Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
12#include "xfs_mount.h"
13#include "xfs_errortag.h"
14#include "xfs_error.h"
15#include "xfs_trans.h"
16#include "xfs_trans_priv.h"
17#include "xfs_log.h"
18#include "xfs_log_priv.h"
19#include "xfs_trace.h"
20#include "xfs_sysfs.h"
21#include "xfs_sb.h"
22#include "xfs_health.h"
23#include "xfs_zone_alloc.h"
24
25struct kmem_cache *xfs_log_ticket_cache;
26
27/* Local miscellaneous function prototypes */
28STATIC struct xlog *
29xlog_alloc_log(
30 struct xfs_mount *mp,
31 struct xfs_buftarg *log_target,
32 xfs_daddr_t blk_offset,
33 int num_bblks);
34STATIC void
35xlog_dealloc_log(
36 struct xlog *log);
37
38/* local state machine functions */
39STATIC void xlog_state_done_syncing(
40 struct xlog_in_core *iclog);
41STATIC void xlog_state_do_callback(
42 struct xlog *log);
43STATIC int
44xlog_state_get_iclog_space(
45 struct xlog *log,
46 int len,
47 struct xlog_in_core **iclog,
48 struct xlog_ticket *ticket,
49 int *logoffsetp);
50STATIC void
51xlog_sync(
52 struct xlog *log,
53 struct xlog_in_core *iclog,
54 struct xlog_ticket *ticket);
55#if defined(DEBUG)
56STATIC void
57xlog_verify_iclog(
58 struct xlog *log,
59 struct xlog_in_core *iclog,
60 int count);
61STATIC void
62xlog_verify_tail_lsn(
63 struct xlog *log,
64 struct xlog_in_core *iclog);
65#else
66#define xlog_verify_iclog(a,b,c)
67#define xlog_verify_tail_lsn(a,b)
68#endif
69
70STATIC int
71xlog_iclogs_empty(
72 struct xlog *log);
73
74static int
75xfs_log_cover(struct xfs_mount *);
76
77/*
78 * We need to make sure the buffer pointer returned is naturally aligned for the
79 * biggest basic data type we put into it. We have already accounted for this
80 * padding when sizing the buffer.
81 *
82 * However, this padding does not get written into the log, and hence we have to
83 * track the space used by the log vectors separately to prevent log space hangs
84 * due to inaccurate accounting (i.e. a leak) of the used log space through the
85 * CIL context ticket.
86 *
87 * We also add space for the xlog_op_header that describes this region in the
88 * log. This prepends the data region we return to the caller to copy their data
89 * into, so do all the static initialisation of the ophdr now. Because the ophdr
90 * is not 8 byte aligned, we have to be careful to ensure that we align the
91 * start of the buffer such that the region we return to the call is 8 byte
92 * aligned and packed against the tail of the ophdr.
93 */
94void *
95xlog_prepare_iovec(
96 struct xfs_log_vec *lv,
97 struct xfs_log_iovec **vecp,
98 uint type)
99{
100 struct xfs_log_iovec *vec = *vecp;
101 struct xlog_op_header *oph;
102 uint32_t len;
103 void *buf;
104
105 if (vec) {
106 ASSERT(vec - lv->lv_iovecp < lv->lv_niovecs);
107 vec++;
108 } else {
109 vec = &lv->lv_iovecp[0];
110 }
111
112 len = lv->lv_buf_used + sizeof(struct xlog_op_header);
113 if (!IS_ALIGNED(len, sizeof(uint64_t))) {
114 lv->lv_buf_used = round_up(len, sizeof(uint64_t)) -
115 sizeof(struct xlog_op_header);
116 }
117
118 vec->i_type = type;
119 vec->i_addr = lv->lv_buf + lv->lv_buf_used;
120
121 oph = vec->i_addr;
122 oph->oh_clientid = XFS_TRANSACTION;
123 oph->oh_res2 = 0;
124 oph->oh_flags = 0;
125
126 buf = vec->i_addr + sizeof(struct xlog_op_header);
127 ASSERT(IS_ALIGNED((unsigned long)buf, sizeof(uint64_t)));
128
129 *vecp = vec;
130 return buf;
131}
132
133static inline void
134xlog_grant_sub_space(
135 struct xlog_grant_head *head,
136 int64_t bytes)
137{
138 atomic64_sub(bytes, &head->grant);
139}
140
141static inline void
142xlog_grant_add_space(
143 struct xlog_grant_head *head,
144 int64_t bytes)
145{
146 atomic64_add(bytes, &head->grant);
147}
148
149static void
150xlog_grant_head_init(
151 struct xlog_grant_head *head)
152{
153 atomic64_set(&head->grant, 0);
154 INIT_LIST_HEAD(&head->waiters);
155 spin_lock_init(&head->lock);
156}
157
158void
159xlog_grant_return_space(
160 struct xlog *log,
161 xfs_lsn_t old_head,
162 xfs_lsn_t new_head)
163{
164 int64_t diff = xlog_lsn_sub(log, new_head, old_head);
165
166 xlog_grant_sub_space(&log->l_reserve_head, diff);
167 xlog_grant_sub_space(&log->l_write_head, diff);
168}
169
170/*
171 * Return the space in the log between the tail and the head. In the case where
172 * we have overrun available reservation space, return 0. The memory barrier
173 * pairs with the smp_wmb() in xlog_cil_ail_insert() to ensure that grant head
174 * vs tail space updates are seen in the correct order and hence avoid
175 * transients as space is transferred from the grant heads to the AIL on commit
176 * completion.
177 */
178static uint64_t
179xlog_grant_space_left(
180 struct xlog *log,
181 struct xlog_grant_head *head)
182{
183 int64_t free_bytes;
184
185 smp_rmb(); /* paired with smp_wmb in xlog_cil_ail_insert() */
186 free_bytes = log->l_logsize - READ_ONCE(log->l_tail_space) -
187 atomic64_read(&head->grant);
188 if (free_bytes > 0)
189 return free_bytes;
190 return 0;
191}
192
193STATIC void
194xlog_grant_head_wake_all(
195 struct xlog_grant_head *head)
196{
197 struct xlog_ticket *tic;
198
199 spin_lock(&head->lock);
200 list_for_each_entry(tic, &head->waiters, t_queue)
201 wake_up_process(tic->t_task);
202 spin_unlock(&head->lock);
203}
204
205static inline int
206xlog_ticket_reservation(
207 struct xlog *log,
208 struct xlog_grant_head *head,
209 struct xlog_ticket *tic)
210{
211 if (head == &log->l_write_head) {
212 ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
213 return tic->t_unit_res;
214 }
215
216 if (tic->t_flags & XLOG_TIC_PERM_RESERV)
217 return tic->t_unit_res * tic->t_cnt;
218
219 return tic->t_unit_res;
220}
221
222STATIC bool
223xlog_grant_head_wake(
224 struct xlog *log,
225 struct xlog_grant_head *head,
226 int *free_bytes)
227{
228 struct xlog_ticket *tic;
229 int need_bytes;
230
231 list_for_each_entry(tic, &head->waiters, t_queue) {
232 need_bytes = xlog_ticket_reservation(log, head, tic);
233 if (*free_bytes < need_bytes)
234 return false;
235
236 *free_bytes -= need_bytes;
237 trace_xfs_log_grant_wake_up(log, tic);
238 wake_up_process(tic->t_task);
239 }
240
241 return true;
242}
243
244STATIC int
245xlog_grant_head_wait(
246 struct xlog *log,
247 struct xlog_grant_head *head,
248 struct xlog_ticket *tic,
249 int need_bytes) __releases(&head->lock)
250 __acquires(&head->lock)
251{
252 list_add_tail(&tic->t_queue, &head->waiters);
253
254 do {
255 if (xlog_is_shutdown(log))
256 goto shutdown;
257
258 __set_current_state(TASK_UNINTERRUPTIBLE);
259 spin_unlock(&head->lock);
260
261 XFS_STATS_INC(log->l_mp, xs_sleep_logspace);
262
263 /* Push on the AIL to free up all the log space. */
264 xfs_ail_push_all(log->l_ailp);
265
266 trace_xfs_log_grant_sleep(log, tic);
267 schedule();
268 trace_xfs_log_grant_wake(log, tic);
269
270 spin_lock(&head->lock);
271 if (xlog_is_shutdown(log))
272 goto shutdown;
273 } while (xlog_grant_space_left(log, head) < need_bytes);
274
275 list_del_init(&tic->t_queue);
276 return 0;
277shutdown:
278 list_del_init(&tic->t_queue);
279 return -EIO;
280}
281
282/*
283 * Atomically get the log space required for a log ticket.
284 *
285 * Once a ticket gets put onto head->waiters, it will only return after the
286 * needed reservation is satisfied.
287 *
288 * This function is structured so that it has a lock free fast path. This is
289 * necessary because every new transaction reservation will come through this
290 * path. Hence any lock will be globally hot if we take it unconditionally on
291 * every pass.
292 *
293 * As tickets are only ever moved on and off head->waiters under head->lock, we
294 * only need to take that lock if we are going to add the ticket to the queue
295 * and sleep. We can avoid taking the lock if the ticket was never added to
296 * head->waiters because the t_queue list head will be empty and we hold the
297 * only reference to it so it can safely be checked unlocked.
298 */
299STATIC int
300xlog_grant_head_check(
301 struct xlog *log,
302 struct xlog_grant_head *head,
303 struct xlog_ticket *tic,
304 int *need_bytes)
305{
306 int free_bytes;
307 int error = 0;
308
309 ASSERT(!xlog_in_recovery(log));
310
311 /*
312 * If there are other waiters on the queue then give them a chance at
313 * logspace before us. Wake up the first waiters, if we do not wake
314 * up all the waiters then go to sleep waiting for more free space,
315 * otherwise try to get some space for this transaction.
316 */
317 *need_bytes = xlog_ticket_reservation(log, head, tic);
318 free_bytes = xlog_grant_space_left(log, head);
319 if (!list_empty_careful(&head->waiters)) {
320 spin_lock(&head->lock);
321 if (!xlog_grant_head_wake(log, head, &free_bytes) ||
322 free_bytes < *need_bytes) {
323 error = xlog_grant_head_wait(log, head, tic,
324 *need_bytes);
325 }
326 spin_unlock(&head->lock);
327 } else if (free_bytes < *need_bytes) {
328 spin_lock(&head->lock);
329 error = xlog_grant_head_wait(log, head, tic, *need_bytes);
330 spin_unlock(&head->lock);
331 }
332
333 return error;
334}
335
336bool
337xfs_log_writable(
338 struct xfs_mount *mp)
339{
340 /*
341 * Do not write to the log on norecovery mounts, if the data or log
342 * devices are read-only, or if the filesystem is shutdown. Read-only
343 * mounts allow internal writes for log recovery and unmount purposes,
344 * so don't restrict that case.
345 */
346 if (xfs_has_norecovery(mp))
347 return false;
348 if (xfs_readonly_buftarg(mp->m_ddev_targp))
349 return false;
350 if (xfs_readonly_buftarg(mp->m_log->l_targ))
351 return false;
352 if (xlog_is_shutdown(mp->m_log))
353 return false;
354 return true;
355}
356
357/*
358 * Replenish the byte reservation required by moving the grant write head.
359 */
360int
361xfs_log_regrant(
362 struct xfs_mount *mp,
363 struct xlog_ticket *tic)
364{
365 struct xlog *log = mp->m_log;
366 int need_bytes;
367 int error = 0;
368
369 if (xlog_is_shutdown(log))
370 return -EIO;
371
372 XFS_STATS_INC(mp, xs_try_logspace);
373
374 /*
375 * This is a new transaction on the ticket, so we need to change the
376 * transaction ID so that the next transaction has a different TID in
377 * the log. Just add one to the existing tid so that we can see chains
378 * of rolling transactions in the log easily.
379 */
380 tic->t_tid++;
381 tic->t_curr_res = tic->t_unit_res;
382 if (tic->t_cnt > 0)
383 return 0;
384
385 trace_xfs_log_regrant(log, tic);
386
387 error = xlog_grant_head_check(log, &log->l_write_head, tic,
388 &need_bytes);
389 if (error)
390 goto out_error;
391
392 xlog_grant_add_space(&log->l_write_head, need_bytes);
393 trace_xfs_log_regrant_exit(log, tic);
394 return 0;
395
396out_error:
397 /*
398 * If we are failing, make sure the ticket doesn't have any current
399 * reservations. We don't want to add this back when the ticket/
400 * transaction gets cancelled.
401 */
402 tic->t_curr_res = 0;
403 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
404 return error;
405}
406
407/*
408 * Reserve log space and return a ticket corresponding to the reservation.
409 *
410 * Each reservation is going to reserve extra space for a log record header.
411 * When writes happen to the on-disk log, we don't subtract the length of the
412 * log record header from any reservation. By wasting space in each
413 * reservation, we prevent over allocation problems.
414 */
415int
416xfs_log_reserve(
417 struct xfs_mount *mp,
418 int unit_bytes,
419 int cnt,
420 struct xlog_ticket **ticp,
421 bool permanent)
422{
423 struct xlog *log = mp->m_log;
424 struct xlog_ticket *tic;
425 int need_bytes;
426 int error = 0;
427
428 if (xlog_is_shutdown(log))
429 return -EIO;
430
431 XFS_STATS_INC(mp, xs_try_logspace);
432
433 ASSERT(*ticp == NULL);
434 tic = xlog_ticket_alloc(log, unit_bytes, cnt, permanent);
435 *ticp = tic;
436 trace_xfs_log_reserve(log, tic);
437 error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
438 &need_bytes);
439 if (error)
440 goto out_error;
441
442 xlog_grant_add_space(&log->l_reserve_head, need_bytes);
443 xlog_grant_add_space(&log->l_write_head, need_bytes);
444 trace_xfs_log_reserve_exit(log, tic);
445 return 0;
446
447out_error:
448 /*
449 * If we are failing, make sure the ticket doesn't have any current
450 * reservations. We don't want to add this back when the ticket/
451 * transaction gets cancelled.
452 */
453 tic->t_curr_res = 0;
454 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
455 return error;
456}
457
458/*
459 * Run all the pending iclog callbacks and wake log force waiters and iclog
460 * space waiters so they can process the newly set shutdown state. We really
461 * don't care what order we process callbacks here because the log is shut down
462 * and so state cannot change on disk anymore. However, we cannot wake waiters
463 * until the callbacks have been processed because we may be in unmount and
464 * we must ensure that all AIL operations the callbacks perform have completed
465 * before we tear down the AIL.
466 *
467 * We avoid processing actively referenced iclogs so that we don't run callbacks
468 * while the iclog owner might still be preparing the iclog for IO submssion.
469 * These will be caught by xlog_state_iclog_release() and call this function
470 * again to process any callbacks that may have been added to that iclog.
471 */
472static void
473xlog_state_shutdown_callbacks(
474 struct xlog *log)
475{
476 struct xlog_in_core *iclog;
477 LIST_HEAD(cb_list);
478
479 iclog = log->l_iclog;
480 do {
481 if (atomic_read(&iclog->ic_refcnt)) {
482 /* Reference holder will re-run iclog callbacks. */
483 continue;
484 }
485 list_splice_init(&iclog->ic_callbacks, &cb_list);
486 spin_unlock(&log->l_icloglock);
487
488 xlog_cil_process_committed(&cb_list);
489
490 spin_lock(&log->l_icloglock);
491 wake_up_all(&iclog->ic_write_wait);
492 wake_up_all(&iclog->ic_force_wait);
493 } while ((iclog = iclog->ic_next) != log->l_iclog);
494
495 wake_up_all(&log->l_flush_wait);
496}
497
498/*
499 * Flush iclog to disk if this is the last reference to the given iclog and the
500 * it is in the WANT_SYNC state.
501 *
502 * If XLOG_ICL_NEED_FUA is already set on the iclog, we need to ensure that the
503 * log tail is updated correctly. NEED_FUA indicates that the iclog will be
504 * written to stable storage, and implies that a commit record is contained
505 * within the iclog. We need to ensure that the log tail does not move beyond
506 * the tail that the first commit record in the iclog ordered against, otherwise
507 * correct recovery of that checkpoint becomes dependent on future operations
508 * performed on this iclog.
509 *
510 * Hence if NEED_FUA is set and the current iclog tail lsn is empty, write the
511 * current tail into iclog. Once the iclog tail is set, future operations must
512 * not modify it, otherwise they potentially violate ordering constraints for
513 * the checkpoint commit that wrote the initial tail lsn value. The tail lsn in
514 * the iclog will get zeroed on activation of the iclog after sync, so we
515 * always capture the tail lsn on the iclog on the first NEED_FUA release
516 * regardless of the number of active reference counts on this iclog.
517 */
518int
519xlog_state_release_iclog(
520 struct xlog *log,
521 struct xlog_in_core *iclog,
522 struct xlog_ticket *ticket)
523{
524 bool last_ref;
525
526 lockdep_assert_held(&log->l_icloglock);
527
528 trace_xlog_iclog_release(iclog, _RET_IP_);
529 /*
530 * Grabbing the current log tail needs to be atomic w.r.t. the writing
531 * of the tail LSN into the iclog so we guarantee that the log tail does
532 * not move between the first time we know that the iclog needs to be
533 * made stable and when we eventually submit it.
534 */
535 if ((iclog->ic_state == XLOG_STATE_WANT_SYNC ||
536 (iclog->ic_flags & XLOG_ICL_NEED_FUA)) &&
537 !iclog->ic_header->h_tail_lsn) {
538 iclog->ic_header->h_tail_lsn =
539 cpu_to_be64(atomic64_read(&log->l_tail_lsn));
540 }
541
542 last_ref = atomic_dec_and_test(&iclog->ic_refcnt);
543
544 if (xlog_is_shutdown(log)) {
545 /*
546 * If there are no more references to this iclog, process the
547 * pending iclog callbacks that were waiting on the release of
548 * this iclog.
549 */
550 if (last_ref)
551 xlog_state_shutdown_callbacks(log);
552 return -EIO;
553 }
554
555 if (!last_ref)
556 return 0;
557
558 if (iclog->ic_state != XLOG_STATE_WANT_SYNC) {
559 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
560 return 0;
561 }
562
563 iclog->ic_state = XLOG_STATE_SYNCING;
564 xlog_verify_tail_lsn(log, iclog);
565 trace_xlog_iclog_syncing(iclog, _RET_IP_);
566
567 spin_unlock(&log->l_icloglock);
568 xlog_sync(log, iclog, ticket);
569 spin_lock(&log->l_icloglock);
570 return 0;
571}
572
573/*
574 * Mount a log filesystem
575 *
576 * mp - ubiquitous xfs mount point structure
577 * log_target - buftarg of on-disk log device
578 * blk_offset - Start block # where block size is 512 bytes (BBSIZE)
579 * num_bblocks - Number of BBSIZE blocks in on-disk log
580 *
581 * Return error or zero.
582 */
583int
584xfs_log_mount(
585 xfs_mount_t *mp,
586 struct xfs_buftarg *log_target,
587 xfs_daddr_t blk_offset,
588 int num_bblks)
589{
590 struct xlog *log;
591 int error = 0;
592 int min_logfsbs;
593
594 if (!xfs_has_norecovery(mp)) {
595 xfs_notice(mp, "Mounting V%d Filesystem %pU",
596 XFS_SB_VERSION_NUM(&mp->m_sb),
597 &mp->m_sb.sb_uuid);
598 } else {
599 xfs_notice(mp,
600"Mounting V%d filesystem %pU in no-recovery mode. Filesystem will be inconsistent.",
601 XFS_SB_VERSION_NUM(&mp->m_sb),
602 &mp->m_sb.sb_uuid);
603 ASSERT(xfs_is_readonly(mp));
604 }
605
606 log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
607 if (IS_ERR(log)) {
608 error = PTR_ERR(log);
609 goto out;
610 }
611 mp->m_log = log;
612
613 /*
614 * Now that we have set up the log and it's internal geometry
615 * parameters, we can validate the given log space and drop a critical
616 * message via syslog if the log size is too small. A log that is too
617 * small can lead to unexpected situations in transaction log space
618 * reservation stage. The superblock verifier has already validated all
619 * the other log geometry constraints, so we don't have to check those
620 * here.
621 *
622 * Note: For v4 filesystems, we can't just reject the mount if the
623 * validation fails. This would mean that people would have to
624 * downgrade their kernel just to remedy the situation as there is no
625 * way to grow the log (short of black magic surgery with xfs_db).
626 *
627 * We can, however, reject mounts for V5 format filesystems, as the
628 * mkfs binary being used to make the filesystem should never create a
629 * filesystem with a log that is too small.
630 */
631 min_logfsbs = xfs_log_calc_minimum_size(mp);
632 if (mp->m_sb.sb_logblocks < min_logfsbs) {
633 xfs_warn(mp,
634 "Log size %d blocks too small, minimum size is %d blocks",
635 mp->m_sb.sb_logblocks, min_logfsbs);
636
637 /*
638 * Log check errors are always fatal on v5; or whenever bad
639 * metadata leads to a crash.
640 */
641 if (xfs_has_crc(mp)) {
642 xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
643 ASSERT(0);
644 error = -EINVAL;
645 goto out_free_log;
646 }
647 xfs_crit(mp, "Log size out of supported range.");
648 xfs_crit(mp,
649"Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
650 }
651
652 /*
653 * Initialize the AIL now we have a log.
654 */
655 error = xfs_trans_ail_init(mp);
656 if (error) {
657 xfs_warn(mp, "AIL initialisation failed: error %d", error);
658 goto out_free_log;
659 }
660 log->l_ailp = mp->m_ail;
661
662 /*
663 * skip log recovery on a norecovery mount. pretend it all
664 * just worked.
665 */
666 if (!xfs_has_norecovery(mp)) {
667 error = xlog_recover(log);
668 if (error) {
669 xfs_warn(mp, "log mount/recovery failed: error %d",
670 error);
671 xlog_recover_cancel(log);
672 goto out_destroy_ail;
673 }
674 }
675
676 error = xfs_sysfs_init(&log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
677 "log");
678 if (error)
679 goto out_destroy_ail;
680
681 /* Normal transactions can now occur */
682 clear_bit(XLOG_ACTIVE_RECOVERY, &log->l_opstate);
683
684 /*
685 * Now the log has been fully initialised and we know were our
686 * space grant counters are, we can initialise the permanent ticket
687 * needed for delayed logging to work.
688 */
689 xlog_cil_init_post_recovery(log);
690
691 return 0;
692
693out_destroy_ail:
694 xfs_trans_ail_destroy(mp);
695out_free_log:
696 xlog_dealloc_log(log);
697out:
698 return error;
699}
700
701/*
702 * Finish the recovery of the file system. This is separate from the
703 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
704 * in the root and real-time bitmap inodes between calling xfs_log_mount() and
705 * here.
706 *
707 * If we finish recovery successfully, start the background log work. If we are
708 * not doing recovery, then we have a RO filesystem and we don't need to start
709 * it.
710 */
711int
712xfs_log_mount_finish(
713 struct xfs_mount *mp)
714{
715 struct xlog *log = mp->m_log;
716 int error = 0;
717
718 if (xfs_has_norecovery(mp)) {
719 ASSERT(xfs_is_readonly(mp));
720 return 0;
721 }
722
723 /*
724 * During the second phase of log recovery, we need iget and
725 * iput to behave like they do for an active filesystem.
726 * xfs_fs_drop_inode needs to be able to prevent the deletion
727 * of inodes before we're done replaying log items on those
728 * inodes. Turn it off immediately after recovery finishes
729 * so that we don't leak the quota inodes if subsequent mount
730 * activities fail.
731 *
732 * We let all inodes involved in redo item processing end up on
733 * the LRU instead of being evicted immediately so that if we do
734 * something to an unlinked inode, the irele won't cause
735 * premature truncation and freeing of the inode, which results
736 * in log recovery failure. We have to evict the unreferenced
737 * lru inodes after clearing SB_ACTIVE because we don't
738 * otherwise clean up the lru if there's a subsequent failure in
739 * xfs_mountfs, which leads to us leaking the inodes if nothing
740 * else (e.g. quotacheck) references the inodes before the
741 * mount failure occurs.
742 */
743 mp->m_super->s_flags |= SB_ACTIVE;
744 xfs_log_work_queue(mp);
745 if (xlog_recovery_needed(log))
746 error = xlog_recover_finish(log);
747 mp->m_super->s_flags &= ~SB_ACTIVE;
748 evict_inodes(mp->m_super);
749
750 /*
751 * Drain the buffer LRU after log recovery. This is required for v4
752 * filesystems to avoid leaving around buffers with NULL verifier ops,
753 * but we do it unconditionally to make sure we're always in a clean
754 * cache state after mount.
755 *
756 * Don't push in the error case because the AIL may have pending intents
757 * that aren't removed until recovery is cancelled.
758 */
759 if (xlog_recovery_needed(log)) {
760 if (!error) {
761 xfs_log_force(mp, XFS_LOG_SYNC);
762 xfs_ail_push_all_sync(mp->m_ail);
763 }
764 xfs_notice(mp, "Ending recovery (logdev: %s)",
765 mp->m_logname ? mp->m_logname : "internal");
766 } else {
767 xfs_info(mp, "Ending clean mount");
768 }
769 xfs_buftarg_drain(mp->m_ddev_targp);
770
771 clear_bit(XLOG_RECOVERY_NEEDED, &log->l_opstate);
772
773 /* Make sure the log is dead if we're returning failure. */
774 ASSERT(!error || xlog_is_shutdown(log));
775
776 return error;
777}
778
779/*
780 * The mount has failed. Cancel the recovery if it hasn't completed and destroy
781 * the log.
782 */
783void
784xfs_log_mount_cancel(
785 struct xfs_mount *mp)
786{
787 xlog_recover_cancel(mp->m_log);
788 xfs_log_unmount(mp);
789}
790
791/*
792 * Flush out the iclog to disk ensuring that device caches are flushed and
793 * the iclog hits stable storage before any completion waiters are woken.
794 */
795static inline int
796xlog_force_iclog(
797 struct xlog_in_core *iclog)
798{
799 atomic_inc(&iclog->ic_refcnt);
800 iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA;
801 if (iclog->ic_state == XLOG_STATE_ACTIVE)
802 xlog_state_switch_iclogs(iclog->ic_log, iclog, 0);
803 return xlog_state_release_iclog(iclog->ic_log, iclog, NULL);
804}
805
806/*
807 * Cycle all the iclogbuf locks to make sure all log IO completion
808 * is done before we tear down these buffers.
809 */
810static void
811xlog_wait_iclog_completion(struct xlog *log)
812{
813 int i;
814 struct xlog_in_core *iclog = log->l_iclog;
815
816 for (i = 0; i < log->l_iclog_bufs; i++) {
817 down(&iclog->ic_sema);
818 up(&iclog->ic_sema);
819 iclog = iclog->ic_next;
820 }
821}
822
823/*
824 * Wait for the iclog and all prior iclogs to be written disk as required by the
825 * log force state machine. Waiting on ic_force_wait ensures iclog completions
826 * have been ordered and callbacks run before we are woken here, hence
827 * guaranteeing that all the iclogs up to this one are on stable storage.
828 */
829int
830xlog_wait_on_iclog(
831 struct xlog_in_core *iclog)
832 __releases(iclog->ic_log->l_icloglock)
833{
834 struct xlog *log = iclog->ic_log;
835
836 trace_xlog_iclog_wait_on(iclog, _RET_IP_);
837 if (!xlog_is_shutdown(log) &&
838 iclog->ic_state != XLOG_STATE_ACTIVE &&
839 iclog->ic_state != XLOG_STATE_DIRTY) {
840 XFS_STATS_INC(log->l_mp, xs_log_force_sleep);
841 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
842 } else {
843 spin_unlock(&log->l_icloglock);
844 }
845
846 if (xlog_is_shutdown(log))
847 return -EIO;
848 return 0;
849}
850
851/*
852 * Write out an unmount record using the ticket provided. We have to account for
853 * the data space used in the unmount ticket as this write is not done from a
854 * transaction context that has already done the accounting for us.
855 */
856static int
857xlog_write_unmount_record(
858 struct xlog *log,
859 struct xlog_ticket *ticket)
860{
861 struct {
862 struct xlog_op_header ophdr;
863 struct xfs_unmount_log_format ulf;
864 } unmount_rec = {
865 .ophdr = {
866 .oh_clientid = XFS_LOG,
867 .oh_tid = cpu_to_be32(ticket->t_tid),
868 .oh_flags = XLOG_UNMOUNT_TRANS,
869 },
870 .ulf = {
871 .magic = XLOG_UNMOUNT_TYPE,
872 },
873 };
874 struct xfs_log_iovec reg = {
875 .i_addr = &unmount_rec,
876 .i_len = sizeof(unmount_rec),
877 .i_type = XLOG_REG_TYPE_UNMOUNT,
878 };
879 struct xfs_log_vec vec = {
880 .lv_niovecs = 1,
881 .lv_iovecp = ®,
882 };
883 LIST_HEAD(lv_chain);
884 list_add(&vec.lv_list, &lv_chain);
885
886 BUILD_BUG_ON((sizeof(struct xlog_op_header) +
887 sizeof(struct xfs_unmount_log_format)) !=
888 sizeof(unmount_rec));
889
890 /* account for space used by record data */
891 ticket->t_curr_res -= sizeof(unmount_rec);
892
893 return xlog_write(log, NULL, &lv_chain, ticket, reg.i_len);
894}
895
896/*
897 * Mark the filesystem clean by writing an unmount record to the head of the
898 * log.
899 */
900static void
901xlog_unmount_write(
902 struct xlog *log)
903{
904 struct xfs_mount *mp = log->l_mp;
905 struct xlog_in_core *iclog;
906 struct xlog_ticket *tic = NULL;
907 int error;
908
909 error = xfs_log_reserve(mp, 600, 1, &tic, 0);
910 if (error)
911 goto out_err;
912
913 error = xlog_write_unmount_record(log, tic);
914 /*
915 * At this point, we're umounting anyway, so there's no point in
916 * transitioning log state to shutdown. Just continue...
917 */
918out_err:
919 if (error)
920 xfs_alert(mp, "%s: unmount record failed", __func__);
921
922 spin_lock(&log->l_icloglock);
923 iclog = log->l_iclog;
924 error = xlog_force_iclog(iclog);
925 xlog_wait_on_iclog(iclog);
926
927 if (tic) {
928 trace_xfs_log_umount_write(log, tic);
929 xfs_log_ticket_ungrant(log, tic);
930 }
931}
932
933static void
934xfs_log_unmount_verify_iclog(
935 struct xlog *log)
936{
937 struct xlog_in_core *iclog = log->l_iclog;
938
939 do {
940 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
941 ASSERT(iclog->ic_offset == 0);
942 } while ((iclog = iclog->ic_next) != log->l_iclog);
943}
944
945/*
946 * Unmount record used to have a string "Unmount filesystem--" in the
947 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
948 * We just write the magic number now since that particular field isn't
949 * currently architecture converted and "Unmount" is a bit foo.
950 * As far as I know, there weren't any dependencies on the old behaviour.
951 */
952static void
953xfs_log_unmount_write(
954 struct xfs_mount *mp)
955{
956 struct xlog *log = mp->m_log;
957
958 if (!xfs_log_writable(mp))
959 return;
960
961 xfs_log_force(mp, XFS_LOG_SYNC);
962
963 if (xlog_is_shutdown(log))
964 return;
965
966 /*
967 * If we think the summary counters are bad, avoid writing the unmount
968 * record to force log recovery at next mount, after which the summary
969 * counters will be recalculated. Refer to xlog_check_unmount_rec for
970 * more details.
971 */
972 if (xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS) ||
973 XFS_TEST_ERROR(mp, XFS_ERRTAG_FORCE_SUMMARY_RECALC)) {
974 xfs_alert(mp, "%s: will fix summary counters at next mount",
975 __func__);
976 return;
977 }
978
979 xfs_log_unmount_verify_iclog(log);
980 xlog_unmount_write(log);
981}
982
983/*
984 * Empty the log for unmount/freeze.
985 *
986 * To do this, we first need to shut down the background log work so it is not
987 * trying to cover the log as we clean up. We then need to unpin all objects in
988 * the log so we can then flush them out. Once they have completed their IO and
989 * run the callbacks removing themselves from the AIL, we can cover the log.
990 */
991int
992xfs_log_quiesce(
993 struct xfs_mount *mp)
994{
995 /*
996 * Clear log incompat features since we're quiescing the log. Report
997 * failures, though it's not fatal to have a higher log feature
998 * protection level than the log contents actually require.
999 */
1000 if (xfs_clear_incompat_log_features(mp)) {
1001 int error;
1002
1003 error = xfs_sync_sb(mp, false);
1004 if (error)
1005 xfs_warn(mp,
1006 "Failed to clear log incompat features on quiesce");
1007 }
1008
1009 cancel_delayed_work_sync(&mp->m_log->l_work);
1010 xfs_log_force(mp, XFS_LOG_SYNC);
1011
1012 /*
1013 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
1014 * will push it, xfs_buftarg_wait() will not wait for it. Further,
1015 * xfs_buf_iowait() cannot be used because it was pushed with the
1016 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
1017 * the IO to complete.
1018 */
1019 xfs_ail_push_all_sync(mp->m_ail);
1020 xfs_buftarg_wait(mp->m_ddev_targp);
1021 xfs_buf_lock(mp->m_sb_bp);
1022 xfs_buf_unlock(mp->m_sb_bp);
1023
1024 return xfs_log_cover(mp);
1025}
1026
1027void
1028xfs_log_clean(
1029 struct xfs_mount *mp)
1030{
1031 xfs_log_quiesce(mp);
1032 xfs_log_unmount_write(mp);
1033}
1034
1035/*
1036 * Shut down and release the AIL and Log.
1037 *
1038 * During unmount, we need to ensure we flush all the dirty metadata objects
1039 * from the AIL so that the log is empty before we write the unmount record to
1040 * the log. Once this is done, we can tear down the AIL and the log.
1041 */
1042void
1043xfs_log_unmount(
1044 struct xfs_mount *mp)
1045{
1046 xfs_log_clean(mp);
1047
1048 /*
1049 * If shutdown has come from iclog IO context, the log
1050 * cleaning will have been skipped and so we need to wait
1051 * for the iclog to complete shutdown processing before we
1052 * tear anything down.
1053 */
1054 xlog_wait_iclog_completion(mp->m_log);
1055
1056 xfs_buftarg_drain(mp->m_ddev_targp);
1057
1058 xfs_trans_ail_destroy(mp);
1059
1060 xfs_sysfs_del(&mp->m_log->l_kobj);
1061
1062 xlog_dealloc_log(mp->m_log);
1063}
1064
1065void
1066xfs_log_item_init(
1067 struct xfs_mount *mp,
1068 struct xfs_log_item *item,
1069 int type,
1070 const struct xfs_item_ops *ops)
1071{
1072 item->li_log = mp->m_log;
1073 item->li_ailp = mp->m_ail;
1074 item->li_type = type;
1075 item->li_ops = ops;
1076 item->li_lv = NULL;
1077
1078 INIT_LIST_HEAD(&item->li_ail);
1079 INIT_LIST_HEAD(&item->li_cil);
1080 INIT_LIST_HEAD(&item->li_bio_list);
1081 INIT_LIST_HEAD(&item->li_trans);
1082}
1083
1084/*
1085 * Wake up processes waiting for log space after we have moved the log tail.
1086 */
1087void
1088xfs_log_space_wake(
1089 struct xfs_mount *mp)
1090{
1091 struct xlog *log = mp->m_log;
1092 int free_bytes;
1093
1094 if (xlog_is_shutdown(log))
1095 return;
1096
1097 if (!list_empty_careful(&log->l_write_head.waiters)) {
1098 ASSERT(!xlog_in_recovery(log));
1099
1100 spin_lock(&log->l_write_head.lock);
1101 free_bytes = xlog_grant_space_left(log, &log->l_write_head);
1102 xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
1103 spin_unlock(&log->l_write_head.lock);
1104 }
1105
1106 if (!list_empty_careful(&log->l_reserve_head.waiters)) {
1107 ASSERT(!xlog_in_recovery(log));
1108
1109 spin_lock(&log->l_reserve_head.lock);
1110 free_bytes = xlog_grant_space_left(log, &log->l_reserve_head);
1111 xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
1112 spin_unlock(&log->l_reserve_head.lock);
1113 }
1114}
1115
1116/*
1117 * Determine if we have a transaction that has gone to disk that needs to be
1118 * covered. To begin the transition to the idle state firstly the log needs to
1119 * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1120 * we start attempting to cover the log.
1121 *
1122 * Only if we are then in a state where covering is needed, the caller is
1123 * informed that dummy transactions are required to move the log into the idle
1124 * state.
1125 *
1126 * If there are any items in the AIl or CIL, then we do not want to attempt to
1127 * cover the log as we may be in a situation where there isn't log space
1128 * available to run a dummy transaction and this can lead to deadlocks when the
1129 * tail of the log is pinned by an item that is modified in the CIL. Hence
1130 * there's no point in running a dummy transaction at this point because we
1131 * can't start trying to idle the log until both the CIL and AIL are empty.
1132 */
1133static bool
1134xfs_log_need_covered(
1135 struct xfs_mount *mp)
1136{
1137 struct xlog *log = mp->m_log;
1138 bool needed = false;
1139
1140 if (!xlog_cil_empty(log))
1141 return false;
1142
1143 spin_lock(&log->l_icloglock);
1144 switch (log->l_covered_state) {
1145 case XLOG_STATE_COVER_DONE:
1146 case XLOG_STATE_COVER_DONE2:
1147 case XLOG_STATE_COVER_IDLE:
1148 break;
1149 case XLOG_STATE_COVER_NEED:
1150 case XLOG_STATE_COVER_NEED2:
1151 if (xfs_ail_min_lsn(log->l_ailp))
1152 break;
1153 if (!xlog_iclogs_empty(log))
1154 break;
1155
1156 needed = true;
1157 if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1158 log->l_covered_state = XLOG_STATE_COVER_DONE;
1159 else
1160 log->l_covered_state = XLOG_STATE_COVER_DONE2;
1161 break;
1162 default:
1163 needed = true;
1164 break;
1165 }
1166 spin_unlock(&log->l_icloglock);
1167 return needed;
1168}
1169
1170/*
1171 * Explicitly cover the log. This is similar to background log covering but
1172 * intended for usage in quiesce codepaths. The caller is responsible to ensure
1173 * the log is idle and suitable for covering. The CIL, iclog buffers and AIL
1174 * must all be empty.
1175 */
1176static int
1177xfs_log_cover(
1178 struct xfs_mount *mp)
1179{
1180 int error = 0;
1181 bool need_covered;
1182
1183 ASSERT((xlog_cil_empty(mp->m_log) && xlog_iclogs_empty(mp->m_log) &&
1184 !xfs_ail_min_lsn(mp->m_log->l_ailp)) ||
1185 xlog_is_shutdown(mp->m_log));
1186
1187 if (!xfs_log_writable(mp))
1188 return 0;
1189
1190 /*
1191 * xfs_log_need_covered() is not idempotent because it progresses the
1192 * state machine if the log requires covering. Therefore, we must call
1193 * this function once and use the result until we've issued an sb sync.
1194 * Do so first to make that abundantly clear.
1195 *
1196 * Fall into the covering sequence if the log needs covering or the
1197 * mount has lazy superblock accounting to sync to disk. The sb sync
1198 * used for covering accumulates the in-core counters, so covering
1199 * handles this for us.
1200 */
1201 need_covered = xfs_log_need_covered(mp);
1202 if (!need_covered && !xfs_has_lazysbcount(mp))
1203 return 0;
1204
1205 /*
1206 * To cover the log, commit the superblock twice (at most) in
1207 * independent checkpoints. The first serves as a reference for the
1208 * tail pointer. The sync transaction and AIL push empties the AIL and
1209 * updates the in-core tail to the LSN of the first checkpoint. The
1210 * second commit updates the on-disk tail with the in-core LSN,
1211 * covering the log. Push the AIL one more time to leave it empty, as
1212 * we found it.
1213 */
1214 do {
1215 error = xfs_sync_sb(mp, true);
1216 if (error)
1217 break;
1218 xfs_ail_push_all_sync(mp->m_ail);
1219 } while (xfs_log_need_covered(mp));
1220
1221 return error;
1222}
1223
1224static void
1225xlog_ioend_work(
1226 struct work_struct *work)
1227{
1228 struct xlog_in_core *iclog =
1229 container_of(work, struct xlog_in_core, ic_end_io_work);
1230 struct xlog *log = iclog->ic_log;
1231 int error;
1232
1233 error = blk_status_to_errno(iclog->ic_bio.bi_status);
1234#ifdef DEBUG
1235 /* treat writes with injected CRC errors as failed */
1236 if (iclog->ic_fail_crc)
1237 error = -EIO;
1238#endif
1239
1240 /*
1241 * Race to shutdown the filesystem if we see an error.
1242 */
1243 if (error || XFS_TEST_ERROR(log->l_mp, XFS_ERRTAG_IODONE_IOERR)) {
1244 xfs_alert(log->l_mp, "log I/O error %d", error);
1245 xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
1246 }
1247
1248 xlog_state_done_syncing(iclog);
1249 bio_uninit(&iclog->ic_bio);
1250
1251 /*
1252 * Drop the lock to signal that we are done. Nothing references the
1253 * iclog after this, so an unmount waiting on this lock can now tear it
1254 * down safely. As such, it is unsafe to reference the iclog after the
1255 * unlock as we could race with it being freed.
1256 */
1257 up(&iclog->ic_sema);
1258}
1259
1260/*
1261 * Return size of each in-core log record buffer.
1262 *
1263 * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1264 *
1265 * If the filesystem blocksize is too large, we may need to choose a
1266 * larger size since the directory code currently logs entire blocks.
1267 */
1268STATIC void
1269xlog_get_iclog_buffer_size(
1270 struct xfs_mount *mp,
1271 struct xlog *log)
1272{
1273 if (mp->m_logbufs <= 0)
1274 mp->m_logbufs = XLOG_MAX_ICLOGS;
1275 if (mp->m_logbsize <= 0)
1276 mp->m_logbsize = XLOG_BIG_RECORD_BSIZE;
1277
1278 log->l_iclog_bufs = mp->m_logbufs;
1279 log->l_iclog_size = mp->m_logbsize;
1280
1281 /*
1282 * Combined size of the log record headers. The first 32k cycles
1283 * are stored directly in the xlog_rec_header, the rest in the
1284 * variable number of xlog_rec_ext_headers at its end.
1285 */
1286 log->l_iclog_hsize = struct_size(log->l_iclog->ic_header, h_ext,
1287 DIV_ROUND_UP(mp->m_logbsize, XLOG_HEADER_CYCLE_SIZE) - 1);
1288}
1289
1290void
1291xfs_log_work_queue(
1292 struct xfs_mount *mp)
1293{
1294 queue_delayed_work(mp->m_sync_workqueue, &mp->m_log->l_work,
1295 msecs_to_jiffies(xfs_syncd_centisecs * 10));
1296}
1297
1298/*
1299 * Clear the log incompat flags if we have the opportunity.
1300 *
1301 * This only happens if we're about to log the second dummy transaction as part
1302 * of covering the log.
1303 */
1304static inline void
1305xlog_clear_incompat(
1306 struct xlog *log)
1307{
1308 struct xfs_mount *mp = log->l_mp;
1309
1310 if (!xfs_sb_has_incompat_log_feature(&mp->m_sb,
1311 XFS_SB_FEAT_INCOMPAT_LOG_ALL))
1312 return;
1313
1314 if (log->l_covered_state != XLOG_STATE_COVER_DONE2)
1315 return;
1316
1317 xfs_clear_incompat_log_features(mp);
1318}
1319
1320/*
1321 * Every sync period we need to unpin all items in the AIL and push them to
1322 * disk. If there is nothing dirty, then we might need to cover the log to
1323 * indicate that the filesystem is idle.
1324 */
1325static void
1326xfs_log_worker(
1327 struct work_struct *work)
1328{
1329 struct xlog *log = container_of(to_delayed_work(work),
1330 struct xlog, l_work);
1331 struct xfs_mount *mp = log->l_mp;
1332
1333 /* dgc: errors ignored - not fatal and nowhere to report them */
1334 if (xfs_fs_writable(mp, SB_FREEZE_WRITE) && xfs_log_need_covered(mp)) {
1335 /*
1336 * Dump a transaction into the log that contains no real change.
1337 * This is needed to stamp the current tail LSN into the log
1338 * during the covering operation.
1339 *
1340 * We cannot use an inode here for this - that will push dirty
1341 * state back up into the VFS and then periodic inode flushing
1342 * will prevent log covering from making progress. Hence we
1343 * synchronously log the superblock instead to ensure the
1344 * superblock is immediately unpinned and can be written back.
1345 */
1346 xlog_clear_incompat(log);
1347 xfs_sync_sb(mp, true);
1348 } else
1349 xfs_log_force(mp, 0);
1350
1351 /* start pushing all the metadata that is currently dirty */
1352 xfs_ail_push_all(mp->m_ail);
1353
1354 /* queue us up again */
1355 xfs_log_work_queue(mp);
1356}
1357
1358/*
1359 * This routine initializes some of the log structure for a given mount point.
1360 * Its primary purpose is to fill in enough, so recovery can occur. However,
1361 * some other stuff may be filled in too.
1362 */
1363STATIC struct xlog *
1364xlog_alloc_log(
1365 struct xfs_mount *mp,
1366 struct xfs_buftarg *log_target,
1367 xfs_daddr_t blk_offset,
1368 int num_bblks)
1369{
1370 struct xlog *log;
1371 struct xlog_in_core **iclogp;
1372 struct xlog_in_core *iclog, *prev_iclog = NULL;
1373 int i;
1374 int error = -ENOMEM;
1375 uint log2_size = 0;
1376
1377 log = kzalloc(sizeof(struct xlog), GFP_KERNEL | __GFP_RETRY_MAYFAIL);
1378 if (!log) {
1379 xfs_warn(mp, "Log allocation failed: No memory!");
1380 goto out;
1381 }
1382
1383 log->l_mp = mp;
1384 log->l_targ = log_target;
1385 log->l_logsize = BBTOB(num_bblks);
1386 log->l_logBBstart = blk_offset;
1387 log->l_logBBsize = num_bblks;
1388 log->l_covered_state = XLOG_STATE_COVER_IDLE;
1389 set_bit(XLOG_ACTIVE_RECOVERY, &log->l_opstate);
1390 INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1391 INIT_LIST_HEAD(&log->r_dfops);
1392
1393 log->l_prev_block = -1;
1394 /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1395 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1396 log->l_curr_cycle = 1; /* 0 is bad since this is initial value */
1397
1398 if (xfs_has_logv2(mp) && mp->m_sb.sb_logsunit > 1)
1399 log->l_iclog_roundoff = mp->m_sb.sb_logsunit;
1400 else
1401 log->l_iclog_roundoff = BBSIZE;
1402
1403 xlog_grant_head_init(&log->l_reserve_head);
1404 xlog_grant_head_init(&log->l_write_head);
1405
1406 error = -EFSCORRUPTED;
1407 if (xfs_has_sector(mp)) {
1408 log2_size = mp->m_sb.sb_logsectlog;
1409 if (log2_size < BBSHIFT) {
1410 xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1411 log2_size, BBSHIFT);
1412 goto out_free_log;
1413 }
1414
1415 log2_size -= BBSHIFT;
1416 if (log2_size > mp->m_sectbb_log) {
1417 xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1418 log2_size, mp->m_sectbb_log);
1419 goto out_free_log;
1420 }
1421
1422 /* for larger sector sizes, must have v2 or external log */
1423 if (log2_size && log->l_logBBstart > 0 &&
1424 !xfs_has_logv2(mp)) {
1425 xfs_warn(mp,
1426 "log sector size (0x%x) invalid for configuration.",
1427 log2_size);
1428 goto out_free_log;
1429 }
1430 }
1431 log->l_sectBBsize = 1 << log2_size;
1432
1433 xlog_get_iclog_buffer_size(mp, log);
1434
1435 spin_lock_init(&log->l_icloglock);
1436 init_waitqueue_head(&log->l_flush_wait);
1437
1438 iclogp = &log->l_iclog;
1439 ASSERT(log->l_iclog_size >= 4096);
1440 for (i = 0; i < log->l_iclog_bufs; i++) {
1441 size_t bvec_size = howmany(log->l_iclog_size, PAGE_SIZE) *
1442 sizeof(struct bio_vec);
1443
1444 iclog = kzalloc(sizeof(*iclog) + bvec_size,
1445 GFP_KERNEL | __GFP_RETRY_MAYFAIL);
1446 if (!iclog)
1447 goto out_free_iclog;
1448
1449 *iclogp = iclog;
1450 iclog->ic_prev = prev_iclog;
1451 prev_iclog = iclog;
1452
1453 iclog->ic_header = kvzalloc(log->l_iclog_size,
1454 GFP_KERNEL | __GFP_RETRY_MAYFAIL);
1455 if (!iclog->ic_header)
1456 goto out_free_iclog;
1457 iclog->ic_header->h_magicno =
1458 cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1459 iclog->ic_header->h_version = cpu_to_be32(
1460 xfs_has_logv2(log->l_mp) ? 2 : 1);
1461 iclog->ic_header->h_size = cpu_to_be32(log->l_iclog_size);
1462 iclog->ic_header->h_fmt = cpu_to_be32(XLOG_FMT);
1463 memcpy(&iclog->ic_header->h_fs_uuid, &mp->m_sb.sb_uuid,
1464 sizeof(iclog->ic_header->h_fs_uuid));
1465
1466 iclog->ic_datap = (void *)iclog->ic_header + log->l_iclog_hsize;
1467 iclog->ic_size = log->l_iclog_size - log->l_iclog_hsize;
1468 iclog->ic_state = XLOG_STATE_ACTIVE;
1469 iclog->ic_log = log;
1470 atomic_set(&iclog->ic_refcnt, 0);
1471 INIT_LIST_HEAD(&iclog->ic_callbacks);
1472
1473 init_waitqueue_head(&iclog->ic_force_wait);
1474 init_waitqueue_head(&iclog->ic_write_wait);
1475 INIT_WORK(&iclog->ic_end_io_work, xlog_ioend_work);
1476 sema_init(&iclog->ic_sema, 1);
1477
1478 iclogp = &iclog->ic_next;
1479 }
1480 *iclogp = log->l_iclog; /* complete ring */
1481 log->l_iclog->ic_prev = prev_iclog; /* re-write 1st prev ptr */
1482
1483 log->l_ioend_workqueue = alloc_workqueue("xfs-log/%s",
1484 XFS_WQFLAGS(WQ_FREEZABLE | WQ_MEM_RECLAIM | WQ_HIGHPRI | WQ_PERCPU),
1485 0, mp->m_super->s_id);
1486 if (!log->l_ioend_workqueue)
1487 goto out_free_iclog;
1488
1489 error = xlog_cil_init(log);
1490 if (error)
1491 goto out_destroy_workqueue;
1492 return log;
1493
1494out_destroy_workqueue:
1495 destroy_workqueue(log->l_ioend_workqueue);
1496out_free_iclog:
1497 for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1498 prev_iclog = iclog->ic_next;
1499 kvfree(iclog->ic_header);
1500 kfree(iclog);
1501 if (prev_iclog == log->l_iclog)
1502 break;
1503 }
1504out_free_log:
1505 kfree(log);
1506out:
1507 return ERR_PTR(error);
1508} /* xlog_alloc_log */
1509
1510/*
1511 * Stamp cycle number in every block
1512 */
1513STATIC void
1514xlog_pack_data(
1515 struct xlog *log,
1516 struct xlog_in_core *iclog,
1517 int roundoff)
1518{
1519 struct xlog_rec_header *rhead = iclog->ic_header;
1520 __be32 cycle_lsn = CYCLE_LSN_DISK(rhead->h_lsn);
1521 char *dp = iclog->ic_datap;
1522 int i;
1523
1524 for (i = 0; i < BTOBB(iclog->ic_offset + roundoff); i++) {
1525 *xlog_cycle_data(rhead, i) = *(__be32 *)dp;
1526 *(__be32 *)dp = cycle_lsn;
1527 dp += BBSIZE;
1528 }
1529
1530 for (i = 0; i < (log->l_iclog_hsize >> BBSHIFT) - 1; i++)
1531 rhead->h_ext[i].xh_cycle = cycle_lsn;
1532}
1533
1534/*
1535 * Calculate the checksum for a log buffer.
1536 *
1537 * This is a little more complicated than it should be because the various
1538 * headers and the actual data are non-contiguous.
1539 */
1540__le32
1541xlog_cksum(
1542 struct xlog *log,
1543 struct xlog_rec_header *rhead,
1544 char *dp,
1545 unsigned int hdrsize,
1546 unsigned int size)
1547{
1548 uint32_t crc;
1549
1550 /* first generate the crc for the record header ... */
1551 crc = xfs_start_cksum_update((char *)rhead, hdrsize,
1552 offsetof(struct xlog_rec_header, h_crc));
1553
1554 /* ... then for additional cycle data for v2 logs ... */
1555 if (xfs_has_logv2(log->l_mp)) {
1556 int xheads, i;
1557
1558 xheads = DIV_ROUND_UP(size, XLOG_HEADER_CYCLE_SIZE) - 1;
1559 for (i = 0; i < xheads; i++)
1560 crc = crc32c(crc, &rhead->h_ext[i], XLOG_REC_EXT_SIZE);
1561 }
1562
1563 /* ... and finally for the payload */
1564 crc = crc32c(crc, dp, size);
1565
1566 return xfs_end_cksum(crc);
1567}
1568
1569static void
1570xlog_bio_end_io(
1571 struct bio *bio)
1572{
1573 struct xlog_in_core *iclog = bio->bi_private;
1574
1575 queue_work(iclog->ic_log->l_ioend_workqueue,
1576 &iclog->ic_end_io_work);
1577}
1578
1579STATIC void
1580xlog_write_iclog(
1581 struct xlog *log,
1582 struct xlog_in_core *iclog,
1583 uint64_t bno,
1584 unsigned int count)
1585{
1586 ASSERT(bno < log->l_logBBsize);
1587 trace_xlog_iclog_write(iclog, _RET_IP_);
1588
1589 /*
1590 * We lock the iclogbufs here so that we can serialise against I/O
1591 * completion during unmount. We might be processing a shutdown
1592 * triggered during unmount, and that can occur asynchronously to the
1593 * unmount thread, and hence we need to ensure that completes before
1594 * tearing down the iclogbufs. Hence we need to hold the buffer lock
1595 * across the log IO to archieve that.
1596 */
1597 down(&iclog->ic_sema);
1598 if (xlog_is_shutdown(log)) {
1599 /*
1600 * It would seem logical to return EIO here, but we rely on
1601 * the log state machine to propagate I/O errors instead of
1602 * doing it here. We kick of the state machine and unlock
1603 * the buffer manually, the code needs to be kept in sync
1604 * with the I/O completion path.
1605 */
1606 goto sync;
1607 }
1608
1609 /*
1610 * We use REQ_SYNC | REQ_IDLE here to tell the block layer the are more
1611 * IOs coming immediately after this one. This prevents the block layer
1612 * writeback throttle from throttling log writes behind background
1613 * metadata writeback and causing priority inversions.
1614 */
1615 bio_init(&iclog->ic_bio, log->l_targ->bt_bdev, iclog->ic_bvec,
1616 howmany(count, PAGE_SIZE),
1617 REQ_OP_WRITE | REQ_META | REQ_SYNC | REQ_IDLE);
1618 iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart + bno;
1619 iclog->ic_bio.bi_end_io = xlog_bio_end_io;
1620 iclog->ic_bio.bi_private = iclog;
1621
1622 if (iclog->ic_flags & XLOG_ICL_NEED_FLUSH) {
1623 iclog->ic_bio.bi_opf |= REQ_PREFLUSH;
1624 /*
1625 * For external log devices, we also need to flush the data
1626 * device cache first to ensure all metadata writeback covered
1627 * by the LSN in this iclog is on stable storage. This is slow,
1628 * but it *must* complete before we issue the external log IO.
1629 *
1630 * If the flush fails, we cannot conclude that past metadata
1631 * writeback from the log succeeded. Repeating the flush is
1632 * not possible, hence we must shut down with log IO error to
1633 * avoid shutdown re-entering this path and erroring out again.
1634 */
1635 if (log->l_targ != log->l_mp->m_ddev_targp &&
1636 blkdev_issue_flush(log->l_mp->m_ddev_targp->bt_bdev))
1637 goto shutdown;
1638 }
1639 if (iclog->ic_flags & XLOG_ICL_NEED_FUA)
1640 iclog->ic_bio.bi_opf |= REQ_FUA;
1641
1642 iclog->ic_flags &= ~(XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA);
1643
1644 if (is_vmalloc_addr(iclog->ic_header)) {
1645 if (!bio_add_vmalloc(&iclog->ic_bio, iclog->ic_header, count))
1646 goto shutdown;
1647 } else {
1648 bio_add_virt_nofail(&iclog->ic_bio, iclog->ic_header, count);
1649 }
1650
1651 /*
1652 * If this log buffer would straddle the end of the log we will have
1653 * to split it up into two bios, so that we can continue at the start.
1654 */
1655 if (bno + BTOBB(count) > log->l_logBBsize) {
1656 struct bio *split;
1657
1658 split = bio_split(&iclog->ic_bio, log->l_logBBsize - bno,
1659 GFP_NOIO, &fs_bio_set);
1660 bio_chain(split, &iclog->ic_bio);
1661 submit_bio(split);
1662
1663 /* restart at logical offset zero for the remainder */
1664 iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart;
1665 }
1666
1667 submit_bio(&iclog->ic_bio);
1668 return;
1669shutdown:
1670 xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
1671sync:
1672 xlog_state_done_syncing(iclog);
1673 up(&iclog->ic_sema);
1674}
1675
1676/*
1677 * We need to bump cycle number for the part of the iclog that is
1678 * written to the start of the log. Watch out for the header magic
1679 * number case, though.
1680 */
1681static void
1682xlog_split_iclog(
1683 struct xlog *log,
1684 void *data,
1685 uint64_t bno,
1686 unsigned int count)
1687{
1688 unsigned int split_offset = BBTOB(log->l_logBBsize - bno);
1689 unsigned int i;
1690
1691 for (i = split_offset; i < count; i += BBSIZE) {
1692 uint32_t cycle = get_unaligned_be32(data + i);
1693
1694 if (++cycle == XLOG_HEADER_MAGIC_NUM)
1695 cycle++;
1696 put_unaligned_be32(cycle, data + i);
1697 }
1698}
1699
1700static int
1701xlog_calc_iclog_size(
1702 struct xlog *log,
1703 struct xlog_in_core *iclog,
1704 uint32_t *roundoff)
1705{
1706 uint32_t count_init, count;
1707
1708 /* Add for LR header */
1709 count_init = log->l_iclog_hsize + iclog->ic_offset;
1710 count = roundup(count_init, log->l_iclog_roundoff);
1711
1712 *roundoff = count - count_init;
1713
1714 ASSERT(count >= count_init);
1715 ASSERT(*roundoff < log->l_iclog_roundoff);
1716 return count;
1717}
1718
1719/*
1720 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1721 * fashion. Previously, we should have moved the current iclog
1722 * ptr in the log to point to the next available iclog. This allows further
1723 * write to continue while this code syncs out an iclog ready to go.
1724 * Before an in-core log can be written out, the data section must be scanned
1725 * to save away the 1st word of each BBSIZE block into the header. We replace
1726 * it with the current cycle count. Each BBSIZE block is tagged with the
1727 * cycle count because there in an implicit assumption that drives will
1728 * guarantee that entire 512 byte blocks get written at once. In other words,
1729 * we can't have part of a 512 byte block written and part not written. By
1730 * tagging each block, we will know which blocks are valid when recovering
1731 * after an unclean shutdown.
1732 *
1733 * This routine is single threaded on the iclog. No other thread can be in
1734 * this routine with the same iclog. Changing contents of iclog can there-
1735 * fore be done without grabbing the state machine lock. Updating the global
1736 * log will require grabbing the lock though.
1737 *
1738 * The entire log manager uses a logical block numbering scheme. Only
1739 * xlog_write_iclog knows about the fact that the log may not start with
1740 * block zero on a given device.
1741 */
1742STATIC void
1743xlog_sync(
1744 struct xlog *log,
1745 struct xlog_in_core *iclog,
1746 struct xlog_ticket *ticket)
1747{
1748 unsigned int count; /* byte count of bwrite */
1749 unsigned int roundoff; /* roundoff to BB or stripe */
1750 uint64_t bno;
1751 unsigned int size;
1752
1753 ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1754 trace_xlog_iclog_sync(iclog, _RET_IP_);
1755
1756 count = xlog_calc_iclog_size(log, iclog, &roundoff);
1757
1758 /*
1759 * If we have a ticket, account for the roundoff via the ticket
1760 * reservation to avoid touching the hot grant heads needlessly.
1761 * Otherwise, we have to move grant heads directly.
1762 */
1763 if (ticket) {
1764 ticket->t_curr_res -= roundoff;
1765 } else {
1766 xlog_grant_add_space(&log->l_reserve_head, roundoff);
1767 xlog_grant_add_space(&log->l_write_head, roundoff);
1768 }
1769
1770 /* put cycle number in every block */
1771 xlog_pack_data(log, iclog, roundoff);
1772
1773 /* real byte length */
1774 size = iclog->ic_offset;
1775 if (xfs_has_logv2(log->l_mp))
1776 size += roundoff;
1777 iclog->ic_header->h_len = cpu_to_be32(size);
1778
1779 XFS_STATS_INC(log->l_mp, xs_log_writes);
1780 XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count));
1781
1782 bno = BLOCK_LSN(be64_to_cpu(iclog->ic_header->h_lsn));
1783
1784 /* Do we need to split this write into 2 parts? */
1785 if (bno + BTOBB(count) > log->l_logBBsize)
1786 xlog_split_iclog(log, iclog->ic_header, bno, count);
1787
1788 /* calculcate the checksum */
1789 iclog->ic_header->h_crc = xlog_cksum(log, iclog->ic_header,
1790 iclog->ic_datap, XLOG_REC_SIZE, size);
1791 /*
1792 * Intentionally corrupt the log record CRC based on the error injection
1793 * frequency, if defined. This facilitates testing log recovery in the
1794 * event of torn writes. Hence, set the IOABORT state to abort the log
1795 * write on I/O completion and shutdown the fs. The subsequent mount
1796 * detects the bad CRC and attempts to recover.
1797 */
1798#ifdef DEBUG
1799 if (XFS_TEST_ERROR(log->l_mp, XFS_ERRTAG_LOG_BAD_CRC)) {
1800 iclog->ic_header->h_crc &= cpu_to_le32(0xAAAAAAAA);
1801 iclog->ic_fail_crc = true;
1802 xfs_warn(log->l_mp,
1803 "Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.",
1804 be64_to_cpu(iclog->ic_header->h_lsn));
1805 }
1806#endif
1807 xlog_verify_iclog(log, iclog, count);
1808 xlog_write_iclog(log, iclog, bno, count);
1809}
1810
1811/*
1812 * Deallocate a log structure
1813 */
1814STATIC void
1815xlog_dealloc_log(
1816 struct xlog *log)
1817{
1818 struct xlog_in_core *iclog, *next_iclog;
1819 int i;
1820
1821 /*
1822 * Destroy the CIL after waiting for iclog IO completion because an
1823 * iclog EIO error will try to shut down the log, which accesses the
1824 * CIL to wake up the waiters.
1825 */
1826 xlog_cil_destroy(log);
1827
1828 iclog = log->l_iclog;
1829 for (i = 0; i < log->l_iclog_bufs; i++) {
1830 next_iclog = iclog->ic_next;
1831 kvfree(iclog->ic_header);
1832 kfree(iclog);
1833 iclog = next_iclog;
1834 }
1835
1836 log->l_mp->m_log = NULL;
1837 destroy_workqueue(log->l_ioend_workqueue);
1838 kfree(log);
1839}
1840
1841/*
1842 * Update counters atomically now that memcpy is done.
1843 */
1844static inline void
1845xlog_state_finish_copy(
1846 struct xlog *log,
1847 struct xlog_in_core *iclog,
1848 int record_cnt,
1849 int copy_bytes)
1850{
1851 lockdep_assert_held(&log->l_icloglock);
1852
1853 be32_add_cpu(&iclog->ic_header->h_num_logops, record_cnt);
1854 iclog->ic_offset += copy_bytes;
1855}
1856
1857/*
1858 * print out info relating to regions written which consume
1859 * the reservation
1860 */
1861void
1862xlog_print_tic_res(
1863 struct xfs_mount *mp,
1864 struct xlog_ticket *ticket)
1865{
1866 xfs_warn(mp, "ticket reservation summary:");
1867 xfs_warn(mp, " unit res = %d bytes", ticket->t_unit_res);
1868 xfs_warn(mp, " current res = %d bytes", ticket->t_curr_res);
1869 xfs_warn(mp, " original count = %d", ticket->t_ocnt);
1870 xfs_warn(mp, " remaining count = %d", ticket->t_cnt);
1871}
1872
1873/*
1874 * Print a summary of the transaction.
1875 */
1876void
1877xlog_print_trans(
1878 struct xfs_trans *tp)
1879{
1880 struct xfs_mount *mp = tp->t_mountp;
1881 struct xfs_log_item *lip;
1882
1883 /* dump core transaction and ticket info */
1884 xfs_warn(mp, "transaction summary:");
1885 xfs_warn(mp, " log res = %d", tp->t_log_res);
1886 xfs_warn(mp, " log count = %d", tp->t_log_count);
1887 xfs_warn(mp, " flags = 0x%x", tp->t_flags);
1888
1889 xlog_print_tic_res(mp, tp->t_ticket);
1890
1891 /* dump each log item */
1892 list_for_each_entry(lip, &tp->t_items, li_trans) {
1893 struct xfs_log_vec *lv = lip->li_lv;
1894 struct xfs_log_iovec *vec;
1895 int i;
1896
1897 xfs_warn(mp, "log item: ");
1898 xfs_warn(mp, " type = 0x%x", lip->li_type);
1899 xfs_warn(mp, " flags = 0x%lx", lip->li_flags);
1900 if (!lv)
1901 continue;
1902 xfs_warn(mp, " niovecs = %d", lv->lv_niovecs);
1903 xfs_warn(mp, " alloc_size = %d", lv->lv_alloc_size);
1904 xfs_warn(mp, " bytes = %d", lv->lv_bytes);
1905 xfs_warn(mp, " buf used= %d", lv->lv_buf_used);
1906
1907 /* dump each iovec for the log item */
1908 vec = lv->lv_iovecp;
1909 for (i = 0; i < lv->lv_niovecs; i++) {
1910 int dumplen = min(vec->i_len, 32);
1911
1912 xfs_warn(mp, " iovec[%d]", i);
1913 xfs_warn(mp, " type = 0x%x", vec->i_type);
1914 xfs_warn(mp, " len = %d", vec->i_len);
1915 xfs_warn(mp, " first %d bytes of iovec[%d]:", dumplen, i);
1916 xfs_hex_dump(vec->i_addr, dumplen);
1917
1918 vec++;
1919 }
1920 }
1921}
1922
1923static inline void
1924xlog_write_iovec(
1925 struct xlog_in_core *iclog,
1926 uint32_t *log_offset,
1927 void *data,
1928 uint32_t write_len,
1929 int *bytes_left,
1930 uint32_t *record_cnt,
1931 uint32_t *data_cnt)
1932{
1933 ASSERT(*log_offset < iclog->ic_log->l_iclog_size);
1934 ASSERT(*log_offset % sizeof(int32_t) == 0);
1935 ASSERT(write_len % sizeof(int32_t) == 0);
1936
1937 memcpy(iclog->ic_datap + *log_offset, data, write_len);
1938 *log_offset += write_len;
1939 *bytes_left -= write_len;
1940 (*record_cnt)++;
1941 *data_cnt += write_len;
1942}
1943
1944/*
1945 * Write log vectors into a single iclog which is guaranteed by the caller
1946 * to have enough space to write the entire log vector into.
1947 */
1948static void
1949xlog_write_full(
1950 struct xfs_log_vec *lv,
1951 struct xlog_ticket *ticket,
1952 struct xlog_in_core *iclog,
1953 uint32_t *log_offset,
1954 uint32_t *len,
1955 uint32_t *record_cnt,
1956 uint32_t *data_cnt)
1957{
1958 int index;
1959
1960 ASSERT(*log_offset + *len <= iclog->ic_size ||
1961 iclog->ic_state == XLOG_STATE_WANT_SYNC);
1962
1963 /*
1964 * Ordered log vectors have no regions to write so this
1965 * loop will naturally skip them.
1966 */
1967 for (index = 0; index < lv->lv_niovecs; index++) {
1968 struct xfs_log_iovec *reg = &lv->lv_iovecp[index];
1969 struct xlog_op_header *ophdr = reg->i_addr;
1970
1971 ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
1972 xlog_write_iovec(iclog, log_offset, reg->i_addr,
1973 reg->i_len, len, record_cnt, data_cnt);
1974 }
1975}
1976
1977static int
1978xlog_write_get_more_iclog_space(
1979 struct xlog_ticket *ticket,
1980 struct xlog_in_core **iclogp,
1981 uint32_t *log_offset,
1982 uint32_t len,
1983 uint32_t *record_cnt,
1984 uint32_t *data_cnt)
1985{
1986 struct xlog_in_core *iclog = *iclogp;
1987 struct xlog *log = iclog->ic_log;
1988 int error;
1989
1990 spin_lock(&log->l_icloglock);
1991 ASSERT(iclog->ic_state == XLOG_STATE_WANT_SYNC);
1992 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
1993 error = xlog_state_release_iclog(log, iclog, ticket);
1994 spin_unlock(&log->l_icloglock);
1995 if (error)
1996 return error;
1997
1998 error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
1999 log_offset);
2000 if (error)
2001 return error;
2002 *record_cnt = 0;
2003 *data_cnt = 0;
2004 *iclogp = iclog;
2005 return 0;
2006}
2007
2008/*
2009 * Write log vectors into a single iclog which is smaller than the current chain
2010 * length. We write until we cannot fit a full record into the remaining space
2011 * and then stop. We return the log vector that is to be written that cannot
2012 * wholly fit in the iclog.
2013 */
2014static int
2015xlog_write_partial(
2016 struct xfs_log_vec *lv,
2017 struct xlog_ticket *ticket,
2018 struct xlog_in_core **iclogp,
2019 uint32_t *log_offset,
2020 uint32_t *len,
2021 uint32_t *record_cnt,
2022 uint32_t *data_cnt)
2023{
2024 struct xlog_in_core *iclog = *iclogp;
2025 struct xlog_op_header *ophdr;
2026 int index = 0;
2027 uint32_t rlen;
2028 int error;
2029
2030 /* walk the logvec, copying until we run out of space in the iclog */
2031 for (index = 0; index < lv->lv_niovecs; index++) {
2032 struct xfs_log_iovec *reg = &lv->lv_iovecp[index];
2033 uint32_t reg_offset = 0;
2034
2035 /*
2036 * The first region of a continuation must have a non-zero
2037 * length otherwise log recovery will just skip over it and
2038 * start recovering from the next opheader it finds. Because we
2039 * mark the next opheader as a continuation, recovery will then
2040 * incorrectly add the continuation to the previous region and
2041 * that breaks stuff.
2042 *
2043 * Hence if there isn't space for region data after the
2044 * opheader, then we need to start afresh with a new iclog.
2045 */
2046 if (iclog->ic_size - *log_offset <=
2047 sizeof(struct xlog_op_header)) {
2048 error = xlog_write_get_more_iclog_space(ticket,
2049 &iclog, log_offset, *len, record_cnt,
2050 data_cnt);
2051 if (error)
2052 return error;
2053 }
2054
2055 ophdr = reg->i_addr;
2056 rlen = min_t(uint32_t, reg->i_len, iclog->ic_size - *log_offset);
2057
2058 ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2059 ophdr->oh_len = cpu_to_be32(rlen - sizeof(struct xlog_op_header));
2060 if (rlen != reg->i_len)
2061 ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2062
2063 xlog_write_iovec(iclog, log_offset, reg->i_addr,
2064 rlen, len, record_cnt, data_cnt);
2065
2066 /* If we wrote the whole region, move to the next. */
2067 if (rlen == reg->i_len)
2068 continue;
2069
2070 /*
2071 * We now have a partially written iovec, but it can span
2072 * multiple iclogs so we loop here. First we release the iclog
2073 * we currently have, then we get a new iclog and add a new
2074 * opheader. Then we continue copying from where we were until
2075 * we either complete the iovec or fill the iclog. If we
2076 * complete the iovec, then we increment the index and go right
2077 * back to the top of the outer loop. if we fill the iclog, we
2078 * run the inner loop again.
2079 *
2080 * This is complicated by the tail of a region using all the
2081 * space in an iclog and hence requiring us to release the iclog
2082 * and get a new one before returning to the outer loop. We must
2083 * always guarantee that we exit this inner loop with at least
2084 * space for log transaction opheaders left in the current
2085 * iclog, hence we cannot just terminate the loop at the end
2086 * of the of the continuation. So we loop while there is no
2087 * space left in the current iclog, and check for the end of the
2088 * continuation after getting a new iclog.
2089 */
2090 do {
2091 /*
2092 * Ensure we include the continuation opheader in the
2093 * space we need in the new iclog by adding that size
2094 * to the length we require. This continuation opheader
2095 * needs to be accounted to the ticket as the space it
2096 * consumes hasn't been accounted to the lv we are
2097 * writing.
2098 */
2099 error = xlog_write_get_more_iclog_space(ticket,
2100 &iclog, log_offset,
2101 *len + sizeof(struct xlog_op_header),
2102 record_cnt, data_cnt);
2103 if (error)
2104 return error;
2105
2106 ophdr = iclog->ic_datap + *log_offset;
2107 ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2108 ophdr->oh_clientid = XFS_TRANSACTION;
2109 ophdr->oh_res2 = 0;
2110 ophdr->oh_flags = XLOG_WAS_CONT_TRANS;
2111
2112 ticket->t_curr_res -= sizeof(struct xlog_op_header);
2113 *log_offset += sizeof(struct xlog_op_header);
2114 *data_cnt += sizeof(struct xlog_op_header);
2115
2116 /*
2117 * If rlen fits in the iclog, then end the region
2118 * continuation. Otherwise we're going around again.
2119 */
2120 reg_offset += rlen;
2121 rlen = reg->i_len - reg_offset;
2122 if (rlen <= iclog->ic_size - *log_offset)
2123 ophdr->oh_flags |= XLOG_END_TRANS;
2124 else
2125 ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2126
2127 rlen = min_t(uint32_t, rlen, iclog->ic_size - *log_offset);
2128 ophdr->oh_len = cpu_to_be32(rlen);
2129
2130 xlog_write_iovec(iclog, log_offset,
2131 reg->i_addr + reg_offset,
2132 rlen, len, record_cnt, data_cnt);
2133
2134 } while (ophdr->oh_flags & XLOG_CONTINUE_TRANS);
2135 }
2136
2137 /*
2138 * No more iovecs remain in this logvec so return the next log vec to
2139 * the caller so it can go back to fast path copying.
2140 */
2141 *iclogp = iclog;
2142 return 0;
2143}
2144
2145/*
2146 * Write some region out to in-core log
2147 *
2148 * This will be called when writing externally provided regions or when
2149 * writing out a commit record for a given transaction.
2150 *
2151 * General algorithm:
2152 * 1. Find total length of this write. This may include adding to the
2153 * lengths passed in.
2154 * 2. Check whether we violate the tickets reservation.
2155 * 3. While writing to this iclog
2156 * A. Reserve as much space in this iclog as can get
2157 * B. If this is first write, save away start lsn
2158 * C. While writing this region:
2159 * 1. If first write of transaction, write start record
2160 * 2. Write log operation header (header per region)
2161 * 3. Find out if we can fit entire region into this iclog
2162 * 4. Potentially, verify destination memcpy ptr
2163 * 5. Memcpy (partial) region
2164 * 6. If partial copy, release iclog; otherwise, continue
2165 * copying more regions into current iclog
2166 * 4. Mark want sync bit (in simulation mode)
2167 * 5. Release iclog for potential flush to on-disk log.
2168 *
2169 * ERRORS:
2170 * 1. Panic if reservation is overrun. This should never happen since
2171 * reservation amounts are generated internal to the filesystem.
2172 * NOTES:
2173 * 1. Tickets are single threaded data structures.
2174 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2175 * syncing routine. When a single log_write region needs to span
2176 * multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2177 * on all log operation writes which don't contain the end of the
2178 * region. The XLOG_END_TRANS bit is used for the in-core log
2179 * operation which contains the end of the continued log_write region.
2180 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2181 * we don't really know exactly how much space will be used. As a result,
2182 * we don't update ic_offset until the end when we know exactly how many
2183 * bytes have been written out.
2184 */
2185int
2186xlog_write(
2187 struct xlog *log,
2188 struct xfs_cil_ctx *ctx,
2189 struct list_head *lv_chain,
2190 struct xlog_ticket *ticket,
2191 uint32_t len)
2192
2193{
2194 struct xlog_in_core *iclog = NULL;
2195 struct xfs_log_vec *lv;
2196 uint32_t record_cnt = 0;
2197 uint32_t data_cnt = 0;
2198 int error = 0;
2199 int log_offset;
2200
2201 if (ticket->t_curr_res < 0) {
2202 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
2203 "ctx ticket reservation ran out. Need to up reservation");
2204 xlog_print_tic_res(log->l_mp, ticket);
2205 xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
2206 }
2207
2208 error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2209 &log_offset);
2210 if (error)
2211 return error;
2212
2213 ASSERT(log_offset <= iclog->ic_size - 1);
2214
2215 /*
2216 * If we have a context pointer, pass it the first iclog we are
2217 * writing to so it can record state needed for iclog write
2218 * ordering.
2219 */
2220 if (ctx)
2221 xlog_cil_set_ctx_write_state(ctx, iclog);
2222
2223 list_for_each_entry(lv, lv_chain, lv_list) {
2224 /*
2225 * If the entire log vec does not fit in the iclog, punt it to
2226 * the partial copy loop which can handle this case.
2227 */
2228 if (lv->lv_niovecs &&
2229 lv->lv_bytes > iclog->ic_size - log_offset) {
2230 error = xlog_write_partial(lv, ticket, &iclog,
2231 &log_offset, &len, &record_cnt,
2232 &data_cnt);
2233 if (error) {
2234 /*
2235 * We have no iclog to release, so just return
2236 * the error immediately.
2237 */
2238 return error;
2239 }
2240 } else {
2241 xlog_write_full(lv, ticket, iclog, &log_offset,
2242 &len, &record_cnt, &data_cnt);
2243 }
2244 }
2245 ASSERT(len == 0);
2246
2247 /*
2248 * We've already been guaranteed that the last writes will fit inside
2249 * the current iclog, and hence it will already have the space used by
2250 * those writes accounted to it. Hence we do not need to update the
2251 * iclog with the number of bytes written here.
2252 */
2253 spin_lock(&log->l_icloglock);
2254 xlog_state_finish_copy(log, iclog, record_cnt, 0);
2255 error = xlog_state_release_iclog(log, iclog, ticket);
2256 spin_unlock(&log->l_icloglock);
2257
2258 return error;
2259}
2260
2261static void
2262xlog_state_activate_iclog(
2263 struct xlog_in_core *iclog,
2264 int *iclogs_changed)
2265{
2266 ASSERT(list_empty_careful(&iclog->ic_callbacks));
2267 trace_xlog_iclog_activate(iclog, _RET_IP_);
2268
2269 /*
2270 * If the number of ops in this iclog indicate it just contains the
2271 * dummy transaction, we can change state into IDLE (the second time
2272 * around). Otherwise we should change the state into NEED a dummy.
2273 * We don't need to cover the dummy.
2274 */
2275 if (*iclogs_changed == 0 &&
2276 iclog->ic_header->h_num_logops == cpu_to_be32(XLOG_COVER_OPS)) {
2277 *iclogs_changed = 1;
2278 } else {
2279 /*
2280 * We have two dirty iclogs so start over. This could also be
2281 * num of ops indicating this is not the dummy going out.
2282 */
2283 *iclogs_changed = 2;
2284 }
2285
2286 iclog->ic_state = XLOG_STATE_ACTIVE;
2287 iclog->ic_offset = 0;
2288 iclog->ic_header->h_num_logops = 0;
2289 memset(iclog->ic_header->h_cycle_data, 0,
2290 sizeof(iclog->ic_header->h_cycle_data));
2291 iclog->ic_header->h_lsn = 0;
2292 iclog->ic_header->h_tail_lsn = 0;
2293}
2294
2295/*
2296 * Loop through all iclogs and mark all iclogs currently marked DIRTY as
2297 * ACTIVE after iclog I/O has completed.
2298 */
2299static void
2300xlog_state_activate_iclogs(
2301 struct xlog *log,
2302 int *iclogs_changed)
2303{
2304 struct xlog_in_core *iclog = log->l_iclog;
2305
2306 do {
2307 if (iclog->ic_state == XLOG_STATE_DIRTY)
2308 xlog_state_activate_iclog(iclog, iclogs_changed);
2309 /*
2310 * The ordering of marking iclogs ACTIVE must be maintained, so
2311 * an iclog doesn't become ACTIVE beyond one that is SYNCING.
2312 */
2313 else if (iclog->ic_state != XLOG_STATE_ACTIVE)
2314 break;
2315 } while ((iclog = iclog->ic_next) != log->l_iclog);
2316}
2317
2318static int
2319xlog_covered_state(
2320 int prev_state,
2321 int iclogs_changed)
2322{
2323 /*
2324 * We go to NEED for any non-covering writes. We go to NEED2 if we just
2325 * wrote the first covering record (DONE). We go to IDLE if we just
2326 * wrote the second covering record (DONE2) and remain in IDLE until a
2327 * non-covering write occurs.
2328 */
2329 switch (prev_state) {
2330 case XLOG_STATE_COVER_IDLE:
2331 if (iclogs_changed == 1)
2332 return XLOG_STATE_COVER_IDLE;
2333 fallthrough;
2334 case XLOG_STATE_COVER_NEED:
2335 case XLOG_STATE_COVER_NEED2:
2336 break;
2337 case XLOG_STATE_COVER_DONE:
2338 if (iclogs_changed == 1)
2339 return XLOG_STATE_COVER_NEED2;
2340 break;
2341 case XLOG_STATE_COVER_DONE2:
2342 if (iclogs_changed == 1)
2343 return XLOG_STATE_COVER_IDLE;
2344 break;
2345 default:
2346 ASSERT(0);
2347 }
2348
2349 return XLOG_STATE_COVER_NEED;
2350}
2351
2352STATIC void
2353xlog_state_clean_iclog(
2354 struct xlog *log,
2355 struct xlog_in_core *dirty_iclog)
2356{
2357 int iclogs_changed = 0;
2358
2359 trace_xlog_iclog_clean(dirty_iclog, _RET_IP_);
2360
2361 dirty_iclog->ic_state = XLOG_STATE_DIRTY;
2362
2363 xlog_state_activate_iclogs(log, &iclogs_changed);
2364 wake_up_all(&dirty_iclog->ic_force_wait);
2365
2366 if (iclogs_changed) {
2367 log->l_covered_state = xlog_covered_state(log->l_covered_state,
2368 iclogs_changed);
2369 }
2370}
2371
2372STATIC xfs_lsn_t
2373xlog_get_lowest_lsn(
2374 struct xlog *log)
2375{
2376 struct xlog_in_core *iclog = log->l_iclog;
2377 xfs_lsn_t lowest_lsn = 0, lsn;
2378
2379 do {
2380 if (iclog->ic_state == XLOG_STATE_ACTIVE ||
2381 iclog->ic_state == XLOG_STATE_DIRTY)
2382 continue;
2383
2384 lsn = be64_to_cpu(iclog->ic_header->h_lsn);
2385 if ((lsn && !lowest_lsn) || XFS_LSN_CMP(lsn, lowest_lsn) < 0)
2386 lowest_lsn = lsn;
2387 } while ((iclog = iclog->ic_next) != log->l_iclog);
2388
2389 return lowest_lsn;
2390}
2391
2392/*
2393 * Return true if we need to stop processing, false to continue to the next
2394 * iclog. The caller will need to run callbacks if the iclog is returned in the
2395 * XLOG_STATE_CALLBACK state.
2396 */
2397static bool
2398xlog_state_iodone_process_iclog(
2399 struct xlog *log,
2400 struct xlog_in_core *iclog)
2401{
2402 xfs_lsn_t lowest_lsn;
2403 xfs_lsn_t header_lsn;
2404
2405 switch (iclog->ic_state) {
2406 case XLOG_STATE_ACTIVE:
2407 case XLOG_STATE_DIRTY:
2408 /*
2409 * Skip all iclogs in the ACTIVE & DIRTY states:
2410 */
2411 return false;
2412 case XLOG_STATE_DONE_SYNC:
2413 /*
2414 * Now that we have an iclog that is in the DONE_SYNC state, do
2415 * one more check here to see if we have chased our tail around.
2416 * If this is not the lowest lsn iclog, then we will leave it
2417 * for another completion to process.
2418 */
2419 header_lsn = be64_to_cpu(iclog->ic_header->h_lsn);
2420 lowest_lsn = xlog_get_lowest_lsn(log);
2421 if (lowest_lsn && XFS_LSN_CMP(lowest_lsn, header_lsn) < 0)
2422 return false;
2423 /*
2424 * If there are no callbacks on this iclog, we can mark it clean
2425 * immediately and return. Otherwise we need to run the
2426 * callbacks.
2427 */
2428 if (list_empty(&iclog->ic_callbacks)) {
2429 xlog_state_clean_iclog(log, iclog);
2430 return false;
2431 }
2432 trace_xlog_iclog_callback(iclog, _RET_IP_);
2433 iclog->ic_state = XLOG_STATE_CALLBACK;
2434 return false;
2435 default:
2436 /*
2437 * Can only perform callbacks in order. Since this iclog is not
2438 * in the DONE_SYNC state, we skip the rest and just try to
2439 * clean up.
2440 */
2441 return true;
2442 }
2443}
2444
2445/*
2446 * Loop over all the iclogs, running attached callbacks on them. Return true if
2447 * we ran any callbacks, indicating that we dropped the icloglock. We don't need
2448 * to handle transient shutdown state here at all because
2449 * xlog_state_shutdown_callbacks() will be run to do the necessary shutdown
2450 * cleanup of the callbacks.
2451 */
2452static bool
2453xlog_state_do_iclog_callbacks(
2454 struct xlog *log)
2455 __releases(&log->l_icloglock)
2456 __acquires(&log->l_icloglock)
2457{
2458 struct xlog_in_core *first_iclog = log->l_iclog;
2459 struct xlog_in_core *iclog = first_iclog;
2460 bool ran_callback = false;
2461
2462 do {
2463 LIST_HEAD(cb_list);
2464
2465 if (xlog_state_iodone_process_iclog(log, iclog))
2466 break;
2467 if (iclog->ic_state != XLOG_STATE_CALLBACK) {
2468 iclog = iclog->ic_next;
2469 continue;
2470 }
2471 list_splice_init(&iclog->ic_callbacks, &cb_list);
2472 spin_unlock(&log->l_icloglock);
2473
2474 trace_xlog_iclog_callbacks_start(iclog, _RET_IP_);
2475 xlog_cil_process_committed(&cb_list);
2476 trace_xlog_iclog_callbacks_done(iclog, _RET_IP_);
2477 ran_callback = true;
2478
2479 spin_lock(&log->l_icloglock);
2480 xlog_state_clean_iclog(log, iclog);
2481 iclog = iclog->ic_next;
2482 } while (iclog != first_iclog);
2483
2484 return ran_callback;
2485}
2486
2487
2488/*
2489 * Loop running iclog completion callbacks until there are no more iclogs in a
2490 * state that can run callbacks.
2491 */
2492STATIC void
2493xlog_state_do_callback(
2494 struct xlog *log)
2495{
2496 int flushcnt = 0;
2497 int repeats = 0;
2498
2499 spin_lock(&log->l_icloglock);
2500 while (xlog_state_do_iclog_callbacks(log)) {
2501 if (xlog_is_shutdown(log))
2502 break;
2503
2504 if (++repeats > 5000) {
2505 flushcnt += repeats;
2506 repeats = 0;
2507 xfs_warn(log->l_mp,
2508 "%s: possible infinite loop (%d iterations)",
2509 __func__, flushcnt);
2510 }
2511 }
2512
2513 if (log->l_iclog->ic_state == XLOG_STATE_ACTIVE)
2514 wake_up_all(&log->l_flush_wait);
2515
2516 spin_unlock(&log->l_icloglock);
2517}
2518
2519
2520/*
2521 * Finish transitioning this iclog to the dirty state.
2522 *
2523 * Callbacks could take time, so they are done outside the scope of the
2524 * global state machine log lock.
2525 */
2526STATIC void
2527xlog_state_done_syncing(
2528 struct xlog_in_core *iclog)
2529{
2530 struct xlog *log = iclog->ic_log;
2531
2532 spin_lock(&log->l_icloglock);
2533 ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2534 trace_xlog_iclog_sync_done(iclog, _RET_IP_);
2535
2536 /*
2537 * If we got an error, either on the first buffer, or in the case of
2538 * split log writes, on the second, we shut down the file system and
2539 * no iclogs should ever be attempted to be written to disk again.
2540 */
2541 if (!xlog_is_shutdown(log)) {
2542 ASSERT(iclog->ic_state == XLOG_STATE_SYNCING);
2543 iclog->ic_state = XLOG_STATE_DONE_SYNC;
2544 }
2545
2546 /*
2547 * Someone could be sleeping prior to writing out the next
2548 * iclog buffer, we wake them all, one will get to do the
2549 * I/O, the others get to wait for the result.
2550 */
2551 wake_up_all(&iclog->ic_write_wait);
2552 spin_unlock(&log->l_icloglock);
2553 xlog_state_do_callback(log);
2554}
2555
2556/*
2557 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2558 * sleep. We wait on the flush queue on the head iclog as that should be
2559 * the first iclog to complete flushing. Hence if all iclogs are syncing,
2560 * we will wait here and all new writes will sleep until a sync completes.
2561 *
2562 * The in-core logs are used in a circular fashion. They are not used
2563 * out-of-order even when an iclog past the head is free.
2564 *
2565 * return:
2566 * * log_offset where xlog_write() can start writing into the in-core
2567 * log's data space.
2568 * * in-core log pointer to which xlog_write() should write.
2569 * * boolean indicating this is a continued write to an in-core log.
2570 * If this is the last write, then the in-core log's offset field
2571 * needs to be incremented, depending on the amount of data which
2572 * is copied.
2573 */
2574STATIC int
2575xlog_state_get_iclog_space(
2576 struct xlog *log,
2577 int len,
2578 struct xlog_in_core **iclogp,
2579 struct xlog_ticket *ticket,
2580 int *logoffsetp)
2581{
2582 int log_offset;
2583 struct xlog_rec_header *head;
2584 struct xlog_in_core *iclog;
2585
2586restart:
2587 spin_lock(&log->l_icloglock);
2588 if (xlog_is_shutdown(log)) {
2589 spin_unlock(&log->l_icloglock);
2590 return -EIO;
2591 }
2592
2593 iclog = log->l_iclog;
2594 if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2595 XFS_STATS_INC(log->l_mp, xs_log_noiclogs);
2596
2597 /* Wait for log writes to have flushed */
2598 xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2599 goto restart;
2600 }
2601
2602 head = iclog->ic_header;
2603
2604 atomic_inc(&iclog->ic_refcnt); /* prevents sync */
2605 log_offset = iclog->ic_offset;
2606
2607 trace_xlog_iclog_get_space(iclog, _RET_IP_);
2608
2609 /* On the 1st write to an iclog, figure out lsn. This works
2610 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2611 * committing to. If the offset is set, that's how many blocks
2612 * must be written.
2613 */
2614 if (log_offset == 0) {
2615 ticket->t_curr_res -= log->l_iclog_hsize;
2616 head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2617 head->h_lsn = cpu_to_be64(
2618 xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
2619 ASSERT(log->l_curr_block >= 0);
2620 }
2621
2622 /* If there is enough room to write everything, then do it. Otherwise,
2623 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2624 * bit is on, so this will get flushed out. Don't update ic_offset
2625 * until you know exactly how many bytes get copied. Therefore, wait
2626 * until later to update ic_offset.
2627 *
2628 * xlog_write() algorithm assumes that at least 2 xlog_op_header's
2629 * can fit into remaining data section.
2630 */
2631 if (iclog->ic_size - iclog->ic_offset <
2632 2 * sizeof(struct xlog_op_header)) {
2633 int error = 0;
2634
2635 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2636
2637 /*
2638 * If we are the only one writing to this iclog, sync it to
2639 * disk. We need to do an atomic compare and decrement here to
2640 * avoid racing with concurrent atomic_dec_and_lock() calls in
2641 * xlog_state_release_iclog() when there is more than one
2642 * reference to the iclog.
2643 */
2644 if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1))
2645 error = xlog_state_release_iclog(log, iclog, ticket);
2646 spin_unlock(&log->l_icloglock);
2647 if (error)
2648 return error;
2649 goto restart;
2650 }
2651
2652 /* Do we have enough room to write the full amount in the remainder
2653 * of this iclog? Or must we continue a write on the next iclog and
2654 * mark this iclog as completely taken? In the case where we switch
2655 * iclogs (to mark it taken), this particular iclog will release/sync
2656 * to disk in xlog_write().
2657 */
2658 if (len <= iclog->ic_size - iclog->ic_offset)
2659 iclog->ic_offset += len;
2660 else
2661 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2662 *iclogp = iclog;
2663
2664 ASSERT(iclog->ic_offset <= iclog->ic_size);
2665 spin_unlock(&log->l_icloglock);
2666
2667 *logoffsetp = log_offset;
2668 return 0;
2669}
2670
2671/*
2672 * The first cnt-1 times a ticket goes through here we don't need to move the
2673 * grant write head because the permanent reservation has reserved cnt times the
2674 * unit amount. Release part of current permanent unit reservation and reset
2675 * current reservation to be one units worth. Also move grant reservation head
2676 * forward.
2677 */
2678void
2679xfs_log_ticket_regrant(
2680 struct xlog *log,
2681 struct xlog_ticket *ticket)
2682{
2683 trace_xfs_log_ticket_regrant(log, ticket);
2684
2685 if (ticket->t_cnt > 0)
2686 ticket->t_cnt--;
2687
2688 xlog_grant_sub_space(&log->l_reserve_head, ticket->t_curr_res);
2689 xlog_grant_sub_space(&log->l_write_head, ticket->t_curr_res);
2690 ticket->t_curr_res = ticket->t_unit_res;
2691
2692 trace_xfs_log_ticket_regrant_sub(log, ticket);
2693
2694 /* just return if we still have some of the pre-reserved space */
2695 if (!ticket->t_cnt) {
2696 xlog_grant_add_space(&log->l_reserve_head, ticket->t_unit_res);
2697 trace_xfs_log_ticket_regrant_exit(log, ticket);
2698 }
2699
2700 xfs_log_ticket_put(ticket);
2701}
2702
2703/*
2704 * Give back the space left from a reservation.
2705 *
2706 * All the information we need to make a correct determination of space left
2707 * is present. For non-permanent reservations, things are quite easy. The
2708 * count should have been decremented to zero. We only need to deal with the
2709 * space remaining in the current reservation part of the ticket. If the
2710 * ticket contains a permanent reservation, there may be left over space which
2711 * needs to be released. A count of N means that N-1 refills of the current
2712 * reservation can be done before we need to ask for more space. The first
2713 * one goes to fill up the first current reservation. Once we run out of
2714 * space, the count will stay at zero and the only space remaining will be
2715 * in the current reservation field.
2716 */
2717void
2718xfs_log_ticket_ungrant(
2719 struct xlog *log,
2720 struct xlog_ticket *ticket)
2721{
2722 int bytes;
2723
2724 trace_xfs_log_ticket_ungrant(log, ticket);
2725
2726 if (ticket->t_cnt > 0)
2727 ticket->t_cnt--;
2728
2729 trace_xfs_log_ticket_ungrant_sub(log, ticket);
2730
2731 /*
2732 * If this is a permanent reservation ticket, we may be able to free
2733 * up more space based on the remaining count.
2734 */
2735 bytes = ticket->t_curr_res;
2736 if (ticket->t_cnt > 0) {
2737 ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
2738 bytes += ticket->t_unit_res*ticket->t_cnt;
2739 }
2740
2741 xlog_grant_sub_space(&log->l_reserve_head, bytes);
2742 xlog_grant_sub_space(&log->l_write_head, bytes);
2743
2744 trace_xfs_log_ticket_ungrant_exit(log, ticket);
2745
2746 xfs_log_space_wake(log->l_mp);
2747 xfs_log_ticket_put(ticket);
2748}
2749
2750/*
2751 * This routine will mark the current iclog in the ring as WANT_SYNC and move
2752 * the current iclog pointer to the next iclog in the ring.
2753 */
2754void
2755xlog_state_switch_iclogs(
2756 struct xlog *log,
2757 struct xlog_in_core *iclog,
2758 int eventual_size)
2759{
2760 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
2761 assert_spin_locked(&log->l_icloglock);
2762 trace_xlog_iclog_switch(iclog, _RET_IP_);
2763
2764 if (!eventual_size)
2765 eventual_size = iclog->ic_offset;
2766 iclog->ic_state = XLOG_STATE_WANT_SYNC;
2767 iclog->ic_header->h_prev_block = cpu_to_be32(log->l_prev_block);
2768 log->l_prev_block = log->l_curr_block;
2769 log->l_prev_cycle = log->l_curr_cycle;
2770
2771 /* roll log?: ic_offset changed later */
2772 log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
2773
2774 /* Round up to next log-sunit */
2775 if (log->l_iclog_roundoff > BBSIZE) {
2776 uint32_t sunit_bb = BTOBB(log->l_iclog_roundoff);
2777 log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
2778 }
2779
2780 if (log->l_curr_block >= log->l_logBBsize) {
2781 /*
2782 * Rewind the current block before the cycle is bumped to make
2783 * sure that the combined LSN never transiently moves forward
2784 * when the log wraps to the next cycle. This is to support the
2785 * unlocked sample of these fields from xlog_valid_lsn(). Most
2786 * other cases should acquire l_icloglock.
2787 */
2788 log->l_curr_block -= log->l_logBBsize;
2789 ASSERT(log->l_curr_block >= 0);
2790 smp_wmb();
2791 log->l_curr_cycle++;
2792 if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
2793 log->l_curr_cycle++;
2794 }
2795 ASSERT(iclog == log->l_iclog);
2796 log->l_iclog = iclog->ic_next;
2797}
2798
2799/*
2800 * Force the iclog to disk and check if the iclog has been completed before
2801 * xlog_force_iclog() returns. This can happen on synchronous (e.g.
2802 * pmem) or fast async storage because we drop the icloglock to issue the IO.
2803 * If completion has already occurred, tell the caller so that it can avoid an
2804 * unnecessary wait on the iclog.
2805 */
2806static int
2807xlog_force_and_check_iclog(
2808 struct xlog_in_core *iclog,
2809 bool *completed)
2810{
2811 xfs_lsn_t lsn = be64_to_cpu(iclog->ic_header->h_lsn);
2812 int error;
2813
2814 *completed = false;
2815 error = xlog_force_iclog(iclog);
2816 if (error)
2817 return error;
2818
2819 /*
2820 * If the iclog has already been completed and reused the header LSN
2821 * will have been rewritten by completion
2822 */
2823 if (be64_to_cpu(iclog->ic_header->h_lsn) != lsn)
2824 *completed = true;
2825 return 0;
2826}
2827
2828/*
2829 * Write out all data in the in-core log as of this exact moment in time.
2830 *
2831 * Data may be written to the in-core log during this call. However,
2832 * we don't guarantee this data will be written out. A change from past
2833 * implementation means this routine will *not* write out zero length LRs.
2834 *
2835 * Basically, we try and perform an intelligent scan of the in-core logs.
2836 * If we determine there is no flushable data, we just return. There is no
2837 * flushable data if:
2838 *
2839 * 1. the current iclog is active and has no data; the previous iclog
2840 * is in the active or dirty state.
2841 * 2. the current iclog is dirty, and the previous iclog is in the
2842 * active or dirty state.
2843 *
2844 * We may sleep if:
2845 *
2846 * 1. the current iclog is not in the active nor dirty state.
2847 * 2. the current iclog dirty, and the previous iclog is not in the
2848 * active nor dirty state.
2849 * 3. the current iclog is active, and there is another thread writing
2850 * to this particular iclog.
2851 * 4. a) the current iclog is active and has no other writers
2852 * b) when we return from flushing out this iclog, it is still
2853 * not in the active nor dirty state.
2854 */
2855int
2856xfs_log_force(
2857 struct xfs_mount *mp,
2858 uint flags)
2859{
2860 struct xlog *log = mp->m_log;
2861 struct xlog_in_core *iclog;
2862
2863 XFS_STATS_INC(mp, xs_log_force);
2864 trace_xfs_log_force(mp, 0, _RET_IP_);
2865
2866 xlog_cil_force(log);
2867
2868 spin_lock(&log->l_icloglock);
2869 if (xlog_is_shutdown(log))
2870 goto out_error;
2871
2872 iclog = log->l_iclog;
2873 trace_xlog_iclog_force(iclog, _RET_IP_);
2874
2875 if (iclog->ic_state == XLOG_STATE_DIRTY ||
2876 (iclog->ic_state == XLOG_STATE_ACTIVE &&
2877 atomic_read(&iclog->ic_refcnt) == 0 && iclog->ic_offset == 0)) {
2878 /*
2879 * If the head is dirty or (active and empty), then we need to
2880 * look at the previous iclog.
2881 *
2882 * If the previous iclog is active or dirty we are done. There
2883 * is nothing to sync out. Otherwise, we attach ourselves to the
2884 * previous iclog and go to sleep.
2885 */
2886 iclog = iclog->ic_prev;
2887 } else if (iclog->ic_state == XLOG_STATE_ACTIVE) {
2888 if (atomic_read(&iclog->ic_refcnt) == 0) {
2889 /* We have exclusive access to this iclog. */
2890 bool completed;
2891
2892 if (xlog_force_and_check_iclog(iclog, &completed))
2893 goto out_error;
2894
2895 if (completed)
2896 goto out_unlock;
2897 } else {
2898 /*
2899 * Someone else is still writing to this iclog, so we
2900 * need to ensure that when they release the iclog it
2901 * gets synced immediately as we may be waiting on it.
2902 */
2903 xlog_state_switch_iclogs(log, iclog, 0);
2904 }
2905 }
2906
2907 /*
2908 * The iclog we are about to wait on may contain the checkpoint pushed
2909 * by the above xlog_cil_force() call, but it may not have been pushed
2910 * to disk yet. Like the ACTIVE case above, we need to make sure caches
2911 * are flushed when this iclog is written.
2912 */
2913 if (iclog->ic_state == XLOG_STATE_WANT_SYNC)
2914 iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA;
2915
2916 if (flags & XFS_LOG_SYNC)
2917 return xlog_wait_on_iclog(iclog);
2918out_unlock:
2919 spin_unlock(&log->l_icloglock);
2920 return 0;
2921out_error:
2922 spin_unlock(&log->l_icloglock);
2923 return -EIO;
2924}
2925
2926/*
2927 * Force the log to a specific LSN.
2928 *
2929 * If an iclog with that lsn can be found:
2930 * If it is in the DIRTY state, just return.
2931 * If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
2932 * state and go to sleep or return.
2933 * If it is in any other state, go to sleep or return.
2934 *
2935 * Synchronous forces are implemented with a wait queue. All callers trying
2936 * to force a given lsn to disk must wait on the queue attached to the
2937 * specific in-core log. When given in-core log finally completes its write
2938 * to disk, that thread will wake up all threads waiting on the queue.
2939 */
2940static int
2941xlog_force_lsn(
2942 struct xlog *log,
2943 xfs_lsn_t lsn,
2944 uint flags,
2945 int *log_flushed,
2946 bool already_slept)
2947{
2948 struct xlog_in_core *iclog;
2949 bool completed;
2950
2951 spin_lock(&log->l_icloglock);
2952 if (xlog_is_shutdown(log))
2953 goto out_error;
2954
2955 iclog = log->l_iclog;
2956 while (be64_to_cpu(iclog->ic_header->h_lsn) != lsn) {
2957 trace_xlog_iclog_force_lsn(iclog, _RET_IP_);
2958 iclog = iclog->ic_next;
2959 if (iclog == log->l_iclog)
2960 goto out_unlock;
2961 }
2962
2963 switch (iclog->ic_state) {
2964 case XLOG_STATE_ACTIVE:
2965 /*
2966 * We sleep here if we haven't already slept (e.g. this is the
2967 * first time we've looked at the correct iclog buf) and the
2968 * buffer before us is going to be sync'ed. The reason for this
2969 * is that if we are doing sync transactions here, by waiting
2970 * for the previous I/O to complete, we can allow a few more
2971 * transactions into this iclog before we close it down.
2972 *
2973 * Otherwise, we mark the buffer WANT_SYNC, and bump up the
2974 * refcnt so we can release the log (which drops the ref count).
2975 * The state switch keeps new transaction commits from using
2976 * this buffer. When the current commits finish writing into
2977 * the buffer, the refcount will drop to zero and the buffer
2978 * will go out then.
2979 */
2980 if (!already_slept &&
2981 (iclog->ic_prev->ic_state == XLOG_STATE_WANT_SYNC ||
2982 iclog->ic_prev->ic_state == XLOG_STATE_SYNCING)) {
2983 xlog_wait(&iclog->ic_prev->ic_write_wait,
2984 &log->l_icloglock);
2985 return -EAGAIN;
2986 }
2987 if (xlog_force_and_check_iclog(iclog, &completed))
2988 goto out_error;
2989 if (log_flushed)
2990 *log_flushed = 1;
2991 if (completed)
2992 goto out_unlock;
2993 break;
2994 case XLOG_STATE_WANT_SYNC:
2995 /*
2996 * This iclog may contain the checkpoint pushed by the
2997 * xlog_cil_force_seq() call, but there are other writers still
2998 * accessing it so it hasn't been pushed to disk yet. Like the
2999 * ACTIVE case above, we need to make sure caches are flushed
3000 * when this iclog is written.
3001 */
3002 iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA;
3003 break;
3004 default:
3005 /*
3006 * The entire checkpoint was written by the CIL force and is on
3007 * its way to disk already. It will be stable when it
3008 * completes, so we don't need to manipulate caches here at all.
3009 * We just need to wait for completion if necessary.
3010 */
3011 break;
3012 }
3013
3014 if (flags & XFS_LOG_SYNC)
3015 return xlog_wait_on_iclog(iclog);
3016out_unlock:
3017 spin_unlock(&log->l_icloglock);
3018 return 0;
3019out_error:
3020 spin_unlock(&log->l_icloglock);
3021 return -EIO;
3022}
3023
3024/*
3025 * Force the log to a specific checkpoint sequence.
3026 *
3027 * First force the CIL so that all the required changes have been flushed to the
3028 * iclogs. If the CIL force completed it will return a commit LSN that indicates
3029 * the iclog that needs to be flushed to stable storage. If the caller needs
3030 * a synchronous log force, we will wait on the iclog with the LSN returned by
3031 * xlog_cil_force_seq() to be completed.
3032 */
3033int
3034xfs_log_force_seq(
3035 struct xfs_mount *mp,
3036 xfs_csn_t seq,
3037 uint flags,
3038 int *log_flushed)
3039{
3040 struct xlog *log = mp->m_log;
3041 xfs_lsn_t lsn;
3042 int ret;
3043 ASSERT(seq != 0);
3044
3045 XFS_STATS_INC(mp, xs_log_force);
3046 trace_xfs_log_force(mp, seq, _RET_IP_);
3047
3048 lsn = xlog_cil_force_seq(log, seq);
3049 if (lsn == NULLCOMMITLSN)
3050 return 0;
3051
3052 ret = xlog_force_lsn(log, lsn, flags, log_flushed, false);
3053 if (ret == -EAGAIN) {
3054 XFS_STATS_INC(mp, xs_log_force_sleep);
3055 ret = xlog_force_lsn(log, lsn, flags, log_flushed, true);
3056 }
3057 return ret;
3058}
3059
3060/*
3061 * Free a used ticket when its refcount falls to zero.
3062 */
3063void
3064xfs_log_ticket_put(
3065 struct xlog_ticket *ticket)
3066{
3067 ASSERT(atomic_read(&ticket->t_ref) > 0);
3068 if (atomic_dec_and_test(&ticket->t_ref))
3069 kmem_cache_free(xfs_log_ticket_cache, ticket);
3070}
3071
3072struct xlog_ticket *
3073xfs_log_ticket_get(
3074 struct xlog_ticket *ticket)
3075{
3076 ASSERT(atomic_read(&ticket->t_ref) > 0);
3077 atomic_inc(&ticket->t_ref);
3078 return ticket;
3079}
3080
3081/*
3082 * Figure out the total log space unit (in bytes) that would be
3083 * required for a log ticket.
3084 */
3085static int
3086xlog_calc_unit_res(
3087 struct xlog *log,
3088 int unit_bytes,
3089 int *niclogs)
3090{
3091 int iclog_space;
3092 uint num_headers;
3093
3094 /*
3095 * Permanent reservations have up to 'cnt'-1 active log operations
3096 * in the log. A unit in this case is the amount of space for one
3097 * of these log operations. Normal reservations have a cnt of 1
3098 * and their unit amount is the total amount of space required.
3099 *
3100 * The following lines of code account for non-transaction data
3101 * which occupy space in the on-disk log.
3102 *
3103 * Normal form of a transaction is:
3104 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3105 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3106 *
3107 * We need to account for all the leadup data and trailer data
3108 * around the transaction data.
3109 * And then we need to account for the worst case in terms of using
3110 * more space.
3111 * The worst case will happen if:
3112 * - the placement of the transaction happens to be such that the
3113 * roundoff is at its maximum
3114 * - the transaction data is synced before the commit record is synced
3115 * i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3116 * Therefore the commit record is in its own Log Record.
3117 * This can happen as the commit record is called with its
3118 * own region to xlog_write().
3119 * This then means that in the worst case, roundoff can happen for
3120 * the commit-rec as well.
3121 * The commit-rec is smaller than padding in this scenario and so it is
3122 * not added separately.
3123 */
3124
3125 /* for trans header */
3126 unit_bytes += sizeof(struct xlog_op_header);
3127 unit_bytes += sizeof(struct xfs_trans_header);
3128
3129 /* for start-rec */
3130 unit_bytes += sizeof(struct xlog_op_header);
3131
3132 /*
3133 * for LR headers - the space for data in an iclog is the size minus
3134 * the space used for the headers. If we use the iclog size, then we
3135 * undercalculate the number of headers required.
3136 *
3137 * Furthermore - the addition of op headers for split-recs might
3138 * increase the space required enough to require more log and op
3139 * headers, so take that into account too.
3140 *
3141 * IMPORTANT: This reservation makes the assumption that if this
3142 * transaction is the first in an iclog and hence has the LR headers
3143 * accounted to it, then the remaining space in the iclog is
3144 * exclusively for this transaction. i.e. if the transaction is larger
3145 * than the iclog, it will be the only thing in that iclog.
3146 * Fundamentally, this means we must pass the entire log vector to
3147 * xlog_write to guarantee this.
3148 */
3149 iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3150 num_headers = howmany(unit_bytes, iclog_space);
3151
3152 /* for split-recs - ophdrs added when data split over LRs */
3153 unit_bytes += sizeof(struct xlog_op_header) * num_headers;
3154
3155 /* add extra header reservations if we overrun */
3156 while (!num_headers ||
3157 howmany(unit_bytes, iclog_space) > num_headers) {
3158 unit_bytes += sizeof(struct xlog_op_header);
3159 num_headers++;
3160 }
3161 unit_bytes += log->l_iclog_hsize * num_headers;
3162
3163 /* for commit-rec LR header - note: padding will subsume the ophdr */
3164 unit_bytes += log->l_iclog_hsize;
3165
3166 /* roundoff padding for transaction data and one for commit record */
3167 unit_bytes += 2 * log->l_iclog_roundoff;
3168
3169 if (niclogs)
3170 *niclogs = num_headers;
3171 return unit_bytes;
3172}
3173
3174int
3175xfs_log_calc_unit_res(
3176 struct xfs_mount *mp,
3177 int unit_bytes)
3178{
3179 return xlog_calc_unit_res(mp->m_log, unit_bytes, NULL);
3180}
3181
3182/*
3183 * Allocate and initialise a new log ticket.
3184 */
3185struct xlog_ticket *
3186xlog_ticket_alloc(
3187 struct xlog *log,
3188 int unit_bytes,
3189 int cnt,
3190 bool permanent)
3191{
3192 struct xlog_ticket *tic;
3193 int unit_res;
3194
3195 tic = kmem_cache_zalloc(xfs_log_ticket_cache,
3196 GFP_KERNEL | __GFP_NOFAIL);
3197
3198 unit_res = xlog_calc_unit_res(log, unit_bytes, &tic->t_iclog_hdrs);
3199
3200 atomic_set(&tic->t_ref, 1);
3201 tic->t_task = current;
3202 INIT_LIST_HEAD(&tic->t_queue);
3203 tic->t_unit_res = unit_res;
3204 tic->t_curr_res = unit_res;
3205 tic->t_cnt = cnt;
3206 tic->t_ocnt = cnt;
3207 tic->t_tid = get_random_u32();
3208 if (permanent)
3209 tic->t_flags |= XLOG_TIC_PERM_RESERV;
3210
3211 return tic;
3212}
3213
3214#if defined(DEBUG)
3215static void
3216xlog_verify_dump_tail(
3217 struct xlog *log,
3218 struct xlog_in_core *iclog)
3219{
3220 xfs_alert(log->l_mp,
3221"ran out of log space tail 0x%llx/0x%llx, head lsn 0x%llx, head 0x%x/0x%x, prev head 0x%x/0x%x",
3222 iclog ? be64_to_cpu(iclog->ic_header->h_tail_lsn) : -1,
3223 atomic64_read(&log->l_tail_lsn),
3224 log->l_ailp->ail_head_lsn,
3225 log->l_curr_cycle, log->l_curr_block,
3226 log->l_prev_cycle, log->l_prev_block);
3227 xfs_alert(log->l_mp,
3228"write grant 0x%llx, reserve grant 0x%llx, tail_space 0x%llx, size 0x%x, iclog flags 0x%x",
3229 atomic64_read(&log->l_write_head.grant),
3230 atomic64_read(&log->l_reserve_head.grant),
3231 log->l_tail_space, log->l_logsize,
3232 iclog ? iclog->ic_flags : -1);
3233}
3234
3235/* Check if the new iclog will fit in the log. */
3236STATIC void
3237xlog_verify_tail_lsn(
3238 struct xlog *log,
3239 struct xlog_in_core *iclog)
3240{
3241 xfs_lsn_t tail_lsn = be64_to_cpu(iclog->ic_header->h_tail_lsn);
3242 int blocks;
3243
3244 if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3245 blocks = log->l_logBBsize -
3246 (log->l_prev_block - BLOCK_LSN(tail_lsn));
3247 if (blocks < BTOBB(iclog->ic_offset) +
3248 BTOBB(log->l_iclog_hsize)) {
3249 xfs_emerg(log->l_mp,
3250 "%s: ran out of log space", __func__);
3251 xlog_verify_dump_tail(log, iclog);
3252 }
3253 return;
3254 }
3255
3256 if (CYCLE_LSN(tail_lsn) + 1 != log->l_prev_cycle) {
3257 xfs_emerg(log->l_mp, "%s: head has wrapped tail.", __func__);
3258 xlog_verify_dump_tail(log, iclog);
3259 return;
3260 }
3261 if (BLOCK_LSN(tail_lsn) == log->l_prev_block) {
3262 xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3263 xlog_verify_dump_tail(log, iclog);
3264 return;
3265 }
3266
3267 blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3268 if (blocks < BTOBB(iclog->ic_offset) + 1) {
3269 xfs_emerg(log->l_mp, "%s: ran out of iclog space", __func__);
3270 xlog_verify_dump_tail(log, iclog);
3271 }
3272}
3273
3274/*
3275 * Perform a number of checks on the iclog before writing to disk.
3276 *
3277 * 1. Make sure the iclogs are still circular
3278 * 2. Make sure we have a good magic number
3279 * 3. Make sure we don't have magic numbers in the data
3280 * 4. Check fields of each log operation header for:
3281 * A. Valid client identifier
3282 * B. tid ptr value falls in valid ptr space (user space code)
3283 * C. Length in log record header is correct according to the
3284 * individual operation headers within record.
3285 * 5. When a bwrite will occur within 5 blocks of the front of the physical
3286 * log, check the preceding blocks of the physical log to make sure all
3287 * the cycle numbers agree with the current cycle number.
3288 */
3289STATIC void
3290xlog_verify_iclog(
3291 struct xlog *log,
3292 struct xlog_in_core *iclog,
3293 int count)
3294{
3295 struct xlog_rec_header *rhead = iclog->ic_header;
3296 struct xlog_in_core *icptr;
3297 void *base_ptr, *ptr;
3298 ptrdiff_t field_offset;
3299 uint8_t clientid;
3300 int len, i, op_len;
3301 int idx;
3302
3303 /* check validity of iclog pointers */
3304 spin_lock(&log->l_icloglock);
3305 icptr = log->l_iclog;
3306 for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3307 ASSERT(icptr);
3308
3309 if (icptr != log->l_iclog)
3310 xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3311 spin_unlock(&log->l_icloglock);
3312
3313 /* check log magic numbers */
3314 if (rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3315 xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3316
3317 base_ptr = ptr = rhead;
3318 for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) {
3319 if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3320 xfs_emerg(log->l_mp, "%s: unexpected magic num",
3321 __func__);
3322 }
3323
3324 /* check fields */
3325 len = be32_to_cpu(rhead->h_num_logops);
3326 base_ptr = ptr = iclog->ic_datap;
3327 for (i = 0; i < len; i++) {
3328 struct xlog_op_header *ophead = ptr;
3329 void *p = &ophead->oh_clientid;
3330
3331 /* clientid is only 1 byte */
3332 field_offset = p - base_ptr;
3333 if (field_offset & 0x1ff) {
3334 clientid = ophead->oh_clientid;
3335 } else {
3336 idx = BTOBBT((void *)&ophead->oh_clientid - iclog->ic_datap);
3337 clientid = xlog_get_client_id(*xlog_cycle_data(rhead, idx));
3338 }
3339 if (clientid != XFS_TRANSACTION && clientid != XFS_LOG) {
3340 xfs_warn(log->l_mp,
3341 "%s: op %d invalid clientid %d op "PTR_FMT" offset 0x%lx",
3342 __func__, i, clientid, ophead,
3343 (unsigned long)field_offset);
3344 }
3345
3346 /* check length */
3347 p = &ophead->oh_len;
3348 field_offset = p - base_ptr;
3349 if (field_offset & 0x1ff) {
3350 op_len = be32_to_cpu(ophead->oh_len);
3351 } else {
3352 idx = BTOBBT((void *)&ophead->oh_len - iclog->ic_datap);
3353 op_len = be32_to_cpu(*xlog_cycle_data(rhead, idx));
3354 }
3355 ptr += sizeof(struct xlog_op_header) + op_len;
3356 }
3357}
3358#endif
3359
3360/*
3361 * Perform a forced shutdown on the log.
3362 *
3363 * This can be called from low level log code to trigger a shutdown, or from the
3364 * high level mount shutdown code when the mount shuts down.
3365 *
3366 * Our main objectives here are to make sure that:
3367 * a. if the shutdown was not due to a log IO error, flush the logs to
3368 * disk. Anything modified after this is ignored.
3369 * b. the log gets atomically marked 'XLOG_IO_ERROR' for all interested
3370 * parties to find out. Nothing new gets queued after this is done.
3371 * c. Tasks sleeping on log reservations, pinned objects and
3372 * other resources get woken up.
3373 * d. The mount is also marked as shut down so that log triggered shutdowns
3374 * still behave the same as if they called xfs_forced_shutdown().
3375 *
3376 * Return true if the shutdown cause was a log IO error and we actually shut the
3377 * log down.
3378 */
3379bool
3380xlog_force_shutdown(
3381 struct xlog *log,
3382 uint32_t shutdown_flags)
3383{
3384 bool log_error = (shutdown_flags & SHUTDOWN_LOG_IO_ERROR);
3385
3386 if (!log)
3387 return false;
3388
3389 /*
3390 * Ensure that there is only ever one log shutdown being processed.
3391 * If we allow the log force below on a second pass after shutting
3392 * down the log, we risk deadlocking the CIL push as it may require
3393 * locks on objects the current shutdown context holds (e.g. taking
3394 * buffer locks to abort buffers on last unpin of buf log items).
3395 */
3396 if (test_and_set_bit(XLOG_SHUTDOWN_STARTED, &log->l_opstate))
3397 return false;
3398
3399 /*
3400 * Flush all the completed transactions to disk before marking the log
3401 * being shut down. We need to do this first as shutting down the log
3402 * before the force will prevent the log force from flushing the iclogs
3403 * to disk.
3404 *
3405 * When we are in recovery, there are no transactions to flush, and
3406 * we don't want to touch the log because we don't want to perturb the
3407 * current head/tail for future recovery attempts. Hence we need to
3408 * avoid a log force in this case.
3409 *
3410 * If we are shutting down due to a log IO error, then we must avoid
3411 * trying to write the log as that may just result in more IO errors and
3412 * an endless shutdown/force loop.
3413 */
3414 if (!log_error && !xlog_in_recovery(log))
3415 xfs_log_force(log->l_mp, XFS_LOG_SYNC);
3416
3417 /*
3418 * Atomically set the shutdown state. If the shutdown state is already
3419 * set, there someone else is performing the shutdown and so we are done
3420 * here. This should never happen because we should only ever get called
3421 * once by the first shutdown caller.
3422 *
3423 * Much of the log state machine transitions assume that shutdown state
3424 * cannot change once they hold the log->l_icloglock. Hence we need to
3425 * hold that lock here, even though we use the atomic test_and_set_bit()
3426 * operation to set the shutdown state.
3427 */
3428 spin_lock(&log->l_icloglock);
3429 if (test_and_set_bit(XLOG_IO_ERROR, &log->l_opstate)) {
3430 spin_unlock(&log->l_icloglock);
3431 ASSERT(0);
3432 return false;
3433 }
3434 spin_unlock(&log->l_icloglock);
3435
3436 /*
3437 * If this log shutdown also sets the mount shutdown state, issue a
3438 * shutdown warning message.
3439 */
3440 if (!xfs_set_shutdown(log->l_mp)) {
3441 xfs_alert_tag(log->l_mp, XFS_PTAG_SHUTDOWN_LOGERROR,
3442"Filesystem has been shut down due to log error (0x%x).",
3443 shutdown_flags);
3444 xfs_alert(log->l_mp,
3445"Please unmount the filesystem and rectify the problem(s).");
3446 if (xfs_error_level >= XFS_ERRLEVEL_HIGH)
3447 xfs_stack_trace();
3448 }
3449
3450 /*
3451 * We don't want anybody waiting for log reservations after this. That
3452 * means we have to wake up everybody queued up on reserveq as well as
3453 * writeq. In addition, we make sure in xlog_{re}grant_log_space that
3454 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3455 * action is protected by the grant locks.
3456 */
3457 xlog_grant_head_wake_all(&log->l_reserve_head);
3458 xlog_grant_head_wake_all(&log->l_write_head);
3459
3460 /*
3461 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
3462 * as if the log writes were completed. The abort handling in the log
3463 * item committed callback functions will do this again under lock to
3464 * avoid races.
3465 */
3466 spin_lock(&log->l_cilp->xc_push_lock);
3467 wake_up_all(&log->l_cilp->xc_start_wait);
3468 wake_up_all(&log->l_cilp->xc_commit_wait);
3469 spin_unlock(&log->l_cilp->xc_push_lock);
3470
3471 spin_lock(&log->l_icloglock);
3472 xlog_state_shutdown_callbacks(log);
3473 spin_unlock(&log->l_icloglock);
3474
3475 wake_up_var(&log->l_opstate);
3476 if (IS_ENABLED(CONFIG_XFS_RT) && xfs_has_zoned(log->l_mp))
3477 xfs_zoned_wake_all(log->l_mp);
3478
3479 return log_error;
3480}
3481
3482STATIC int
3483xlog_iclogs_empty(
3484 struct xlog *log)
3485{
3486 struct xlog_in_core *iclog = log->l_iclog;
3487
3488 do {
3489 /* endianness does not matter here, zero is zero in
3490 * any language.
3491 */
3492 if (iclog->ic_header->h_num_logops)
3493 return 0;
3494 iclog = iclog->ic_next;
3495 } while (iclog != log->l_iclog);
3496
3497 return 1;
3498}
3499
3500/*
3501 * Verify that an LSN stamped into a piece of metadata is valid. This is
3502 * intended for use in read verifiers on v5 superblocks.
3503 */
3504bool
3505xfs_log_check_lsn(
3506 struct xfs_mount *mp,
3507 xfs_lsn_t lsn)
3508{
3509 struct xlog *log = mp->m_log;
3510 bool valid;
3511
3512 /*
3513 * norecovery mode skips mount-time log processing and unconditionally
3514 * resets the in-core LSN. We can't validate in this mode, but
3515 * modifications are not allowed anyways so just return true.
3516 */
3517 if (xfs_has_norecovery(mp))
3518 return true;
3519
3520 /*
3521 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
3522 * handled by recovery and thus safe to ignore here.
3523 */
3524 if (lsn == NULLCOMMITLSN)
3525 return true;
3526
3527 valid = xlog_valid_lsn(mp->m_log, lsn);
3528
3529 /* warn the user about what's gone wrong before verifier failure */
3530 if (!valid) {
3531 spin_lock(&log->l_icloglock);
3532 xfs_warn(mp,
3533"Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
3534"Please unmount and run xfs_repair (>= v4.3) to resolve.",
3535 CYCLE_LSN(lsn), BLOCK_LSN(lsn),
3536 log->l_curr_cycle, log->l_curr_block);
3537 spin_unlock(&log->l_icloglock);
3538 }
3539
3540 return valid;
3541}