Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_HUGE_MM_H
3#define _LINUX_HUGE_MM_H
4
5#include <linux/mm_types.h>
6
7#include <linux/fs.h> /* only for vma_is_dax() */
8#include <linux/kobject.h>
9
10vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf);
11int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
12 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
13 struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
14bool huge_pmd_set_accessed(struct vm_fault *vmf);
15int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
16 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
17 struct vm_area_struct *vma);
18
19#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
20void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud);
21#else
22static inline void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
23{
24}
25#endif
26
27vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf);
28bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
29 pmd_t *pmd, unsigned long addr, unsigned long next);
30int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, pmd_t *pmd,
31 unsigned long addr);
32int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma, pud_t *pud,
33 unsigned long addr);
34bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
35 unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd);
36int change_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
37 pmd_t *pmd, unsigned long addr, pgprot_t newprot,
38 unsigned long cp_flags);
39
40vm_fault_t vmf_insert_pfn_pmd(struct vm_fault *vmf, unsigned long pfn,
41 bool write);
42vm_fault_t vmf_insert_pfn_pud(struct vm_fault *vmf, unsigned long pfn,
43 bool write);
44vm_fault_t vmf_insert_folio_pmd(struct vm_fault *vmf, struct folio *folio,
45 bool write);
46vm_fault_t vmf_insert_folio_pud(struct vm_fault *vmf, struct folio *folio,
47 bool write);
48
49enum transparent_hugepage_flag {
50 TRANSPARENT_HUGEPAGE_UNSUPPORTED,
51 TRANSPARENT_HUGEPAGE_FLAG,
52 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
53 TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
54 TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
55 TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
56 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
57 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG,
58 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG,
59};
60
61struct kobject;
62struct kobj_attribute;
63
64ssize_t single_hugepage_flag_store(struct kobject *kobj,
65 struct kobj_attribute *attr,
66 const char *buf, size_t count,
67 enum transparent_hugepage_flag flag);
68ssize_t single_hugepage_flag_show(struct kobject *kobj,
69 struct kobj_attribute *attr, char *buf,
70 enum transparent_hugepage_flag flag);
71extern struct kobj_attribute shmem_enabled_attr;
72extern struct kobj_attribute thpsize_shmem_enabled_attr;
73
74/*
75 * Mask of all large folio orders supported for anonymous THP; all orders up to
76 * and including PMD_ORDER, except order-0 (which is not "huge") and order-1
77 * (which is a limitation of the THP implementation).
78 */
79#define THP_ORDERS_ALL_ANON ((BIT(PMD_ORDER + 1) - 1) & ~(BIT(0) | BIT(1)))
80
81/*
82 * Mask of all large folio orders supported for file THP. Folios in a DAX
83 * file is never split and the MAX_PAGECACHE_ORDER limit does not apply to
84 * it. Same to PFNMAPs where there's neither page* nor pagecache.
85 */
86#define THP_ORDERS_ALL_SPECIAL \
87 (BIT(PMD_ORDER) | BIT(PUD_ORDER))
88#define THP_ORDERS_ALL_FILE_DEFAULT \
89 ((BIT(MAX_PAGECACHE_ORDER + 1) - 1) & ~BIT(0))
90
91/*
92 * Mask of all large folio orders supported for THP.
93 */
94#define THP_ORDERS_ALL \
95 (THP_ORDERS_ALL_ANON | THP_ORDERS_ALL_SPECIAL | THP_ORDERS_ALL_FILE_DEFAULT)
96
97enum tva_type {
98 TVA_SMAPS, /* Exposing "THPeligible:" in smaps. */
99 TVA_PAGEFAULT, /* Serving a page fault. */
100 TVA_KHUGEPAGED, /* Khugepaged collapse. */
101 TVA_FORCED_COLLAPSE, /* Forced collapse (e.g. MADV_COLLAPSE). */
102};
103
104#define thp_vma_allowable_order(vma, vm_flags, type, order) \
105 (!!thp_vma_allowable_orders(vma, vm_flags, type, BIT(order)))
106
107#define split_folio(f) split_folio_to_list(f, NULL)
108
109#ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES
110#define HPAGE_PMD_SHIFT PMD_SHIFT
111#define HPAGE_PUD_SHIFT PUD_SHIFT
112#else
113#define HPAGE_PMD_SHIFT ({ BUILD_BUG(); 0; })
114#define HPAGE_PUD_SHIFT ({ BUILD_BUG(); 0; })
115#endif
116
117#define HPAGE_PMD_ORDER (HPAGE_PMD_SHIFT-PAGE_SHIFT)
118#define HPAGE_PMD_NR (1<<HPAGE_PMD_ORDER)
119#define HPAGE_PMD_MASK (~(HPAGE_PMD_SIZE - 1))
120#define HPAGE_PMD_SIZE ((1UL) << HPAGE_PMD_SHIFT)
121
122#define HPAGE_PUD_ORDER (HPAGE_PUD_SHIFT-PAGE_SHIFT)
123#define HPAGE_PUD_NR (1<<HPAGE_PUD_ORDER)
124#define HPAGE_PUD_MASK (~(HPAGE_PUD_SIZE - 1))
125#define HPAGE_PUD_SIZE ((1UL) << HPAGE_PUD_SHIFT)
126
127enum mthp_stat_item {
128 MTHP_STAT_ANON_FAULT_ALLOC,
129 MTHP_STAT_ANON_FAULT_FALLBACK,
130 MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE,
131 MTHP_STAT_ZSWPOUT,
132 MTHP_STAT_SWPIN,
133 MTHP_STAT_SWPIN_FALLBACK,
134 MTHP_STAT_SWPIN_FALLBACK_CHARGE,
135 MTHP_STAT_SWPOUT,
136 MTHP_STAT_SWPOUT_FALLBACK,
137 MTHP_STAT_SHMEM_ALLOC,
138 MTHP_STAT_SHMEM_FALLBACK,
139 MTHP_STAT_SHMEM_FALLBACK_CHARGE,
140 MTHP_STAT_SPLIT,
141 MTHP_STAT_SPLIT_FAILED,
142 MTHP_STAT_SPLIT_DEFERRED,
143 MTHP_STAT_NR_ANON,
144 MTHP_STAT_NR_ANON_PARTIALLY_MAPPED,
145 __MTHP_STAT_COUNT
146};
147
148#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
149struct mthp_stat {
150 unsigned long stats[ilog2(MAX_PTRS_PER_PTE) + 1][__MTHP_STAT_COUNT];
151};
152
153DECLARE_PER_CPU(struct mthp_stat, mthp_stats);
154
155static inline void mod_mthp_stat(int order, enum mthp_stat_item item, int delta)
156{
157 if (order <= 0 || order > PMD_ORDER)
158 return;
159
160 this_cpu_add(mthp_stats.stats[order][item], delta);
161}
162
163static inline void count_mthp_stat(int order, enum mthp_stat_item item)
164{
165 mod_mthp_stat(order, item, 1);
166}
167
168#else
169static inline void mod_mthp_stat(int order, enum mthp_stat_item item, int delta)
170{
171}
172
173static inline void count_mthp_stat(int order, enum mthp_stat_item item)
174{
175}
176#endif
177
178#ifdef CONFIG_TRANSPARENT_HUGEPAGE
179
180extern unsigned long transparent_hugepage_flags;
181extern unsigned long huge_anon_orders_always;
182extern unsigned long huge_anon_orders_madvise;
183extern unsigned long huge_anon_orders_inherit;
184
185static inline bool hugepage_global_enabled(void)
186{
187 return transparent_hugepage_flags &
188 ((1<<TRANSPARENT_HUGEPAGE_FLAG) |
189 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG));
190}
191
192static inline bool hugepage_global_always(void)
193{
194 return transparent_hugepage_flags &
195 (1<<TRANSPARENT_HUGEPAGE_FLAG);
196}
197
198static inline int highest_order(unsigned long orders)
199{
200 return fls_long(orders) - 1;
201}
202
203static inline int next_order(unsigned long *orders, int prev)
204{
205 *orders &= ~BIT(prev);
206 return highest_order(*orders);
207}
208
209/*
210 * Do the below checks:
211 * - For file vma, check if the linear page offset of vma is
212 * order-aligned within the file. The hugepage is
213 * guaranteed to be order-aligned within the file, but we must
214 * check that the order-aligned addresses in the VMA map to
215 * order-aligned offsets within the file, else the hugepage will
216 * not be mappable.
217 * - For all vmas, check if the haddr is in an aligned hugepage
218 * area.
219 */
220static inline bool thp_vma_suitable_order(struct vm_area_struct *vma,
221 unsigned long addr, int order)
222{
223 unsigned long hpage_size = PAGE_SIZE << order;
224 unsigned long haddr;
225
226 /* Don't have to check pgoff for anonymous vma */
227 if (!vma_is_anonymous(vma)) {
228 if (!IS_ALIGNED((vma->vm_start >> PAGE_SHIFT) - vma->vm_pgoff,
229 hpage_size >> PAGE_SHIFT))
230 return false;
231 }
232
233 haddr = ALIGN_DOWN(addr, hpage_size);
234
235 if (haddr < vma->vm_start || haddr + hpage_size > vma->vm_end)
236 return false;
237 return true;
238}
239
240/*
241 * Filter the bitfield of input orders to the ones suitable for use in the vma.
242 * See thp_vma_suitable_order().
243 * All orders that pass the checks are returned as a bitfield.
244 */
245static inline unsigned long thp_vma_suitable_orders(struct vm_area_struct *vma,
246 unsigned long addr, unsigned long orders)
247{
248 int order;
249
250 /*
251 * Iterate over orders, highest to lowest, removing orders that don't
252 * meet alignment requirements from the set. Exit loop at first order
253 * that meets requirements, since all lower orders must also meet
254 * requirements.
255 */
256
257 order = highest_order(orders);
258
259 while (orders) {
260 if (thp_vma_suitable_order(vma, addr, order))
261 break;
262 order = next_order(&orders, order);
263 }
264
265 return orders;
266}
267
268unsigned long __thp_vma_allowable_orders(struct vm_area_struct *vma,
269 vm_flags_t vm_flags,
270 enum tva_type type,
271 unsigned long orders);
272
273/**
274 * thp_vma_allowable_orders - determine hugepage orders that are allowed for vma
275 * @vma: the vm area to check
276 * @vm_flags: use these vm_flags instead of vma->vm_flags
277 * @type: TVA type
278 * @orders: bitfield of all orders to consider
279 *
280 * Calculates the intersection of the requested hugepage orders and the allowed
281 * hugepage orders for the provided vma. Permitted orders are encoded as a set
282 * bit at the corresponding bit position (bit-2 corresponds to order-2, bit-3
283 * corresponds to order-3, etc). Order-0 is never considered a hugepage order.
284 *
285 * Return: bitfield of orders allowed for hugepage in the vma. 0 if no hugepage
286 * orders are allowed.
287 */
288static inline
289unsigned long thp_vma_allowable_orders(struct vm_area_struct *vma,
290 vm_flags_t vm_flags,
291 enum tva_type type,
292 unsigned long orders)
293{
294 /*
295 * Optimization to check if required orders are enabled early. Only
296 * forced collapse ignores sysfs configs.
297 */
298 if (type != TVA_FORCED_COLLAPSE && vma_is_anonymous(vma)) {
299 unsigned long mask = READ_ONCE(huge_anon_orders_always);
300
301 if (vm_flags & VM_HUGEPAGE)
302 mask |= READ_ONCE(huge_anon_orders_madvise);
303 if (hugepage_global_always() ||
304 ((vm_flags & VM_HUGEPAGE) && hugepage_global_enabled()))
305 mask |= READ_ONCE(huge_anon_orders_inherit);
306
307 orders &= mask;
308 if (!orders)
309 return 0;
310 }
311
312 return __thp_vma_allowable_orders(vma, vm_flags, type, orders);
313}
314
315struct thpsize {
316 struct kobject kobj;
317 struct list_head node;
318 int order;
319};
320
321#define to_thpsize(kobj) container_of(kobj, struct thpsize, kobj)
322
323#define transparent_hugepage_use_zero_page() \
324 (transparent_hugepage_flags & \
325 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG))
326
327/*
328 * Check whether THPs are explicitly disabled for this VMA, for example,
329 * through madvise or prctl.
330 */
331static inline bool vma_thp_disabled(struct vm_area_struct *vma,
332 vm_flags_t vm_flags, bool forced_collapse)
333{
334 /* Are THPs disabled for this VMA? */
335 if (vm_flags & VM_NOHUGEPAGE)
336 return true;
337 /* Are THPs disabled for all VMAs in the whole process? */
338 if (mm_flags_test(MMF_DISABLE_THP_COMPLETELY, vma->vm_mm))
339 return true;
340 /*
341 * Are THPs disabled only for VMAs where we didn't get an explicit
342 * advise to use them?
343 */
344 if (vm_flags & VM_HUGEPAGE)
345 return false;
346 /*
347 * Forcing a collapse (e.g., madv_collapse), is a clear advice to
348 * use THPs.
349 */
350 if (forced_collapse)
351 return false;
352 return mm_flags_test(MMF_DISABLE_THP_EXCEPT_ADVISED, vma->vm_mm);
353}
354
355static inline bool thp_disabled_by_hw(void)
356{
357 /* If the hardware/firmware marked hugepage support disabled. */
358 return transparent_hugepage_flags & (1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED);
359}
360
361unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
362 unsigned long len, unsigned long pgoff, unsigned long flags);
363unsigned long thp_get_unmapped_area_vmflags(struct file *filp, unsigned long addr,
364 unsigned long len, unsigned long pgoff, unsigned long flags,
365 vm_flags_t vm_flags);
366
367enum split_type {
368 SPLIT_TYPE_UNIFORM,
369 SPLIT_TYPE_NON_UNIFORM,
370};
371
372int __split_huge_page_to_list_to_order(struct page *page, struct list_head *list,
373 unsigned int new_order);
374int folio_split_unmapped(struct folio *folio, unsigned int new_order);
375unsigned int min_order_for_split(struct folio *folio);
376int split_folio_to_list(struct folio *folio, struct list_head *list);
377int folio_check_splittable(struct folio *folio, unsigned int new_order,
378 enum split_type split_type);
379int folio_split(struct folio *folio, unsigned int new_order, struct page *page,
380 struct list_head *list);
381
382static inline int split_huge_page_to_list_to_order(struct page *page, struct list_head *list,
383 unsigned int new_order)
384{
385 return __split_huge_page_to_list_to_order(page, list, new_order);
386}
387static inline int split_huge_page_to_order(struct page *page, unsigned int new_order)
388{
389 return split_huge_page_to_list_to_order(page, NULL, new_order);
390}
391
392/**
393 * try_folio_split_to_order() - try to split a @folio at @page to @new_order
394 * using non uniform split.
395 * @folio: folio to be split
396 * @page: split to @new_order at the given page
397 * @new_order: the target split order
398 *
399 * Try to split a @folio at @page using non uniform split to @new_order, if
400 * non uniform split is not supported, fall back to uniform split. After-split
401 * folios are put back to LRU list. Use min_order_for_split() to get the lower
402 * bound of @new_order.
403 *
404 * Return: 0 - split is successful, otherwise split failed.
405 */
406static inline int try_folio_split_to_order(struct folio *folio,
407 struct page *page, unsigned int new_order)
408{
409 if (folio_check_splittable(folio, new_order, SPLIT_TYPE_NON_UNIFORM))
410 return split_huge_page_to_order(&folio->page, new_order);
411 return folio_split(folio, new_order, page, NULL);
412}
413static inline int split_huge_page(struct page *page)
414{
415 return split_huge_page_to_list_to_order(page, NULL, 0);
416}
417void deferred_split_folio(struct folio *folio, bool partially_mapped);
418#ifdef CONFIG_MEMCG
419void reparent_deferred_split_queue(struct mem_cgroup *memcg);
420#endif
421
422void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
423 unsigned long address, bool freeze);
424
425/**
426 * pmd_is_huge() - Is this PMD either a huge PMD entry or a software leaf entry?
427 * @pmd: The PMD to check.
428 *
429 * A huge PMD entry is a non-empty entry which is present and marked huge or a
430 * software leaf entry. This check be performed without the appropriate locks
431 * held, in which case the condition should be rechecked after they are
432 * acquired.
433 *
434 * Returns: true if this PMD is huge, false otherwise.
435 */
436static inline bool pmd_is_huge(pmd_t pmd)
437{
438 if (pmd_present(pmd)) {
439 return pmd_trans_huge(pmd);
440 } else if (!pmd_none(pmd)) {
441 /*
442 * Non-present PMDs must be valid huge non-present entries. We
443 * cannot assert that here due to header dependency issues.
444 */
445 return true;
446 }
447
448 return false;
449}
450
451#define split_huge_pmd(__vma, __pmd, __address) \
452 do { \
453 pmd_t *____pmd = (__pmd); \
454 if (pmd_is_huge(*____pmd)) \
455 __split_huge_pmd(__vma, __pmd, __address, \
456 false); \
457 } while (0)
458
459void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
460 bool freeze);
461
462void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
463 unsigned long address);
464
465#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
466int change_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
467 pud_t *pudp, unsigned long addr, pgprot_t newprot,
468 unsigned long cp_flags);
469#else
470static inline int
471change_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
472 pud_t *pudp, unsigned long addr, pgprot_t newprot,
473 unsigned long cp_flags) { return 0; }
474#endif
475
476#define split_huge_pud(__vma, __pud, __address) \
477 do { \
478 pud_t *____pud = (__pud); \
479 if (pud_trans_huge(*____pud)) \
480 __split_huge_pud(__vma, __pud, __address); \
481 } while (0)
482
483int hugepage_madvise(struct vm_area_struct *vma, vm_flags_t *vm_flags,
484 int advice);
485int madvise_collapse(struct vm_area_struct *vma, unsigned long start,
486 unsigned long end, bool *lock_dropped);
487void vma_adjust_trans_huge(struct vm_area_struct *vma, unsigned long start,
488 unsigned long end, struct vm_area_struct *next);
489spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma);
490spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma);
491
492/* mmap_lock must be held on entry */
493static inline spinlock_t *pmd_trans_huge_lock(pmd_t *pmd,
494 struct vm_area_struct *vma)
495{
496 if (pmd_is_huge(*pmd))
497 return __pmd_trans_huge_lock(pmd, vma);
498
499 return NULL;
500}
501static inline spinlock_t *pud_trans_huge_lock(pud_t *pud,
502 struct vm_area_struct *vma)
503{
504 if (pud_trans_huge(*pud))
505 return __pud_trans_huge_lock(pud, vma);
506 else
507 return NULL;
508}
509
510/**
511 * folio_test_pmd_mappable - Can we map this folio with a PMD?
512 * @folio: The folio to test
513 *
514 * Return: true - @folio can be mapped, false - @folio cannot be mapped.
515 */
516static inline bool folio_test_pmd_mappable(struct folio *folio)
517{
518 return folio_order(folio) >= HPAGE_PMD_ORDER;
519}
520
521vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf);
522
523vm_fault_t do_huge_pmd_device_private(struct vm_fault *vmf);
524
525extern struct folio *huge_zero_folio;
526extern unsigned long huge_zero_pfn;
527
528static inline bool is_huge_zero_folio(const struct folio *folio)
529{
530 VM_WARN_ON_ONCE(!folio);
531
532 return READ_ONCE(huge_zero_folio) == folio;
533}
534
535static inline bool is_huge_zero_pfn(unsigned long pfn)
536{
537 return READ_ONCE(huge_zero_pfn) == (pfn & ~(HPAGE_PMD_NR - 1));
538}
539
540static inline bool is_huge_zero_pmd(pmd_t pmd)
541{
542 return pmd_present(pmd) && is_huge_zero_pfn(pmd_pfn(pmd));
543}
544
545struct folio *mm_get_huge_zero_folio(struct mm_struct *mm);
546void mm_put_huge_zero_folio(struct mm_struct *mm);
547
548static inline struct folio *get_persistent_huge_zero_folio(void)
549{
550 if (!IS_ENABLED(CONFIG_PERSISTENT_HUGE_ZERO_FOLIO))
551 return NULL;
552
553 if (unlikely(!huge_zero_folio))
554 return NULL;
555
556 return huge_zero_folio;
557}
558
559static inline bool thp_migration_supported(void)
560{
561 return IS_ENABLED(CONFIG_ARCH_ENABLE_THP_MIGRATION);
562}
563
564void split_huge_pmd_locked(struct vm_area_struct *vma, unsigned long address,
565 pmd_t *pmd, bool freeze);
566bool unmap_huge_pmd_locked(struct vm_area_struct *vma, unsigned long addr,
567 pmd_t *pmdp, struct folio *folio);
568void map_anon_folio_pmd_nopf(struct folio *folio, pmd_t *pmd,
569 struct vm_area_struct *vma, unsigned long haddr);
570
571#else /* CONFIG_TRANSPARENT_HUGEPAGE */
572
573static inline bool folio_test_pmd_mappable(struct folio *folio)
574{
575 return false;
576}
577
578static inline bool thp_vma_suitable_order(struct vm_area_struct *vma,
579 unsigned long addr, int order)
580{
581 return false;
582}
583
584static inline unsigned long thp_vma_suitable_orders(struct vm_area_struct *vma,
585 unsigned long addr, unsigned long orders)
586{
587 return 0;
588}
589
590static inline unsigned long thp_vma_allowable_orders(struct vm_area_struct *vma,
591 vm_flags_t vm_flags,
592 enum tva_type type,
593 unsigned long orders)
594{
595 return 0;
596}
597
598#define transparent_hugepage_flags 0UL
599
600#define thp_get_unmapped_area NULL
601
602static inline unsigned long
603thp_get_unmapped_area_vmflags(struct file *filp, unsigned long addr,
604 unsigned long len, unsigned long pgoff,
605 unsigned long flags, vm_flags_t vm_flags)
606{
607 return 0;
608}
609
610static inline bool
611can_split_folio(struct folio *folio, int caller_pins, int *pextra_pins)
612{
613 return false;
614}
615static inline int
616split_huge_page_to_list_to_order(struct page *page, struct list_head *list,
617 unsigned int new_order)
618{
619 VM_WARN_ON_ONCE_PAGE(1, page);
620 return -EINVAL;
621}
622static inline int split_huge_page_to_order(struct page *page, unsigned int new_order)
623{
624 VM_WARN_ON_ONCE_PAGE(1, page);
625 return -EINVAL;
626}
627static inline int split_huge_page(struct page *page)
628{
629 VM_WARN_ON_ONCE_PAGE(1, page);
630 return -EINVAL;
631}
632
633static inline unsigned int min_order_for_split(struct folio *folio)
634{
635 VM_WARN_ON_ONCE_FOLIO(1, folio);
636 return 0;
637}
638
639static inline int split_folio_to_list(struct folio *folio, struct list_head *list)
640{
641 VM_WARN_ON_ONCE_FOLIO(1, folio);
642 return -EINVAL;
643}
644
645static inline int try_folio_split_to_order(struct folio *folio,
646 struct page *page, unsigned int new_order)
647{
648 VM_WARN_ON_ONCE_FOLIO(1, folio);
649 return -EINVAL;
650}
651
652static inline void deferred_split_folio(struct folio *folio, bool partially_mapped) {}
653static inline void reparent_deferred_split_queue(struct mem_cgroup *memcg) {}
654#define split_huge_pmd(__vma, __pmd, __address) \
655 do { } while (0)
656
657static inline void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
658 unsigned long address, bool freeze) {}
659static inline void split_huge_pmd_address(struct vm_area_struct *vma,
660 unsigned long address, bool freeze) {}
661static inline void split_huge_pmd_locked(struct vm_area_struct *vma,
662 unsigned long address, pmd_t *pmd,
663 bool freeze) {}
664
665static inline bool unmap_huge_pmd_locked(struct vm_area_struct *vma,
666 unsigned long addr, pmd_t *pmdp,
667 struct folio *folio)
668{
669 return false;
670}
671
672#define split_huge_pud(__vma, __pmd, __address) \
673 do { } while (0)
674
675static inline int hugepage_madvise(struct vm_area_struct *vma,
676 vm_flags_t *vm_flags, int advice)
677{
678 return -EINVAL;
679}
680
681static inline int madvise_collapse(struct vm_area_struct *vma,
682 unsigned long start,
683 unsigned long end, bool *lock_dropped)
684{
685 return -EINVAL;
686}
687
688static inline void vma_adjust_trans_huge(struct vm_area_struct *vma,
689 unsigned long start,
690 unsigned long end,
691 struct vm_area_struct *next)
692{
693}
694static inline spinlock_t *pmd_trans_huge_lock(pmd_t *pmd,
695 struct vm_area_struct *vma)
696{
697 return NULL;
698}
699static inline spinlock_t *pud_trans_huge_lock(pud_t *pud,
700 struct vm_area_struct *vma)
701{
702 return NULL;
703}
704
705static inline vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf)
706{
707 return 0;
708}
709
710static inline vm_fault_t do_huge_pmd_device_private(struct vm_fault *vmf)
711{
712 return 0;
713}
714
715static inline bool is_huge_zero_folio(const struct folio *folio)
716{
717 return false;
718}
719
720static inline bool is_huge_zero_pfn(unsigned long pfn)
721{
722 return false;
723}
724
725static inline bool is_huge_zero_pmd(pmd_t pmd)
726{
727 return false;
728}
729
730static inline void mm_put_huge_zero_folio(struct mm_struct *mm)
731{
732 return;
733}
734
735static inline bool thp_migration_supported(void)
736{
737 return false;
738}
739
740static inline int highest_order(unsigned long orders)
741{
742 return 0;
743}
744
745static inline int next_order(unsigned long *orders, int prev)
746{
747 return 0;
748}
749
750static inline void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
751 unsigned long address)
752{
753}
754
755static inline int change_huge_pud(struct mmu_gather *tlb,
756 struct vm_area_struct *vma, pud_t *pudp,
757 unsigned long addr, pgprot_t newprot,
758 unsigned long cp_flags)
759{
760 return 0;
761}
762
763static inline struct folio *get_persistent_huge_zero_folio(void)
764{
765 return NULL;
766}
767
768static inline bool pmd_is_huge(pmd_t pmd)
769{
770 return false;
771}
772#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
773
774static inline int split_folio_to_list_to_order(struct folio *folio,
775 struct list_head *list, int new_order)
776{
777 return split_huge_page_to_list_to_order(&folio->page, list, new_order);
778}
779
780static inline int split_folio_to_order(struct folio *folio, int new_order)
781{
782 return split_folio_to_list_to_order(folio, NULL, new_order);
783}
784
785/**
786 * largest_zero_folio - Get the largest zero size folio available
787 *
788 * This function shall be used when mm_get_huge_zero_folio() cannot be
789 * used as there is no appropriate mm lifetime to tie the huge zero folio
790 * from the caller.
791 *
792 * Deduce the size of the folio with folio_size instead of assuming the
793 * folio size.
794 *
795 * Return: pointer to PMD sized zero folio if CONFIG_PERSISTENT_HUGE_ZERO_FOLIO
796 * is enabled or a single page sized zero folio
797 */
798static inline struct folio *largest_zero_folio(void)
799{
800 struct folio *folio = get_persistent_huge_zero_folio();
801
802 if (folio)
803 return folio;
804
805 return page_folio(ZERO_PAGE(0));
806}
807#endif /* _LINUX_HUGE_MM_H */