at master 123 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-only */ 2/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 */ 4#ifndef _LINUX_BPF_H 5#define _LINUX_BPF_H 1 6 7#include <uapi/linux/bpf.h> 8#include <uapi/linux/filter.h> 9 10#include <crypto/sha2.h> 11#include <linux/workqueue.h> 12#include <linux/file.h> 13#include <linux/percpu.h> 14#include <linux/err.h> 15#include <linux/rbtree_latch.h> 16#include <linux/numa.h> 17#include <linux/mm_types.h> 18#include <linux/wait.h> 19#include <linux/refcount.h> 20#include <linux/mutex.h> 21#include <linux/module.h> 22#include <linux/kallsyms.h> 23#include <linux/capability.h> 24#include <linux/sched/mm.h> 25#include <linux/slab.h> 26#include <linux/percpu-refcount.h> 27#include <linux/stddef.h> 28#include <linux/bpfptr.h> 29#include <linux/btf.h> 30#include <linux/rcupdate_trace.h> 31#include <linux/static_call.h> 32#include <linux/memcontrol.h> 33#include <linux/cfi.h> 34#include <asm/rqspinlock.h> 35 36struct bpf_verifier_env; 37struct bpf_verifier_log; 38struct perf_event; 39struct bpf_prog; 40struct bpf_prog_aux; 41struct bpf_map; 42struct bpf_arena; 43struct sock; 44struct seq_file; 45struct btf; 46struct btf_type; 47struct exception_table_entry; 48struct seq_operations; 49struct bpf_iter_aux_info; 50struct bpf_local_storage; 51struct bpf_local_storage_map; 52struct kobject; 53struct mem_cgroup; 54struct module; 55struct bpf_func_state; 56struct ftrace_ops; 57struct cgroup; 58struct bpf_token; 59struct user_namespace; 60struct super_block; 61struct inode; 62 63extern struct idr btf_idr; 64extern spinlock_t btf_idr_lock; 65extern struct kobject *btf_kobj; 66extern struct bpf_mem_alloc bpf_global_ma, bpf_global_percpu_ma; 67extern bool bpf_global_ma_set; 68 69typedef u64 (*bpf_callback_t)(u64, u64, u64, u64, u64); 70typedef int (*bpf_iter_init_seq_priv_t)(void *private_data, 71 struct bpf_iter_aux_info *aux); 72typedef void (*bpf_iter_fini_seq_priv_t)(void *private_data); 73typedef unsigned int (*bpf_func_t)(const void *, 74 const struct bpf_insn *); 75struct bpf_iter_seq_info { 76 const struct seq_operations *seq_ops; 77 bpf_iter_init_seq_priv_t init_seq_private; 78 bpf_iter_fini_seq_priv_t fini_seq_private; 79 u32 seq_priv_size; 80}; 81 82/* map is generic key/value storage optionally accessible by eBPF programs */ 83struct bpf_map_ops { 84 /* funcs callable from userspace (via syscall) */ 85 int (*map_alloc_check)(union bpf_attr *attr); 86 struct bpf_map *(*map_alloc)(union bpf_attr *attr); 87 void (*map_release)(struct bpf_map *map, struct file *map_file); 88 void (*map_free)(struct bpf_map *map); 89 int (*map_get_next_key)(struct bpf_map *map, void *key, void *next_key); 90 void (*map_release_uref)(struct bpf_map *map); 91 void *(*map_lookup_elem_sys_only)(struct bpf_map *map, void *key); 92 int (*map_lookup_batch)(struct bpf_map *map, const union bpf_attr *attr, 93 union bpf_attr __user *uattr); 94 int (*map_lookup_and_delete_elem)(struct bpf_map *map, void *key, 95 void *value, u64 flags); 96 int (*map_lookup_and_delete_batch)(struct bpf_map *map, 97 const union bpf_attr *attr, 98 union bpf_attr __user *uattr); 99 int (*map_update_batch)(struct bpf_map *map, struct file *map_file, 100 const union bpf_attr *attr, 101 union bpf_attr __user *uattr); 102 int (*map_delete_batch)(struct bpf_map *map, const union bpf_attr *attr, 103 union bpf_attr __user *uattr); 104 105 /* funcs callable from userspace and from eBPF programs */ 106 void *(*map_lookup_elem)(struct bpf_map *map, void *key); 107 long (*map_update_elem)(struct bpf_map *map, void *key, void *value, u64 flags); 108 long (*map_delete_elem)(struct bpf_map *map, void *key); 109 long (*map_push_elem)(struct bpf_map *map, void *value, u64 flags); 110 long (*map_pop_elem)(struct bpf_map *map, void *value); 111 long (*map_peek_elem)(struct bpf_map *map, void *value); 112 void *(*map_lookup_percpu_elem)(struct bpf_map *map, void *key, u32 cpu); 113 int (*map_get_hash)(struct bpf_map *map, u32 hash_buf_size, void *hash_buf); 114 115 /* funcs called by prog_array and perf_event_array map */ 116 void *(*map_fd_get_ptr)(struct bpf_map *map, struct file *map_file, 117 int fd); 118 /* If need_defer is true, the implementation should guarantee that 119 * the to-be-put element is still alive before the bpf program, which 120 * may manipulate it, exists. 121 */ 122 void (*map_fd_put_ptr)(struct bpf_map *map, void *ptr, bool need_defer); 123 int (*map_gen_lookup)(struct bpf_map *map, struct bpf_insn *insn_buf); 124 u32 (*map_fd_sys_lookup_elem)(void *ptr); 125 void (*map_seq_show_elem)(struct bpf_map *map, void *key, 126 struct seq_file *m); 127 int (*map_check_btf)(const struct bpf_map *map, 128 const struct btf *btf, 129 const struct btf_type *key_type, 130 const struct btf_type *value_type); 131 132 /* Prog poke tracking helpers. */ 133 int (*map_poke_track)(struct bpf_map *map, struct bpf_prog_aux *aux); 134 void (*map_poke_untrack)(struct bpf_map *map, struct bpf_prog_aux *aux); 135 void (*map_poke_run)(struct bpf_map *map, u32 key, struct bpf_prog *old, 136 struct bpf_prog *new); 137 138 /* Direct value access helpers. */ 139 int (*map_direct_value_addr)(const struct bpf_map *map, 140 u64 *imm, u32 off); 141 int (*map_direct_value_meta)(const struct bpf_map *map, 142 u64 imm, u32 *off); 143 int (*map_mmap)(struct bpf_map *map, struct vm_area_struct *vma); 144 __poll_t (*map_poll)(struct bpf_map *map, struct file *filp, 145 struct poll_table_struct *pts); 146 unsigned long (*map_get_unmapped_area)(struct file *filep, unsigned long addr, 147 unsigned long len, unsigned long pgoff, 148 unsigned long flags); 149 150 /* Functions called by bpf_local_storage maps */ 151 int (*map_local_storage_charge)(struct bpf_local_storage_map *smap, 152 void *owner, u32 size); 153 void (*map_local_storage_uncharge)(struct bpf_local_storage_map *smap, 154 void *owner, u32 size); 155 struct bpf_local_storage __rcu ** (*map_owner_storage_ptr)(void *owner); 156 157 /* Misc helpers.*/ 158 long (*map_redirect)(struct bpf_map *map, u64 key, u64 flags); 159 160 /* map_meta_equal must be implemented for maps that can be 161 * used as an inner map. It is a runtime check to ensure 162 * an inner map can be inserted to an outer map. 163 * 164 * Some properties of the inner map has been used during the 165 * verification time. When inserting an inner map at the runtime, 166 * map_meta_equal has to ensure the inserting map has the same 167 * properties that the verifier has used earlier. 168 */ 169 bool (*map_meta_equal)(const struct bpf_map *meta0, 170 const struct bpf_map *meta1); 171 172 173 int (*map_set_for_each_callback_args)(struct bpf_verifier_env *env, 174 struct bpf_func_state *caller, 175 struct bpf_func_state *callee); 176 long (*map_for_each_callback)(struct bpf_map *map, 177 bpf_callback_t callback_fn, 178 void *callback_ctx, u64 flags); 179 180 u64 (*map_mem_usage)(const struct bpf_map *map); 181 182 /* BTF id of struct allocated by map_alloc */ 183 int *map_btf_id; 184 185 /* bpf_iter info used to open a seq_file */ 186 const struct bpf_iter_seq_info *iter_seq_info; 187}; 188 189enum { 190 /* Support at most 11 fields in a BTF type */ 191 BTF_FIELDS_MAX = 11, 192}; 193 194enum btf_field_type { 195 BPF_SPIN_LOCK = (1 << 0), 196 BPF_TIMER = (1 << 1), 197 BPF_KPTR_UNREF = (1 << 2), 198 BPF_KPTR_REF = (1 << 3), 199 BPF_KPTR_PERCPU = (1 << 4), 200 BPF_KPTR = BPF_KPTR_UNREF | BPF_KPTR_REF | BPF_KPTR_PERCPU, 201 BPF_LIST_HEAD = (1 << 5), 202 BPF_LIST_NODE = (1 << 6), 203 BPF_RB_ROOT = (1 << 7), 204 BPF_RB_NODE = (1 << 8), 205 BPF_GRAPH_NODE = BPF_RB_NODE | BPF_LIST_NODE, 206 BPF_GRAPH_ROOT = BPF_RB_ROOT | BPF_LIST_HEAD, 207 BPF_REFCOUNT = (1 << 9), 208 BPF_WORKQUEUE = (1 << 10), 209 BPF_UPTR = (1 << 11), 210 BPF_RES_SPIN_LOCK = (1 << 12), 211 BPF_TASK_WORK = (1 << 13), 212}; 213 214enum bpf_cgroup_storage_type { 215 BPF_CGROUP_STORAGE_SHARED, 216 BPF_CGROUP_STORAGE_PERCPU, 217 __BPF_CGROUP_STORAGE_MAX 218#define MAX_BPF_CGROUP_STORAGE_TYPE __BPF_CGROUP_STORAGE_MAX 219}; 220 221#ifdef CONFIG_CGROUP_BPF 222# define for_each_cgroup_storage_type(stype) \ 223 for (stype = 0; stype < MAX_BPF_CGROUP_STORAGE_TYPE; stype++) 224#else 225# define for_each_cgroup_storage_type(stype) for (; false; ) 226#endif /* CONFIG_CGROUP_BPF */ 227 228typedef void (*btf_dtor_kfunc_t)(void *); 229 230struct btf_field_kptr { 231 struct btf *btf; 232 struct module *module; 233 /* dtor used if btf_is_kernel(btf), otherwise the type is 234 * program-allocated, dtor is NULL, and __bpf_obj_drop_impl is used 235 */ 236 btf_dtor_kfunc_t dtor; 237 u32 btf_id; 238}; 239 240struct btf_field_graph_root { 241 struct btf *btf; 242 u32 value_btf_id; 243 u32 node_offset; 244 struct btf_record *value_rec; 245}; 246 247struct btf_field { 248 u32 offset; 249 u32 size; 250 enum btf_field_type type; 251 union { 252 struct btf_field_kptr kptr; 253 struct btf_field_graph_root graph_root; 254 }; 255}; 256 257struct btf_record { 258 u32 cnt; 259 u32 field_mask; 260 int spin_lock_off; 261 int res_spin_lock_off; 262 int timer_off; 263 int wq_off; 264 int refcount_off; 265 int task_work_off; 266 struct btf_field fields[]; 267}; 268 269/* Non-opaque version of bpf_rb_node in uapi/linux/bpf.h */ 270struct bpf_rb_node_kern { 271 struct rb_node rb_node; 272 void *owner; 273} __attribute__((aligned(8))); 274 275/* Non-opaque version of bpf_list_node in uapi/linux/bpf.h */ 276struct bpf_list_node_kern { 277 struct list_head list_head; 278 void *owner; 279} __attribute__((aligned(8))); 280 281/* 'Ownership' of program-containing map is claimed by the first program 282 * that is going to use this map or by the first program which FD is 283 * stored in the map to make sure that all callers and callees have the 284 * same prog type, JITed flag and xdp_has_frags flag. 285 */ 286struct bpf_map_owner { 287 enum bpf_prog_type type; 288 bool jited; 289 bool xdp_has_frags; 290 u64 storage_cookie[MAX_BPF_CGROUP_STORAGE_TYPE]; 291 const struct btf_type *attach_func_proto; 292 enum bpf_attach_type expected_attach_type; 293}; 294 295struct bpf_map { 296 u8 sha[SHA256_DIGEST_SIZE]; 297 const struct bpf_map_ops *ops; 298 struct bpf_map *inner_map_meta; 299#ifdef CONFIG_SECURITY 300 void *security; 301#endif 302 enum bpf_map_type map_type; 303 u32 key_size; 304 u32 value_size; 305 u32 max_entries; 306 u64 map_extra; /* any per-map-type extra fields */ 307 u32 map_flags; 308 u32 id; 309 struct btf_record *record; 310 int numa_node; 311 u32 btf_key_type_id; 312 u32 btf_value_type_id; 313 u32 btf_vmlinux_value_type_id; 314 struct btf *btf; 315#ifdef CONFIG_MEMCG 316 struct obj_cgroup *objcg; 317#endif 318 char name[BPF_OBJ_NAME_LEN]; 319 struct mutex freeze_mutex; 320 atomic64_t refcnt; 321 atomic64_t usercnt; 322 /* rcu is used before freeing and work is only used during freeing */ 323 union { 324 struct work_struct work; 325 struct rcu_head rcu; 326 }; 327 atomic64_t writecnt; 328 spinlock_t owner_lock; 329 struct bpf_map_owner *owner; 330 bool bypass_spec_v1; 331 bool frozen; /* write-once; write-protected by freeze_mutex */ 332 bool free_after_mult_rcu_gp; 333 bool free_after_rcu_gp; 334 atomic64_t sleepable_refcnt; 335 s64 __percpu *elem_count; 336 u64 cookie; /* write-once */ 337 char *excl_prog_sha; 338}; 339 340static inline const char *btf_field_type_name(enum btf_field_type type) 341{ 342 switch (type) { 343 case BPF_SPIN_LOCK: 344 return "bpf_spin_lock"; 345 case BPF_RES_SPIN_LOCK: 346 return "bpf_res_spin_lock"; 347 case BPF_TIMER: 348 return "bpf_timer"; 349 case BPF_WORKQUEUE: 350 return "bpf_wq"; 351 case BPF_KPTR_UNREF: 352 case BPF_KPTR_REF: 353 return "kptr"; 354 case BPF_KPTR_PERCPU: 355 return "percpu_kptr"; 356 case BPF_UPTR: 357 return "uptr"; 358 case BPF_LIST_HEAD: 359 return "bpf_list_head"; 360 case BPF_LIST_NODE: 361 return "bpf_list_node"; 362 case BPF_RB_ROOT: 363 return "bpf_rb_root"; 364 case BPF_RB_NODE: 365 return "bpf_rb_node"; 366 case BPF_REFCOUNT: 367 return "bpf_refcount"; 368 case BPF_TASK_WORK: 369 return "bpf_task_work"; 370 default: 371 WARN_ON_ONCE(1); 372 return "unknown"; 373 } 374} 375 376#if IS_ENABLED(CONFIG_DEBUG_KERNEL) 377#define BPF_WARN_ONCE(cond, format...) WARN_ONCE(cond, format) 378#else 379#define BPF_WARN_ONCE(cond, format...) BUILD_BUG_ON_INVALID(cond) 380#endif 381 382static inline u32 btf_field_type_size(enum btf_field_type type) 383{ 384 switch (type) { 385 case BPF_SPIN_LOCK: 386 return sizeof(struct bpf_spin_lock); 387 case BPF_RES_SPIN_LOCK: 388 return sizeof(struct bpf_res_spin_lock); 389 case BPF_TIMER: 390 return sizeof(struct bpf_timer); 391 case BPF_WORKQUEUE: 392 return sizeof(struct bpf_wq); 393 case BPF_KPTR_UNREF: 394 case BPF_KPTR_REF: 395 case BPF_KPTR_PERCPU: 396 case BPF_UPTR: 397 return sizeof(u64); 398 case BPF_LIST_HEAD: 399 return sizeof(struct bpf_list_head); 400 case BPF_LIST_NODE: 401 return sizeof(struct bpf_list_node); 402 case BPF_RB_ROOT: 403 return sizeof(struct bpf_rb_root); 404 case BPF_RB_NODE: 405 return sizeof(struct bpf_rb_node); 406 case BPF_REFCOUNT: 407 return sizeof(struct bpf_refcount); 408 case BPF_TASK_WORK: 409 return sizeof(struct bpf_task_work); 410 default: 411 WARN_ON_ONCE(1); 412 return 0; 413 } 414} 415 416static inline u32 btf_field_type_align(enum btf_field_type type) 417{ 418 switch (type) { 419 case BPF_SPIN_LOCK: 420 return __alignof__(struct bpf_spin_lock); 421 case BPF_RES_SPIN_LOCK: 422 return __alignof__(struct bpf_res_spin_lock); 423 case BPF_TIMER: 424 return __alignof__(struct bpf_timer); 425 case BPF_WORKQUEUE: 426 return __alignof__(struct bpf_wq); 427 case BPF_KPTR_UNREF: 428 case BPF_KPTR_REF: 429 case BPF_KPTR_PERCPU: 430 case BPF_UPTR: 431 return __alignof__(u64); 432 case BPF_LIST_HEAD: 433 return __alignof__(struct bpf_list_head); 434 case BPF_LIST_NODE: 435 return __alignof__(struct bpf_list_node); 436 case BPF_RB_ROOT: 437 return __alignof__(struct bpf_rb_root); 438 case BPF_RB_NODE: 439 return __alignof__(struct bpf_rb_node); 440 case BPF_REFCOUNT: 441 return __alignof__(struct bpf_refcount); 442 case BPF_TASK_WORK: 443 return __alignof__(struct bpf_task_work); 444 default: 445 WARN_ON_ONCE(1); 446 return 0; 447 } 448} 449 450static inline void bpf_obj_init_field(const struct btf_field *field, void *addr) 451{ 452 memset(addr, 0, field->size); 453 454 switch (field->type) { 455 case BPF_REFCOUNT: 456 refcount_set((refcount_t *)addr, 1); 457 break; 458 case BPF_RB_NODE: 459 RB_CLEAR_NODE((struct rb_node *)addr); 460 break; 461 case BPF_LIST_HEAD: 462 case BPF_LIST_NODE: 463 INIT_LIST_HEAD((struct list_head *)addr); 464 break; 465 case BPF_RB_ROOT: 466 /* RB_ROOT_CACHED 0-inits, no need to do anything after memset */ 467 case BPF_SPIN_LOCK: 468 case BPF_RES_SPIN_LOCK: 469 case BPF_TIMER: 470 case BPF_WORKQUEUE: 471 case BPF_KPTR_UNREF: 472 case BPF_KPTR_REF: 473 case BPF_KPTR_PERCPU: 474 case BPF_UPTR: 475 case BPF_TASK_WORK: 476 break; 477 default: 478 WARN_ON_ONCE(1); 479 return; 480 } 481} 482 483static inline bool btf_record_has_field(const struct btf_record *rec, enum btf_field_type type) 484{ 485 if (IS_ERR_OR_NULL(rec)) 486 return false; 487 return rec->field_mask & type; 488} 489 490static inline void bpf_obj_init(const struct btf_record *rec, void *obj) 491{ 492 int i; 493 494 if (IS_ERR_OR_NULL(rec)) 495 return; 496 for (i = 0; i < rec->cnt; i++) 497 bpf_obj_init_field(&rec->fields[i], obj + rec->fields[i].offset); 498} 499 500/* 'dst' must be a temporary buffer and should not point to memory that is being 501 * used in parallel by a bpf program or bpf syscall, otherwise the access from 502 * the bpf program or bpf syscall may be corrupted by the reinitialization, 503 * leading to weird problems. Even 'dst' is newly-allocated from bpf memory 504 * allocator, it is still possible for 'dst' to be used in parallel by a bpf 505 * program or bpf syscall. 506 */ 507static inline void check_and_init_map_value(struct bpf_map *map, void *dst) 508{ 509 bpf_obj_init(map->record, dst); 510} 511 512/* memcpy that is used with 8-byte aligned pointers, power-of-8 size and 513 * forced to use 'long' read/writes to try to atomically copy long counters. 514 * Best-effort only. No barriers here, since it _will_ race with concurrent 515 * updates from BPF programs. Called from bpf syscall and mostly used with 516 * size 8 or 16 bytes, so ask compiler to inline it. 517 */ 518static inline void bpf_long_memcpy(void *dst, const void *src, u32 size) 519{ 520 const long *lsrc = src; 521 long *ldst = dst; 522 523 size /= sizeof(long); 524 while (size--) 525 data_race(*ldst++ = *lsrc++); 526} 527 528/* copy everything but bpf_spin_lock, bpf_timer, and kptrs. There could be one of each. */ 529static inline void bpf_obj_memcpy(struct btf_record *rec, 530 void *dst, void *src, u32 size, 531 bool long_memcpy) 532{ 533 u32 curr_off = 0; 534 int i; 535 536 if (IS_ERR_OR_NULL(rec)) { 537 if (long_memcpy) 538 bpf_long_memcpy(dst, src, round_up(size, 8)); 539 else 540 memcpy(dst, src, size); 541 return; 542 } 543 544 for (i = 0; i < rec->cnt; i++) { 545 u32 next_off = rec->fields[i].offset; 546 u32 sz = next_off - curr_off; 547 548 memcpy(dst + curr_off, src + curr_off, sz); 549 curr_off += rec->fields[i].size + sz; 550 } 551 memcpy(dst + curr_off, src + curr_off, size - curr_off); 552} 553 554static inline void copy_map_value(struct bpf_map *map, void *dst, void *src) 555{ 556 bpf_obj_memcpy(map->record, dst, src, map->value_size, false); 557} 558 559static inline void copy_map_value_long(struct bpf_map *map, void *dst, void *src) 560{ 561 bpf_obj_memcpy(map->record, dst, src, map->value_size, true); 562} 563 564static inline void bpf_obj_swap_uptrs(const struct btf_record *rec, void *dst, void *src) 565{ 566 unsigned long *src_uptr, *dst_uptr; 567 const struct btf_field *field; 568 int i; 569 570 if (!btf_record_has_field(rec, BPF_UPTR)) 571 return; 572 573 for (i = 0, field = rec->fields; i < rec->cnt; i++, field++) { 574 if (field->type != BPF_UPTR) 575 continue; 576 577 src_uptr = src + field->offset; 578 dst_uptr = dst + field->offset; 579 swap(*src_uptr, *dst_uptr); 580 } 581} 582 583static inline void bpf_obj_memzero(struct btf_record *rec, void *dst, u32 size) 584{ 585 u32 curr_off = 0; 586 int i; 587 588 if (IS_ERR_OR_NULL(rec)) { 589 memset(dst, 0, size); 590 return; 591 } 592 593 for (i = 0; i < rec->cnt; i++) { 594 u32 next_off = rec->fields[i].offset; 595 u32 sz = next_off - curr_off; 596 597 memset(dst + curr_off, 0, sz); 598 curr_off += rec->fields[i].size + sz; 599 } 600 memset(dst + curr_off, 0, size - curr_off); 601} 602 603static inline void zero_map_value(struct bpf_map *map, void *dst) 604{ 605 bpf_obj_memzero(map->record, dst, map->value_size); 606} 607 608void copy_map_value_locked(struct bpf_map *map, void *dst, void *src, 609 bool lock_src); 610void bpf_timer_cancel_and_free(void *timer); 611void bpf_wq_cancel_and_free(void *timer); 612void bpf_task_work_cancel_and_free(void *timer); 613void bpf_list_head_free(const struct btf_field *field, void *list_head, 614 struct bpf_spin_lock *spin_lock); 615void bpf_rb_root_free(const struct btf_field *field, void *rb_root, 616 struct bpf_spin_lock *spin_lock); 617u64 bpf_arena_get_kern_vm_start(struct bpf_arena *arena); 618u64 bpf_arena_get_user_vm_start(struct bpf_arena *arena); 619int bpf_obj_name_cpy(char *dst, const char *src, unsigned int size); 620 621struct bpf_offload_dev; 622struct bpf_offloaded_map; 623 624struct bpf_map_dev_ops { 625 int (*map_get_next_key)(struct bpf_offloaded_map *map, 626 void *key, void *next_key); 627 int (*map_lookup_elem)(struct bpf_offloaded_map *map, 628 void *key, void *value); 629 int (*map_update_elem)(struct bpf_offloaded_map *map, 630 void *key, void *value, u64 flags); 631 int (*map_delete_elem)(struct bpf_offloaded_map *map, void *key); 632}; 633 634struct bpf_offloaded_map { 635 struct bpf_map map; 636 struct net_device *netdev; 637 const struct bpf_map_dev_ops *dev_ops; 638 void *dev_priv; 639 struct list_head offloads; 640}; 641 642static inline struct bpf_offloaded_map *map_to_offmap(struct bpf_map *map) 643{ 644 return container_of(map, struct bpf_offloaded_map, map); 645} 646 647static inline bool bpf_map_offload_neutral(const struct bpf_map *map) 648{ 649 return map->map_type == BPF_MAP_TYPE_PERF_EVENT_ARRAY; 650} 651 652static inline bool bpf_map_support_seq_show(const struct bpf_map *map) 653{ 654 return (map->btf_value_type_id || map->btf_vmlinux_value_type_id) && 655 map->ops->map_seq_show_elem; 656} 657 658int map_check_no_btf(const struct bpf_map *map, 659 const struct btf *btf, 660 const struct btf_type *key_type, 661 const struct btf_type *value_type); 662 663bool bpf_map_meta_equal(const struct bpf_map *meta0, 664 const struct bpf_map *meta1); 665 666static inline bool bpf_map_has_internal_structs(struct bpf_map *map) 667{ 668 return btf_record_has_field(map->record, BPF_TIMER | BPF_WORKQUEUE | BPF_TASK_WORK); 669} 670 671void bpf_map_free_internal_structs(struct bpf_map *map, void *obj); 672 673int bpf_dynptr_from_file_sleepable(struct file *file, u32 flags, 674 struct bpf_dynptr *ptr__uninit); 675 676extern const struct bpf_map_ops bpf_map_offload_ops; 677 678/* bpf_type_flag contains a set of flags that are applicable to the values of 679 * arg_type, ret_type and reg_type. For example, a pointer value may be null, 680 * or a memory is read-only. We classify types into two categories: base types 681 * and extended types. Extended types are base types combined with a type flag. 682 * 683 * Currently there are no more than 32 base types in arg_type, ret_type and 684 * reg_types. 685 */ 686#define BPF_BASE_TYPE_BITS 8 687 688enum bpf_type_flag { 689 /* PTR may be NULL. */ 690 PTR_MAYBE_NULL = BIT(0 + BPF_BASE_TYPE_BITS), 691 692 /* MEM is read-only. When applied on bpf_arg, it indicates the arg is 693 * compatible with both mutable and immutable memory. 694 */ 695 MEM_RDONLY = BIT(1 + BPF_BASE_TYPE_BITS), 696 697 /* MEM points to BPF ring buffer reservation. */ 698 MEM_RINGBUF = BIT(2 + BPF_BASE_TYPE_BITS), 699 700 /* MEM is in user address space. */ 701 MEM_USER = BIT(3 + BPF_BASE_TYPE_BITS), 702 703 /* MEM is a percpu memory. MEM_PERCPU tags PTR_TO_BTF_ID. When tagged 704 * with MEM_PERCPU, PTR_TO_BTF_ID _cannot_ be directly accessed. In 705 * order to drop this tag, it must be passed into bpf_per_cpu_ptr() 706 * or bpf_this_cpu_ptr(), which will return the pointer corresponding 707 * to the specified cpu. 708 */ 709 MEM_PERCPU = BIT(4 + BPF_BASE_TYPE_BITS), 710 711 /* Indicates that the argument will be released. */ 712 OBJ_RELEASE = BIT(5 + BPF_BASE_TYPE_BITS), 713 714 /* PTR is not trusted. This is only used with PTR_TO_BTF_ID, to mark 715 * unreferenced and referenced kptr loaded from map value using a load 716 * instruction, so that they can only be dereferenced but not escape the 717 * BPF program into the kernel (i.e. cannot be passed as arguments to 718 * kfunc or bpf helpers). 719 */ 720 PTR_UNTRUSTED = BIT(6 + BPF_BASE_TYPE_BITS), 721 722 /* MEM can be uninitialized. */ 723 MEM_UNINIT = BIT(7 + BPF_BASE_TYPE_BITS), 724 725 /* DYNPTR points to memory local to the bpf program. */ 726 DYNPTR_TYPE_LOCAL = BIT(8 + BPF_BASE_TYPE_BITS), 727 728 /* DYNPTR points to a kernel-produced ringbuf record. */ 729 DYNPTR_TYPE_RINGBUF = BIT(9 + BPF_BASE_TYPE_BITS), 730 731 /* Size is known at compile time. */ 732 MEM_FIXED_SIZE = BIT(10 + BPF_BASE_TYPE_BITS), 733 734 /* MEM is of an allocated object of type in program BTF. This is used to 735 * tag PTR_TO_BTF_ID allocated using bpf_obj_new. 736 */ 737 MEM_ALLOC = BIT(11 + BPF_BASE_TYPE_BITS), 738 739 /* PTR was passed from the kernel in a trusted context, and may be 740 * passed to KF_TRUSTED_ARGS kfuncs or BPF helper functions. 741 * Confusingly, this is _not_ the opposite of PTR_UNTRUSTED above. 742 * PTR_UNTRUSTED refers to a kptr that was read directly from a map 743 * without invoking bpf_kptr_xchg(). What we really need to know is 744 * whether a pointer is safe to pass to a kfunc or BPF helper function. 745 * While PTR_UNTRUSTED pointers are unsafe to pass to kfuncs and BPF 746 * helpers, they do not cover all possible instances of unsafe 747 * pointers. For example, a pointer that was obtained from walking a 748 * struct will _not_ get the PTR_UNTRUSTED type modifier, despite the 749 * fact that it may be NULL, invalid, etc. This is due to backwards 750 * compatibility requirements, as this was the behavior that was first 751 * introduced when kptrs were added. The behavior is now considered 752 * deprecated, and PTR_UNTRUSTED will eventually be removed. 753 * 754 * PTR_TRUSTED, on the other hand, is a pointer that the kernel 755 * guarantees to be valid and safe to pass to kfuncs and BPF helpers. 756 * For example, pointers passed to tracepoint arguments are considered 757 * PTR_TRUSTED, as are pointers that are passed to struct_ops 758 * callbacks. As alluded to above, pointers that are obtained from 759 * walking PTR_TRUSTED pointers are _not_ trusted. For example, if a 760 * struct task_struct *task is PTR_TRUSTED, then accessing 761 * task->last_wakee will lose the PTR_TRUSTED modifier when it's stored 762 * in a BPF register. Similarly, pointers passed to certain programs 763 * types such as kretprobes are not guaranteed to be valid, as they may 764 * for example contain an object that was recently freed. 765 */ 766 PTR_TRUSTED = BIT(12 + BPF_BASE_TYPE_BITS), 767 768 /* MEM is tagged with rcu and memory access needs rcu_read_lock protection. */ 769 MEM_RCU = BIT(13 + BPF_BASE_TYPE_BITS), 770 771 /* Used to tag PTR_TO_BTF_ID | MEM_ALLOC references which are non-owning. 772 * Currently only valid for linked-list and rbtree nodes. If the nodes 773 * have a bpf_refcount_field, they must be tagged MEM_RCU as well. 774 */ 775 NON_OWN_REF = BIT(14 + BPF_BASE_TYPE_BITS), 776 777 /* DYNPTR points to sk_buff */ 778 DYNPTR_TYPE_SKB = BIT(15 + BPF_BASE_TYPE_BITS), 779 780 /* DYNPTR points to xdp_buff */ 781 DYNPTR_TYPE_XDP = BIT(16 + BPF_BASE_TYPE_BITS), 782 783 /* Memory must be aligned on some architectures, used in combination with 784 * MEM_FIXED_SIZE. 785 */ 786 MEM_ALIGNED = BIT(17 + BPF_BASE_TYPE_BITS), 787 788 /* MEM is being written to, often combined with MEM_UNINIT. Non-presence 789 * of MEM_WRITE means that MEM is only being read. MEM_WRITE without the 790 * MEM_UNINIT means that memory needs to be initialized since it is also 791 * read. 792 */ 793 MEM_WRITE = BIT(18 + BPF_BASE_TYPE_BITS), 794 795 /* DYNPTR points to skb_metadata_end()-skb_metadata_len() */ 796 DYNPTR_TYPE_SKB_META = BIT(19 + BPF_BASE_TYPE_BITS), 797 798 /* DYNPTR points to file */ 799 DYNPTR_TYPE_FILE = BIT(20 + BPF_BASE_TYPE_BITS), 800 801 __BPF_TYPE_FLAG_MAX, 802 __BPF_TYPE_LAST_FLAG = __BPF_TYPE_FLAG_MAX - 1, 803}; 804 805#define DYNPTR_TYPE_FLAG_MASK (DYNPTR_TYPE_LOCAL | DYNPTR_TYPE_RINGBUF | DYNPTR_TYPE_SKB \ 806 | DYNPTR_TYPE_XDP | DYNPTR_TYPE_SKB_META | DYNPTR_TYPE_FILE) 807 808/* Max number of base types. */ 809#define BPF_BASE_TYPE_LIMIT (1UL << BPF_BASE_TYPE_BITS) 810 811/* Max number of all types. */ 812#define BPF_TYPE_LIMIT (__BPF_TYPE_LAST_FLAG | (__BPF_TYPE_LAST_FLAG - 1)) 813 814/* function argument constraints */ 815enum bpf_arg_type { 816 ARG_DONTCARE = 0, /* unused argument in helper function */ 817 818 /* the following constraints used to prototype 819 * bpf_map_lookup/update/delete_elem() functions 820 */ 821 ARG_CONST_MAP_PTR, /* const argument used as pointer to bpf_map */ 822 ARG_PTR_TO_MAP_KEY, /* pointer to stack used as map key */ 823 ARG_PTR_TO_MAP_VALUE, /* pointer to stack used as map value */ 824 825 /* Used to prototype bpf_memcmp() and other functions that access data 826 * on eBPF program stack 827 */ 828 ARG_PTR_TO_MEM, /* pointer to valid memory (stack, packet, map value) */ 829 ARG_PTR_TO_ARENA, 830 831 ARG_CONST_SIZE, /* number of bytes accessed from memory */ 832 ARG_CONST_SIZE_OR_ZERO, /* number of bytes accessed from memory or 0 */ 833 834 ARG_PTR_TO_CTX, /* pointer to context */ 835 ARG_ANYTHING, /* any (initialized) argument is ok */ 836 ARG_PTR_TO_SPIN_LOCK, /* pointer to bpf_spin_lock */ 837 ARG_PTR_TO_SOCK_COMMON, /* pointer to sock_common */ 838 ARG_PTR_TO_SOCKET, /* pointer to bpf_sock (fullsock) */ 839 ARG_PTR_TO_BTF_ID, /* pointer to in-kernel struct */ 840 ARG_PTR_TO_RINGBUF_MEM, /* pointer to dynamically reserved ringbuf memory */ 841 ARG_CONST_ALLOC_SIZE_OR_ZERO, /* number of allocated bytes requested */ 842 ARG_PTR_TO_BTF_ID_SOCK_COMMON, /* pointer to in-kernel sock_common or bpf-mirrored bpf_sock */ 843 ARG_PTR_TO_PERCPU_BTF_ID, /* pointer to in-kernel percpu type */ 844 ARG_PTR_TO_FUNC, /* pointer to a bpf program function */ 845 ARG_PTR_TO_STACK, /* pointer to stack */ 846 ARG_PTR_TO_CONST_STR, /* pointer to a null terminated read-only string */ 847 ARG_PTR_TO_TIMER, /* pointer to bpf_timer */ 848 ARG_KPTR_XCHG_DEST, /* pointer to destination that kptrs are bpf_kptr_xchg'd into */ 849 ARG_PTR_TO_DYNPTR, /* pointer to bpf_dynptr. See bpf_type_flag for dynptr type */ 850 __BPF_ARG_TYPE_MAX, 851 852 /* Extended arg_types. */ 853 ARG_PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_MAP_VALUE, 854 ARG_PTR_TO_MEM_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_MEM, 855 ARG_PTR_TO_CTX_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_CTX, 856 ARG_PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_SOCKET, 857 ARG_PTR_TO_STACK_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_STACK, 858 ARG_PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_BTF_ID, 859 /* Pointer to memory does not need to be initialized, since helper function 860 * fills all bytes or clears them in error case. 861 */ 862 ARG_PTR_TO_UNINIT_MEM = MEM_UNINIT | MEM_WRITE | ARG_PTR_TO_MEM, 863 /* Pointer to valid memory of size known at compile time. */ 864 ARG_PTR_TO_FIXED_SIZE_MEM = MEM_FIXED_SIZE | ARG_PTR_TO_MEM, 865 866 /* This must be the last entry. Its purpose is to ensure the enum is 867 * wide enough to hold the higher bits reserved for bpf_type_flag. 868 */ 869 __BPF_ARG_TYPE_LIMIT = BPF_TYPE_LIMIT, 870}; 871static_assert(__BPF_ARG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT); 872 873/* type of values returned from helper functions */ 874enum bpf_return_type { 875 RET_INTEGER, /* function returns integer */ 876 RET_VOID, /* function doesn't return anything */ 877 RET_PTR_TO_MAP_VALUE, /* returns a pointer to map elem value */ 878 RET_PTR_TO_SOCKET, /* returns a pointer to a socket */ 879 RET_PTR_TO_TCP_SOCK, /* returns a pointer to a tcp_sock */ 880 RET_PTR_TO_SOCK_COMMON, /* returns a pointer to a sock_common */ 881 RET_PTR_TO_MEM, /* returns a pointer to memory */ 882 RET_PTR_TO_MEM_OR_BTF_ID, /* returns a pointer to a valid memory or a btf_id */ 883 RET_PTR_TO_BTF_ID, /* returns a pointer to a btf_id */ 884 __BPF_RET_TYPE_MAX, 885 886 /* Extended ret_types. */ 887 RET_PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_MAP_VALUE, 888 RET_PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_SOCKET, 889 RET_PTR_TO_TCP_SOCK_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_TCP_SOCK, 890 RET_PTR_TO_SOCK_COMMON_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_SOCK_COMMON, 891 RET_PTR_TO_RINGBUF_MEM_OR_NULL = PTR_MAYBE_NULL | MEM_RINGBUF | RET_PTR_TO_MEM, 892 RET_PTR_TO_DYNPTR_MEM_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_MEM, 893 RET_PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_BTF_ID, 894 RET_PTR_TO_BTF_ID_TRUSTED = PTR_TRUSTED | RET_PTR_TO_BTF_ID, 895 896 /* This must be the last entry. Its purpose is to ensure the enum is 897 * wide enough to hold the higher bits reserved for bpf_type_flag. 898 */ 899 __BPF_RET_TYPE_LIMIT = BPF_TYPE_LIMIT, 900}; 901static_assert(__BPF_RET_TYPE_MAX <= BPF_BASE_TYPE_LIMIT); 902 903/* eBPF function prototype used by verifier to allow BPF_CALLs from eBPF programs 904 * to in-kernel helper functions and for adjusting imm32 field in BPF_CALL 905 * instructions after verifying 906 */ 907struct bpf_func_proto { 908 u64 (*func)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 909 bool gpl_only; 910 bool pkt_access; 911 bool might_sleep; 912 /* set to true if helper follows contract for llvm 913 * attribute bpf_fastcall: 914 * - void functions do not scratch r0 915 * - functions taking N arguments scratch only registers r1-rN 916 */ 917 bool allow_fastcall; 918 enum bpf_return_type ret_type; 919 union { 920 struct { 921 enum bpf_arg_type arg1_type; 922 enum bpf_arg_type arg2_type; 923 enum bpf_arg_type arg3_type; 924 enum bpf_arg_type arg4_type; 925 enum bpf_arg_type arg5_type; 926 }; 927 enum bpf_arg_type arg_type[5]; 928 }; 929 union { 930 struct { 931 u32 *arg1_btf_id; 932 u32 *arg2_btf_id; 933 u32 *arg3_btf_id; 934 u32 *arg4_btf_id; 935 u32 *arg5_btf_id; 936 }; 937 u32 *arg_btf_id[5]; 938 struct { 939 size_t arg1_size; 940 size_t arg2_size; 941 size_t arg3_size; 942 size_t arg4_size; 943 size_t arg5_size; 944 }; 945 size_t arg_size[5]; 946 }; 947 int *ret_btf_id; /* return value btf_id */ 948 bool (*allowed)(const struct bpf_prog *prog); 949}; 950 951/* bpf_context is intentionally undefined structure. Pointer to bpf_context is 952 * the first argument to eBPF programs. 953 * For socket filters: 'struct bpf_context *' == 'struct sk_buff *' 954 */ 955struct bpf_context; 956 957enum bpf_access_type { 958 BPF_READ = 1, 959 BPF_WRITE = 2 960}; 961 962/* types of values stored in eBPF registers */ 963/* Pointer types represent: 964 * pointer 965 * pointer + imm 966 * pointer + (u16) var 967 * pointer + (u16) var + imm 968 * if (range > 0) then [ptr, ptr + range - off) is safe to access 969 * if (id > 0) means that some 'var' was added 970 * if (off > 0) means that 'imm' was added 971 */ 972enum bpf_reg_type { 973 NOT_INIT = 0, /* nothing was written into register */ 974 SCALAR_VALUE, /* reg doesn't contain a valid pointer */ 975 PTR_TO_CTX, /* reg points to bpf_context */ 976 CONST_PTR_TO_MAP, /* reg points to struct bpf_map */ 977 PTR_TO_MAP_VALUE, /* reg points to map element value */ 978 PTR_TO_MAP_KEY, /* reg points to a map element key */ 979 PTR_TO_STACK, /* reg == frame_pointer + offset */ 980 PTR_TO_PACKET_META, /* skb->data - meta_len */ 981 PTR_TO_PACKET, /* reg points to skb->data */ 982 PTR_TO_PACKET_END, /* skb->data + headlen */ 983 PTR_TO_FLOW_KEYS, /* reg points to bpf_flow_keys */ 984 PTR_TO_SOCKET, /* reg points to struct bpf_sock */ 985 PTR_TO_SOCK_COMMON, /* reg points to sock_common */ 986 PTR_TO_TCP_SOCK, /* reg points to struct tcp_sock */ 987 PTR_TO_TP_BUFFER, /* reg points to a writable raw tp's buffer */ 988 PTR_TO_XDP_SOCK, /* reg points to struct xdp_sock */ 989 /* PTR_TO_BTF_ID points to a kernel struct that does not need 990 * to be null checked by the BPF program. This does not imply the 991 * pointer is _not_ null and in practice this can easily be a null 992 * pointer when reading pointer chains. The assumption is program 993 * context will handle null pointer dereference typically via fault 994 * handling. The verifier must keep this in mind and can make no 995 * assumptions about null or non-null when doing branch analysis. 996 * Further, when passed into helpers the helpers can not, without 997 * additional context, assume the value is non-null. 998 */ 999 PTR_TO_BTF_ID, 1000 PTR_TO_MEM, /* reg points to valid memory region */ 1001 PTR_TO_ARENA, 1002 PTR_TO_BUF, /* reg points to a read/write buffer */ 1003 PTR_TO_FUNC, /* reg points to a bpf program function */ 1004 PTR_TO_INSN, /* reg points to a bpf program instruction */ 1005 CONST_PTR_TO_DYNPTR, /* reg points to a const struct bpf_dynptr */ 1006 __BPF_REG_TYPE_MAX, 1007 1008 /* Extended reg_types. */ 1009 PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | PTR_TO_MAP_VALUE, 1010 PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | PTR_TO_SOCKET, 1011 PTR_TO_SOCK_COMMON_OR_NULL = PTR_MAYBE_NULL | PTR_TO_SOCK_COMMON, 1012 PTR_TO_TCP_SOCK_OR_NULL = PTR_MAYBE_NULL | PTR_TO_TCP_SOCK, 1013 /* PTR_TO_BTF_ID_OR_NULL points to a kernel struct that has not 1014 * been checked for null. Used primarily to inform the verifier 1015 * an explicit null check is required for this struct. 1016 */ 1017 PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | PTR_TO_BTF_ID, 1018 1019 /* This must be the last entry. Its purpose is to ensure the enum is 1020 * wide enough to hold the higher bits reserved for bpf_type_flag. 1021 */ 1022 __BPF_REG_TYPE_LIMIT = BPF_TYPE_LIMIT, 1023}; 1024static_assert(__BPF_REG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT); 1025 1026/* The information passed from prog-specific *_is_valid_access 1027 * back to the verifier. 1028 */ 1029struct bpf_insn_access_aux { 1030 enum bpf_reg_type reg_type; 1031 bool is_ldsx; 1032 union { 1033 int ctx_field_size; 1034 struct { 1035 struct btf *btf; 1036 u32 btf_id; 1037 u32 ref_obj_id; 1038 }; 1039 }; 1040 struct bpf_verifier_log *log; /* for verbose logs */ 1041 bool is_retval; /* is accessing function return value ? */ 1042}; 1043 1044static inline void 1045bpf_ctx_record_field_size(struct bpf_insn_access_aux *aux, u32 size) 1046{ 1047 aux->ctx_field_size = size; 1048} 1049 1050static bool bpf_is_ldimm64(const struct bpf_insn *insn) 1051{ 1052 return insn->code == (BPF_LD | BPF_IMM | BPF_DW); 1053} 1054 1055static inline bool bpf_pseudo_func(const struct bpf_insn *insn) 1056{ 1057 return bpf_is_ldimm64(insn) && insn->src_reg == BPF_PSEUDO_FUNC; 1058} 1059 1060/* Given a BPF_ATOMIC instruction @atomic_insn, return true if it is an 1061 * atomic load or store, and false if it is a read-modify-write instruction. 1062 */ 1063static inline bool 1064bpf_atomic_is_load_store(const struct bpf_insn *atomic_insn) 1065{ 1066 switch (atomic_insn->imm) { 1067 case BPF_LOAD_ACQ: 1068 case BPF_STORE_REL: 1069 return true; 1070 default: 1071 return false; 1072 } 1073} 1074 1075struct bpf_prog_ops { 1076 int (*test_run)(struct bpf_prog *prog, const union bpf_attr *kattr, 1077 union bpf_attr __user *uattr); 1078}; 1079 1080struct bpf_reg_state; 1081struct bpf_verifier_ops { 1082 /* return eBPF function prototype for verification */ 1083 const struct bpf_func_proto * 1084 (*get_func_proto)(enum bpf_func_id func_id, 1085 const struct bpf_prog *prog); 1086 1087 /* return true if 'size' wide access at offset 'off' within bpf_context 1088 * with 'type' (read or write) is allowed 1089 */ 1090 bool (*is_valid_access)(int off, int size, enum bpf_access_type type, 1091 const struct bpf_prog *prog, 1092 struct bpf_insn_access_aux *info); 1093 int (*gen_prologue)(struct bpf_insn *insn, bool direct_write, 1094 const struct bpf_prog *prog); 1095 int (*gen_epilogue)(struct bpf_insn *insn, const struct bpf_prog *prog, 1096 s16 ctx_stack_off); 1097 int (*gen_ld_abs)(const struct bpf_insn *orig, 1098 struct bpf_insn *insn_buf); 1099 u32 (*convert_ctx_access)(enum bpf_access_type type, 1100 const struct bpf_insn *src, 1101 struct bpf_insn *dst, 1102 struct bpf_prog *prog, u32 *target_size); 1103 int (*btf_struct_access)(struct bpf_verifier_log *log, 1104 const struct bpf_reg_state *reg, 1105 int off, int size); 1106}; 1107 1108struct bpf_prog_offload_ops { 1109 /* verifier basic callbacks */ 1110 int (*insn_hook)(struct bpf_verifier_env *env, 1111 int insn_idx, int prev_insn_idx); 1112 int (*finalize)(struct bpf_verifier_env *env); 1113 /* verifier optimization callbacks (called after .finalize) */ 1114 int (*replace_insn)(struct bpf_verifier_env *env, u32 off, 1115 struct bpf_insn *insn); 1116 int (*remove_insns)(struct bpf_verifier_env *env, u32 off, u32 cnt); 1117 /* program management callbacks */ 1118 int (*prepare)(struct bpf_prog *prog); 1119 int (*translate)(struct bpf_prog *prog); 1120 void (*destroy)(struct bpf_prog *prog); 1121}; 1122 1123struct bpf_prog_offload { 1124 struct bpf_prog *prog; 1125 struct net_device *netdev; 1126 struct bpf_offload_dev *offdev; 1127 void *dev_priv; 1128 struct list_head offloads; 1129 bool dev_state; 1130 bool opt_failed; 1131 void *jited_image; 1132 u32 jited_len; 1133}; 1134 1135/* The longest tracepoint has 12 args. 1136 * See include/trace/bpf_probe.h 1137 */ 1138#define MAX_BPF_FUNC_ARGS 12 1139 1140/* The maximum number of arguments passed through registers 1141 * a single function may have. 1142 */ 1143#define MAX_BPF_FUNC_REG_ARGS 5 1144 1145/* The argument is a structure or a union. */ 1146#define BTF_FMODEL_STRUCT_ARG BIT(0) 1147 1148/* The argument is signed. */ 1149#define BTF_FMODEL_SIGNED_ARG BIT(1) 1150 1151struct btf_func_model { 1152 u8 ret_size; 1153 u8 ret_flags; 1154 u8 nr_args; 1155 u8 arg_size[MAX_BPF_FUNC_ARGS]; 1156 u8 arg_flags[MAX_BPF_FUNC_ARGS]; 1157}; 1158 1159/* Restore arguments before returning from trampoline to let original function 1160 * continue executing. This flag is used for fentry progs when there are no 1161 * fexit progs. 1162 */ 1163#define BPF_TRAMP_F_RESTORE_REGS BIT(0) 1164/* Call original function after fentry progs, but before fexit progs. 1165 * Makes sense for fentry/fexit, normal calls and indirect calls. 1166 */ 1167#define BPF_TRAMP_F_CALL_ORIG BIT(1) 1168/* Skip current frame and return to parent. Makes sense for fentry/fexit 1169 * programs only. Should not be used with normal calls and indirect calls. 1170 */ 1171#define BPF_TRAMP_F_SKIP_FRAME BIT(2) 1172/* Store IP address of the caller on the trampoline stack, 1173 * so it's available for trampoline's programs. 1174 */ 1175#define BPF_TRAMP_F_IP_ARG BIT(3) 1176/* Return the return value of fentry prog. Only used by bpf_struct_ops. */ 1177#define BPF_TRAMP_F_RET_FENTRY_RET BIT(4) 1178 1179/* Get original function from stack instead of from provided direct address. 1180 * Makes sense for trampolines with fexit or fmod_ret programs. 1181 */ 1182#define BPF_TRAMP_F_ORIG_STACK BIT(5) 1183 1184/* This trampoline is on a function with another ftrace_ops with IPMODIFY, 1185 * e.g., a live patch. This flag is set and cleared by ftrace call backs, 1186 */ 1187#define BPF_TRAMP_F_SHARE_IPMODIFY BIT(6) 1188 1189/* Indicate that current trampoline is in a tail call context. Then, it has to 1190 * cache and restore tail_call_cnt to avoid infinite tail call loop. 1191 */ 1192#define BPF_TRAMP_F_TAIL_CALL_CTX BIT(7) 1193 1194/* 1195 * Indicate the trampoline should be suitable to receive indirect calls; 1196 * without this indirectly calling the generated code can result in #UD/#CP, 1197 * depending on the CFI options. 1198 * 1199 * Used by bpf_struct_ops. 1200 * 1201 * Incompatible with FENTRY usage, overloads @func_addr argument. 1202 */ 1203#define BPF_TRAMP_F_INDIRECT BIT(8) 1204 1205/* Each call __bpf_prog_enter + call bpf_func + call __bpf_prog_exit is ~50 1206 * bytes on x86. 1207 */ 1208enum { 1209#if defined(__s390x__) 1210 BPF_MAX_TRAMP_LINKS = 27, 1211#else 1212 BPF_MAX_TRAMP_LINKS = 38, 1213#endif 1214}; 1215 1216struct bpf_tramp_links { 1217 struct bpf_tramp_link *links[BPF_MAX_TRAMP_LINKS]; 1218 int nr_links; 1219}; 1220 1221struct bpf_tramp_run_ctx; 1222 1223/* Different use cases for BPF trampoline: 1224 * 1. replace nop at the function entry (kprobe equivalent) 1225 * flags = BPF_TRAMP_F_RESTORE_REGS 1226 * fentry = a set of programs to run before returning from trampoline 1227 * 1228 * 2. replace nop at the function entry (kprobe + kretprobe equivalent) 1229 * flags = BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_SKIP_FRAME 1230 * orig_call = fentry_ip + MCOUNT_INSN_SIZE 1231 * fentry = a set of program to run before calling original function 1232 * fexit = a set of program to run after original function 1233 * 1234 * 3. replace direct call instruction anywhere in the function body 1235 * or assign a function pointer for indirect call (like tcp_congestion_ops->cong_avoid) 1236 * With flags = 0 1237 * fentry = a set of programs to run before returning from trampoline 1238 * With flags = BPF_TRAMP_F_CALL_ORIG 1239 * orig_call = original callback addr or direct function addr 1240 * fentry = a set of program to run before calling original function 1241 * fexit = a set of program to run after original function 1242 */ 1243struct bpf_tramp_image; 1244int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image, void *image_end, 1245 const struct btf_func_model *m, u32 flags, 1246 struct bpf_tramp_links *tlinks, 1247 void *func_addr); 1248void *arch_alloc_bpf_trampoline(unsigned int size); 1249void arch_free_bpf_trampoline(void *image, unsigned int size); 1250int __must_check arch_protect_bpf_trampoline(void *image, unsigned int size); 1251int arch_bpf_trampoline_size(const struct btf_func_model *m, u32 flags, 1252 struct bpf_tramp_links *tlinks, void *func_addr); 1253 1254u64 notrace __bpf_prog_enter_sleepable_recur(struct bpf_prog *prog, 1255 struct bpf_tramp_run_ctx *run_ctx); 1256void notrace __bpf_prog_exit_sleepable_recur(struct bpf_prog *prog, u64 start, 1257 struct bpf_tramp_run_ctx *run_ctx); 1258void notrace __bpf_tramp_enter(struct bpf_tramp_image *tr); 1259void notrace __bpf_tramp_exit(struct bpf_tramp_image *tr); 1260typedef u64 (*bpf_trampoline_enter_t)(struct bpf_prog *prog, 1261 struct bpf_tramp_run_ctx *run_ctx); 1262typedef void (*bpf_trampoline_exit_t)(struct bpf_prog *prog, u64 start, 1263 struct bpf_tramp_run_ctx *run_ctx); 1264bpf_trampoline_enter_t bpf_trampoline_enter(const struct bpf_prog *prog); 1265bpf_trampoline_exit_t bpf_trampoline_exit(const struct bpf_prog *prog); 1266 1267#ifdef CONFIG_DYNAMIC_FTRACE_WITH_JMP 1268static inline bool bpf_trampoline_use_jmp(u64 flags) 1269{ 1270 return flags & BPF_TRAMP_F_CALL_ORIG && !(flags & BPF_TRAMP_F_SKIP_FRAME); 1271} 1272#else 1273static inline bool bpf_trampoline_use_jmp(u64 flags) 1274{ 1275 return false; 1276} 1277#endif 1278 1279struct bpf_ksym { 1280 unsigned long start; 1281 unsigned long end; 1282 char name[KSYM_NAME_LEN]; 1283 struct list_head lnode; 1284 struct latch_tree_node tnode; 1285 bool prog; 1286 u32 fp_start; 1287 u32 fp_end; 1288}; 1289 1290enum bpf_tramp_prog_type { 1291 BPF_TRAMP_FENTRY, 1292 BPF_TRAMP_FEXIT, 1293 BPF_TRAMP_MODIFY_RETURN, 1294 BPF_TRAMP_MAX, 1295 BPF_TRAMP_REPLACE, /* more than MAX */ 1296}; 1297 1298struct bpf_tramp_image { 1299 void *image; 1300 int size; 1301 struct bpf_ksym ksym; 1302 struct percpu_ref pcref; 1303 void *ip_after_call; 1304 void *ip_epilogue; 1305 union { 1306 struct rcu_head rcu; 1307 struct work_struct work; 1308 }; 1309}; 1310 1311struct bpf_trampoline { 1312 /* hlist for trampoline_table */ 1313 struct hlist_node hlist; 1314 struct ftrace_ops *fops; 1315 /* serializes access to fields of this trampoline */ 1316 struct mutex mutex; 1317 refcount_t refcnt; 1318 u32 flags; 1319 u64 key; 1320 struct { 1321 struct btf_func_model model; 1322 void *addr; 1323 bool ftrace_managed; 1324 } func; 1325 /* if !NULL this is BPF_PROG_TYPE_EXT program that extends another BPF 1326 * program by replacing one of its functions. func.addr is the address 1327 * of the function it replaced. 1328 */ 1329 struct bpf_prog *extension_prog; 1330 /* list of BPF programs using this trampoline */ 1331 struct hlist_head progs_hlist[BPF_TRAMP_MAX]; 1332 /* Number of attached programs. A counter per kind. */ 1333 int progs_cnt[BPF_TRAMP_MAX]; 1334 /* Executable image of trampoline */ 1335 struct bpf_tramp_image *cur_image; 1336}; 1337 1338struct bpf_attach_target_info { 1339 struct btf_func_model fmodel; 1340 long tgt_addr; 1341 struct module *tgt_mod; 1342 const char *tgt_name; 1343 const struct btf_type *tgt_type; 1344}; 1345 1346#define BPF_DISPATCHER_MAX 48 /* Fits in 2048B */ 1347 1348struct bpf_dispatcher_prog { 1349 struct bpf_prog *prog; 1350 refcount_t users; 1351}; 1352 1353struct bpf_dispatcher { 1354 /* dispatcher mutex */ 1355 struct mutex mutex; 1356 void *func; 1357 struct bpf_dispatcher_prog progs[BPF_DISPATCHER_MAX]; 1358 int num_progs; 1359 void *image; 1360 void *rw_image; 1361 u32 image_off; 1362 struct bpf_ksym ksym; 1363#ifdef CONFIG_HAVE_STATIC_CALL 1364 struct static_call_key *sc_key; 1365 void *sc_tramp; 1366#endif 1367}; 1368 1369#ifndef __bpfcall 1370#define __bpfcall __nocfi 1371#endif 1372 1373static __always_inline __bpfcall unsigned int bpf_dispatcher_nop_func( 1374 const void *ctx, 1375 const struct bpf_insn *insnsi, 1376 bpf_func_t bpf_func) 1377{ 1378 return bpf_func(ctx, insnsi); 1379} 1380 1381/* the implementation of the opaque uapi struct bpf_dynptr */ 1382struct bpf_dynptr_kern { 1383 void *data; 1384 /* Size represents the number of usable bytes of dynptr data. 1385 * If for example the offset is at 4 for a local dynptr whose data is 1386 * of type u64, the number of usable bytes is 4. 1387 * 1388 * The upper 8 bits are reserved. It is as follows: 1389 * Bits 0 - 23 = size 1390 * Bits 24 - 30 = dynptr type 1391 * Bit 31 = whether dynptr is read-only 1392 */ 1393 u32 size; 1394 u32 offset; 1395} __aligned(8); 1396 1397enum bpf_dynptr_type { 1398 BPF_DYNPTR_TYPE_INVALID, 1399 /* Points to memory that is local to the bpf program */ 1400 BPF_DYNPTR_TYPE_LOCAL, 1401 /* Underlying data is a ringbuf record */ 1402 BPF_DYNPTR_TYPE_RINGBUF, 1403 /* Underlying data is a sk_buff */ 1404 BPF_DYNPTR_TYPE_SKB, 1405 /* Underlying data is a xdp_buff */ 1406 BPF_DYNPTR_TYPE_XDP, 1407 /* Points to skb_metadata_end()-skb_metadata_len() */ 1408 BPF_DYNPTR_TYPE_SKB_META, 1409 /* Underlying data is a file */ 1410 BPF_DYNPTR_TYPE_FILE, 1411}; 1412 1413int bpf_dynptr_check_size(u64 size); 1414u64 __bpf_dynptr_size(const struct bpf_dynptr_kern *ptr); 1415const void *__bpf_dynptr_data(const struct bpf_dynptr_kern *ptr, u64 len); 1416void *__bpf_dynptr_data_rw(const struct bpf_dynptr_kern *ptr, u64 len); 1417bool __bpf_dynptr_is_rdonly(const struct bpf_dynptr_kern *ptr); 1418int __bpf_dynptr_write(const struct bpf_dynptr_kern *dst, u64 offset, 1419 void *src, u64 len, u64 flags); 1420void *bpf_dynptr_slice_rdwr(const struct bpf_dynptr *p, u64 offset, 1421 void *buffer__opt, u64 buffer__szk); 1422 1423static inline int bpf_dynptr_check_off_len(const struct bpf_dynptr_kern *ptr, u64 offset, u64 len) 1424{ 1425 u64 size = __bpf_dynptr_size(ptr); 1426 1427 if (len > size || offset > size - len) 1428 return -E2BIG; 1429 1430 return 0; 1431} 1432 1433#ifdef CONFIG_BPF_JIT 1434int bpf_trampoline_link_prog(struct bpf_tramp_link *link, 1435 struct bpf_trampoline *tr, 1436 struct bpf_prog *tgt_prog); 1437int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link, 1438 struct bpf_trampoline *tr, 1439 struct bpf_prog *tgt_prog); 1440struct bpf_trampoline *bpf_trampoline_get(u64 key, 1441 struct bpf_attach_target_info *tgt_info); 1442void bpf_trampoline_put(struct bpf_trampoline *tr); 1443int arch_prepare_bpf_dispatcher(void *image, void *buf, s64 *funcs, int num_funcs); 1444 1445/* 1446 * When the architecture supports STATIC_CALL replace the bpf_dispatcher_fn 1447 * indirection with a direct call to the bpf program. If the architecture does 1448 * not have STATIC_CALL, avoid a double-indirection. 1449 */ 1450#ifdef CONFIG_HAVE_STATIC_CALL 1451 1452#define __BPF_DISPATCHER_SC_INIT(_name) \ 1453 .sc_key = &STATIC_CALL_KEY(_name), \ 1454 .sc_tramp = STATIC_CALL_TRAMP_ADDR(_name), 1455 1456#define __BPF_DISPATCHER_SC(name) \ 1457 DEFINE_STATIC_CALL(bpf_dispatcher_##name##_call, bpf_dispatcher_nop_func) 1458 1459#define __BPF_DISPATCHER_CALL(name) \ 1460 static_call(bpf_dispatcher_##name##_call)(ctx, insnsi, bpf_func) 1461 1462#define __BPF_DISPATCHER_UPDATE(_d, _new) \ 1463 __static_call_update((_d)->sc_key, (_d)->sc_tramp, (_new)) 1464 1465#else 1466#define __BPF_DISPATCHER_SC_INIT(name) 1467#define __BPF_DISPATCHER_SC(name) 1468#define __BPF_DISPATCHER_CALL(name) bpf_func(ctx, insnsi) 1469#define __BPF_DISPATCHER_UPDATE(_d, _new) 1470#endif 1471 1472#define BPF_DISPATCHER_INIT(_name) { \ 1473 .mutex = __MUTEX_INITIALIZER(_name.mutex), \ 1474 .func = &_name##_func, \ 1475 .progs = {}, \ 1476 .num_progs = 0, \ 1477 .image = NULL, \ 1478 .image_off = 0, \ 1479 .ksym = { \ 1480 .name = #_name, \ 1481 .lnode = LIST_HEAD_INIT(_name.ksym.lnode), \ 1482 }, \ 1483 __BPF_DISPATCHER_SC_INIT(_name##_call) \ 1484} 1485 1486#define DEFINE_BPF_DISPATCHER(name) \ 1487 __BPF_DISPATCHER_SC(name); \ 1488 noinline __bpfcall unsigned int bpf_dispatcher_##name##_func( \ 1489 const void *ctx, \ 1490 const struct bpf_insn *insnsi, \ 1491 bpf_func_t bpf_func) \ 1492 { \ 1493 return __BPF_DISPATCHER_CALL(name); \ 1494 } \ 1495 EXPORT_SYMBOL(bpf_dispatcher_##name##_func); \ 1496 struct bpf_dispatcher bpf_dispatcher_##name = \ 1497 BPF_DISPATCHER_INIT(bpf_dispatcher_##name); 1498 1499#define DECLARE_BPF_DISPATCHER(name) \ 1500 unsigned int bpf_dispatcher_##name##_func( \ 1501 const void *ctx, \ 1502 const struct bpf_insn *insnsi, \ 1503 bpf_func_t bpf_func); \ 1504 extern struct bpf_dispatcher bpf_dispatcher_##name; 1505 1506#define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_##name##_func 1507#define BPF_DISPATCHER_PTR(name) (&bpf_dispatcher_##name) 1508void bpf_dispatcher_change_prog(struct bpf_dispatcher *d, struct bpf_prog *from, 1509 struct bpf_prog *to); 1510/* Called only from JIT-enabled code, so there's no need for stubs. */ 1511void bpf_image_ksym_init(void *data, unsigned int size, struct bpf_ksym *ksym); 1512void bpf_image_ksym_add(struct bpf_ksym *ksym); 1513void bpf_image_ksym_del(struct bpf_ksym *ksym); 1514void bpf_ksym_add(struct bpf_ksym *ksym); 1515void bpf_ksym_del(struct bpf_ksym *ksym); 1516bool bpf_has_frame_pointer(unsigned long ip); 1517int bpf_jit_charge_modmem(u32 size); 1518void bpf_jit_uncharge_modmem(u32 size); 1519bool bpf_prog_has_trampoline(const struct bpf_prog *prog); 1520#else 1521static inline int bpf_trampoline_link_prog(struct bpf_tramp_link *link, 1522 struct bpf_trampoline *tr, 1523 struct bpf_prog *tgt_prog) 1524{ 1525 return -ENOTSUPP; 1526} 1527static inline int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link, 1528 struct bpf_trampoline *tr, 1529 struct bpf_prog *tgt_prog) 1530{ 1531 return -ENOTSUPP; 1532} 1533static inline struct bpf_trampoline *bpf_trampoline_get(u64 key, 1534 struct bpf_attach_target_info *tgt_info) 1535{ 1536 return NULL; 1537} 1538static inline void bpf_trampoline_put(struct bpf_trampoline *tr) {} 1539#define DEFINE_BPF_DISPATCHER(name) 1540#define DECLARE_BPF_DISPATCHER(name) 1541#define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_nop_func 1542#define BPF_DISPATCHER_PTR(name) NULL 1543static inline void bpf_dispatcher_change_prog(struct bpf_dispatcher *d, 1544 struct bpf_prog *from, 1545 struct bpf_prog *to) {} 1546static inline bool is_bpf_image_address(unsigned long address) 1547{ 1548 return false; 1549} 1550static inline bool bpf_prog_has_trampoline(const struct bpf_prog *prog) 1551{ 1552 return false; 1553} 1554#endif 1555 1556struct bpf_func_info_aux { 1557 u16 linkage; 1558 bool unreliable; 1559 bool called : 1; 1560 bool verified : 1; 1561}; 1562 1563enum bpf_jit_poke_reason { 1564 BPF_POKE_REASON_TAIL_CALL, 1565}; 1566 1567/* Descriptor of pokes pointing /into/ the JITed image. */ 1568struct bpf_jit_poke_descriptor { 1569 void *tailcall_target; 1570 void *tailcall_bypass; 1571 void *bypass_addr; 1572 void *aux; 1573 union { 1574 struct { 1575 struct bpf_map *map; 1576 u32 key; 1577 } tail_call; 1578 }; 1579 bool tailcall_target_stable; 1580 u8 adj_off; 1581 u16 reason; 1582 u32 insn_idx; 1583}; 1584 1585/* reg_type info for ctx arguments */ 1586struct bpf_ctx_arg_aux { 1587 u32 offset; 1588 enum bpf_reg_type reg_type; 1589 struct btf *btf; 1590 u32 btf_id; 1591 u32 ref_obj_id; 1592 bool refcounted; 1593}; 1594 1595struct btf_mod_pair { 1596 struct btf *btf; 1597 struct module *module; 1598}; 1599 1600struct bpf_kfunc_desc_tab; 1601 1602enum bpf_stream_id { 1603 BPF_STDOUT = 1, 1604 BPF_STDERR = 2, 1605}; 1606 1607struct bpf_stream_elem { 1608 struct llist_node node; 1609 int total_len; 1610 int consumed_len; 1611 char str[]; 1612}; 1613 1614enum { 1615 /* 100k bytes */ 1616 BPF_STREAM_MAX_CAPACITY = 100000ULL, 1617}; 1618 1619struct bpf_stream { 1620 atomic_t capacity; 1621 struct llist_head log; /* list of in-flight stream elements in LIFO order */ 1622 1623 struct mutex lock; /* lock protecting backlog_{head,tail} */ 1624 struct llist_node *backlog_head; /* list of in-flight stream elements in FIFO order */ 1625 struct llist_node *backlog_tail; /* tail of the list above */ 1626}; 1627 1628struct bpf_stream_stage { 1629 struct llist_head log; 1630 int len; 1631}; 1632 1633struct bpf_prog_aux { 1634 atomic64_t refcnt; 1635 u32 used_map_cnt; 1636 u32 used_btf_cnt; 1637 u32 max_ctx_offset; 1638 u32 max_pkt_offset; 1639 u32 max_tp_access; 1640 u32 stack_depth; 1641 u32 id; 1642 u32 func_cnt; /* used by non-func prog as the number of func progs */ 1643 u32 real_func_cnt; /* includes hidden progs, only used for JIT and freeing progs */ 1644 u32 func_idx; /* 0 for non-func prog, the index in func array for func prog */ 1645 u32 attach_btf_id; /* in-kernel BTF type id to attach to */ 1646 u32 attach_st_ops_member_off; 1647 u32 ctx_arg_info_size; 1648 u32 max_rdonly_access; 1649 u32 max_rdwr_access; 1650 u32 subprog_start; 1651 struct btf *attach_btf; 1652 struct bpf_ctx_arg_aux *ctx_arg_info; 1653 void __percpu *priv_stack_ptr; 1654 struct mutex dst_mutex; /* protects dst_* pointers below, *after* prog becomes visible */ 1655 struct bpf_prog *dst_prog; 1656 struct bpf_trampoline *dst_trampoline; 1657 enum bpf_prog_type saved_dst_prog_type; 1658 enum bpf_attach_type saved_dst_attach_type; 1659 bool verifier_zext; /* Zero extensions has been inserted by verifier. */ 1660 bool dev_bound; /* Program is bound to the netdev. */ 1661 bool offload_requested; /* Program is bound and offloaded to the netdev. */ 1662 bool attach_btf_trace; /* true if attaching to BTF-enabled raw tp */ 1663 bool attach_tracing_prog; /* true if tracing another tracing program */ 1664 bool func_proto_unreliable; 1665 bool tail_call_reachable; 1666 bool xdp_has_frags; 1667 bool exception_cb; 1668 bool exception_boundary; 1669 bool is_extended; /* true if extended by freplace program */ 1670 bool jits_use_priv_stack; 1671 bool priv_stack_requested; 1672 bool changes_pkt_data; 1673 bool might_sleep; 1674 bool kprobe_write_ctx; 1675 u64 prog_array_member_cnt; /* counts how many times as member of prog_array */ 1676 struct mutex ext_mutex; /* mutex for is_extended and prog_array_member_cnt */ 1677 struct bpf_arena *arena; 1678 void (*recursion_detected)(struct bpf_prog *prog); /* callback if recursion is detected */ 1679 /* BTF_KIND_FUNC_PROTO for valid attach_btf_id */ 1680 const struct btf_type *attach_func_proto; 1681 /* function name for valid attach_btf_id */ 1682 const char *attach_func_name; 1683 struct bpf_prog **func; 1684 struct bpf_prog_aux *main_prog_aux; 1685 void *jit_data; /* JIT specific data. arch dependent */ 1686 struct bpf_jit_poke_descriptor *poke_tab; 1687 struct bpf_kfunc_desc_tab *kfunc_tab; 1688 struct bpf_kfunc_btf_tab *kfunc_btf_tab; 1689 u32 size_poke_tab; 1690#ifdef CONFIG_FINEIBT 1691 struct bpf_ksym ksym_prefix; 1692#endif 1693 struct bpf_ksym ksym; 1694 const struct bpf_prog_ops *ops; 1695 const struct bpf_struct_ops *st_ops; 1696 struct bpf_map **used_maps; 1697 struct mutex used_maps_mutex; /* mutex for used_maps and used_map_cnt */ 1698 struct btf_mod_pair *used_btfs; 1699 struct bpf_prog *prog; 1700 struct user_struct *user; 1701 u64 load_time; /* ns since boottime */ 1702 u32 verified_insns; 1703 int cgroup_atype; /* enum cgroup_bpf_attach_type */ 1704 struct bpf_map *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE]; 1705 char name[BPF_OBJ_NAME_LEN]; 1706 u64 (*bpf_exception_cb)(u64 cookie, u64 sp, u64 bp, u64, u64); 1707#ifdef CONFIG_SECURITY 1708 void *security; 1709#endif 1710 struct bpf_token *token; 1711 struct bpf_prog_offload *offload; 1712 struct btf *btf; 1713 struct bpf_func_info *func_info; 1714 struct bpf_func_info_aux *func_info_aux; 1715 /* bpf_line_info loaded from userspace. linfo->insn_off 1716 * has the xlated insn offset. 1717 * Both the main and sub prog share the same linfo. 1718 * The subprog can access its first linfo by 1719 * using the linfo_idx. 1720 */ 1721 struct bpf_line_info *linfo; 1722 /* jited_linfo is the jited addr of the linfo. It has a 1723 * one to one mapping to linfo: 1724 * jited_linfo[i] is the jited addr for the linfo[i]->insn_off. 1725 * Both the main and sub prog share the same jited_linfo. 1726 * The subprog can access its first jited_linfo by 1727 * using the linfo_idx. 1728 */ 1729 void **jited_linfo; 1730 u32 func_info_cnt; 1731 u32 nr_linfo; 1732 /* subprog can use linfo_idx to access its first linfo and 1733 * jited_linfo. 1734 * main prog always has linfo_idx == 0 1735 */ 1736 u32 linfo_idx; 1737 struct module *mod; 1738 u32 num_exentries; 1739 struct exception_table_entry *extable; 1740 union { 1741 struct work_struct work; 1742 struct rcu_head rcu; 1743 }; 1744 struct bpf_stream stream[2]; 1745}; 1746 1747struct bpf_prog { 1748 u16 pages; /* Number of allocated pages */ 1749 u16 jited:1, /* Is our filter JIT'ed? */ 1750 jit_requested:1,/* archs need to JIT the prog */ 1751 gpl_compatible:1, /* Is filter GPL compatible? */ 1752 cb_access:1, /* Is control block accessed? */ 1753 dst_needed:1, /* Do we need dst entry? */ 1754 blinding_requested:1, /* needs constant blinding */ 1755 blinded:1, /* Was blinded */ 1756 is_func:1, /* program is a bpf function */ 1757 kprobe_override:1, /* Do we override a kprobe? */ 1758 has_callchain_buf:1, /* callchain buffer allocated? */ 1759 enforce_expected_attach_type:1, /* Enforce expected_attach_type checking at attach time */ 1760 call_get_stack:1, /* Do we call bpf_get_stack() or bpf_get_stackid() */ 1761 call_get_func_ip:1, /* Do we call get_func_ip() */ 1762 tstamp_type_access:1, /* Accessed __sk_buff->tstamp_type */ 1763 sleepable:1; /* BPF program is sleepable */ 1764 enum bpf_prog_type type; /* Type of BPF program */ 1765 enum bpf_attach_type expected_attach_type; /* For some prog types */ 1766 u32 len; /* Number of filter blocks */ 1767 u32 jited_len; /* Size of jited insns in bytes */ 1768 union { 1769 u8 digest[SHA256_DIGEST_SIZE]; 1770 u8 tag[BPF_TAG_SIZE]; 1771 }; 1772 struct bpf_prog_stats __percpu *stats; 1773 int __percpu *active; 1774 unsigned int (*bpf_func)(const void *ctx, 1775 const struct bpf_insn *insn); 1776 struct bpf_prog_aux *aux; /* Auxiliary fields */ 1777 struct sock_fprog_kern *orig_prog; /* Original BPF program */ 1778 /* Instructions for interpreter */ 1779 union { 1780 DECLARE_FLEX_ARRAY(struct sock_filter, insns); 1781 DECLARE_FLEX_ARRAY(struct bpf_insn, insnsi); 1782 }; 1783}; 1784 1785struct bpf_array_aux { 1786 /* Programs with direct jumps into programs part of this array. */ 1787 struct list_head poke_progs; 1788 struct bpf_map *map; 1789 struct mutex poke_mutex; 1790 struct work_struct work; 1791}; 1792 1793struct bpf_link { 1794 atomic64_t refcnt; 1795 u32 id; 1796 enum bpf_link_type type; 1797 const struct bpf_link_ops *ops; 1798 struct bpf_prog *prog; 1799 1800 u32 flags; 1801 enum bpf_attach_type attach_type; 1802 1803 /* rcu is used before freeing, work can be used to schedule that 1804 * RCU-based freeing before that, so they never overlap 1805 */ 1806 union { 1807 struct rcu_head rcu; 1808 struct work_struct work; 1809 }; 1810 /* whether BPF link itself has "sleepable" semantics, which can differ 1811 * from underlying BPF program having a "sleepable" semantics, as BPF 1812 * link's semantics is determined by target attach hook 1813 */ 1814 bool sleepable; 1815}; 1816 1817struct bpf_link_ops { 1818 void (*release)(struct bpf_link *link); 1819 /* deallocate link resources callback, called without RCU grace period 1820 * waiting 1821 */ 1822 void (*dealloc)(struct bpf_link *link); 1823 /* deallocate link resources callback, called after RCU grace period; 1824 * if either the underlying BPF program is sleepable or BPF link's 1825 * target hook is sleepable, we'll go through tasks trace RCU GP and 1826 * then "classic" RCU GP; this need for chaining tasks trace and 1827 * classic RCU GPs is designated by setting bpf_link->sleepable flag 1828 */ 1829 void (*dealloc_deferred)(struct bpf_link *link); 1830 int (*detach)(struct bpf_link *link); 1831 int (*update_prog)(struct bpf_link *link, struct bpf_prog *new_prog, 1832 struct bpf_prog *old_prog); 1833 void (*show_fdinfo)(const struct bpf_link *link, struct seq_file *seq); 1834 int (*fill_link_info)(const struct bpf_link *link, 1835 struct bpf_link_info *info); 1836 int (*update_map)(struct bpf_link *link, struct bpf_map *new_map, 1837 struct bpf_map *old_map); 1838 __poll_t (*poll)(struct file *file, struct poll_table_struct *pts); 1839}; 1840 1841struct bpf_tramp_link { 1842 struct bpf_link link; 1843 struct hlist_node tramp_hlist; 1844 u64 cookie; 1845}; 1846 1847struct bpf_shim_tramp_link { 1848 struct bpf_tramp_link link; 1849 struct bpf_trampoline *trampoline; 1850}; 1851 1852struct bpf_tracing_link { 1853 struct bpf_tramp_link link; 1854 struct bpf_trampoline *trampoline; 1855 struct bpf_prog *tgt_prog; 1856}; 1857 1858struct bpf_raw_tp_link { 1859 struct bpf_link link; 1860 struct bpf_raw_event_map *btp; 1861 u64 cookie; 1862}; 1863 1864struct bpf_link_primer { 1865 struct bpf_link *link; 1866 struct file *file; 1867 int fd; 1868 u32 id; 1869}; 1870 1871struct bpf_mount_opts { 1872 kuid_t uid; 1873 kgid_t gid; 1874 umode_t mode; 1875 1876 /* BPF token-related delegation options */ 1877 u64 delegate_cmds; 1878 u64 delegate_maps; 1879 u64 delegate_progs; 1880 u64 delegate_attachs; 1881}; 1882 1883struct bpf_token { 1884 struct work_struct work; 1885 atomic64_t refcnt; 1886 struct user_namespace *userns; 1887 u64 allowed_cmds; 1888 u64 allowed_maps; 1889 u64 allowed_progs; 1890 u64 allowed_attachs; 1891#ifdef CONFIG_SECURITY 1892 void *security; 1893#endif 1894}; 1895 1896struct bpf_struct_ops_value; 1897struct btf_member; 1898 1899#define BPF_STRUCT_OPS_MAX_NR_MEMBERS 64 1900/** 1901 * struct bpf_struct_ops - A structure of callbacks allowing a subsystem to 1902 * define a BPF_MAP_TYPE_STRUCT_OPS map type composed 1903 * of BPF_PROG_TYPE_STRUCT_OPS progs. 1904 * @verifier_ops: A structure of callbacks that are invoked by the verifier 1905 * when determining whether the struct_ops progs in the 1906 * struct_ops map are valid. 1907 * @init: A callback that is invoked a single time, and before any other 1908 * callback, to initialize the structure. A nonzero return value means 1909 * the subsystem could not be initialized. 1910 * @check_member: When defined, a callback invoked by the verifier to allow 1911 * the subsystem to determine if an entry in the struct_ops map 1912 * is valid. A nonzero return value means that the map is 1913 * invalid and should be rejected by the verifier. 1914 * @init_member: A callback that is invoked for each member of the struct_ops 1915 * map to allow the subsystem to initialize the member. A nonzero 1916 * value means the member could not be initialized. This callback 1917 * is exclusive with the @type, @type_id, @value_type, and 1918 * @value_id fields. 1919 * @reg: A callback that is invoked when the struct_ops map has been 1920 * initialized and is being attached to. Zero means the struct_ops map 1921 * has been successfully registered and is live. A nonzero return value 1922 * means the struct_ops map could not be registered. 1923 * @unreg: A callback that is invoked when the struct_ops map should be 1924 * unregistered. 1925 * @update: A callback that is invoked when the live struct_ops map is being 1926 * updated to contain new values. This callback is only invoked when 1927 * the struct_ops map is loaded with BPF_F_LINK. If not defined, the 1928 * it is assumed that the struct_ops map cannot be updated. 1929 * @validate: A callback that is invoked after all of the members have been 1930 * initialized. This callback should perform static checks on the 1931 * map, meaning that it should either fail or succeed 1932 * deterministically. A struct_ops map that has been validated may 1933 * not necessarily succeed in being registered if the call to @reg 1934 * fails. For example, a valid struct_ops map may be loaded, but 1935 * then fail to be registered due to there being another active 1936 * struct_ops map on the system in the subsystem already. For this 1937 * reason, if this callback is not defined, the check is skipped as 1938 * the struct_ops map will have final verification performed in 1939 * @reg. 1940 * @cfi_stubs: Pointer to a structure of stub functions for CFI. These stubs 1941 * provide the correct Control Flow Integrity hashes for the 1942 * trampolines generated by BPF struct_ops. 1943 * @owner: The module that owns this struct_ops. Used for module reference 1944 * counting to ensure the module providing the struct_ops cannot be 1945 * unloaded while in use. 1946 * @name: The name of the struct bpf_struct_ops object. 1947 * @func_models: Func models 1948 */ 1949struct bpf_struct_ops { 1950 const struct bpf_verifier_ops *verifier_ops; 1951 int (*init)(struct btf *btf); 1952 int (*check_member)(const struct btf_type *t, 1953 const struct btf_member *member, 1954 const struct bpf_prog *prog); 1955 int (*init_member)(const struct btf_type *t, 1956 const struct btf_member *member, 1957 void *kdata, const void *udata); 1958 int (*reg)(void *kdata, struct bpf_link *link); 1959 void (*unreg)(void *kdata, struct bpf_link *link); 1960 int (*update)(void *kdata, void *old_kdata, struct bpf_link *link); 1961 int (*validate)(void *kdata); 1962 void *cfi_stubs; 1963 struct module *owner; 1964 const char *name; 1965 struct btf_func_model func_models[BPF_STRUCT_OPS_MAX_NR_MEMBERS]; 1966}; 1967 1968/* Every member of a struct_ops type has an instance even a member is not 1969 * an operator (function pointer). The "info" field will be assigned to 1970 * prog->aux->ctx_arg_info of BPF struct_ops programs to provide the 1971 * argument information required by the verifier to verify the program. 1972 * 1973 * btf_ctx_access() will lookup prog->aux->ctx_arg_info to find the 1974 * corresponding entry for an given argument. 1975 */ 1976struct bpf_struct_ops_arg_info { 1977 struct bpf_ctx_arg_aux *info; 1978 u32 cnt; 1979}; 1980 1981struct bpf_struct_ops_desc { 1982 struct bpf_struct_ops *st_ops; 1983 1984 const struct btf_type *type; 1985 const struct btf_type *value_type; 1986 u32 type_id; 1987 u32 value_id; 1988 1989 /* Collection of argument information for each member */ 1990 struct bpf_struct_ops_arg_info *arg_info; 1991}; 1992 1993enum bpf_struct_ops_state { 1994 BPF_STRUCT_OPS_STATE_INIT, 1995 BPF_STRUCT_OPS_STATE_INUSE, 1996 BPF_STRUCT_OPS_STATE_TOBEFREE, 1997 BPF_STRUCT_OPS_STATE_READY, 1998}; 1999 2000struct bpf_struct_ops_common_value { 2001 refcount_t refcnt; 2002 enum bpf_struct_ops_state state; 2003}; 2004 2005#if defined(CONFIG_BPF_JIT) && defined(CONFIG_BPF_SYSCALL) 2006/* This macro helps developer to register a struct_ops type and generate 2007 * type information correctly. Developers should use this macro to register 2008 * a struct_ops type instead of calling __register_bpf_struct_ops() directly. 2009 */ 2010#define register_bpf_struct_ops(st_ops, type) \ 2011 ({ \ 2012 struct bpf_struct_ops_##type { \ 2013 struct bpf_struct_ops_common_value common; \ 2014 struct type data ____cacheline_aligned_in_smp; \ 2015 }; \ 2016 BTF_TYPE_EMIT(struct bpf_struct_ops_##type); \ 2017 __register_bpf_struct_ops(st_ops); \ 2018 }) 2019#define BPF_MODULE_OWNER ((void *)((0xeB9FUL << 2) + POISON_POINTER_DELTA)) 2020bool bpf_struct_ops_get(const void *kdata); 2021void bpf_struct_ops_put(const void *kdata); 2022int bpf_struct_ops_supported(const struct bpf_struct_ops *st_ops, u32 moff); 2023int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map, void *key, 2024 void *value); 2025int bpf_struct_ops_prepare_trampoline(struct bpf_tramp_links *tlinks, 2026 struct bpf_tramp_link *link, 2027 const struct btf_func_model *model, 2028 void *stub_func, 2029 void **image, u32 *image_off, 2030 bool allow_alloc); 2031void bpf_struct_ops_image_free(void *image); 2032static inline bool bpf_try_module_get(const void *data, struct module *owner) 2033{ 2034 if (owner == BPF_MODULE_OWNER) 2035 return bpf_struct_ops_get(data); 2036 else 2037 return try_module_get(owner); 2038} 2039static inline void bpf_module_put(const void *data, struct module *owner) 2040{ 2041 if (owner == BPF_MODULE_OWNER) 2042 bpf_struct_ops_put(data); 2043 else 2044 module_put(owner); 2045} 2046int bpf_struct_ops_link_create(union bpf_attr *attr); 2047u32 bpf_struct_ops_id(const void *kdata); 2048 2049#ifdef CONFIG_NET 2050/* Define it here to avoid the use of forward declaration */ 2051struct bpf_dummy_ops_state { 2052 int val; 2053}; 2054 2055struct bpf_dummy_ops { 2056 int (*test_1)(struct bpf_dummy_ops_state *cb); 2057 int (*test_2)(struct bpf_dummy_ops_state *cb, int a1, unsigned short a2, 2058 char a3, unsigned long a4); 2059 int (*test_sleepable)(struct bpf_dummy_ops_state *cb); 2060}; 2061 2062int bpf_struct_ops_test_run(struct bpf_prog *prog, const union bpf_attr *kattr, 2063 union bpf_attr __user *uattr); 2064#endif 2065int bpf_struct_ops_desc_init(struct bpf_struct_ops_desc *st_ops_desc, 2066 struct btf *btf, 2067 struct bpf_verifier_log *log); 2068void bpf_map_struct_ops_info_fill(struct bpf_map_info *info, struct bpf_map *map); 2069void bpf_struct_ops_desc_release(struct bpf_struct_ops_desc *st_ops_desc); 2070#else 2071#define register_bpf_struct_ops(st_ops, type) ({ (void *)(st_ops); 0; }) 2072static inline bool bpf_try_module_get(const void *data, struct module *owner) 2073{ 2074 return try_module_get(owner); 2075} 2076static inline void bpf_module_put(const void *data, struct module *owner) 2077{ 2078 module_put(owner); 2079} 2080static inline int bpf_struct_ops_supported(const struct bpf_struct_ops *st_ops, u32 moff) 2081{ 2082 return -ENOTSUPP; 2083} 2084static inline int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map, 2085 void *key, 2086 void *value) 2087{ 2088 return -EINVAL; 2089} 2090static inline int bpf_struct_ops_link_create(union bpf_attr *attr) 2091{ 2092 return -EOPNOTSUPP; 2093} 2094static inline void bpf_map_struct_ops_info_fill(struct bpf_map_info *info, struct bpf_map *map) 2095{ 2096} 2097 2098static inline void bpf_struct_ops_desc_release(struct bpf_struct_ops_desc *st_ops_desc) 2099{ 2100} 2101 2102#endif 2103 2104int bpf_prog_ctx_arg_info_init(struct bpf_prog *prog, 2105 const struct bpf_ctx_arg_aux *info, u32 cnt); 2106 2107#if defined(CONFIG_CGROUP_BPF) && defined(CONFIG_BPF_LSM) 2108int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog, 2109 int cgroup_atype, 2110 enum bpf_attach_type attach_type); 2111void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog); 2112#else 2113static inline int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog, 2114 int cgroup_atype, 2115 enum bpf_attach_type attach_type) 2116{ 2117 return -EOPNOTSUPP; 2118} 2119static inline void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog) 2120{ 2121} 2122#endif 2123 2124struct bpf_array { 2125 struct bpf_map map; 2126 u32 elem_size; 2127 u32 index_mask; 2128 struct bpf_array_aux *aux; 2129 union { 2130 DECLARE_FLEX_ARRAY(char, value) __aligned(8); 2131 DECLARE_FLEX_ARRAY(void *, ptrs) __aligned(8); 2132 DECLARE_FLEX_ARRAY(void __percpu *, pptrs) __aligned(8); 2133 }; 2134}; 2135 2136/* 2137 * The bpf_array_get_next_key() function may be used for all array-like 2138 * maps, i.e., maps with u32 keys with range [0 ,..., max_entries) 2139 */ 2140int bpf_array_get_next_key(struct bpf_map *map, void *key, void *next_key); 2141 2142#define BPF_COMPLEXITY_LIMIT_INSNS 1000000 /* yes. 1M insns */ 2143#define MAX_TAIL_CALL_CNT 33 2144 2145/* Maximum number of loops for bpf_loop and bpf_iter_num. 2146 * It's enum to expose it (and thus make it discoverable) through BTF. 2147 */ 2148enum { 2149 BPF_MAX_LOOPS = 8 * 1024 * 1024, 2150 BPF_MAX_TIMED_LOOPS = 0xffff, 2151}; 2152 2153#define BPF_F_ACCESS_MASK (BPF_F_RDONLY | \ 2154 BPF_F_RDONLY_PROG | \ 2155 BPF_F_WRONLY | \ 2156 BPF_F_WRONLY_PROG) 2157 2158#define BPF_MAP_CAN_READ BIT(0) 2159#define BPF_MAP_CAN_WRITE BIT(1) 2160 2161/* Maximum number of user-producer ring buffer samples that can be drained in 2162 * a call to bpf_user_ringbuf_drain(). 2163 */ 2164#define BPF_MAX_USER_RINGBUF_SAMPLES (128 * 1024) 2165 2166static inline u32 bpf_map_flags_to_cap(struct bpf_map *map) 2167{ 2168 u32 access_flags = map->map_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG); 2169 2170 /* Combination of BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG is 2171 * not possible. 2172 */ 2173 if (access_flags & BPF_F_RDONLY_PROG) 2174 return BPF_MAP_CAN_READ; 2175 else if (access_flags & BPF_F_WRONLY_PROG) 2176 return BPF_MAP_CAN_WRITE; 2177 else 2178 return BPF_MAP_CAN_READ | BPF_MAP_CAN_WRITE; 2179} 2180 2181static inline bool bpf_map_flags_access_ok(u32 access_flags) 2182{ 2183 return (access_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG)) != 2184 (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG); 2185} 2186 2187static inline struct bpf_map_owner *bpf_map_owner_alloc(struct bpf_map *map) 2188{ 2189 return kzalloc(sizeof(*map->owner), GFP_ATOMIC); 2190} 2191 2192static inline void bpf_map_owner_free(struct bpf_map *map) 2193{ 2194 kfree(map->owner); 2195} 2196 2197struct bpf_event_entry { 2198 struct perf_event *event; 2199 struct file *perf_file; 2200 struct file *map_file; 2201 struct rcu_head rcu; 2202}; 2203 2204static inline bool map_type_contains_progs(struct bpf_map *map) 2205{ 2206 return map->map_type == BPF_MAP_TYPE_PROG_ARRAY || 2207 map->map_type == BPF_MAP_TYPE_DEVMAP || 2208 map->map_type == BPF_MAP_TYPE_CPUMAP; 2209} 2210 2211bool bpf_prog_map_compatible(struct bpf_map *map, const struct bpf_prog *fp); 2212int bpf_prog_calc_tag(struct bpf_prog *fp); 2213 2214const struct bpf_func_proto *bpf_get_trace_printk_proto(void); 2215const struct bpf_func_proto *bpf_get_trace_vprintk_proto(void); 2216 2217const struct bpf_func_proto *bpf_get_perf_event_read_value_proto(void); 2218 2219typedef unsigned long (*bpf_ctx_copy_t)(void *dst, const void *src, 2220 unsigned long off, unsigned long len); 2221typedef u32 (*bpf_convert_ctx_access_t)(enum bpf_access_type type, 2222 const struct bpf_insn *src, 2223 struct bpf_insn *dst, 2224 struct bpf_prog *prog, 2225 u32 *target_size); 2226 2227u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size, 2228 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy); 2229 2230/* an array of programs to be executed under rcu_lock. 2231 * 2232 * Typical usage: 2233 * ret = bpf_prog_run_array(rcu_dereference(&bpf_prog_array), ctx, bpf_prog_run); 2234 * 2235 * the structure returned by bpf_prog_array_alloc() should be populated 2236 * with program pointers and the last pointer must be NULL. 2237 * The user has to keep refcnt on the program and make sure the program 2238 * is removed from the array before bpf_prog_put(). 2239 * The 'struct bpf_prog_array *' should only be replaced with xchg() 2240 * since other cpus are walking the array of pointers in parallel. 2241 */ 2242struct bpf_prog_array_item { 2243 struct bpf_prog *prog; 2244 union { 2245 struct bpf_cgroup_storage *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE]; 2246 u64 bpf_cookie; 2247 }; 2248}; 2249 2250struct bpf_prog_array { 2251 struct rcu_head rcu; 2252 struct bpf_prog_array_item items[]; 2253}; 2254 2255struct bpf_empty_prog_array { 2256 struct bpf_prog_array hdr; 2257 struct bpf_prog *null_prog; 2258}; 2259 2260/* to avoid allocating empty bpf_prog_array for cgroups that 2261 * don't have bpf program attached use one global 'bpf_empty_prog_array' 2262 * It will not be modified the caller of bpf_prog_array_alloc() 2263 * (since caller requested prog_cnt == 0) 2264 * that pointer should be 'freed' by bpf_prog_array_free() 2265 */ 2266extern struct bpf_empty_prog_array bpf_empty_prog_array; 2267 2268struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags); 2269void bpf_prog_array_free(struct bpf_prog_array *progs); 2270/* Use when traversal over the bpf_prog_array uses tasks_trace rcu */ 2271void bpf_prog_array_free_sleepable(struct bpf_prog_array *progs); 2272int bpf_prog_array_length(struct bpf_prog_array *progs); 2273bool bpf_prog_array_is_empty(struct bpf_prog_array *array); 2274int bpf_prog_array_copy_to_user(struct bpf_prog_array *progs, 2275 __u32 __user *prog_ids, u32 cnt); 2276 2277void bpf_prog_array_delete_safe(struct bpf_prog_array *progs, 2278 struct bpf_prog *old_prog); 2279int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index); 2280int bpf_prog_array_update_at(struct bpf_prog_array *array, int index, 2281 struct bpf_prog *prog); 2282int bpf_prog_array_copy_info(struct bpf_prog_array *array, 2283 u32 *prog_ids, u32 request_cnt, 2284 u32 *prog_cnt); 2285int bpf_prog_array_copy(struct bpf_prog_array *old_array, 2286 struct bpf_prog *exclude_prog, 2287 struct bpf_prog *include_prog, 2288 u64 bpf_cookie, 2289 struct bpf_prog_array **new_array); 2290 2291struct bpf_run_ctx {}; 2292 2293struct bpf_cg_run_ctx { 2294 struct bpf_run_ctx run_ctx; 2295 const struct bpf_prog_array_item *prog_item; 2296 int retval; 2297}; 2298 2299struct bpf_trace_run_ctx { 2300 struct bpf_run_ctx run_ctx; 2301 u64 bpf_cookie; 2302 bool is_uprobe; 2303}; 2304 2305struct bpf_tramp_run_ctx { 2306 struct bpf_run_ctx run_ctx; 2307 u64 bpf_cookie; 2308 struct bpf_run_ctx *saved_run_ctx; 2309}; 2310 2311static inline struct bpf_run_ctx *bpf_set_run_ctx(struct bpf_run_ctx *new_ctx) 2312{ 2313 struct bpf_run_ctx *old_ctx = NULL; 2314 2315#ifdef CONFIG_BPF_SYSCALL 2316 old_ctx = current->bpf_ctx; 2317 current->bpf_ctx = new_ctx; 2318#endif 2319 return old_ctx; 2320} 2321 2322static inline void bpf_reset_run_ctx(struct bpf_run_ctx *old_ctx) 2323{ 2324#ifdef CONFIG_BPF_SYSCALL 2325 current->bpf_ctx = old_ctx; 2326#endif 2327} 2328 2329/* BPF program asks to bypass CAP_NET_BIND_SERVICE in bind. */ 2330#define BPF_RET_BIND_NO_CAP_NET_BIND_SERVICE (1 << 0) 2331/* BPF program asks to set CN on the packet. */ 2332#define BPF_RET_SET_CN (1 << 0) 2333 2334typedef u32 (*bpf_prog_run_fn)(const struct bpf_prog *prog, const void *ctx); 2335 2336static __always_inline u32 2337bpf_prog_run_array(const struct bpf_prog_array *array, 2338 const void *ctx, bpf_prog_run_fn run_prog) 2339{ 2340 const struct bpf_prog_array_item *item; 2341 const struct bpf_prog *prog; 2342 struct bpf_run_ctx *old_run_ctx; 2343 struct bpf_trace_run_ctx run_ctx; 2344 u32 ret = 1; 2345 2346 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), "no rcu lock held"); 2347 2348 if (unlikely(!array)) 2349 return ret; 2350 2351 run_ctx.is_uprobe = false; 2352 2353 migrate_disable(); 2354 old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx); 2355 item = &array->items[0]; 2356 while ((prog = READ_ONCE(item->prog))) { 2357 run_ctx.bpf_cookie = item->bpf_cookie; 2358 ret &= run_prog(prog, ctx); 2359 item++; 2360 } 2361 bpf_reset_run_ctx(old_run_ctx); 2362 migrate_enable(); 2363 return ret; 2364} 2365 2366/* Notes on RCU design for bpf_prog_arrays containing sleepable programs: 2367 * 2368 * We use the tasks_trace rcu flavor read section to protect the bpf_prog_array 2369 * overall. As a result, we must use the bpf_prog_array_free_sleepable 2370 * in order to use the tasks_trace rcu grace period. 2371 * 2372 * When a non-sleepable program is inside the array, we take the rcu read 2373 * section and disable preemption for that program alone, so it can access 2374 * rcu-protected dynamically sized maps. 2375 */ 2376static __always_inline u32 2377bpf_prog_run_array_uprobe(const struct bpf_prog_array *array, 2378 const void *ctx, bpf_prog_run_fn run_prog) 2379{ 2380 const struct bpf_prog_array_item *item; 2381 const struct bpf_prog *prog; 2382 struct bpf_run_ctx *old_run_ctx; 2383 struct bpf_trace_run_ctx run_ctx; 2384 u32 ret = 1; 2385 2386 might_fault(); 2387 RCU_LOCKDEP_WARN(!rcu_read_lock_trace_held(), "no rcu lock held"); 2388 2389 if (unlikely(!array)) 2390 return ret; 2391 2392 migrate_disable(); 2393 2394 run_ctx.is_uprobe = true; 2395 2396 old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx); 2397 item = &array->items[0]; 2398 while ((prog = READ_ONCE(item->prog))) { 2399 if (!prog->sleepable) 2400 rcu_read_lock(); 2401 2402 run_ctx.bpf_cookie = item->bpf_cookie; 2403 ret &= run_prog(prog, ctx); 2404 item++; 2405 2406 if (!prog->sleepable) 2407 rcu_read_unlock(); 2408 } 2409 bpf_reset_run_ctx(old_run_ctx); 2410 migrate_enable(); 2411 return ret; 2412} 2413 2414bool bpf_jit_bypass_spec_v1(void); 2415bool bpf_jit_bypass_spec_v4(void); 2416 2417#define bpf_rcu_lock_held() \ 2418 (rcu_read_lock_held() || rcu_read_lock_trace_held() || rcu_read_lock_bh_held()) 2419 2420#ifdef CONFIG_BPF_SYSCALL 2421DECLARE_PER_CPU(int, bpf_prog_active); 2422extern struct mutex bpf_stats_enabled_mutex; 2423 2424/* 2425 * Block execution of BPF programs attached to instrumentation (perf, 2426 * kprobes, tracepoints) to prevent deadlocks on map operations as any of 2427 * these events can happen inside a region which holds a map bucket lock 2428 * and can deadlock on it. 2429 */ 2430static inline void bpf_disable_instrumentation(void) 2431{ 2432 migrate_disable(); 2433 this_cpu_inc(bpf_prog_active); 2434} 2435 2436static inline void bpf_enable_instrumentation(void) 2437{ 2438 this_cpu_dec(bpf_prog_active); 2439 migrate_enable(); 2440} 2441 2442extern const struct super_operations bpf_super_ops; 2443extern const struct file_operations bpf_map_fops; 2444extern const struct file_operations bpf_prog_fops; 2445extern const struct file_operations bpf_iter_fops; 2446extern const struct file_operations bpf_token_fops; 2447 2448#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 2449 extern const struct bpf_prog_ops _name ## _prog_ops; \ 2450 extern const struct bpf_verifier_ops _name ## _verifier_ops; 2451#define BPF_MAP_TYPE(_id, _ops) \ 2452 extern const struct bpf_map_ops _ops; 2453#define BPF_LINK_TYPE(_id, _name) 2454#include <linux/bpf_types.h> 2455#undef BPF_PROG_TYPE 2456#undef BPF_MAP_TYPE 2457#undef BPF_LINK_TYPE 2458 2459extern const struct bpf_prog_ops bpf_offload_prog_ops; 2460extern const struct bpf_verifier_ops tc_cls_act_analyzer_ops; 2461extern const struct bpf_verifier_ops xdp_analyzer_ops; 2462 2463struct bpf_prog *bpf_prog_get(u32 ufd); 2464struct bpf_prog *bpf_prog_get_type_dev(u32 ufd, enum bpf_prog_type type, 2465 bool attach_drv); 2466void bpf_prog_add(struct bpf_prog *prog, int i); 2467void bpf_prog_sub(struct bpf_prog *prog, int i); 2468void bpf_prog_inc(struct bpf_prog *prog); 2469struct bpf_prog * __must_check bpf_prog_inc_not_zero(struct bpf_prog *prog); 2470void bpf_prog_put(struct bpf_prog *prog); 2471 2472void bpf_prog_free_id(struct bpf_prog *prog); 2473void bpf_map_free_id(struct bpf_map *map); 2474 2475struct btf_field *btf_record_find(const struct btf_record *rec, 2476 u32 offset, u32 field_mask); 2477void btf_record_free(struct btf_record *rec); 2478void bpf_map_free_record(struct bpf_map *map); 2479struct btf_record *btf_record_dup(const struct btf_record *rec); 2480bool btf_record_equal(const struct btf_record *rec_a, const struct btf_record *rec_b); 2481void bpf_obj_free_timer(const struct btf_record *rec, void *obj); 2482void bpf_obj_free_workqueue(const struct btf_record *rec, void *obj); 2483void bpf_obj_free_task_work(const struct btf_record *rec, void *obj); 2484void bpf_obj_free_fields(const struct btf_record *rec, void *obj); 2485void __bpf_obj_drop_impl(void *p, const struct btf_record *rec, bool percpu); 2486 2487struct bpf_map *bpf_map_get(u32 ufd); 2488struct bpf_map *bpf_map_get_with_uref(u32 ufd); 2489 2490/* 2491 * The __bpf_map_get() and __btf_get_by_fd() functions parse a file 2492 * descriptor and return a corresponding map or btf object. 2493 * Their names are double underscored to emphasize the fact that they 2494 * do not increase refcnt. To also increase refcnt use corresponding 2495 * bpf_map_get() and btf_get_by_fd() functions. 2496 */ 2497 2498static inline struct bpf_map *__bpf_map_get(struct fd f) 2499{ 2500 if (fd_empty(f)) 2501 return ERR_PTR(-EBADF); 2502 if (unlikely(fd_file(f)->f_op != &bpf_map_fops)) 2503 return ERR_PTR(-EINVAL); 2504 return fd_file(f)->private_data; 2505} 2506 2507static inline struct btf *__btf_get_by_fd(struct fd f) 2508{ 2509 if (fd_empty(f)) 2510 return ERR_PTR(-EBADF); 2511 if (unlikely(fd_file(f)->f_op != &btf_fops)) 2512 return ERR_PTR(-EINVAL); 2513 return fd_file(f)->private_data; 2514} 2515 2516void bpf_map_inc(struct bpf_map *map); 2517void bpf_map_inc_with_uref(struct bpf_map *map); 2518struct bpf_map *__bpf_map_inc_not_zero(struct bpf_map *map, bool uref); 2519struct bpf_map * __must_check bpf_map_inc_not_zero(struct bpf_map *map); 2520void bpf_map_put_with_uref(struct bpf_map *map); 2521void bpf_map_put(struct bpf_map *map); 2522void *bpf_map_area_alloc(u64 size, int numa_node); 2523void *bpf_map_area_mmapable_alloc(u64 size, int numa_node); 2524void bpf_map_area_free(void *base); 2525bool bpf_map_write_active(const struct bpf_map *map); 2526void bpf_map_init_from_attr(struct bpf_map *map, union bpf_attr *attr); 2527int generic_map_lookup_batch(struct bpf_map *map, 2528 const union bpf_attr *attr, 2529 union bpf_attr __user *uattr); 2530int generic_map_update_batch(struct bpf_map *map, struct file *map_file, 2531 const union bpf_attr *attr, 2532 union bpf_attr __user *uattr); 2533int generic_map_delete_batch(struct bpf_map *map, 2534 const union bpf_attr *attr, 2535 union bpf_attr __user *uattr); 2536struct bpf_map *bpf_map_get_curr_or_next(u32 *id); 2537struct bpf_prog *bpf_prog_get_curr_or_next(u32 *id); 2538 2539 2540int bpf_map_alloc_pages(const struct bpf_map *map, int nid, 2541 unsigned long nr_pages, struct page **page_array); 2542#ifdef CONFIG_MEMCG 2543void *bpf_map_kmalloc_node(const struct bpf_map *map, size_t size, gfp_t flags, 2544 int node); 2545void *bpf_map_kmalloc_nolock(const struct bpf_map *map, size_t size, gfp_t flags, 2546 int node); 2547void *bpf_map_kzalloc(const struct bpf_map *map, size_t size, gfp_t flags); 2548void *bpf_map_kvcalloc(struct bpf_map *map, size_t n, size_t size, 2549 gfp_t flags); 2550void __percpu *bpf_map_alloc_percpu(const struct bpf_map *map, size_t size, 2551 size_t align, gfp_t flags); 2552#else 2553/* 2554 * These specialized allocators have to be macros for their allocations to be 2555 * accounted separately (to have separate alloc_tag). 2556 */ 2557#define bpf_map_kmalloc_node(_map, _size, _flags, _node) \ 2558 kmalloc_node(_size, _flags, _node) 2559#define bpf_map_kmalloc_nolock(_map, _size, _flags, _node) \ 2560 kmalloc_nolock(_size, _flags, _node) 2561#define bpf_map_kzalloc(_map, _size, _flags) \ 2562 kzalloc(_size, _flags) 2563#define bpf_map_kvcalloc(_map, _n, _size, _flags) \ 2564 kvcalloc(_n, _size, _flags) 2565#define bpf_map_alloc_percpu(_map, _size, _align, _flags) \ 2566 __alloc_percpu_gfp(_size, _align, _flags) 2567#endif 2568 2569static inline int 2570bpf_map_init_elem_count(struct bpf_map *map) 2571{ 2572 size_t size = sizeof(*map->elem_count), align = size; 2573 gfp_t flags = GFP_USER | __GFP_NOWARN; 2574 2575 map->elem_count = bpf_map_alloc_percpu(map, size, align, flags); 2576 if (!map->elem_count) 2577 return -ENOMEM; 2578 2579 return 0; 2580} 2581 2582static inline void 2583bpf_map_free_elem_count(struct bpf_map *map) 2584{ 2585 free_percpu(map->elem_count); 2586} 2587 2588static inline void bpf_map_inc_elem_count(struct bpf_map *map) 2589{ 2590 this_cpu_inc(*map->elem_count); 2591} 2592 2593static inline void bpf_map_dec_elem_count(struct bpf_map *map) 2594{ 2595 this_cpu_dec(*map->elem_count); 2596} 2597 2598extern int sysctl_unprivileged_bpf_disabled; 2599 2600bool bpf_token_capable(const struct bpf_token *token, int cap); 2601 2602static inline bool bpf_allow_ptr_leaks(const struct bpf_token *token) 2603{ 2604 return bpf_token_capable(token, CAP_PERFMON); 2605} 2606 2607static inline bool bpf_allow_uninit_stack(const struct bpf_token *token) 2608{ 2609 return bpf_token_capable(token, CAP_PERFMON); 2610} 2611 2612static inline bool bpf_bypass_spec_v1(const struct bpf_token *token) 2613{ 2614 return bpf_jit_bypass_spec_v1() || 2615 cpu_mitigations_off() || 2616 bpf_token_capable(token, CAP_PERFMON); 2617} 2618 2619static inline bool bpf_bypass_spec_v4(const struct bpf_token *token) 2620{ 2621 return bpf_jit_bypass_spec_v4() || 2622 cpu_mitigations_off() || 2623 bpf_token_capable(token, CAP_PERFMON); 2624} 2625 2626int bpf_map_new_fd(struct bpf_map *map, int flags); 2627int bpf_prog_new_fd(struct bpf_prog *prog); 2628 2629void bpf_link_init(struct bpf_link *link, enum bpf_link_type type, 2630 const struct bpf_link_ops *ops, struct bpf_prog *prog, 2631 enum bpf_attach_type attach_type); 2632void bpf_link_init_sleepable(struct bpf_link *link, enum bpf_link_type type, 2633 const struct bpf_link_ops *ops, struct bpf_prog *prog, 2634 enum bpf_attach_type attach_type, bool sleepable); 2635int bpf_link_prime(struct bpf_link *link, struct bpf_link_primer *primer); 2636int bpf_link_settle(struct bpf_link_primer *primer); 2637void bpf_link_cleanup(struct bpf_link_primer *primer); 2638void bpf_link_inc(struct bpf_link *link); 2639struct bpf_link *bpf_link_inc_not_zero(struct bpf_link *link); 2640void bpf_link_put(struct bpf_link *link); 2641int bpf_link_new_fd(struct bpf_link *link); 2642struct bpf_link *bpf_link_get_from_fd(u32 ufd); 2643struct bpf_link *bpf_link_get_curr_or_next(u32 *id); 2644 2645void bpf_token_inc(struct bpf_token *token); 2646void bpf_token_put(struct bpf_token *token); 2647int bpf_token_create(union bpf_attr *attr); 2648struct bpf_token *bpf_token_get_from_fd(u32 ufd); 2649int bpf_token_get_info_by_fd(struct bpf_token *token, 2650 const union bpf_attr *attr, 2651 union bpf_attr __user *uattr); 2652 2653bool bpf_token_allow_cmd(const struct bpf_token *token, enum bpf_cmd cmd); 2654bool bpf_token_allow_map_type(const struct bpf_token *token, enum bpf_map_type type); 2655bool bpf_token_allow_prog_type(const struct bpf_token *token, 2656 enum bpf_prog_type prog_type, 2657 enum bpf_attach_type attach_type); 2658 2659int bpf_obj_pin_user(u32 ufd, int path_fd, const char __user *pathname); 2660int bpf_obj_get_user(int path_fd, const char __user *pathname, int flags); 2661struct inode *bpf_get_inode(struct super_block *sb, const struct inode *dir, 2662 umode_t mode); 2663 2664#define BPF_ITER_FUNC_PREFIX "bpf_iter_" 2665#define DEFINE_BPF_ITER_FUNC(target, args...) \ 2666 extern int bpf_iter_ ## target(args); \ 2667 int __init bpf_iter_ ## target(args) { return 0; } 2668 2669/* 2670 * The task type of iterators. 2671 * 2672 * For BPF task iterators, they can be parameterized with various 2673 * parameters to visit only some of tasks. 2674 * 2675 * BPF_TASK_ITER_ALL (default) 2676 * Iterate over resources of every task. 2677 * 2678 * BPF_TASK_ITER_TID 2679 * Iterate over resources of a task/tid. 2680 * 2681 * BPF_TASK_ITER_TGID 2682 * Iterate over resources of every task of a process / task group. 2683 */ 2684enum bpf_iter_task_type { 2685 BPF_TASK_ITER_ALL = 0, 2686 BPF_TASK_ITER_TID, 2687 BPF_TASK_ITER_TGID, 2688}; 2689 2690struct bpf_iter_aux_info { 2691 /* for map_elem iter */ 2692 struct bpf_map *map; 2693 2694 /* for cgroup iter */ 2695 struct { 2696 struct cgroup *start; /* starting cgroup */ 2697 enum bpf_cgroup_iter_order order; 2698 } cgroup; 2699 struct { 2700 enum bpf_iter_task_type type; 2701 u32 pid; 2702 } task; 2703}; 2704 2705typedef int (*bpf_iter_attach_target_t)(struct bpf_prog *prog, 2706 union bpf_iter_link_info *linfo, 2707 struct bpf_iter_aux_info *aux); 2708typedef void (*bpf_iter_detach_target_t)(struct bpf_iter_aux_info *aux); 2709typedef void (*bpf_iter_show_fdinfo_t) (const struct bpf_iter_aux_info *aux, 2710 struct seq_file *seq); 2711typedef int (*bpf_iter_fill_link_info_t)(const struct bpf_iter_aux_info *aux, 2712 struct bpf_link_info *info); 2713typedef const struct bpf_func_proto * 2714(*bpf_iter_get_func_proto_t)(enum bpf_func_id func_id, 2715 const struct bpf_prog *prog); 2716 2717enum bpf_iter_feature { 2718 BPF_ITER_RESCHED = BIT(0), 2719}; 2720 2721#define BPF_ITER_CTX_ARG_MAX 2 2722struct bpf_iter_reg { 2723 const char *target; 2724 bpf_iter_attach_target_t attach_target; 2725 bpf_iter_detach_target_t detach_target; 2726 bpf_iter_show_fdinfo_t show_fdinfo; 2727 bpf_iter_fill_link_info_t fill_link_info; 2728 bpf_iter_get_func_proto_t get_func_proto; 2729 u32 ctx_arg_info_size; 2730 u32 feature; 2731 struct bpf_ctx_arg_aux ctx_arg_info[BPF_ITER_CTX_ARG_MAX]; 2732 const struct bpf_iter_seq_info *seq_info; 2733}; 2734 2735struct bpf_iter_meta { 2736 __bpf_md_ptr(struct seq_file *, seq); 2737 u64 session_id; 2738 u64 seq_num; 2739}; 2740 2741struct bpf_iter__bpf_map_elem { 2742 __bpf_md_ptr(struct bpf_iter_meta *, meta); 2743 __bpf_md_ptr(struct bpf_map *, map); 2744 __bpf_md_ptr(void *, key); 2745 __bpf_md_ptr(void *, value); 2746}; 2747 2748int bpf_iter_reg_target(const struct bpf_iter_reg *reg_info); 2749void bpf_iter_unreg_target(const struct bpf_iter_reg *reg_info); 2750int bpf_iter_prog_supported(struct bpf_prog *prog); 2751const struct bpf_func_proto * 2752bpf_iter_get_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog); 2753int bpf_iter_link_attach(const union bpf_attr *attr, bpfptr_t uattr, struct bpf_prog *prog); 2754int bpf_iter_new_fd(struct bpf_link *link); 2755bool bpf_link_is_iter(struct bpf_link *link); 2756struct bpf_prog *bpf_iter_get_info(struct bpf_iter_meta *meta, bool in_stop); 2757int bpf_iter_run_prog(struct bpf_prog *prog, void *ctx); 2758void bpf_iter_map_show_fdinfo(const struct bpf_iter_aux_info *aux, 2759 struct seq_file *seq); 2760int bpf_iter_map_fill_link_info(const struct bpf_iter_aux_info *aux, 2761 struct bpf_link_info *info); 2762 2763int map_set_for_each_callback_args(struct bpf_verifier_env *env, 2764 struct bpf_func_state *caller, 2765 struct bpf_func_state *callee); 2766 2767int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value); 2768int bpf_percpu_array_copy(struct bpf_map *map, void *key, void *value); 2769int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value, 2770 u64 flags); 2771int bpf_percpu_array_update(struct bpf_map *map, void *key, void *value, 2772 u64 flags); 2773 2774int bpf_stackmap_extract(struct bpf_map *map, void *key, void *value, bool delete); 2775 2776int bpf_fd_array_map_update_elem(struct bpf_map *map, struct file *map_file, 2777 void *key, void *value, u64 map_flags); 2778int bpf_fd_array_map_lookup_elem(struct bpf_map *map, void *key, u32 *value); 2779int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file, 2780 void *key, void *value, u64 map_flags); 2781int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value); 2782 2783int bpf_get_file_flag(int flags); 2784int bpf_check_uarg_tail_zero(bpfptr_t uaddr, size_t expected_size, 2785 size_t actual_size); 2786 2787/* verify correctness of eBPF program */ 2788int bpf_check(struct bpf_prog **fp, union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size); 2789 2790#ifndef CONFIG_BPF_JIT_ALWAYS_ON 2791void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth); 2792#endif 2793 2794struct btf *bpf_get_btf_vmlinux(void); 2795 2796/* Map specifics */ 2797struct xdp_frame; 2798struct sk_buff; 2799struct bpf_dtab_netdev; 2800struct bpf_cpu_map_entry; 2801 2802void __dev_flush(struct list_head *flush_list); 2803int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf, 2804 struct net_device *dev_rx); 2805int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf, 2806 struct net_device *dev_rx); 2807int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx, 2808 struct bpf_map *map, bool exclude_ingress); 2809int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb, 2810 const struct bpf_prog *xdp_prog); 2811int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb, 2812 const struct bpf_prog *xdp_prog, 2813 struct bpf_map *map, bool exclude_ingress); 2814 2815void __cpu_map_flush(struct list_head *flush_list); 2816int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf, 2817 struct net_device *dev_rx); 2818int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu, 2819 struct sk_buff *skb); 2820 2821/* Return map's numa specified by userspace */ 2822static inline int bpf_map_attr_numa_node(const union bpf_attr *attr) 2823{ 2824 return (attr->map_flags & BPF_F_NUMA_NODE) ? 2825 attr->numa_node : NUMA_NO_NODE; 2826} 2827 2828struct bpf_prog *bpf_prog_get_type_path(const char *name, enum bpf_prog_type type); 2829int array_map_alloc_check(union bpf_attr *attr); 2830 2831int bpf_prog_test_run_xdp(struct bpf_prog *prog, const union bpf_attr *kattr, 2832 union bpf_attr __user *uattr); 2833int bpf_prog_test_run_skb(struct bpf_prog *prog, const union bpf_attr *kattr, 2834 union bpf_attr __user *uattr); 2835int bpf_prog_test_run_tracing(struct bpf_prog *prog, 2836 const union bpf_attr *kattr, 2837 union bpf_attr __user *uattr); 2838int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog, 2839 const union bpf_attr *kattr, 2840 union bpf_attr __user *uattr); 2841int bpf_prog_test_run_raw_tp(struct bpf_prog *prog, 2842 const union bpf_attr *kattr, 2843 union bpf_attr __user *uattr); 2844int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog, 2845 const union bpf_attr *kattr, 2846 union bpf_attr __user *uattr); 2847int bpf_prog_test_run_nf(struct bpf_prog *prog, 2848 const union bpf_attr *kattr, 2849 union bpf_attr __user *uattr); 2850bool btf_ctx_access(int off, int size, enum bpf_access_type type, 2851 const struct bpf_prog *prog, 2852 struct bpf_insn_access_aux *info); 2853 2854static inline bool bpf_tracing_ctx_access(int off, int size, 2855 enum bpf_access_type type) 2856{ 2857 if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS) 2858 return false; 2859 if (type != BPF_READ) 2860 return false; 2861 if (off % size != 0) 2862 return false; 2863 return true; 2864} 2865 2866static inline bool bpf_tracing_btf_ctx_access(int off, int size, 2867 enum bpf_access_type type, 2868 const struct bpf_prog *prog, 2869 struct bpf_insn_access_aux *info) 2870{ 2871 if (!bpf_tracing_ctx_access(off, size, type)) 2872 return false; 2873 return btf_ctx_access(off, size, type, prog, info); 2874} 2875 2876int btf_struct_access(struct bpf_verifier_log *log, 2877 const struct bpf_reg_state *reg, 2878 int off, int size, enum bpf_access_type atype, 2879 u32 *next_btf_id, enum bpf_type_flag *flag, const char **field_name); 2880bool btf_struct_ids_match(struct bpf_verifier_log *log, 2881 const struct btf *btf, u32 id, int off, 2882 const struct btf *need_btf, u32 need_type_id, 2883 bool strict); 2884 2885int btf_distill_func_proto(struct bpf_verifier_log *log, 2886 struct btf *btf, 2887 const struct btf_type *func_proto, 2888 const char *func_name, 2889 struct btf_func_model *m); 2890 2891struct bpf_reg_state; 2892int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog); 2893int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog, 2894 struct btf *btf, const struct btf_type *t); 2895const char *btf_find_decl_tag_value(const struct btf *btf, const struct btf_type *pt, 2896 int comp_idx, const char *tag_key); 2897int btf_find_next_decl_tag(const struct btf *btf, const struct btf_type *pt, 2898 int comp_idx, const char *tag_key, int last_id); 2899 2900struct bpf_prog *bpf_prog_by_id(u32 id); 2901struct bpf_link *bpf_link_by_id(u32 id); 2902 2903const struct bpf_func_proto *bpf_base_func_proto(enum bpf_func_id func_id, 2904 const struct bpf_prog *prog); 2905void bpf_task_storage_free(struct task_struct *task); 2906void bpf_cgrp_storage_free(struct cgroup *cgroup); 2907bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog); 2908const struct btf_func_model * 2909bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 2910 const struct bpf_insn *insn); 2911int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id, 2912 u16 btf_fd_idx, u8 **func_addr); 2913 2914struct bpf_core_ctx { 2915 struct bpf_verifier_log *log; 2916 const struct btf *btf; 2917}; 2918 2919bool btf_nested_type_is_trusted(struct bpf_verifier_log *log, 2920 const struct bpf_reg_state *reg, 2921 const char *field_name, u32 btf_id, const char *suffix); 2922 2923bool btf_type_ids_nocast_alias(struct bpf_verifier_log *log, 2924 const struct btf *reg_btf, u32 reg_id, 2925 const struct btf *arg_btf, u32 arg_id); 2926 2927int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo, 2928 int relo_idx, void *insn); 2929 2930static inline bool unprivileged_ebpf_enabled(void) 2931{ 2932 return !sysctl_unprivileged_bpf_disabled; 2933} 2934 2935/* Not all bpf prog type has the bpf_ctx. 2936 * For the bpf prog type that has initialized the bpf_ctx, 2937 * this function can be used to decide if a kernel function 2938 * is called by a bpf program. 2939 */ 2940static inline bool has_current_bpf_ctx(void) 2941{ 2942 return !!current->bpf_ctx; 2943} 2944 2945void notrace bpf_prog_inc_misses_counter(struct bpf_prog *prog); 2946 2947void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data, 2948 enum bpf_dynptr_type type, u32 offset, u32 size); 2949void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr); 2950void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr); 2951void bpf_prog_report_arena_violation(bool write, unsigned long addr, unsigned long fault_ip); 2952 2953#else /* !CONFIG_BPF_SYSCALL */ 2954static inline struct bpf_prog *bpf_prog_get(u32 ufd) 2955{ 2956 return ERR_PTR(-EOPNOTSUPP); 2957} 2958 2959static inline struct bpf_prog *bpf_prog_get_type_dev(u32 ufd, 2960 enum bpf_prog_type type, 2961 bool attach_drv) 2962{ 2963 return ERR_PTR(-EOPNOTSUPP); 2964} 2965 2966static inline void bpf_prog_add(struct bpf_prog *prog, int i) 2967{ 2968} 2969 2970static inline void bpf_prog_sub(struct bpf_prog *prog, int i) 2971{ 2972} 2973 2974static inline void bpf_prog_put(struct bpf_prog *prog) 2975{ 2976} 2977 2978static inline void bpf_prog_inc(struct bpf_prog *prog) 2979{ 2980} 2981 2982static inline struct bpf_prog *__must_check 2983bpf_prog_inc_not_zero(struct bpf_prog *prog) 2984{ 2985 return ERR_PTR(-EOPNOTSUPP); 2986} 2987 2988static inline void bpf_link_init(struct bpf_link *link, enum bpf_link_type type, 2989 const struct bpf_link_ops *ops, 2990 struct bpf_prog *prog, enum bpf_attach_type attach_type) 2991{ 2992} 2993 2994static inline void bpf_link_init_sleepable(struct bpf_link *link, enum bpf_link_type type, 2995 const struct bpf_link_ops *ops, struct bpf_prog *prog, 2996 enum bpf_attach_type attach_type, bool sleepable) 2997{ 2998} 2999 3000static inline int bpf_link_prime(struct bpf_link *link, 3001 struct bpf_link_primer *primer) 3002{ 3003 return -EOPNOTSUPP; 3004} 3005 3006static inline int bpf_link_settle(struct bpf_link_primer *primer) 3007{ 3008 return -EOPNOTSUPP; 3009} 3010 3011static inline void bpf_link_cleanup(struct bpf_link_primer *primer) 3012{ 3013} 3014 3015static inline void bpf_link_inc(struct bpf_link *link) 3016{ 3017} 3018 3019static inline struct bpf_link *bpf_link_inc_not_zero(struct bpf_link *link) 3020{ 3021 return NULL; 3022} 3023 3024static inline void bpf_link_put(struct bpf_link *link) 3025{ 3026} 3027 3028static inline int bpf_obj_get_user(const char __user *pathname, int flags) 3029{ 3030 return -EOPNOTSUPP; 3031} 3032 3033static inline bool bpf_token_capable(const struct bpf_token *token, int cap) 3034{ 3035 return capable(cap) || (cap != CAP_SYS_ADMIN && capable(CAP_SYS_ADMIN)); 3036} 3037 3038static inline void bpf_token_inc(struct bpf_token *token) 3039{ 3040} 3041 3042static inline void bpf_token_put(struct bpf_token *token) 3043{ 3044} 3045 3046static inline struct bpf_token *bpf_token_get_from_fd(u32 ufd) 3047{ 3048 return ERR_PTR(-EOPNOTSUPP); 3049} 3050 3051static inline int bpf_token_get_info_by_fd(struct bpf_token *token, 3052 const union bpf_attr *attr, 3053 union bpf_attr __user *uattr) 3054{ 3055 return -EOPNOTSUPP; 3056} 3057 3058static inline void __dev_flush(struct list_head *flush_list) 3059{ 3060} 3061 3062struct xdp_frame; 3063struct bpf_dtab_netdev; 3064struct bpf_cpu_map_entry; 3065 3066static inline 3067int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf, 3068 struct net_device *dev_rx) 3069{ 3070 return 0; 3071} 3072 3073static inline 3074int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf, 3075 struct net_device *dev_rx) 3076{ 3077 return 0; 3078} 3079 3080static inline 3081int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx, 3082 struct bpf_map *map, bool exclude_ingress) 3083{ 3084 return 0; 3085} 3086 3087struct sk_buff; 3088 3089static inline int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, 3090 struct sk_buff *skb, 3091 const struct bpf_prog *xdp_prog) 3092{ 3093 return 0; 3094} 3095 3096static inline 3097int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb, 3098 const struct bpf_prog *xdp_prog, 3099 struct bpf_map *map, bool exclude_ingress) 3100{ 3101 return 0; 3102} 3103 3104static inline void __cpu_map_flush(struct list_head *flush_list) 3105{ 3106} 3107 3108static inline int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, 3109 struct xdp_frame *xdpf, 3110 struct net_device *dev_rx) 3111{ 3112 return 0; 3113} 3114 3115static inline int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu, 3116 struct sk_buff *skb) 3117{ 3118 return -EOPNOTSUPP; 3119} 3120 3121static inline struct bpf_prog *bpf_prog_get_type_path(const char *name, 3122 enum bpf_prog_type type) 3123{ 3124 return ERR_PTR(-EOPNOTSUPP); 3125} 3126 3127static inline int bpf_prog_test_run_xdp(struct bpf_prog *prog, 3128 const union bpf_attr *kattr, 3129 union bpf_attr __user *uattr) 3130{ 3131 return -ENOTSUPP; 3132} 3133 3134static inline int bpf_prog_test_run_skb(struct bpf_prog *prog, 3135 const union bpf_attr *kattr, 3136 union bpf_attr __user *uattr) 3137{ 3138 return -ENOTSUPP; 3139} 3140 3141static inline int bpf_prog_test_run_tracing(struct bpf_prog *prog, 3142 const union bpf_attr *kattr, 3143 union bpf_attr __user *uattr) 3144{ 3145 return -ENOTSUPP; 3146} 3147 3148static inline int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog, 3149 const union bpf_attr *kattr, 3150 union bpf_attr __user *uattr) 3151{ 3152 return -ENOTSUPP; 3153} 3154 3155static inline int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog, 3156 const union bpf_attr *kattr, 3157 union bpf_attr __user *uattr) 3158{ 3159 return -ENOTSUPP; 3160} 3161 3162static inline void bpf_map_put(struct bpf_map *map) 3163{ 3164} 3165 3166static inline struct bpf_prog *bpf_prog_by_id(u32 id) 3167{ 3168 return ERR_PTR(-ENOTSUPP); 3169} 3170 3171static inline int btf_struct_access(struct bpf_verifier_log *log, 3172 const struct bpf_reg_state *reg, 3173 int off, int size, enum bpf_access_type atype, 3174 u32 *next_btf_id, enum bpf_type_flag *flag, 3175 const char **field_name) 3176{ 3177 return -EACCES; 3178} 3179 3180static inline const struct bpf_func_proto * 3181bpf_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 3182{ 3183 return NULL; 3184} 3185 3186static inline void bpf_task_storage_free(struct task_struct *task) 3187{ 3188} 3189 3190static inline bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog) 3191{ 3192 return false; 3193} 3194 3195static inline const struct btf_func_model * 3196bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 3197 const struct bpf_insn *insn) 3198{ 3199 return NULL; 3200} 3201 3202static inline int 3203bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id, 3204 u16 btf_fd_idx, u8 **func_addr) 3205{ 3206 return -ENOTSUPP; 3207} 3208 3209static inline bool unprivileged_ebpf_enabled(void) 3210{ 3211 return false; 3212} 3213 3214static inline bool has_current_bpf_ctx(void) 3215{ 3216 return false; 3217} 3218 3219static inline void bpf_prog_inc_misses_counter(struct bpf_prog *prog) 3220{ 3221} 3222 3223static inline void bpf_cgrp_storage_free(struct cgroup *cgroup) 3224{ 3225} 3226 3227static inline void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data, 3228 enum bpf_dynptr_type type, u32 offset, u32 size) 3229{ 3230} 3231 3232static inline void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr) 3233{ 3234} 3235 3236static inline void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr) 3237{ 3238} 3239 3240static inline void bpf_prog_report_arena_violation(bool write, unsigned long addr, 3241 unsigned long fault_ip) 3242{ 3243} 3244#endif /* CONFIG_BPF_SYSCALL */ 3245 3246static __always_inline int 3247bpf_probe_read_kernel_common(void *dst, u32 size, const void *unsafe_ptr) 3248{ 3249 int ret = -EFAULT; 3250 3251 if (IS_ENABLED(CONFIG_BPF_EVENTS)) 3252 ret = copy_from_kernel_nofault(dst, unsafe_ptr, size); 3253 if (unlikely(ret < 0)) 3254 memset(dst, 0, size); 3255 return ret; 3256} 3257 3258void __bpf_free_used_btfs(struct btf_mod_pair *used_btfs, u32 len); 3259 3260static inline struct bpf_prog *bpf_prog_get_type(u32 ufd, 3261 enum bpf_prog_type type) 3262{ 3263 return bpf_prog_get_type_dev(ufd, type, false); 3264} 3265 3266void __bpf_free_used_maps(struct bpf_prog_aux *aux, 3267 struct bpf_map **used_maps, u32 len); 3268 3269bool bpf_prog_get_ok(struct bpf_prog *, enum bpf_prog_type *, bool); 3270 3271int bpf_prog_offload_compile(struct bpf_prog *prog); 3272void bpf_prog_dev_bound_destroy(struct bpf_prog *prog); 3273int bpf_prog_offload_info_fill(struct bpf_prog_info *info, 3274 struct bpf_prog *prog); 3275 3276int bpf_map_offload_info_fill(struct bpf_map_info *info, struct bpf_map *map); 3277 3278int bpf_map_offload_lookup_elem(struct bpf_map *map, void *key, void *value); 3279int bpf_map_offload_update_elem(struct bpf_map *map, 3280 void *key, void *value, u64 flags); 3281int bpf_map_offload_delete_elem(struct bpf_map *map, void *key); 3282int bpf_map_offload_get_next_key(struct bpf_map *map, 3283 void *key, void *next_key); 3284 3285bool bpf_offload_prog_map_match(struct bpf_prog *prog, struct bpf_map *map); 3286 3287struct bpf_offload_dev * 3288bpf_offload_dev_create(const struct bpf_prog_offload_ops *ops, void *priv); 3289void bpf_offload_dev_destroy(struct bpf_offload_dev *offdev); 3290void *bpf_offload_dev_priv(struct bpf_offload_dev *offdev); 3291int bpf_offload_dev_netdev_register(struct bpf_offload_dev *offdev, 3292 struct net_device *netdev); 3293void bpf_offload_dev_netdev_unregister(struct bpf_offload_dev *offdev, 3294 struct net_device *netdev); 3295bool bpf_offload_dev_match(struct bpf_prog *prog, struct net_device *netdev); 3296 3297void unpriv_ebpf_notify(int new_state); 3298 3299#if defined(CONFIG_NET) && defined(CONFIG_BPF_SYSCALL) 3300int bpf_dev_bound_kfunc_check(struct bpf_verifier_log *log, 3301 struct bpf_prog_aux *prog_aux); 3302void *bpf_dev_bound_resolve_kfunc(struct bpf_prog *prog, u32 func_id); 3303int bpf_prog_dev_bound_init(struct bpf_prog *prog, union bpf_attr *attr); 3304int bpf_prog_dev_bound_inherit(struct bpf_prog *new_prog, struct bpf_prog *old_prog); 3305void bpf_dev_bound_netdev_unregister(struct net_device *dev); 3306 3307static inline bool bpf_prog_is_dev_bound(const struct bpf_prog_aux *aux) 3308{ 3309 return aux->dev_bound; 3310} 3311 3312static inline bool bpf_prog_is_offloaded(const struct bpf_prog_aux *aux) 3313{ 3314 return aux->offload_requested; 3315} 3316 3317bool bpf_prog_dev_bound_match(const struct bpf_prog *lhs, const struct bpf_prog *rhs); 3318 3319static inline bool bpf_map_is_offloaded(struct bpf_map *map) 3320{ 3321 return unlikely(map->ops == &bpf_map_offload_ops); 3322} 3323 3324struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr); 3325void bpf_map_offload_map_free(struct bpf_map *map); 3326u64 bpf_map_offload_map_mem_usage(const struct bpf_map *map); 3327int bpf_prog_test_run_syscall(struct bpf_prog *prog, 3328 const union bpf_attr *kattr, 3329 union bpf_attr __user *uattr); 3330 3331int sock_map_get_from_fd(const union bpf_attr *attr, struct bpf_prog *prog); 3332int sock_map_prog_detach(const union bpf_attr *attr, enum bpf_prog_type ptype); 3333int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value, u64 flags); 3334int sock_map_bpf_prog_query(const union bpf_attr *attr, 3335 union bpf_attr __user *uattr); 3336int sock_map_link_create(const union bpf_attr *attr, struct bpf_prog *prog); 3337 3338void sock_map_unhash(struct sock *sk); 3339void sock_map_destroy(struct sock *sk); 3340void sock_map_close(struct sock *sk, long timeout); 3341#else 3342static inline int bpf_dev_bound_kfunc_check(struct bpf_verifier_log *log, 3343 struct bpf_prog_aux *prog_aux) 3344{ 3345 return -EOPNOTSUPP; 3346} 3347 3348static inline void *bpf_dev_bound_resolve_kfunc(struct bpf_prog *prog, 3349 u32 func_id) 3350{ 3351 return NULL; 3352} 3353 3354static inline int bpf_prog_dev_bound_init(struct bpf_prog *prog, 3355 union bpf_attr *attr) 3356{ 3357 return -EOPNOTSUPP; 3358} 3359 3360static inline int bpf_prog_dev_bound_inherit(struct bpf_prog *new_prog, 3361 struct bpf_prog *old_prog) 3362{ 3363 return -EOPNOTSUPP; 3364} 3365 3366static inline void bpf_dev_bound_netdev_unregister(struct net_device *dev) 3367{ 3368} 3369 3370static inline bool bpf_prog_is_dev_bound(const struct bpf_prog_aux *aux) 3371{ 3372 return false; 3373} 3374 3375static inline bool bpf_prog_is_offloaded(struct bpf_prog_aux *aux) 3376{ 3377 return false; 3378} 3379 3380static inline bool bpf_prog_dev_bound_match(const struct bpf_prog *lhs, const struct bpf_prog *rhs) 3381{ 3382 return false; 3383} 3384 3385static inline bool bpf_map_is_offloaded(struct bpf_map *map) 3386{ 3387 return false; 3388} 3389 3390static inline struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr) 3391{ 3392 return ERR_PTR(-EOPNOTSUPP); 3393} 3394 3395static inline void bpf_map_offload_map_free(struct bpf_map *map) 3396{ 3397} 3398 3399static inline u64 bpf_map_offload_map_mem_usage(const struct bpf_map *map) 3400{ 3401 return 0; 3402} 3403 3404static inline int bpf_prog_test_run_syscall(struct bpf_prog *prog, 3405 const union bpf_attr *kattr, 3406 union bpf_attr __user *uattr) 3407{ 3408 return -ENOTSUPP; 3409} 3410 3411#ifdef CONFIG_BPF_SYSCALL 3412static inline int sock_map_get_from_fd(const union bpf_attr *attr, 3413 struct bpf_prog *prog) 3414{ 3415 return -EINVAL; 3416} 3417 3418static inline int sock_map_prog_detach(const union bpf_attr *attr, 3419 enum bpf_prog_type ptype) 3420{ 3421 return -EOPNOTSUPP; 3422} 3423 3424static inline int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value, 3425 u64 flags) 3426{ 3427 return -EOPNOTSUPP; 3428} 3429 3430static inline int sock_map_bpf_prog_query(const union bpf_attr *attr, 3431 union bpf_attr __user *uattr) 3432{ 3433 return -EINVAL; 3434} 3435 3436static inline int sock_map_link_create(const union bpf_attr *attr, struct bpf_prog *prog) 3437{ 3438 return -EOPNOTSUPP; 3439} 3440#endif /* CONFIG_BPF_SYSCALL */ 3441#endif /* CONFIG_NET && CONFIG_BPF_SYSCALL */ 3442 3443static __always_inline void 3444bpf_prog_inc_misses_counters(const struct bpf_prog_array *array) 3445{ 3446 const struct bpf_prog_array_item *item; 3447 struct bpf_prog *prog; 3448 3449 if (unlikely(!array)) 3450 return; 3451 3452 item = &array->items[0]; 3453 while ((prog = READ_ONCE(item->prog))) { 3454 bpf_prog_inc_misses_counter(prog); 3455 item++; 3456 } 3457} 3458 3459#if defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL) 3460void bpf_sk_reuseport_detach(struct sock *sk); 3461int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map, void *key, 3462 void *value); 3463int bpf_fd_reuseport_array_update_elem(struct bpf_map *map, void *key, 3464 void *value, u64 map_flags); 3465#else 3466static inline void bpf_sk_reuseport_detach(struct sock *sk) 3467{ 3468} 3469 3470#ifdef CONFIG_BPF_SYSCALL 3471static inline int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map, 3472 void *key, void *value) 3473{ 3474 return -EOPNOTSUPP; 3475} 3476 3477static inline int bpf_fd_reuseport_array_update_elem(struct bpf_map *map, 3478 void *key, void *value, 3479 u64 map_flags) 3480{ 3481 return -EOPNOTSUPP; 3482} 3483#endif /* CONFIG_BPF_SYSCALL */ 3484#endif /* defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL) */ 3485 3486#if defined(CONFIG_KEYS) && defined(CONFIG_BPF_SYSCALL) 3487 3488struct bpf_key *bpf_lookup_user_key(s32 serial, u64 flags); 3489struct bpf_key *bpf_lookup_system_key(u64 id); 3490void bpf_key_put(struct bpf_key *bkey); 3491int bpf_verify_pkcs7_signature(struct bpf_dynptr *data_p, 3492 struct bpf_dynptr *sig_p, 3493 struct bpf_key *trusted_keyring); 3494 3495#else 3496static inline struct bpf_key *bpf_lookup_user_key(u32 serial, u64 flags) 3497{ 3498 return NULL; 3499} 3500 3501static inline struct bpf_key *bpf_lookup_system_key(u64 id) 3502{ 3503 return NULL; 3504} 3505 3506static inline void bpf_key_put(struct bpf_key *bkey) 3507{ 3508} 3509 3510static inline int bpf_verify_pkcs7_signature(struct bpf_dynptr *data_p, 3511 struct bpf_dynptr *sig_p, 3512 struct bpf_key *trusted_keyring) 3513{ 3514 return -EOPNOTSUPP; 3515} 3516#endif /* defined(CONFIG_KEYS) && defined(CONFIG_BPF_SYSCALL) */ 3517 3518/* verifier prototypes for helper functions called from eBPF programs */ 3519extern const struct bpf_func_proto bpf_map_lookup_elem_proto; 3520extern const struct bpf_func_proto bpf_map_update_elem_proto; 3521extern const struct bpf_func_proto bpf_map_delete_elem_proto; 3522extern const struct bpf_func_proto bpf_map_push_elem_proto; 3523extern const struct bpf_func_proto bpf_map_pop_elem_proto; 3524extern const struct bpf_func_proto bpf_map_peek_elem_proto; 3525extern const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto; 3526 3527extern const struct bpf_func_proto bpf_get_prandom_u32_proto; 3528extern const struct bpf_func_proto bpf_get_smp_processor_id_proto; 3529extern const struct bpf_func_proto bpf_get_numa_node_id_proto; 3530extern const struct bpf_func_proto bpf_tail_call_proto; 3531extern const struct bpf_func_proto bpf_ktime_get_ns_proto; 3532extern const struct bpf_func_proto bpf_ktime_get_boot_ns_proto; 3533extern const struct bpf_func_proto bpf_ktime_get_tai_ns_proto; 3534extern const struct bpf_func_proto bpf_get_current_pid_tgid_proto; 3535extern const struct bpf_func_proto bpf_get_current_uid_gid_proto; 3536extern const struct bpf_func_proto bpf_get_current_comm_proto; 3537extern const struct bpf_func_proto bpf_get_stackid_proto; 3538extern const struct bpf_func_proto bpf_get_stack_proto; 3539extern const struct bpf_func_proto bpf_get_stack_sleepable_proto; 3540extern const struct bpf_func_proto bpf_get_task_stack_proto; 3541extern const struct bpf_func_proto bpf_get_task_stack_sleepable_proto; 3542extern const struct bpf_func_proto bpf_get_stackid_proto_pe; 3543extern const struct bpf_func_proto bpf_get_stack_proto_pe; 3544extern const struct bpf_func_proto bpf_sock_map_update_proto; 3545extern const struct bpf_func_proto bpf_sock_hash_update_proto; 3546extern const struct bpf_func_proto bpf_get_current_cgroup_id_proto; 3547extern const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto; 3548extern const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto; 3549extern const struct bpf_func_proto bpf_current_task_under_cgroup_proto; 3550extern const struct bpf_func_proto bpf_msg_redirect_hash_proto; 3551extern const struct bpf_func_proto bpf_msg_redirect_map_proto; 3552extern const struct bpf_func_proto bpf_sk_redirect_hash_proto; 3553extern const struct bpf_func_proto bpf_sk_redirect_map_proto; 3554extern const struct bpf_func_proto bpf_spin_lock_proto; 3555extern const struct bpf_func_proto bpf_spin_unlock_proto; 3556extern const struct bpf_func_proto bpf_get_local_storage_proto; 3557extern const struct bpf_func_proto bpf_strtol_proto; 3558extern const struct bpf_func_proto bpf_strtoul_proto; 3559extern const struct bpf_func_proto bpf_tcp_sock_proto; 3560extern const struct bpf_func_proto bpf_jiffies64_proto; 3561extern const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto; 3562extern const struct bpf_func_proto bpf_event_output_data_proto; 3563extern const struct bpf_func_proto bpf_ringbuf_output_proto; 3564extern const struct bpf_func_proto bpf_ringbuf_reserve_proto; 3565extern const struct bpf_func_proto bpf_ringbuf_submit_proto; 3566extern const struct bpf_func_proto bpf_ringbuf_discard_proto; 3567extern const struct bpf_func_proto bpf_ringbuf_query_proto; 3568extern const struct bpf_func_proto bpf_ringbuf_reserve_dynptr_proto; 3569extern const struct bpf_func_proto bpf_ringbuf_submit_dynptr_proto; 3570extern const struct bpf_func_proto bpf_ringbuf_discard_dynptr_proto; 3571extern const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto; 3572extern const struct bpf_func_proto bpf_skc_to_tcp_sock_proto; 3573extern const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto; 3574extern const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto; 3575extern const struct bpf_func_proto bpf_skc_to_udp6_sock_proto; 3576extern const struct bpf_func_proto bpf_skc_to_unix_sock_proto; 3577extern const struct bpf_func_proto bpf_skc_to_mptcp_sock_proto; 3578extern const struct bpf_func_proto bpf_copy_from_user_proto; 3579extern const struct bpf_func_proto bpf_snprintf_btf_proto; 3580extern const struct bpf_func_proto bpf_snprintf_proto; 3581extern const struct bpf_func_proto bpf_per_cpu_ptr_proto; 3582extern const struct bpf_func_proto bpf_this_cpu_ptr_proto; 3583extern const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto; 3584extern const struct bpf_func_proto bpf_sock_from_file_proto; 3585extern const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto; 3586extern const struct bpf_func_proto bpf_task_storage_get_recur_proto; 3587extern const struct bpf_func_proto bpf_task_storage_get_proto; 3588extern const struct bpf_func_proto bpf_task_storage_delete_recur_proto; 3589extern const struct bpf_func_proto bpf_task_storage_delete_proto; 3590extern const struct bpf_func_proto bpf_for_each_map_elem_proto; 3591extern const struct bpf_func_proto bpf_btf_find_by_name_kind_proto; 3592extern const struct bpf_func_proto bpf_sk_setsockopt_proto; 3593extern const struct bpf_func_proto bpf_sk_getsockopt_proto; 3594extern const struct bpf_func_proto bpf_unlocked_sk_setsockopt_proto; 3595extern const struct bpf_func_proto bpf_unlocked_sk_getsockopt_proto; 3596extern const struct bpf_func_proto bpf_find_vma_proto; 3597extern const struct bpf_func_proto bpf_loop_proto; 3598extern const struct bpf_func_proto bpf_copy_from_user_task_proto; 3599extern const struct bpf_func_proto bpf_set_retval_proto; 3600extern const struct bpf_func_proto bpf_get_retval_proto; 3601extern const struct bpf_func_proto bpf_user_ringbuf_drain_proto; 3602extern const struct bpf_func_proto bpf_cgrp_storage_get_proto; 3603extern const struct bpf_func_proto bpf_cgrp_storage_delete_proto; 3604 3605const struct bpf_func_proto *tracing_prog_func_proto( 3606 enum bpf_func_id func_id, const struct bpf_prog *prog); 3607 3608/* Shared helpers among cBPF and eBPF. */ 3609void bpf_user_rnd_init_once(void); 3610u64 bpf_user_rnd_u32(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 3611u64 bpf_get_raw_cpu_id(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 3612 3613#if defined(CONFIG_NET) 3614bool bpf_sock_common_is_valid_access(int off, int size, 3615 enum bpf_access_type type, 3616 struct bpf_insn_access_aux *info); 3617bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type, 3618 struct bpf_insn_access_aux *info); 3619u32 bpf_sock_convert_ctx_access(enum bpf_access_type type, 3620 const struct bpf_insn *si, 3621 struct bpf_insn *insn_buf, 3622 struct bpf_prog *prog, 3623 u32 *target_size); 3624int bpf_dynptr_from_skb_rdonly(struct __sk_buff *skb, u64 flags, 3625 struct bpf_dynptr *ptr); 3626#else 3627static inline bool bpf_sock_common_is_valid_access(int off, int size, 3628 enum bpf_access_type type, 3629 struct bpf_insn_access_aux *info) 3630{ 3631 return false; 3632} 3633static inline bool bpf_sock_is_valid_access(int off, int size, 3634 enum bpf_access_type type, 3635 struct bpf_insn_access_aux *info) 3636{ 3637 return false; 3638} 3639static inline u32 bpf_sock_convert_ctx_access(enum bpf_access_type type, 3640 const struct bpf_insn *si, 3641 struct bpf_insn *insn_buf, 3642 struct bpf_prog *prog, 3643 u32 *target_size) 3644{ 3645 return 0; 3646} 3647static inline int bpf_dynptr_from_skb_rdonly(struct __sk_buff *skb, u64 flags, 3648 struct bpf_dynptr *ptr) 3649{ 3650 return -EOPNOTSUPP; 3651} 3652#endif 3653 3654#ifdef CONFIG_INET 3655struct sk_reuseport_kern { 3656 struct sk_buff *skb; 3657 struct sock *sk; 3658 struct sock *selected_sk; 3659 struct sock *migrating_sk; 3660 void *data_end; 3661 u32 hash; 3662 u32 reuseport_id; 3663 bool bind_inany; 3664}; 3665bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type, 3666 struct bpf_insn_access_aux *info); 3667 3668u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type, 3669 const struct bpf_insn *si, 3670 struct bpf_insn *insn_buf, 3671 struct bpf_prog *prog, 3672 u32 *target_size); 3673 3674bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type, 3675 struct bpf_insn_access_aux *info); 3676 3677u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type, 3678 const struct bpf_insn *si, 3679 struct bpf_insn *insn_buf, 3680 struct bpf_prog *prog, 3681 u32 *target_size); 3682#else 3683static inline bool bpf_tcp_sock_is_valid_access(int off, int size, 3684 enum bpf_access_type type, 3685 struct bpf_insn_access_aux *info) 3686{ 3687 return false; 3688} 3689 3690static inline u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type, 3691 const struct bpf_insn *si, 3692 struct bpf_insn *insn_buf, 3693 struct bpf_prog *prog, 3694 u32 *target_size) 3695{ 3696 return 0; 3697} 3698static inline bool bpf_xdp_sock_is_valid_access(int off, int size, 3699 enum bpf_access_type type, 3700 struct bpf_insn_access_aux *info) 3701{ 3702 return false; 3703} 3704 3705static inline u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type, 3706 const struct bpf_insn *si, 3707 struct bpf_insn *insn_buf, 3708 struct bpf_prog *prog, 3709 u32 *target_size) 3710{ 3711 return 0; 3712} 3713#endif /* CONFIG_INET */ 3714 3715enum bpf_text_poke_type { 3716 BPF_MOD_NOP, 3717 BPF_MOD_CALL, 3718 BPF_MOD_JUMP, 3719}; 3720 3721int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type old_t, 3722 enum bpf_text_poke_type new_t, void *old_addr, 3723 void *new_addr); 3724 3725void bpf_arch_poke_desc_update(struct bpf_jit_poke_descriptor *poke, 3726 struct bpf_prog *new, struct bpf_prog *old); 3727 3728void *bpf_arch_text_copy(void *dst, void *src, size_t len); 3729int bpf_arch_text_invalidate(void *dst, size_t len); 3730 3731struct btf_id_set; 3732bool btf_id_set_contains(const struct btf_id_set *set, u32 id); 3733 3734#define MAX_BPRINTF_VARARGS 12 3735#define MAX_BPRINTF_BUF 1024 3736 3737/* Per-cpu temp buffers used by printf-like helpers to store the bprintf binary 3738 * arguments representation. 3739 */ 3740#define MAX_BPRINTF_BIN_ARGS 512 3741 3742struct bpf_bprintf_buffers { 3743 char bin_args[MAX_BPRINTF_BIN_ARGS]; 3744 char buf[MAX_BPRINTF_BUF]; 3745}; 3746 3747struct bpf_bprintf_data { 3748 u32 *bin_args; 3749 char *buf; 3750 bool get_bin_args; 3751 bool get_buf; 3752}; 3753 3754int bpf_bprintf_prepare(const char *fmt, u32 fmt_size, const u64 *raw_args, 3755 u32 num_args, struct bpf_bprintf_data *data); 3756void bpf_bprintf_cleanup(struct bpf_bprintf_data *data); 3757int bpf_try_get_buffers(struct bpf_bprintf_buffers **bufs); 3758void bpf_put_buffers(void); 3759 3760void bpf_prog_stream_init(struct bpf_prog *prog); 3761void bpf_prog_stream_free(struct bpf_prog *prog); 3762int bpf_prog_stream_read(struct bpf_prog *prog, enum bpf_stream_id stream_id, void __user *buf, int len); 3763void bpf_stream_stage_init(struct bpf_stream_stage *ss); 3764void bpf_stream_stage_free(struct bpf_stream_stage *ss); 3765__printf(2, 3) 3766int bpf_stream_stage_printk(struct bpf_stream_stage *ss, const char *fmt, ...); 3767int bpf_stream_stage_commit(struct bpf_stream_stage *ss, struct bpf_prog *prog, 3768 enum bpf_stream_id stream_id); 3769int bpf_stream_stage_dump_stack(struct bpf_stream_stage *ss); 3770 3771#define bpf_stream_printk(ss, ...) bpf_stream_stage_printk(&ss, __VA_ARGS__) 3772#define bpf_stream_dump_stack(ss) bpf_stream_stage_dump_stack(&ss) 3773 3774#define bpf_stream_stage(ss, prog, stream_id, expr) \ 3775 ({ \ 3776 bpf_stream_stage_init(&ss); \ 3777 (expr); \ 3778 bpf_stream_stage_commit(&ss, prog, stream_id); \ 3779 bpf_stream_stage_free(&ss); \ 3780 }) 3781 3782#ifdef CONFIG_BPF_LSM 3783void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype); 3784void bpf_cgroup_atype_put(int cgroup_atype); 3785#else 3786static inline void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype) {} 3787static inline void bpf_cgroup_atype_put(int cgroup_atype) {} 3788#endif /* CONFIG_BPF_LSM */ 3789 3790struct key; 3791 3792#ifdef CONFIG_KEYS 3793struct bpf_key { 3794 struct key *key; 3795 bool has_ref; 3796}; 3797#endif /* CONFIG_KEYS */ 3798 3799static inline bool type_is_alloc(u32 type) 3800{ 3801 return type & MEM_ALLOC; 3802} 3803 3804static inline gfp_t bpf_memcg_flags(gfp_t flags) 3805{ 3806 if (memcg_bpf_enabled()) 3807 return flags | __GFP_ACCOUNT; 3808 return flags; 3809} 3810 3811static inline bool bpf_is_subprog(const struct bpf_prog *prog) 3812{ 3813 return prog->aux->func_idx != 0; 3814} 3815 3816int bpf_prog_get_file_line(struct bpf_prog *prog, unsigned long ip, const char **filep, 3817 const char **linep, int *nump); 3818struct bpf_prog *bpf_prog_find_from_stack(void); 3819 3820int bpf_insn_array_init(struct bpf_map *map, const struct bpf_prog *prog); 3821int bpf_insn_array_ready(struct bpf_map *map); 3822void bpf_insn_array_release(struct bpf_map *map); 3823void bpf_insn_array_adjust(struct bpf_map *map, u32 off, u32 len); 3824void bpf_insn_array_adjust_after_remove(struct bpf_map *map, u32 off, u32 len); 3825 3826#ifdef CONFIG_BPF_SYSCALL 3827void bpf_prog_update_insn_ptrs(struct bpf_prog *prog, u32 *offsets, void *image); 3828#else 3829static inline void 3830bpf_prog_update_insn_ptrs(struct bpf_prog *prog, u32 *offsets, void *image) 3831{ 3832} 3833#endif 3834 3835static inline int bpf_map_check_op_flags(struct bpf_map *map, u64 flags, u64 allowed_flags) 3836{ 3837 if (flags & ~allowed_flags) 3838 return -EINVAL; 3839 3840 if ((flags & BPF_F_LOCK) && !btf_record_has_field(map->record, BPF_SPIN_LOCK)) 3841 return -EINVAL; 3842 3843 return 0; 3844} 3845 3846#endif /* _LINUX_BPF_H */