at master 11 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2/* linux/include/linux/clocksource.h 3 * 4 * This file contains the structure definitions for clocksources. 5 * 6 * If you are not a clocksource, or timekeeping code, you should 7 * not be including this file! 8 */ 9#ifndef _LINUX_CLOCKSOURCE_H 10#define _LINUX_CLOCKSOURCE_H 11 12#include <linux/types.h> 13#include <linux/timex.h> 14#include <linux/time.h> 15#include <linux/list.h> 16#include <linux/cache.h> 17#include <linux/timer.h> 18#include <linux/init.h> 19#include <linux/of.h> 20#include <linux/clocksource_ids.h> 21#include <asm/div64.h> 22#include <asm/io.h> 23 24struct clocksource_base; 25struct clocksource; 26struct module; 27 28#if defined(CONFIG_ARCH_CLOCKSOURCE_DATA) || \ 29 defined(CONFIG_GENERIC_GETTIMEOFDAY) 30#include <asm/clocksource.h> 31#endif 32 33#include <vdso/clocksource.h> 34 35/** 36 * struct clocksource - hardware abstraction for a free running counter 37 * Provides mostly state-free accessors to the underlying hardware. 38 * This is the structure used for system time. 39 * 40 * @read: Returns a cycle value, passes clocksource as argument 41 * @mask: Bitmask for two's complement 42 * subtraction of non 64 bit counters 43 * @mult: Cycle to nanosecond multiplier 44 * @shift: Cycle to nanosecond divisor (power of two) 45 * @max_idle_ns: Maximum idle time permitted by the clocksource (nsecs) 46 * @maxadj: Maximum adjustment value to mult (~11%) 47 * @uncertainty_margin: Maximum uncertainty in nanoseconds per half second. 48 * Zero says to use default WATCHDOG_THRESHOLD. 49 * @archdata: Optional arch-specific data 50 * @max_cycles: Maximum safe cycle value which won't overflow on 51 * multiplication 52 * @max_raw_delta: Maximum safe delta value for negative motion detection 53 * @name: Pointer to clocksource name 54 * @list: List head for registration (internal) 55 * @freq_khz: Clocksource frequency in khz. 56 * @rating: Rating value for selection (higher is better) 57 * To avoid rating inflation the following 58 * list should give you a guide as to how 59 * to assign your clocksource a rating 60 * 1-99: Unfit for real use 61 * Only available for bootup and testing purposes. 62 * 100-199: Base level usability. 63 * Functional for real use, but not desired. 64 * 200-299: Good. 65 * A correct and usable clocksource. 66 * 300-399: Desired. 67 * A reasonably fast and accurate clocksource. 68 * 400-499: Perfect 69 * The ideal clocksource. A must-use where 70 * available. 71 * @id: Defaults to CSID_GENERIC. The id value is captured 72 * in certain snapshot functions to allow callers to 73 * validate the clocksource from which the snapshot was 74 * taken. 75 * @flags: Flags describing special properties 76 * @base: Hardware abstraction for clock on which a clocksource 77 * is based 78 * @enable: Optional function to enable the clocksource 79 * @disable: Optional function to disable the clocksource 80 * @suspend: Optional suspend function for the clocksource 81 * @resume: Optional resume function for the clocksource 82 * @mark_unstable: Optional function to inform the clocksource driver that 83 * the watchdog marked the clocksource unstable 84 * @tick_stable: Optional function called periodically from the watchdog 85 * code to provide stable synchronization points 86 * @wd_list: List head to enqueue into the watchdog list (internal) 87 * @cs_last: Last clocksource value for clocksource watchdog 88 * @wd_last: Last watchdog value corresponding to @cs_last 89 * @owner: Module reference, must be set by clocksource in modules 90 * 91 * Note: This struct is not used in hotpathes of the timekeeping code 92 * because the timekeeper caches the hot path fields in its own data 93 * structure, so no cache line alignment is required, 94 * 95 * The pointer to the clocksource itself is handed to the read 96 * callback. If you need extra information there you can wrap struct 97 * clocksource into your own struct. Depending on the amount of 98 * information you need you should consider to cache line align that 99 * structure. 100 */ 101struct clocksource { 102 u64 (*read)(struct clocksource *cs); 103 u64 mask; 104 u32 mult; 105 u32 shift; 106 u64 max_idle_ns; 107 u32 maxadj; 108 u32 uncertainty_margin; 109#ifdef CONFIG_ARCH_CLOCKSOURCE_DATA 110 struct arch_clocksource_data archdata; 111#endif 112 u64 max_cycles; 113 u64 max_raw_delta; 114 const char *name; 115 struct list_head list; 116 u32 freq_khz; 117 int rating; 118 enum clocksource_ids id; 119 enum vdso_clock_mode vdso_clock_mode; 120 unsigned long flags; 121 struct clocksource_base *base; 122 123 int (*enable)(struct clocksource *cs); 124 void (*disable)(struct clocksource *cs); 125 void (*suspend)(struct clocksource *cs); 126 void (*resume)(struct clocksource *cs); 127 void (*mark_unstable)(struct clocksource *cs); 128 void (*tick_stable)(struct clocksource *cs); 129 130 /* private: */ 131#ifdef CONFIG_CLOCKSOURCE_WATCHDOG 132 /* Watchdog related data, used by the framework */ 133 struct list_head wd_list; 134 u64 cs_last; 135 u64 wd_last; 136#endif 137 struct module *owner; 138}; 139 140/* 141 * Clock source flags bits:: 142 */ 143#define CLOCK_SOURCE_IS_CONTINUOUS 0x01 144#define CLOCK_SOURCE_MUST_VERIFY 0x02 145 146#define CLOCK_SOURCE_WATCHDOG 0x10 147#define CLOCK_SOURCE_VALID_FOR_HRES 0x20 148#define CLOCK_SOURCE_UNSTABLE 0x40 149#define CLOCK_SOURCE_SUSPEND_NONSTOP 0x80 150#define CLOCK_SOURCE_RESELECT 0x100 151#define CLOCK_SOURCE_VERIFY_PERCPU 0x200 152/* simplify initialization of mask field */ 153#define CLOCKSOURCE_MASK(bits) GENMASK_ULL((bits) - 1, 0) 154 155static inline u32 clocksource_freq2mult(u32 freq, u32 shift_constant, u64 from) 156{ 157 /* freq = cyc/from 158 * mult/2^shift = ns/cyc 159 * mult = ns/cyc * 2^shift 160 * mult = from/freq * 2^shift 161 * mult = from * 2^shift / freq 162 * mult = (from<<shift) / freq 163 */ 164 u64 tmp = ((u64)from) << shift_constant; 165 166 tmp += freq/2; /* round for do_div */ 167 do_div(tmp, freq); 168 169 return (u32)tmp; 170} 171 172/** 173 * clocksource_khz2mult - calculates mult from khz and shift 174 * @khz: Clocksource frequency in KHz 175 * @shift_constant: Clocksource shift factor 176 * 177 * Helper functions that converts a khz counter frequency to a timsource 178 * multiplier, given the clocksource shift value 179 */ 180static inline u32 clocksource_khz2mult(u32 khz, u32 shift_constant) 181{ 182 return clocksource_freq2mult(khz, shift_constant, NSEC_PER_MSEC); 183} 184 185/** 186 * clocksource_hz2mult - calculates mult from hz and shift 187 * @hz: Clocksource frequency in Hz 188 * @shift_constant: Clocksource shift factor 189 * 190 * Helper functions that converts a hz counter 191 * frequency to a timsource multiplier, given the 192 * clocksource shift value 193 */ 194static inline u32 clocksource_hz2mult(u32 hz, u32 shift_constant) 195{ 196 return clocksource_freq2mult(hz, shift_constant, NSEC_PER_SEC); 197} 198 199/** 200 * clocksource_cyc2ns - converts clocksource cycles to nanoseconds 201 * @cycles: cycles 202 * @mult: cycle to nanosecond multiplier 203 * @shift: cycle to nanosecond divisor (power of two) 204 * 205 * Converts clocksource cycles to nanoseconds, using the given @mult and @shift. 206 * The code is optimized for performance and is not intended to work 207 * with absolute clocksource cycles (as those will easily overflow), 208 * but is only intended to be used with relative (delta) clocksource cycles. 209 * 210 * XXX - This could use some mult_lxl_ll() asm optimization 211 */ 212static inline s64 clocksource_cyc2ns(u64 cycles, u32 mult, u32 shift) 213{ 214 return ((u64) cycles * mult) >> shift; 215} 216 217 218extern int clocksource_unregister(struct clocksource*); 219extern void clocksource_touch_watchdog(void); 220extern void clocksource_suspend(void); 221extern void clocksource_resume(void); 222extern struct clocksource * __init clocksource_default_clock(void); 223extern void clocksource_mark_unstable(struct clocksource *cs); 224extern void 225clocksource_start_suspend_timing(struct clocksource *cs, u64 start_cycles); 226extern u64 clocksource_stop_suspend_timing(struct clocksource *cs, u64 now); 227 228extern u64 229clocks_calc_max_nsecs(u32 mult, u32 shift, u32 maxadj, u64 mask, u64 *max_cycles); 230extern void 231clocks_calc_mult_shift(u32 *mult, u32 *shift, u32 from, u32 to, u32 minsec); 232 233/* 234 * Don't call __clocksource_register_scale directly, use 235 * clocksource_register_hz/khz 236 */ 237extern int 238__clocksource_register_scale(struct clocksource *cs, u32 scale, u32 freq); 239extern void 240__clocksource_update_freq_scale(struct clocksource *cs, u32 scale, u32 freq); 241 242/* 243 * Don't call this unless you are a default clocksource 244 * (AKA: jiffies) and absolutely have to. 245 */ 246static inline int __clocksource_register(struct clocksource *cs) 247{ 248 return __clocksource_register_scale(cs, 1, 0); 249} 250 251static inline int clocksource_register_hz(struct clocksource *cs, u32 hz) 252{ 253 return __clocksource_register_scale(cs, 1, hz); 254} 255 256static inline int clocksource_register_khz(struct clocksource *cs, u32 khz) 257{ 258 return __clocksource_register_scale(cs, 1000, khz); 259} 260 261static inline void __clocksource_update_freq_hz(struct clocksource *cs, u32 hz) 262{ 263 __clocksource_update_freq_scale(cs, 1, hz); 264} 265 266static inline void __clocksource_update_freq_khz(struct clocksource *cs, u32 khz) 267{ 268 __clocksource_update_freq_scale(cs, 1000, khz); 269} 270 271#ifdef CONFIG_ARCH_CLOCKSOURCE_INIT 272extern void clocksource_arch_init(struct clocksource *cs); 273#else 274static inline void clocksource_arch_init(struct clocksource *cs) { } 275#endif 276 277extern int timekeeping_notify(struct clocksource *clock); 278 279extern u64 clocksource_mmio_readl_up(struct clocksource *); 280extern u64 clocksource_mmio_readl_down(struct clocksource *); 281extern u64 clocksource_mmio_readw_up(struct clocksource *); 282extern u64 clocksource_mmio_readw_down(struct clocksource *); 283 284extern int clocksource_mmio_init(void __iomem *, const char *, 285 unsigned long, int, unsigned, u64 (*)(struct clocksource *)); 286 287extern int clocksource_i8253_init(void); 288 289#define TIMER_OF_DECLARE(name, compat, fn) \ 290 OF_DECLARE_1_RET(timer, name, compat, fn) 291 292#ifdef CONFIG_TIMER_PROBE 293extern void timer_probe(void); 294#else 295static inline void timer_probe(void) {} 296#endif 297 298#define TIMER_ACPI_DECLARE(name, table_id, fn) \ 299 ACPI_DECLARE_PROBE_ENTRY(timer, name, table_id, 0, NULL, 0, fn) 300 301static inline unsigned int clocksource_get_max_watchdog_retry(void) 302{ 303 /* 304 * When system is in the boot phase or under heavy workload, there 305 * can be random big latencies during the clocksource/watchdog 306 * read, so allow retries to filter the noise latency. As the 307 * latency's frequency and maximum value goes up with the number of 308 * CPUs, scale the number of retries with the number of online 309 * CPUs. 310 */ 311 return (ilog2(num_online_cpus()) / 2) + 1; 312} 313 314void clocksource_verify_percpu(struct clocksource *cs); 315 316/** 317 * struct clocksource_base - hardware abstraction for clock on which a clocksource 318 * is based 319 * @id: Defaults to CSID_GENERIC. The id value is used for conversion 320 * functions which require that the current clocksource is based 321 * on a clocksource_base with a particular ID in certain snapshot 322 * functions to allow callers to validate the clocksource from 323 * which the snapshot was taken. 324 * @freq_khz: Nominal frequency of the base clock in kHz 325 * @offset: Offset between the base clock and the clocksource 326 * @numerator: Numerator of the clock ratio between base clock and the clocksource 327 * @denominator: Denominator of the clock ratio between base clock and the clocksource 328 */ 329struct clocksource_base { 330 enum clocksource_ids id; 331 u32 freq_khz; 332 u64 offset; 333 u32 numerator; 334 u32 denominator; 335}; 336 337#endif /* _LINUX_CLOCKSOURCE_H */