at master 20 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2/* 3 * Copyright (C) 2001 Jens Axboe <axboe@suse.de> 4 */ 5#ifndef __LINUX_BIO_H 6#define __LINUX_BIO_H 7 8#include <linux/mempool.h> 9/* struct bio, bio_vec and BIO_* flags are defined in blk_types.h */ 10#include <linux/blk_types.h> 11#include <linux/uio.h> 12 13#define BIO_MAX_VECS 256U 14#define BIO_MAX_INLINE_VECS UIO_MAXIOV 15 16struct queue_limits; 17 18static inline unsigned int bio_max_segs(unsigned int nr_segs) 19{ 20 return min(nr_segs, BIO_MAX_VECS); 21} 22 23#define bio_iter_iovec(bio, iter) \ 24 bvec_iter_bvec((bio)->bi_io_vec, (iter)) 25 26#define bio_iter_page(bio, iter) \ 27 bvec_iter_page((bio)->bi_io_vec, (iter)) 28#define bio_iter_len(bio, iter) \ 29 bvec_iter_len((bio)->bi_io_vec, (iter)) 30#define bio_iter_offset(bio, iter) \ 31 bvec_iter_offset((bio)->bi_io_vec, (iter)) 32 33#define bio_page(bio) bio_iter_page((bio), (bio)->bi_iter) 34#define bio_offset(bio) bio_iter_offset((bio), (bio)->bi_iter) 35#define bio_iovec(bio) bio_iter_iovec((bio), (bio)->bi_iter) 36 37#define bvec_iter_sectors(iter) ((iter).bi_size >> 9) 38#define bvec_iter_end_sector(iter) ((iter).bi_sector + bvec_iter_sectors((iter))) 39 40#define bio_sectors(bio) bvec_iter_sectors((bio)->bi_iter) 41#define bio_end_sector(bio) bvec_iter_end_sector((bio)->bi_iter) 42 43/* 44 * Return the data direction, READ or WRITE. 45 */ 46#define bio_data_dir(bio) \ 47 (op_is_write(bio_op(bio)) ? WRITE : READ) 48 49static inline bool bio_flagged(const struct bio *bio, unsigned int bit) 50{ 51 return bio->bi_flags & (1U << bit); 52} 53 54static inline void bio_set_flag(struct bio *bio, unsigned int bit) 55{ 56 bio->bi_flags |= (1U << bit); 57} 58 59static inline void bio_clear_flag(struct bio *bio, unsigned int bit) 60{ 61 bio->bi_flags &= ~(1U << bit); 62} 63 64/* 65 * Check whether this bio carries any data or not. A NULL bio is allowed. 66 */ 67static inline bool bio_has_data(struct bio *bio) 68{ 69 if (bio && 70 bio->bi_iter.bi_size && 71 bio_op(bio) != REQ_OP_DISCARD && 72 bio_op(bio) != REQ_OP_SECURE_ERASE && 73 bio_op(bio) != REQ_OP_WRITE_ZEROES) 74 return true; 75 76 return false; 77} 78 79static inline bool bio_no_advance_iter(const struct bio *bio) 80{ 81 return bio_op(bio) == REQ_OP_DISCARD || 82 bio_op(bio) == REQ_OP_SECURE_ERASE || 83 bio_op(bio) == REQ_OP_WRITE_ZEROES; 84} 85 86static inline void *bio_data(struct bio *bio) 87{ 88 if (bio_has_data(bio)) 89 return page_address(bio_page(bio)) + bio_offset(bio); 90 91 return NULL; 92} 93 94static inline bool bio_next_segment(const struct bio *bio, 95 struct bvec_iter_all *iter) 96{ 97 if (iter->idx >= bio->bi_vcnt) 98 return false; 99 100 bvec_advance(&bio->bi_io_vec[iter->idx], iter); 101 return true; 102} 103 104/* 105 * drivers should _never_ use the all version - the bio may have been split 106 * before it got to the driver and the driver won't own all of it 107 */ 108#define bio_for_each_segment_all(bvl, bio, iter) \ 109 for (bvl = bvec_init_iter_all(&iter); bio_next_segment((bio), &iter); ) 110 111static inline void bio_advance_iter(const struct bio *bio, 112 struct bvec_iter *iter, unsigned int bytes) 113{ 114 iter->bi_sector += bytes >> 9; 115 116 if (bio_no_advance_iter(bio)) 117 iter->bi_size -= bytes; 118 else 119 bvec_iter_advance(bio->bi_io_vec, iter, bytes); 120 /* TODO: It is reasonable to complete bio with error here. */ 121} 122 123/* @bytes should be less or equal to bvec[i->bi_idx].bv_len */ 124static inline void bio_advance_iter_single(const struct bio *bio, 125 struct bvec_iter *iter, 126 unsigned int bytes) 127{ 128 iter->bi_sector += bytes >> 9; 129 130 if (bio_no_advance_iter(bio)) 131 iter->bi_size -= bytes; 132 else 133 bvec_iter_advance_single(bio->bi_io_vec, iter, bytes); 134} 135 136void __bio_advance(struct bio *, unsigned bytes); 137 138/** 139 * bio_advance - increment/complete a bio by some number of bytes 140 * @bio: bio to advance 141 * @nbytes: number of bytes to complete 142 * 143 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to 144 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will 145 * be updated on the last bvec as well. 146 * 147 * @bio will then represent the remaining, uncompleted portion of the io. 148 */ 149static inline void bio_advance(struct bio *bio, unsigned int nbytes) 150{ 151 if (nbytes == bio->bi_iter.bi_size) { 152 bio->bi_iter.bi_size = 0; 153 return; 154 } 155 __bio_advance(bio, nbytes); 156} 157 158#define __bio_for_each_segment(bvl, bio, iter, start) \ 159 for (iter = (start); \ 160 (iter).bi_size && \ 161 ((bvl = bio_iter_iovec((bio), (iter))), 1); \ 162 bio_advance_iter_single((bio), &(iter), (bvl).bv_len)) 163 164#define bio_for_each_segment(bvl, bio, iter) \ 165 __bio_for_each_segment(bvl, bio, iter, (bio)->bi_iter) 166 167#define __bio_for_each_bvec(bvl, bio, iter, start) \ 168 for (iter = (start); \ 169 (iter).bi_size && \ 170 ((bvl = mp_bvec_iter_bvec((bio)->bi_io_vec, (iter))), 1); \ 171 bio_advance_iter_single((bio), &(iter), (bvl).bv_len)) 172 173/* iterate over multi-page bvec */ 174#define bio_for_each_bvec(bvl, bio, iter) \ 175 __bio_for_each_bvec(bvl, bio, iter, (bio)->bi_iter) 176 177/* 178 * Iterate over all multi-page bvecs. Drivers shouldn't use this version for the 179 * same reasons as bio_for_each_segment_all(). 180 */ 181#define bio_for_each_bvec_all(bvl, bio, i) \ 182 for (i = 0, bvl = bio_first_bvec_all(bio); \ 183 i < (bio)->bi_vcnt; i++, bvl++) 184 185#define bio_iter_last(bvec, iter) ((iter).bi_size == (bvec).bv_len) 186 187static inline unsigned bio_segments(struct bio *bio) 188{ 189 unsigned segs = 0; 190 struct bio_vec bv; 191 struct bvec_iter iter; 192 193 /* 194 * We special case discard/write same/write zeroes, because they 195 * interpret bi_size differently: 196 */ 197 198 switch (bio_op(bio)) { 199 case REQ_OP_DISCARD: 200 case REQ_OP_SECURE_ERASE: 201 case REQ_OP_WRITE_ZEROES: 202 return 0; 203 default: 204 break; 205 } 206 207 bio_for_each_segment(bv, bio, iter) 208 segs++; 209 210 return segs; 211} 212 213/* 214 * get a reference to a bio, so it won't disappear. the intended use is 215 * something like: 216 * 217 * bio_get(bio); 218 * submit_bio(rw, bio); 219 * if (bio->bi_flags ...) 220 * do_something 221 * bio_put(bio); 222 * 223 * without the bio_get(), it could potentially complete I/O before submit_bio 224 * returns. and then bio would be freed memory when if (bio->bi_flags ...) 225 * runs 226 */ 227static inline void bio_get(struct bio *bio) 228{ 229 bio->bi_flags |= (1 << BIO_REFFED); 230 smp_mb__before_atomic(); 231 atomic_inc(&bio->__bi_cnt); 232} 233 234static inline void bio_cnt_set(struct bio *bio, unsigned int count) 235{ 236 if (count != 1) { 237 bio->bi_flags |= (1 << BIO_REFFED); 238 smp_mb(); 239 } 240 atomic_set(&bio->__bi_cnt, count); 241} 242 243static inline struct bio_vec *bio_first_bvec_all(struct bio *bio) 244{ 245 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)); 246 return bio->bi_io_vec; 247} 248 249static inline struct page *bio_first_page_all(struct bio *bio) 250{ 251 return bio_first_bvec_all(bio)->bv_page; 252} 253 254static inline struct folio *bio_first_folio_all(struct bio *bio) 255{ 256 return page_folio(bio_first_page_all(bio)); 257} 258 259static inline struct bio_vec *bio_last_bvec_all(struct bio *bio) 260{ 261 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)); 262 return &bio->bi_io_vec[bio->bi_vcnt - 1]; 263} 264 265/** 266 * struct folio_iter - State for iterating all folios in a bio. 267 * @folio: The current folio we're iterating. NULL after the last folio. 268 * @offset: The byte offset within the current folio. 269 * @length: The number of bytes in this iteration (will not cross folio 270 * boundary). 271 */ 272struct folio_iter { 273 struct folio *folio; 274 size_t offset; 275 size_t length; 276 /* private: for use by the iterator */ 277 struct folio *_next; 278 size_t _seg_count; 279 int _i; 280}; 281 282static inline void bio_first_folio(struct folio_iter *fi, struct bio *bio, 283 int i) 284{ 285 struct bio_vec *bvec = bio_first_bvec_all(bio) + i; 286 287 if (unlikely(i >= bio->bi_vcnt)) { 288 fi->folio = NULL; 289 return; 290 } 291 292 fi->folio = page_folio(bvec->bv_page); 293 fi->offset = bvec->bv_offset + 294 PAGE_SIZE * folio_page_idx(fi->folio, bvec->bv_page); 295 fi->_seg_count = bvec->bv_len; 296 fi->length = min(folio_size(fi->folio) - fi->offset, fi->_seg_count); 297 fi->_next = folio_next(fi->folio); 298 fi->_i = i; 299} 300 301static inline void bio_next_folio(struct folio_iter *fi, struct bio *bio) 302{ 303 fi->_seg_count -= fi->length; 304 if (fi->_seg_count) { 305 fi->folio = fi->_next; 306 fi->offset = 0; 307 fi->length = min(folio_size(fi->folio), fi->_seg_count); 308 fi->_next = folio_next(fi->folio); 309 } else { 310 bio_first_folio(fi, bio, fi->_i + 1); 311 } 312} 313 314/** 315 * bio_for_each_folio_all - Iterate over each folio in a bio. 316 * @fi: struct folio_iter which is updated for each folio. 317 * @bio: struct bio to iterate over. 318 */ 319#define bio_for_each_folio_all(fi, bio) \ 320 for (bio_first_folio(&fi, bio, 0); fi.folio; bio_next_folio(&fi, bio)) 321 322void bio_trim(struct bio *bio, sector_t offset, sector_t size); 323extern struct bio *bio_split(struct bio *bio, int sectors, 324 gfp_t gfp, struct bio_set *bs); 325int bio_split_io_at(struct bio *bio, const struct queue_limits *lim, 326 unsigned *segs, unsigned max_bytes, unsigned len_align); 327u8 bio_seg_gap(struct request_queue *q, struct bio *prev, struct bio *next, 328 u8 gaps_bit); 329 330/** 331 * bio_next_split - get next @sectors from a bio, splitting if necessary 332 * @bio: bio to split 333 * @sectors: number of sectors to split from the front of @bio 334 * @gfp: gfp mask 335 * @bs: bio set to allocate from 336 * 337 * Return: a bio representing the next @sectors of @bio - if the bio is smaller 338 * than @sectors, returns the original bio unchanged. 339 */ 340static inline struct bio *bio_next_split(struct bio *bio, int sectors, 341 gfp_t gfp, struct bio_set *bs) 342{ 343 if (sectors >= bio_sectors(bio)) 344 return bio; 345 346 return bio_split(bio, sectors, gfp, bs); 347} 348 349enum { 350 BIOSET_NEED_BVECS = BIT(0), 351 BIOSET_NEED_RESCUER = BIT(1), 352 BIOSET_PERCPU_CACHE = BIT(2), 353}; 354extern int bioset_init(struct bio_set *, unsigned int, unsigned int, int flags); 355extern void bioset_exit(struct bio_set *); 356extern int biovec_init_pool(mempool_t *pool, int pool_entries); 357 358struct bio *bio_alloc_bioset(struct block_device *bdev, unsigned short nr_vecs, 359 blk_opf_t opf, gfp_t gfp_mask, 360 struct bio_set *bs); 361struct bio *bio_kmalloc(unsigned short nr_vecs, gfp_t gfp_mask); 362extern void bio_put(struct bio *); 363 364struct bio *bio_alloc_clone(struct block_device *bdev, struct bio *bio_src, 365 gfp_t gfp, struct bio_set *bs); 366int bio_init_clone(struct block_device *bdev, struct bio *bio, 367 struct bio *bio_src, gfp_t gfp); 368 369extern struct bio_set fs_bio_set; 370 371static inline struct bio *bio_alloc(struct block_device *bdev, 372 unsigned short nr_vecs, blk_opf_t opf, gfp_t gfp_mask) 373{ 374 return bio_alloc_bioset(bdev, nr_vecs, opf, gfp_mask, &fs_bio_set); 375} 376 377void submit_bio(struct bio *bio); 378 379extern void bio_endio(struct bio *); 380 381static inline void bio_io_error(struct bio *bio) 382{ 383 bio->bi_status = BLK_STS_IOERR; 384 bio_endio(bio); 385} 386 387static inline void bio_wouldblock_error(struct bio *bio) 388{ 389 bio_set_flag(bio, BIO_QUIET); 390 bio->bi_status = BLK_STS_AGAIN; 391 bio_endio(bio); 392} 393 394/* 395 * Calculate number of bvec segments that should be allocated to fit data 396 * pointed by @iter. If @iter is backed by bvec it's going to be reused 397 * instead of allocating a new one. 398 */ 399static inline int bio_iov_vecs_to_alloc(struct iov_iter *iter, int max_segs) 400{ 401 if (iov_iter_is_bvec(iter)) 402 return 0; 403 return iov_iter_npages(iter, max_segs); 404} 405 406struct request_queue; 407 408void bio_init(struct bio *bio, struct block_device *bdev, struct bio_vec *table, 409 unsigned short max_vecs, blk_opf_t opf); 410static inline void bio_init_inline(struct bio *bio, struct block_device *bdev, 411 unsigned short max_vecs, blk_opf_t opf) 412{ 413 bio_init(bio, bdev, bio_inline_vecs(bio), max_vecs, opf); 414} 415extern void bio_uninit(struct bio *); 416void bio_reset(struct bio *bio, struct block_device *bdev, blk_opf_t opf); 417void bio_chain(struct bio *, struct bio *); 418 419int __must_check bio_add_page(struct bio *bio, struct page *page, unsigned len, 420 unsigned off); 421bool __must_check bio_add_folio(struct bio *bio, struct folio *folio, 422 size_t len, size_t off); 423void __bio_add_page(struct bio *bio, struct page *page, 424 unsigned int len, unsigned int off); 425void bio_add_folio_nofail(struct bio *bio, struct folio *folio, size_t len, 426 size_t off); 427void bio_add_virt_nofail(struct bio *bio, void *vaddr, unsigned len); 428 429/** 430 * bio_add_max_vecs - number of bio_vecs needed to add data to a bio 431 * @kaddr: kernel virtual address to add 432 * @len: length in bytes to add 433 * 434 * Calculate how many bio_vecs need to be allocated to add the kernel virtual 435 * address range in [@kaddr:@len] in the worse case. 436 */ 437static inline unsigned int bio_add_max_vecs(void *kaddr, unsigned int len) 438{ 439 if (is_vmalloc_addr(kaddr)) 440 return DIV_ROUND_UP(offset_in_page(kaddr) + len, PAGE_SIZE); 441 return 1; 442} 443 444unsigned int bio_add_vmalloc_chunk(struct bio *bio, void *vaddr, unsigned len); 445bool bio_add_vmalloc(struct bio *bio, void *vaddr, unsigned int len); 446 447int submit_bio_wait(struct bio *bio); 448int bdev_rw_virt(struct block_device *bdev, sector_t sector, void *data, 449 size_t len, enum req_op op); 450 451int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter, 452 unsigned len_align_mask); 453 454void bio_iov_bvec_set(struct bio *bio, const struct iov_iter *iter); 455void __bio_release_pages(struct bio *bio, bool mark_dirty); 456extern void bio_set_pages_dirty(struct bio *bio); 457extern void bio_check_pages_dirty(struct bio *bio); 458 459extern void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter, 460 struct bio *src, struct bvec_iter *src_iter); 461extern void bio_copy_data(struct bio *dst, struct bio *src); 462extern void bio_free_pages(struct bio *bio); 463void guard_bio_eod(struct bio *bio); 464void zero_fill_bio_iter(struct bio *bio, struct bvec_iter iter); 465 466static inline void zero_fill_bio(struct bio *bio) 467{ 468 zero_fill_bio_iter(bio, bio->bi_iter); 469} 470 471static inline void bio_release_pages(struct bio *bio, bool mark_dirty) 472{ 473 if (bio_flagged(bio, BIO_PAGE_PINNED)) 474 __bio_release_pages(bio, mark_dirty); 475} 476 477#define bio_dev(bio) \ 478 disk_devt((bio)->bi_bdev->bd_disk) 479 480#ifdef CONFIG_BLK_CGROUP 481void bio_associate_blkg(struct bio *bio); 482void bio_associate_blkg_from_css(struct bio *bio, 483 struct cgroup_subsys_state *css); 484void bio_clone_blkg_association(struct bio *dst, struct bio *src); 485void blkcg_punt_bio_submit(struct bio *bio); 486#else /* CONFIG_BLK_CGROUP */ 487static inline void bio_associate_blkg(struct bio *bio) { } 488static inline void bio_associate_blkg_from_css(struct bio *bio, 489 struct cgroup_subsys_state *css) 490{ } 491static inline void bio_clone_blkg_association(struct bio *dst, 492 struct bio *src) { } 493static inline void blkcg_punt_bio_submit(struct bio *bio) 494{ 495 submit_bio(bio); 496} 497#endif /* CONFIG_BLK_CGROUP */ 498 499static inline void bio_set_dev(struct bio *bio, struct block_device *bdev) 500{ 501 bio_clear_flag(bio, BIO_REMAPPED); 502 if (bio->bi_bdev != bdev) 503 bio_clear_flag(bio, BIO_BPS_THROTTLED); 504 bio->bi_bdev = bdev; 505 bio_associate_blkg(bio); 506} 507 508/* 509 * BIO list management for use by remapping drivers (e.g. DM or MD) and loop. 510 * 511 * A bio_list anchors a singly-linked list of bios chained through the bi_next 512 * member of the bio. The bio_list also caches the last list member to allow 513 * fast access to the tail. 514 */ 515struct bio_list { 516 struct bio *head; 517 struct bio *tail; 518}; 519 520static inline int bio_list_empty(const struct bio_list *bl) 521{ 522 return bl->head == NULL; 523} 524 525static inline void bio_list_init(struct bio_list *bl) 526{ 527 bl->head = bl->tail = NULL; 528} 529 530#define BIO_EMPTY_LIST { NULL, NULL } 531 532#define bio_list_for_each(bio, bl) \ 533 for (bio = (bl)->head; bio; bio = bio->bi_next) 534 535static inline unsigned bio_list_size(const struct bio_list *bl) 536{ 537 unsigned sz = 0; 538 struct bio *bio; 539 540 bio_list_for_each(bio, bl) 541 sz++; 542 543 return sz; 544} 545 546static inline void bio_list_add(struct bio_list *bl, struct bio *bio) 547{ 548 bio->bi_next = NULL; 549 550 if (bl->tail) 551 bl->tail->bi_next = bio; 552 else 553 bl->head = bio; 554 555 bl->tail = bio; 556} 557 558static inline void bio_list_add_head(struct bio_list *bl, struct bio *bio) 559{ 560 bio->bi_next = bl->head; 561 562 bl->head = bio; 563 564 if (!bl->tail) 565 bl->tail = bio; 566} 567 568static inline void bio_list_merge(struct bio_list *bl, struct bio_list *bl2) 569{ 570 if (!bl2->head) 571 return; 572 573 if (bl->tail) 574 bl->tail->bi_next = bl2->head; 575 else 576 bl->head = bl2->head; 577 578 bl->tail = bl2->tail; 579} 580 581static inline void bio_list_merge_init(struct bio_list *bl, 582 struct bio_list *bl2) 583{ 584 bio_list_merge(bl, bl2); 585 bio_list_init(bl2); 586} 587 588static inline void bio_list_merge_head(struct bio_list *bl, 589 struct bio_list *bl2) 590{ 591 if (!bl2->head) 592 return; 593 594 if (bl->head) 595 bl2->tail->bi_next = bl->head; 596 else 597 bl->tail = bl2->tail; 598 599 bl->head = bl2->head; 600} 601 602static inline struct bio *bio_list_peek(struct bio_list *bl) 603{ 604 return bl->head; 605} 606 607static inline struct bio *bio_list_pop(struct bio_list *bl) 608{ 609 struct bio *bio = bl->head; 610 611 if (bio) { 612 bl->head = bl->head->bi_next; 613 if (!bl->head) 614 bl->tail = NULL; 615 616 bio->bi_next = NULL; 617 } 618 619 return bio; 620} 621 622static inline struct bio *bio_list_get(struct bio_list *bl) 623{ 624 struct bio *bio = bl->head; 625 626 bl->head = bl->tail = NULL; 627 628 return bio; 629} 630 631/* 632 * Increment chain count for the bio. Make sure the CHAIN flag update 633 * is visible before the raised count. 634 */ 635static inline void bio_inc_remaining(struct bio *bio) 636{ 637 bio_set_flag(bio, BIO_CHAIN); 638 smp_mb__before_atomic(); 639 atomic_inc(&bio->__bi_remaining); 640} 641 642/* 643 * bio_set is used to allow other portions of the IO system to 644 * allocate their own private memory pools for bio and iovec structures. 645 * These memory pools in turn all allocate from the bio_slab 646 * and the bvec_slabs[]. 647 */ 648#define BIO_POOL_SIZE 2 649 650struct bio_set { 651 struct kmem_cache *bio_slab; 652 unsigned int front_pad; 653 654 /* 655 * per-cpu bio alloc cache 656 */ 657 struct bio_alloc_cache __percpu *cache; 658 659 mempool_t bio_pool; 660 mempool_t bvec_pool; 661 662 unsigned int back_pad; 663 /* 664 * Deadlock avoidance for stacking block drivers: see comments in 665 * bio_alloc_bioset() for details 666 */ 667 spinlock_t rescue_lock; 668 struct bio_list rescue_list; 669 struct work_struct rescue_work; 670 struct workqueue_struct *rescue_workqueue; 671 672 /* 673 * Hot un-plug notifier for the per-cpu cache, if used 674 */ 675 struct hlist_node cpuhp_dead; 676}; 677 678static inline bool bioset_initialized(struct bio_set *bs) 679{ 680 return bs->bio_slab != NULL; 681} 682 683/* 684 * Mark a bio as polled. Note that for async polled IO, the caller must 685 * expect -EWOULDBLOCK if we cannot allocate a request (or other resources). 686 * We cannot block waiting for requests on polled IO, as those completions 687 * must be found by the caller. This is different than IRQ driven IO, where 688 * it's safe to wait for IO to complete. 689 */ 690static inline void bio_set_polled(struct bio *bio, struct kiocb *kiocb) 691{ 692 bio->bi_opf |= REQ_POLLED; 693 if (kiocb->ki_flags & IOCB_NOWAIT) 694 bio->bi_opf |= REQ_NOWAIT; 695} 696 697static inline void bio_clear_polled(struct bio *bio) 698{ 699 bio->bi_opf &= ~REQ_POLLED; 700} 701 702/** 703 * bio_is_zone_append - is this a zone append bio? 704 * @bio: bio to check 705 * 706 * Check if @bio is a zone append operation. Core block layer code and end_io 707 * handlers must use this instead of an open coded REQ_OP_ZONE_APPEND check 708 * because the block layer can rewrite REQ_OP_ZONE_APPEND to REQ_OP_WRITE if 709 * it is not natively supported. 710 */ 711static inline bool bio_is_zone_append(struct bio *bio) 712{ 713 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) 714 return false; 715 return bio_op(bio) == REQ_OP_ZONE_APPEND || 716 bio_flagged(bio, BIO_EMULATES_ZONE_APPEND); 717} 718 719struct bio *blk_next_bio(struct bio *bio, struct block_device *bdev, 720 unsigned int nr_pages, blk_opf_t opf, gfp_t gfp); 721struct bio *bio_chain_and_submit(struct bio *prev, struct bio *new); 722 723struct bio *blk_alloc_discard_bio(struct block_device *bdev, 724 sector_t *sector, sector_t *nr_sects, gfp_t gfp_mask); 725 726#endif /* __LINUX_BIO_H */