at master 36 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-only */ 2/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 */ 4#ifndef _LINUX_BPF_VERIFIER_H 5#define _LINUX_BPF_VERIFIER_H 1 6 7#include <linux/bpf.h> /* for enum bpf_reg_type */ 8#include <linux/btf.h> /* for struct btf and btf_id() */ 9#include <linux/filter.h> /* for MAX_BPF_STACK */ 10#include <linux/tnum.h> 11 12/* Maximum variable offset umax_value permitted when resolving memory accesses. 13 * In practice this is far bigger than any realistic pointer offset; this limit 14 * ensures that umax_value + (int)off + (int)size cannot overflow a u64. 15 */ 16#define BPF_MAX_VAR_OFF (1 << 29) 17/* Maximum variable size permitted for ARG_CONST_SIZE[_OR_ZERO]. This ensures 18 * that converting umax_value to int cannot overflow. 19 */ 20#define BPF_MAX_VAR_SIZ (1 << 29) 21/* size of tmp_str_buf in bpf_verifier. 22 * we need at least 306 bytes to fit full stack mask representation 23 * (in the "-8,-16,...,-512" form) 24 */ 25#define TMP_STR_BUF_LEN 320 26/* Patch buffer size */ 27#define INSN_BUF_SIZE 32 28 29#define ITER_PREFIX "bpf_iter_" 30 31enum bpf_iter_state { 32 BPF_ITER_STATE_INVALID, /* for non-first slot */ 33 BPF_ITER_STATE_ACTIVE, 34 BPF_ITER_STATE_DRAINED, 35}; 36 37struct bpf_reg_state { 38 /* Ordering of fields matters. See states_equal() */ 39 enum bpf_reg_type type; 40 /* 41 * Fixed part of pointer offset, pointer types only. 42 * Or constant delta between "linked" scalars with the same ID. 43 */ 44 s32 off; 45 union { 46 /* valid when type == PTR_TO_PACKET */ 47 int range; 48 49 /* valid when type == CONST_PTR_TO_MAP | PTR_TO_MAP_VALUE | 50 * PTR_TO_MAP_VALUE_OR_NULL 51 */ 52 struct { 53 struct bpf_map *map_ptr; 54 /* To distinguish map lookups from outer map 55 * the map_uid is non-zero for registers 56 * pointing to inner maps. 57 */ 58 u32 map_uid; 59 }; 60 61 /* for PTR_TO_BTF_ID */ 62 struct { 63 struct btf *btf; 64 u32 btf_id; 65 }; 66 67 struct { /* for PTR_TO_MEM | PTR_TO_MEM_OR_NULL */ 68 u32 mem_size; 69 u32 dynptr_id; /* for dynptr slices */ 70 }; 71 72 /* For dynptr stack slots */ 73 struct { 74 enum bpf_dynptr_type type; 75 /* A dynptr is 16 bytes so it takes up 2 stack slots. 76 * We need to track which slot is the first slot 77 * to protect against cases where the user may try to 78 * pass in an address starting at the second slot of the 79 * dynptr. 80 */ 81 bool first_slot; 82 } dynptr; 83 84 /* For bpf_iter stack slots */ 85 struct { 86 /* BTF container and BTF type ID describing 87 * struct bpf_iter_<type> of an iterator state 88 */ 89 struct btf *btf; 90 u32 btf_id; 91 /* packing following two fields to fit iter state into 16 bytes */ 92 enum bpf_iter_state state:2; 93 int depth:30; 94 } iter; 95 96 /* For irq stack slots */ 97 struct { 98 enum { 99 IRQ_NATIVE_KFUNC, 100 IRQ_LOCK_KFUNC, 101 } kfunc_class; 102 } irq; 103 104 /* Max size from any of the above. */ 105 struct { 106 unsigned long raw1; 107 unsigned long raw2; 108 } raw; 109 110 u32 subprogno; /* for PTR_TO_FUNC */ 111 }; 112 /* For scalar types (SCALAR_VALUE), this represents our knowledge of 113 * the actual value. 114 * For pointer types, this represents the variable part of the offset 115 * from the pointed-to object, and is shared with all bpf_reg_states 116 * with the same id as us. 117 */ 118 struct tnum var_off; 119 /* Used to determine if any memory access using this register will 120 * result in a bad access. 121 * These refer to the same value as var_off, not necessarily the actual 122 * contents of the register. 123 */ 124 s64 smin_value; /* minimum possible (s64)value */ 125 s64 smax_value; /* maximum possible (s64)value */ 126 u64 umin_value; /* minimum possible (u64)value */ 127 u64 umax_value; /* maximum possible (u64)value */ 128 s32 s32_min_value; /* minimum possible (s32)value */ 129 s32 s32_max_value; /* maximum possible (s32)value */ 130 u32 u32_min_value; /* minimum possible (u32)value */ 131 u32 u32_max_value; /* maximum possible (u32)value */ 132 /* For PTR_TO_PACKET, used to find other pointers with the same variable 133 * offset, so they can share range knowledge. 134 * For PTR_TO_MAP_VALUE_OR_NULL this is used to share which map value we 135 * came from, when one is tested for != NULL. 136 * For PTR_TO_MEM_OR_NULL this is used to identify memory allocation 137 * for the purpose of tracking that it's freed. 138 * For PTR_TO_SOCKET this is used to share which pointers retain the 139 * same reference to the socket, to determine proper reference freeing. 140 * For stack slots that are dynptrs, this is used to track references to 141 * the dynptr to determine proper reference freeing. 142 * Similarly to dynptrs, we use ID to track "belonging" of a reference 143 * to a specific instance of bpf_iter. 144 */ 145 /* 146 * Upper bit of ID is used to remember relationship between "linked" 147 * registers. Example: 148 * r1 = r2; both will have r1->id == r2->id == N 149 * r1 += 10; r1->id == N | BPF_ADD_CONST and r1->off == 10 150 */ 151#define BPF_ADD_CONST (1U << 31) 152 u32 id; 153 /* PTR_TO_SOCKET and PTR_TO_TCP_SOCK could be a ptr returned 154 * from a pointer-cast helper, bpf_sk_fullsock() and 155 * bpf_tcp_sock(). 156 * 157 * Consider the following where "sk" is a reference counted 158 * pointer returned from "sk = bpf_sk_lookup_tcp();": 159 * 160 * 1: sk = bpf_sk_lookup_tcp(); 161 * 2: if (!sk) { return 0; } 162 * 3: fullsock = bpf_sk_fullsock(sk); 163 * 4: if (!fullsock) { bpf_sk_release(sk); return 0; } 164 * 5: tp = bpf_tcp_sock(fullsock); 165 * 6: if (!tp) { bpf_sk_release(sk); return 0; } 166 * 7: bpf_sk_release(sk); 167 * 8: snd_cwnd = tp->snd_cwnd; // verifier will complain 168 * 169 * After bpf_sk_release(sk) at line 7, both "fullsock" ptr and 170 * "tp" ptr should be invalidated also. In order to do that, 171 * the reg holding "fullsock" and "sk" need to remember 172 * the original refcounted ptr id (i.e. sk_reg->id) in ref_obj_id 173 * such that the verifier can reset all regs which have 174 * ref_obj_id matching the sk_reg->id. 175 * 176 * sk_reg->ref_obj_id is set to sk_reg->id at line 1. 177 * sk_reg->id will stay as NULL-marking purpose only. 178 * After NULL-marking is done, sk_reg->id can be reset to 0. 179 * 180 * After "fullsock = bpf_sk_fullsock(sk);" at line 3, 181 * fullsock_reg->ref_obj_id is set to sk_reg->ref_obj_id. 182 * 183 * After "tp = bpf_tcp_sock(fullsock);" at line 5, 184 * tp_reg->ref_obj_id is set to fullsock_reg->ref_obj_id 185 * which is the same as sk_reg->ref_obj_id. 186 * 187 * From the verifier perspective, if sk, fullsock and tp 188 * are not NULL, they are the same ptr with different 189 * reg->type. In particular, bpf_sk_release(tp) is also 190 * allowed and has the same effect as bpf_sk_release(sk). 191 */ 192 u32 ref_obj_id; 193 /* Inside the callee two registers can be both PTR_TO_STACK like 194 * R1=fp-8 and R2=fp-8, but one of them points to this function stack 195 * while another to the caller's stack. To differentiate them 'frameno' 196 * is used which is an index in bpf_verifier_state->frame[] array 197 * pointing to bpf_func_state. 198 */ 199 u32 frameno; 200 /* Tracks subreg definition. The stored value is the insn_idx of the 201 * writing insn. This is safe because subreg_def is used before any insn 202 * patching which only happens after main verification finished. 203 */ 204 s32 subreg_def; 205 /* if (!precise && SCALAR_VALUE) min/max/tnum don't affect safety */ 206 bool precise; 207}; 208 209enum bpf_stack_slot_type { 210 STACK_INVALID, /* nothing was stored in this stack slot */ 211 STACK_SPILL, /* register spilled into stack */ 212 STACK_MISC, /* BPF program wrote some data into this slot */ 213 STACK_ZERO, /* BPF program wrote constant zero */ 214 /* A dynptr is stored in this stack slot. The type of dynptr 215 * is stored in bpf_stack_state->spilled_ptr.dynptr.type 216 */ 217 STACK_DYNPTR, 218 STACK_ITER, 219 STACK_IRQ_FLAG, 220}; 221 222#define BPF_REG_SIZE 8 /* size of eBPF register in bytes */ 223 224#define BPF_REGMASK_ARGS ((1 << BPF_REG_1) | (1 << BPF_REG_2) | \ 225 (1 << BPF_REG_3) | (1 << BPF_REG_4) | \ 226 (1 << BPF_REG_5)) 227 228#define BPF_DYNPTR_SIZE sizeof(struct bpf_dynptr_kern) 229#define BPF_DYNPTR_NR_SLOTS (BPF_DYNPTR_SIZE / BPF_REG_SIZE) 230 231struct bpf_stack_state { 232 struct bpf_reg_state spilled_ptr; 233 u8 slot_type[BPF_REG_SIZE]; 234}; 235 236struct bpf_reference_state { 237 /* Each reference object has a type. Ensure REF_TYPE_PTR is zero to 238 * default to pointer reference on zero initialization of a state. 239 */ 240 enum ref_state_type { 241 REF_TYPE_PTR = (1 << 1), 242 REF_TYPE_IRQ = (1 << 2), 243 REF_TYPE_LOCK = (1 << 3), 244 REF_TYPE_RES_LOCK = (1 << 4), 245 REF_TYPE_RES_LOCK_IRQ = (1 << 5), 246 REF_TYPE_LOCK_MASK = REF_TYPE_LOCK | REF_TYPE_RES_LOCK | REF_TYPE_RES_LOCK_IRQ, 247 } type; 248 /* Track each reference created with a unique id, even if the same 249 * instruction creates the reference multiple times (eg, via CALL). 250 */ 251 int id; 252 /* Instruction where the allocation of this reference occurred. This 253 * is used purely to inform the user of a reference leak. 254 */ 255 int insn_idx; 256 /* Use to keep track of the source object of a lock, to ensure 257 * it matches on unlock. 258 */ 259 void *ptr; 260}; 261 262struct bpf_retval_range { 263 s32 minval; 264 s32 maxval; 265}; 266 267/* state of the program: 268 * type of all registers and stack info 269 */ 270struct bpf_func_state { 271 struct bpf_reg_state regs[MAX_BPF_REG]; 272 /* index of call instruction that called into this func */ 273 int callsite; 274 /* stack frame number of this function state from pov of 275 * enclosing bpf_verifier_state. 276 * 0 = main function, 1 = first callee. 277 */ 278 u32 frameno; 279 /* subprog number == index within subprog_info 280 * zero == main subprog 281 */ 282 u32 subprogno; 283 /* Every bpf_timer_start will increment async_entry_cnt. 284 * It's used to distinguish: 285 * void foo(void) { for(;;); } 286 * void foo(void) { bpf_timer_set_callback(,foo); } 287 */ 288 u32 async_entry_cnt; 289 struct bpf_retval_range callback_ret_range; 290 bool in_callback_fn; 291 bool in_async_callback_fn; 292 bool in_exception_callback_fn; 293 /* For callback calling functions that limit number of possible 294 * callback executions (e.g. bpf_loop) keeps track of current 295 * simulated iteration number. 296 * Value in frame N refers to number of times callback with frame 297 * N+1 was simulated, e.g. for the following call: 298 * 299 * bpf_loop(..., fn, ...); | suppose current frame is N 300 * | fn would be simulated in frame N+1 301 * | number of simulations is tracked in frame N 302 */ 303 u32 callback_depth; 304 305 /* The following fields should be last. See copy_func_state() */ 306 /* The state of the stack. Each element of the array describes BPF_REG_SIZE 307 * (i.e. 8) bytes worth of stack memory. 308 * stack[0] represents bytes [*(r10-8)..*(r10-1)] 309 * stack[1] represents bytes [*(r10-16)..*(r10-9)] 310 * ... 311 * stack[allocated_stack/8 - 1] represents [*(r10-allocated_stack)..*(r10-allocated_stack+7)] 312 */ 313 struct bpf_stack_state *stack; 314 /* Size of the current stack, in bytes. The stack state is tracked below, in 315 * `stack`. allocated_stack is always a multiple of BPF_REG_SIZE. 316 */ 317 int allocated_stack; 318}; 319 320#define MAX_CALL_FRAMES 8 321 322/* instruction history flags, used in bpf_jmp_history_entry.flags field */ 323enum { 324 /* instruction references stack slot through PTR_TO_STACK register; 325 * we also store stack's frame number in lower 3 bits (MAX_CALL_FRAMES is 8) 326 * and accessed stack slot's index in next 6 bits (MAX_BPF_STACK is 512, 327 * 8 bytes per slot, so slot index (spi) is [0, 63]) 328 */ 329 INSN_F_FRAMENO_MASK = 0x7, /* 3 bits */ 330 331 INSN_F_SPI_MASK = 0x3f, /* 6 bits */ 332 INSN_F_SPI_SHIFT = 3, /* shifted 3 bits to the left */ 333 334 INSN_F_STACK_ACCESS = BIT(9), 335 336 INSN_F_DST_REG_STACK = BIT(10), /* dst_reg is PTR_TO_STACK */ 337 INSN_F_SRC_REG_STACK = BIT(11), /* src_reg is PTR_TO_STACK */ 338 /* total 12 bits are used now. */ 339}; 340 341static_assert(INSN_F_FRAMENO_MASK + 1 >= MAX_CALL_FRAMES); 342static_assert(INSN_F_SPI_MASK + 1 >= MAX_BPF_STACK / 8); 343 344struct bpf_jmp_history_entry { 345 u32 idx; 346 /* insn idx can't be bigger than 1 million */ 347 u32 prev_idx : 20; 348 /* special INSN_F_xxx flags */ 349 u32 flags : 12; 350 /* additional registers that need precision tracking when this 351 * jump is backtracked, vector of six 10-bit records 352 */ 353 u64 linked_regs; 354}; 355 356/* Maximum number of register states that can exist at once */ 357#define BPF_ID_MAP_SIZE ((MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE) * MAX_CALL_FRAMES) 358struct bpf_verifier_state { 359 /* call stack tracking */ 360 struct bpf_func_state *frame[MAX_CALL_FRAMES]; 361 struct bpf_verifier_state *parent; 362 /* Acquired reference states */ 363 struct bpf_reference_state *refs; 364 /* 365 * 'branches' field is the number of branches left to explore: 366 * 0 - all possible paths from this state reached bpf_exit or 367 * were safely pruned 368 * 1 - at least one path is being explored. 369 * This state hasn't reached bpf_exit 370 * 2 - at least two paths are being explored. 371 * This state is an immediate parent of two children. 372 * One is fallthrough branch with branches==1 and another 373 * state is pushed into stack (to be explored later) also with 374 * branches==1. The parent of this state has branches==1. 375 * The verifier state tree connected via 'parent' pointer looks like: 376 * 1 377 * 1 378 * 2 -> 1 (first 'if' pushed into stack) 379 * 1 380 * 2 -> 1 (second 'if' pushed into stack) 381 * 1 382 * 1 383 * 1 bpf_exit. 384 * 385 * Once do_check() reaches bpf_exit, it calls update_branch_counts() 386 * and the verifier state tree will look: 387 * 1 388 * 1 389 * 2 -> 1 (first 'if' pushed into stack) 390 * 1 391 * 1 -> 1 (second 'if' pushed into stack) 392 * 0 393 * 0 394 * 0 bpf_exit. 395 * After pop_stack() the do_check() will resume at second 'if'. 396 * 397 * If is_state_visited() sees a state with branches > 0 it means 398 * there is a loop. If such state is exactly equal to the current state 399 * it's an infinite loop. Note states_equal() checks for states 400 * equivalency, so two states being 'states_equal' does not mean 401 * infinite loop. The exact comparison is provided by 402 * states_maybe_looping() function. It's a stronger pre-check and 403 * much faster than states_equal(). 404 * 405 * This algorithm may not find all possible infinite loops or 406 * loop iteration count may be too high. 407 * In such cases BPF_COMPLEXITY_LIMIT_INSNS limit kicks in. 408 */ 409 u32 branches; 410 u32 insn_idx; 411 u32 curframe; 412 413 u32 acquired_refs; 414 u32 active_locks; 415 u32 active_preempt_locks; 416 u32 active_irq_id; 417 u32 active_lock_id; 418 void *active_lock_ptr; 419 u32 active_rcu_locks; 420 421 bool speculative; 422 bool in_sleepable; 423 bool cleaned; 424 425 /* first and last insn idx of this verifier state */ 426 u32 first_insn_idx; 427 u32 last_insn_idx; 428 /* if this state is a backedge state then equal_state 429 * records cached state to which this state is equal. 430 */ 431 struct bpf_verifier_state *equal_state; 432 /* jmp history recorded from first to last. 433 * backtracking is using it to go from last to first. 434 * For most states jmp_history_cnt is [0-3]. 435 * For loops can go up to ~40. 436 */ 437 struct bpf_jmp_history_entry *jmp_history; 438 u32 jmp_history_cnt; 439 u32 dfs_depth; 440 u32 callback_unroll_depth; 441 u32 may_goto_depth; 442}; 443 444#define bpf_get_spilled_reg(slot, frame, mask) \ 445 (((slot < frame->allocated_stack / BPF_REG_SIZE) && \ 446 ((1 << frame->stack[slot].slot_type[BPF_REG_SIZE - 1]) & (mask))) \ 447 ? &frame->stack[slot].spilled_ptr : NULL) 448 449/* Iterate over 'frame', setting 'reg' to either NULL or a spilled register. */ 450#define bpf_for_each_spilled_reg(iter, frame, reg, mask) \ 451 for (iter = 0, reg = bpf_get_spilled_reg(iter, frame, mask); \ 452 iter < frame->allocated_stack / BPF_REG_SIZE; \ 453 iter++, reg = bpf_get_spilled_reg(iter, frame, mask)) 454 455#define bpf_for_each_reg_in_vstate_mask(__vst, __state, __reg, __mask, __expr) \ 456 ({ \ 457 struct bpf_verifier_state *___vstate = __vst; \ 458 int ___i, ___j; \ 459 for (___i = 0; ___i <= ___vstate->curframe; ___i++) { \ 460 struct bpf_reg_state *___regs; \ 461 __state = ___vstate->frame[___i]; \ 462 ___regs = __state->regs; \ 463 for (___j = 0; ___j < MAX_BPF_REG; ___j++) { \ 464 __reg = &___regs[___j]; \ 465 (void)(__expr); \ 466 } \ 467 bpf_for_each_spilled_reg(___j, __state, __reg, __mask) { \ 468 if (!__reg) \ 469 continue; \ 470 (void)(__expr); \ 471 } \ 472 } \ 473 }) 474 475/* Invoke __expr over regsiters in __vst, setting __state and __reg */ 476#define bpf_for_each_reg_in_vstate(__vst, __state, __reg, __expr) \ 477 bpf_for_each_reg_in_vstate_mask(__vst, __state, __reg, 1 << STACK_SPILL, __expr) 478 479/* linked list of verifier states used to prune search */ 480struct bpf_verifier_state_list { 481 struct bpf_verifier_state state; 482 struct list_head node; 483 u32 miss_cnt; 484 u32 hit_cnt:31; 485 u32 in_free_list:1; 486}; 487 488struct bpf_loop_inline_state { 489 unsigned int initialized:1; /* set to true upon first entry */ 490 unsigned int fit_for_inline:1; /* true if callback function is the same 491 * at each call and flags are always zero 492 */ 493 u32 callback_subprogno; /* valid when fit_for_inline is true */ 494}; 495 496/* pointer and state for maps */ 497struct bpf_map_ptr_state { 498 struct bpf_map *map_ptr; 499 bool poison; 500 bool unpriv; 501}; 502 503/* Possible states for alu_state member. */ 504#define BPF_ALU_SANITIZE_SRC (1U << 0) 505#define BPF_ALU_SANITIZE_DST (1U << 1) 506#define BPF_ALU_NEG_VALUE (1U << 2) 507#define BPF_ALU_NON_POINTER (1U << 3) 508#define BPF_ALU_IMMEDIATE (1U << 4) 509#define BPF_ALU_SANITIZE (BPF_ALU_SANITIZE_SRC | \ 510 BPF_ALU_SANITIZE_DST) 511 512/* 513 * An array of BPF instructions. 514 * Primary usage: return value of bpf_insn_successors. 515 */ 516struct bpf_iarray { 517 int cnt; 518 u32 items[]; 519}; 520 521struct bpf_insn_aux_data { 522 union { 523 enum bpf_reg_type ptr_type; /* pointer type for load/store insns */ 524 struct bpf_map_ptr_state map_ptr_state; 525 s32 call_imm; /* saved imm field of call insn */ 526 u32 alu_limit; /* limit for add/sub register with pointer */ 527 struct { 528 u32 map_index; /* index into used_maps[] */ 529 u32 map_off; /* offset from value base address */ 530 }; 531 struct { 532 enum bpf_reg_type reg_type; /* type of pseudo_btf_id */ 533 union { 534 struct { 535 struct btf *btf; 536 u32 btf_id; /* btf_id for struct typed var */ 537 }; 538 u32 mem_size; /* mem_size for non-struct typed var */ 539 }; 540 } btf_var; 541 /* if instruction is a call to bpf_loop this field tracks 542 * the state of the relevant registers to make decision about inlining 543 */ 544 struct bpf_loop_inline_state loop_inline_state; 545 }; 546 union { 547 /* remember the size of type passed to bpf_obj_new to rewrite R1 */ 548 u64 obj_new_size; 549 /* remember the offset of node field within type to rewrite */ 550 u64 insert_off; 551 }; 552 struct bpf_iarray *jt; /* jump table for gotox or bpf_tailcall call instruction */ 553 struct btf_struct_meta *kptr_struct_meta; 554 u64 map_key_state; /* constant (32 bit) key tracking for maps */ 555 int ctx_field_size; /* the ctx field size for load insn, maybe 0 */ 556 u32 seen; /* this insn was processed by the verifier at env->pass_cnt */ 557 bool nospec; /* do not execute this instruction speculatively */ 558 bool nospec_result; /* result is unsafe under speculation, nospec must follow */ 559 bool zext_dst; /* this insn zero extends dst reg */ 560 bool needs_zext; /* alu op needs to clear upper bits */ 561 bool non_sleepable; /* helper/kfunc may be called from non-sleepable context */ 562 bool is_iter_next; /* bpf_iter_<type>_next() kfunc call */ 563 bool call_with_percpu_alloc_ptr; /* {this,per}_cpu_ptr() with prog percpu alloc */ 564 u8 alu_state; /* used in combination with alu_limit */ 565 /* true if STX or LDX instruction is a part of a spill/fill 566 * pattern for a bpf_fastcall call. 567 */ 568 u8 fastcall_pattern:1; 569 /* for CALL instructions, a number of spill/fill pairs in the 570 * bpf_fastcall pattern. 571 */ 572 u8 fastcall_spills_num:3; 573 u8 arg_prog:4; 574 575 /* below fields are initialized once */ 576 unsigned int orig_idx; /* original instruction index */ 577 bool jmp_point; 578 bool prune_point; 579 /* ensure we check state equivalence and save state checkpoint and 580 * this instruction, regardless of any heuristics 581 */ 582 bool force_checkpoint; 583 /* true if instruction is a call to a helper function that 584 * accepts callback function as a parameter. 585 */ 586 bool calls_callback; 587 /* 588 * CFG strongly connected component this instruction belongs to, 589 * zero if it is a singleton SCC. 590 */ 591 u32 scc; 592 /* registers alive before this instruction. */ 593 u16 live_regs_before; 594}; 595 596#define MAX_USED_MAPS 64 /* max number of maps accessed by one eBPF program */ 597#define MAX_USED_BTFS 64 /* max number of BTFs accessed by one BPF program */ 598 599#define BPF_VERIFIER_TMP_LOG_SIZE 1024 600 601struct bpf_verifier_log { 602 /* Logical start and end positions of a "log window" of the verifier log. 603 * start_pos == 0 means we haven't truncated anything. 604 * Once truncation starts to happen, start_pos + len_total == end_pos, 605 * except during log reset situations, in which (end_pos - start_pos) 606 * might get smaller than len_total (see bpf_vlog_reset()). 607 * Generally, (end_pos - start_pos) gives number of useful data in 608 * user log buffer. 609 */ 610 u64 start_pos; 611 u64 end_pos; 612 char __user *ubuf; 613 u32 level; 614 u32 len_total; 615 u32 len_max; 616 char kbuf[BPF_VERIFIER_TMP_LOG_SIZE]; 617}; 618 619#define BPF_LOG_LEVEL1 1 620#define BPF_LOG_LEVEL2 2 621#define BPF_LOG_STATS 4 622#define BPF_LOG_FIXED 8 623#define BPF_LOG_LEVEL (BPF_LOG_LEVEL1 | BPF_LOG_LEVEL2) 624#define BPF_LOG_MASK (BPF_LOG_LEVEL | BPF_LOG_STATS | BPF_LOG_FIXED) 625#define BPF_LOG_KERNEL (BPF_LOG_MASK + 1) /* kernel internal flag */ 626#define BPF_LOG_MIN_ALIGNMENT 8U 627#define BPF_LOG_ALIGNMENT 40U 628 629static inline bool bpf_verifier_log_needed(const struct bpf_verifier_log *log) 630{ 631 return log && log->level; 632} 633 634#define BPF_MAX_SUBPROGS 256 635 636struct bpf_subprog_arg_info { 637 enum bpf_arg_type arg_type; 638 union { 639 u32 mem_size; 640 u32 btf_id; 641 }; 642}; 643 644enum priv_stack_mode { 645 PRIV_STACK_UNKNOWN, 646 NO_PRIV_STACK, 647 PRIV_STACK_ADAPTIVE, 648}; 649 650struct bpf_subprog_info { 651 /* 'start' has to be the first field otherwise find_subprog() won't work */ 652 u32 start; /* insn idx of function entry point */ 653 u32 linfo_idx; /* The idx to the main_prog->aux->linfo */ 654 u32 postorder_start; /* The idx to the env->cfg.insn_postorder */ 655 u32 exit_idx; /* Index of one of the BPF_EXIT instructions in this subprogram */ 656 u16 stack_depth; /* max. stack depth used by this function */ 657 u16 stack_extra; 658 /* offsets in range [stack_depth .. fastcall_stack_off) 659 * are used for bpf_fastcall spills and fills. 660 */ 661 s16 fastcall_stack_off; 662 bool has_tail_call: 1; 663 bool tail_call_reachable: 1; 664 bool has_ld_abs: 1; 665 bool is_cb: 1; 666 bool is_async_cb: 1; 667 bool is_exception_cb: 1; 668 bool args_cached: 1; 669 /* true if bpf_fastcall stack region is used by functions that can't be inlined */ 670 bool keep_fastcall_stack: 1; 671 bool changes_pkt_data: 1; 672 bool might_sleep: 1; 673 u8 arg_cnt:3; 674 675 enum priv_stack_mode priv_stack_mode; 676 struct bpf_subprog_arg_info args[MAX_BPF_FUNC_REG_ARGS]; 677}; 678 679struct bpf_verifier_env; 680 681struct backtrack_state { 682 struct bpf_verifier_env *env; 683 u32 frame; 684 u32 reg_masks[MAX_CALL_FRAMES]; 685 u64 stack_masks[MAX_CALL_FRAMES]; 686}; 687 688struct bpf_id_pair { 689 u32 old; 690 u32 cur; 691}; 692 693struct bpf_idmap { 694 u32 tmp_id_gen; 695 struct bpf_id_pair map[BPF_ID_MAP_SIZE]; 696}; 697 698struct bpf_idset { 699 u32 count; 700 u32 ids[BPF_ID_MAP_SIZE]; 701}; 702 703/* see verifier.c:compute_scc_callchain() */ 704struct bpf_scc_callchain { 705 /* call sites from bpf_verifier_state->frame[*]->callsite leading to this SCC */ 706 u32 callsites[MAX_CALL_FRAMES - 1]; 707 /* last frame in a chain is identified by SCC id */ 708 u32 scc; 709}; 710 711/* verifier state waiting for propagate_backedges() */ 712struct bpf_scc_backedge { 713 struct bpf_scc_backedge *next; 714 struct bpf_verifier_state state; 715}; 716 717struct bpf_scc_visit { 718 struct bpf_scc_callchain callchain; 719 /* first state in current verification path that entered SCC 720 * identified by the callchain 721 */ 722 struct bpf_verifier_state *entry_state; 723 struct bpf_scc_backedge *backedges; /* list of backedges */ 724 u32 num_backedges; 725}; 726 727/* An array of bpf_scc_visit structs sharing tht same bpf_scc_callchain->scc 728 * but having different bpf_scc_callchain->callsites. 729 */ 730struct bpf_scc_info { 731 u32 num_visits; 732 struct bpf_scc_visit visits[]; 733}; 734 735struct bpf_liveness; 736 737/* single container for all structs 738 * one verifier_env per bpf_check() call 739 */ 740struct bpf_verifier_env { 741 u32 insn_idx; 742 u32 prev_insn_idx; 743 struct bpf_prog *prog; /* eBPF program being verified */ 744 const struct bpf_verifier_ops *ops; 745 struct module *attach_btf_mod; /* The owner module of prog->aux->attach_btf */ 746 struct bpf_verifier_stack_elem *head; /* stack of verifier states to be processed */ 747 int stack_size; /* number of states to be processed */ 748 bool strict_alignment; /* perform strict pointer alignment checks */ 749 bool test_state_freq; /* test verifier with different pruning frequency */ 750 bool test_reg_invariants; /* fail verification on register invariants violations */ 751 struct bpf_verifier_state *cur_state; /* current verifier state */ 752 /* Search pruning optimization, array of list_heads for 753 * lists of struct bpf_verifier_state_list. 754 */ 755 struct list_head *explored_states; 756 struct list_head free_list; /* list of struct bpf_verifier_state_list */ 757 struct bpf_map *used_maps[MAX_USED_MAPS]; /* array of map's used by eBPF program */ 758 struct btf_mod_pair used_btfs[MAX_USED_BTFS]; /* array of BTF's used by BPF program */ 759 struct bpf_map *insn_array_maps[MAX_USED_MAPS]; /* array of INSN_ARRAY map's to be relocated */ 760 u32 used_map_cnt; /* number of used maps */ 761 u32 used_btf_cnt; /* number of used BTF objects */ 762 u32 insn_array_map_cnt; /* number of used maps of type BPF_MAP_TYPE_INSN_ARRAY */ 763 u32 id_gen; /* used to generate unique reg IDs */ 764 u32 hidden_subprog_cnt; /* number of hidden subprogs */ 765 int exception_callback_subprog; 766 bool explore_alu_limits; 767 bool allow_ptr_leaks; 768 /* Allow access to uninitialized stack memory. Writes with fixed offset are 769 * always allowed, so this refers to reads (with fixed or variable offset), 770 * to writes with variable offset and to indirect (helper) accesses. 771 */ 772 bool allow_uninit_stack; 773 bool bpf_capable; 774 bool bypass_spec_v1; 775 bool bypass_spec_v4; 776 bool seen_direct_write; 777 bool seen_exception; 778 struct bpf_insn_aux_data *insn_aux_data; /* array of per-insn state */ 779 const struct bpf_line_info *prev_linfo; 780 struct bpf_verifier_log log; 781 struct bpf_subprog_info subprog_info[BPF_MAX_SUBPROGS + 2]; /* max + 2 for the fake and exception subprogs */ 782 union { 783 struct bpf_idmap idmap_scratch; 784 struct bpf_idset idset_scratch; 785 }; 786 struct { 787 int *insn_state; 788 int *insn_stack; 789 /* 790 * vector of instruction indexes sorted in post-order, grouped by subprogram, 791 * see bpf_subprog_info->postorder_start. 792 */ 793 int *insn_postorder; 794 int cur_stack; 795 /* current position in the insn_postorder vector */ 796 int cur_postorder; 797 } cfg; 798 struct backtrack_state bt; 799 struct bpf_jmp_history_entry *cur_hist_ent; 800 u32 pass_cnt; /* number of times do_check() was called */ 801 u32 subprog_cnt; 802 /* number of instructions analyzed by the verifier */ 803 u32 prev_insn_processed, insn_processed; 804 /* number of jmps, calls, exits analyzed so far */ 805 u32 prev_jmps_processed, jmps_processed; 806 /* total verification time */ 807 u64 verification_time; 808 /* maximum number of verifier states kept in 'branching' instructions */ 809 u32 max_states_per_insn; 810 /* total number of allocated verifier states */ 811 u32 total_states; 812 /* some states are freed during program analysis. 813 * this is peak number of states. this number dominates kernel 814 * memory consumption during verification 815 */ 816 u32 peak_states; 817 /* longest register parentage chain walked for liveness marking */ 818 u32 longest_mark_read_walk; 819 u32 free_list_size; 820 u32 explored_states_size; 821 u32 num_backedges; 822 bpfptr_t fd_array; 823 824 /* bit mask to keep track of whether a register has been accessed 825 * since the last time the function state was printed 826 */ 827 u32 scratched_regs; 828 /* Same as scratched_regs but for stack slots */ 829 u64 scratched_stack_slots; 830 u64 prev_log_pos, prev_insn_print_pos; 831 /* buffer used to temporary hold constants as scalar registers */ 832 struct bpf_reg_state fake_reg[2]; 833 /* buffer used to generate temporary string representations, 834 * e.g., in reg_type_str() to generate reg_type string 835 */ 836 char tmp_str_buf[TMP_STR_BUF_LEN]; 837 struct bpf_insn insn_buf[INSN_BUF_SIZE]; 838 struct bpf_insn epilogue_buf[INSN_BUF_SIZE]; 839 struct bpf_scc_callchain callchain_buf; 840 struct bpf_liveness *liveness; 841 /* array of pointers to bpf_scc_info indexed by SCC id */ 842 struct bpf_scc_info **scc_info; 843 u32 scc_cnt; 844 struct bpf_iarray *succ; 845 struct bpf_iarray *gotox_tmp_buf; 846}; 847 848static inline struct bpf_func_info_aux *subprog_aux(struct bpf_verifier_env *env, int subprog) 849{ 850 return &env->prog->aux->func_info_aux[subprog]; 851} 852 853static inline struct bpf_subprog_info *subprog_info(struct bpf_verifier_env *env, int subprog) 854{ 855 return &env->subprog_info[subprog]; 856} 857 858__printf(2, 0) void bpf_verifier_vlog(struct bpf_verifier_log *log, 859 const char *fmt, va_list args); 860__printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, 861 const char *fmt, ...); 862__printf(2, 3) void bpf_log(struct bpf_verifier_log *log, 863 const char *fmt, ...); 864int bpf_vlog_init(struct bpf_verifier_log *log, u32 log_level, 865 char __user *log_buf, u32 log_size); 866void bpf_vlog_reset(struct bpf_verifier_log *log, u64 new_pos); 867int bpf_vlog_finalize(struct bpf_verifier_log *log, u32 *log_size_actual); 868 869__printf(3, 4) void verbose_linfo(struct bpf_verifier_env *env, 870 u32 insn_off, 871 const char *prefix_fmt, ...); 872 873#define verifier_bug_if(cond, env, fmt, args...) \ 874 ({ \ 875 bool __cond = (cond); \ 876 if (unlikely(__cond)) \ 877 verifier_bug(env, fmt " (" #cond ")", ##args); \ 878 (__cond); \ 879 }) 880#define verifier_bug(env, fmt, args...) \ 881 ({ \ 882 BPF_WARN_ONCE(1, "verifier bug: " fmt "\n", ##args); \ 883 bpf_log(&env->log, "verifier bug: " fmt "\n", ##args); \ 884 }) 885 886static inline struct bpf_func_state *cur_func(struct bpf_verifier_env *env) 887{ 888 struct bpf_verifier_state *cur = env->cur_state; 889 890 return cur->frame[cur->curframe]; 891} 892 893static inline struct bpf_reg_state *cur_regs(struct bpf_verifier_env *env) 894{ 895 return cur_func(env)->regs; 896} 897 898int bpf_prog_offload_verifier_prep(struct bpf_prog *prog); 899int bpf_prog_offload_verify_insn(struct bpf_verifier_env *env, 900 int insn_idx, int prev_insn_idx); 901int bpf_prog_offload_finalize(struct bpf_verifier_env *env); 902void 903bpf_prog_offload_replace_insn(struct bpf_verifier_env *env, u32 off, 904 struct bpf_insn *insn); 905void 906bpf_prog_offload_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt); 907 908/* this lives here instead of in bpf.h because it needs to dereference tgt_prog */ 909static inline u64 bpf_trampoline_compute_key(const struct bpf_prog *tgt_prog, 910 struct btf *btf, u32 btf_id) 911{ 912 if (tgt_prog) 913 return ((u64)tgt_prog->aux->id << 32) | btf_id; 914 else 915 return ((u64)btf_obj_id(btf) << 32) | 0x80000000 | btf_id; 916} 917 918/* unpack the IDs from the key as constructed above */ 919static inline void bpf_trampoline_unpack_key(u64 key, u32 *obj_id, u32 *btf_id) 920{ 921 if (obj_id) 922 *obj_id = key >> 32; 923 if (btf_id) 924 *btf_id = key & 0x7FFFFFFF; 925} 926 927int bpf_check_attach_target(struct bpf_verifier_log *log, 928 const struct bpf_prog *prog, 929 const struct bpf_prog *tgt_prog, 930 u32 btf_id, 931 struct bpf_attach_target_info *tgt_info); 932void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab); 933 934int mark_chain_precision(struct bpf_verifier_env *env, int regno); 935 936#define BPF_BASE_TYPE_MASK GENMASK(BPF_BASE_TYPE_BITS - 1, 0) 937 938/* extract base type from bpf_{arg, return, reg}_type. */ 939static inline u32 base_type(u32 type) 940{ 941 return type & BPF_BASE_TYPE_MASK; 942} 943 944/* extract flags from an extended type. See bpf_type_flag in bpf.h. */ 945static inline u32 type_flag(u32 type) 946{ 947 return type & ~BPF_BASE_TYPE_MASK; 948} 949 950/* only use after check_attach_btf_id() */ 951static inline enum bpf_prog_type resolve_prog_type(const struct bpf_prog *prog) 952{ 953 return (prog->type == BPF_PROG_TYPE_EXT && prog->aux->saved_dst_prog_type) ? 954 prog->aux->saved_dst_prog_type : prog->type; 955} 956 957static inline bool bpf_prog_check_recur(const struct bpf_prog *prog) 958{ 959 switch (resolve_prog_type(prog)) { 960 case BPF_PROG_TYPE_TRACING: 961 return prog->expected_attach_type != BPF_TRACE_ITER; 962 case BPF_PROG_TYPE_STRUCT_OPS: 963 return prog->aux->jits_use_priv_stack; 964 case BPF_PROG_TYPE_LSM: 965 case BPF_PROG_TYPE_SYSCALL: 966 return false; 967 default: 968 return true; 969 } 970} 971 972#define BPF_REG_TRUSTED_MODIFIERS (MEM_ALLOC | PTR_TRUSTED | NON_OWN_REF) 973 974static inline bool bpf_type_has_unsafe_modifiers(u32 type) 975{ 976 return type_flag(type) & ~BPF_REG_TRUSTED_MODIFIERS; 977} 978 979static inline bool type_is_ptr_alloc_obj(u32 type) 980{ 981 return base_type(type) == PTR_TO_BTF_ID && type_flag(type) & MEM_ALLOC; 982} 983 984static inline bool type_is_non_owning_ref(u32 type) 985{ 986 return type_is_ptr_alloc_obj(type) && type_flag(type) & NON_OWN_REF; 987} 988 989static inline bool type_is_pkt_pointer(enum bpf_reg_type type) 990{ 991 type = base_type(type); 992 return type == PTR_TO_PACKET || 993 type == PTR_TO_PACKET_META; 994} 995 996static inline bool type_is_sk_pointer(enum bpf_reg_type type) 997{ 998 return type == PTR_TO_SOCKET || 999 type == PTR_TO_SOCK_COMMON || 1000 type == PTR_TO_TCP_SOCK || 1001 type == PTR_TO_XDP_SOCK; 1002} 1003 1004static inline bool type_may_be_null(u32 type) 1005{ 1006 return type & PTR_MAYBE_NULL; 1007} 1008 1009static inline void mark_reg_scratched(struct bpf_verifier_env *env, u32 regno) 1010{ 1011 env->scratched_regs |= 1U << regno; 1012} 1013 1014static inline void mark_stack_slot_scratched(struct bpf_verifier_env *env, u32 spi) 1015{ 1016 env->scratched_stack_slots |= 1ULL << spi; 1017} 1018 1019static inline bool reg_scratched(const struct bpf_verifier_env *env, u32 regno) 1020{ 1021 return (env->scratched_regs >> regno) & 1; 1022} 1023 1024static inline bool stack_slot_scratched(const struct bpf_verifier_env *env, u64 regno) 1025{ 1026 return (env->scratched_stack_slots >> regno) & 1; 1027} 1028 1029static inline bool verifier_state_scratched(const struct bpf_verifier_env *env) 1030{ 1031 return env->scratched_regs || env->scratched_stack_slots; 1032} 1033 1034static inline void mark_verifier_state_clean(struct bpf_verifier_env *env) 1035{ 1036 env->scratched_regs = 0U; 1037 env->scratched_stack_slots = 0ULL; 1038} 1039 1040/* Used for printing the entire verifier state. */ 1041static inline void mark_verifier_state_scratched(struct bpf_verifier_env *env) 1042{ 1043 env->scratched_regs = ~0U; 1044 env->scratched_stack_slots = ~0ULL; 1045} 1046 1047static inline bool bpf_stack_narrow_access_ok(int off, int fill_size, int spill_size) 1048{ 1049#ifdef __BIG_ENDIAN 1050 off -= spill_size - fill_size; 1051#endif 1052 1053 return !(off % BPF_REG_SIZE); 1054} 1055 1056static inline bool insn_is_gotox(struct bpf_insn *insn) 1057{ 1058 return BPF_CLASS(insn->code) == BPF_JMP && 1059 BPF_OP(insn->code) == BPF_JA && 1060 BPF_SRC(insn->code) == BPF_X; 1061} 1062 1063const char *reg_type_str(struct bpf_verifier_env *env, enum bpf_reg_type type); 1064const char *dynptr_type_str(enum bpf_dynptr_type type); 1065const char *iter_type_str(const struct btf *btf, u32 btf_id); 1066const char *iter_state_str(enum bpf_iter_state state); 1067 1068void print_verifier_state(struct bpf_verifier_env *env, const struct bpf_verifier_state *vstate, 1069 u32 frameno, bool print_all); 1070void print_insn_state(struct bpf_verifier_env *env, const struct bpf_verifier_state *vstate, 1071 u32 frameno); 1072 1073struct bpf_subprog_info *bpf_find_containing_subprog(struct bpf_verifier_env *env, int off); 1074int bpf_jmp_offset(struct bpf_insn *insn); 1075struct bpf_iarray *bpf_insn_successors(struct bpf_verifier_env *env, u32 idx); 1076void bpf_fmt_stack_mask(char *buf, ssize_t buf_sz, u64 stack_mask); 1077bool bpf_calls_callback(struct bpf_verifier_env *env, int insn_idx); 1078 1079int bpf_stack_liveness_init(struct bpf_verifier_env *env); 1080void bpf_stack_liveness_free(struct bpf_verifier_env *env); 1081int bpf_update_live_stack(struct bpf_verifier_env *env); 1082int bpf_mark_stack_read(struct bpf_verifier_env *env, u32 frameno, u32 insn_idx, u64 mask); 1083void bpf_mark_stack_write(struct bpf_verifier_env *env, u32 frameno, u64 mask); 1084int bpf_reset_stack_write_marks(struct bpf_verifier_env *env, u32 insn_idx); 1085int bpf_commit_stack_write_marks(struct bpf_verifier_env *env); 1086int bpf_live_stack_query_init(struct bpf_verifier_env *env, struct bpf_verifier_state *st); 1087bool bpf_stack_slot_alive(struct bpf_verifier_env *env, u32 frameno, u32 spi); 1088void bpf_reset_live_stack_callchain(struct bpf_verifier_env *env); 1089 1090#endif /* _LINUX_BPF_VERIFIER_H */