at master 18 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_CLEANUP_H 3#define _LINUX_CLEANUP_H 4 5#include <linux/compiler.h> 6#include <linux/err.h> 7#include <linux/args.h> 8 9/** 10 * DOC: scope-based cleanup helpers 11 * 12 * The "goto error" pattern is notorious for introducing subtle resource 13 * leaks. It is tedious and error prone to add new resource acquisition 14 * constraints into code paths that already have several unwind 15 * conditions. The "cleanup" helpers enable the compiler to help with 16 * this tedium and can aid in maintaining LIFO (last in first out) 17 * unwind ordering to avoid unintentional leaks. 18 * 19 * As drivers make up the majority of the kernel code base, here is an 20 * example of using these helpers to clean up PCI drivers. The target of 21 * the cleanups are occasions where a goto is used to unwind a device 22 * reference (pci_dev_put()), or unlock the device (pci_dev_unlock()) 23 * before returning. 24 * 25 * The DEFINE_FREE() macro can arrange for PCI device references to be 26 * dropped when the associated variable goes out of scope:: 27 * 28 * DEFINE_FREE(pci_dev_put, struct pci_dev *, if (_T) pci_dev_put(_T)) 29 * ... 30 * struct pci_dev *dev __free(pci_dev_put) = 31 * pci_get_slot(parent, PCI_DEVFN(0, 0)); 32 * 33 * The above will automatically call pci_dev_put() if @dev is non-NULL 34 * when @dev goes out of scope (automatic variable scope). If a function 35 * wants to invoke pci_dev_put() on error, but return @dev (i.e. without 36 * freeing it) on success, it can do:: 37 * 38 * return no_free_ptr(dev); 39 * 40 * ...or:: 41 * 42 * return_ptr(dev); 43 * 44 * The DEFINE_GUARD() macro can arrange for the PCI device lock to be 45 * dropped when the scope where guard() is invoked ends:: 46 * 47 * DEFINE_GUARD(pci_dev, struct pci_dev *, pci_dev_lock(_T), pci_dev_unlock(_T)) 48 * ... 49 * guard(pci_dev)(dev); 50 * 51 * The lifetime of the lock obtained by the guard() helper follows the 52 * scope of automatic variable declaration. Take the following example:: 53 * 54 * func(...) 55 * { 56 * if (...) { 57 * ... 58 * guard(pci_dev)(dev); // pci_dev_lock() invoked here 59 * ... 60 * } // <- implied pci_dev_unlock() triggered here 61 * } 62 * 63 * Observe the lock is held for the remainder of the "if ()" block not 64 * the remainder of "func()". 65 * 66 * The ACQUIRE() macro can be used in all places that guard() can be 67 * used and additionally support conditional locks:: 68 * 69 * DEFINE_GUARD_COND(pci_dev, _try, pci_dev_trylock(_T)) 70 * ... 71 * ACQUIRE(pci_dev_try, lock)(dev); 72 * rc = ACQUIRE_ERR(pci_dev_try, &lock); 73 * if (rc) 74 * return rc; 75 * // @lock is held 76 * 77 * Now, when a function uses both __free() and guard()/ACQUIRE(), or 78 * multiple instances of __free(), the LIFO order of variable definition 79 * order matters. GCC documentation says: 80 * 81 * "When multiple variables in the same scope have cleanup attributes, 82 * at exit from the scope their associated cleanup functions are run in 83 * reverse order of definition (last defined, first cleanup)." 84 * 85 * When the unwind order matters it requires that variables be defined 86 * mid-function scope rather than at the top of the file. Take the 87 * following example and notice the bug highlighted by "!!":: 88 * 89 * LIST_HEAD(list); 90 * DEFINE_MUTEX(lock); 91 * 92 * struct object { 93 * struct list_head node; 94 * }; 95 * 96 * static struct object *alloc_add(void) 97 * { 98 * struct object *obj; 99 * 100 * lockdep_assert_held(&lock); 101 * obj = kzalloc(sizeof(*obj), GFP_KERNEL); 102 * if (obj) { 103 * LIST_HEAD_INIT(&obj->node); 104 * list_add(obj->node, &list): 105 * } 106 * return obj; 107 * } 108 * 109 * static void remove_free(struct object *obj) 110 * { 111 * lockdep_assert_held(&lock); 112 * list_del(&obj->node); 113 * kfree(obj); 114 * } 115 * 116 * DEFINE_FREE(remove_free, struct object *, if (_T) remove_free(_T)) 117 * static int init(void) 118 * { 119 * struct object *obj __free(remove_free) = NULL; 120 * int err; 121 * 122 * guard(mutex)(&lock); 123 * obj = alloc_add(); 124 * 125 * if (!obj) 126 * return -ENOMEM; 127 * 128 * err = other_init(obj); 129 * if (err) 130 * return err; // remove_free() called without the lock!! 131 * 132 * no_free_ptr(obj); 133 * return 0; 134 * } 135 * 136 * That bug is fixed by changing init() to call guard() and define + 137 * initialize @obj in this order:: 138 * 139 * guard(mutex)(&lock); 140 * struct object *obj __free(remove_free) = alloc_add(); 141 * 142 * Given that the "__free(...) = NULL" pattern for variables defined at 143 * the top of the function poses this potential interdependency problem 144 * the recommendation is to always define and assign variables in one 145 * statement and not group variable definitions at the top of the 146 * function when __free() is used. 147 * 148 * Lastly, given that the benefit of cleanup helpers is removal of 149 * "goto", and that the "goto" statement can jump between scopes, the 150 * expectation is that usage of "goto" and cleanup helpers is never 151 * mixed in the same function. I.e. for a given routine, convert all 152 * resources that need a "goto" cleanup to scope-based cleanup, or 153 * convert none of them. 154 */ 155 156/* 157 * DEFINE_FREE(name, type, free): 158 * simple helper macro that defines the required wrapper for a __free() 159 * based cleanup function. @free is an expression using '_T' to access the 160 * variable. @free should typically include a NULL test before calling a 161 * function, see the example below. 162 * 163 * __free(name): 164 * variable attribute to add a scoped based cleanup to the variable. 165 * 166 * no_free_ptr(var): 167 * like a non-atomic xchg(var, NULL), such that the cleanup function will 168 * be inhibited -- provided it sanely deals with a NULL value. 169 * 170 * NOTE: this has __must_check semantics so that it is harder to accidentally 171 * leak the resource. 172 * 173 * return_ptr(p): 174 * returns p while inhibiting the __free(). 175 * 176 * Ex. 177 * 178 * DEFINE_FREE(kfree, void *, if (_T) kfree(_T)) 179 * 180 * void *alloc_obj(...) 181 * { 182 * struct obj *p __free(kfree) = kmalloc(...); 183 * if (!p) 184 * return NULL; 185 * 186 * if (!init_obj(p)) 187 * return NULL; 188 * 189 * return_ptr(p); 190 * } 191 * 192 * NOTE: the DEFINE_FREE()'s @free expression includes a NULL test even though 193 * kfree() is fine to be called with a NULL value. This is on purpose. This way 194 * the compiler sees the end of our alloc_obj() function as: 195 * 196 * tmp = p; 197 * p = NULL; 198 * if (p) 199 * kfree(p); 200 * return tmp; 201 * 202 * And through the magic of value-propagation and dead-code-elimination, it 203 * eliminates the actual cleanup call and compiles into: 204 * 205 * return p; 206 * 207 * Without the NULL test it turns into a mess and the compiler can't help us. 208 */ 209 210#define DEFINE_FREE(_name, _type, _free) \ 211 static __always_inline void __free_##_name(void *p) { _type _T = *(_type *)p; _free; } 212 213#define __free(_name) __cleanup(__free_##_name) 214 215#define __get_and_null(p, nullvalue) \ 216 ({ \ 217 auto __ptr = &(p); \ 218 auto __val = *__ptr; \ 219 *__ptr = nullvalue; \ 220 __val; \ 221 }) 222 223static __always_inline __must_check 224const volatile void * __must_check_fn(const volatile void *val) 225{ return val; } 226 227#define no_free_ptr(p) \ 228 ((typeof(p)) __must_check_fn((__force const volatile void *)__get_and_null(p, NULL))) 229 230#define return_ptr(p) return no_free_ptr(p) 231 232/* 233 * Only for situations where an allocation is handed in to another function 234 * and consumed by that function on success. 235 * 236 * struct foo *f __free(kfree) = kzalloc(sizeof(*f), GFP_KERNEL); 237 * 238 * setup(f); 239 * if (some_condition) 240 * return -EINVAL; 241 * .... 242 * ret = bar(f); 243 * if (!ret) 244 * retain_and_null_ptr(f); 245 * return ret; 246 * 247 * After retain_and_null_ptr(f) the variable f is NULL and cannot be 248 * dereferenced anymore. 249 */ 250#define retain_and_null_ptr(p) ((void)__get_and_null(p, NULL)) 251 252/* 253 * DEFINE_CLASS(name, type, exit, init, init_args...): 254 * helper to define the destructor and constructor for a type. 255 * @exit is an expression using '_T' -- similar to FREE above. 256 * @init is an expression in @init_args resulting in @type 257 * 258 * EXTEND_CLASS(name, ext, init, init_args...): 259 * extends class @name to @name@ext with the new constructor 260 * 261 * CLASS(name, var)(args...): 262 * declare the variable @var as an instance of the named class 263 * 264 * CLASS_INIT(name, var, init_expr): 265 * declare the variable @var as an instance of the named class with 266 * custom initialization expression. 267 * 268 * Ex. 269 * 270 * DEFINE_CLASS(fdget, struct fd, fdput(_T), fdget(fd), int fd) 271 * 272 * CLASS(fdget, f)(fd); 273 * if (fd_empty(f)) 274 * return -EBADF; 275 * 276 * // use 'f' without concern 277 */ 278 279#define DEFINE_CLASS(_name, _type, _exit, _init, _init_args...) \ 280typedef _type class_##_name##_t; \ 281static __always_inline void class_##_name##_destructor(_type *p) \ 282{ _type _T = *p; _exit; } \ 283static __always_inline _type class_##_name##_constructor(_init_args) \ 284{ _type t = _init; return t; } 285 286#define EXTEND_CLASS(_name, ext, _init, _init_args...) \ 287typedef class_##_name##_t class_##_name##ext##_t; \ 288static __always_inline void class_##_name##ext##_destructor(class_##_name##_t *p) \ 289{ class_##_name##_destructor(p); } \ 290static __always_inline class_##_name##_t class_##_name##ext##_constructor(_init_args) \ 291{ class_##_name##_t t = _init; return t; } 292 293#define CLASS(_name, var) \ 294 class_##_name##_t var __cleanup(class_##_name##_destructor) = \ 295 class_##_name##_constructor 296 297#define CLASS_INIT(_name, _var, _init_expr) \ 298 class_##_name##_t _var __cleanup(class_##_name##_destructor) = (_init_expr) 299 300#define __scoped_class(_name, var, _label, args...) \ 301 for (CLASS(_name, var)(args); ; ({ goto _label; })) \ 302 if (0) { \ 303_label: \ 304 break; \ 305 } else 306 307#define scoped_class(_name, var, args...) \ 308 __scoped_class(_name, var, __UNIQUE_ID(label), args) 309 310/* 311 * DEFINE_GUARD(name, type, lock, unlock): 312 * trivial wrapper around DEFINE_CLASS() above specifically 313 * for locks. 314 * 315 * DEFINE_GUARD_COND(name, ext, condlock) 316 * wrapper around EXTEND_CLASS above to add conditional lock 317 * variants to a base class, eg. mutex_trylock() or 318 * mutex_lock_interruptible(). 319 * 320 * guard(name): 321 * an anonymous instance of the (guard) class, not recommended for 322 * conditional locks. 323 * 324 * scoped_guard (name, args...) { }: 325 * similar to CLASS(name, scope)(args), except the variable (with the 326 * explicit name 'scope') is declard in a for-loop such that its scope is 327 * bound to the next (compound) statement. 328 * 329 * for conditional locks the loop body is skipped when the lock is not 330 * acquired. 331 * 332 * scoped_cond_guard (name, fail, args...) { }: 333 * similar to scoped_guard(), except it does fail when the lock 334 * acquire fails. 335 * 336 * Only for conditional locks. 337 * 338 * ACQUIRE(name, var): 339 * a named instance of the (guard) class, suitable for conditional 340 * locks when paired with ACQUIRE_ERR(). 341 * 342 * ACQUIRE_ERR(name, &var): 343 * a helper that is effectively a PTR_ERR() conversion of the guard 344 * pointer. Returns 0 when the lock was acquired and a negative 345 * error code otherwise. 346 */ 347 348#define __DEFINE_CLASS_IS_CONDITIONAL(_name, _is_cond) \ 349static __maybe_unused const bool class_##_name##_is_conditional = _is_cond 350 351#define DEFINE_CLASS_IS_UNCONDITIONAL(_name) \ 352 __DEFINE_CLASS_IS_CONDITIONAL(_name, false); \ 353 static inline void * class_##_name##_lock_ptr(class_##_name##_t *_T) \ 354 { return (void *)1; } 355 356#define __GUARD_IS_ERR(_ptr) \ 357 ({ \ 358 unsigned long _rc = (__force unsigned long)(_ptr); \ 359 unlikely((_rc - 1) >= -MAX_ERRNO - 1); \ 360 }) 361 362#define __DEFINE_GUARD_LOCK_PTR(_name, _exp) \ 363 static __always_inline void *class_##_name##_lock_ptr(class_##_name##_t *_T) \ 364 { \ 365 void *_ptr = (void *)(__force unsigned long)*(_exp); \ 366 if (IS_ERR(_ptr)) { \ 367 _ptr = NULL; \ 368 } \ 369 return _ptr; \ 370 } \ 371 static __always_inline int class_##_name##_lock_err(class_##_name##_t *_T) \ 372 { \ 373 long _rc = (__force unsigned long)*(_exp); \ 374 if (!_rc) { \ 375 _rc = -EBUSY; \ 376 } \ 377 if (!IS_ERR_VALUE(_rc)) { \ 378 _rc = 0; \ 379 } \ 380 return _rc; \ 381 } 382 383#define DEFINE_CLASS_IS_GUARD(_name) \ 384 __DEFINE_CLASS_IS_CONDITIONAL(_name, false); \ 385 __DEFINE_GUARD_LOCK_PTR(_name, _T) 386 387#define DEFINE_CLASS_IS_COND_GUARD(_name) \ 388 __DEFINE_CLASS_IS_CONDITIONAL(_name, true); \ 389 __DEFINE_GUARD_LOCK_PTR(_name, _T) 390 391#define DEFINE_GUARD(_name, _type, _lock, _unlock) \ 392 DEFINE_CLASS(_name, _type, if (!__GUARD_IS_ERR(_T)) { _unlock; }, ({ _lock; _T; }), _type _T); \ 393 DEFINE_CLASS_IS_GUARD(_name) 394 395#define DEFINE_GUARD_COND_4(_name, _ext, _lock, _cond) \ 396 __DEFINE_CLASS_IS_CONDITIONAL(_name##_ext, true); \ 397 EXTEND_CLASS(_name, _ext, \ 398 ({ void *_t = _T; int _RET = (_lock); if (_T && !(_cond)) _t = ERR_PTR(_RET); _t; }), \ 399 class_##_name##_t _T) \ 400 static __always_inline void * class_##_name##_ext##_lock_ptr(class_##_name##_t *_T) \ 401 { return class_##_name##_lock_ptr(_T); } \ 402 static __always_inline int class_##_name##_ext##_lock_err(class_##_name##_t *_T) \ 403 { return class_##_name##_lock_err(_T); } 404 405/* 406 * Default binary condition; success on 'true'. 407 */ 408#define DEFINE_GUARD_COND_3(_name, _ext, _lock) \ 409 DEFINE_GUARD_COND_4(_name, _ext, _lock, _RET) 410 411#define DEFINE_GUARD_COND(X...) CONCATENATE(DEFINE_GUARD_COND_, COUNT_ARGS(X))(X) 412 413#define guard(_name) \ 414 CLASS(_name, __UNIQUE_ID(guard)) 415 416#define __guard_ptr(_name) class_##_name##_lock_ptr 417#define __guard_err(_name) class_##_name##_lock_err 418#define __is_cond_ptr(_name) class_##_name##_is_conditional 419 420#define ACQUIRE(_name, _var) CLASS(_name, _var) 421#define ACQUIRE_ERR(_name, _var) __guard_err(_name)(_var) 422 423/* 424 * Helper macro for scoped_guard(). 425 * 426 * Note that the "!__is_cond_ptr(_name)" part of the condition ensures that 427 * compiler would be sure that for the unconditional locks the body of the 428 * loop (caller-provided code glued to the else clause) could not be skipped. 429 * It is needed because the other part - "__guard_ptr(_name)(&scope)" - is too 430 * hard to deduce (even if could be proven true for unconditional locks). 431 */ 432#define __scoped_guard(_name, _label, args...) \ 433 for (CLASS(_name, scope)(args); \ 434 __guard_ptr(_name)(&scope) || !__is_cond_ptr(_name); \ 435 ({ goto _label; })) \ 436 if (0) { \ 437_label: \ 438 break; \ 439 } else 440 441#define scoped_guard(_name, args...) \ 442 __scoped_guard(_name, __UNIQUE_ID(label), args) 443 444#define __scoped_cond_guard(_name, _fail, _label, args...) \ 445 for (CLASS(_name, scope)(args); true; ({ goto _label; })) \ 446 if (!__guard_ptr(_name)(&scope)) { \ 447 BUILD_BUG_ON(!__is_cond_ptr(_name)); \ 448 _fail; \ 449_label: \ 450 break; \ 451 } else 452 453#define scoped_cond_guard(_name, _fail, args...) \ 454 __scoped_cond_guard(_name, _fail, __UNIQUE_ID(label), args) 455 456/* 457 * Additional helper macros for generating lock guards with types, either for 458 * locks that don't have a native type (eg. RCU, preempt) or those that need a 459 * 'fat' pointer (eg. spin_lock_irqsave). 460 * 461 * DEFINE_LOCK_GUARD_0(name, lock, unlock, ...) 462 * DEFINE_LOCK_GUARD_1(name, type, lock, unlock, ...) 463 * DEFINE_LOCK_GUARD_1_COND(name, ext, condlock) 464 * 465 * will result in the following type: 466 * 467 * typedef struct { 468 * type *lock; // 'type := void' for the _0 variant 469 * __VA_ARGS__; 470 * } class_##name##_t; 471 * 472 * As above, both _lock and _unlock are statements, except this time '_T' will 473 * be a pointer to the above struct. 474 */ 475 476#define __DEFINE_UNLOCK_GUARD(_name, _type, _unlock, ...) \ 477typedef struct { \ 478 _type *lock; \ 479 __VA_ARGS__; \ 480} class_##_name##_t; \ 481 \ 482static __always_inline void class_##_name##_destructor(class_##_name##_t *_T) \ 483{ \ 484 if (!__GUARD_IS_ERR(_T->lock)) { _unlock; } \ 485} \ 486 \ 487__DEFINE_GUARD_LOCK_PTR(_name, &_T->lock) 488 489#define __DEFINE_LOCK_GUARD_1(_name, _type, _lock) \ 490static __always_inline class_##_name##_t class_##_name##_constructor(_type *l) \ 491{ \ 492 class_##_name##_t _t = { .lock = l }, *_T = &_t; \ 493 _lock; \ 494 return _t; \ 495} 496 497#define __DEFINE_LOCK_GUARD_0(_name, _lock) \ 498static __always_inline class_##_name##_t class_##_name##_constructor(void) \ 499{ \ 500 class_##_name##_t _t = { .lock = (void*)1 }, \ 501 *_T __maybe_unused = &_t; \ 502 _lock; \ 503 return _t; \ 504} 505 506#define DEFINE_LOCK_GUARD_1(_name, _type, _lock, _unlock, ...) \ 507__DEFINE_CLASS_IS_CONDITIONAL(_name, false); \ 508__DEFINE_UNLOCK_GUARD(_name, _type, _unlock, __VA_ARGS__) \ 509__DEFINE_LOCK_GUARD_1(_name, _type, _lock) 510 511#define DEFINE_LOCK_GUARD_0(_name, _lock, _unlock, ...) \ 512__DEFINE_CLASS_IS_CONDITIONAL(_name, false); \ 513__DEFINE_UNLOCK_GUARD(_name, void, _unlock, __VA_ARGS__) \ 514__DEFINE_LOCK_GUARD_0(_name, _lock) 515 516#define DEFINE_LOCK_GUARD_1_COND_4(_name, _ext, _lock, _cond) \ 517 __DEFINE_CLASS_IS_CONDITIONAL(_name##_ext, true); \ 518 EXTEND_CLASS(_name, _ext, \ 519 ({ class_##_name##_t _t = { .lock = l }, *_T = &_t;\ 520 int _RET = (_lock); \ 521 if (_T->lock && !(_cond)) _T->lock = ERR_PTR(_RET);\ 522 _t; }), \ 523 typeof_member(class_##_name##_t, lock) l) \ 524 static __always_inline void * class_##_name##_ext##_lock_ptr(class_##_name##_t *_T) \ 525 { return class_##_name##_lock_ptr(_T); } \ 526 static __always_inline int class_##_name##_ext##_lock_err(class_##_name##_t *_T) \ 527 { return class_##_name##_lock_err(_T); } 528 529#define DEFINE_LOCK_GUARD_1_COND_3(_name, _ext, _lock) \ 530 DEFINE_LOCK_GUARD_1_COND_4(_name, _ext, _lock, _RET) 531 532#define DEFINE_LOCK_GUARD_1_COND(X...) CONCATENATE(DEFINE_LOCK_GUARD_1_COND_, COUNT_ARGS(X))(X) 533 534#endif /* _LINUX_CLEANUP_H */