at master 16 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2/* 3 * Block data types and constants. Directly include this file only to 4 * break include dependency loop. 5 */ 6#ifndef __LINUX_BLK_TYPES_H 7#define __LINUX_BLK_TYPES_H 8 9#include <linux/types.h> 10#include <linux/bvec.h> 11#include <linux/device.h> 12#include <linux/ktime.h> 13#include <linux/rw_hint.h> 14 15struct bio_set; 16struct bio; 17struct bio_integrity_payload; 18struct page; 19struct io_context; 20struct cgroup_subsys_state; 21typedef void (bio_end_io_t) (struct bio *); 22struct bio_crypt_ctx; 23 24/* 25 * The basic unit of block I/O is a sector. It is used in a number of contexts 26 * in Linux (blk, bio, genhd). The size of one sector is 512 = 2**9 27 * bytes. Variables of type sector_t represent an offset or size that is a 28 * multiple of 512 bytes. Hence these two constants. 29 */ 30#ifndef SECTOR_SHIFT 31#define SECTOR_SHIFT 9 32#endif 33#ifndef SECTOR_SIZE 34#define SECTOR_SIZE (1 << SECTOR_SHIFT) 35#endif 36 37#define PAGE_SECTORS_SHIFT (PAGE_SHIFT - SECTOR_SHIFT) 38#define PAGE_SECTORS (1 << PAGE_SECTORS_SHIFT) 39#define SECTOR_MASK (PAGE_SECTORS - 1) 40 41struct block_device { 42 sector_t bd_start_sect; 43 sector_t bd_nr_sectors; 44 struct gendisk * bd_disk; 45 struct request_queue * bd_queue; 46 struct disk_stats __percpu *bd_stats; 47 unsigned long bd_stamp; 48 atomic_t __bd_flags; // partition number + flags 49#define BD_PARTNO 255 // lower 8 bits; assign-once 50#define BD_READ_ONLY (1u<<8) // read-only policy 51#define BD_WRITE_HOLDER (1u<<9) 52#define BD_HAS_SUBMIT_BIO (1u<<10) 53#define BD_RO_WARNED (1u<<11) 54#ifdef CONFIG_FAIL_MAKE_REQUEST 55#define BD_MAKE_IT_FAIL (1u<<12) 56#endif 57 dev_t bd_dev; 58 struct address_space *bd_mapping; /* page cache */ 59 60 atomic_t bd_openers; 61 spinlock_t bd_size_lock; /* for bd_inode->i_size updates */ 62 void * bd_claiming; 63 void * bd_holder; 64 const struct blk_holder_ops *bd_holder_ops; 65 struct mutex bd_holder_lock; 66 int bd_holders; 67 struct kobject *bd_holder_dir; 68 69 atomic_t bd_fsfreeze_count; /* number of freeze requests */ 70 struct mutex bd_fsfreeze_mutex; /* serialize freeze/thaw */ 71 72 struct partition_meta_info *bd_meta_info; 73 int bd_writers; 74#ifdef CONFIG_SECURITY 75 void *bd_security; 76#endif 77 /* 78 * keep this out-of-line as it's both big and not needed in the fast 79 * path 80 */ 81 struct device bd_device; 82} __randomize_layout; 83 84#define bdev_whole(_bdev) \ 85 ((_bdev)->bd_disk->part0) 86 87#define dev_to_bdev(device) \ 88 container_of((device), struct block_device, bd_device) 89 90#define bdev_kobj(_bdev) \ 91 (&((_bdev)->bd_device.kobj)) 92 93/* 94 * Block error status values. See block/blk-core:blk_errors for the details. 95 */ 96typedef u8 __bitwise blk_status_t; 97typedef u16 blk_short_t; 98#define BLK_STS_OK 0 99#define BLK_STS_NOTSUPP ((__force blk_status_t)1) 100#define BLK_STS_TIMEOUT ((__force blk_status_t)2) 101#define BLK_STS_NOSPC ((__force blk_status_t)3) 102#define BLK_STS_TRANSPORT ((__force blk_status_t)4) 103#define BLK_STS_TARGET ((__force blk_status_t)5) 104#define BLK_STS_RESV_CONFLICT ((__force blk_status_t)6) 105#define BLK_STS_MEDIUM ((__force blk_status_t)7) 106#define BLK_STS_PROTECTION ((__force blk_status_t)8) 107#define BLK_STS_RESOURCE ((__force blk_status_t)9) 108#define BLK_STS_IOERR ((__force blk_status_t)10) 109 110/* hack for device mapper, don't use elsewhere: */ 111#define BLK_STS_DM_REQUEUE ((__force blk_status_t)11) 112 113/* 114 * BLK_STS_AGAIN should only be returned if RQF_NOWAIT is set 115 * and the bio would block (cf bio_wouldblock_error()) 116 */ 117#define BLK_STS_AGAIN ((__force blk_status_t)12) 118 119/* 120 * BLK_STS_DEV_RESOURCE is returned from the driver to the block layer if 121 * device related resources are unavailable, but the driver can guarantee 122 * that the queue will be rerun in the future once resources become 123 * available again. This is typically the case for device specific 124 * resources that are consumed for IO. If the driver fails allocating these 125 * resources, we know that inflight (or pending) IO will free these 126 * resource upon completion. 127 * 128 * This is different from BLK_STS_RESOURCE in that it explicitly references 129 * a device specific resource. For resources of wider scope, allocation 130 * failure can happen without having pending IO. This means that we can't 131 * rely on request completions freeing these resources, as IO may not be in 132 * flight. Examples of that are kernel memory allocations, DMA mappings, or 133 * any other system wide resources. 134 */ 135#define BLK_STS_DEV_RESOURCE ((__force blk_status_t)13) 136 137/* 138 * BLK_STS_ZONE_OPEN_RESOURCE is returned from the driver in the completion 139 * path if the device returns a status indicating that too many zone resources 140 * are currently open. The same command should be successful if resubmitted 141 * after the number of open zones decreases below the device's limits, which is 142 * reported in the request_queue's max_open_zones. 143 */ 144#define BLK_STS_ZONE_OPEN_RESOURCE ((__force blk_status_t)14) 145 146/* 147 * BLK_STS_ZONE_ACTIVE_RESOURCE is returned from the driver in the completion 148 * path if the device returns a status indicating that too many zone resources 149 * are currently active. The same command should be successful if resubmitted 150 * after the number of active zones decreases below the device's limits, which 151 * is reported in the request_queue's max_active_zones. 152 */ 153#define BLK_STS_ZONE_ACTIVE_RESOURCE ((__force blk_status_t)15) 154 155/* 156 * BLK_STS_OFFLINE is returned from the driver when the target device is offline 157 * or is being taken offline. This could help differentiate the case where a 158 * device is intentionally being shut down from a real I/O error. 159 */ 160#define BLK_STS_OFFLINE ((__force blk_status_t)16) 161 162/* 163 * BLK_STS_DURATION_LIMIT is returned from the driver when the target device 164 * aborted the command because it exceeded one of its Command Duration Limits. 165 */ 166#define BLK_STS_DURATION_LIMIT ((__force blk_status_t)17) 167 168/* 169 * Invalid size or alignment. 170 */ 171#define BLK_STS_INVAL ((__force blk_status_t)19) 172 173/** 174 * blk_path_error - returns true if error may be path related 175 * @error: status the request was completed with 176 * 177 * Description: 178 * This classifies block error status into non-retryable errors and ones 179 * that may be successful if retried on a failover path. 180 * 181 * Return: 182 * %false - retrying failover path will not help 183 * %true - may succeed if retried 184 */ 185static inline bool blk_path_error(blk_status_t error) 186{ 187 switch (error) { 188 case BLK_STS_NOTSUPP: 189 case BLK_STS_NOSPC: 190 case BLK_STS_TARGET: 191 case BLK_STS_RESV_CONFLICT: 192 case BLK_STS_MEDIUM: 193 case BLK_STS_PROTECTION: 194 return false; 195 } 196 197 /* Anything else could be a path failure, so should be retried */ 198 return true; 199} 200 201typedef __u32 __bitwise blk_opf_t; 202 203typedef unsigned int blk_qc_t; 204#define BLK_QC_T_NONE -1U 205 206/* 207 * main unit of I/O for the block layer and lower layers (ie drivers and 208 * stacking drivers) 209 */ 210struct bio { 211 struct bio *bi_next; /* request queue link */ 212 struct block_device *bi_bdev; 213 blk_opf_t bi_opf; /* bottom bits REQ_OP, top bits 214 * req_flags. 215 */ 216 unsigned short bi_flags; /* BIO_* below */ 217 unsigned short bi_ioprio; 218 enum rw_hint bi_write_hint; 219 u8 bi_write_stream; 220 blk_status_t bi_status; 221 222 /* 223 * The bvec gap bit indicates the lowest set bit in any address offset 224 * between all bi_io_vecs. This field is initialized only after the bio 225 * is split to the hardware limits (see bio_split_io_at()). The value 226 * may be used to consider DMA optimization when performing that 227 * mapping. The value is compared to a power of two mask where the 228 * result depends on any bit set within the mask, so saving the lowest 229 * bit is sufficient to know if any segment gap collides with the mask. 230 */ 231 u8 bi_bvec_gap_bit; 232 233 atomic_t __bi_remaining; 234 235 struct bvec_iter bi_iter; 236 237 union { 238 /* for polled bios: */ 239 blk_qc_t bi_cookie; 240 /* for plugged zoned writes only: */ 241 unsigned int __bi_nr_segments; 242 }; 243 bio_end_io_t *bi_end_io; 244 void *bi_private; 245#ifdef CONFIG_BLK_CGROUP 246 /* 247 * Represents the association of the css and request_queue for the bio. 248 * If a bio goes direct to device, it will not have a blkg as it will 249 * not have a request_queue associated with it. The reference is put 250 * on release of the bio. 251 */ 252 struct blkcg_gq *bi_blkg; 253 /* Time that this bio was issued. */ 254 u64 issue_time_ns; 255#ifdef CONFIG_BLK_CGROUP_IOCOST 256 u64 bi_iocost_cost; 257#endif 258#endif 259 260#ifdef CONFIG_BLK_INLINE_ENCRYPTION 261 struct bio_crypt_ctx *bi_crypt_context; 262#endif 263 264#if defined(CONFIG_BLK_DEV_INTEGRITY) 265 struct bio_integrity_payload *bi_integrity; /* data integrity */ 266#endif 267 268 unsigned short bi_vcnt; /* how many bio_vec's */ 269 270 /* 271 * Everything starting with bi_max_vecs will be preserved by bio_reset() 272 */ 273 274 unsigned short bi_max_vecs; /* max bvl_vecs we can hold */ 275 276 atomic_t __bi_cnt; /* pin count */ 277 278 struct bio_vec *bi_io_vec; /* the actual vec list */ 279 280 struct bio_set *bi_pool; 281}; 282 283#define BIO_RESET_BYTES offsetof(struct bio, bi_max_vecs) 284#define BIO_MAX_SECTORS (UINT_MAX >> SECTOR_SHIFT) 285 286static inline struct bio_vec *bio_inline_vecs(struct bio *bio) 287{ 288 return (struct bio_vec *)(bio + 1); 289} 290 291/* 292 * bio flags 293 */ 294enum { 295 BIO_PAGE_PINNED, /* Unpin pages in bio_release_pages() */ 296 BIO_CLONED, /* doesn't own data */ 297 BIO_QUIET, /* Make BIO Quiet */ 298 BIO_CHAIN, /* chained bio, ->bi_remaining in effect */ 299 BIO_REFFED, /* bio has elevated ->bi_cnt */ 300 BIO_BPS_THROTTLED, /* This bio has already been subjected to 301 * throttling rules. Don't do it again. */ 302 BIO_TRACE_COMPLETION, /* bio_endio() should trace the final completion 303 * of this bio. */ 304 BIO_CGROUP_ACCT, /* has been accounted to a cgroup */ 305 BIO_QOS_THROTTLED, /* bio went through rq_qos throttle path */ 306 /* 307 * This bio has completed bps throttling at the single tg granularity, 308 * which is different from BIO_BPS_THROTTLED. When the bio is enqueued 309 * into the sq->queued of the upper tg, or is about to be dispatched, 310 * this flag needs to be cleared. Since blk-throttle and rq_qos are not 311 * on the same hierarchical level, reuse the value. 312 */ 313 BIO_TG_BPS_THROTTLED = BIO_QOS_THROTTLED, 314 BIO_QOS_MERGED, /* but went through rq_qos merge path */ 315 BIO_REMAPPED, 316 BIO_ZONE_WRITE_PLUGGING, /* bio handled through zone write plugging */ 317 BIO_EMULATES_ZONE_APPEND, /* bio emulates a zone append operation */ 318 BIO_FLAG_LAST 319}; 320 321typedef __u32 __bitwise blk_mq_req_flags_t; 322 323#define REQ_OP_BITS 8 324#define REQ_OP_MASK (__force blk_opf_t)((1 << REQ_OP_BITS) - 1) 325#define REQ_FLAG_BITS 24 326 327/** 328 * enum req_op - Operations common to the bio and request structures. 329 * We use 8 bits for encoding the operation, and the remaining 24 for flags. 330 * 331 * The least significant bit of the operation number indicates the data 332 * transfer direction: 333 * 334 * - if the least significant bit is set transfers are TO the device 335 * - if the least significant bit is not set transfers are FROM the device 336 * 337 * If a operation does not transfer data the least significant bit has no 338 * meaning. 339 */ 340enum req_op { 341 /* read sectors from the device */ 342 REQ_OP_READ = (__force blk_opf_t)0, 343 /* write sectors to the device */ 344 REQ_OP_WRITE = (__force blk_opf_t)1, 345 /* flush the volatile write cache */ 346 REQ_OP_FLUSH = (__force blk_opf_t)2, 347 /* discard sectors */ 348 REQ_OP_DISCARD = (__force blk_opf_t)3, 349 /* securely erase sectors */ 350 REQ_OP_SECURE_ERASE = (__force blk_opf_t)5, 351 /* write data at the current zone write pointer */ 352 REQ_OP_ZONE_APPEND = (__force blk_opf_t)7, 353 /* write the zero filled sector many times */ 354 REQ_OP_WRITE_ZEROES = (__force blk_opf_t)9, 355 /* Open a zone */ 356 REQ_OP_ZONE_OPEN = (__force blk_opf_t)11, 357 /* Close a zone */ 358 REQ_OP_ZONE_CLOSE = (__force blk_opf_t)13, 359 /* Transition a zone to full */ 360 REQ_OP_ZONE_FINISH = (__force blk_opf_t)15, 361 /* reset a zone write pointer */ 362 REQ_OP_ZONE_RESET = (__force blk_opf_t)17, 363 /* reset all the zone present on the device */ 364 REQ_OP_ZONE_RESET_ALL = (__force blk_opf_t)19, 365 366 /* Driver private requests */ 367 REQ_OP_DRV_IN = (__force blk_opf_t)34, 368 REQ_OP_DRV_OUT = (__force blk_opf_t)35, 369 370 REQ_OP_LAST = (__force blk_opf_t)36, 371}; 372 373/* Keep cmd_flag_name[] in sync with the definitions below */ 374enum req_flag_bits { 375 __REQ_FAILFAST_DEV = /* no driver retries of device errors */ 376 REQ_OP_BITS, 377 __REQ_FAILFAST_TRANSPORT, /* no driver retries of transport errors */ 378 __REQ_FAILFAST_DRIVER, /* no driver retries of driver errors */ 379 __REQ_SYNC, /* request is sync (sync write or read) */ 380 __REQ_META, /* metadata io request */ 381 __REQ_PRIO, /* boost priority in cfq */ 382 __REQ_NOMERGE, /* don't touch this for merging */ 383 __REQ_IDLE, /* anticipate more IO after this one */ 384 __REQ_INTEGRITY, /* I/O includes block integrity payload */ 385 __REQ_FUA, /* forced unit access */ 386 __REQ_PREFLUSH, /* request for cache flush */ 387 __REQ_RAHEAD, /* read ahead, can fail anytime */ 388 __REQ_BACKGROUND, /* background IO */ 389 __REQ_NOWAIT, /* Don't wait if request will block */ 390 __REQ_POLLED, /* caller polls for completion using bio_poll */ 391 __REQ_ALLOC_CACHE, /* allocate IO from cache if available */ 392 __REQ_SWAP, /* swap I/O */ 393 __REQ_DRV, /* for driver use */ 394 __REQ_FS_PRIVATE, /* for file system (submitter) use */ 395 __REQ_ATOMIC, /* for atomic write operations */ 396 /* 397 * Command specific flags, keep last: 398 */ 399 /* for REQ_OP_WRITE_ZEROES: */ 400 __REQ_NOUNMAP, /* do not free blocks when zeroing */ 401 402 __REQ_NR_BITS, /* stops here */ 403}; 404 405#define REQ_FAILFAST_DEV \ 406 (__force blk_opf_t)(1ULL << __REQ_FAILFAST_DEV) 407#define REQ_FAILFAST_TRANSPORT \ 408 (__force blk_opf_t)(1ULL << __REQ_FAILFAST_TRANSPORT) 409#define REQ_FAILFAST_DRIVER \ 410 (__force blk_opf_t)(1ULL << __REQ_FAILFAST_DRIVER) 411#define REQ_SYNC (__force blk_opf_t)(1ULL << __REQ_SYNC) 412#define REQ_META (__force blk_opf_t)(1ULL << __REQ_META) 413#define REQ_PRIO (__force blk_opf_t)(1ULL << __REQ_PRIO) 414#define REQ_NOMERGE (__force blk_opf_t)(1ULL << __REQ_NOMERGE) 415#define REQ_IDLE (__force blk_opf_t)(1ULL << __REQ_IDLE) 416#define REQ_INTEGRITY (__force blk_opf_t)(1ULL << __REQ_INTEGRITY) 417#define REQ_FUA (__force blk_opf_t)(1ULL << __REQ_FUA) 418#define REQ_PREFLUSH (__force blk_opf_t)(1ULL << __REQ_PREFLUSH) 419#define REQ_RAHEAD (__force blk_opf_t)(1ULL << __REQ_RAHEAD) 420#define REQ_BACKGROUND (__force blk_opf_t)(1ULL << __REQ_BACKGROUND) 421#define REQ_NOWAIT (__force blk_opf_t)(1ULL << __REQ_NOWAIT) 422#define REQ_POLLED (__force blk_opf_t)(1ULL << __REQ_POLLED) 423#define REQ_ALLOC_CACHE (__force blk_opf_t)(1ULL << __REQ_ALLOC_CACHE) 424#define REQ_SWAP (__force blk_opf_t)(1ULL << __REQ_SWAP) 425#define REQ_DRV (__force blk_opf_t)(1ULL << __REQ_DRV) 426#define REQ_FS_PRIVATE (__force blk_opf_t)(1ULL << __REQ_FS_PRIVATE) 427#define REQ_ATOMIC (__force blk_opf_t)(1ULL << __REQ_ATOMIC) 428 429#define REQ_NOUNMAP (__force blk_opf_t)(1ULL << __REQ_NOUNMAP) 430 431#define REQ_FAILFAST_MASK \ 432 (REQ_FAILFAST_DEV | REQ_FAILFAST_TRANSPORT | REQ_FAILFAST_DRIVER) 433 434#define REQ_NOMERGE_FLAGS \ 435 (REQ_NOMERGE | REQ_PREFLUSH | REQ_FUA) 436 437enum stat_group { 438 STAT_READ, 439 STAT_WRITE, 440 STAT_DISCARD, 441 STAT_FLUSH, 442 443 NR_STAT_GROUPS 444}; 445 446static inline enum req_op bio_op(const struct bio *bio) 447{ 448 return bio->bi_opf & REQ_OP_MASK; 449} 450 451static inline bool op_is_write(blk_opf_t op) 452{ 453 return !!(op & (__force blk_opf_t)1); 454} 455 456/* 457 * Check if the bio or request is one that needs special treatment in the 458 * flush state machine. 459 */ 460static inline bool op_is_flush(blk_opf_t op) 461{ 462 return op & (REQ_FUA | REQ_PREFLUSH); 463} 464 465/* 466 * Reads are always treated as synchronous, as are requests with the FUA or 467 * PREFLUSH flag. Other operations may be marked as synchronous using the 468 * REQ_SYNC flag. 469 */ 470static inline bool op_is_sync(blk_opf_t op) 471{ 472 return (op & REQ_OP_MASK) == REQ_OP_READ || 473 (op & (REQ_SYNC | REQ_FUA | REQ_PREFLUSH)); 474} 475 476static inline bool op_is_discard(blk_opf_t op) 477{ 478 return (op & REQ_OP_MASK) == REQ_OP_DISCARD; 479} 480 481/* 482 * Check if a bio or request operation is a zone management operation. 483 */ 484static inline bool op_is_zone_mgmt(enum req_op op) 485{ 486 switch (op & REQ_OP_MASK) { 487 case REQ_OP_ZONE_RESET: 488 case REQ_OP_ZONE_RESET_ALL: 489 case REQ_OP_ZONE_OPEN: 490 case REQ_OP_ZONE_CLOSE: 491 case REQ_OP_ZONE_FINISH: 492 return true; 493 default: 494 return false; 495 } 496} 497 498static inline int op_stat_group(enum req_op op) 499{ 500 if (op_is_discard(op)) 501 return STAT_DISCARD; 502 return op_is_write(op); 503} 504 505struct blk_rq_stat { 506 u64 mean; 507 u64 min; 508 u64 max; 509 u32 nr_samples; 510 u64 batch; 511}; 512 513#endif /* __LINUX_BLK_TYPES_H */