Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Copyright (C) 2017-2023 Oracle. All Rights Reserved.
4 * Author: Darrick J. Wong <djwong@kernel.org>
5 */
6#include "xfs_platform.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_trans_resv.h"
11#include "xfs_mount.h"
12#include "xfs_btree.h"
13#include "xfs_log_format.h"
14#include "xfs_trans.h"
15#include "xfs_inode.h"
16#include "xfs_icache.h"
17#include "xfs_alloc.h"
18#include "xfs_alloc_btree.h"
19#include "xfs_ialloc.h"
20#include "xfs_ialloc_btree.h"
21#include "xfs_refcount_btree.h"
22#include "xfs_rmap.h"
23#include "xfs_rmap_btree.h"
24#include "xfs_log.h"
25#include "xfs_trans_priv.h"
26#include "xfs_da_format.h"
27#include "xfs_da_btree.h"
28#include "xfs_dir2_priv.h"
29#include "xfs_dir2.h"
30#include "xfs_attr.h"
31#include "xfs_reflink.h"
32#include "xfs_ag.h"
33#include "xfs_error.h"
34#include "xfs_quota.h"
35#include "xfs_exchmaps.h"
36#include "xfs_rtbitmap.h"
37#include "xfs_rtgroup.h"
38#include "xfs_rtrmap_btree.h"
39#include "xfs_bmap_util.h"
40#include "xfs_rtrefcount_btree.h"
41#include "scrub/scrub.h"
42#include "scrub/common.h"
43#include "scrub/trace.h"
44#include "scrub/repair.h"
45#include "scrub/health.h"
46#include "scrub/tempfile.h"
47
48/* Common code for the metadata scrubbers. */
49
50/*
51 * Handling operational errors.
52 *
53 * The *_process_error() family of functions are used to process error return
54 * codes from functions called as part of a scrub operation.
55 *
56 * If there's no error, we return true to tell the caller that it's ok
57 * to move on to the next check in its list.
58 *
59 * For non-verifier errors (e.g. ENOMEM) we return false to tell the
60 * caller that something bad happened, and we preserve *error so that
61 * the caller can return the *error up the stack to userspace.
62 *
63 * Verifier errors (EFSBADCRC/EFSCORRUPTED) are recorded by setting
64 * OFLAG_CORRUPT in sm_flags and the *error is cleared. In other words,
65 * we track verifier errors (and failed scrub checks) via OFLAG_CORRUPT,
66 * not via return codes. We return false to tell the caller that
67 * something bad happened. Since the error has been cleared, the caller
68 * will (presumably) return that zero and scrubbing will move on to
69 * whatever's next.
70 *
71 * ftrace can be used to record the precise metadata location and the
72 * approximate code location of the failed operation.
73 */
74
75/* Check for operational errors. */
76static bool
77__xchk_process_error(
78 struct xfs_scrub *sc,
79 xfs_agnumber_t agno,
80 xfs_agblock_t bno,
81 int *error,
82 __u32 errflag,
83 void *ret_ip)
84{
85 switch (*error) {
86 case 0:
87 return true;
88 case -EDEADLOCK:
89 case -ECHRNG:
90 /* Used to restart an op with deadlock avoidance. */
91 trace_xchk_deadlock_retry(
92 sc->ip ? sc->ip : XFS_I(file_inode(sc->file)),
93 sc->sm, *error);
94 break;
95 case -ECANCELED:
96 /*
97 * ECANCELED here means that the caller set one of the scrub
98 * outcome flags (corrupt, xfail, xcorrupt) and wants to exit
99 * quickly. Set error to zero and do not continue.
100 */
101 trace_xchk_op_error(sc, agno, bno, *error, ret_ip);
102 *error = 0;
103 break;
104 case -EFSBADCRC:
105 case -EFSCORRUPTED:
106 case -EIO:
107 case -ENODATA:
108 /* Note the badness but don't abort. */
109 sc->sm->sm_flags |= errflag;
110 *error = 0;
111 fallthrough;
112 default:
113 trace_xchk_op_error(sc, agno, bno, *error, ret_ip);
114 break;
115 }
116 return false;
117}
118
119bool
120xchk_process_error(
121 struct xfs_scrub *sc,
122 xfs_agnumber_t agno,
123 xfs_agblock_t bno,
124 int *error)
125{
126 return __xchk_process_error(sc, agno, bno, error,
127 XFS_SCRUB_OFLAG_CORRUPT, __return_address);
128}
129
130bool
131xchk_process_rt_error(
132 struct xfs_scrub *sc,
133 xfs_rgnumber_t rgno,
134 xfs_rgblock_t rgbno,
135 int *error)
136{
137 return __xchk_process_error(sc, rgno, rgbno, error,
138 XFS_SCRUB_OFLAG_CORRUPT, __return_address);
139}
140
141bool
142xchk_xref_process_error(
143 struct xfs_scrub *sc,
144 xfs_agnumber_t agno,
145 xfs_agblock_t bno,
146 int *error)
147{
148 return __xchk_process_error(sc, agno, bno, error,
149 XFS_SCRUB_OFLAG_XFAIL, __return_address);
150}
151
152/* Check for operational errors for a file offset. */
153static bool
154__xchk_fblock_process_error(
155 struct xfs_scrub *sc,
156 int whichfork,
157 xfs_fileoff_t offset,
158 int *error,
159 __u32 errflag,
160 void *ret_ip)
161{
162 switch (*error) {
163 case 0:
164 return true;
165 case -EDEADLOCK:
166 case -ECHRNG:
167 /* Used to restart an op with deadlock avoidance. */
168 trace_xchk_deadlock_retry(sc->ip, sc->sm, *error);
169 break;
170 case -ECANCELED:
171 /*
172 * ECANCELED here means that the caller set one of the scrub
173 * outcome flags (corrupt, xfail, xcorrupt) and wants to exit
174 * quickly. Set error to zero and do not continue.
175 */
176 trace_xchk_file_op_error(sc, whichfork, offset, *error,
177 ret_ip);
178 *error = 0;
179 break;
180 case -EFSBADCRC:
181 case -EFSCORRUPTED:
182 case -EIO:
183 case -ENODATA:
184 /* Note the badness but don't abort. */
185 sc->sm->sm_flags |= errflag;
186 *error = 0;
187 fallthrough;
188 default:
189 trace_xchk_file_op_error(sc, whichfork, offset, *error,
190 ret_ip);
191 break;
192 }
193 return false;
194}
195
196bool
197xchk_fblock_process_error(
198 struct xfs_scrub *sc,
199 int whichfork,
200 xfs_fileoff_t offset,
201 int *error)
202{
203 return __xchk_fblock_process_error(sc, whichfork, offset, error,
204 XFS_SCRUB_OFLAG_CORRUPT, __return_address);
205}
206
207bool
208xchk_fblock_xref_process_error(
209 struct xfs_scrub *sc,
210 int whichfork,
211 xfs_fileoff_t offset,
212 int *error)
213{
214 return __xchk_fblock_process_error(sc, whichfork, offset, error,
215 XFS_SCRUB_OFLAG_XFAIL, __return_address);
216}
217
218/*
219 * Handling scrub corruption/optimization/warning checks.
220 *
221 * The *_set_{corrupt,preen,warning}() family of functions are used to
222 * record the presence of metadata that is incorrect (corrupt), could be
223 * optimized somehow (preen), or should be flagged for administrative
224 * review but is not incorrect (warn).
225 *
226 * ftrace can be used to record the precise metadata location and
227 * approximate code location of the failed check.
228 */
229
230/* Record a block which could be optimized. */
231void
232xchk_block_set_preen(
233 struct xfs_scrub *sc,
234 struct xfs_buf *bp)
235{
236 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_PREEN;
237 trace_xchk_block_preen(sc, xfs_buf_daddr(bp), __return_address);
238}
239
240/*
241 * Record an inode which could be optimized. The trace data will
242 * include the block given by bp if bp is given; otherwise it will use
243 * the block location of the inode record itself.
244 */
245void
246xchk_ino_set_preen(
247 struct xfs_scrub *sc,
248 xfs_ino_t ino)
249{
250 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_PREEN;
251 trace_xchk_ino_preen(sc, ino, __return_address);
252}
253
254/* Record something being wrong with the filesystem primary superblock. */
255void
256xchk_set_corrupt(
257 struct xfs_scrub *sc)
258{
259 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
260 trace_xchk_fs_error(sc, 0, __return_address);
261}
262
263/* Record a corrupt block. */
264void
265xchk_block_set_corrupt(
266 struct xfs_scrub *sc,
267 struct xfs_buf *bp)
268{
269 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
270 trace_xchk_block_error(sc, xfs_buf_daddr(bp), __return_address);
271}
272
273#ifdef CONFIG_XFS_QUOTA
274/* Record a corrupt quota counter. */
275void
276xchk_qcheck_set_corrupt(
277 struct xfs_scrub *sc,
278 unsigned int dqtype,
279 xfs_dqid_t id)
280{
281 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
282 trace_xchk_qcheck_error(sc, dqtype, id, __return_address);
283}
284#endif
285
286/* Record a corruption while cross-referencing. */
287void
288xchk_block_xref_set_corrupt(
289 struct xfs_scrub *sc,
290 struct xfs_buf *bp)
291{
292 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XCORRUPT;
293 trace_xchk_block_error(sc, xfs_buf_daddr(bp), __return_address);
294}
295
296/*
297 * Record a corrupt inode. The trace data will include the block given
298 * by bp if bp is given; otherwise it will use the block location of the
299 * inode record itself.
300 */
301void
302xchk_ino_set_corrupt(
303 struct xfs_scrub *sc,
304 xfs_ino_t ino)
305{
306 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
307 trace_xchk_ino_error(sc, ino, __return_address);
308}
309
310/* Record a corruption while cross-referencing with an inode. */
311void
312xchk_ino_xref_set_corrupt(
313 struct xfs_scrub *sc,
314 xfs_ino_t ino)
315{
316 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XCORRUPT;
317 trace_xchk_ino_error(sc, ino, __return_address);
318}
319
320/* Record corruption in a block indexed by a file fork. */
321void
322xchk_fblock_set_corrupt(
323 struct xfs_scrub *sc,
324 int whichfork,
325 xfs_fileoff_t offset)
326{
327 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
328 trace_xchk_fblock_error(sc, whichfork, offset, __return_address);
329}
330
331/* Record a corruption while cross-referencing a fork block. */
332void
333xchk_fblock_xref_set_corrupt(
334 struct xfs_scrub *sc,
335 int whichfork,
336 xfs_fileoff_t offset)
337{
338 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XCORRUPT;
339 trace_xchk_fblock_error(sc, whichfork, offset, __return_address);
340}
341
342/*
343 * Warn about inodes that need administrative review but is not
344 * incorrect.
345 */
346void
347xchk_ino_set_warning(
348 struct xfs_scrub *sc,
349 xfs_ino_t ino)
350{
351 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_WARNING;
352 trace_xchk_ino_warning(sc, ino, __return_address);
353}
354
355/* Warn about a block indexed by a file fork that needs review. */
356void
357xchk_fblock_set_warning(
358 struct xfs_scrub *sc,
359 int whichfork,
360 xfs_fileoff_t offset)
361{
362 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_WARNING;
363 trace_xchk_fblock_warning(sc, whichfork, offset, __return_address);
364}
365
366/* Signal an incomplete scrub. */
367void
368xchk_set_incomplete(
369 struct xfs_scrub *sc)
370{
371 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_INCOMPLETE;
372 trace_xchk_incomplete(sc, __return_address);
373}
374
375/*
376 * rmap scrubbing -- compute the number of blocks with a given owner,
377 * at least according to the reverse mapping data.
378 */
379
380struct xchk_rmap_ownedby_info {
381 const struct xfs_owner_info *oinfo;
382 xfs_filblks_t *blocks;
383};
384
385STATIC int
386xchk_count_rmap_ownedby_irec(
387 struct xfs_btree_cur *cur,
388 const struct xfs_rmap_irec *rec,
389 void *priv)
390{
391 struct xchk_rmap_ownedby_info *sroi = priv;
392 bool irec_attr;
393 bool oinfo_attr;
394
395 irec_attr = rec->rm_flags & XFS_RMAP_ATTR_FORK;
396 oinfo_attr = sroi->oinfo->oi_flags & XFS_OWNER_INFO_ATTR_FORK;
397
398 if (rec->rm_owner != sroi->oinfo->oi_owner)
399 return 0;
400
401 if (XFS_RMAP_NON_INODE_OWNER(rec->rm_owner) || irec_attr == oinfo_attr)
402 (*sroi->blocks) += rec->rm_blockcount;
403
404 return 0;
405}
406
407/*
408 * Calculate the number of blocks the rmap thinks are owned by something.
409 * The caller should pass us an rmapbt cursor.
410 */
411int
412xchk_count_rmap_ownedby_ag(
413 struct xfs_scrub *sc,
414 struct xfs_btree_cur *cur,
415 const struct xfs_owner_info *oinfo,
416 xfs_filblks_t *blocks)
417{
418 struct xchk_rmap_ownedby_info sroi = {
419 .oinfo = oinfo,
420 .blocks = blocks,
421 };
422
423 *blocks = 0;
424 return xfs_rmap_query_all(cur, xchk_count_rmap_ownedby_irec,
425 &sroi);
426}
427
428/*
429 * AG scrubbing
430 *
431 * These helpers facilitate locking an allocation group's header
432 * buffers, setting up cursors for all btrees that are present, and
433 * cleaning everything up once we're through.
434 */
435
436/* Decide if we want to return an AG header read failure. */
437static inline bool
438want_ag_read_header_failure(
439 struct xfs_scrub *sc,
440 unsigned int type)
441{
442 /* Return all AG header read failures when scanning btrees. */
443 if (sc->sm->sm_type != XFS_SCRUB_TYPE_AGF &&
444 sc->sm->sm_type != XFS_SCRUB_TYPE_AGFL &&
445 sc->sm->sm_type != XFS_SCRUB_TYPE_AGI)
446 return true;
447 /*
448 * If we're scanning a given type of AG header, we only want to
449 * see read failures from that specific header. We'd like the
450 * other headers to cross-check them, but this isn't required.
451 */
452 if (sc->sm->sm_type == type)
453 return true;
454 return false;
455}
456
457/*
458 * Grab the AG header buffers for the attached perag structure.
459 *
460 * The headers should be released by xchk_ag_free, but as a fail safe we attach
461 * all the buffers we grab to the scrub transaction so they'll all be freed
462 * when we cancel it.
463 */
464static inline int
465xchk_perag_read_headers(
466 struct xfs_scrub *sc,
467 struct xchk_ag *sa)
468{
469 int error;
470
471 error = xfs_ialloc_read_agi(sa->pag, sc->tp, 0, &sa->agi_bp);
472 if (error && want_ag_read_header_failure(sc, XFS_SCRUB_TYPE_AGI))
473 return error;
474
475 error = xfs_alloc_read_agf(sa->pag, sc->tp, 0, &sa->agf_bp);
476 if (error && want_ag_read_header_failure(sc, XFS_SCRUB_TYPE_AGF))
477 return error;
478
479 return 0;
480}
481
482/*
483 * Grab the AG headers for the attached perag structure and wait for pending
484 * intents to drain.
485 */
486int
487xchk_perag_drain_and_lock(
488 struct xfs_scrub *sc)
489{
490 struct xchk_ag *sa = &sc->sa;
491 int error = 0;
492
493 ASSERT(sa->pag != NULL);
494 ASSERT(sa->agi_bp == NULL);
495 ASSERT(sa->agf_bp == NULL);
496
497 do {
498 if (xchk_should_terminate(sc, &error))
499 return error;
500
501 error = xchk_perag_read_headers(sc, sa);
502 if (error)
503 return error;
504
505 /*
506 * If we've grabbed an inode for scrubbing then we assume that
507 * holding its ILOCK will suffice to coordinate with any intent
508 * chains involving this inode.
509 */
510 if (sc->ip)
511 return 0;
512
513 /*
514 * Decide if this AG is quiet enough for all metadata to be
515 * consistent with each other. XFS allows the AG header buffer
516 * locks to cycle across transaction rolls while processing
517 * chains of deferred ops, which means that there could be
518 * other threads in the middle of processing a chain of
519 * deferred ops. For regular operations we are careful about
520 * ordering operations to prevent collisions between threads
521 * (which is why we don't need a per-AG lock), but scrub and
522 * repair have to serialize against chained operations.
523 *
524 * We just locked all the AG headers buffers; now take a look
525 * to see if there are any intents in progress. If there are,
526 * drop the AG headers and wait for the intents to drain.
527 * Since we hold all the AG header locks for the duration of
528 * the scrub, this is the only time we have to sample the
529 * intents counter; any threads increasing it after this point
530 * can't possibly be in the middle of a chain of AG metadata
531 * updates.
532 *
533 * Obviously, this should be slanted against scrub and in favor
534 * of runtime threads.
535 */
536 if (!xfs_group_intent_busy(pag_group(sa->pag)))
537 return 0;
538
539 if (sa->agf_bp) {
540 xfs_trans_brelse(sc->tp, sa->agf_bp);
541 sa->agf_bp = NULL;
542 }
543
544 if (sa->agi_bp) {
545 xfs_trans_brelse(sc->tp, sa->agi_bp);
546 sa->agi_bp = NULL;
547 }
548
549 if (!(sc->flags & XCHK_FSGATES_DRAIN))
550 return -ECHRNG;
551 error = xfs_group_intent_drain(pag_group(sa->pag));
552 if (error == -ERESTARTSYS)
553 error = -EINTR;
554 } while (!error);
555
556 return error;
557}
558
559/*
560 * Grab the per-AG structure, grab all AG header buffers, and wait until there
561 * aren't any pending intents. Returns -ENOENT if we can't grab the perag
562 * structure.
563 */
564int
565xchk_ag_read_headers(
566 struct xfs_scrub *sc,
567 xfs_agnumber_t agno,
568 struct xchk_ag *sa)
569{
570 struct xfs_mount *mp = sc->mp;
571
572 ASSERT(!sa->pag);
573 sa->pag = xfs_perag_get(mp, agno);
574 if (!sa->pag)
575 return -ENOENT;
576
577 return xchk_perag_drain_and_lock(sc);
578}
579
580/* Release all the AG btree cursors. */
581void
582xchk_ag_btcur_free(
583 struct xchk_ag *sa)
584{
585 if (sa->refc_cur)
586 xfs_btree_del_cursor(sa->refc_cur, XFS_BTREE_ERROR);
587 if (sa->rmap_cur)
588 xfs_btree_del_cursor(sa->rmap_cur, XFS_BTREE_ERROR);
589 if (sa->fino_cur)
590 xfs_btree_del_cursor(sa->fino_cur, XFS_BTREE_ERROR);
591 if (sa->ino_cur)
592 xfs_btree_del_cursor(sa->ino_cur, XFS_BTREE_ERROR);
593 if (sa->cnt_cur)
594 xfs_btree_del_cursor(sa->cnt_cur, XFS_BTREE_ERROR);
595 if (sa->bno_cur)
596 xfs_btree_del_cursor(sa->bno_cur, XFS_BTREE_ERROR);
597
598 sa->refc_cur = NULL;
599 sa->rmap_cur = NULL;
600 sa->fino_cur = NULL;
601 sa->ino_cur = NULL;
602 sa->bno_cur = NULL;
603 sa->cnt_cur = NULL;
604}
605
606/* Initialize all the btree cursors for an AG. */
607void
608xchk_ag_btcur_init(
609 struct xfs_scrub *sc,
610 struct xchk_ag *sa)
611{
612 struct xfs_mount *mp = sc->mp;
613
614 if (sa->agf_bp) {
615 /* Set up a bnobt cursor for cross-referencing. */
616 sa->bno_cur = xfs_bnobt_init_cursor(mp, sc->tp, sa->agf_bp,
617 sa->pag);
618 xchk_ag_btree_del_cursor_if_sick(sc, &sa->bno_cur,
619 XFS_SCRUB_TYPE_BNOBT);
620
621 /* Set up a cntbt cursor for cross-referencing. */
622 sa->cnt_cur = xfs_cntbt_init_cursor(mp, sc->tp, sa->agf_bp,
623 sa->pag);
624 xchk_ag_btree_del_cursor_if_sick(sc, &sa->cnt_cur,
625 XFS_SCRUB_TYPE_CNTBT);
626
627 /* Set up a rmapbt cursor for cross-referencing. */
628 if (xfs_has_rmapbt(mp)) {
629 sa->rmap_cur = xfs_rmapbt_init_cursor(mp, sc->tp,
630 sa->agf_bp, sa->pag);
631 xchk_ag_btree_del_cursor_if_sick(sc, &sa->rmap_cur,
632 XFS_SCRUB_TYPE_RMAPBT);
633 }
634
635 /* Set up a refcountbt cursor for cross-referencing. */
636 if (xfs_has_reflink(mp)) {
637 sa->refc_cur = xfs_refcountbt_init_cursor(mp, sc->tp,
638 sa->agf_bp, sa->pag);
639 xchk_ag_btree_del_cursor_if_sick(sc, &sa->refc_cur,
640 XFS_SCRUB_TYPE_REFCNTBT);
641 }
642 }
643
644 if (sa->agi_bp) {
645 /* Set up a inobt cursor for cross-referencing. */
646 sa->ino_cur = xfs_inobt_init_cursor(sa->pag, sc->tp,
647 sa->agi_bp);
648 xchk_ag_btree_del_cursor_if_sick(sc, &sa->ino_cur,
649 XFS_SCRUB_TYPE_INOBT);
650
651 /* Set up a finobt cursor for cross-referencing. */
652 if (xfs_has_finobt(mp)) {
653 sa->fino_cur = xfs_finobt_init_cursor(sa->pag, sc->tp,
654 sa->agi_bp);
655 xchk_ag_btree_del_cursor_if_sick(sc, &sa->fino_cur,
656 XFS_SCRUB_TYPE_FINOBT);
657 }
658 }
659}
660
661/* Release the AG header context and btree cursors. */
662void
663xchk_ag_free(
664 struct xfs_scrub *sc,
665 struct xchk_ag *sa)
666{
667 xchk_ag_btcur_free(sa);
668 xrep_reset_perag_resv(sc);
669 if (sa->agf_bp) {
670 xfs_trans_brelse(sc->tp, sa->agf_bp);
671 sa->agf_bp = NULL;
672 }
673 if (sa->agi_bp) {
674 xfs_trans_brelse(sc->tp, sa->agi_bp);
675 sa->agi_bp = NULL;
676 }
677 if (sa->pag) {
678 xfs_perag_put(sa->pag);
679 sa->pag = NULL;
680 }
681}
682
683/*
684 * For scrub, grab the perag structure, the AGI, and the AGF headers, in that
685 * order. Locking order requires us to get the AGI before the AGF. We use the
686 * transaction to avoid deadlocking on crosslinked metadata buffers; either the
687 * caller passes one in (bmap scrub) or we have to create a transaction
688 * ourselves. Returns ENOENT if the perag struct cannot be grabbed.
689 */
690int
691xchk_ag_init(
692 struct xfs_scrub *sc,
693 xfs_agnumber_t agno,
694 struct xchk_ag *sa)
695{
696 int error;
697
698 error = xchk_ag_read_headers(sc, agno, sa);
699 if (error)
700 return error;
701
702 xchk_ag_btcur_init(sc, sa);
703 return 0;
704}
705
706#ifdef CONFIG_XFS_RT
707/*
708 * For scrubbing a realtime group, grab all the in-core resources we'll need to
709 * check the metadata, which means taking the ILOCK of the realtime group's
710 * metadata inodes. Callers must not join these inodes to the transaction with
711 * non-zero lockflags or concurrency problems will result. The @rtglock_flags
712 * argument takes XFS_RTGLOCK_* flags.
713 */
714int
715xchk_rtgroup_init(
716 struct xfs_scrub *sc,
717 xfs_rgnumber_t rgno,
718 struct xchk_rt *sr)
719{
720 ASSERT(sr->rtg == NULL);
721 ASSERT(sr->rtlock_flags == 0);
722
723 sr->rtg = xfs_rtgroup_get(sc->mp, rgno);
724 if (!sr->rtg)
725 return -ENOENT;
726 return 0;
727}
728
729/* Lock all the rt group metadata inode ILOCKs and wait for intents. */
730int
731xchk_rtgroup_lock(
732 struct xfs_scrub *sc,
733 struct xchk_rt *sr,
734 unsigned int rtglock_flags)
735{
736 int error = 0;
737
738 ASSERT(sr->rtg != NULL);
739
740 /*
741 * If we're /only/ locking the rtbitmap in shared mode, then we're
742 * obviously not trying to compare records in two metadata inodes.
743 * There's no need to drain intents here because the caller (most
744 * likely the rgsuper scanner) doesn't need that level of consistency.
745 */
746 if (rtglock_flags == XFS_RTGLOCK_BITMAP_SHARED) {
747 xfs_rtgroup_lock(sr->rtg, rtglock_flags);
748 sr->rtlock_flags = rtglock_flags;
749 return 0;
750 }
751
752 do {
753 if (xchk_should_terminate(sc, &error))
754 return error;
755
756 xfs_rtgroup_lock(sr->rtg, rtglock_flags);
757
758 /*
759 * If we've grabbed a non-metadata file for scrubbing, we
760 * assume that holding its ILOCK will suffice to coordinate
761 * with any rt intent chains involving this inode.
762 */
763 if (sc->ip && !xfs_is_internal_inode(sc->ip))
764 break;
765
766 /*
767 * Decide if the rt group is quiet enough for all metadata to
768 * be consistent with each other. Regular file IO doesn't get
769 * to lock all the rt inodes at the same time, which means that
770 * there could be other threads in the middle of processing a
771 * chain of deferred ops.
772 *
773 * We just locked all the metadata inodes for this rt group;
774 * now take a look to see if there are any intents in progress.
775 * If there are, drop the rt group inode locks and wait for the
776 * intents to drain. Since we hold the rt group inode locks
777 * for the duration of the scrub, this is the only time we have
778 * to sample the intents counter; any threads increasing it
779 * after this point can't possibly be in the middle of a chain
780 * of rt metadata updates.
781 *
782 * Obviously, this should be slanted against scrub and in favor
783 * of runtime threads.
784 */
785 if (!xfs_group_intent_busy(rtg_group(sr->rtg)))
786 break;
787
788 xfs_rtgroup_unlock(sr->rtg, rtglock_flags);
789
790 if (!(sc->flags & XCHK_FSGATES_DRAIN))
791 return -ECHRNG;
792 error = xfs_group_intent_drain(rtg_group(sr->rtg));
793 if (error) {
794 if (error == -ERESTARTSYS)
795 error = -EINTR;
796 return error;
797 }
798 } while (1);
799
800 sr->rtlock_flags = rtglock_flags;
801
802 if (xfs_has_rtrmapbt(sc->mp) && (rtglock_flags & XFS_RTGLOCK_RMAP))
803 sr->rmap_cur = xfs_rtrmapbt_init_cursor(sc->tp, sr->rtg);
804
805 if (xfs_has_rtreflink(sc->mp) && (rtglock_flags & XFS_RTGLOCK_REFCOUNT))
806 sr->refc_cur = xfs_rtrefcountbt_init_cursor(sc->tp, sr->rtg);
807
808 return 0;
809}
810
811/*
812 * Free all the btree cursors and other incore data relating to the realtime
813 * group. This has to be done /before/ committing (or cancelling) the scrub
814 * transaction.
815 */
816void
817xchk_rtgroup_btcur_free(
818 struct xchk_rt *sr)
819{
820 if (sr->rmap_cur)
821 xfs_btree_del_cursor(sr->rmap_cur, XFS_BTREE_ERROR);
822 if (sr->refc_cur)
823 xfs_btree_del_cursor(sr->refc_cur, XFS_BTREE_ERROR);
824
825 sr->refc_cur = NULL;
826 sr->rmap_cur = NULL;
827}
828
829/*
830 * Unlock the realtime group. This must be done /after/ committing (or
831 * cancelling) the scrub transaction.
832 */
833void
834xchk_rtgroup_unlock(
835 struct xchk_rt *sr)
836{
837 ASSERT(sr->rtg != NULL);
838
839 if (sr->rtlock_flags) {
840 xfs_rtgroup_unlock(sr->rtg, sr->rtlock_flags);
841 sr->rtlock_flags = 0;
842 }
843}
844
845/*
846 * Unlock the realtime group and release its resources. This must be done
847 * /after/ committing (or cancelling) the scrub transaction.
848 */
849void
850xchk_rtgroup_free(
851 struct xfs_scrub *sc,
852 struct xchk_rt *sr)
853{
854 ASSERT(sr->rtg != NULL);
855
856 xchk_rtgroup_unlock(sr);
857
858 xfs_rtgroup_put(sr->rtg);
859 sr->rtg = NULL;
860}
861#endif /* CONFIG_XFS_RT */
862
863/* Per-scrubber setup functions */
864
865void
866xchk_trans_cancel(
867 struct xfs_scrub *sc)
868{
869 xfs_trans_cancel(sc->tp);
870 sc->tp = NULL;
871}
872
873void
874xchk_trans_alloc_empty(
875 struct xfs_scrub *sc)
876{
877 sc->tp = xfs_trans_alloc_empty(sc->mp);
878}
879
880/*
881 * Grab an empty transaction so that we can re-grab locked buffers if
882 * one of our btrees turns out to be cyclic.
883 *
884 * If we're going to repair something, we need to ask for the largest possible
885 * log reservation so that we can handle the worst case scenario for metadata
886 * updates while rebuilding a metadata item. We also need to reserve as many
887 * blocks in the head transaction as we think we're going to need to rebuild
888 * the metadata object.
889 */
890int
891xchk_trans_alloc(
892 struct xfs_scrub *sc,
893 uint resblks)
894{
895 if (sc->sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR)
896 return xfs_trans_alloc(sc->mp, &M_RES(sc->mp)->tr_itruncate,
897 resblks, 0, 0, &sc->tp);
898
899 xchk_trans_alloc_empty(sc);
900 return 0;
901}
902
903/* Set us up with a transaction and an empty context. */
904int
905xchk_setup_fs(
906 struct xfs_scrub *sc)
907{
908 uint resblks;
909
910 resblks = xrep_calc_ag_resblks(sc);
911 return xchk_trans_alloc(sc, resblks);
912}
913
914/* Set us up with a transaction and an empty context to repair rt metadata. */
915int
916xchk_setup_rt(
917 struct xfs_scrub *sc)
918{
919 return xchk_trans_alloc(sc, xrep_calc_rtgroup_resblks(sc));
920}
921
922/* Set us up with AG headers and btree cursors. */
923int
924xchk_setup_ag_btree(
925 struct xfs_scrub *sc,
926 bool force_log)
927{
928 struct xfs_mount *mp = sc->mp;
929 int error;
930
931 /*
932 * If the caller asks us to checkpont the log, do so. This
933 * expensive operation should be performed infrequently and only
934 * as a last resort. Any caller that sets force_log should
935 * document why they need to do so.
936 */
937 if (force_log) {
938 error = xchk_checkpoint_log(mp);
939 if (error)
940 return error;
941 }
942
943 error = xchk_setup_fs(sc);
944 if (error)
945 return error;
946
947 return xchk_ag_init(sc, sc->sm->sm_agno, &sc->sa);
948}
949
950/* Push everything out of the log onto disk. */
951int
952xchk_checkpoint_log(
953 struct xfs_mount *mp)
954{
955 int error;
956
957 error = xfs_log_force(mp, XFS_LOG_SYNC);
958 if (error)
959 return error;
960 xfs_ail_push_all_sync(mp->m_ail);
961 return 0;
962}
963
964/* Verify that an inode is allocated ondisk, then return its cached inode. */
965int
966xchk_iget(
967 struct xfs_scrub *sc,
968 xfs_ino_t inum,
969 struct xfs_inode **ipp)
970{
971 ASSERT(sc->tp != NULL);
972
973 return xfs_iget(sc->mp, sc->tp, inum, XCHK_IGET_FLAGS, 0, ipp);
974}
975
976/*
977 * Try to grab an inode in a manner that avoids races with physical inode
978 * allocation. If we can't, return the locked AGI buffer so that the caller
979 * can single-step the loading process to see where things went wrong.
980 * Callers must have a valid scrub transaction.
981 *
982 * If the iget succeeds, return 0, a NULL AGI, and the inode.
983 *
984 * If the iget fails, return the error, the locked AGI, and a NULL inode. This
985 * can include -EINVAL and -ENOENT for invalid inode numbers or inodes that are
986 * no longer allocated; or any other corruption or runtime error.
987 *
988 * If the AGI read fails, return the error, a NULL AGI, and NULL inode.
989 *
990 * If a fatal signal is pending, return -EINTR, a NULL AGI, and a NULL inode.
991 */
992int
993xchk_iget_agi(
994 struct xfs_scrub *sc,
995 xfs_ino_t inum,
996 struct xfs_buf **agi_bpp,
997 struct xfs_inode **ipp)
998{
999 struct xfs_mount *mp = sc->mp;
1000 struct xfs_trans *tp = sc->tp;
1001 struct xfs_perag *pag;
1002 int error;
1003
1004 ASSERT(sc->tp != NULL);
1005
1006again:
1007 *agi_bpp = NULL;
1008 *ipp = NULL;
1009 error = 0;
1010
1011 if (xchk_should_terminate(sc, &error))
1012 return error;
1013
1014 /*
1015 * Attach the AGI buffer to the scrub transaction to avoid deadlocks
1016 * in the iget cache miss path.
1017 */
1018 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
1019 error = xfs_ialloc_read_agi(pag, tp, 0, agi_bpp);
1020 xfs_perag_put(pag);
1021 if (error)
1022 return error;
1023
1024 error = xfs_iget(mp, tp, inum, XFS_IGET_NORETRY | XCHK_IGET_FLAGS, 0,
1025 ipp);
1026 if (error == -EAGAIN) {
1027 /*
1028 * The inode may be in core but temporarily unavailable and may
1029 * require the AGI buffer before it can be returned. Drop the
1030 * AGI buffer and retry the lookup.
1031 *
1032 * Incore lookup will fail with EAGAIN on a cache hit if the
1033 * inode is queued to the inactivation list. The inactivation
1034 * worker may remove the inode from the unlinked list and hence
1035 * needs the AGI.
1036 *
1037 * Hence xchk_iget_agi() needs to drop the AGI lock on EAGAIN
1038 * to allow inodegc to make progress and move the inode to
1039 * IRECLAIMABLE state where xfs_iget will be able to return it
1040 * again if it can lock the inode.
1041 */
1042 xfs_trans_brelse(tp, *agi_bpp);
1043 delay(1);
1044 goto again;
1045 }
1046 if (error)
1047 return error;
1048
1049 /* We got the inode, so we can release the AGI. */
1050 ASSERT(*ipp != NULL);
1051 xfs_trans_brelse(tp, *agi_bpp);
1052 *agi_bpp = NULL;
1053 return 0;
1054}
1055
1056#ifdef CONFIG_XFS_QUOTA
1057/*
1058 * Try to attach dquots to this inode if we think we might want to repair it.
1059 * Callers must not hold any ILOCKs. If the dquots are broken and cannot be
1060 * attached, a quotacheck will be scheduled.
1061 */
1062int
1063xchk_ino_dqattach(
1064 struct xfs_scrub *sc)
1065{
1066 ASSERT(sc->tp != NULL);
1067 ASSERT(sc->ip != NULL);
1068
1069 if (!xchk_could_repair(sc))
1070 return 0;
1071
1072 return xrep_ino_dqattach(sc);
1073}
1074#endif
1075
1076/* Install an inode that we opened by handle for scrubbing. */
1077int
1078xchk_install_handle_inode(
1079 struct xfs_scrub *sc,
1080 struct xfs_inode *ip)
1081{
1082 if (VFS_I(ip)->i_generation != sc->sm->sm_gen) {
1083 xchk_irele(sc, ip);
1084 return -ENOENT;
1085 }
1086
1087 sc->ip = ip;
1088 return 0;
1089}
1090
1091/*
1092 * Install an already-referenced inode for scrubbing. Get our own reference to
1093 * the inode to make disposal simpler. The inode must not be in I_FREEING or
1094 * I_WILL_FREE state!
1095 */
1096int
1097xchk_install_live_inode(
1098 struct xfs_scrub *sc,
1099 struct xfs_inode *ip)
1100{
1101 if (!igrab(VFS_I(ip))) {
1102 xchk_ino_set_corrupt(sc, ip->i_ino);
1103 return -EFSCORRUPTED;
1104 }
1105
1106 sc->ip = ip;
1107 return 0;
1108}
1109
1110/*
1111 * In preparation to scrub metadata structures that hang off of an inode,
1112 * grab either the inode referenced in the scrub control structure or the
1113 * inode passed in. If the inumber does not reference an allocated inode
1114 * record, the function returns ENOENT to end the scrub early. The inode
1115 * is not locked.
1116 */
1117int
1118xchk_iget_for_scrubbing(
1119 struct xfs_scrub *sc)
1120{
1121 struct xfs_imap imap;
1122 struct xfs_mount *mp = sc->mp;
1123 struct xfs_perag *pag;
1124 struct xfs_buf *agi_bp;
1125 struct xfs_inode *ip_in = XFS_I(file_inode(sc->file));
1126 struct xfs_inode *ip = NULL;
1127 xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, sc->sm->sm_ino);
1128 int error;
1129
1130 ASSERT(sc->tp == NULL);
1131
1132 /* We want to scan the inode we already had opened. */
1133 if (sc->sm->sm_ino == 0 || sc->sm->sm_ino == ip_in->i_ino)
1134 return xchk_install_live_inode(sc, ip_in);
1135
1136 /*
1137 * On pre-metadir filesystems, reject internal metadata files. For
1138 * metadir filesystems, limited scrubbing of any file in the metadata
1139 * directory tree by handle is allowed, because that is the only way to
1140 * validate the lack of parent pointers in the sb-root metadata inodes.
1141 */
1142 if (!xfs_has_metadir(mp) && xfs_is_sb_inum(mp, sc->sm->sm_ino))
1143 return -ENOENT;
1144 /* Reject obviously bad inode numbers. */
1145 if (!xfs_verify_ino(sc->mp, sc->sm->sm_ino))
1146 return -ENOENT;
1147
1148 /* Try a safe untrusted iget. */
1149 error = xchk_iget_safe(sc, sc->sm->sm_ino, &ip);
1150 if (!error)
1151 return xchk_install_handle_inode(sc, ip);
1152 if (error == -ENOENT)
1153 return error;
1154 if (error != -EINVAL)
1155 goto out_error;
1156
1157 /*
1158 * EINVAL with IGET_UNTRUSTED probably means one of several things:
1159 * userspace gave us an inode number that doesn't correspond to fs
1160 * space; the inode btree lacks a record for this inode; or there is a
1161 * record, and it says this inode is free.
1162 *
1163 * We want to look up this inode in the inobt to distinguish two
1164 * scenarios: (1) the inobt says the inode is free, in which case
1165 * there's nothing to do; and (2) the inobt says the inode is
1166 * allocated, but loading it failed due to corruption.
1167 *
1168 * Allocate a transaction and grab the AGI to prevent inobt activity
1169 * in this AG. Retry the iget in case someone allocated a new inode
1170 * after the first iget failed.
1171 */
1172 error = xchk_trans_alloc(sc, 0);
1173 if (error)
1174 goto out_error;
1175
1176 error = xchk_iget_agi(sc, sc->sm->sm_ino, &agi_bp, &ip);
1177 if (error == 0) {
1178 /* Actually got the inode, so install it. */
1179 xchk_trans_cancel(sc);
1180 return xchk_install_handle_inode(sc, ip);
1181 }
1182 if (error == -ENOENT)
1183 goto out_gone;
1184 if (error != -EINVAL)
1185 goto out_cancel;
1186
1187 /* Ensure that we have protected against inode allocation/freeing. */
1188 if (agi_bp == NULL) {
1189 ASSERT(agi_bp != NULL);
1190 error = -ECANCELED;
1191 goto out_cancel;
1192 }
1193
1194 /*
1195 * Untrusted iget failed a second time. Let's try an inobt lookup.
1196 * If the inobt thinks this the inode neither can exist inside the
1197 * filesystem nor is allocated, return ENOENT to signal that the check
1198 * can be skipped.
1199 *
1200 * If the lookup returns corruption, we'll mark this inode corrupt and
1201 * exit to userspace. There's little chance of fixing anything until
1202 * the inobt is straightened out, but there's nothing we can do here.
1203 *
1204 * If the lookup encounters any other error, exit to userspace.
1205 *
1206 * If the lookup succeeds, something else must be very wrong in the fs
1207 * such that setting up the incore inode failed in some strange way.
1208 * Treat those as corruptions.
1209 */
1210 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, sc->sm->sm_ino));
1211 if (!pag) {
1212 error = -EFSCORRUPTED;
1213 goto out_cancel;
1214 }
1215
1216 error = xfs_imap(pag, sc->tp, sc->sm->sm_ino, &imap,
1217 XFS_IGET_UNTRUSTED);
1218 xfs_perag_put(pag);
1219 if (error == -EINVAL || error == -ENOENT)
1220 goto out_gone;
1221 if (!error)
1222 error = -EFSCORRUPTED;
1223
1224out_cancel:
1225 xchk_trans_cancel(sc);
1226out_error:
1227 trace_xchk_op_error(sc, agno, XFS_INO_TO_AGBNO(mp, sc->sm->sm_ino),
1228 error, __return_address);
1229 return error;
1230out_gone:
1231 /* The file is gone, so there's nothing to check. */
1232 xchk_trans_cancel(sc);
1233 return -ENOENT;
1234}
1235
1236/* Release an inode, possibly dropping it in the process. */
1237void
1238xchk_irele(
1239 struct xfs_scrub *sc,
1240 struct xfs_inode *ip)
1241{
1242 if (sc->tp) {
1243 /*
1244 * If we are in a transaction, we /cannot/ drop the inode
1245 * ourselves, because the VFS will trigger writeback, which
1246 * can require a transaction. Clear DONTCACHE to force the
1247 * inode to the LRU, where someone else can take care of
1248 * dropping it.
1249 *
1250 * Note that when we grabbed our reference to the inode, it
1251 * could have had an active ref and DONTCACHE set if a sysadmin
1252 * is trying to coerce a change in file access mode. icache
1253 * hits do not clear DONTCACHE, so we must do it here.
1254 */
1255 spin_lock(&VFS_I(ip)->i_lock);
1256 inode_state_clear(VFS_I(ip), I_DONTCACHE);
1257 spin_unlock(&VFS_I(ip)->i_lock);
1258 }
1259
1260 xfs_irele(ip);
1261}
1262
1263/*
1264 * Set us up to scrub metadata mapped by a file's fork. Callers must not use
1265 * this to operate on user-accessible regular file data because the MMAPLOCK is
1266 * not taken.
1267 */
1268int
1269xchk_setup_inode_contents(
1270 struct xfs_scrub *sc,
1271 unsigned int resblks)
1272{
1273 int error;
1274
1275 error = xchk_iget_for_scrubbing(sc);
1276 if (error)
1277 return error;
1278
1279 error = xrep_tempfile_adjust_directory_tree(sc);
1280 if (error)
1281 return error;
1282
1283 /* Lock the inode so the VFS cannot touch this file. */
1284 xchk_ilock(sc, XFS_IOLOCK_EXCL);
1285
1286 error = xchk_trans_alloc(sc, resblks);
1287 if (error)
1288 goto out;
1289
1290 error = xchk_ino_dqattach(sc);
1291 if (error)
1292 goto out;
1293
1294 xchk_ilock(sc, XFS_ILOCK_EXCL);
1295out:
1296 /* scrub teardown will unlock and release the inode for us */
1297 return error;
1298}
1299
1300void
1301xchk_ilock(
1302 struct xfs_scrub *sc,
1303 unsigned int ilock_flags)
1304{
1305 xfs_ilock(sc->ip, ilock_flags);
1306 sc->ilock_flags |= ilock_flags;
1307}
1308
1309bool
1310xchk_ilock_nowait(
1311 struct xfs_scrub *sc,
1312 unsigned int ilock_flags)
1313{
1314 if (xfs_ilock_nowait(sc->ip, ilock_flags)) {
1315 sc->ilock_flags |= ilock_flags;
1316 return true;
1317 }
1318
1319 return false;
1320}
1321
1322void
1323xchk_iunlock(
1324 struct xfs_scrub *sc,
1325 unsigned int ilock_flags)
1326{
1327 sc->ilock_flags &= ~ilock_flags;
1328 xfs_iunlock(sc->ip, ilock_flags);
1329}
1330
1331/*
1332 * Predicate that decides if we need to evaluate the cross-reference check.
1333 * If there was an error accessing the cross-reference btree, just delete
1334 * the cursor and skip the check.
1335 */
1336bool
1337xchk_should_check_xref(
1338 struct xfs_scrub *sc,
1339 int *error,
1340 struct xfs_btree_cur **curpp)
1341{
1342 /* No point in xref if we already know we're corrupt. */
1343 if (xchk_skip_xref(sc->sm))
1344 return false;
1345
1346 if (*error == 0)
1347 return true;
1348
1349 if (curpp) {
1350 /* If we've already given up on xref, just bail out. */
1351 if (!*curpp)
1352 return false;
1353
1354 /* xref error, delete cursor and bail out. */
1355 xfs_btree_del_cursor(*curpp, XFS_BTREE_ERROR);
1356 *curpp = NULL;
1357 }
1358
1359 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XFAIL;
1360 trace_xchk_xref_error(sc, *error, __return_address);
1361
1362 /*
1363 * Errors encountered during cross-referencing with another
1364 * data structure should not cause this scrubber to abort.
1365 */
1366 *error = 0;
1367 return false;
1368}
1369
1370/* Run the structure verifiers on in-memory buffers to detect bad memory. */
1371void
1372xchk_buffer_recheck(
1373 struct xfs_scrub *sc,
1374 struct xfs_buf *bp)
1375{
1376 xfs_failaddr_t fa;
1377
1378 if (bp->b_ops == NULL) {
1379 xchk_block_set_corrupt(sc, bp);
1380 return;
1381 }
1382 if (bp->b_ops->verify_struct == NULL) {
1383 xchk_set_incomplete(sc);
1384 return;
1385 }
1386 fa = bp->b_ops->verify_struct(bp);
1387 if (!fa)
1388 return;
1389 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
1390 trace_xchk_block_error(sc, xfs_buf_daddr(bp), fa);
1391}
1392
1393static inline int
1394xchk_metadata_inode_subtype(
1395 struct xfs_scrub *sc,
1396 unsigned int scrub_type)
1397{
1398 struct xfs_scrub_subord *sub;
1399 int error;
1400
1401 sub = xchk_scrub_create_subord(sc, scrub_type);
1402 if (!sub)
1403 return -ENOMEM;
1404
1405 error = sub->sc.ops->scrub(&sub->sc);
1406 xchk_scrub_free_subord(sub);
1407 return error;
1408}
1409
1410/*
1411 * Scrub the attr/data forks of a metadata inode. The metadata inode must be
1412 * pointed to by sc->ip and the ILOCK must be held.
1413 */
1414int
1415xchk_metadata_inode_forks(
1416 struct xfs_scrub *sc)
1417{
1418 bool shared;
1419 int error;
1420
1421 if (sc->sm->sm_flags & XFS_SCRUB_OFLAG_CORRUPT)
1422 return 0;
1423
1424 /* Check the inode record. */
1425 error = xchk_metadata_inode_subtype(sc, XFS_SCRUB_TYPE_INODE);
1426 if (error || (sc->sm->sm_flags & XFS_SCRUB_OFLAG_CORRUPT))
1427 return error;
1428
1429 /* Metadata inodes don't live on the rt device. */
1430 if (sc->ip->i_diflags & XFS_DIFLAG_REALTIME) {
1431 xchk_ino_set_corrupt(sc, sc->ip->i_ino);
1432 return 0;
1433 }
1434
1435 /* They should never participate in reflink. */
1436 if (xfs_is_reflink_inode(sc->ip)) {
1437 xchk_ino_set_corrupt(sc, sc->ip->i_ino);
1438 return 0;
1439 }
1440
1441 /* Invoke the data fork scrubber. */
1442 error = xchk_metadata_inode_subtype(sc, XFS_SCRUB_TYPE_BMBTD);
1443 if (error || (sc->sm->sm_flags & XFS_SCRUB_OFLAG_CORRUPT))
1444 return error;
1445
1446 /* Look for incorrect shared blocks. */
1447 if (xfs_has_reflink(sc->mp)) {
1448 error = xfs_reflink_inode_has_shared_extents(sc->tp, sc->ip,
1449 &shared);
1450 if (!xchk_fblock_process_error(sc, XFS_DATA_FORK, 0,
1451 &error))
1452 return error;
1453 if (shared)
1454 xchk_ino_set_corrupt(sc, sc->ip->i_ino);
1455 }
1456
1457 /*
1458 * Metadata files can only have extended attributes on metadir
1459 * filesystems, either for parent pointers or for actual xattr data.
1460 */
1461 if (xfs_inode_hasattr(sc->ip)) {
1462 if (!xfs_has_metadir(sc->mp)) {
1463 xchk_ino_set_corrupt(sc, sc->ip->i_ino);
1464 return 0;
1465 }
1466
1467 error = xchk_metadata_inode_subtype(sc, XFS_SCRUB_TYPE_BMBTA);
1468 if (error || (sc->sm->sm_flags & XFS_SCRUB_OFLAG_CORRUPT))
1469 return error;
1470 }
1471
1472 return 0;
1473}
1474
1475/*
1476 * Enable filesystem hooks (i.e. runtime code patching) before starting a scrub
1477 * operation. Callers must not hold any locks that intersect with the CPU
1478 * hotplug lock (e.g. writeback locks) because code patching must halt the CPUs
1479 * to change kernel code.
1480 */
1481void
1482xchk_fsgates_enable(
1483 struct xfs_scrub *sc,
1484 unsigned int scrub_fsgates)
1485{
1486 ASSERT(!(scrub_fsgates & ~XCHK_FSGATES_ALL));
1487 ASSERT(!(sc->flags & scrub_fsgates));
1488
1489 trace_xchk_fsgates_enable(sc, scrub_fsgates);
1490
1491 if (scrub_fsgates & XCHK_FSGATES_DRAIN)
1492 xfs_defer_drain_wait_enable();
1493
1494 if (scrub_fsgates & XCHK_FSGATES_QUOTA)
1495 xfs_dqtrx_hook_enable();
1496
1497 if (scrub_fsgates & XCHK_FSGATES_DIRENTS)
1498 xfs_dir_hook_enable();
1499
1500 if (scrub_fsgates & XCHK_FSGATES_RMAP)
1501 xfs_rmap_hook_enable();
1502
1503 sc->flags |= scrub_fsgates;
1504}
1505
1506/*
1507 * Decide if this is this a cached inode that's also allocated. The caller
1508 * must hold a reference to an AG and the AGI buffer lock to prevent inodes
1509 * from being allocated or freed.
1510 *
1511 * Look up an inode by number in the given file system. If the inode number
1512 * is invalid, return -EINVAL. If the inode is not in cache, return -ENODATA.
1513 * If the inode is being reclaimed, return -ENODATA because we know the inode
1514 * cache cannot be updating the ondisk metadata.
1515 *
1516 * Otherwise, the incore inode is the one we want, and it is either live,
1517 * somewhere in the inactivation machinery, or reclaimable. The inode is
1518 * allocated if i_mode is nonzero. In all three cases, the cached inode will
1519 * be more up to date than the ondisk inode buffer, so we must use the incore
1520 * i_mode.
1521 */
1522int
1523xchk_inode_is_allocated(
1524 struct xfs_scrub *sc,
1525 xfs_agino_t agino,
1526 bool *inuse)
1527{
1528 struct xfs_mount *mp = sc->mp;
1529 struct xfs_perag *pag = sc->sa.pag;
1530 xfs_ino_t ino;
1531 struct xfs_inode *ip;
1532 int error;
1533
1534 /* caller must hold perag reference */
1535 if (pag == NULL) {
1536 ASSERT(pag != NULL);
1537 return -EINVAL;
1538 }
1539
1540 /* caller must have AGI buffer */
1541 if (sc->sa.agi_bp == NULL) {
1542 ASSERT(sc->sa.agi_bp != NULL);
1543 return -EINVAL;
1544 }
1545
1546 /* reject inode numbers outside existing AGs */
1547 ino = xfs_agino_to_ino(pag, agino);
1548 if (!xfs_verify_ino(mp, ino))
1549 return -EINVAL;
1550
1551 error = -ENODATA;
1552 rcu_read_lock();
1553 ip = radix_tree_lookup(&pag->pag_ici_root, agino);
1554 if (!ip) {
1555 /* cache miss */
1556 goto out_rcu;
1557 }
1558
1559 /*
1560 * If the inode number doesn't match, the incore inode got reused
1561 * during an RCU grace period and the radix tree hasn't been updated.
1562 * This isn't the inode we want.
1563 */
1564 spin_lock(&ip->i_flags_lock);
1565 if (ip->i_ino != ino)
1566 goto out_skip;
1567
1568 trace_xchk_inode_is_allocated(ip);
1569
1570 /*
1571 * We have an incore inode that matches the inode we want, and the
1572 * caller holds the perag structure and the AGI buffer. Let's check
1573 * our assumptions below:
1574 */
1575
1576#ifdef DEBUG
1577 /*
1578 * (1) If the incore inode is live (i.e. referenced from the dcache),
1579 * it will not be INEW, nor will it be in the inactivation or reclaim
1580 * machinery. The ondisk inode had better be allocated. This is the
1581 * most trivial case.
1582 */
1583 if (!(ip->i_flags & (XFS_NEED_INACTIVE | XFS_INEW | XFS_IRECLAIMABLE |
1584 XFS_INACTIVATING))) {
1585 /* live inode */
1586 ASSERT(VFS_I(ip)->i_mode != 0);
1587 }
1588
1589 /*
1590 * If the incore inode is INEW, there are several possibilities:
1591 *
1592 * (2) For a file that is being created, note that we allocate the
1593 * ondisk inode before allocating, initializing, and adding the incore
1594 * inode to the radix tree.
1595 *
1596 * (3) If the incore inode is being recycled, the inode has to be
1597 * allocated because we don't allow freed inodes to be recycled.
1598 * Recycling doesn't touch i_mode.
1599 */
1600 if (ip->i_flags & XFS_INEW) {
1601 /* created on disk already or recycling */
1602 ASSERT(VFS_I(ip)->i_mode != 0);
1603 }
1604
1605 /*
1606 * (4) If the inode is queued for inactivation (NEED_INACTIVE) but
1607 * inactivation has not started (!INACTIVATING), it is still allocated.
1608 */
1609 if ((ip->i_flags & XFS_NEED_INACTIVE) &&
1610 !(ip->i_flags & XFS_INACTIVATING)) {
1611 /* definitely before difree */
1612 ASSERT(VFS_I(ip)->i_mode != 0);
1613 }
1614#endif
1615
1616 /*
1617 * If the incore inode is undergoing inactivation (INACTIVATING), there
1618 * are two possibilities:
1619 *
1620 * (5) It is before the point where it would get freed ondisk, in which
1621 * case i_mode is still nonzero.
1622 *
1623 * (6) It has already been freed, in which case i_mode is zero.
1624 *
1625 * We don't take the ILOCK here, but difree and dialloc update the AGI,
1626 * and we've taken the AGI buffer lock, which prevents that from
1627 * happening.
1628 */
1629
1630 /*
1631 * (7) Inodes undergoing inactivation (INACTIVATING) or queued for
1632 * reclaim (IRECLAIMABLE) could be allocated or free. i_mode still
1633 * reflects the ondisk state.
1634 */
1635
1636 /*
1637 * (8) If the inode is in IFLUSHING, it's safe to query i_mode because
1638 * the flush code uses i_mode to format the ondisk inode.
1639 */
1640
1641 /*
1642 * (9) If the inode is in IRECLAIM and was reachable via the radix
1643 * tree, it still has the same i_mode as it did before it entered
1644 * reclaim. The inode object is still alive because we hold the RCU
1645 * read lock.
1646 */
1647
1648 *inuse = VFS_I(ip)->i_mode != 0;
1649 error = 0;
1650
1651out_skip:
1652 spin_unlock(&ip->i_flags_lock);
1653out_rcu:
1654 rcu_read_unlock();
1655 return error;
1656}
1657
1658/* Is this inode a root directory for either tree? */
1659bool
1660xchk_inode_is_dirtree_root(const struct xfs_inode *ip)
1661{
1662 struct xfs_mount *mp = ip->i_mount;
1663
1664 return ip == mp->m_rootip ||
1665 (xfs_has_metadir(mp) && ip == mp->m_metadirip);
1666}
1667
1668/* Does the superblock point down to this inode? */
1669bool
1670xchk_inode_is_sb_rooted(const struct xfs_inode *ip)
1671{
1672 return xchk_inode_is_dirtree_root(ip) ||
1673 xfs_is_sb_inum(ip->i_mount, ip->i_ino);
1674}
1675
1676/* What is the root directory inumber for this inode? */
1677xfs_ino_t
1678xchk_inode_rootdir_inum(const struct xfs_inode *ip)
1679{
1680 struct xfs_mount *mp = ip->i_mount;
1681
1682 if (xfs_is_metadir_inode(ip))
1683 return mp->m_metadirip->i_ino;
1684 return mp->m_rootip->i_ino;
1685}
1686
1687static int
1688xchk_meta_btree_count_blocks(
1689 struct xfs_scrub *sc,
1690 xfs_extnum_t *nextents,
1691 xfs_filblks_t *count)
1692{
1693 struct xfs_btree_cur *cur;
1694 int error;
1695
1696 if (!sc->sr.rtg) {
1697 ASSERT(0);
1698 return -EFSCORRUPTED;
1699 }
1700
1701 switch (sc->ip->i_metatype) {
1702 case XFS_METAFILE_RTRMAP:
1703 cur = xfs_rtrmapbt_init_cursor(sc->tp, sc->sr.rtg);
1704 break;
1705 case XFS_METAFILE_RTREFCOUNT:
1706 cur = xfs_rtrefcountbt_init_cursor(sc->tp, sc->sr.rtg);
1707 break;
1708 default:
1709 ASSERT(0);
1710 return -EFSCORRUPTED;
1711 }
1712
1713 error = xfs_btree_count_blocks(cur, count);
1714 xfs_btree_del_cursor(cur, error);
1715 if (!error) {
1716 *nextents = 0;
1717 (*count)--; /* don't count the btree iroot */
1718 }
1719 return error;
1720}
1721
1722/* Count the blocks used by a file, even if it's a metadata inode. */
1723int
1724xchk_inode_count_blocks(
1725 struct xfs_scrub *sc,
1726 int whichfork,
1727 xfs_extnum_t *nextents,
1728 xfs_filblks_t *count)
1729{
1730 struct xfs_ifork *ifp = xfs_ifork_ptr(sc->ip, whichfork);
1731
1732 if (!ifp) {
1733 *nextents = 0;
1734 *count = 0;
1735 return 0;
1736 }
1737
1738 if (ifp->if_format == XFS_DINODE_FMT_META_BTREE) {
1739 ASSERT(whichfork == XFS_DATA_FORK);
1740 return xchk_meta_btree_count_blocks(sc, nextents, count);
1741 }
1742
1743 return xfs_bmap_count_blocks(sc->tp, sc->ip, whichfork, nextents,
1744 count);
1745}