at master 20 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_HIGHMEM_H 3#define _LINUX_HIGHMEM_H 4 5#include <linux/fs.h> 6#include <linux/kernel.h> 7#include <linux/bug.h> 8#include <linux/cacheflush.h> 9#include <linux/kmsan.h> 10#include <linux/mm.h> 11#include <linux/uaccess.h> 12#include <linux/hardirq.h> 13 14#include "highmem-internal.h" 15 16/** 17 * kmap - Map a page for long term usage 18 * @page: Pointer to the page to be mapped 19 * 20 * Returns: The virtual address of the mapping 21 * 22 * Can only be invoked from preemptible task context because on 32bit 23 * systems with CONFIG_HIGHMEM enabled this function might sleep. 24 * 25 * For systems with CONFIG_HIGHMEM=n and for pages in the low memory area 26 * this returns the virtual address of the direct kernel mapping. 27 * 28 * The returned virtual address is globally visible and valid up to the 29 * point where it is unmapped via kunmap(). The pointer can be handed to 30 * other contexts. 31 * 32 * For highmem pages on 32bit systems this can be slow as the mapping space 33 * is limited and protected by a global lock. In case that there is no 34 * mapping slot available the function blocks until a slot is released via 35 * kunmap(). 36 */ 37static inline void *kmap(struct page *page); 38 39/** 40 * kunmap - Unmap the virtual address mapped by kmap() 41 * @page: Pointer to the page which was mapped by kmap() 42 * 43 * Counterpart to kmap(). A NOOP for CONFIG_HIGHMEM=n and for mappings of 44 * pages in the low memory area. 45 */ 46static inline void kunmap(const struct page *page); 47 48/** 49 * kmap_to_page - Get the page for a kmap'ed address 50 * @addr: The address to look up 51 * 52 * Returns: The page which is mapped to @addr. 53 */ 54static inline struct page *kmap_to_page(void *addr); 55 56/** 57 * kmap_flush_unused - Flush all unused kmap mappings in order to 58 * remove stray mappings 59 */ 60static inline void kmap_flush_unused(void); 61 62/** 63 * kmap_local_page - Map a page for temporary usage 64 * @page: Pointer to the page to be mapped 65 * 66 * Returns: The virtual address of the mapping 67 * 68 * Can be invoked from any context, including interrupts. 69 * 70 * Requires careful handling when nesting multiple mappings because the map 71 * management is stack based. The unmap has to be in the reverse order of 72 * the map operation: 73 * 74 * addr1 = kmap_local_page(page1); 75 * addr2 = kmap_local_page(page2); 76 * ... 77 * kunmap_local(addr2); 78 * kunmap_local(addr1); 79 * 80 * Unmapping addr1 before addr2 is invalid and causes malfunction. 81 * 82 * Contrary to kmap() mappings the mapping is only valid in the context of 83 * the caller and cannot be handed to other contexts. 84 * 85 * On CONFIG_HIGHMEM=n kernels and for low memory pages this returns the 86 * virtual address of the direct mapping. Only real highmem pages are 87 * temporarily mapped. 88 * 89 * While kmap_local_page() is significantly faster than kmap() for the highmem 90 * case it comes with restrictions about the pointer validity. 91 * 92 * On HIGHMEM enabled systems mapping a highmem page has the side effect of 93 * disabling migration in order to keep the virtual address stable across 94 * preemption. No caller of kmap_local_page() can rely on this side effect. 95 */ 96static inline void *kmap_local_page(const struct page *page); 97 98/** 99 * kmap_local_folio - Map a page in this folio for temporary usage 100 * @folio: The folio containing the page. 101 * @offset: The byte offset within the folio which identifies the page. 102 * 103 * Requires careful handling when nesting multiple mappings because the map 104 * management is stack based. The unmap has to be in the reverse order of 105 * the map operation:: 106 * 107 * addr1 = kmap_local_folio(folio1, offset1); 108 * addr2 = kmap_local_folio(folio2, offset2); 109 * ... 110 * kunmap_local(addr2); 111 * kunmap_local(addr1); 112 * 113 * Unmapping addr1 before addr2 is invalid and causes malfunction. 114 * 115 * Contrary to kmap() mappings the mapping is only valid in the context of 116 * the caller and cannot be handed to other contexts. 117 * 118 * On CONFIG_HIGHMEM=n kernels and for low memory pages this returns the 119 * virtual address of the direct mapping. Only real highmem pages are 120 * temporarily mapped. 121 * 122 * While it is significantly faster than kmap() for the highmem case it 123 * comes with restrictions about the pointer validity. 124 * 125 * On HIGHMEM enabled systems mapping a highmem page has the side effect of 126 * disabling migration in order to keep the virtual address stable across 127 * preemption. No caller of kmap_local_folio() can rely on this side effect. 128 * 129 * Context: Can be invoked from any context. 130 * Return: The virtual address of @offset. 131 */ 132static inline void *kmap_local_folio(const struct folio *folio, size_t offset); 133 134/** 135 * kmap_atomic - Atomically map a page for temporary usage - Deprecated! 136 * @page: Pointer to the page to be mapped 137 * 138 * Returns: The virtual address of the mapping 139 * 140 * In fact a wrapper around kmap_local_page() which also disables pagefaults 141 * and, depending on PREEMPT_RT configuration, also CPU migration and 142 * preemption. Therefore users should not count on the latter two side effects. 143 * 144 * Mappings should always be released by kunmap_atomic(). 145 * 146 * Do not use in new code. Use kmap_local_page() instead. 147 * 148 * It is used in atomic context when code wants to access the contents of a 149 * page that might be allocated from high memory (see __GFP_HIGHMEM), for 150 * example a page in the pagecache. The API has two functions, and they 151 * can be used in a manner similar to the following:: 152 * 153 * // Find the page of interest. 154 * struct page *page = find_get_page(mapping, offset); 155 * 156 * // Gain access to the contents of that page. 157 * void *vaddr = kmap_atomic(page); 158 * 159 * // Do something to the contents of that page. 160 * memset(vaddr, 0, PAGE_SIZE); 161 * 162 * // Unmap that page. 163 * kunmap_atomic(vaddr); 164 * 165 * Note that the kunmap_atomic() call takes the result of the kmap_atomic() 166 * call, not the argument. 167 * 168 * If you need to map two pages because you want to copy from one page to 169 * another you need to keep the kmap_atomic calls strictly nested, like: 170 * 171 * vaddr1 = kmap_atomic(page1); 172 * vaddr2 = kmap_atomic(page2); 173 * 174 * memcpy(vaddr1, vaddr2, PAGE_SIZE); 175 * 176 * kunmap_atomic(vaddr2); 177 * kunmap_atomic(vaddr1); 178 */ 179static inline void *kmap_atomic(const struct page *page); 180 181/* Highmem related interfaces for management code */ 182static inline unsigned long nr_free_highpages(void); 183static inline unsigned long totalhigh_pages(void); 184 185#ifndef ARCH_HAS_FLUSH_ANON_PAGE 186static inline void flush_anon_page(struct vm_area_struct *vma, struct page *page, unsigned long vmaddr) 187{ 188} 189#endif 190 191#ifndef ARCH_IMPLEMENTS_FLUSH_KERNEL_VMAP_RANGE 192static inline void flush_kernel_vmap_range(void *vaddr, int size) 193{ 194} 195static inline void invalidate_kernel_vmap_range(void *vaddr, int size) 196{ 197} 198#endif 199 200/* when CONFIG_HIGHMEM is not set these will be plain clear/copy_page */ 201#ifndef clear_user_highpage 202static inline void clear_user_highpage(struct page *page, unsigned long vaddr) 203{ 204 void *addr = kmap_local_page(page); 205 clear_user_page(addr, vaddr, page); 206 kunmap_local(addr); 207} 208#endif 209 210#ifndef vma_alloc_zeroed_movable_folio 211/** 212 * vma_alloc_zeroed_movable_folio - Allocate a zeroed page for a VMA. 213 * @vma: The VMA the page is to be allocated for. 214 * @vaddr: The virtual address the page will be inserted into. 215 * 216 * This function will allocate a page suitable for inserting into this 217 * VMA at this virtual address. It may be allocated from highmem or 218 * the movable zone. An architecture may provide its own implementation. 219 * 220 * Return: A folio containing one allocated and zeroed page or NULL if 221 * we are out of memory. 222 */ 223static inline 224struct folio *vma_alloc_zeroed_movable_folio(struct vm_area_struct *vma, 225 unsigned long vaddr) 226{ 227 struct folio *folio; 228 229 folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, vaddr); 230 if (folio && user_alloc_needs_zeroing()) 231 clear_user_highpage(&folio->page, vaddr); 232 233 return folio; 234} 235#endif 236 237static inline void clear_highpage(struct page *page) 238{ 239 void *kaddr = kmap_local_page(page); 240 clear_page(kaddr); 241 kunmap_local(kaddr); 242} 243 244static inline void clear_highpage_kasan_tagged(struct page *page) 245{ 246 void *kaddr = kmap_local_page(page); 247 248 clear_page(kasan_reset_tag(kaddr)); 249 kunmap_local(kaddr); 250} 251 252#ifndef __HAVE_ARCH_TAG_CLEAR_HIGHPAGES 253 254/* Return false to let people know we did not initialize the pages */ 255static inline bool tag_clear_highpages(struct page *page, int numpages) 256{ 257 return false; 258} 259 260#endif 261 262/* 263 * If we pass in a base or tail page, we can zero up to PAGE_SIZE. 264 * If we pass in a head page, we can zero up to the size of the compound page. 265 */ 266#ifdef CONFIG_HIGHMEM 267void zero_user_segments(struct page *page, unsigned start1, unsigned end1, 268 unsigned start2, unsigned end2); 269#else 270static inline void zero_user_segments(struct page *page, 271 unsigned start1, unsigned end1, 272 unsigned start2, unsigned end2) 273{ 274 void *kaddr = kmap_local_page(page); 275 unsigned int i; 276 277 BUG_ON(end1 > page_size(page) || end2 > page_size(page)); 278 279 if (end1 > start1) 280 memset(kaddr + start1, 0, end1 - start1); 281 282 if (end2 > start2) 283 memset(kaddr + start2, 0, end2 - start2); 284 285 kunmap_local(kaddr); 286 for (i = 0; i < compound_nr(page); i++) 287 flush_dcache_page(page + i); 288} 289#endif 290 291static inline void zero_user_segment(struct page *page, 292 unsigned start, unsigned end) 293{ 294 zero_user_segments(page, start, end, 0, 0); 295} 296 297#ifndef __HAVE_ARCH_COPY_USER_HIGHPAGE 298 299static inline void copy_user_highpage(struct page *to, struct page *from, 300 unsigned long vaddr, struct vm_area_struct *vma) 301{ 302 char *vfrom, *vto; 303 304 vfrom = kmap_local_page(from); 305 vto = kmap_local_page(to); 306 copy_user_page(vto, vfrom, vaddr, to); 307 kmsan_unpoison_memory(page_address(to), PAGE_SIZE); 308 kunmap_local(vto); 309 kunmap_local(vfrom); 310} 311 312#endif 313 314#ifndef __HAVE_ARCH_COPY_HIGHPAGE 315 316static inline void copy_highpage(struct page *to, struct page *from) 317{ 318 char *vfrom, *vto; 319 320 vfrom = kmap_local_page(from); 321 vto = kmap_local_page(to); 322 copy_page(vto, vfrom); 323 kmsan_copy_page_meta(to, from); 324 kunmap_local(vto); 325 kunmap_local(vfrom); 326} 327 328#endif 329 330#ifdef copy_mc_to_kernel 331/* 332 * If architecture supports machine check exception handling, define the 333 * #MC versions of copy_user_highpage and copy_highpage. They copy a memory 334 * page with #MC in source page (@from) handled, and return the number 335 * of bytes not copied if there was a #MC, otherwise 0 for success. 336 */ 337static inline int copy_mc_user_highpage(struct page *to, struct page *from, 338 unsigned long vaddr, struct vm_area_struct *vma) 339{ 340 unsigned long ret; 341 char *vfrom, *vto; 342 343 vfrom = kmap_local_page(from); 344 vto = kmap_local_page(to); 345 ret = copy_mc_to_kernel(vto, vfrom, PAGE_SIZE); 346 if (!ret) 347 kmsan_unpoison_memory(page_address(to), PAGE_SIZE); 348 kunmap_local(vto); 349 kunmap_local(vfrom); 350 351 if (ret) 352 memory_failure_queue(page_to_pfn(from), 0); 353 354 return ret; 355} 356 357static inline int copy_mc_highpage(struct page *to, struct page *from) 358{ 359 unsigned long ret; 360 char *vfrom, *vto; 361 362 vfrom = kmap_local_page(from); 363 vto = kmap_local_page(to); 364 ret = copy_mc_to_kernel(vto, vfrom, PAGE_SIZE); 365 if (!ret) 366 kmsan_copy_page_meta(to, from); 367 kunmap_local(vto); 368 kunmap_local(vfrom); 369 370 if (ret) 371 memory_failure_queue(page_to_pfn(from), 0); 372 373 return ret; 374} 375#else 376static inline int copy_mc_user_highpage(struct page *to, struct page *from, 377 unsigned long vaddr, struct vm_area_struct *vma) 378{ 379 copy_user_highpage(to, from, vaddr, vma); 380 return 0; 381} 382 383static inline int copy_mc_highpage(struct page *to, struct page *from) 384{ 385 copy_highpage(to, from); 386 return 0; 387} 388#endif 389 390static inline void memcpy_page(struct page *dst_page, size_t dst_off, 391 struct page *src_page, size_t src_off, 392 size_t len) 393{ 394 char *dst = kmap_local_page(dst_page); 395 char *src = kmap_local_page(src_page); 396 397 VM_BUG_ON(dst_off + len > PAGE_SIZE || src_off + len > PAGE_SIZE); 398 memcpy(dst + dst_off, src + src_off, len); 399 kunmap_local(src); 400 kunmap_local(dst); 401} 402 403static inline void memcpy_folio(struct folio *dst_folio, size_t dst_off, 404 struct folio *src_folio, size_t src_off, size_t len) 405{ 406 VM_BUG_ON(dst_off + len > folio_size(dst_folio)); 407 VM_BUG_ON(src_off + len > folio_size(src_folio)); 408 409 do { 410 char *dst = kmap_local_folio(dst_folio, dst_off); 411 const char *src = kmap_local_folio(src_folio, src_off); 412 size_t chunk = len; 413 414 if (folio_test_highmem(dst_folio) && 415 chunk > PAGE_SIZE - offset_in_page(dst_off)) 416 chunk = PAGE_SIZE - offset_in_page(dst_off); 417 if (folio_test_highmem(src_folio) && 418 chunk > PAGE_SIZE - offset_in_page(src_off)) 419 chunk = PAGE_SIZE - offset_in_page(src_off); 420 memcpy(dst, src, chunk); 421 kunmap_local(src); 422 kunmap_local(dst); 423 424 dst_off += chunk; 425 src_off += chunk; 426 len -= chunk; 427 } while (len > 0); 428} 429 430static inline void memset_page(struct page *page, size_t offset, int val, 431 size_t len) 432{ 433 char *addr = kmap_local_page(page); 434 435 VM_BUG_ON(offset + len > PAGE_SIZE); 436 memset(addr + offset, val, len); 437 kunmap_local(addr); 438} 439 440static inline void memcpy_from_page(char *to, struct page *page, 441 size_t offset, size_t len) 442{ 443 char *from = kmap_local_page(page); 444 445 VM_BUG_ON(offset + len > PAGE_SIZE); 446 memcpy(to, from + offset, len); 447 kunmap_local(from); 448} 449 450static inline void memcpy_to_page(struct page *page, size_t offset, 451 const char *from, size_t len) 452{ 453 char *to = kmap_local_page(page); 454 455 VM_BUG_ON(offset + len > PAGE_SIZE); 456 memcpy(to + offset, from, len); 457 flush_dcache_page(page); 458 kunmap_local(to); 459} 460 461static inline void memzero_page(struct page *page, size_t offset, size_t len) 462{ 463 char *addr = kmap_local_page(page); 464 465 VM_BUG_ON(offset + len > PAGE_SIZE); 466 memset(addr + offset, 0, len); 467 flush_dcache_page(page); 468 kunmap_local(addr); 469} 470 471/** 472 * memcpy_from_folio - Copy a range of bytes from a folio. 473 * @to: The memory to copy to. 474 * @folio: The folio to read from. 475 * @offset: The first byte in the folio to read. 476 * @len: The number of bytes to copy. 477 */ 478static inline void memcpy_from_folio(char *to, struct folio *folio, 479 size_t offset, size_t len) 480{ 481 VM_BUG_ON(offset + len > folio_size(folio)); 482 483 do { 484 const char *from = kmap_local_folio(folio, offset); 485 size_t chunk = len; 486 487 if (folio_test_partial_kmap(folio) && 488 chunk > PAGE_SIZE - offset_in_page(offset)) 489 chunk = PAGE_SIZE - offset_in_page(offset); 490 memcpy(to, from, chunk); 491 kunmap_local(from); 492 493 to += chunk; 494 offset += chunk; 495 len -= chunk; 496 } while (len > 0); 497} 498 499/** 500 * memcpy_to_folio - Copy a range of bytes to a folio. 501 * @folio: The folio to write to. 502 * @offset: The first byte in the folio to store to. 503 * @from: The memory to copy from. 504 * @len: The number of bytes to copy. 505 */ 506static inline void memcpy_to_folio(struct folio *folio, size_t offset, 507 const char *from, size_t len) 508{ 509 VM_BUG_ON(offset + len > folio_size(folio)); 510 511 do { 512 char *to = kmap_local_folio(folio, offset); 513 size_t chunk = len; 514 515 if (folio_test_partial_kmap(folio) && 516 chunk > PAGE_SIZE - offset_in_page(offset)) 517 chunk = PAGE_SIZE - offset_in_page(offset); 518 memcpy(to, from, chunk); 519 kunmap_local(to); 520 521 from += chunk; 522 offset += chunk; 523 len -= chunk; 524 } while (len > 0); 525 526 flush_dcache_folio(folio); 527} 528 529/** 530 * folio_zero_tail - Zero the tail of a folio. 531 * @folio: The folio to zero. 532 * @offset: The byte offset in the folio to start zeroing at. 533 * @kaddr: The address the folio is currently mapped to. 534 * 535 * If you have already used kmap_local_folio() to map a folio, written 536 * some data to it and now need to zero the end of the folio (and flush 537 * the dcache), you can use this function. If you do not have the 538 * folio kmapped (eg the folio has been partially populated by DMA), 539 * use folio_zero_range() or folio_zero_segment() instead. 540 * 541 * Return: An address which can be passed to kunmap_local(). 542 */ 543static inline __must_check void *folio_zero_tail(struct folio *folio, 544 size_t offset, void *kaddr) 545{ 546 size_t len = folio_size(folio) - offset; 547 548 if (folio_test_partial_kmap(folio)) { 549 size_t max = PAGE_SIZE - offset_in_page(offset); 550 551 while (len > max) { 552 memset(kaddr, 0, max); 553 kunmap_local(kaddr); 554 len -= max; 555 offset += max; 556 max = PAGE_SIZE; 557 kaddr = kmap_local_folio(folio, offset); 558 } 559 } 560 561 memset(kaddr, 0, len); 562 flush_dcache_folio(folio); 563 564 return kaddr; 565} 566 567/** 568 * folio_fill_tail - Copy some data to a folio and pad with zeroes. 569 * @folio: The destination folio. 570 * @offset: The offset into @folio at which to start copying. 571 * @from: The data to copy. 572 * @len: How many bytes of data to copy. 573 * 574 * This function is most useful for filesystems which support inline data. 575 * When they want to copy data from the inode into the page cache, this 576 * function does everything for them. It supports large folios even on 577 * HIGHMEM configurations. 578 */ 579static inline void folio_fill_tail(struct folio *folio, size_t offset, 580 const char *from, size_t len) 581{ 582 char *to = kmap_local_folio(folio, offset); 583 584 VM_BUG_ON(offset + len > folio_size(folio)); 585 586 if (folio_test_partial_kmap(folio)) { 587 size_t max = PAGE_SIZE - offset_in_page(offset); 588 589 while (len > max) { 590 memcpy(to, from, max); 591 kunmap_local(to); 592 len -= max; 593 from += max; 594 offset += max; 595 max = PAGE_SIZE; 596 to = kmap_local_folio(folio, offset); 597 } 598 } 599 600 memcpy(to, from, len); 601 to = folio_zero_tail(folio, offset + len, to + len); 602 kunmap_local(to); 603} 604 605/** 606 * memcpy_from_file_folio - Copy some bytes from a file folio. 607 * @to: The destination buffer. 608 * @folio: The folio to copy from. 609 * @pos: The position in the file. 610 * @len: The maximum number of bytes to copy. 611 * 612 * Copy up to @len bytes from this folio. This may be limited by PAGE_SIZE 613 * if the folio comes from HIGHMEM, and by the size of the folio. 614 * 615 * Return: The number of bytes copied from the folio. 616 */ 617static inline size_t memcpy_from_file_folio(char *to, struct folio *folio, 618 loff_t pos, size_t len) 619{ 620 size_t offset = offset_in_folio(folio, pos); 621 char *from = kmap_local_folio(folio, offset); 622 623 if (folio_test_partial_kmap(folio)) { 624 offset = offset_in_page(offset); 625 len = min_t(size_t, len, PAGE_SIZE - offset); 626 } else 627 len = min(len, folio_size(folio) - offset); 628 629 memcpy(to, from, len); 630 kunmap_local(from); 631 632 return len; 633} 634 635/** 636 * folio_zero_segments() - Zero two byte ranges in a folio. 637 * @folio: The folio to write to. 638 * @start1: The first byte to zero. 639 * @xend1: One more than the last byte in the first range. 640 * @start2: The first byte to zero in the second range. 641 * @xend2: One more than the last byte in the second range. 642 */ 643static inline void folio_zero_segments(struct folio *folio, 644 size_t start1, size_t xend1, size_t start2, size_t xend2) 645{ 646 zero_user_segments(&folio->page, start1, xend1, start2, xend2); 647} 648 649/** 650 * folio_zero_segment() - Zero a byte range in a folio. 651 * @folio: The folio to write to. 652 * @start: The first byte to zero. 653 * @xend: One more than the last byte to zero. 654 */ 655static inline void folio_zero_segment(struct folio *folio, 656 size_t start, size_t xend) 657{ 658 zero_user_segments(&folio->page, start, xend, 0, 0); 659} 660 661/** 662 * folio_zero_range() - Zero a byte range in a folio. 663 * @folio: The folio to write to. 664 * @start: The first byte to zero. 665 * @length: The number of bytes to zero. 666 */ 667static inline void folio_zero_range(struct folio *folio, 668 size_t start, size_t length) 669{ 670 zero_user_segments(&folio->page, start, start + length, 0, 0); 671} 672 673/** 674 * folio_release_kmap - Unmap a folio and drop a refcount. 675 * @folio: The folio to release. 676 * @addr: The address previously returned by a call to kmap_local_folio(). 677 * 678 * It is common, eg in directory handling to kmap a folio. This function 679 * unmaps the folio and drops the refcount that was being held to keep the 680 * folio alive while we accessed it. 681 */ 682static inline void folio_release_kmap(struct folio *folio, void *addr) 683{ 684 kunmap_local(addr); 685 folio_put(folio); 686} 687#endif /* _LINUX_HIGHMEM_H */