436 struct vm_area_struct *vma, unsigned long address,
437 unsigned long end, pgprot_t newprot,
438 unsigned long cp_flags)
439{
440 return 0;
441}
442
443static inline void __unmap_hugepage_range(struct mmu_gather *tlb,
444 struct vm_area_struct *vma, unsigned long start,
445 unsigned long end, struct folio *folio,
446 zap_flags_t zap_flags)
447{
448 BUG();
449}
450
451static inline vm_fault_t hugetlb_fault(struct mm_struct *mm,
452 struct vm_area_struct *vma, unsigned long address,
453 unsigned int flags)
454{
455 BUG();
456 return 0;
457}
458
459static inline void hugetlb_unshare_all_pmds(struct vm_area_struct *vma) { }
460
461static inline void fixup_hugetlb_reservations(struct vm_area_struct *vma)
462{
463}
464
465static inline void hugetlb_split(struct vm_area_struct *vma, unsigned long addr) {}
466
467static inline int hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
468{
469 return 0;
470}
471
472#endif /* !CONFIG_HUGETLB_PAGE */
473
474#ifndef pgd_write
475static inline int pgd_write(pgd_t pgd)
476{
477 BUG();
478 return 0;
479}
480#endif
481
482#define HUGETLB_ANON_FILE "anon_hugepage"
483
484enum {
485 /*
486 * The file will be used as an shm file so shmfs accounting rules
487 * apply
488 */
489 HUGETLB_SHMFS_INODE = 1,
490 /*
491 * The file is being created on the internal vfs mount and shmfs
492 * accounting rules do not apply
493 */
494 HUGETLB_ANONHUGE_INODE = 2,
495};
496
497#ifdef CONFIG_HUGETLBFS
498struct hugetlbfs_sb_info {
499 long max_inodes; /* inodes allowed */
500 long free_inodes; /* inodes free */
501 spinlock_t stat_lock;
502 struct hstate *hstate;
503 struct hugepage_subpool *spool;
504 kuid_t uid;
505 kgid_t gid;
506 umode_t mode;
507};
508
509static inline struct hugetlbfs_sb_info *HUGETLBFS_SB(struct super_block *sb)
510{
511 return sb->s_fs_info;
512}
513
514struct hugetlbfs_inode_info {
515 struct inode vfs_inode;
516 unsigned int seals;
517};
518
519static inline struct hugetlbfs_inode_info *HUGETLBFS_I(struct inode *inode)
520{
521 return container_of(inode, struct hugetlbfs_inode_info, vfs_inode);
522}
523
524extern const struct vm_operations_struct hugetlb_vm_ops;
525struct file *hugetlb_file_setup(const char *name, size_t size, vm_flags_t acct,
526 int creat_flags, int page_size_log);
527
528static inline bool is_file_hugepages(const struct file *file)
529{
530 return file->f_op->fop_flags & FOP_HUGE_PAGES;
531}
532
533static inline struct hstate *hstate_inode(struct inode *i)
534{
535 return HUGETLBFS_SB(i->i_sb)->hstate;
536}
537#else /* !CONFIG_HUGETLBFS */
538
539#define is_file_hugepages(file) false
540static inline struct file *
541hugetlb_file_setup(const char *name, size_t size, vm_flags_t acctflag,
542 int creat_flags, int page_size_log)
543{
544 return ERR_PTR(-ENOSYS);
545}
546
547static inline struct hstate *hstate_inode(struct inode *i)
548{
549 return NULL;
550}
551#endif /* !CONFIG_HUGETLBFS */
552
553unsigned long
554hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
555 unsigned long len, unsigned long pgoff,
556 unsigned long flags);
557
558/*
559 * huegtlb page specific state flags. These flags are located in page.private
560 * of the hugetlb head page. Functions created via the below macros should be
561 * used to manipulate these flags.
562 *
563 * HPG_restore_reserve - Set when a hugetlb page consumes a reservation at
564 * allocation time. Cleared when page is fully instantiated. Free
565 * routine checks flag to restore a reservation on error paths.
566 * Synchronization: Examined or modified by code that knows it has
567 * the only reference to page. i.e. After allocation but before use
568 * or when the page is being freed.
569 * HPG_migratable - Set after a newly allocated page is added to the page
570 * cache and/or page tables. Indicates the page is a candidate for
571 * migration.
572 * Synchronization: Initially set after new page allocation with no
573 * locking. When examined and modified during migration processing
574 * (isolate, migrate, putback) the hugetlb_lock is held.
575 * HPG_temporary - Set on a page that is temporarily allocated from the buddy
576 * allocator. Typically used for migration target pages when no pages
577 * are available in the pool. The hugetlb free page path will
578 * immediately free pages with this flag set to the buddy allocator.
579 * Synchronization: Can be set after huge page allocation from buddy when
580 * code knows it has only reference. All other examinations and
581 * modifications require hugetlb_lock.
582 * HPG_freed - Set when page is on the free lists.
583 * Synchronization: hugetlb_lock held for examination and modification.
584 * HPG_vmemmap_optimized - Set when the vmemmap pages of the page are freed.
585 * HPG_raw_hwp_unreliable - Set when the hugetlb page has a hwpoison sub-page
586 * that is not tracked by raw_hwp_page list.
587 */
588enum hugetlb_page_flags {
589 HPG_restore_reserve = 0,
590 HPG_migratable,
591 HPG_temporary,
592 HPG_freed,
593 HPG_vmemmap_optimized,
594 HPG_raw_hwp_unreliable,
595 HPG_cma,
596 __NR_HPAGEFLAGS,
597};
598
599/*
600 * Macros to create test, set and clear function definitions for
601 * hugetlb specific page flags.
602 */
603#ifdef CONFIG_HUGETLB_PAGE
604#define TESTHPAGEFLAG(uname, flname) \
605static __always_inline \
606bool folio_test_hugetlb_##flname(struct folio *folio) \
607 { void *private = &folio->private; \
608 return test_bit(HPG_##flname, private); \
609 }
610
611#define SETHPAGEFLAG(uname, flname) \
612static __always_inline \
613void folio_set_hugetlb_##flname(struct folio *folio) \
614 { void *private = &folio->private; \
615 set_bit(HPG_##flname, private); \
616 }
617
618#define CLEARHPAGEFLAG(uname, flname) \
619static __always_inline \
620void folio_clear_hugetlb_##flname(struct folio *folio) \
621 { void *private = &folio->private; \
622 clear_bit(HPG_##flname, private); \
623 }
624#else
625#define TESTHPAGEFLAG(uname, flname) \
626static inline bool \
627folio_test_hugetlb_##flname(struct folio *folio) \
628 { return 0; }
629
630#define SETHPAGEFLAG(uname, flname) \
631static inline void \
632folio_set_hugetlb_##flname(struct folio *folio) \
633 { }
634
635#define CLEARHPAGEFLAG(uname, flname) \
636static inline void \
637folio_clear_hugetlb_##flname(struct folio *folio) \
638 { }
639#endif
640
641#define HPAGEFLAG(uname, flname) \
642 TESTHPAGEFLAG(uname, flname) \
643 SETHPAGEFLAG(uname, flname) \
644 CLEARHPAGEFLAG(uname, flname) \
645
646/*
647 * Create functions associated with hugetlb page flags
648 */
649HPAGEFLAG(RestoreReserve, restore_reserve)
650HPAGEFLAG(Migratable, migratable)
651HPAGEFLAG(Temporary, temporary)
652HPAGEFLAG(Freed, freed)
653HPAGEFLAG(VmemmapOptimized, vmemmap_optimized)
654HPAGEFLAG(RawHwpUnreliable, raw_hwp_unreliable)
655HPAGEFLAG(Cma, cma)
656
657#ifdef CONFIG_HUGETLB_PAGE
658
659#define HSTATE_NAME_LEN 32
660/* Defines one hugetlb page size */
661struct hstate {
662 struct mutex resize_lock;
663 struct lock_class_key resize_key;
664 int next_nid_to_alloc;
665 int next_nid_to_free;
666 unsigned int order;
667 unsigned int demote_order;
668 unsigned long mask;
669 unsigned long max_huge_pages;
670 unsigned long nr_huge_pages;
671 unsigned long free_huge_pages;
672 unsigned long resv_huge_pages;
673 unsigned long surplus_huge_pages;
674 unsigned long nr_overcommit_huge_pages;
675 struct list_head hugepage_activelist;
676 struct list_head hugepage_freelists[MAX_NUMNODES];
677 unsigned int max_huge_pages_node[MAX_NUMNODES];
678 unsigned int nr_huge_pages_node[MAX_NUMNODES];
679 unsigned int free_huge_pages_node[MAX_NUMNODES];
680 unsigned int surplus_huge_pages_node[MAX_NUMNODES];
681 char name[HSTATE_NAME_LEN];
682};
683
684struct cma;
685
686struct huge_bootmem_page {
687 struct list_head list;
688 struct hstate *hstate;
689 unsigned long flags;
690 struct cma *cma;
691};
692
693#define HUGE_BOOTMEM_HVO 0x0001
694#define HUGE_BOOTMEM_ZONES_VALID 0x0002
695#define HUGE_BOOTMEM_CMA 0x0004
696
697bool hugetlb_bootmem_page_zones_valid(int nid, struct huge_bootmem_page *m);
698
699int isolate_or_dissolve_huge_folio(struct folio *folio, struct list_head *list);
700int replace_free_hugepage_folios(unsigned long start_pfn, unsigned long end_pfn);
701void wait_for_freed_hugetlb_folios(void);
702struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
703 unsigned long addr, bool cow_from_owner);
704struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
705 nodemask_t *nmask, gfp_t gfp_mask,
706 bool allow_alloc_fallback);
707struct folio *alloc_hugetlb_folio_reserve(struct hstate *h, int preferred_nid,
708 nodemask_t *nmask, gfp_t gfp_mask);
709
710int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping,
711 pgoff_t idx);
712void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
713 unsigned long address, struct folio *folio);
714
715/* arch callback */
716int __init __alloc_bootmem_huge_page(struct hstate *h, int nid);
717int __init alloc_bootmem_huge_page(struct hstate *h, int nid);
718bool __init hugetlb_node_alloc_supported(void);
719
720void __init hugetlb_add_hstate(unsigned order);
721bool __init arch_hugetlb_valid_size(unsigned long size);
722struct hstate *size_to_hstate(unsigned long size);
723
724#ifndef HUGE_MAX_HSTATE
725#define HUGE_MAX_HSTATE 1
726#endif
727
728extern struct hstate hstates[HUGE_MAX_HSTATE];
729extern unsigned int default_hstate_idx;
730
731#define default_hstate (hstates[default_hstate_idx])
732
733static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
734{
735 return HUGETLBFS_SB(inode->i_sb)->spool;
736}
737
738static inline struct hugepage_subpool *hugetlb_folio_subpool(struct folio *folio)
739{
740 return folio->_hugetlb_subpool;
741}
742
743static inline void hugetlb_set_folio_subpool(struct folio *folio,
744 struct hugepage_subpool *subpool)
745{
746 folio->_hugetlb_subpool = subpool;
747}
748
749static inline struct hstate *hstate_file(struct file *f)
750{
751 return hstate_inode(file_inode(f));
752}
753
754static inline struct hstate *hstate_sizelog(int page_size_log)
755{
756 if (!page_size_log)
757 return &default_hstate;
758
759 if (page_size_log < BITS_PER_LONG)
760 return size_to_hstate(1UL << page_size_log);
761
762 return NULL;
763}
764
765static inline struct hstate *hstate_vma(struct vm_area_struct *vma)
766{
767 return hstate_file(vma->vm_file);
768}
769
770static inline unsigned long huge_page_size(const struct hstate *h)
771{
772 return (unsigned long)PAGE_SIZE << h->order;
773}
774
775extern unsigned long vma_kernel_pagesize(struct vm_area_struct *vma);
776
777extern unsigned long vma_mmu_pagesize(struct vm_area_struct *vma);
778
779static inline unsigned long huge_page_mask(struct hstate *h)
780{
781 return h->mask;
782}
783
784static inline unsigned int huge_page_order(struct hstate *h)
785{
786 return h->order;
787}
788
789static inline unsigned huge_page_shift(struct hstate *h)
790{
791 return h->order + PAGE_SHIFT;
792}
793
794static inline bool order_is_gigantic(unsigned int order)
795{
796 return order > MAX_PAGE_ORDER;
797}
798
799static inline bool hstate_is_gigantic(struct hstate *h)
800{
801 return order_is_gigantic(huge_page_order(h));
802}
803
804static inline unsigned int pages_per_huge_page(const struct hstate *h)
805{
806 return 1 << h->order;
807}
808
809static inline unsigned int blocks_per_huge_page(struct hstate *h)
810{
811 return huge_page_size(h) / 512;
812}
813
814static inline struct folio *filemap_lock_hugetlb_folio(struct hstate *h,
815 struct address_space *mapping, pgoff_t idx)
816{
817 return filemap_lock_folio(mapping, idx << huge_page_order(h));
818}
819
820#include <asm/hugetlb.h>
821
822#ifndef is_hugepage_only_range
823static inline int is_hugepage_only_range(struct mm_struct *mm,
824 unsigned long addr, unsigned long len)
825{
826 return 0;
827}
828#define is_hugepage_only_range is_hugepage_only_range
829#endif
830
831#ifndef arch_clear_hugetlb_flags
832static inline void arch_clear_hugetlb_flags(struct folio *folio) { }
833#define arch_clear_hugetlb_flags arch_clear_hugetlb_flags
834#endif
835
836#ifndef arch_make_huge_pte
837static inline pte_t arch_make_huge_pte(pte_t entry, unsigned int shift,
838 vm_flags_t flags)
839{
840 return pte_mkhuge(entry);
841}
842#endif
843
844#ifndef arch_has_huge_bootmem_alloc
845/*
846 * Some architectures do their own bootmem allocation, so they can't use
847 * early CMA allocation.
848 */
849static inline bool arch_has_huge_bootmem_alloc(void)
850{
851 return false;
852}
853#endif
854
855static inline struct hstate *folio_hstate(struct folio *folio)
856{
857 VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio);
858 return size_to_hstate(folio_size(folio));
859}
860
861static inline unsigned hstate_index_to_shift(unsigned index)
862{
863 return hstates[index].order + PAGE_SHIFT;
864}
865
866static inline int hstate_index(struct hstate *h)
867{
868 return h - hstates;
869}
870
871int dissolve_free_hugetlb_folio(struct folio *folio);
872int dissolve_free_hugetlb_folios(unsigned long start_pfn,
873 unsigned long end_pfn);
874
875#ifdef CONFIG_MEMORY_FAILURE
876extern void folio_clear_hugetlb_hwpoison(struct folio *folio);
877#else
878static inline void folio_clear_hugetlb_hwpoison(struct folio *folio)
879{
880}
881#endif
882
883#ifdef CONFIG_ARCH_ENABLE_HUGEPAGE_MIGRATION
884#ifndef arch_hugetlb_migration_supported
885static inline bool arch_hugetlb_migration_supported(struct hstate *h)
886{
887 if ((huge_page_shift(h) == PMD_SHIFT) ||
888 (huge_page_shift(h) == PUD_SHIFT) ||
889 (huge_page_shift(h) == PGDIR_SHIFT))
890 return true;
891 else
892 return false;
893}
894#endif
895#else
896static inline bool arch_hugetlb_migration_supported(struct hstate *h)
897{
898 return false;
899}
900#endif
901
902static inline bool hugepage_migration_supported(struct hstate *h)
903{
904 return arch_hugetlb_migration_supported(h);
905}
906
907/*
908 * Movability check is different as compared to migration check.
909 * It determines whether or not a huge page should be placed on
910 * movable zone or not. Movability of any huge page should be
911 * required only if huge page size is supported for migration.
912 * There won't be any reason for the huge page to be movable if
913 * it is not migratable to start with. Also the size of the huge
914 * page should be large enough to be placed under a movable zone
915 * and still feasible enough to be migratable. Just the presence
916 * in movable zone does not make the migration feasible.
917 *
918 * So even though large huge page sizes like the gigantic ones
919 * are migratable they should not be movable because its not
920 * feasible to migrate them from movable zone.
921 */
922static inline bool hugepage_movable_supported(struct hstate *h)
923{
924 if (!hugepage_migration_supported(h))
925 return false;
926
927 if (hstate_is_gigantic(h))
928 return false;
929 return true;
930}
931
932/* Movability of hugepages depends on migration support. */
933static inline gfp_t htlb_alloc_mask(struct hstate *h)
934{
935 gfp_t gfp = __GFP_COMP | __GFP_NOWARN;
936
937 gfp |= hugepage_movable_supported(h) ? GFP_HIGHUSER_MOVABLE : GFP_HIGHUSER;
938
939 return gfp;
940}
941
942static inline gfp_t htlb_modify_alloc_mask(struct hstate *h, gfp_t gfp_mask)
943{
944 gfp_t modified_mask = htlb_alloc_mask(h);
945
946 /* Some callers might want to enforce node */
947 modified_mask |= (gfp_mask & __GFP_THISNODE);
948
949 modified_mask |= (gfp_mask & __GFP_NOWARN);
950
951 return modified_mask;
952}
953
954static inline bool htlb_allow_alloc_fallback(int reason)
955{
956 bool allowed_fallback = false;
957
958 /*
959 * Note: the memory offline, memory failure and migration syscalls will
960 * be allowed to fallback to other nodes due to lack of a better chioce,
961 * that might break the per-node hugetlb pool. While other cases will
962 * set the __GFP_THISNODE to avoid breaking the per-node hugetlb pool.
963 */
964 switch (reason) {
965 case MR_MEMORY_HOTPLUG:
966 case MR_MEMORY_FAILURE:
967 case MR_SYSCALL:
968 case MR_MEMPOLICY_MBIND:
969 allowed_fallback = true;
970 break;
971 default:
972 break;
973 }
974
975 return allowed_fallback;
976}
977
978static inline spinlock_t *huge_pte_lockptr(struct hstate *h,
979 struct mm_struct *mm, pte_t *pte)
980{
981 const unsigned long size = huge_page_size(h);
982
983 VM_WARN_ON(size == PAGE_SIZE);
984
985 /*
986 * hugetlb must use the exact same PT locks as core-mm page table
987 * walkers would. When modifying a PTE table, hugetlb must take the
988 * PTE PT lock, when modifying a PMD table, hugetlb must take the PMD
989 * PT lock etc.
990 *
991 * The expectation is that any hugetlb folio smaller than a PMD is
992 * always mapped into a single PTE table and that any hugetlb folio
993 * smaller than a PUD (but at least as big as a PMD) is always mapped
994 * into a single PMD table.
995 *
996 * If that does not hold for an architecture, then that architecture
997 * must disable split PT locks such that all *_lockptr() functions
998 * will give us the same result: the per-MM PT lock.
999 *
1000 * Note that with e.g., CONFIG_PGTABLE_LEVELS=2 where
1001 * PGDIR_SIZE==P4D_SIZE==PUD_SIZE==PMD_SIZE, we'd use pud_lockptr()
1002 * and core-mm would use pmd_lockptr(). However, in such configurations
1003 * split PMD locks are disabled -- they don't make sense on a single
1004 * PGDIR page table -- and the end result is the same.
1005 */
1006 if (size >= PUD_SIZE)
1007 return pud_lockptr(mm, (pud_t *) pte);
1008 else if (size >= PMD_SIZE || IS_ENABLED(CONFIG_HIGHPTE))
1009 return pmd_lockptr(mm, (pmd_t *) pte);
1010 /* pte_alloc_huge() only applies with !CONFIG_HIGHPTE */
1011 return ptep_lockptr(mm, pte);
1012}
1013
1014#ifndef hugepages_supported
1015/*
1016 * Some platform decide whether they support huge pages at boot
1017 * time. Some of them, such as powerpc, set HPAGE_SHIFT to 0
1018 * when there is no such support
1019 */
1020#define hugepages_supported() (HPAGE_SHIFT != 0)
1021#endif
1022
1023void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm);
1024
1025static inline void hugetlb_count_init(struct mm_struct *mm)
1026{
1027 atomic_long_set(&mm->hugetlb_usage, 0);
1028}
1029
1030static inline void hugetlb_count_add(long l, struct mm_struct *mm)
1031{
1032 atomic_long_add(l, &mm->hugetlb_usage);
1033}
1034
1035static inline void hugetlb_count_sub(long l, struct mm_struct *mm)
1036{
1037 atomic_long_sub(l, &mm->hugetlb_usage);
1038}
1039
1040#ifndef huge_ptep_modify_prot_start
1041#define huge_ptep_modify_prot_start huge_ptep_modify_prot_start
1042static inline pte_t huge_ptep_modify_prot_start(struct vm_area_struct *vma,
1043 unsigned long addr, pte_t *ptep)
1044{
1045 unsigned long psize = huge_page_size(hstate_vma(vma));
1046
1047 return huge_ptep_get_and_clear(vma->vm_mm, addr, ptep, psize);
1048}
1049#endif
1050
1051#ifndef huge_ptep_modify_prot_commit
1052#define huge_ptep_modify_prot_commit huge_ptep_modify_prot_commit
1053static inline void huge_ptep_modify_prot_commit(struct vm_area_struct *vma,
1054 unsigned long addr, pte_t *ptep,
1055 pte_t old_pte, pte_t pte)
1056{
1057 unsigned long psize = huge_page_size(hstate_vma(vma));
1058
1059 set_huge_pte_at(vma->vm_mm, addr, ptep, pte, psize);
1060}
1061#endif
1062
1063#ifdef CONFIG_NUMA
1064void hugetlb_register_node(struct node *node);
1065void hugetlb_unregister_node(struct node *node);
1066#endif
1067
1068/*
1069 * Check if a given raw @page in a hugepage is HWPOISON.
1070 */
1071bool is_raw_hwpoison_page_in_hugepage(struct page *page);
1072
1073static inline unsigned long huge_page_mask_align(struct file *file)
1074{
1075 return PAGE_MASK & ~huge_page_mask(hstate_file(file));
1076}
1077
1078#else /* CONFIG_HUGETLB_PAGE */
1079struct hstate {};
1080
1081static inline unsigned long huge_page_mask_align(struct file *file)
1082{
1083 return 0;
1084}
1085
1086static inline struct hugepage_subpool *hugetlb_folio_subpool(struct folio *folio)
1087{
1088 return NULL;
1089}
1090
1091static inline struct folio *filemap_lock_hugetlb_folio(struct hstate *h,
1092 struct address_space *mapping, pgoff_t idx)
1093{
1094 return NULL;
1095}
1096
1097static inline int isolate_or_dissolve_huge_folio(struct folio *folio,
1098 struct list_head *list)
1099{
1100 return -ENOMEM;
1101}
1102
1103static inline int replace_free_hugepage_folios(unsigned long start_pfn,
1104 unsigned long end_pfn)
1105{
1106 return 0;
1107}
1108
1109static inline void wait_for_freed_hugetlb_folios(void)
1110{
1111}
1112
1113static inline struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
1114 unsigned long addr,
1115 bool cow_from_owner)
1116{
1117 return NULL;
1118}
1119
1120static inline struct folio *
1121alloc_hugetlb_folio_reserve(struct hstate *h, int preferred_nid,
1122 nodemask_t *nmask, gfp_t gfp_mask)
1123{
1124 return NULL;
1125}
1126
1127static inline struct folio *
1128alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
1129 nodemask_t *nmask, gfp_t gfp_mask,
1130 bool allow_alloc_fallback)
1131{
1132 return NULL;
1133}
1134
1135static inline int __alloc_bootmem_huge_page(struct hstate *h)
1136{
1137 return 0;
1138}
1139
1140static inline struct hstate *hstate_file(struct file *f)
1141{
1142 return NULL;
1143}
1144
1145static inline struct hstate *hstate_sizelog(int page_size_log)
1146{
1147 return NULL;
1148}
1149
1150static inline struct hstate *hstate_vma(struct vm_area_struct *vma)
1151{
1152 return NULL;
1153}
1154
1155static inline struct hstate *folio_hstate(struct folio *folio)
1156{
1157 return NULL;
1158}
1159
1160static inline struct hstate *size_to_hstate(unsigned long size)
1161{
1162 return NULL;
1163}
1164
1165static inline unsigned long huge_page_size(struct hstate *h)
1166{
1167 return PAGE_SIZE;
1168}
1169
1170static inline unsigned long huge_page_mask(struct hstate *h)
1171{
1172 return PAGE_MASK;
1173}
1174
1175static inline unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
1176{
1177 return PAGE_SIZE;
1178}
1179
1180static inline unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
1181{
1182 return PAGE_SIZE;
1183}
1184
1185static inline unsigned int huge_page_order(struct hstate *h)
1186{
1187 return 0;
1188}
1189
1190static inline unsigned int huge_page_shift(struct hstate *h)
1191{
1192 return PAGE_SHIFT;
1193}
1194
1195static inline bool hstate_is_gigantic(struct hstate *h)
1196{
1197 return false;
1198}
1199
1200static inline unsigned int pages_per_huge_page(struct hstate *h)
1201{
1202 return 1;
1203}
1204
1205static inline unsigned hstate_index_to_shift(unsigned index)
1206{
1207 return 0;
1208}
1209
1210static inline int hstate_index(struct hstate *h)
1211{
1212 return 0;
1213}
1214
1215static inline int dissolve_free_hugetlb_folio(struct folio *folio)
1216{
1217 return 0;
1218}
1219
1220static inline int dissolve_free_hugetlb_folios(unsigned long start_pfn,
1221 unsigned long end_pfn)
1222{
1223 return 0;
1224}
1225
1226static inline bool hugepage_migration_supported(struct hstate *h)
1227{
1228 return false;
1229}
1230
1231static inline bool hugepage_movable_supported(struct hstate *h)
1232{
1233 return false;
1234}
1235
1236static inline gfp_t htlb_alloc_mask(struct hstate *h)
1237{
1238 return 0;
1239}
1240
1241static inline gfp_t htlb_modify_alloc_mask(struct hstate *h, gfp_t gfp_mask)
1242{
1243 return 0;
1244}
1245
1246static inline bool htlb_allow_alloc_fallback(int reason)
1247{
1248 return false;
1249}
1250
1251static inline spinlock_t *huge_pte_lockptr(struct hstate *h,
1252 struct mm_struct *mm, pte_t *pte)
1253{
1254 return &mm->page_table_lock;
1255}
1256
1257static inline void hugetlb_count_init(struct mm_struct *mm)
1258{
1259}
1260
1261static inline void hugetlb_report_usage(struct seq_file *f, struct mm_struct *m)
1262{
1263}
1264
1265static inline void hugetlb_count_sub(long l, struct mm_struct *mm)
1266{
1267}
1268
1269static inline pte_t huge_ptep_clear_flush(struct vm_area_struct *vma,
1270 unsigned long addr, pte_t *ptep)
1271{
1272#ifdef CONFIG_MMU
1273 return ptep_get(ptep);
1274#else
1275 return *ptep;
1276#endif
1277}
1278
1279static inline void set_huge_pte_at(struct mm_struct *mm, unsigned long addr,
1280 pte_t *ptep, pte_t pte, unsigned long sz)
1281{
1282}
1283
1284static inline void hugetlb_register_node(struct node *node)
1285{
1286}
1287
1288static inline void hugetlb_unregister_node(struct node *node)
1289{
1290}
1291
1292static inline bool hugetlbfs_pagecache_present(
1293 struct hstate *h, struct vm_area_struct *vma, unsigned long address)
1294{
1295 return false;
1296}
1297
1298static inline void hugetlb_bootmem_alloc(void)
1299{
1300}
1301
1302static inline bool hugetlb_bootmem_allocated(void)
1303{
1304 return false;
1305}
1306#endif /* CONFIG_HUGETLB_PAGE */
1307
1308static inline spinlock_t *huge_pte_lock(struct hstate *h,
1309 struct mm_struct *mm, pte_t *pte)
1310{
1311 spinlock_t *ptl;
1312
1313 ptl = huge_pte_lockptr(h, mm, pte);
1314 spin_lock(ptl);
1315 return ptl;
1316}
1317
1318#if defined(CONFIG_HUGETLB_PAGE) && defined(CONFIG_CMA)
1319extern void __init hugetlb_cma_reserve(int order);
1320#else
1321static inline __init void hugetlb_cma_reserve(int order)
1322{
1323}
1324#endif
1325
1326#ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING
1327static inline bool hugetlb_pmd_shared(pte_t *pte)
1328{
1329 return page_count(virt_to_page(pte)) > 1;
1330}
1331#else
1332static inline bool hugetlb_pmd_shared(pte_t *pte)
1333{
1334 return false;
1335}
1336#endif
1337
1338bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr);
1339
1340#ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
1341/*
1342 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
1343 * implement this.
1344 */
1345#define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
1346#endif
1347
1348static inline bool __vma_shareable_lock(struct vm_area_struct *vma)
1349{
1350 return (vma->vm_flags & VM_MAYSHARE) && vma->vm_private_data;
1351}
1352
1353bool __vma_private_lock(struct vm_area_struct *vma);
1354
1355/*
1356 * Safe version of huge_pte_offset() to check the locks. See comments
1357 * above huge_pte_offset().
1358 */
1359static inline pte_t *
1360hugetlb_walk(struct vm_area_struct *vma, unsigned long addr, unsigned long sz)
1361{
1362#if defined(CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING) && defined(CONFIG_LOCKDEP)
1363 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1364
1365 /*
1366 * If pmd sharing possible, locking needed to safely walk the
1367 * hugetlb pgtables. More information can be found at the comment
1368 * above huge_pte_offset() in the same file.
1369 *
1370 * NOTE: lockdep_is_held() is only defined with CONFIG_LOCKDEP.
1371 */
1372 if (__vma_shareable_lock(vma))
1373 WARN_ON_ONCE(!lockdep_is_held(&vma_lock->rw_sema) &&
1374 !lockdep_is_held(
1375 &vma->vm_file->f_mapping->i_mmap_rwsem));
1376#endif
1377 return huge_pte_offset(vma->vm_mm, addr, sz);
1378}
1379
1380#endif /* _LINUX_HUGETLB_H */