Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * User interface for Resource Allocation in Resource Director Technology(RDT)
4 *
5 * Copyright (C) 2016 Intel Corporation
6 *
7 * Author: Fenghua Yu <fenghua.yu@intel.com>
8 *
9 * More information about RDT be found in the Intel (R) x86 Architecture
10 * Software Developer Manual.
11 */
12
13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15#include <linux/cpu.h>
16#include <linux/debugfs.h>
17#include <linux/fs.h>
18#include <linux/fs_parser.h>
19#include <linux/sysfs.h>
20#include <linux/kernfs.h>
21#include <linux/resctrl.h>
22#include <linux/seq_buf.h>
23#include <linux/seq_file.h>
24#include <linux/sched/task.h>
25#include <linux/slab.h>
26#include <linux/user_namespace.h>
27
28#include <uapi/linux/magic.h>
29
30#include "internal.h"
31
32/* Mutex to protect rdtgroup access. */
33DEFINE_MUTEX(rdtgroup_mutex);
34
35static struct kernfs_root *rdt_root;
36
37struct rdtgroup rdtgroup_default;
38
39LIST_HEAD(rdt_all_groups);
40
41/* list of entries for the schemata file */
42LIST_HEAD(resctrl_schema_all);
43
44/*
45 * List of struct mon_data containing private data of event files for use by
46 * rdtgroup_mondata_show(). Protected by rdtgroup_mutex.
47 */
48static LIST_HEAD(mon_data_kn_priv_list);
49
50/* The filesystem can only be mounted once. */
51bool resctrl_mounted;
52
53/* Kernel fs node for "info" directory under root */
54static struct kernfs_node *kn_info;
55
56/* Kernel fs node for "mon_groups" directory under root */
57static struct kernfs_node *kn_mongrp;
58
59/* Kernel fs node for "mon_data" directory under root */
60static struct kernfs_node *kn_mondata;
61
62/*
63 * Used to store the max resource name width to display the schemata names in
64 * a tabular format.
65 */
66int max_name_width;
67
68static struct seq_buf last_cmd_status;
69
70static char last_cmd_status_buf[512];
71
72static int rdtgroup_setup_root(struct rdt_fs_context *ctx);
73
74static void rdtgroup_destroy_root(void);
75
76struct dentry *debugfs_resctrl;
77
78/*
79 * Memory bandwidth monitoring event to use for the default CTRL_MON group
80 * and each new CTRL_MON group created by the user. Only relevant when
81 * the filesystem is mounted with the "mba_MBps" option so it does not
82 * matter that it remains uninitialized on systems that do not support
83 * the "mba_MBps" option.
84 */
85enum resctrl_event_id mba_mbps_default_event;
86
87static bool resctrl_debug;
88
89void rdt_last_cmd_clear(void)
90{
91 lockdep_assert_held(&rdtgroup_mutex);
92 seq_buf_clear(&last_cmd_status);
93}
94
95void rdt_last_cmd_puts(const char *s)
96{
97 lockdep_assert_held(&rdtgroup_mutex);
98 seq_buf_puts(&last_cmd_status, s);
99}
100
101void rdt_last_cmd_printf(const char *fmt, ...)
102{
103 va_list ap;
104
105 va_start(ap, fmt);
106 lockdep_assert_held(&rdtgroup_mutex);
107 seq_buf_vprintf(&last_cmd_status, fmt, ap);
108 va_end(ap);
109}
110
111void rdt_staged_configs_clear(void)
112{
113 struct rdt_ctrl_domain *dom;
114 struct rdt_resource *r;
115
116 lockdep_assert_held(&rdtgroup_mutex);
117
118 for_each_alloc_capable_rdt_resource(r) {
119 list_for_each_entry(dom, &r->ctrl_domains, hdr.list)
120 memset(dom->staged_config, 0, sizeof(dom->staged_config));
121 }
122}
123
124static bool resctrl_is_mbm_enabled(void)
125{
126 return (resctrl_is_mon_event_enabled(QOS_L3_MBM_TOTAL_EVENT_ID) ||
127 resctrl_is_mon_event_enabled(QOS_L3_MBM_LOCAL_EVENT_ID));
128}
129
130/*
131 * Trivial allocator for CLOSIDs. Use BITMAP APIs to manipulate a bitmap
132 * of free CLOSIDs.
133 *
134 * Using a global CLOSID across all resources has some advantages and
135 * some drawbacks:
136 * + We can simply set current's closid to assign a task to a resource
137 * group.
138 * + Context switch code can avoid extra memory references deciding which
139 * CLOSID to load into the PQR_ASSOC MSR
140 * - We give up some options in configuring resource groups across multi-socket
141 * systems.
142 * - Our choices on how to configure each resource become progressively more
143 * limited as the number of resources grows.
144 */
145static unsigned long *closid_free_map;
146
147static int closid_free_map_len;
148
149int closids_supported(void)
150{
151 return closid_free_map_len;
152}
153
154static int closid_init(void)
155{
156 struct resctrl_schema *s;
157 u32 rdt_min_closid = ~0;
158
159 /* Monitor only platforms still call closid_init() */
160 if (list_empty(&resctrl_schema_all))
161 return 0;
162
163 /* Compute rdt_min_closid across all resources */
164 list_for_each_entry(s, &resctrl_schema_all, list)
165 rdt_min_closid = min(rdt_min_closid, s->num_closid);
166
167 closid_free_map = bitmap_alloc(rdt_min_closid, GFP_KERNEL);
168 if (!closid_free_map)
169 return -ENOMEM;
170 bitmap_fill(closid_free_map, rdt_min_closid);
171
172 /* RESCTRL_RESERVED_CLOSID is always reserved for the default group */
173 __clear_bit(RESCTRL_RESERVED_CLOSID, closid_free_map);
174 closid_free_map_len = rdt_min_closid;
175
176 return 0;
177}
178
179static void closid_exit(void)
180{
181 bitmap_free(closid_free_map);
182 closid_free_map = NULL;
183}
184
185static int closid_alloc(void)
186{
187 int cleanest_closid;
188 u32 closid;
189
190 lockdep_assert_held(&rdtgroup_mutex);
191
192 if (IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID) &&
193 resctrl_is_mon_event_enabled(QOS_L3_OCCUP_EVENT_ID)) {
194 cleanest_closid = resctrl_find_cleanest_closid();
195 if (cleanest_closid < 0)
196 return cleanest_closid;
197 closid = cleanest_closid;
198 } else {
199 closid = find_first_bit(closid_free_map, closid_free_map_len);
200 if (closid == closid_free_map_len)
201 return -ENOSPC;
202 }
203 __clear_bit(closid, closid_free_map);
204
205 return closid;
206}
207
208void closid_free(int closid)
209{
210 lockdep_assert_held(&rdtgroup_mutex);
211
212 __set_bit(closid, closid_free_map);
213}
214
215/**
216 * closid_allocated - test if provided closid is in use
217 * @closid: closid to be tested
218 *
219 * Return: true if @closid is currently associated with a resource group,
220 * false if @closid is free
221 */
222bool closid_allocated(unsigned int closid)
223{
224 lockdep_assert_held(&rdtgroup_mutex);
225
226 return !test_bit(closid, closid_free_map);
227}
228
229bool closid_alloc_fixed(u32 closid)
230{
231 return __test_and_clear_bit(closid, closid_free_map);
232}
233
234/**
235 * rdtgroup_mode_by_closid - Return mode of resource group with closid
236 * @closid: closid if the resource group
237 *
238 * Each resource group is associated with a @closid. Here the mode
239 * of a resource group can be queried by searching for it using its closid.
240 *
241 * Return: mode as &enum rdtgrp_mode of resource group with closid @closid
242 */
243enum rdtgrp_mode rdtgroup_mode_by_closid(int closid)
244{
245 struct rdtgroup *rdtgrp;
246
247 list_for_each_entry(rdtgrp, &rdt_all_groups, rdtgroup_list) {
248 if (rdtgrp->closid == closid)
249 return rdtgrp->mode;
250 }
251
252 return RDT_NUM_MODES;
253}
254
255static const char * const rdt_mode_str[] = {
256 [RDT_MODE_SHAREABLE] = "shareable",
257 [RDT_MODE_EXCLUSIVE] = "exclusive",
258 [RDT_MODE_PSEUDO_LOCKSETUP] = "pseudo-locksetup",
259 [RDT_MODE_PSEUDO_LOCKED] = "pseudo-locked",
260};
261
262/**
263 * rdtgroup_mode_str - Return the string representation of mode
264 * @mode: the resource group mode as &enum rdtgroup_mode
265 *
266 * Return: string representation of valid mode, "unknown" otherwise
267 */
268static const char *rdtgroup_mode_str(enum rdtgrp_mode mode)
269{
270 if (mode < RDT_MODE_SHAREABLE || mode >= RDT_NUM_MODES)
271 return "unknown";
272
273 return rdt_mode_str[mode];
274}
275
276/* set uid and gid of rdtgroup dirs and files to that of the creator */
277static int rdtgroup_kn_set_ugid(struct kernfs_node *kn)
278{
279 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
280 .ia_uid = current_fsuid(),
281 .ia_gid = current_fsgid(), };
282
283 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
284 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
285 return 0;
286
287 return kernfs_setattr(kn, &iattr);
288}
289
290static int rdtgroup_add_file(struct kernfs_node *parent_kn, struct rftype *rft)
291{
292 struct kernfs_node *kn;
293 int ret;
294
295 kn = __kernfs_create_file(parent_kn, rft->name, rft->mode,
296 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
297 0, rft->kf_ops, rft, NULL, NULL);
298 if (IS_ERR(kn))
299 return PTR_ERR(kn);
300
301 ret = rdtgroup_kn_set_ugid(kn);
302 if (ret) {
303 kernfs_remove(kn);
304 return ret;
305 }
306
307 return 0;
308}
309
310static int rdtgroup_seqfile_show(struct seq_file *m, void *arg)
311{
312 struct kernfs_open_file *of = m->private;
313 struct rftype *rft = of->kn->priv;
314
315 if (rft->seq_show)
316 return rft->seq_show(of, m, arg);
317 return 0;
318}
319
320static ssize_t rdtgroup_file_write(struct kernfs_open_file *of, char *buf,
321 size_t nbytes, loff_t off)
322{
323 struct rftype *rft = of->kn->priv;
324
325 if (rft->write)
326 return rft->write(of, buf, nbytes, off);
327
328 return -EINVAL;
329}
330
331static const struct kernfs_ops rdtgroup_kf_single_ops = {
332 .atomic_write_len = PAGE_SIZE,
333 .write = rdtgroup_file_write,
334 .seq_show = rdtgroup_seqfile_show,
335};
336
337static const struct kernfs_ops kf_mondata_ops = {
338 .atomic_write_len = PAGE_SIZE,
339 .seq_show = rdtgroup_mondata_show,
340};
341
342static bool is_cpu_list(struct kernfs_open_file *of)
343{
344 struct rftype *rft = of->kn->priv;
345
346 return rft->flags & RFTYPE_FLAGS_CPUS_LIST;
347}
348
349static int rdtgroup_cpus_show(struct kernfs_open_file *of,
350 struct seq_file *s, void *v)
351{
352 struct rdtgroup *rdtgrp;
353 struct cpumask *mask;
354 int ret = 0;
355
356 rdtgrp = rdtgroup_kn_lock_live(of->kn);
357
358 if (rdtgrp) {
359 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
360 if (!rdtgrp->plr->d) {
361 rdt_last_cmd_clear();
362 rdt_last_cmd_puts("Cache domain offline\n");
363 ret = -ENODEV;
364 } else {
365 mask = &rdtgrp->plr->d->hdr.cpu_mask;
366 seq_printf(s, is_cpu_list(of) ?
367 "%*pbl\n" : "%*pb\n",
368 cpumask_pr_args(mask));
369 }
370 } else {
371 seq_printf(s, is_cpu_list(of) ? "%*pbl\n" : "%*pb\n",
372 cpumask_pr_args(&rdtgrp->cpu_mask));
373 }
374 } else {
375 ret = -ENOENT;
376 }
377 rdtgroup_kn_unlock(of->kn);
378
379 return ret;
380}
381
382/*
383 * Update the PGR_ASSOC MSR on all cpus in @cpu_mask,
384 *
385 * Per task closids/rmids must have been set up before calling this function.
386 * @r may be NULL.
387 */
388static void
389update_closid_rmid(const struct cpumask *cpu_mask, struct rdtgroup *r)
390{
391 struct resctrl_cpu_defaults defaults, *p = NULL;
392
393 if (r) {
394 defaults.closid = r->closid;
395 defaults.rmid = r->mon.rmid;
396 p = &defaults;
397 }
398
399 on_each_cpu_mask(cpu_mask, resctrl_arch_sync_cpu_closid_rmid, p, 1);
400}
401
402static int cpus_mon_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask,
403 cpumask_var_t tmpmask)
404{
405 struct rdtgroup *prgrp = rdtgrp->mon.parent, *crgrp;
406 struct list_head *head;
407
408 /* Check whether cpus belong to parent ctrl group */
409 cpumask_andnot(tmpmask, newmask, &prgrp->cpu_mask);
410 if (!cpumask_empty(tmpmask)) {
411 rdt_last_cmd_puts("Can only add CPUs to mongroup that belong to parent\n");
412 return -EINVAL;
413 }
414
415 /* Check whether cpus are dropped from this group */
416 cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask);
417 if (!cpumask_empty(tmpmask)) {
418 /* Give any dropped cpus to parent rdtgroup */
419 cpumask_or(&prgrp->cpu_mask, &prgrp->cpu_mask, tmpmask);
420 update_closid_rmid(tmpmask, prgrp);
421 }
422
423 /*
424 * If we added cpus, remove them from previous group that owned them
425 * and update per-cpu rmid
426 */
427 cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask);
428 if (!cpumask_empty(tmpmask)) {
429 head = &prgrp->mon.crdtgrp_list;
430 list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
431 if (crgrp == rdtgrp)
432 continue;
433 cpumask_andnot(&crgrp->cpu_mask, &crgrp->cpu_mask,
434 tmpmask);
435 }
436 update_closid_rmid(tmpmask, rdtgrp);
437 }
438
439 /* Done pushing/pulling - update this group with new mask */
440 cpumask_copy(&rdtgrp->cpu_mask, newmask);
441
442 return 0;
443}
444
445static void cpumask_rdtgrp_clear(struct rdtgroup *r, struct cpumask *m)
446{
447 struct rdtgroup *crgrp;
448
449 cpumask_andnot(&r->cpu_mask, &r->cpu_mask, m);
450 /* update the child mon group masks as well*/
451 list_for_each_entry(crgrp, &r->mon.crdtgrp_list, mon.crdtgrp_list)
452 cpumask_and(&crgrp->cpu_mask, &r->cpu_mask, &crgrp->cpu_mask);
453}
454
455static int cpus_ctrl_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask,
456 cpumask_var_t tmpmask, cpumask_var_t tmpmask1)
457{
458 struct rdtgroup *r, *crgrp;
459 struct list_head *head;
460
461 /* Check whether cpus are dropped from this group */
462 cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask);
463 if (!cpumask_empty(tmpmask)) {
464 /* Can't drop from default group */
465 if (rdtgrp == &rdtgroup_default) {
466 rdt_last_cmd_puts("Can't drop CPUs from default group\n");
467 return -EINVAL;
468 }
469
470 /* Give any dropped cpus to rdtgroup_default */
471 cpumask_or(&rdtgroup_default.cpu_mask,
472 &rdtgroup_default.cpu_mask, tmpmask);
473 update_closid_rmid(tmpmask, &rdtgroup_default);
474 }
475
476 /*
477 * If we added cpus, remove them from previous group and
478 * the prev group's child groups that owned them
479 * and update per-cpu closid/rmid.
480 */
481 cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask);
482 if (!cpumask_empty(tmpmask)) {
483 list_for_each_entry(r, &rdt_all_groups, rdtgroup_list) {
484 if (r == rdtgrp)
485 continue;
486 cpumask_and(tmpmask1, &r->cpu_mask, tmpmask);
487 if (!cpumask_empty(tmpmask1))
488 cpumask_rdtgrp_clear(r, tmpmask1);
489 }
490 update_closid_rmid(tmpmask, rdtgrp);
491 }
492
493 /* Done pushing/pulling - update this group with new mask */
494 cpumask_copy(&rdtgrp->cpu_mask, newmask);
495
496 /*
497 * Clear child mon group masks since there is a new parent mask
498 * now and update the rmid for the cpus the child lost.
499 */
500 head = &rdtgrp->mon.crdtgrp_list;
501 list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
502 cpumask_and(tmpmask, &rdtgrp->cpu_mask, &crgrp->cpu_mask);
503 update_closid_rmid(tmpmask, rdtgrp);
504 cpumask_clear(&crgrp->cpu_mask);
505 }
506
507 return 0;
508}
509
510static ssize_t rdtgroup_cpus_write(struct kernfs_open_file *of,
511 char *buf, size_t nbytes, loff_t off)
512{
513 cpumask_var_t tmpmask, newmask, tmpmask1;
514 struct rdtgroup *rdtgrp;
515 int ret;
516
517 if (!buf)
518 return -EINVAL;
519
520 if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
521 return -ENOMEM;
522 if (!zalloc_cpumask_var(&newmask, GFP_KERNEL)) {
523 free_cpumask_var(tmpmask);
524 return -ENOMEM;
525 }
526 if (!zalloc_cpumask_var(&tmpmask1, GFP_KERNEL)) {
527 free_cpumask_var(tmpmask);
528 free_cpumask_var(newmask);
529 return -ENOMEM;
530 }
531
532 rdtgrp = rdtgroup_kn_lock_live(of->kn);
533 if (!rdtgrp) {
534 ret = -ENOENT;
535 goto unlock;
536 }
537
538 rdt_last_cmd_clear();
539
540 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED ||
541 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
542 ret = -EINVAL;
543 rdt_last_cmd_puts("Pseudo-locking in progress\n");
544 goto unlock;
545 }
546
547 if (is_cpu_list(of))
548 ret = cpulist_parse(buf, newmask);
549 else
550 ret = cpumask_parse(buf, newmask);
551
552 if (ret) {
553 rdt_last_cmd_puts("Bad CPU list/mask\n");
554 goto unlock;
555 }
556
557 /* check that user didn't specify any offline cpus */
558 cpumask_andnot(tmpmask, newmask, cpu_online_mask);
559 if (!cpumask_empty(tmpmask)) {
560 ret = -EINVAL;
561 rdt_last_cmd_puts("Can only assign online CPUs\n");
562 goto unlock;
563 }
564
565 if (rdtgrp->type == RDTCTRL_GROUP)
566 ret = cpus_ctrl_write(rdtgrp, newmask, tmpmask, tmpmask1);
567 else if (rdtgrp->type == RDTMON_GROUP)
568 ret = cpus_mon_write(rdtgrp, newmask, tmpmask);
569 else
570 ret = -EINVAL;
571
572unlock:
573 rdtgroup_kn_unlock(of->kn);
574 free_cpumask_var(tmpmask);
575 free_cpumask_var(newmask);
576 free_cpumask_var(tmpmask1);
577
578 return ret ?: nbytes;
579}
580
581/**
582 * rdtgroup_remove - the helper to remove resource group safely
583 * @rdtgrp: resource group to remove
584 *
585 * On resource group creation via a mkdir, an extra kernfs_node reference is
586 * taken to ensure that the rdtgroup structure remains accessible for the
587 * rdtgroup_kn_unlock() calls where it is removed.
588 *
589 * Drop the extra reference here, then free the rdtgroup structure.
590 *
591 * Return: void
592 */
593static void rdtgroup_remove(struct rdtgroup *rdtgrp)
594{
595 kernfs_put(rdtgrp->kn);
596 kfree(rdtgrp);
597}
598
599static void _update_task_closid_rmid(void *task)
600{
601 /*
602 * If the task is still current on this CPU, update PQR_ASSOC MSR.
603 * Otherwise, the MSR is updated when the task is scheduled in.
604 */
605 if (task == current)
606 resctrl_arch_sched_in(task);
607}
608
609static void update_task_closid_rmid(struct task_struct *t)
610{
611 if (IS_ENABLED(CONFIG_SMP) && task_curr(t))
612 smp_call_function_single(task_cpu(t), _update_task_closid_rmid, t, 1);
613 else
614 _update_task_closid_rmid(t);
615}
616
617static bool task_in_rdtgroup(struct task_struct *tsk, struct rdtgroup *rdtgrp)
618{
619 u32 closid, rmid = rdtgrp->mon.rmid;
620
621 if (rdtgrp->type == RDTCTRL_GROUP)
622 closid = rdtgrp->closid;
623 else if (rdtgrp->type == RDTMON_GROUP)
624 closid = rdtgrp->mon.parent->closid;
625 else
626 return false;
627
628 return resctrl_arch_match_closid(tsk, closid) &&
629 resctrl_arch_match_rmid(tsk, closid, rmid);
630}
631
632static int __rdtgroup_move_task(struct task_struct *tsk,
633 struct rdtgroup *rdtgrp)
634{
635 /* If the task is already in rdtgrp, no need to move the task. */
636 if (task_in_rdtgroup(tsk, rdtgrp))
637 return 0;
638
639 /*
640 * Set the task's closid/rmid before the PQR_ASSOC MSR can be
641 * updated by them.
642 *
643 * For ctrl_mon groups, move both closid and rmid.
644 * For monitor groups, can move the tasks only from
645 * their parent CTRL group.
646 */
647 if (rdtgrp->type == RDTMON_GROUP &&
648 !resctrl_arch_match_closid(tsk, rdtgrp->mon.parent->closid)) {
649 rdt_last_cmd_puts("Can't move task to different control group\n");
650 return -EINVAL;
651 }
652
653 if (rdtgrp->type == RDTMON_GROUP)
654 resctrl_arch_set_closid_rmid(tsk, rdtgrp->mon.parent->closid,
655 rdtgrp->mon.rmid);
656 else
657 resctrl_arch_set_closid_rmid(tsk, rdtgrp->closid,
658 rdtgrp->mon.rmid);
659
660 /*
661 * Ensure the task's closid and rmid are written before determining if
662 * the task is current that will decide if it will be interrupted.
663 * This pairs with the full barrier between the rq->curr update and
664 * resctrl_arch_sched_in() during context switch.
665 */
666 smp_mb();
667
668 /*
669 * By now, the task's closid and rmid are set. If the task is current
670 * on a CPU, the PQR_ASSOC MSR needs to be updated to make the resource
671 * group go into effect. If the task is not current, the MSR will be
672 * updated when the task is scheduled in.
673 */
674 update_task_closid_rmid(tsk);
675
676 return 0;
677}
678
679static bool is_closid_match(struct task_struct *t, struct rdtgroup *r)
680{
681 return (resctrl_arch_alloc_capable() && (r->type == RDTCTRL_GROUP) &&
682 resctrl_arch_match_closid(t, r->closid));
683}
684
685static bool is_rmid_match(struct task_struct *t, struct rdtgroup *r)
686{
687 return (resctrl_arch_mon_capable() && (r->type == RDTMON_GROUP) &&
688 resctrl_arch_match_rmid(t, r->mon.parent->closid,
689 r->mon.rmid));
690}
691
692/**
693 * rdtgroup_tasks_assigned - Test if tasks have been assigned to resource group
694 * @r: Resource group
695 *
696 * Return: 1 if tasks have been assigned to @r, 0 otherwise
697 */
698int rdtgroup_tasks_assigned(struct rdtgroup *r)
699{
700 struct task_struct *p, *t;
701 int ret = 0;
702
703 lockdep_assert_held(&rdtgroup_mutex);
704
705 rcu_read_lock();
706 for_each_process_thread(p, t) {
707 if (is_closid_match(t, r) || is_rmid_match(t, r)) {
708 ret = 1;
709 break;
710 }
711 }
712 rcu_read_unlock();
713
714 return ret;
715}
716
717static int rdtgroup_task_write_permission(struct task_struct *task,
718 struct kernfs_open_file *of)
719{
720 const struct cred *tcred = get_task_cred(task);
721 const struct cred *cred = current_cred();
722 int ret = 0;
723
724 /*
725 * Even if we're attaching all tasks in the thread group, we only
726 * need to check permissions on one of them.
727 */
728 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
729 !uid_eq(cred->euid, tcred->uid) &&
730 !uid_eq(cred->euid, tcred->suid)) {
731 rdt_last_cmd_printf("No permission to move task %d\n", task->pid);
732 ret = -EPERM;
733 }
734
735 put_cred(tcred);
736 return ret;
737}
738
739static int rdtgroup_move_task(pid_t pid, struct rdtgroup *rdtgrp,
740 struct kernfs_open_file *of)
741{
742 struct task_struct *tsk;
743 int ret;
744
745 rcu_read_lock();
746 if (pid) {
747 tsk = find_task_by_vpid(pid);
748 if (!tsk) {
749 rcu_read_unlock();
750 rdt_last_cmd_printf("No task %d\n", pid);
751 return -ESRCH;
752 }
753 } else {
754 tsk = current;
755 }
756
757 get_task_struct(tsk);
758 rcu_read_unlock();
759
760 ret = rdtgroup_task_write_permission(tsk, of);
761 if (!ret)
762 ret = __rdtgroup_move_task(tsk, rdtgrp);
763
764 put_task_struct(tsk);
765 return ret;
766}
767
768static ssize_t rdtgroup_tasks_write(struct kernfs_open_file *of,
769 char *buf, size_t nbytes, loff_t off)
770{
771 struct rdtgroup *rdtgrp;
772 char *pid_str;
773 int ret = 0;
774 pid_t pid;
775
776 rdtgrp = rdtgroup_kn_lock_live(of->kn);
777 if (!rdtgrp) {
778 rdtgroup_kn_unlock(of->kn);
779 return -ENOENT;
780 }
781 rdt_last_cmd_clear();
782
783 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED ||
784 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
785 ret = -EINVAL;
786 rdt_last_cmd_puts("Pseudo-locking in progress\n");
787 goto unlock;
788 }
789
790 while (buf && buf[0] != '\0' && buf[0] != '\n') {
791 pid_str = strim(strsep(&buf, ","));
792
793 if (kstrtoint(pid_str, 0, &pid)) {
794 rdt_last_cmd_printf("Task list parsing error pid %s\n", pid_str);
795 ret = -EINVAL;
796 break;
797 }
798
799 if (pid < 0) {
800 rdt_last_cmd_printf("Invalid pid %d\n", pid);
801 ret = -EINVAL;
802 break;
803 }
804
805 ret = rdtgroup_move_task(pid, rdtgrp, of);
806 if (ret) {
807 rdt_last_cmd_printf("Error while processing task %d\n", pid);
808 break;
809 }
810 }
811
812unlock:
813 rdtgroup_kn_unlock(of->kn);
814
815 return ret ?: nbytes;
816}
817
818static void show_rdt_tasks(struct rdtgroup *r, struct seq_file *s)
819{
820 struct task_struct *p, *t;
821 pid_t pid;
822
823 rcu_read_lock();
824 for_each_process_thread(p, t) {
825 if (is_closid_match(t, r) || is_rmid_match(t, r)) {
826 pid = task_pid_vnr(t);
827 if (pid)
828 seq_printf(s, "%d\n", pid);
829 }
830 }
831 rcu_read_unlock();
832}
833
834static int rdtgroup_tasks_show(struct kernfs_open_file *of,
835 struct seq_file *s, void *v)
836{
837 struct rdtgroup *rdtgrp;
838 int ret = 0;
839
840 rdtgrp = rdtgroup_kn_lock_live(of->kn);
841 if (rdtgrp)
842 show_rdt_tasks(rdtgrp, s);
843 else
844 ret = -ENOENT;
845 rdtgroup_kn_unlock(of->kn);
846
847 return ret;
848}
849
850static int rdtgroup_closid_show(struct kernfs_open_file *of,
851 struct seq_file *s, void *v)
852{
853 struct rdtgroup *rdtgrp;
854 int ret = 0;
855
856 rdtgrp = rdtgroup_kn_lock_live(of->kn);
857 if (rdtgrp)
858 seq_printf(s, "%u\n", rdtgrp->closid);
859 else
860 ret = -ENOENT;
861 rdtgroup_kn_unlock(of->kn);
862
863 return ret;
864}
865
866static int rdtgroup_rmid_show(struct kernfs_open_file *of,
867 struct seq_file *s, void *v)
868{
869 struct rdtgroup *rdtgrp;
870 int ret = 0;
871
872 rdtgrp = rdtgroup_kn_lock_live(of->kn);
873 if (rdtgrp)
874 seq_printf(s, "%u\n", rdtgrp->mon.rmid);
875 else
876 ret = -ENOENT;
877 rdtgroup_kn_unlock(of->kn);
878
879 return ret;
880}
881
882#ifdef CONFIG_PROC_CPU_RESCTRL
883/*
884 * A task can only be part of one resctrl control group and of one monitor
885 * group which is associated to that control group.
886 *
887 * 1) res:
888 * mon:
889 *
890 * resctrl is not available.
891 *
892 * 2) res:/
893 * mon:
894 *
895 * Task is part of the root resctrl control group, and it is not associated
896 * to any monitor group.
897 *
898 * 3) res:/
899 * mon:mon0
900 *
901 * Task is part of the root resctrl control group and monitor group mon0.
902 *
903 * 4) res:group0
904 * mon:
905 *
906 * Task is part of resctrl control group group0, and it is not associated
907 * to any monitor group.
908 *
909 * 5) res:group0
910 * mon:mon1
911 *
912 * Task is part of resctrl control group group0 and monitor group mon1.
913 */
914int proc_resctrl_show(struct seq_file *s, struct pid_namespace *ns,
915 struct pid *pid, struct task_struct *tsk)
916{
917 struct rdtgroup *rdtg;
918 int ret = 0;
919
920 mutex_lock(&rdtgroup_mutex);
921
922 /* Return empty if resctrl has not been mounted. */
923 if (!resctrl_mounted) {
924 seq_puts(s, "res:\nmon:\n");
925 goto unlock;
926 }
927
928 list_for_each_entry(rdtg, &rdt_all_groups, rdtgroup_list) {
929 struct rdtgroup *crg;
930
931 /*
932 * Task information is only relevant for shareable
933 * and exclusive groups.
934 */
935 if (rdtg->mode != RDT_MODE_SHAREABLE &&
936 rdtg->mode != RDT_MODE_EXCLUSIVE)
937 continue;
938
939 if (!resctrl_arch_match_closid(tsk, rdtg->closid))
940 continue;
941
942 seq_printf(s, "res:%s%s\n", (rdtg == &rdtgroup_default) ? "/" : "",
943 rdt_kn_name(rdtg->kn));
944 seq_puts(s, "mon:");
945 list_for_each_entry(crg, &rdtg->mon.crdtgrp_list,
946 mon.crdtgrp_list) {
947 if (!resctrl_arch_match_rmid(tsk, crg->mon.parent->closid,
948 crg->mon.rmid))
949 continue;
950 seq_printf(s, "%s", rdt_kn_name(crg->kn));
951 break;
952 }
953 seq_putc(s, '\n');
954 goto unlock;
955 }
956 /*
957 * The above search should succeed. Otherwise return
958 * with an error.
959 */
960 ret = -ENOENT;
961unlock:
962 mutex_unlock(&rdtgroup_mutex);
963
964 return ret;
965}
966#endif
967
968static int rdt_last_cmd_status_show(struct kernfs_open_file *of,
969 struct seq_file *seq, void *v)
970{
971 int len;
972
973 mutex_lock(&rdtgroup_mutex);
974 len = seq_buf_used(&last_cmd_status);
975 if (len)
976 seq_printf(seq, "%.*s", len, last_cmd_status_buf);
977 else
978 seq_puts(seq, "ok\n");
979 mutex_unlock(&rdtgroup_mutex);
980 return 0;
981}
982
983void *rdt_kn_parent_priv(struct kernfs_node *kn)
984{
985 /*
986 * The parent pointer is only valid within RCU section since it can be
987 * replaced.
988 */
989 guard(rcu)();
990 return rcu_dereference(kn->__parent)->priv;
991}
992
993static int rdt_num_closids_show(struct kernfs_open_file *of,
994 struct seq_file *seq, void *v)
995{
996 struct resctrl_schema *s = rdt_kn_parent_priv(of->kn);
997
998 seq_printf(seq, "%u\n", s->num_closid);
999 return 0;
1000}
1001
1002static int rdt_default_ctrl_show(struct kernfs_open_file *of,
1003 struct seq_file *seq, void *v)
1004{
1005 struct resctrl_schema *s = rdt_kn_parent_priv(of->kn);
1006 struct rdt_resource *r = s->res;
1007
1008 seq_printf(seq, "%x\n", resctrl_get_default_ctrl(r));
1009 return 0;
1010}
1011
1012static int rdt_min_cbm_bits_show(struct kernfs_open_file *of,
1013 struct seq_file *seq, void *v)
1014{
1015 struct resctrl_schema *s = rdt_kn_parent_priv(of->kn);
1016 struct rdt_resource *r = s->res;
1017
1018 seq_printf(seq, "%u\n", r->cache.min_cbm_bits);
1019 return 0;
1020}
1021
1022static int rdt_shareable_bits_show(struct kernfs_open_file *of,
1023 struct seq_file *seq, void *v)
1024{
1025 struct resctrl_schema *s = rdt_kn_parent_priv(of->kn);
1026 struct rdt_resource *r = s->res;
1027
1028 seq_printf(seq, "%x\n", r->cache.shareable_bits);
1029 return 0;
1030}
1031
1032/*
1033 * rdt_bit_usage_show - Display current usage of resources
1034 *
1035 * A domain is a shared resource that can now be allocated differently. Here
1036 * we display the current regions of the domain as an annotated bitmask.
1037 * For each domain of this resource its allocation bitmask
1038 * is annotated as below to indicate the current usage of the corresponding bit:
1039 * 0 - currently unused
1040 * X - currently available for sharing and used by software and hardware
1041 * H - currently used by hardware only but available for software use
1042 * S - currently used and shareable by software only
1043 * E - currently used exclusively by one resource group
1044 * P - currently pseudo-locked by one resource group
1045 */
1046static int rdt_bit_usage_show(struct kernfs_open_file *of,
1047 struct seq_file *seq, void *v)
1048{
1049 struct resctrl_schema *s = rdt_kn_parent_priv(of->kn);
1050 /*
1051 * Use unsigned long even though only 32 bits are used to ensure
1052 * test_bit() is used safely.
1053 */
1054 unsigned long sw_shareable = 0, hw_shareable = 0;
1055 unsigned long exclusive = 0, pseudo_locked = 0;
1056 struct rdt_resource *r = s->res;
1057 struct rdt_ctrl_domain *dom;
1058 int i, hwb, swb, excl, psl;
1059 enum rdtgrp_mode mode;
1060 bool sep = false;
1061 u32 ctrl_val;
1062
1063 cpus_read_lock();
1064 mutex_lock(&rdtgroup_mutex);
1065 list_for_each_entry(dom, &r->ctrl_domains, hdr.list) {
1066 if (sep)
1067 seq_putc(seq, ';');
1068 hw_shareable = r->cache.shareable_bits;
1069 sw_shareable = 0;
1070 exclusive = 0;
1071 seq_printf(seq, "%d=", dom->hdr.id);
1072 for (i = 0; i < closids_supported(); i++) {
1073 if (!closid_allocated(i) ||
1074 (resctrl_arch_get_io_alloc_enabled(r) &&
1075 i == resctrl_io_alloc_closid(r)))
1076 continue;
1077 ctrl_val = resctrl_arch_get_config(r, dom, i,
1078 s->conf_type);
1079 mode = rdtgroup_mode_by_closid(i);
1080 switch (mode) {
1081 case RDT_MODE_SHAREABLE:
1082 sw_shareable |= ctrl_val;
1083 break;
1084 case RDT_MODE_EXCLUSIVE:
1085 exclusive |= ctrl_val;
1086 break;
1087 case RDT_MODE_PSEUDO_LOCKSETUP:
1088 /*
1089 * RDT_MODE_PSEUDO_LOCKSETUP is possible
1090 * here but not included since the CBM
1091 * associated with this CLOSID in this mode
1092 * is not initialized and no task or cpu can be
1093 * assigned this CLOSID.
1094 */
1095 break;
1096 case RDT_MODE_PSEUDO_LOCKED:
1097 case RDT_NUM_MODES:
1098 WARN(1,
1099 "invalid mode for closid %d\n", i);
1100 break;
1101 }
1102 }
1103
1104 /*
1105 * When the "io_alloc" feature is enabled, a portion of the cache
1106 * is configured for shared use between hardware and software.
1107 * Also, when CDP is enabled the CBMs of CDP_CODE and CDP_DATA
1108 * resources are kept in sync. So, the CBMs for "io_alloc" can
1109 * be accessed through either resource.
1110 */
1111 if (resctrl_arch_get_io_alloc_enabled(r)) {
1112 ctrl_val = resctrl_arch_get_config(r, dom,
1113 resctrl_io_alloc_closid(r),
1114 s->conf_type);
1115 hw_shareable |= ctrl_val;
1116 }
1117
1118 for (i = r->cache.cbm_len - 1; i >= 0; i--) {
1119 pseudo_locked = dom->plr ? dom->plr->cbm : 0;
1120 hwb = test_bit(i, &hw_shareable);
1121 swb = test_bit(i, &sw_shareable);
1122 excl = test_bit(i, &exclusive);
1123 psl = test_bit(i, &pseudo_locked);
1124 if (hwb && swb)
1125 seq_putc(seq, 'X');
1126 else if (hwb && !swb)
1127 seq_putc(seq, 'H');
1128 else if (!hwb && swb)
1129 seq_putc(seq, 'S');
1130 else if (excl)
1131 seq_putc(seq, 'E');
1132 else if (psl)
1133 seq_putc(seq, 'P');
1134 else /* Unused bits remain */
1135 seq_putc(seq, '0');
1136 }
1137 sep = true;
1138 }
1139 seq_putc(seq, '\n');
1140 mutex_unlock(&rdtgroup_mutex);
1141 cpus_read_unlock();
1142 return 0;
1143}
1144
1145static int rdt_min_bw_show(struct kernfs_open_file *of,
1146 struct seq_file *seq, void *v)
1147{
1148 struct resctrl_schema *s = rdt_kn_parent_priv(of->kn);
1149 struct rdt_resource *r = s->res;
1150
1151 seq_printf(seq, "%u\n", r->membw.min_bw);
1152 return 0;
1153}
1154
1155static int rdt_num_rmids_show(struct kernfs_open_file *of,
1156 struct seq_file *seq, void *v)
1157{
1158 struct rdt_resource *r = rdt_kn_parent_priv(of->kn);
1159
1160 seq_printf(seq, "%d\n", r->mon.num_rmid);
1161
1162 return 0;
1163}
1164
1165static int rdt_mon_features_show(struct kernfs_open_file *of,
1166 struct seq_file *seq, void *v)
1167{
1168 struct rdt_resource *r = rdt_kn_parent_priv(of->kn);
1169 struct mon_evt *mevt;
1170
1171 for_each_mon_event(mevt) {
1172 if (mevt->rid != r->rid || !mevt->enabled)
1173 continue;
1174 seq_printf(seq, "%s\n", mevt->name);
1175 if (mevt->configurable &&
1176 !resctrl_arch_mbm_cntr_assign_enabled(r))
1177 seq_printf(seq, "%s_config\n", mevt->name);
1178 }
1179
1180 return 0;
1181}
1182
1183static int rdt_bw_gran_show(struct kernfs_open_file *of,
1184 struct seq_file *seq, void *v)
1185{
1186 struct resctrl_schema *s = rdt_kn_parent_priv(of->kn);
1187 struct rdt_resource *r = s->res;
1188
1189 seq_printf(seq, "%u\n", r->membw.bw_gran);
1190 return 0;
1191}
1192
1193static int rdt_delay_linear_show(struct kernfs_open_file *of,
1194 struct seq_file *seq, void *v)
1195{
1196 struct resctrl_schema *s = rdt_kn_parent_priv(of->kn);
1197 struct rdt_resource *r = s->res;
1198
1199 seq_printf(seq, "%u\n", r->membw.delay_linear);
1200 return 0;
1201}
1202
1203static int max_threshold_occ_show(struct kernfs_open_file *of,
1204 struct seq_file *seq, void *v)
1205{
1206 seq_printf(seq, "%u\n", resctrl_rmid_realloc_threshold);
1207
1208 return 0;
1209}
1210
1211static int rdt_thread_throttle_mode_show(struct kernfs_open_file *of,
1212 struct seq_file *seq, void *v)
1213{
1214 struct resctrl_schema *s = rdt_kn_parent_priv(of->kn);
1215 struct rdt_resource *r = s->res;
1216
1217 switch (r->membw.throttle_mode) {
1218 case THREAD_THROTTLE_PER_THREAD:
1219 seq_puts(seq, "per-thread\n");
1220 return 0;
1221 case THREAD_THROTTLE_MAX:
1222 seq_puts(seq, "max\n");
1223 return 0;
1224 case THREAD_THROTTLE_UNDEFINED:
1225 seq_puts(seq, "undefined\n");
1226 return 0;
1227 }
1228
1229 WARN_ON_ONCE(1);
1230
1231 return 0;
1232}
1233
1234static ssize_t max_threshold_occ_write(struct kernfs_open_file *of,
1235 char *buf, size_t nbytes, loff_t off)
1236{
1237 unsigned int bytes;
1238 int ret;
1239
1240 ret = kstrtouint(buf, 0, &bytes);
1241 if (ret)
1242 return ret;
1243
1244 if (bytes > resctrl_rmid_realloc_limit)
1245 return -EINVAL;
1246
1247 resctrl_rmid_realloc_threshold = resctrl_arch_round_mon_val(bytes);
1248
1249 return nbytes;
1250}
1251
1252/*
1253 * rdtgroup_mode_show - Display mode of this resource group
1254 */
1255static int rdtgroup_mode_show(struct kernfs_open_file *of,
1256 struct seq_file *s, void *v)
1257{
1258 struct rdtgroup *rdtgrp;
1259
1260 rdtgrp = rdtgroup_kn_lock_live(of->kn);
1261 if (!rdtgrp) {
1262 rdtgroup_kn_unlock(of->kn);
1263 return -ENOENT;
1264 }
1265
1266 seq_printf(s, "%s\n", rdtgroup_mode_str(rdtgrp->mode));
1267
1268 rdtgroup_kn_unlock(of->kn);
1269 return 0;
1270}
1271
1272enum resctrl_conf_type resctrl_peer_type(enum resctrl_conf_type my_type)
1273{
1274 switch (my_type) {
1275 case CDP_CODE:
1276 return CDP_DATA;
1277 case CDP_DATA:
1278 return CDP_CODE;
1279 default:
1280 case CDP_NONE:
1281 return CDP_NONE;
1282 }
1283}
1284
1285static int rdt_has_sparse_bitmasks_show(struct kernfs_open_file *of,
1286 struct seq_file *seq, void *v)
1287{
1288 struct resctrl_schema *s = rdt_kn_parent_priv(of->kn);
1289 struct rdt_resource *r = s->res;
1290
1291 seq_printf(seq, "%u\n", r->cache.arch_has_sparse_bitmasks);
1292
1293 return 0;
1294}
1295
1296/**
1297 * __rdtgroup_cbm_overlaps - Does CBM for intended closid overlap with other
1298 * @r: Resource to which domain instance @d belongs.
1299 * @d: The domain instance for which @closid is being tested.
1300 * @cbm: Capacity bitmask being tested.
1301 * @closid: Intended closid for @cbm.
1302 * @type: CDP type of @r.
1303 * @exclusive: Only check if overlaps with exclusive resource groups
1304 *
1305 * Checks if provided @cbm intended to be used for @closid on domain
1306 * @d overlaps with any other closids or other hardware usage associated
1307 * with this domain. If @exclusive is true then only overlaps with
1308 * resource groups in exclusive mode will be considered. If @exclusive
1309 * is false then overlaps with any resource group or hardware entities
1310 * will be considered.
1311 *
1312 * @cbm is unsigned long, even if only 32 bits are used, to make the
1313 * bitmap functions work correctly.
1314 *
1315 * Return: false if CBM does not overlap, true if it does.
1316 */
1317static bool __rdtgroup_cbm_overlaps(struct rdt_resource *r, struct rdt_ctrl_domain *d,
1318 unsigned long cbm, int closid,
1319 enum resctrl_conf_type type, bool exclusive)
1320{
1321 enum rdtgrp_mode mode;
1322 unsigned long ctrl_b;
1323 int i;
1324
1325 /* Check for any overlap with regions used by hardware directly */
1326 if (!exclusive) {
1327 ctrl_b = r->cache.shareable_bits;
1328 if (bitmap_intersects(&cbm, &ctrl_b, r->cache.cbm_len))
1329 return true;
1330 }
1331
1332 /* Check for overlap with other resource groups */
1333 for (i = 0; i < closids_supported(); i++) {
1334 ctrl_b = resctrl_arch_get_config(r, d, i, type);
1335 mode = rdtgroup_mode_by_closid(i);
1336 if (closid_allocated(i) && i != closid &&
1337 mode != RDT_MODE_PSEUDO_LOCKSETUP) {
1338 if (bitmap_intersects(&cbm, &ctrl_b, r->cache.cbm_len)) {
1339 if (exclusive) {
1340 if (mode == RDT_MODE_EXCLUSIVE)
1341 return true;
1342 continue;
1343 }
1344 return true;
1345 }
1346 }
1347 }
1348
1349 return false;
1350}
1351
1352/**
1353 * rdtgroup_cbm_overlaps - Does CBM overlap with other use of hardware
1354 * @s: Schema for the resource to which domain instance @d belongs.
1355 * @d: The domain instance for which @closid is being tested.
1356 * @cbm: Capacity bitmask being tested.
1357 * @closid: Intended closid for @cbm.
1358 * @exclusive: Only check if overlaps with exclusive resource groups
1359 *
1360 * Resources that can be allocated using a CBM can use the CBM to control
1361 * the overlap of these allocations. rdtgroup_cmb_overlaps() is the test
1362 * for overlap. Overlap test is not limited to the specific resource for
1363 * which the CBM is intended though - when dealing with CDP resources that
1364 * share the underlying hardware the overlap check should be performed on
1365 * the CDP resource sharing the hardware also.
1366 *
1367 * Refer to description of __rdtgroup_cbm_overlaps() for the details of the
1368 * overlap test.
1369 *
1370 * Return: true if CBM overlap detected, false if there is no overlap
1371 */
1372bool rdtgroup_cbm_overlaps(struct resctrl_schema *s, struct rdt_ctrl_domain *d,
1373 unsigned long cbm, int closid, bool exclusive)
1374{
1375 enum resctrl_conf_type peer_type = resctrl_peer_type(s->conf_type);
1376 struct rdt_resource *r = s->res;
1377
1378 if (__rdtgroup_cbm_overlaps(r, d, cbm, closid, s->conf_type,
1379 exclusive))
1380 return true;
1381
1382 if (!resctrl_arch_get_cdp_enabled(r->rid))
1383 return false;
1384 return __rdtgroup_cbm_overlaps(r, d, cbm, closid, peer_type, exclusive);
1385}
1386
1387/**
1388 * rdtgroup_mode_test_exclusive - Test if this resource group can be exclusive
1389 * @rdtgrp: Resource group identified through its closid.
1390 *
1391 * An exclusive resource group implies that there should be no sharing of
1392 * its allocated resources. At the time this group is considered to be
1393 * exclusive this test can determine if its current schemata supports this
1394 * setting by testing for overlap with all other resource groups.
1395 *
1396 * Return: true if resource group can be exclusive, false if there is overlap
1397 * with allocations of other resource groups and thus this resource group
1398 * cannot be exclusive.
1399 */
1400static bool rdtgroup_mode_test_exclusive(struct rdtgroup *rdtgrp)
1401{
1402 int closid = rdtgrp->closid;
1403 struct rdt_ctrl_domain *d;
1404 struct resctrl_schema *s;
1405 struct rdt_resource *r;
1406 bool has_cache = false;
1407 u32 ctrl;
1408
1409 /* Walking r->domains, ensure it can't race with cpuhp */
1410 lockdep_assert_cpus_held();
1411
1412 list_for_each_entry(s, &resctrl_schema_all, list) {
1413 r = s->res;
1414 if (r->rid == RDT_RESOURCE_MBA || r->rid == RDT_RESOURCE_SMBA)
1415 continue;
1416 has_cache = true;
1417 list_for_each_entry(d, &r->ctrl_domains, hdr.list) {
1418 ctrl = resctrl_arch_get_config(r, d, closid,
1419 s->conf_type);
1420 if (rdtgroup_cbm_overlaps(s, d, ctrl, closid, false)) {
1421 rdt_last_cmd_puts("Schemata overlaps\n");
1422 return false;
1423 }
1424 }
1425 }
1426
1427 if (!has_cache) {
1428 rdt_last_cmd_puts("Cannot be exclusive without CAT/CDP\n");
1429 return false;
1430 }
1431
1432 return true;
1433}
1434
1435/*
1436 * rdtgroup_mode_write - Modify the resource group's mode
1437 */
1438static ssize_t rdtgroup_mode_write(struct kernfs_open_file *of,
1439 char *buf, size_t nbytes, loff_t off)
1440{
1441 struct rdtgroup *rdtgrp;
1442 enum rdtgrp_mode mode;
1443 int ret = 0;
1444
1445 /* Valid input requires a trailing newline */
1446 if (nbytes == 0 || buf[nbytes - 1] != '\n')
1447 return -EINVAL;
1448 buf[nbytes - 1] = '\0';
1449
1450 rdtgrp = rdtgroup_kn_lock_live(of->kn);
1451 if (!rdtgrp) {
1452 rdtgroup_kn_unlock(of->kn);
1453 return -ENOENT;
1454 }
1455
1456 rdt_last_cmd_clear();
1457
1458 mode = rdtgrp->mode;
1459
1460 if ((!strcmp(buf, "shareable") && mode == RDT_MODE_SHAREABLE) ||
1461 (!strcmp(buf, "exclusive") && mode == RDT_MODE_EXCLUSIVE) ||
1462 (!strcmp(buf, "pseudo-locksetup") &&
1463 mode == RDT_MODE_PSEUDO_LOCKSETUP) ||
1464 (!strcmp(buf, "pseudo-locked") && mode == RDT_MODE_PSEUDO_LOCKED))
1465 goto out;
1466
1467 if (mode == RDT_MODE_PSEUDO_LOCKED) {
1468 rdt_last_cmd_puts("Cannot change pseudo-locked group\n");
1469 ret = -EINVAL;
1470 goto out;
1471 }
1472
1473 if (!strcmp(buf, "shareable")) {
1474 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1475 ret = rdtgroup_locksetup_exit(rdtgrp);
1476 if (ret)
1477 goto out;
1478 }
1479 rdtgrp->mode = RDT_MODE_SHAREABLE;
1480 } else if (!strcmp(buf, "exclusive")) {
1481 if (!rdtgroup_mode_test_exclusive(rdtgrp)) {
1482 ret = -EINVAL;
1483 goto out;
1484 }
1485 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1486 ret = rdtgroup_locksetup_exit(rdtgrp);
1487 if (ret)
1488 goto out;
1489 }
1490 rdtgrp->mode = RDT_MODE_EXCLUSIVE;
1491 } else if (IS_ENABLED(CONFIG_RESCTRL_FS_PSEUDO_LOCK) &&
1492 !strcmp(buf, "pseudo-locksetup")) {
1493 ret = rdtgroup_locksetup_enter(rdtgrp);
1494 if (ret)
1495 goto out;
1496 rdtgrp->mode = RDT_MODE_PSEUDO_LOCKSETUP;
1497 } else {
1498 rdt_last_cmd_puts("Unknown or unsupported mode\n");
1499 ret = -EINVAL;
1500 }
1501
1502out:
1503 rdtgroup_kn_unlock(of->kn);
1504 return ret ?: nbytes;
1505}
1506
1507/**
1508 * rdtgroup_cbm_to_size - Translate CBM to size in bytes
1509 * @r: RDT resource to which @d belongs.
1510 * @d: RDT domain instance.
1511 * @cbm: bitmask for which the size should be computed.
1512 *
1513 * The bitmask provided associated with the RDT domain instance @d will be
1514 * translated into how many bytes it represents. The size in bytes is
1515 * computed by first dividing the total cache size by the CBM length to
1516 * determine how many bytes each bit in the bitmask represents. The result
1517 * is multiplied with the number of bits set in the bitmask.
1518 *
1519 * @cbm is unsigned long, even if only 32 bits are used to make the
1520 * bitmap functions work correctly.
1521 */
1522unsigned int rdtgroup_cbm_to_size(struct rdt_resource *r,
1523 struct rdt_ctrl_domain *d, unsigned long cbm)
1524{
1525 unsigned int size = 0;
1526 struct cacheinfo *ci;
1527 int num_b;
1528
1529 if (WARN_ON_ONCE(r->ctrl_scope != RESCTRL_L2_CACHE && r->ctrl_scope != RESCTRL_L3_CACHE))
1530 return size;
1531
1532 num_b = bitmap_weight(&cbm, r->cache.cbm_len);
1533 ci = get_cpu_cacheinfo_level(cpumask_any(&d->hdr.cpu_mask), r->ctrl_scope);
1534 if (ci)
1535 size = ci->size / r->cache.cbm_len * num_b;
1536
1537 return size;
1538}
1539
1540bool is_mba_sc(struct rdt_resource *r)
1541{
1542 if (!r)
1543 r = resctrl_arch_get_resource(RDT_RESOURCE_MBA);
1544
1545 /*
1546 * The software controller support is only applicable to MBA resource.
1547 * Make sure to check for resource type.
1548 */
1549 if (r->rid != RDT_RESOURCE_MBA)
1550 return false;
1551
1552 return r->membw.mba_sc;
1553}
1554
1555/*
1556 * rdtgroup_size_show - Display size in bytes of allocated regions
1557 *
1558 * The "size" file mirrors the layout of the "schemata" file, printing the
1559 * size in bytes of each region instead of the capacity bitmask.
1560 */
1561static int rdtgroup_size_show(struct kernfs_open_file *of,
1562 struct seq_file *s, void *v)
1563{
1564 struct resctrl_schema *schema;
1565 enum resctrl_conf_type type;
1566 struct rdt_ctrl_domain *d;
1567 struct rdtgroup *rdtgrp;
1568 struct rdt_resource *r;
1569 unsigned int size;
1570 int ret = 0;
1571 u32 closid;
1572 bool sep;
1573 u32 ctrl;
1574
1575 rdtgrp = rdtgroup_kn_lock_live(of->kn);
1576 if (!rdtgrp) {
1577 rdtgroup_kn_unlock(of->kn);
1578 return -ENOENT;
1579 }
1580
1581 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
1582 if (!rdtgrp->plr->d) {
1583 rdt_last_cmd_clear();
1584 rdt_last_cmd_puts("Cache domain offline\n");
1585 ret = -ENODEV;
1586 } else {
1587 seq_printf(s, "%*s:", max_name_width,
1588 rdtgrp->plr->s->name);
1589 size = rdtgroup_cbm_to_size(rdtgrp->plr->s->res,
1590 rdtgrp->plr->d,
1591 rdtgrp->plr->cbm);
1592 seq_printf(s, "%d=%u\n", rdtgrp->plr->d->hdr.id, size);
1593 }
1594 goto out;
1595 }
1596
1597 closid = rdtgrp->closid;
1598
1599 list_for_each_entry(schema, &resctrl_schema_all, list) {
1600 r = schema->res;
1601 type = schema->conf_type;
1602 sep = false;
1603 seq_printf(s, "%*s:", max_name_width, schema->name);
1604 list_for_each_entry(d, &r->ctrl_domains, hdr.list) {
1605 if (sep)
1606 seq_putc(s, ';');
1607 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1608 size = 0;
1609 } else {
1610 if (is_mba_sc(r))
1611 ctrl = d->mbps_val[closid];
1612 else
1613 ctrl = resctrl_arch_get_config(r, d,
1614 closid,
1615 type);
1616 if (r->rid == RDT_RESOURCE_MBA ||
1617 r->rid == RDT_RESOURCE_SMBA)
1618 size = ctrl;
1619 else
1620 size = rdtgroup_cbm_to_size(r, d, ctrl);
1621 }
1622 seq_printf(s, "%d=%u", d->hdr.id, size);
1623 sep = true;
1624 }
1625 seq_putc(s, '\n');
1626 }
1627
1628out:
1629 rdtgroup_kn_unlock(of->kn);
1630
1631 return ret;
1632}
1633
1634static void mondata_config_read(struct resctrl_mon_config_info *mon_info)
1635{
1636 smp_call_function_any(&mon_info->d->hdr.cpu_mask,
1637 resctrl_arch_mon_event_config_read, mon_info, 1);
1638}
1639
1640static int mbm_config_show(struct seq_file *s, struct rdt_resource *r, u32 evtid)
1641{
1642 struct resctrl_mon_config_info mon_info;
1643 struct rdt_mon_domain *dom;
1644 bool sep = false;
1645
1646 cpus_read_lock();
1647 mutex_lock(&rdtgroup_mutex);
1648
1649 list_for_each_entry(dom, &r->mon_domains, hdr.list) {
1650 if (sep)
1651 seq_puts(s, ";");
1652
1653 memset(&mon_info, 0, sizeof(struct resctrl_mon_config_info));
1654 mon_info.r = r;
1655 mon_info.d = dom;
1656 mon_info.evtid = evtid;
1657 mondata_config_read(&mon_info);
1658
1659 seq_printf(s, "%d=0x%02x", dom->hdr.id, mon_info.mon_config);
1660 sep = true;
1661 }
1662 seq_puts(s, "\n");
1663
1664 mutex_unlock(&rdtgroup_mutex);
1665 cpus_read_unlock();
1666
1667 return 0;
1668}
1669
1670static int mbm_total_bytes_config_show(struct kernfs_open_file *of,
1671 struct seq_file *seq, void *v)
1672{
1673 struct rdt_resource *r = rdt_kn_parent_priv(of->kn);
1674
1675 mbm_config_show(seq, r, QOS_L3_MBM_TOTAL_EVENT_ID);
1676
1677 return 0;
1678}
1679
1680static int mbm_local_bytes_config_show(struct kernfs_open_file *of,
1681 struct seq_file *seq, void *v)
1682{
1683 struct rdt_resource *r = rdt_kn_parent_priv(of->kn);
1684
1685 mbm_config_show(seq, r, QOS_L3_MBM_LOCAL_EVENT_ID);
1686
1687 return 0;
1688}
1689
1690static void mbm_config_write_domain(struct rdt_resource *r,
1691 struct rdt_mon_domain *d, u32 evtid, u32 val)
1692{
1693 struct resctrl_mon_config_info mon_info = {0};
1694
1695 /*
1696 * Read the current config value first. If both are the same then
1697 * no need to write it again.
1698 */
1699 mon_info.r = r;
1700 mon_info.d = d;
1701 mon_info.evtid = evtid;
1702 mondata_config_read(&mon_info);
1703 if (mon_info.mon_config == val)
1704 return;
1705
1706 mon_info.mon_config = val;
1707
1708 /*
1709 * Update MSR_IA32_EVT_CFG_BASE MSR on one of the CPUs in the
1710 * domain. The MSRs offset from MSR MSR_IA32_EVT_CFG_BASE
1711 * are scoped at the domain level. Writing any of these MSRs
1712 * on one CPU is observed by all the CPUs in the domain.
1713 */
1714 smp_call_function_any(&d->hdr.cpu_mask, resctrl_arch_mon_event_config_write,
1715 &mon_info, 1);
1716
1717 /*
1718 * When an Event Configuration is changed, the bandwidth counters
1719 * for all RMIDs and Events will be cleared by the hardware. The
1720 * hardware also sets MSR_IA32_QM_CTR.Unavailable (bit 62) for
1721 * every RMID on the next read to any event for every RMID.
1722 * Subsequent reads will have MSR_IA32_QM_CTR.Unavailable (bit 62)
1723 * cleared while it is tracked by the hardware. Clear the
1724 * mbm_local and mbm_total counts for all the RMIDs.
1725 */
1726 resctrl_arch_reset_rmid_all(r, d);
1727}
1728
1729static int mon_config_write(struct rdt_resource *r, char *tok, u32 evtid)
1730{
1731 char *dom_str = NULL, *id_str;
1732 unsigned long dom_id, val;
1733 struct rdt_mon_domain *d;
1734
1735 /* Walking r->domains, ensure it can't race with cpuhp */
1736 lockdep_assert_cpus_held();
1737
1738next:
1739 if (!tok || tok[0] == '\0')
1740 return 0;
1741
1742 /* Start processing the strings for each domain */
1743 dom_str = strim(strsep(&tok, ";"));
1744 id_str = strsep(&dom_str, "=");
1745
1746 if (!id_str || kstrtoul(id_str, 10, &dom_id)) {
1747 rdt_last_cmd_puts("Missing '=' or non-numeric domain id\n");
1748 return -EINVAL;
1749 }
1750
1751 if (!dom_str || kstrtoul(dom_str, 16, &val)) {
1752 rdt_last_cmd_puts("Non-numeric event configuration value\n");
1753 return -EINVAL;
1754 }
1755
1756 /* Value from user cannot be more than the supported set of events */
1757 if ((val & r->mon.mbm_cfg_mask) != val) {
1758 rdt_last_cmd_printf("Invalid event configuration: max valid mask is 0x%02x\n",
1759 r->mon.mbm_cfg_mask);
1760 return -EINVAL;
1761 }
1762
1763 list_for_each_entry(d, &r->mon_domains, hdr.list) {
1764 if (d->hdr.id == dom_id) {
1765 mbm_config_write_domain(r, d, evtid, val);
1766 goto next;
1767 }
1768 }
1769
1770 return -EINVAL;
1771}
1772
1773static ssize_t mbm_total_bytes_config_write(struct kernfs_open_file *of,
1774 char *buf, size_t nbytes,
1775 loff_t off)
1776{
1777 struct rdt_resource *r = rdt_kn_parent_priv(of->kn);
1778 int ret;
1779
1780 /* Valid input requires a trailing newline */
1781 if (nbytes == 0 || buf[nbytes - 1] != '\n')
1782 return -EINVAL;
1783
1784 cpus_read_lock();
1785 mutex_lock(&rdtgroup_mutex);
1786
1787 rdt_last_cmd_clear();
1788
1789 buf[nbytes - 1] = '\0';
1790
1791 ret = mon_config_write(r, buf, QOS_L3_MBM_TOTAL_EVENT_ID);
1792
1793 mutex_unlock(&rdtgroup_mutex);
1794 cpus_read_unlock();
1795
1796 return ret ?: nbytes;
1797}
1798
1799static ssize_t mbm_local_bytes_config_write(struct kernfs_open_file *of,
1800 char *buf, size_t nbytes,
1801 loff_t off)
1802{
1803 struct rdt_resource *r = rdt_kn_parent_priv(of->kn);
1804 int ret;
1805
1806 /* Valid input requires a trailing newline */
1807 if (nbytes == 0 || buf[nbytes - 1] != '\n')
1808 return -EINVAL;
1809
1810 cpus_read_lock();
1811 mutex_lock(&rdtgroup_mutex);
1812
1813 rdt_last_cmd_clear();
1814
1815 buf[nbytes - 1] = '\0';
1816
1817 ret = mon_config_write(r, buf, QOS_L3_MBM_LOCAL_EVENT_ID);
1818
1819 mutex_unlock(&rdtgroup_mutex);
1820 cpus_read_unlock();
1821
1822 return ret ?: nbytes;
1823}
1824
1825/*
1826 * resctrl_bmec_files_show() — Controls the visibility of BMEC-related resctrl
1827 * files. When @show is true, the files are displayed; when false, the files
1828 * are hidden.
1829 * Don't treat kernfs_find_and_get failure as an error, since this function may
1830 * be called regardless of whether BMEC is supported or the event is enabled.
1831 */
1832void resctrl_bmec_files_show(struct rdt_resource *r, struct kernfs_node *l3_mon_kn,
1833 bool show)
1834{
1835 struct kernfs_node *kn_config, *mon_kn = NULL;
1836 char name[32];
1837
1838 if (!l3_mon_kn) {
1839 sprintf(name, "%s_MON", r->name);
1840 mon_kn = kernfs_find_and_get(kn_info, name);
1841 if (!mon_kn)
1842 return;
1843 l3_mon_kn = mon_kn;
1844 }
1845
1846 kn_config = kernfs_find_and_get(l3_mon_kn, "mbm_total_bytes_config");
1847 if (kn_config) {
1848 kernfs_show(kn_config, show);
1849 kernfs_put(kn_config);
1850 }
1851
1852 kn_config = kernfs_find_and_get(l3_mon_kn, "mbm_local_bytes_config");
1853 if (kn_config) {
1854 kernfs_show(kn_config, show);
1855 kernfs_put(kn_config);
1856 }
1857
1858 /* Release the reference only if it was acquired */
1859 if (mon_kn)
1860 kernfs_put(mon_kn);
1861}
1862
1863const char *rdtgroup_name_by_closid(u32 closid)
1864{
1865 struct rdtgroup *rdtgrp;
1866
1867 list_for_each_entry(rdtgrp, &rdt_all_groups, rdtgroup_list) {
1868 if (rdtgrp->closid == closid)
1869 return rdt_kn_name(rdtgrp->kn);
1870 }
1871
1872 return NULL;
1873}
1874
1875/* rdtgroup information files for one cache resource. */
1876static struct rftype res_common_files[] = {
1877 {
1878 .name = "last_cmd_status",
1879 .mode = 0444,
1880 .kf_ops = &rdtgroup_kf_single_ops,
1881 .seq_show = rdt_last_cmd_status_show,
1882 .fflags = RFTYPE_TOP_INFO,
1883 },
1884 {
1885 .name = "mbm_assign_on_mkdir",
1886 .mode = 0644,
1887 .kf_ops = &rdtgroup_kf_single_ops,
1888 .seq_show = resctrl_mbm_assign_on_mkdir_show,
1889 .write = resctrl_mbm_assign_on_mkdir_write,
1890 },
1891 {
1892 .name = "num_closids",
1893 .mode = 0444,
1894 .kf_ops = &rdtgroup_kf_single_ops,
1895 .seq_show = rdt_num_closids_show,
1896 .fflags = RFTYPE_CTRL_INFO,
1897 },
1898 {
1899 .name = "mon_features",
1900 .mode = 0444,
1901 .kf_ops = &rdtgroup_kf_single_ops,
1902 .seq_show = rdt_mon_features_show,
1903 .fflags = RFTYPE_MON_INFO,
1904 },
1905 {
1906 .name = "available_mbm_cntrs",
1907 .mode = 0444,
1908 .kf_ops = &rdtgroup_kf_single_ops,
1909 .seq_show = resctrl_available_mbm_cntrs_show,
1910 },
1911 {
1912 .name = "num_rmids",
1913 .mode = 0444,
1914 .kf_ops = &rdtgroup_kf_single_ops,
1915 .seq_show = rdt_num_rmids_show,
1916 .fflags = RFTYPE_MON_INFO,
1917 },
1918 {
1919 .name = "cbm_mask",
1920 .mode = 0444,
1921 .kf_ops = &rdtgroup_kf_single_ops,
1922 .seq_show = rdt_default_ctrl_show,
1923 .fflags = RFTYPE_CTRL_INFO | RFTYPE_RES_CACHE,
1924 },
1925 {
1926 .name = "num_mbm_cntrs",
1927 .mode = 0444,
1928 .kf_ops = &rdtgroup_kf_single_ops,
1929 .seq_show = resctrl_num_mbm_cntrs_show,
1930 },
1931 {
1932 .name = "min_cbm_bits",
1933 .mode = 0444,
1934 .kf_ops = &rdtgroup_kf_single_ops,
1935 .seq_show = rdt_min_cbm_bits_show,
1936 .fflags = RFTYPE_CTRL_INFO | RFTYPE_RES_CACHE,
1937 },
1938 {
1939 .name = "shareable_bits",
1940 .mode = 0444,
1941 .kf_ops = &rdtgroup_kf_single_ops,
1942 .seq_show = rdt_shareable_bits_show,
1943 .fflags = RFTYPE_CTRL_INFO | RFTYPE_RES_CACHE,
1944 },
1945 {
1946 .name = "bit_usage",
1947 .mode = 0444,
1948 .kf_ops = &rdtgroup_kf_single_ops,
1949 .seq_show = rdt_bit_usage_show,
1950 .fflags = RFTYPE_CTRL_INFO | RFTYPE_RES_CACHE,
1951 },
1952 {
1953 .name = "min_bandwidth",
1954 .mode = 0444,
1955 .kf_ops = &rdtgroup_kf_single_ops,
1956 .seq_show = rdt_min_bw_show,
1957 .fflags = RFTYPE_CTRL_INFO | RFTYPE_RES_MB,
1958 },
1959 {
1960 .name = "bandwidth_gran",
1961 .mode = 0444,
1962 .kf_ops = &rdtgroup_kf_single_ops,
1963 .seq_show = rdt_bw_gran_show,
1964 .fflags = RFTYPE_CTRL_INFO | RFTYPE_RES_MB,
1965 },
1966 {
1967 .name = "delay_linear",
1968 .mode = 0444,
1969 .kf_ops = &rdtgroup_kf_single_ops,
1970 .seq_show = rdt_delay_linear_show,
1971 .fflags = RFTYPE_CTRL_INFO | RFTYPE_RES_MB,
1972 },
1973 /*
1974 * Platform specific which (if any) capabilities are provided by
1975 * thread_throttle_mode. Defer "fflags" initialization to platform
1976 * discovery.
1977 */
1978 {
1979 .name = "thread_throttle_mode",
1980 .mode = 0444,
1981 .kf_ops = &rdtgroup_kf_single_ops,
1982 .seq_show = rdt_thread_throttle_mode_show,
1983 },
1984 {
1985 .name = "io_alloc",
1986 .mode = 0644,
1987 .kf_ops = &rdtgroup_kf_single_ops,
1988 .seq_show = resctrl_io_alloc_show,
1989 .write = resctrl_io_alloc_write,
1990 },
1991 {
1992 .name = "io_alloc_cbm",
1993 .mode = 0644,
1994 .kf_ops = &rdtgroup_kf_single_ops,
1995 .seq_show = resctrl_io_alloc_cbm_show,
1996 .write = resctrl_io_alloc_cbm_write,
1997 },
1998 {
1999 .name = "max_threshold_occupancy",
2000 .mode = 0644,
2001 .kf_ops = &rdtgroup_kf_single_ops,
2002 .write = max_threshold_occ_write,
2003 .seq_show = max_threshold_occ_show,
2004 .fflags = RFTYPE_MON_INFO | RFTYPE_RES_CACHE,
2005 },
2006 {
2007 .name = "mbm_total_bytes_config",
2008 .mode = 0644,
2009 .kf_ops = &rdtgroup_kf_single_ops,
2010 .seq_show = mbm_total_bytes_config_show,
2011 .write = mbm_total_bytes_config_write,
2012 },
2013 {
2014 .name = "mbm_local_bytes_config",
2015 .mode = 0644,
2016 .kf_ops = &rdtgroup_kf_single_ops,
2017 .seq_show = mbm_local_bytes_config_show,
2018 .write = mbm_local_bytes_config_write,
2019 },
2020 {
2021 .name = "event_filter",
2022 .mode = 0644,
2023 .kf_ops = &rdtgroup_kf_single_ops,
2024 .seq_show = event_filter_show,
2025 .write = event_filter_write,
2026 },
2027 {
2028 .name = "mbm_L3_assignments",
2029 .mode = 0644,
2030 .kf_ops = &rdtgroup_kf_single_ops,
2031 .seq_show = mbm_L3_assignments_show,
2032 .write = mbm_L3_assignments_write,
2033 },
2034 {
2035 .name = "mbm_assign_mode",
2036 .mode = 0644,
2037 .kf_ops = &rdtgroup_kf_single_ops,
2038 .seq_show = resctrl_mbm_assign_mode_show,
2039 .write = resctrl_mbm_assign_mode_write,
2040 .fflags = RFTYPE_MON_INFO | RFTYPE_RES_CACHE,
2041 },
2042 {
2043 .name = "cpus",
2044 .mode = 0644,
2045 .kf_ops = &rdtgroup_kf_single_ops,
2046 .write = rdtgroup_cpus_write,
2047 .seq_show = rdtgroup_cpus_show,
2048 .fflags = RFTYPE_BASE,
2049 },
2050 {
2051 .name = "cpus_list",
2052 .mode = 0644,
2053 .kf_ops = &rdtgroup_kf_single_ops,
2054 .write = rdtgroup_cpus_write,
2055 .seq_show = rdtgroup_cpus_show,
2056 .flags = RFTYPE_FLAGS_CPUS_LIST,
2057 .fflags = RFTYPE_BASE,
2058 },
2059 {
2060 .name = "tasks",
2061 .mode = 0644,
2062 .kf_ops = &rdtgroup_kf_single_ops,
2063 .write = rdtgroup_tasks_write,
2064 .seq_show = rdtgroup_tasks_show,
2065 .fflags = RFTYPE_BASE,
2066 },
2067 {
2068 .name = "mon_hw_id",
2069 .mode = 0444,
2070 .kf_ops = &rdtgroup_kf_single_ops,
2071 .seq_show = rdtgroup_rmid_show,
2072 .fflags = RFTYPE_MON_BASE | RFTYPE_DEBUG,
2073 },
2074 {
2075 .name = "schemata",
2076 .mode = 0644,
2077 .kf_ops = &rdtgroup_kf_single_ops,
2078 .write = rdtgroup_schemata_write,
2079 .seq_show = rdtgroup_schemata_show,
2080 .fflags = RFTYPE_CTRL_BASE,
2081 },
2082 {
2083 .name = "mba_MBps_event",
2084 .mode = 0644,
2085 .kf_ops = &rdtgroup_kf_single_ops,
2086 .write = rdtgroup_mba_mbps_event_write,
2087 .seq_show = rdtgroup_mba_mbps_event_show,
2088 },
2089 {
2090 .name = "mode",
2091 .mode = 0644,
2092 .kf_ops = &rdtgroup_kf_single_ops,
2093 .write = rdtgroup_mode_write,
2094 .seq_show = rdtgroup_mode_show,
2095 .fflags = RFTYPE_CTRL_BASE,
2096 },
2097 {
2098 .name = "size",
2099 .mode = 0444,
2100 .kf_ops = &rdtgroup_kf_single_ops,
2101 .seq_show = rdtgroup_size_show,
2102 .fflags = RFTYPE_CTRL_BASE,
2103 },
2104 {
2105 .name = "sparse_masks",
2106 .mode = 0444,
2107 .kf_ops = &rdtgroup_kf_single_ops,
2108 .seq_show = rdt_has_sparse_bitmasks_show,
2109 .fflags = RFTYPE_CTRL_INFO | RFTYPE_RES_CACHE,
2110 },
2111 {
2112 .name = "ctrl_hw_id",
2113 .mode = 0444,
2114 .kf_ops = &rdtgroup_kf_single_ops,
2115 .seq_show = rdtgroup_closid_show,
2116 .fflags = RFTYPE_CTRL_BASE | RFTYPE_DEBUG,
2117 },
2118};
2119
2120static int rdtgroup_add_files(struct kernfs_node *kn, unsigned long fflags)
2121{
2122 struct rftype *rfts, *rft;
2123 int ret, len;
2124
2125 rfts = res_common_files;
2126 len = ARRAY_SIZE(res_common_files);
2127
2128 lockdep_assert_held(&rdtgroup_mutex);
2129
2130 if (resctrl_debug)
2131 fflags |= RFTYPE_DEBUG;
2132
2133 for (rft = rfts; rft < rfts + len; rft++) {
2134 if (rft->fflags && ((fflags & rft->fflags) == rft->fflags)) {
2135 ret = rdtgroup_add_file(kn, rft);
2136 if (ret)
2137 goto error;
2138 }
2139 }
2140
2141 return 0;
2142error:
2143 pr_warn("Failed to add %s, err=%d\n", rft->name, ret);
2144 while (--rft >= rfts) {
2145 if ((fflags & rft->fflags) == rft->fflags)
2146 kernfs_remove_by_name(kn, rft->name);
2147 }
2148 return ret;
2149}
2150
2151static struct rftype *rdtgroup_get_rftype_by_name(const char *name)
2152{
2153 struct rftype *rfts, *rft;
2154 int len;
2155
2156 rfts = res_common_files;
2157 len = ARRAY_SIZE(res_common_files);
2158
2159 for (rft = rfts; rft < rfts + len; rft++) {
2160 if (!strcmp(rft->name, name))
2161 return rft;
2162 }
2163
2164 return NULL;
2165}
2166
2167static void thread_throttle_mode_init(void)
2168{
2169 enum membw_throttle_mode throttle_mode = THREAD_THROTTLE_UNDEFINED;
2170 struct rdt_resource *r_mba, *r_smba;
2171
2172 r_mba = resctrl_arch_get_resource(RDT_RESOURCE_MBA);
2173 if (r_mba->alloc_capable &&
2174 r_mba->membw.throttle_mode != THREAD_THROTTLE_UNDEFINED)
2175 throttle_mode = r_mba->membw.throttle_mode;
2176
2177 r_smba = resctrl_arch_get_resource(RDT_RESOURCE_SMBA);
2178 if (r_smba->alloc_capable &&
2179 r_smba->membw.throttle_mode != THREAD_THROTTLE_UNDEFINED)
2180 throttle_mode = r_smba->membw.throttle_mode;
2181
2182 if (throttle_mode == THREAD_THROTTLE_UNDEFINED)
2183 return;
2184
2185 resctrl_file_fflags_init("thread_throttle_mode",
2186 RFTYPE_CTRL_INFO | RFTYPE_RES_MB);
2187}
2188
2189/*
2190 * The resctrl file "io_alloc" is added using L3 resource. However, it results
2191 * in this file being visible for *all* cache resources (eg. L2 cache),
2192 * whether it supports "io_alloc" or not.
2193 */
2194static void io_alloc_init(void)
2195{
2196 struct rdt_resource *r = resctrl_arch_get_resource(RDT_RESOURCE_L3);
2197
2198 if (r->cache.io_alloc_capable) {
2199 resctrl_file_fflags_init("io_alloc", RFTYPE_CTRL_INFO |
2200 RFTYPE_RES_CACHE);
2201 resctrl_file_fflags_init("io_alloc_cbm",
2202 RFTYPE_CTRL_INFO | RFTYPE_RES_CACHE);
2203 }
2204}
2205
2206void resctrl_file_fflags_init(const char *config, unsigned long fflags)
2207{
2208 struct rftype *rft;
2209
2210 rft = rdtgroup_get_rftype_by_name(config);
2211 if (rft)
2212 rft->fflags = fflags;
2213}
2214
2215/**
2216 * rdtgroup_kn_mode_restrict - Restrict user access to named resctrl file
2217 * @r: The resource group with which the file is associated.
2218 * @name: Name of the file
2219 *
2220 * The permissions of named resctrl file, directory, or link are modified
2221 * to not allow read, write, or execute by any user.
2222 *
2223 * WARNING: This function is intended to communicate to the user that the
2224 * resctrl file has been locked down - that it is not relevant to the
2225 * particular state the system finds itself in. It should not be relied
2226 * on to protect from user access because after the file's permissions
2227 * are restricted the user can still change the permissions using chmod
2228 * from the command line.
2229 *
2230 * Return: 0 on success, <0 on failure.
2231 */
2232int rdtgroup_kn_mode_restrict(struct rdtgroup *r, const char *name)
2233{
2234 struct iattr iattr = {.ia_valid = ATTR_MODE,};
2235 struct kernfs_node *kn;
2236 int ret = 0;
2237
2238 kn = kernfs_find_and_get_ns(r->kn, name, NULL);
2239 if (!kn)
2240 return -ENOENT;
2241
2242 switch (kernfs_type(kn)) {
2243 case KERNFS_DIR:
2244 iattr.ia_mode = S_IFDIR;
2245 break;
2246 case KERNFS_FILE:
2247 iattr.ia_mode = S_IFREG;
2248 break;
2249 case KERNFS_LINK:
2250 iattr.ia_mode = S_IFLNK;
2251 break;
2252 }
2253
2254 ret = kernfs_setattr(kn, &iattr);
2255 kernfs_put(kn);
2256 return ret;
2257}
2258
2259/**
2260 * rdtgroup_kn_mode_restore - Restore user access to named resctrl file
2261 * @r: The resource group with which the file is associated.
2262 * @name: Name of the file
2263 * @mask: Mask of permissions that should be restored
2264 *
2265 * Restore the permissions of the named file. If @name is a directory the
2266 * permissions of its parent will be used.
2267 *
2268 * Return: 0 on success, <0 on failure.
2269 */
2270int rdtgroup_kn_mode_restore(struct rdtgroup *r, const char *name,
2271 umode_t mask)
2272{
2273 struct iattr iattr = {.ia_valid = ATTR_MODE,};
2274 struct kernfs_node *kn, *parent;
2275 struct rftype *rfts, *rft;
2276 int ret, len;
2277
2278 rfts = res_common_files;
2279 len = ARRAY_SIZE(res_common_files);
2280
2281 for (rft = rfts; rft < rfts + len; rft++) {
2282 if (!strcmp(rft->name, name))
2283 iattr.ia_mode = rft->mode & mask;
2284 }
2285
2286 kn = kernfs_find_and_get_ns(r->kn, name, NULL);
2287 if (!kn)
2288 return -ENOENT;
2289
2290 switch (kernfs_type(kn)) {
2291 case KERNFS_DIR:
2292 parent = kernfs_get_parent(kn);
2293 if (parent) {
2294 iattr.ia_mode |= parent->mode;
2295 kernfs_put(parent);
2296 }
2297 iattr.ia_mode |= S_IFDIR;
2298 break;
2299 case KERNFS_FILE:
2300 iattr.ia_mode |= S_IFREG;
2301 break;
2302 case KERNFS_LINK:
2303 iattr.ia_mode |= S_IFLNK;
2304 break;
2305 }
2306
2307 ret = kernfs_setattr(kn, &iattr);
2308 kernfs_put(kn);
2309 return ret;
2310}
2311
2312static int resctrl_mkdir_event_configs(struct rdt_resource *r, struct kernfs_node *l3_mon_kn)
2313{
2314 struct kernfs_node *kn_subdir, *kn_subdir2;
2315 struct mon_evt *mevt;
2316 int ret;
2317
2318 kn_subdir = kernfs_create_dir(l3_mon_kn, "event_configs", l3_mon_kn->mode, NULL);
2319 if (IS_ERR(kn_subdir))
2320 return PTR_ERR(kn_subdir);
2321
2322 ret = rdtgroup_kn_set_ugid(kn_subdir);
2323 if (ret)
2324 return ret;
2325
2326 for_each_mon_event(mevt) {
2327 if (mevt->rid != r->rid || !mevt->enabled || !resctrl_is_mbm_event(mevt->evtid))
2328 continue;
2329
2330 kn_subdir2 = kernfs_create_dir(kn_subdir, mevt->name, kn_subdir->mode, mevt);
2331 if (IS_ERR(kn_subdir2)) {
2332 ret = PTR_ERR(kn_subdir2);
2333 goto out;
2334 }
2335
2336 ret = rdtgroup_kn_set_ugid(kn_subdir2);
2337 if (ret)
2338 goto out;
2339
2340 ret = rdtgroup_add_files(kn_subdir2, RFTYPE_ASSIGN_CONFIG);
2341 if (ret)
2342 break;
2343 }
2344
2345out:
2346 return ret;
2347}
2348
2349static int rdtgroup_mkdir_info_resdir(void *priv, char *name,
2350 unsigned long fflags)
2351{
2352 struct kernfs_node *kn_subdir;
2353 struct rdt_resource *r;
2354 int ret;
2355
2356 kn_subdir = kernfs_create_dir(kn_info, name,
2357 kn_info->mode, priv);
2358 if (IS_ERR(kn_subdir))
2359 return PTR_ERR(kn_subdir);
2360
2361 ret = rdtgroup_kn_set_ugid(kn_subdir);
2362 if (ret)
2363 return ret;
2364
2365 ret = rdtgroup_add_files(kn_subdir, fflags);
2366 if (ret)
2367 return ret;
2368
2369 if ((fflags & RFTYPE_MON_INFO) == RFTYPE_MON_INFO) {
2370 r = priv;
2371 if (r->mon.mbm_cntr_assignable) {
2372 ret = resctrl_mkdir_event_configs(r, kn_subdir);
2373 if (ret)
2374 return ret;
2375 /*
2376 * Hide BMEC related files if mbm_event mode
2377 * is enabled.
2378 */
2379 if (resctrl_arch_mbm_cntr_assign_enabled(r))
2380 resctrl_bmec_files_show(r, kn_subdir, false);
2381 }
2382 }
2383
2384 kernfs_activate(kn_subdir);
2385
2386 return ret;
2387}
2388
2389static unsigned long fflags_from_resource(struct rdt_resource *r)
2390{
2391 switch (r->rid) {
2392 case RDT_RESOURCE_L3:
2393 case RDT_RESOURCE_L2:
2394 return RFTYPE_RES_CACHE;
2395 case RDT_RESOURCE_MBA:
2396 case RDT_RESOURCE_SMBA:
2397 return RFTYPE_RES_MB;
2398 }
2399
2400 return WARN_ON_ONCE(1);
2401}
2402
2403static int rdtgroup_create_info_dir(struct kernfs_node *parent_kn)
2404{
2405 struct resctrl_schema *s;
2406 struct rdt_resource *r;
2407 unsigned long fflags;
2408 char name[32];
2409 int ret;
2410
2411 /* create the directory */
2412 kn_info = kernfs_create_dir(parent_kn, "info", parent_kn->mode, NULL);
2413 if (IS_ERR(kn_info))
2414 return PTR_ERR(kn_info);
2415
2416 ret = rdtgroup_add_files(kn_info, RFTYPE_TOP_INFO);
2417 if (ret)
2418 goto out_destroy;
2419
2420 /* loop over enabled controls, these are all alloc_capable */
2421 list_for_each_entry(s, &resctrl_schema_all, list) {
2422 r = s->res;
2423 fflags = fflags_from_resource(r) | RFTYPE_CTRL_INFO;
2424 ret = rdtgroup_mkdir_info_resdir(s, s->name, fflags);
2425 if (ret)
2426 goto out_destroy;
2427 }
2428
2429 for_each_mon_capable_rdt_resource(r) {
2430 fflags = fflags_from_resource(r) | RFTYPE_MON_INFO;
2431 sprintf(name, "%s_MON", r->name);
2432 ret = rdtgroup_mkdir_info_resdir(r, name, fflags);
2433 if (ret)
2434 goto out_destroy;
2435 }
2436
2437 ret = rdtgroup_kn_set_ugid(kn_info);
2438 if (ret)
2439 goto out_destroy;
2440
2441 kernfs_activate(kn_info);
2442
2443 return 0;
2444
2445out_destroy:
2446 kernfs_remove(kn_info);
2447 return ret;
2448}
2449
2450static int
2451mongroup_create_dir(struct kernfs_node *parent_kn, struct rdtgroup *prgrp,
2452 char *name, struct kernfs_node **dest_kn)
2453{
2454 struct kernfs_node *kn;
2455 int ret;
2456
2457 /* create the directory */
2458 kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp);
2459 if (IS_ERR(kn))
2460 return PTR_ERR(kn);
2461
2462 if (dest_kn)
2463 *dest_kn = kn;
2464
2465 ret = rdtgroup_kn_set_ugid(kn);
2466 if (ret)
2467 goto out_destroy;
2468
2469 kernfs_activate(kn);
2470
2471 return 0;
2472
2473out_destroy:
2474 kernfs_remove(kn);
2475 return ret;
2476}
2477
2478static inline bool is_mba_linear(void)
2479{
2480 return resctrl_arch_get_resource(RDT_RESOURCE_MBA)->membw.delay_linear;
2481}
2482
2483static int mba_sc_domain_allocate(struct rdt_resource *r, struct rdt_ctrl_domain *d)
2484{
2485 u32 num_closid = resctrl_arch_get_num_closid(r);
2486 int cpu = cpumask_any(&d->hdr.cpu_mask);
2487 int i;
2488
2489 d->mbps_val = kcalloc_node(num_closid, sizeof(*d->mbps_val),
2490 GFP_KERNEL, cpu_to_node(cpu));
2491 if (!d->mbps_val)
2492 return -ENOMEM;
2493
2494 for (i = 0; i < num_closid; i++)
2495 d->mbps_val[i] = MBA_MAX_MBPS;
2496
2497 return 0;
2498}
2499
2500static void mba_sc_domain_destroy(struct rdt_resource *r,
2501 struct rdt_ctrl_domain *d)
2502{
2503 kfree(d->mbps_val);
2504 d->mbps_val = NULL;
2505}
2506
2507/*
2508 * MBA software controller is supported only if
2509 * MBM is supported and MBA is in linear scale,
2510 * and the MBM monitor scope is the same as MBA
2511 * control scope.
2512 */
2513static bool supports_mba_mbps(void)
2514{
2515 struct rdt_resource *rmbm = resctrl_arch_get_resource(RDT_RESOURCE_L3);
2516 struct rdt_resource *r = resctrl_arch_get_resource(RDT_RESOURCE_MBA);
2517
2518 return (resctrl_is_mbm_enabled() &&
2519 r->alloc_capable && is_mba_linear() &&
2520 r->ctrl_scope == rmbm->mon_scope);
2521}
2522
2523/*
2524 * Enable or disable the MBA software controller
2525 * which helps user specify bandwidth in MBps.
2526 */
2527static int set_mba_sc(bool mba_sc)
2528{
2529 struct rdt_resource *r = resctrl_arch_get_resource(RDT_RESOURCE_MBA);
2530 u32 num_closid = resctrl_arch_get_num_closid(r);
2531 struct rdt_ctrl_domain *d;
2532 unsigned long fflags;
2533 int i;
2534
2535 if (!supports_mba_mbps() || mba_sc == is_mba_sc(r))
2536 return -EINVAL;
2537
2538 r->membw.mba_sc = mba_sc;
2539
2540 rdtgroup_default.mba_mbps_event = mba_mbps_default_event;
2541
2542 list_for_each_entry(d, &r->ctrl_domains, hdr.list) {
2543 for (i = 0; i < num_closid; i++)
2544 d->mbps_val[i] = MBA_MAX_MBPS;
2545 }
2546
2547 fflags = mba_sc ? RFTYPE_CTRL_BASE | RFTYPE_MON_BASE : 0;
2548 resctrl_file_fflags_init("mba_MBps_event", fflags);
2549
2550 return 0;
2551}
2552
2553/*
2554 * We don't allow rdtgroup directories to be created anywhere
2555 * except the root directory. Thus when looking for the rdtgroup
2556 * structure for a kernfs node we are either looking at a directory,
2557 * in which case the rdtgroup structure is pointed at by the "priv"
2558 * field, otherwise we have a file, and need only look to the parent
2559 * to find the rdtgroup.
2560 */
2561static struct rdtgroup *kernfs_to_rdtgroup(struct kernfs_node *kn)
2562{
2563 if (kernfs_type(kn) == KERNFS_DIR) {
2564 /*
2565 * All the resource directories use "kn->priv"
2566 * to point to the "struct rdtgroup" for the
2567 * resource. "info" and its subdirectories don't
2568 * have rdtgroup structures, so return NULL here.
2569 */
2570 if (kn == kn_info ||
2571 rcu_access_pointer(kn->__parent) == kn_info)
2572 return NULL;
2573 else
2574 return kn->priv;
2575 } else {
2576 return rdt_kn_parent_priv(kn);
2577 }
2578}
2579
2580static void rdtgroup_kn_get(struct rdtgroup *rdtgrp, struct kernfs_node *kn)
2581{
2582 atomic_inc(&rdtgrp->waitcount);
2583 kernfs_break_active_protection(kn);
2584}
2585
2586static void rdtgroup_kn_put(struct rdtgroup *rdtgrp, struct kernfs_node *kn)
2587{
2588 if (atomic_dec_and_test(&rdtgrp->waitcount) &&
2589 (rdtgrp->flags & RDT_DELETED)) {
2590 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
2591 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)
2592 rdtgroup_pseudo_lock_remove(rdtgrp);
2593 kernfs_unbreak_active_protection(kn);
2594 rdtgroup_remove(rdtgrp);
2595 } else {
2596 kernfs_unbreak_active_protection(kn);
2597 }
2598}
2599
2600struct rdtgroup *rdtgroup_kn_lock_live(struct kernfs_node *kn)
2601{
2602 struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn);
2603
2604 if (!rdtgrp)
2605 return NULL;
2606
2607 rdtgroup_kn_get(rdtgrp, kn);
2608
2609 cpus_read_lock();
2610 mutex_lock(&rdtgroup_mutex);
2611
2612 /* Was this group deleted while we waited? */
2613 if (rdtgrp->flags & RDT_DELETED)
2614 return NULL;
2615
2616 return rdtgrp;
2617}
2618
2619void rdtgroup_kn_unlock(struct kernfs_node *kn)
2620{
2621 struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn);
2622
2623 if (!rdtgrp)
2624 return;
2625
2626 mutex_unlock(&rdtgroup_mutex);
2627 cpus_read_unlock();
2628
2629 rdtgroup_kn_put(rdtgrp, kn);
2630}
2631
2632static int mkdir_mondata_all(struct kernfs_node *parent_kn,
2633 struct rdtgroup *prgrp,
2634 struct kernfs_node **mon_data_kn);
2635
2636static void rdt_disable_ctx(void)
2637{
2638 resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L3, false);
2639 resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L2, false);
2640 set_mba_sc(false);
2641
2642 resctrl_debug = false;
2643}
2644
2645static int rdt_enable_ctx(struct rdt_fs_context *ctx)
2646{
2647 int ret = 0;
2648
2649 if (ctx->enable_cdpl2) {
2650 ret = resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L2, true);
2651 if (ret)
2652 goto out_done;
2653 }
2654
2655 if (ctx->enable_cdpl3) {
2656 ret = resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L3, true);
2657 if (ret)
2658 goto out_cdpl2;
2659 }
2660
2661 if (ctx->enable_mba_mbps) {
2662 ret = set_mba_sc(true);
2663 if (ret)
2664 goto out_cdpl3;
2665 }
2666
2667 if (ctx->enable_debug)
2668 resctrl_debug = true;
2669
2670 return 0;
2671
2672out_cdpl3:
2673 resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L3, false);
2674out_cdpl2:
2675 resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L2, false);
2676out_done:
2677 return ret;
2678}
2679
2680static int schemata_list_add(struct rdt_resource *r, enum resctrl_conf_type type)
2681{
2682 struct resctrl_schema *s;
2683 const char *suffix = "";
2684 int ret, cl;
2685
2686 s = kzalloc(sizeof(*s), GFP_KERNEL);
2687 if (!s)
2688 return -ENOMEM;
2689
2690 s->res = r;
2691 s->num_closid = resctrl_arch_get_num_closid(r);
2692 if (resctrl_arch_get_cdp_enabled(r->rid))
2693 s->num_closid /= 2;
2694
2695 s->conf_type = type;
2696 switch (type) {
2697 case CDP_CODE:
2698 suffix = "CODE";
2699 break;
2700 case CDP_DATA:
2701 suffix = "DATA";
2702 break;
2703 case CDP_NONE:
2704 suffix = "";
2705 break;
2706 }
2707
2708 ret = snprintf(s->name, sizeof(s->name), "%s%s", r->name, suffix);
2709 if (ret >= sizeof(s->name)) {
2710 kfree(s);
2711 return -EINVAL;
2712 }
2713
2714 cl = strlen(s->name);
2715
2716 /*
2717 * If CDP is supported by this resource, but not enabled,
2718 * include the suffix. This ensures the tabular format of the
2719 * schemata file does not change between mounts of the filesystem.
2720 */
2721 if (r->cdp_capable && !resctrl_arch_get_cdp_enabled(r->rid))
2722 cl += 4;
2723
2724 if (cl > max_name_width)
2725 max_name_width = cl;
2726
2727 switch (r->schema_fmt) {
2728 case RESCTRL_SCHEMA_BITMAP:
2729 s->fmt_str = "%d=%x";
2730 break;
2731 case RESCTRL_SCHEMA_RANGE:
2732 s->fmt_str = "%d=%u";
2733 break;
2734 }
2735
2736 if (WARN_ON_ONCE(!s->fmt_str)) {
2737 kfree(s);
2738 return -EINVAL;
2739 }
2740
2741 INIT_LIST_HEAD(&s->list);
2742 list_add(&s->list, &resctrl_schema_all);
2743
2744 return 0;
2745}
2746
2747static int schemata_list_create(void)
2748{
2749 struct rdt_resource *r;
2750 int ret = 0;
2751
2752 for_each_alloc_capable_rdt_resource(r) {
2753 if (resctrl_arch_get_cdp_enabled(r->rid)) {
2754 ret = schemata_list_add(r, CDP_CODE);
2755 if (ret)
2756 break;
2757
2758 ret = schemata_list_add(r, CDP_DATA);
2759 } else {
2760 ret = schemata_list_add(r, CDP_NONE);
2761 }
2762
2763 if (ret)
2764 break;
2765 }
2766
2767 return ret;
2768}
2769
2770static void schemata_list_destroy(void)
2771{
2772 struct resctrl_schema *s, *tmp;
2773
2774 list_for_each_entry_safe(s, tmp, &resctrl_schema_all, list) {
2775 list_del(&s->list);
2776 kfree(s);
2777 }
2778}
2779
2780static int rdt_get_tree(struct fs_context *fc)
2781{
2782 struct rdt_fs_context *ctx = rdt_fc2context(fc);
2783 unsigned long flags = RFTYPE_CTRL_BASE;
2784 struct rdt_mon_domain *dom;
2785 struct rdt_resource *r;
2786 int ret;
2787
2788 cpus_read_lock();
2789 mutex_lock(&rdtgroup_mutex);
2790 /*
2791 * resctrl file system can only be mounted once.
2792 */
2793 if (resctrl_mounted) {
2794 ret = -EBUSY;
2795 goto out;
2796 }
2797
2798 ret = rdtgroup_setup_root(ctx);
2799 if (ret)
2800 goto out;
2801
2802 ret = rdt_enable_ctx(ctx);
2803 if (ret)
2804 goto out_root;
2805
2806 ret = schemata_list_create();
2807 if (ret)
2808 goto out_schemata_free;
2809
2810 ret = closid_init();
2811 if (ret)
2812 goto out_schemata_free;
2813
2814 if (resctrl_arch_mon_capable())
2815 flags |= RFTYPE_MON;
2816
2817 ret = rdtgroup_add_files(rdtgroup_default.kn, flags);
2818 if (ret)
2819 goto out_closid_exit;
2820
2821 kernfs_activate(rdtgroup_default.kn);
2822
2823 ret = rdtgroup_create_info_dir(rdtgroup_default.kn);
2824 if (ret < 0)
2825 goto out_closid_exit;
2826
2827 if (resctrl_arch_mon_capable()) {
2828 ret = mongroup_create_dir(rdtgroup_default.kn,
2829 &rdtgroup_default, "mon_groups",
2830 &kn_mongrp);
2831 if (ret < 0)
2832 goto out_info;
2833
2834 rdtgroup_assign_cntrs(&rdtgroup_default);
2835
2836 ret = mkdir_mondata_all(rdtgroup_default.kn,
2837 &rdtgroup_default, &kn_mondata);
2838 if (ret < 0)
2839 goto out_mongrp;
2840 rdtgroup_default.mon.mon_data_kn = kn_mondata;
2841 }
2842
2843 ret = rdt_pseudo_lock_init();
2844 if (ret)
2845 goto out_mondata;
2846
2847 ret = kernfs_get_tree(fc);
2848 if (ret < 0)
2849 goto out_psl;
2850
2851 if (resctrl_arch_alloc_capable())
2852 resctrl_arch_enable_alloc();
2853 if (resctrl_arch_mon_capable())
2854 resctrl_arch_enable_mon();
2855
2856 if (resctrl_arch_alloc_capable() || resctrl_arch_mon_capable())
2857 resctrl_mounted = true;
2858
2859 if (resctrl_is_mbm_enabled()) {
2860 r = resctrl_arch_get_resource(RDT_RESOURCE_L3);
2861 list_for_each_entry(dom, &r->mon_domains, hdr.list)
2862 mbm_setup_overflow_handler(dom, MBM_OVERFLOW_INTERVAL,
2863 RESCTRL_PICK_ANY_CPU);
2864 }
2865
2866 goto out;
2867
2868out_psl:
2869 rdt_pseudo_lock_release();
2870out_mondata:
2871 if (resctrl_arch_mon_capable())
2872 kernfs_remove(kn_mondata);
2873out_mongrp:
2874 if (resctrl_arch_mon_capable()) {
2875 rdtgroup_unassign_cntrs(&rdtgroup_default);
2876 kernfs_remove(kn_mongrp);
2877 }
2878out_info:
2879 kernfs_remove(kn_info);
2880out_closid_exit:
2881 closid_exit();
2882out_schemata_free:
2883 schemata_list_destroy();
2884 rdt_disable_ctx();
2885out_root:
2886 rdtgroup_destroy_root();
2887out:
2888 rdt_last_cmd_clear();
2889 mutex_unlock(&rdtgroup_mutex);
2890 cpus_read_unlock();
2891 return ret;
2892}
2893
2894enum rdt_param {
2895 Opt_cdp,
2896 Opt_cdpl2,
2897 Opt_mba_mbps,
2898 Opt_debug,
2899 nr__rdt_params
2900};
2901
2902static const struct fs_parameter_spec rdt_fs_parameters[] = {
2903 fsparam_flag("cdp", Opt_cdp),
2904 fsparam_flag("cdpl2", Opt_cdpl2),
2905 fsparam_flag("mba_MBps", Opt_mba_mbps),
2906 fsparam_flag("debug", Opt_debug),
2907 {}
2908};
2909
2910static int rdt_parse_param(struct fs_context *fc, struct fs_parameter *param)
2911{
2912 struct rdt_fs_context *ctx = rdt_fc2context(fc);
2913 struct fs_parse_result result;
2914 const char *msg;
2915 int opt;
2916
2917 opt = fs_parse(fc, rdt_fs_parameters, param, &result);
2918 if (opt < 0)
2919 return opt;
2920
2921 switch (opt) {
2922 case Opt_cdp:
2923 ctx->enable_cdpl3 = true;
2924 return 0;
2925 case Opt_cdpl2:
2926 ctx->enable_cdpl2 = true;
2927 return 0;
2928 case Opt_mba_mbps:
2929 msg = "mba_MBps requires MBM and linear scale MBA at L3 scope";
2930 if (!supports_mba_mbps())
2931 return invalfc(fc, msg);
2932 ctx->enable_mba_mbps = true;
2933 return 0;
2934 case Opt_debug:
2935 ctx->enable_debug = true;
2936 return 0;
2937 }
2938
2939 return -EINVAL;
2940}
2941
2942static void rdt_fs_context_free(struct fs_context *fc)
2943{
2944 struct rdt_fs_context *ctx = rdt_fc2context(fc);
2945
2946 kernfs_free_fs_context(fc);
2947 kfree(ctx);
2948}
2949
2950static const struct fs_context_operations rdt_fs_context_ops = {
2951 .free = rdt_fs_context_free,
2952 .parse_param = rdt_parse_param,
2953 .get_tree = rdt_get_tree,
2954};
2955
2956static int rdt_init_fs_context(struct fs_context *fc)
2957{
2958 struct rdt_fs_context *ctx;
2959
2960 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
2961 if (!ctx)
2962 return -ENOMEM;
2963
2964 ctx->kfc.magic = RDTGROUP_SUPER_MAGIC;
2965 fc->fs_private = &ctx->kfc;
2966 fc->ops = &rdt_fs_context_ops;
2967 put_user_ns(fc->user_ns);
2968 fc->user_ns = get_user_ns(&init_user_ns);
2969 fc->global = true;
2970 return 0;
2971}
2972
2973/*
2974 * Move tasks from one to the other group. If @from is NULL, then all tasks
2975 * in the systems are moved unconditionally (used for teardown).
2976 *
2977 * If @mask is not NULL the cpus on which moved tasks are running are set
2978 * in that mask so the update smp function call is restricted to affected
2979 * cpus.
2980 */
2981static void rdt_move_group_tasks(struct rdtgroup *from, struct rdtgroup *to,
2982 struct cpumask *mask)
2983{
2984 struct task_struct *p, *t;
2985
2986 read_lock(&tasklist_lock);
2987 for_each_process_thread(p, t) {
2988 if (!from || is_closid_match(t, from) ||
2989 is_rmid_match(t, from)) {
2990 resctrl_arch_set_closid_rmid(t, to->closid,
2991 to->mon.rmid);
2992
2993 /*
2994 * Order the closid/rmid stores above before the loads
2995 * in task_curr(). This pairs with the full barrier
2996 * between the rq->curr update and
2997 * resctrl_arch_sched_in() during context switch.
2998 */
2999 smp_mb();
3000
3001 /*
3002 * If the task is on a CPU, set the CPU in the mask.
3003 * The detection is inaccurate as tasks might move or
3004 * schedule before the smp function call takes place.
3005 * In such a case the function call is pointless, but
3006 * there is no other side effect.
3007 */
3008 if (IS_ENABLED(CONFIG_SMP) && mask && task_curr(t))
3009 cpumask_set_cpu(task_cpu(t), mask);
3010 }
3011 }
3012 read_unlock(&tasklist_lock);
3013}
3014
3015static void free_all_child_rdtgrp(struct rdtgroup *rdtgrp)
3016{
3017 struct rdtgroup *sentry, *stmp;
3018 struct list_head *head;
3019
3020 head = &rdtgrp->mon.crdtgrp_list;
3021 list_for_each_entry_safe(sentry, stmp, head, mon.crdtgrp_list) {
3022 rdtgroup_unassign_cntrs(sentry);
3023 free_rmid(sentry->closid, sentry->mon.rmid);
3024 list_del(&sentry->mon.crdtgrp_list);
3025
3026 if (atomic_read(&sentry->waitcount) != 0)
3027 sentry->flags = RDT_DELETED;
3028 else
3029 rdtgroup_remove(sentry);
3030 }
3031}
3032
3033/*
3034 * Forcibly remove all of subdirectories under root.
3035 */
3036static void rmdir_all_sub(void)
3037{
3038 struct rdtgroup *rdtgrp, *tmp;
3039
3040 /* Move all tasks to the default resource group */
3041 rdt_move_group_tasks(NULL, &rdtgroup_default, NULL);
3042
3043 list_for_each_entry_safe(rdtgrp, tmp, &rdt_all_groups, rdtgroup_list) {
3044 /* Free any child rmids */
3045 free_all_child_rdtgrp(rdtgrp);
3046
3047 /* Remove each rdtgroup other than root */
3048 if (rdtgrp == &rdtgroup_default)
3049 continue;
3050
3051 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
3052 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)
3053 rdtgroup_pseudo_lock_remove(rdtgrp);
3054
3055 /*
3056 * Give any CPUs back to the default group. We cannot copy
3057 * cpu_online_mask because a CPU might have executed the
3058 * offline callback already, but is still marked online.
3059 */
3060 cpumask_or(&rdtgroup_default.cpu_mask,
3061 &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask);
3062
3063 rdtgroup_unassign_cntrs(rdtgrp);
3064
3065 free_rmid(rdtgrp->closid, rdtgrp->mon.rmid);
3066
3067 kernfs_remove(rdtgrp->kn);
3068 list_del(&rdtgrp->rdtgroup_list);
3069
3070 if (atomic_read(&rdtgrp->waitcount) != 0)
3071 rdtgrp->flags = RDT_DELETED;
3072 else
3073 rdtgroup_remove(rdtgrp);
3074 }
3075 /* Notify online CPUs to update per cpu storage and PQR_ASSOC MSR */
3076 update_closid_rmid(cpu_online_mask, &rdtgroup_default);
3077
3078 kernfs_remove(kn_info);
3079 kernfs_remove(kn_mongrp);
3080 kernfs_remove(kn_mondata);
3081}
3082
3083/**
3084 * mon_get_kn_priv() - Get the mon_data priv data for this event.
3085 *
3086 * The same values are used across the mon_data directories of all control and
3087 * monitor groups for the same event in the same domain. Keep a list of
3088 * allocated structures and re-use an existing one with the same values for
3089 * @rid, @domid, etc.
3090 *
3091 * @rid: The resource id for the event file being created.
3092 * @domid: The domain id for the event file being created.
3093 * @mevt: The type of event file being created.
3094 * @do_sum: Whether SNC summing monitors are being created.
3095 */
3096static struct mon_data *mon_get_kn_priv(enum resctrl_res_level rid, int domid,
3097 struct mon_evt *mevt,
3098 bool do_sum)
3099{
3100 struct mon_data *priv;
3101
3102 lockdep_assert_held(&rdtgroup_mutex);
3103
3104 list_for_each_entry(priv, &mon_data_kn_priv_list, list) {
3105 if (priv->rid == rid && priv->domid == domid &&
3106 priv->sum == do_sum && priv->evtid == mevt->evtid)
3107 return priv;
3108 }
3109
3110 priv = kzalloc(sizeof(*priv), GFP_KERNEL);
3111 if (!priv)
3112 return NULL;
3113
3114 priv->rid = rid;
3115 priv->domid = domid;
3116 priv->sum = do_sum;
3117 priv->evtid = mevt->evtid;
3118 list_add_tail(&priv->list, &mon_data_kn_priv_list);
3119
3120 return priv;
3121}
3122
3123/**
3124 * mon_put_kn_priv() - Free all allocated mon_data structures.
3125 *
3126 * Called when resctrl file system is unmounted.
3127 */
3128static void mon_put_kn_priv(void)
3129{
3130 struct mon_data *priv, *tmp;
3131
3132 lockdep_assert_held(&rdtgroup_mutex);
3133
3134 list_for_each_entry_safe(priv, tmp, &mon_data_kn_priv_list, list) {
3135 list_del(&priv->list);
3136 kfree(priv);
3137 }
3138}
3139
3140static void resctrl_fs_teardown(void)
3141{
3142 lockdep_assert_held(&rdtgroup_mutex);
3143
3144 /* Cleared by rdtgroup_destroy_root() */
3145 if (!rdtgroup_default.kn)
3146 return;
3147
3148 rmdir_all_sub();
3149 rdtgroup_unassign_cntrs(&rdtgroup_default);
3150 mon_put_kn_priv();
3151 rdt_pseudo_lock_release();
3152 rdtgroup_default.mode = RDT_MODE_SHAREABLE;
3153 closid_exit();
3154 schemata_list_destroy();
3155 rdtgroup_destroy_root();
3156}
3157
3158static void rdt_kill_sb(struct super_block *sb)
3159{
3160 struct rdt_resource *r;
3161
3162 cpus_read_lock();
3163 mutex_lock(&rdtgroup_mutex);
3164
3165 rdt_disable_ctx();
3166
3167 /* Put everything back to default values. */
3168 for_each_alloc_capable_rdt_resource(r)
3169 resctrl_arch_reset_all_ctrls(r);
3170
3171 resctrl_fs_teardown();
3172 if (resctrl_arch_alloc_capable())
3173 resctrl_arch_disable_alloc();
3174 if (resctrl_arch_mon_capable())
3175 resctrl_arch_disable_mon();
3176 resctrl_mounted = false;
3177 kernfs_kill_sb(sb);
3178 mutex_unlock(&rdtgroup_mutex);
3179 cpus_read_unlock();
3180}
3181
3182static struct file_system_type rdt_fs_type = {
3183 .name = "resctrl",
3184 .init_fs_context = rdt_init_fs_context,
3185 .parameters = rdt_fs_parameters,
3186 .kill_sb = rdt_kill_sb,
3187};
3188
3189static int mon_addfile(struct kernfs_node *parent_kn, const char *name,
3190 void *priv)
3191{
3192 struct kernfs_node *kn;
3193 int ret = 0;
3194
3195 kn = __kernfs_create_file(parent_kn, name, 0444,
3196 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 0,
3197 &kf_mondata_ops, priv, NULL, NULL);
3198 if (IS_ERR(kn))
3199 return PTR_ERR(kn);
3200
3201 ret = rdtgroup_kn_set_ugid(kn);
3202 if (ret) {
3203 kernfs_remove(kn);
3204 return ret;
3205 }
3206
3207 return ret;
3208}
3209
3210static void mon_rmdir_one_subdir(struct kernfs_node *pkn, char *name, char *subname)
3211{
3212 struct kernfs_node *kn;
3213
3214 kn = kernfs_find_and_get(pkn, name);
3215 if (!kn)
3216 return;
3217 kernfs_put(kn);
3218
3219 if (kn->dir.subdirs <= 1)
3220 kernfs_remove(kn);
3221 else
3222 kernfs_remove_by_name(kn, subname);
3223}
3224
3225/*
3226 * Remove all subdirectories of mon_data of ctrl_mon groups
3227 * and monitor groups for the given domain.
3228 * Remove files and directories containing "sum" of domain data
3229 * when last domain being summed is removed.
3230 */
3231static void rmdir_mondata_subdir_allrdtgrp(struct rdt_resource *r,
3232 struct rdt_mon_domain *d)
3233{
3234 struct rdtgroup *prgrp, *crgrp;
3235 char subname[32];
3236 bool snc_mode;
3237 char name[32];
3238
3239 snc_mode = r->mon_scope == RESCTRL_L3_NODE;
3240 sprintf(name, "mon_%s_%02d", r->name, snc_mode ? d->ci_id : d->hdr.id);
3241 if (snc_mode)
3242 sprintf(subname, "mon_sub_%s_%02d", r->name, d->hdr.id);
3243
3244 list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
3245 mon_rmdir_one_subdir(prgrp->mon.mon_data_kn, name, subname);
3246
3247 list_for_each_entry(crgrp, &prgrp->mon.crdtgrp_list, mon.crdtgrp_list)
3248 mon_rmdir_one_subdir(crgrp->mon.mon_data_kn, name, subname);
3249 }
3250}
3251
3252static int mon_add_all_files(struct kernfs_node *kn, struct rdt_mon_domain *d,
3253 struct rdt_resource *r, struct rdtgroup *prgrp,
3254 bool do_sum)
3255{
3256 struct rmid_read rr = {0};
3257 struct mon_data *priv;
3258 struct mon_evt *mevt;
3259 int ret, domid;
3260
3261 for_each_mon_event(mevt) {
3262 if (mevt->rid != r->rid || !mevt->enabled)
3263 continue;
3264 domid = do_sum ? d->ci_id : d->hdr.id;
3265 priv = mon_get_kn_priv(r->rid, domid, mevt, do_sum);
3266 if (WARN_ON_ONCE(!priv))
3267 return -EINVAL;
3268
3269 ret = mon_addfile(kn, mevt->name, priv);
3270 if (ret)
3271 return ret;
3272
3273 if (!do_sum && resctrl_is_mbm_event(mevt->evtid))
3274 mon_event_read(&rr, r, d, prgrp, &d->hdr.cpu_mask, mevt->evtid, true);
3275 }
3276
3277 return 0;
3278}
3279
3280static int mkdir_mondata_subdir(struct kernfs_node *parent_kn,
3281 struct rdt_mon_domain *d,
3282 struct rdt_resource *r, struct rdtgroup *prgrp)
3283{
3284 struct kernfs_node *kn, *ckn;
3285 char name[32];
3286 bool snc_mode;
3287 int ret = 0;
3288
3289 lockdep_assert_held(&rdtgroup_mutex);
3290
3291 snc_mode = r->mon_scope == RESCTRL_L3_NODE;
3292 sprintf(name, "mon_%s_%02d", r->name, snc_mode ? d->ci_id : d->hdr.id);
3293 kn = kernfs_find_and_get(parent_kn, name);
3294 if (kn) {
3295 /*
3296 * rdtgroup_mutex will prevent this directory from being
3297 * removed. No need to keep this hold.
3298 */
3299 kernfs_put(kn);
3300 } else {
3301 kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp);
3302 if (IS_ERR(kn))
3303 return PTR_ERR(kn);
3304
3305 ret = rdtgroup_kn_set_ugid(kn);
3306 if (ret)
3307 goto out_destroy;
3308 ret = mon_add_all_files(kn, d, r, prgrp, snc_mode);
3309 if (ret)
3310 goto out_destroy;
3311 }
3312
3313 if (snc_mode) {
3314 sprintf(name, "mon_sub_%s_%02d", r->name, d->hdr.id);
3315 ckn = kernfs_create_dir(kn, name, parent_kn->mode, prgrp);
3316 if (IS_ERR(ckn)) {
3317 ret = -EINVAL;
3318 goto out_destroy;
3319 }
3320
3321 ret = rdtgroup_kn_set_ugid(ckn);
3322 if (ret)
3323 goto out_destroy;
3324
3325 ret = mon_add_all_files(ckn, d, r, prgrp, false);
3326 if (ret)
3327 goto out_destroy;
3328 }
3329
3330 kernfs_activate(kn);
3331 return 0;
3332
3333out_destroy:
3334 kernfs_remove(kn);
3335 return ret;
3336}
3337
3338/*
3339 * Add all subdirectories of mon_data for "ctrl_mon" groups
3340 * and "monitor" groups with given domain id.
3341 */
3342static void mkdir_mondata_subdir_allrdtgrp(struct rdt_resource *r,
3343 struct rdt_mon_domain *d)
3344{
3345 struct kernfs_node *parent_kn;
3346 struct rdtgroup *prgrp, *crgrp;
3347 struct list_head *head;
3348
3349 list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
3350 parent_kn = prgrp->mon.mon_data_kn;
3351 mkdir_mondata_subdir(parent_kn, d, r, prgrp);
3352
3353 head = &prgrp->mon.crdtgrp_list;
3354 list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
3355 parent_kn = crgrp->mon.mon_data_kn;
3356 mkdir_mondata_subdir(parent_kn, d, r, crgrp);
3357 }
3358 }
3359}
3360
3361static int mkdir_mondata_subdir_alldom(struct kernfs_node *parent_kn,
3362 struct rdt_resource *r,
3363 struct rdtgroup *prgrp)
3364{
3365 struct rdt_mon_domain *dom;
3366 int ret;
3367
3368 /* Walking r->domains, ensure it can't race with cpuhp */
3369 lockdep_assert_cpus_held();
3370
3371 list_for_each_entry(dom, &r->mon_domains, hdr.list) {
3372 ret = mkdir_mondata_subdir(parent_kn, dom, r, prgrp);
3373 if (ret)
3374 return ret;
3375 }
3376
3377 return 0;
3378}
3379
3380/*
3381 * This creates a directory mon_data which contains the monitored data.
3382 *
3383 * mon_data has one directory for each domain which are named
3384 * in the format mon_<domain_name>_<domain_id>. For ex: A mon_data
3385 * with L3 domain looks as below:
3386 * ./mon_data:
3387 * mon_L3_00
3388 * mon_L3_01
3389 * mon_L3_02
3390 * ...
3391 *
3392 * Each domain directory has one file per event:
3393 * ./mon_L3_00/:
3394 * llc_occupancy
3395 *
3396 */
3397static int mkdir_mondata_all(struct kernfs_node *parent_kn,
3398 struct rdtgroup *prgrp,
3399 struct kernfs_node **dest_kn)
3400{
3401 struct rdt_resource *r;
3402 struct kernfs_node *kn;
3403 int ret;
3404
3405 /*
3406 * Create the mon_data directory first.
3407 */
3408 ret = mongroup_create_dir(parent_kn, prgrp, "mon_data", &kn);
3409 if (ret)
3410 return ret;
3411
3412 if (dest_kn)
3413 *dest_kn = kn;
3414
3415 /*
3416 * Create the subdirectories for each domain. Note that all events
3417 * in a domain like L3 are grouped into a resource whose domain is L3
3418 */
3419 for_each_mon_capable_rdt_resource(r) {
3420 ret = mkdir_mondata_subdir_alldom(kn, r, prgrp);
3421 if (ret)
3422 goto out_destroy;
3423 }
3424
3425 return 0;
3426
3427out_destroy:
3428 kernfs_remove(kn);
3429 return ret;
3430}
3431
3432/**
3433 * cbm_ensure_valid - Enforce validity on provided CBM
3434 * @_val: Candidate CBM
3435 * @r: RDT resource to which the CBM belongs
3436 *
3437 * The provided CBM represents all cache portions available for use. This
3438 * may be represented by a bitmap that does not consist of contiguous ones
3439 * and thus be an invalid CBM.
3440 * Here the provided CBM is forced to be a valid CBM by only considering
3441 * the first set of contiguous bits as valid and clearing all bits.
3442 * The intention here is to provide a valid default CBM with which a new
3443 * resource group is initialized. The user can follow this with a
3444 * modification to the CBM if the default does not satisfy the
3445 * requirements.
3446 */
3447static u32 cbm_ensure_valid(u32 _val, struct rdt_resource *r)
3448{
3449 unsigned int cbm_len = r->cache.cbm_len;
3450 unsigned long first_bit, zero_bit;
3451 unsigned long val;
3452
3453 if (!_val || r->cache.arch_has_sparse_bitmasks)
3454 return _val;
3455
3456 val = _val;
3457 first_bit = find_first_bit(&val, cbm_len);
3458 zero_bit = find_next_zero_bit(&val, cbm_len, first_bit);
3459
3460 /* Clear any remaining bits to ensure contiguous region */
3461 bitmap_clear(&val, zero_bit, cbm_len - zero_bit);
3462 return (u32)val;
3463}
3464
3465/*
3466 * Initialize cache resources per RDT domain
3467 *
3468 * Set the RDT domain up to start off with all usable allocations. That is,
3469 * all shareable and unused bits. All-zero CBM is invalid.
3470 */
3471static int __init_one_rdt_domain(struct rdt_ctrl_domain *d, struct resctrl_schema *s,
3472 u32 closid)
3473{
3474 enum resctrl_conf_type peer_type = resctrl_peer_type(s->conf_type);
3475 enum resctrl_conf_type t = s->conf_type;
3476 struct resctrl_staged_config *cfg;
3477 struct rdt_resource *r = s->res;
3478 u32 used_b = 0, unused_b = 0;
3479 unsigned long tmp_cbm;
3480 enum rdtgrp_mode mode;
3481 u32 peer_ctl, ctrl_val;
3482 int i;
3483
3484 cfg = &d->staged_config[t];
3485 cfg->have_new_ctrl = false;
3486 cfg->new_ctrl = r->cache.shareable_bits;
3487 used_b = r->cache.shareable_bits;
3488 for (i = 0; i < closids_supported(); i++) {
3489 if (closid_allocated(i) && i != closid) {
3490 mode = rdtgroup_mode_by_closid(i);
3491 if (mode == RDT_MODE_PSEUDO_LOCKSETUP)
3492 /*
3493 * ctrl values for locksetup aren't relevant
3494 * until the schemata is written, and the mode
3495 * becomes RDT_MODE_PSEUDO_LOCKED.
3496 */
3497 continue;
3498 /*
3499 * If CDP is active include peer domain's
3500 * usage to ensure there is no overlap
3501 * with an exclusive group.
3502 */
3503 if (resctrl_arch_get_cdp_enabled(r->rid))
3504 peer_ctl = resctrl_arch_get_config(r, d, i,
3505 peer_type);
3506 else
3507 peer_ctl = 0;
3508 ctrl_val = resctrl_arch_get_config(r, d, i,
3509 s->conf_type);
3510 used_b |= ctrl_val | peer_ctl;
3511 if (mode == RDT_MODE_SHAREABLE)
3512 cfg->new_ctrl |= ctrl_val | peer_ctl;
3513 }
3514 }
3515 if (d->plr && d->plr->cbm > 0)
3516 used_b |= d->plr->cbm;
3517 unused_b = used_b ^ (BIT_MASK(r->cache.cbm_len) - 1);
3518 unused_b &= BIT_MASK(r->cache.cbm_len) - 1;
3519 cfg->new_ctrl |= unused_b;
3520 /*
3521 * Force the initial CBM to be valid, user can
3522 * modify the CBM based on system availability.
3523 */
3524 cfg->new_ctrl = cbm_ensure_valid(cfg->new_ctrl, r);
3525 /*
3526 * Assign the u32 CBM to an unsigned long to ensure that
3527 * bitmap_weight() does not access out-of-bound memory.
3528 */
3529 tmp_cbm = cfg->new_ctrl;
3530 if (bitmap_weight(&tmp_cbm, r->cache.cbm_len) < r->cache.min_cbm_bits) {
3531 rdt_last_cmd_printf("No space on %s:%d\n", s->name, d->hdr.id);
3532 return -ENOSPC;
3533 }
3534 cfg->have_new_ctrl = true;
3535
3536 return 0;
3537}
3538
3539/*
3540 * Initialize cache resources with default values.
3541 *
3542 * A new RDT group is being created on an allocation capable (CAT)
3543 * supporting system. Set this group up to start off with all usable
3544 * allocations.
3545 *
3546 * If there are no more shareable bits available on any domain then
3547 * the entire allocation will fail.
3548 */
3549int rdtgroup_init_cat(struct resctrl_schema *s, u32 closid)
3550{
3551 struct rdt_ctrl_domain *d;
3552 int ret;
3553
3554 list_for_each_entry(d, &s->res->ctrl_domains, hdr.list) {
3555 ret = __init_one_rdt_domain(d, s, closid);
3556 if (ret < 0)
3557 return ret;
3558 }
3559
3560 return 0;
3561}
3562
3563/* Initialize MBA resource with default values. */
3564static void rdtgroup_init_mba(struct rdt_resource *r, u32 closid)
3565{
3566 struct resctrl_staged_config *cfg;
3567 struct rdt_ctrl_domain *d;
3568
3569 list_for_each_entry(d, &r->ctrl_domains, hdr.list) {
3570 if (is_mba_sc(r)) {
3571 d->mbps_val[closid] = MBA_MAX_MBPS;
3572 continue;
3573 }
3574
3575 cfg = &d->staged_config[CDP_NONE];
3576 cfg->new_ctrl = resctrl_get_default_ctrl(r);
3577 cfg->have_new_ctrl = true;
3578 }
3579}
3580
3581/* Initialize the RDT group's allocations. */
3582static int rdtgroup_init_alloc(struct rdtgroup *rdtgrp)
3583{
3584 struct resctrl_schema *s;
3585 struct rdt_resource *r;
3586 int ret = 0;
3587
3588 rdt_staged_configs_clear();
3589
3590 list_for_each_entry(s, &resctrl_schema_all, list) {
3591 r = s->res;
3592 if (r->rid == RDT_RESOURCE_MBA ||
3593 r->rid == RDT_RESOURCE_SMBA) {
3594 rdtgroup_init_mba(r, rdtgrp->closid);
3595 if (is_mba_sc(r))
3596 continue;
3597 } else {
3598 ret = rdtgroup_init_cat(s, rdtgrp->closid);
3599 if (ret < 0)
3600 goto out;
3601 }
3602
3603 ret = resctrl_arch_update_domains(r, rdtgrp->closid);
3604 if (ret < 0) {
3605 rdt_last_cmd_puts("Failed to initialize allocations\n");
3606 goto out;
3607 }
3608 }
3609
3610 rdtgrp->mode = RDT_MODE_SHAREABLE;
3611
3612out:
3613 rdt_staged_configs_clear();
3614 return ret;
3615}
3616
3617static int mkdir_rdt_prepare_rmid_alloc(struct rdtgroup *rdtgrp)
3618{
3619 int ret;
3620
3621 if (!resctrl_arch_mon_capable())
3622 return 0;
3623
3624 ret = alloc_rmid(rdtgrp->closid);
3625 if (ret < 0) {
3626 rdt_last_cmd_puts("Out of RMIDs\n");
3627 return ret;
3628 }
3629 rdtgrp->mon.rmid = ret;
3630
3631 rdtgroup_assign_cntrs(rdtgrp);
3632
3633 ret = mkdir_mondata_all(rdtgrp->kn, rdtgrp, &rdtgrp->mon.mon_data_kn);
3634 if (ret) {
3635 rdt_last_cmd_puts("kernfs subdir error\n");
3636 rdtgroup_unassign_cntrs(rdtgrp);
3637 free_rmid(rdtgrp->closid, rdtgrp->mon.rmid);
3638 return ret;
3639 }
3640
3641 return 0;
3642}
3643
3644static void mkdir_rdt_prepare_rmid_free(struct rdtgroup *rgrp)
3645{
3646 if (resctrl_arch_mon_capable()) {
3647 rdtgroup_unassign_cntrs(rgrp);
3648 free_rmid(rgrp->closid, rgrp->mon.rmid);
3649 }
3650}
3651
3652/*
3653 * We allow creating mon groups only with in a directory called "mon_groups"
3654 * which is present in every ctrl_mon group. Check if this is a valid
3655 * "mon_groups" directory.
3656 *
3657 * 1. The directory should be named "mon_groups".
3658 * 2. The mon group itself should "not" be named "mon_groups".
3659 * This makes sure "mon_groups" directory always has a ctrl_mon group
3660 * as parent.
3661 */
3662static bool is_mon_groups(struct kernfs_node *kn, const char *name)
3663{
3664 return (!strcmp(rdt_kn_name(kn), "mon_groups") &&
3665 strcmp(name, "mon_groups"));
3666}
3667
3668static int mkdir_rdt_prepare(struct kernfs_node *parent_kn,
3669 const char *name, umode_t mode,
3670 enum rdt_group_type rtype, struct rdtgroup **r)
3671{
3672 struct rdtgroup *prdtgrp, *rdtgrp;
3673 unsigned long files = 0;
3674 struct kernfs_node *kn;
3675 int ret;
3676
3677 prdtgrp = rdtgroup_kn_lock_live(parent_kn);
3678 if (!prdtgrp) {
3679 ret = -ENODEV;
3680 goto out_unlock;
3681 }
3682
3683 rdt_last_cmd_clear();
3684
3685 /*
3686 * Check that the parent directory for a monitor group is a "mon_groups"
3687 * directory.
3688 */
3689 if (rtype == RDTMON_GROUP && !is_mon_groups(parent_kn, name)) {
3690 ret = -EPERM;
3691 goto out_unlock;
3692 }
3693
3694 if (rtype == RDTMON_GROUP &&
3695 (prdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
3696 prdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)) {
3697 ret = -EINVAL;
3698 rdt_last_cmd_puts("Pseudo-locking in progress\n");
3699 goto out_unlock;
3700 }
3701
3702 /* allocate the rdtgroup. */
3703 rdtgrp = kzalloc(sizeof(*rdtgrp), GFP_KERNEL);
3704 if (!rdtgrp) {
3705 ret = -ENOSPC;
3706 rdt_last_cmd_puts("Kernel out of memory\n");
3707 goto out_unlock;
3708 }
3709 *r = rdtgrp;
3710 rdtgrp->mon.parent = prdtgrp;
3711 rdtgrp->type = rtype;
3712 INIT_LIST_HEAD(&rdtgrp->mon.crdtgrp_list);
3713
3714 /* kernfs creates the directory for rdtgrp */
3715 kn = kernfs_create_dir(parent_kn, name, mode, rdtgrp);
3716 if (IS_ERR(kn)) {
3717 ret = PTR_ERR(kn);
3718 rdt_last_cmd_puts("kernfs create error\n");
3719 goto out_free_rgrp;
3720 }
3721 rdtgrp->kn = kn;
3722
3723 /*
3724 * kernfs_remove() will drop the reference count on "kn" which
3725 * will free it. But we still need it to stick around for the
3726 * rdtgroup_kn_unlock(kn) call. Take one extra reference here,
3727 * which will be dropped by kernfs_put() in rdtgroup_remove().
3728 */
3729 kernfs_get(kn);
3730
3731 ret = rdtgroup_kn_set_ugid(kn);
3732 if (ret) {
3733 rdt_last_cmd_puts("kernfs perm error\n");
3734 goto out_destroy;
3735 }
3736
3737 if (rtype == RDTCTRL_GROUP) {
3738 files = RFTYPE_BASE | RFTYPE_CTRL;
3739 if (resctrl_arch_mon_capable())
3740 files |= RFTYPE_MON;
3741 } else {
3742 files = RFTYPE_BASE | RFTYPE_MON;
3743 }
3744
3745 ret = rdtgroup_add_files(kn, files);
3746 if (ret) {
3747 rdt_last_cmd_puts("kernfs fill error\n");
3748 goto out_destroy;
3749 }
3750
3751 /*
3752 * The caller unlocks the parent_kn upon success.
3753 */
3754 return 0;
3755
3756out_destroy:
3757 kernfs_put(rdtgrp->kn);
3758 kernfs_remove(rdtgrp->kn);
3759out_free_rgrp:
3760 kfree(rdtgrp);
3761out_unlock:
3762 rdtgroup_kn_unlock(parent_kn);
3763 return ret;
3764}
3765
3766static void mkdir_rdt_prepare_clean(struct rdtgroup *rgrp)
3767{
3768 kernfs_remove(rgrp->kn);
3769 rdtgroup_remove(rgrp);
3770}
3771
3772/*
3773 * Create a monitor group under "mon_groups" directory of a control
3774 * and monitor group(ctrl_mon). This is a resource group
3775 * to monitor a subset of tasks and cpus in its parent ctrl_mon group.
3776 */
3777static int rdtgroup_mkdir_mon(struct kernfs_node *parent_kn,
3778 const char *name, umode_t mode)
3779{
3780 struct rdtgroup *rdtgrp, *prgrp;
3781 int ret;
3782
3783 ret = mkdir_rdt_prepare(parent_kn, name, mode, RDTMON_GROUP, &rdtgrp);
3784 if (ret)
3785 return ret;
3786
3787 prgrp = rdtgrp->mon.parent;
3788 rdtgrp->closid = prgrp->closid;
3789
3790 ret = mkdir_rdt_prepare_rmid_alloc(rdtgrp);
3791 if (ret) {
3792 mkdir_rdt_prepare_clean(rdtgrp);
3793 goto out_unlock;
3794 }
3795
3796 kernfs_activate(rdtgrp->kn);
3797
3798 /*
3799 * Add the rdtgrp to the list of rdtgrps the parent
3800 * ctrl_mon group has to track.
3801 */
3802 list_add_tail(&rdtgrp->mon.crdtgrp_list, &prgrp->mon.crdtgrp_list);
3803
3804out_unlock:
3805 rdtgroup_kn_unlock(parent_kn);
3806 return ret;
3807}
3808
3809/*
3810 * These are rdtgroups created under the root directory. Can be used
3811 * to allocate and monitor resources.
3812 */
3813static int rdtgroup_mkdir_ctrl_mon(struct kernfs_node *parent_kn,
3814 const char *name, umode_t mode)
3815{
3816 struct rdtgroup *rdtgrp;
3817 struct kernfs_node *kn;
3818 u32 closid;
3819 int ret;
3820
3821 ret = mkdir_rdt_prepare(parent_kn, name, mode, RDTCTRL_GROUP, &rdtgrp);
3822 if (ret)
3823 return ret;
3824
3825 kn = rdtgrp->kn;
3826 ret = closid_alloc();
3827 if (ret < 0) {
3828 rdt_last_cmd_puts("Out of CLOSIDs\n");
3829 goto out_common_fail;
3830 }
3831 closid = ret;
3832 ret = 0;
3833
3834 rdtgrp->closid = closid;
3835
3836 ret = mkdir_rdt_prepare_rmid_alloc(rdtgrp);
3837 if (ret)
3838 goto out_closid_free;
3839
3840 kernfs_activate(rdtgrp->kn);
3841
3842 ret = rdtgroup_init_alloc(rdtgrp);
3843 if (ret < 0)
3844 goto out_rmid_free;
3845
3846 list_add(&rdtgrp->rdtgroup_list, &rdt_all_groups);
3847
3848 if (resctrl_arch_mon_capable()) {
3849 /*
3850 * Create an empty mon_groups directory to hold the subset
3851 * of tasks and cpus to monitor.
3852 */
3853 ret = mongroup_create_dir(kn, rdtgrp, "mon_groups", NULL);
3854 if (ret) {
3855 rdt_last_cmd_puts("kernfs subdir error\n");
3856 goto out_del_list;
3857 }
3858 if (is_mba_sc(NULL))
3859 rdtgrp->mba_mbps_event = mba_mbps_default_event;
3860 }
3861
3862 goto out_unlock;
3863
3864out_del_list:
3865 list_del(&rdtgrp->rdtgroup_list);
3866out_rmid_free:
3867 mkdir_rdt_prepare_rmid_free(rdtgrp);
3868out_closid_free:
3869 closid_free(closid);
3870out_common_fail:
3871 mkdir_rdt_prepare_clean(rdtgrp);
3872out_unlock:
3873 rdtgroup_kn_unlock(parent_kn);
3874 return ret;
3875}
3876
3877static int rdtgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
3878 umode_t mode)
3879{
3880 /* Do not accept '\n' to avoid unparsable situation. */
3881 if (strchr(name, '\n'))
3882 return -EINVAL;
3883
3884 /*
3885 * If the parent directory is the root directory and RDT
3886 * allocation is supported, add a control and monitoring
3887 * subdirectory
3888 */
3889 if (resctrl_arch_alloc_capable() && parent_kn == rdtgroup_default.kn)
3890 return rdtgroup_mkdir_ctrl_mon(parent_kn, name, mode);
3891
3892 /* Else, attempt to add a monitoring subdirectory. */
3893 if (resctrl_arch_mon_capable())
3894 return rdtgroup_mkdir_mon(parent_kn, name, mode);
3895
3896 return -EPERM;
3897}
3898
3899static int rdtgroup_rmdir_mon(struct rdtgroup *rdtgrp, cpumask_var_t tmpmask)
3900{
3901 struct rdtgroup *prdtgrp = rdtgrp->mon.parent;
3902 u32 closid, rmid;
3903 int cpu;
3904
3905 /* Give any tasks back to the parent group */
3906 rdt_move_group_tasks(rdtgrp, prdtgrp, tmpmask);
3907
3908 /*
3909 * Update per cpu closid/rmid of the moved CPUs first.
3910 * Note: the closid will not change, but the arch code still needs it.
3911 */
3912 closid = prdtgrp->closid;
3913 rmid = prdtgrp->mon.rmid;
3914 for_each_cpu(cpu, &rdtgrp->cpu_mask)
3915 resctrl_arch_set_cpu_default_closid_rmid(cpu, closid, rmid);
3916
3917 /*
3918 * Update the MSR on moved CPUs and CPUs which have moved
3919 * task running on them.
3920 */
3921 cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask);
3922 update_closid_rmid(tmpmask, NULL);
3923
3924 rdtgrp->flags = RDT_DELETED;
3925
3926 rdtgroup_unassign_cntrs(rdtgrp);
3927
3928 free_rmid(rdtgrp->closid, rdtgrp->mon.rmid);
3929
3930 /*
3931 * Remove the rdtgrp from the parent ctrl_mon group's list
3932 */
3933 WARN_ON(list_empty(&prdtgrp->mon.crdtgrp_list));
3934 list_del(&rdtgrp->mon.crdtgrp_list);
3935
3936 kernfs_remove(rdtgrp->kn);
3937
3938 return 0;
3939}
3940
3941static int rdtgroup_ctrl_remove(struct rdtgroup *rdtgrp)
3942{
3943 rdtgrp->flags = RDT_DELETED;
3944 list_del(&rdtgrp->rdtgroup_list);
3945
3946 kernfs_remove(rdtgrp->kn);
3947 return 0;
3948}
3949
3950static int rdtgroup_rmdir_ctrl(struct rdtgroup *rdtgrp, cpumask_var_t tmpmask)
3951{
3952 u32 closid, rmid;
3953 int cpu;
3954
3955 /* Give any tasks back to the default group */
3956 rdt_move_group_tasks(rdtgrp, &rdtgroup_default, tmpmask);
3957
3958 /* Give any CPUs back to the default group */
3959 cpumask_or(&rdtgroup_default.cpu_mask,
3960 &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask);
3961
3962 /* Update per cpu closid and rmid of the moved CPUs first */
3963 closid = rdtgroup_default.closid;
3964 rmid = rdtgroup_default.mon.rmid;
3965 for_each_cpu(cpu, &rdtgrp->cpu_mask)
3966 resctrl_arch_set_cpu_default_closid_rmid(cpu, closid, rmid);
3967
3968 /*
3969 * Update the MSR on moved CPUs and CPUs which have moved
3970 * task running on them.
3971 */
3972 cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask);
3973 update_closid_rmid(tmpmask, NULL);
3974
3975 rdtgroup_unassign_cntrs(rdtgrp);
3976
3977 free_rmid(rdtgrp->closid, rdtgrp->mon.rmid);
3978 closid_free(rdtgrp->closid);
3979
3980 rdtgroup_ctrl_remove(rdtgrp);
3981
3982 /*
3983 * Free all the child monitor group rmids.
3984 */
3985 free_all_child_rdtgrp(rdtgrp);
3986
3987 return 0;
3988}
3989
3990static struct kernfs_node *rdt_kn_parent(struct kernfs_node *kn)
3991{
3992 /*
3993 * Valid within the RCU section it was obtained or while rdtgroup_mutex
3994 * is held.
3995 */
3996 return rcu_dereference_check(kn->__parent, lockdep_is_held(&rdtgroup_mutex));
3997}
3998
3999static int rdtgroup_rmdir(struct kernfs_node *kn)
4000{
4001 struct kernfs_node *parent_kn;
4002 struct rdtgroup *rdtgrp;
4003 cpumask_var_t tmpmask;
4004 int ret = 0;
4005
4006 if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
4007 return -ENOMEM;
4008
4009 rdtgrp = rdtgroup_kn_lock_live(kn);
4010 if (!rdtgrp) {
4011 ret = -EPERM;
4012 goto out;
4013 }
4014 parent_kn = rdt_kn_parent(kn);
4015
4016 /*
4017 * If the rdtgroup is a ctrl_mon group and parent directory
4018 * is the root directory, remove the ctrl_mon group.
4019 *
4020 * If the rdtgroup is a mon group and parent directory
4021 * is a valid "mon_groups" directory, remove the mon group.
4022 */
4023 if (rdtgrp->type == RDTCTRL_GROUP && parent_kn == rdtgroup_default.kn &&
4024 rdtgrp != &rdtgroup_default) {
4025 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
4026 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
4027 ret = rdtgroup_ctrl_remove(rdtgrp);
4028 } else {
4029 ret = rdtgroup_rmdir_ctrl(rdtgrp, tmpmask);
4030 }
4031 } else if (rdtgrp->type == RDTMON_GROUP &&
4032 is_mon_groups(parent_kn, rdt_kn_name(kn))) {
4033 ret = rdtgroup_rmdir_mon(rdtgrp, tmpmask);
4034 } else {
4035 ret = -EPERM;
4036 }
4037
4038out:
4039 rdtgroup_kn_unlock(kn);
4040 free_cpumask_var(tmpmask);
4041 return ret;
4042}
4043
4044/**
4045 * mongrp_reparent() - replace parent CTRL_MON group of a MON group
4046 * @rdtgrp: the MON group whose parent should be replaced
4047 * @new_prdtgrp: replacement parent CTRL_MON group for @rdtgrp
4048 * @cpus: cpumask provided by the caller for use during this call
4049 *
4050 * Replaces the parent CTRL_MON group for a MON group, resulting in all member
4051 * tasks' CLOSID immediately changing to that of the new parent group.
4052 * Monitoring data for the group is unaffected by this operation.
4053 */
4054static void mongrp_reparent(struct rdtgroup *rdtgrp,
4055 struct rdtgroup *new_prdtgrp,
4056 cpumask_var_t cpus)
4057{
4058 struct rdtgroup *prdtgrp = rdtgrp->mon.parent;
4059
4060 WARN_ON(rdtgrp->type != RDTMON_GROUP);
4061 WARN_ON(new_prdtgrp->type != RDTCTRL_GROUP);
4062
4063 /* Nothing to do when simply renaming a MON group. */
4064 if (prdtgrp == new_prdtgrp)
4065 return;
4066
4067 WARN_ON(list_empty(&prdtgrp->mon.crdtgrp_list));
4068 list_move_tail(&rdtgrp->mon.crdtgrp_list,
4069 &new_prdtgrp->mon.crdtgrp_list);
4070
4071 rdtgrp->mon.parent = new_prdtgrp;
4072 rdtgrp->closid = new_prdtgrp->closid;
4073
4074 /* Propagate updated closid to all tasks in this group. */
4075 rdt_move_group_tasks(rdtgrp, rdtgrp, cpus);
4076
4077 update_closid_rmid(cpus, NULL);
4078}
4079
4080static int rdtgroup_rename(struct kernfs_node *kn,
4081 struct kernfs_node *new_parent, const char *new_name)
4082{
4083 struct kernfs_node *kn_parent;
4084 struct rdtgroup *new_prdtgrp;
4085 struct rdtgroup *rdtgrp;
4086 cpumask_var_t tmpmask;
4087 int ret;
4088
4089 rdtgrp = kernfs_to_rdtgroup(kn);
4090 new_prdtgrp = kernfs_to_rdtgroup(new_parent);
4091 if (!rdtgrp || !new_prdtgrp)
4092 return -ENOENT;
4093
4094 /* Release both kernfs active_refs before obtaining rdtgroup mutex. */
4095 rdtgroup_kn_get(rdtgrp, kn);
4096 rdtgroup_kn_get(new_prdtgrp, new_parent);
4097
4098 mutex_lock(&rdtgroup_mutex);
4099
4100 rdt_last_cmd_clear();
4101
4102 /*
4103 * Don't allow kernfs_to_rdtgroup() to return a parent rdtgroup if
4104 * either kernfs_node is a file.
4105 */
4106 if (kernfs_type(kn) != KERNFS_DIR ||
4107 kernfs_type(new_parent) != KERNFS_DIR) {
4108 rdt_last_cmd_puts("Source and destination must be directories");
4109 ret = -EPERM;
4110 goto out;
4111 }
4112
4113 if ((rdtgrp->flags & RDT_DELETED) || (new_prdtgrp->flags & RDT_DELETED)) {
4114 ret = -ENOENT;
4115 goto out;
4116 }
4117
4118 kn_parent = rdt_kn_parent(kn);
4119 if (rdtgrp->type != RDTMON_GROUP || !kn_parent ||
4120 !is_mon_groups(kn_parent, rdt_kn_name(kn))) {
4121 rdt_last_cmd_puts("Source must be a MON group\n");
4122 ret = -EPERM;
4123 goto out;
4124 }
4125
4126 if (!is_mon_groups(new_parent, new_name)) {
4127 rdt_last_cmd_puts("Destination must be a mon_groups subdirectory\n");
4128 ret = -EPERM;
4129 goto out;
4130 }
4131
4132 /*
4133 * If the MON group is monitoring CPUs, the CPUs must be assigned to the
4134 * current parent CTRL_MON group and therefore cannot be assigned to
4135 * the new parent, making the move illegal.
4136 */
4137 if (!cpumask_empty(&rdtgrp->cpu_mask) &&
4138 rdtgrp->mon.parent != new_prdtgrp) {
4139 rdt_last_cmd_puts("Cannot move a MON group that monitors CPUs\n");
4140 ret = -EPERM;
4141 goto out;
4142 }
4143
4144 /*
4145 * Allocate the cpumask for use in mongrp_reparent() to avoid the
4146 * possibility of failing to allocate it after kernfs_rename() has
4147 * succeeded.
4148 */
4149 if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL)) {
4150 ret = -ENOMEM;
4151 goto out;
4152 }
4153
4154 /*
4155 * Perform all input validation and allocations needed to ensure
4156 * mongrp_reparent() will succeed before calling kernfs_rename(),
4157 * otherwise it would be necessary to revert this call if
4158 * mongrp_reparent() failed.
4159 */
4160 ret = kernfs_rename(kn, new_parent, new_name);
4161 if (!ret)
4162 mongrp_reparent(rdtgrp, new_prdtgrp, tmpmask);
4163
4164 free_cpumask_var(tmpmask);
4165
4166out:
4167 mutex_unlock(&rdtgroup_mutex);
4168 rdtgroup_kn_put(rdtgrp, kn);
4169 rdtgroup_kn_put(new_prdtgrp, new_parent);
4170 return ret;
4171}
4172
4173static int rdtgroup_show_options(struct seq_file *seq, struct kernfs_root *kf)
4174{
4175 if (resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L3))
4176 seq_puts(seq, ",cdp");
4177
4178 if (resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L2))
4179 seq_puts(seq, ",cdpl2");
4180
4181 if (is_mba_sc(resctrl_arch_get_resource(RDT_RESOURCE_MBA)))
4182 seq_puts(seq, ",mba_MBps");
4183
4184 if (resctrl_debug)
4185 seq_puts(seq, ",debug");
4186
4187 return 0;
4188}
4189
4190static struct kernfs_syscall_ops rdtgroup_kf_syscall_ops = {
4191 .mkdir = rdtgroup_mkdir,
4192 .rmdir = rdtgroup_rmdir,
4193 .rename = rdtgroup_rename,
4194 .show_options = rdtgroup_show_options,
4195};
4196
4197static int rdtgroup_setup_root(struct rdt_fs_context *ctx)
4198{
4199 rdt_root = kernfs_create_root(&rdtgroup_kf_syscall_ops,
4200 KERNFS_ROOT_CREATE_DEACTIVATED |
4201 KERNFS_ROOT_EXTRA_OPEN_PERM_CHECK,
4202 &rdtgroup_default);
4203 if (IS_ERR(rdt_root))
4204 return PTR_ERR(rdt_root);
4205
4206 ctx->kfc.root = rdt_root;
4207 rdtgroup_default.kn = kernfs_root_to_node(rdt_root);
4208
4209 return 0;
4210}
4211
4212static void rdtgroup_destroy_root(void)
4213{
4214 lockdep_assert_held(&rdtgroup_mutex);
4215
4216 kernfs_destroy_root(rdt_root);
4217 rdtgroup_default.kn = NULL;
4218}
4219
4220static void rdtgroup_setup_default(void)
4221{
4222 mutex_lock(&rdtgroup_mutex);
4223
4224 rdtgroup_default.closid = RESCTRL_RESERVED_CLOSID;
4225 rdtgroup_default.mon.rmid = RESCTRL_RESERVED_RMID;
4226 rdtgroup_default.type = RDTCTRL_GROUP;
4227 INIT_LIST_HEAD(&rdtgroup_default.mon.crdtgrp_list);
4228
4229 list_add(&rdtgroup_default.rdtgroup_list, &rdt_all_groups);
4230
4231 mutex_unlock(&rdtgroup_mutex);
4232}
4233
4234static void domain_destroy_mon_state(struct rdt_mon_domain *d)
4235{
4236 int idx;
4237
4238 kfree(d->cntr_cfg);
4239 bitmap_free(d->rmid_busy_llc);
4240 for_each_mbm_idx(idx) {
4241 kfree(d->mbm_states[idx]);
4242 d->mbm_states[idx] = NULL;
4243 }
4244}
4245
4246void resctrl_offline_ctrl_domain(struct rdt_resource *r, struct rdt_ctrl_domain *d)
4247{
4248 mutex_lock(&rdtgroup_mutex);
4249
4250 if (supports_mba_mbps() && r->rid == RDT_RESOURCE_MBA)
4251 mba_sc_domain_destroy(r, d);
4252
4253 mutex_unlock(&rdtgroup_mutex);
4254}
4255
4256void resctrl_offline_mon_domain(struct rdt_resource *r, struct rdt_mon_domain *d)
4257{
4258 mutex_lock(&rdtgroup_mutex);
4259
4260 /*
4261 * If resctrl is mounted, remove all the
4262 * per domain monitor data directories.
4263 */
4264 if (resctrl_mounted && resctrl_arch_mon_capable())
4265 rmdir_mondata_subdir_allrdtgrp(r, d);
4266
4267 if (resctrl_is_mbm_enabled())
4268 cancel_delayed_work(&d->mbm_over);
4269 if (resctrl_is_mon_event_enabled(QOS_L3_OCCUP_EVENT_ID) && has_busy_rmid(d)) {
4270 /*
4271 * When a package is going down, forcefully
4272 * decrement rmid->ebusy. There is no way to know
4273 * that the L3 was flushed and hence may lead to
4274 * incorrect counts in rare scenarios, but leaving
4275 * the RMID as busy creates RMID leaks if the
4276 * package never comes back.
4277 */
4278 __check_limbo(d, true);
4279 cancel_delayed_work(&d->cqm_limbo);
4280 }
4281
4282 domain_destroy_mon_state(d);
4283
4284 mutex_unlock(&rdtgroup_mutex);
4285}
4286
4287/**
4288 * domain_setup_mon_state() - Initialise domain monitoring structures.
4289 * @r: The resource for the newly online domain.
4290 * @d: The newly online domain.
4291 *
4292 * Allocate monitor resources that belong to this domain.
4293 * Called when the first CPU of a domain comes online, regardless of whether
4294 * the filesystem is mounted.
4295 * During boot this may be called before global allocations have been made by
4296 * resctrl_mon_resource_init().
4297 *
4298 * Returns 0 for success, or -ENOMEM.
4299 */
4300static int domain_setup_mon_state(struct rdt_resource *r, struct rdt_mon_domain *d)
4301{
4302 u32 idx_limit = resctrl_arch_system_num_rmid_idx();
4303 size_t tsize = sizeof(*d->mbm_states[0]);
4304 enum resctrl_event_id eventid;
4305 int idx;
4306
4307 if (resctrl_is_mon_event_enabled(QOS_L3_OCCUP_EVENT_ID)) {
4308 d->rmid_busy_llc = bitmap_zalloc(idx_limit, GFP_KERNEL);
4309 if (!d->rmid_busy_llc)
4310 return -ENOMEM;
4311 }
4312
4313 for_each_mbm_event_id(eventid) {
4314 if (!resctrl_is_mon_event_enabled(eventid))
4315 continue;
4316 idx = MBM_STATE_IDX(eventid);
4317 d->mbm_states[idx] = kcalloc(idx_limit, tsize, GFP_KERNEL);
4318 if (!d->mbm_states[idx])
4319 goto cleanup;
4320 }
4321
4322 if (resctrl_is_mbm_enabled() && r->mon.mbm_cntr_assignable) {
4323 tsize = sizeof(*d->cntr_cfg);
4324 d->cntr_cfg = kcalloc(r->mon.num_mbm_cntrs, tsize, GFP_KERNEL);
4325 if (!d->cntr_cfg)
4326 goto cleanup;
4327 }
4328
4329 return 0;
4330cleanup:
4331 bitmap_free(d->rmid_busy_llc);
4332 for_each_mbm_idx(idx) {
4333 kfree(d->mbm_states[idx]);
4334 d->mbm_states[idx] = NULL;
4335 }
4336
4337 return -ENOMEM;
4338}
4339
4340int resctrl_online_ctrl_domain(struct rdt_resource *r, struct rdt_ctrl_domain *d)
4341{
4342 int err = 0;
4343
4344 mutex_lock(&rdtgroup_mutex);
4345
4346 if (supports_mba_mbps() && r->rid == RDT_RESOURCE_MBA) {
4347 /* RDT_RESOURCE_MBA is never mon_capable */
4348 err = mba_sc_domain_allocate(r, d);
4349 }
4350
4351 mutex_unlock(&rdtgroup_mutex);
4352
4353 return err;
4354}
4355
4356int resctrl_online_mon_domain(struct rdt_resource *r, struct rdt_mon_domain *d)
4357{
4358 int err;
4359
4360 mutex_lock(&rdtgroup_mutex);
4361
4362 err = domain_setup_mon_state(r, d);
4363 if (err)
4364 goto out_unlock;
4365
4366 if (resctrl_is_mbm_enabled()) {
4367 INIT_DELAYED_WORK(&d->mbm_over, mbm_handle_overflow);
4368 mbm_setup_overflow_handler(d, MBM_OVERFLOW_INTERVAL,
4369 RESCTRL_PICK_ANY_CPU);
4370 }
4371
4372 if (resctrl_is_mon_event_enabled(QOS_L3_OCCUP_EVENT_ID))
4373 INIT_DELAYED_WORK(&d->cqm_limbo, cqm_handle_limbo);
4374
4375 /*
4376 * If the filesystem is not mounted then only the default resource group
4377 * exists. Creation of its directories is deferred until mount time
4378 * by rdt_get_tree() calling mkdir_mondata_all().
4379 * If resctrl is mounted, add per domain monitor data directories.
4380 */
4381 if (resctrl_mounted && resctrl_arch_mon_capable())
4382 mkdir_mondata_subdir_allrdtgrp(r, d);
4383
4384out_unlock:
4385 mutex_unlock(&rdtgroup_mutex);
4386
4387 return err;
4388}
4389
4390void resctrl_online_cpu(unsigned int cpu)
4391{
4392 mutex_lock(&rdtgroup_mutex);
4393 /* The CPU is set in default rdtgroup after online. */
4394 cpumask_set_cpu(cpu, &rdtgroup_default.cpu_mask);
4395 mutex_unlock(&rdtgroup_mutex);
4396}
4397
4398static void clear_childcpus(struct rdtgroup *r, unsigned int cpu)
4399{
4400 struct rdtgroup *cr;
4401
4402 list_for_each_entry(cr, &r->mon.crdtgrp_list, mon.crdtgrp_list) {
4403 if (cpumask_test_and_clear_cpu(cpu, &cr->cpu_mask))
4404 break;
4405 }
4406}
4407
4408static struct rdt_mon_domain *get_mon_domain_from_cpu(int cpu,
4409 struct rdt_resource *r)
4410{
4411 struct rdt_mon_domain *d;
4412
4413 lockdep_assert_cpus_held();
4414
4415 list_for_each_entry(d, &r->mon_domains, hdr.list) {
4416 /* Find the domain that contains this CPU */
4417 if (cpumask_test_cpu(cpu, &d->hdr.cpu_mask))
4418 return d;
4419 }
4420
4421 return NULL;
4422}
4423
4424void resctrl_offline_cpu(unsigned int cpu)
4425{
4426 struct rdt_resource *l3 = resctrl_arch_get_resource(RDT_RESOURCE_L3);
4427 struct rdt_mon_domain *d;
4428 struct rdtgroup *rdtgrp;
4429
4430 mutex_lock(&rdtgroup_mutex);
4431 list_for_each_entry(rdtgrp, &rdt_all_groups, rdtgroup_list) {
4432 if (cpumask_test_and_clear_cpu(cpu, &rdtgrp->cpu_mask)) {
4433 clear_childcpus(rdtgrp, cpu);
4434 break;
4435 }
4436 }
4437
4438 if (!l3->mon_capable)
4439 goto out_unlock;
4440
4441 d = get_mon_domain_from_cpu(cpu, l3);
4442 if (d) {
4443 if (resctrl_is_mbm_enabled() && cpu == d->mbm_work_cpu) {
4444 cancel_delayed_work(&d->mbm_over);
4445 mbm_setup_overflow_handler(d, 0, cpu);
4446 }
4447 if (resctrl_is_mon_event_enabled(QOS_L3_OCCUP_EVENT_ID) &&
4448 cpu == d->cqm_work_cpu && has_busy_rmid(d)) {
4449 cancel_delayed_work(&d->cqm_limbo);
4450 cqm_setup_limbo_handler(d, 0, cpu);
4451 }
4452 }
4453
4454out_unlock:
4455 mutex_unlock(&rdtgroup_mutex);
4456}
4457
4458/*
4459 * resctrl_init - resctrl filesystem initialization
4460 *
4461 * Setup resctrl file system including set up root, create mount point,
4462 * register resctrl filesystem, and initialize files under root directory.
4463 *
4464 * Return: 0 on success or -errno
4465 */
4466int resctrl_init(void)
4467{
4468 int ret = 0;
4469
4470 seq_buf_init(&last_cmd_status, last_cmd_status_buf,
4471 sizeof(last_cmd_status_buf));
4472
4473 rdtgroup_setup_default();
4474
4475 thread_throttle_mode_init();
4476
4477 io_alloc_init();
4478
4479 ret = resctrl_mon_resource_init();
4480 if (ret)
4481 return ret;
4482
4483 ret = sysfs_create_mount_point(fs_kobj, "resctrl");
4484 if (ret) {
4485 resctrl_mon_resource_exit();
4486 return ret;
4487 }
4488
4489 ret = register_filesystem(&rdt_fs_type);
4490 if (ret)
4491 goto cleanup_mountpoint;
4492
4493 /*
4494 * Adding the resctrl debugfs directory here may not be ideal since
4495 * it would let the resctrl debugfs directory appear on the debugfs
4496 * filesystem before the resctrl filesystem is mounted.
4497 * It may also be ok since that would enable debugging of RDT before
4498 * resctrl is mounted.
4499 * The reason why the debugfs directory is created here and not in
4500 * rdt_get_tree() is because rdt_get_tree() takes rdtgroup_mutex and
4501 * during the debugfs directory creation also &sb->s_type->i_mutex_key
4502 * (the lockdep class of inode->i_rwsem). Other filesystem
4503 * interactions (eg. SyS_getdents) have the lock ordering:
4504 * &sb->s_type->i_mutex_key --> &mm->mmap_lock
4505 * During mmap(), called with &mm->mmap_lock, the rdtgroup_mutex
4506 * is taken, thus creating dependency:
4507 * &mm->mmap_lock --> rdtgroup_mutex for the latter that can cause
4508 * issues considering the other two lock dependencies.
4509 * By creating the debugfs directory here we avoid a dependency
4510 * that may cause deadlock (even though file operations cannot
4511 * occur until the filesystem is mounted, but I do not know how to
4512 * tell lockdep that).
4513 */
4514 debugfs_resctrl = debugfs_create_dir("resctrl", NULL);
4515
4516 return 0;
4517
4518cleanup_mountpoint:
4519 sysfs_remove_mount_point(fs_kobj, "resctrl");
4520 resctrl_mon_resource_exit();
4521
4522 return ret;
4523}
4524
4525static bool resctrl_online_domains_exist(void)
4526{
4527 struct rdt_resource *r;
4528
4529 /*
4530 * Only walk capable resources to allow resctrl_arch_get_resource()
4531 * to return dummy 'not capable' resources.
4532 */
4533 for_each_alloc_capable_rdt_resource(r) {
4534 if (!list_empty(&r->ctrl_domains))
4535 return true;
4536 }
4537
4538 for_each_mon_capable_rdt_resource(r) {
4539 if (!list_empty(&r->mon_domains))
4540 return true;
4541 }
4542
4543 return false;
4544}
4545
4546/**
4547 * resctrl_exit() - Remove the resctrl filesystem and free resources.
4548 *
4549 * Called by the architecture code in response to a fatal error.
4550 * Removes resctrl files and structures from kernfs to prevent further
4551 * configuration.
4552 *
4553 * When called by the architecture code, all CPUs and resctrl domains must be
4554 * offline. This ensures the limbo and overflow handlers are not scheduled to
4555 * run, meaning the data structures they access can be freed by
4556 * resctrl_mon_resource_exit().
4557 *
4558 * After resctrl_exit() returns, the architecture code should return an
4559 * error from all resctrl_arch_ functions that can do this.
4560 * resctrl_arch_get_resource() must continue to return struct rdt_resources
4561 * with the correct rid field to ensure the filesystem can be unmounted.
4562 */
4563void resctrl_exit(void)
4564{
4565 cpus_read_lock();
4566 WARN_ON_ONCE(resctrl_online_domains_exist());
4567
4568 mutex_lock(&rdtgroup_mutex);
4569 resctrl_fs_teardown();
4570 mutex_unlock(&rdtgroup_mutex);
4571
4572 cpus_read_unlock();
4573
4574 debugfs_remove_recursive(debugfs_resctrl);
4575 debugfs_resctrl = NULL;
4576 unregister_filesystem(&rdt_fs_type);
4577
4578 /*
4579 * Do not remove the sysfs mount point added by resctrl_init() so that
4580 * it can be used to umount resctrl.
4581 */
4582
4583 resctrl_mon_resource_exit();
4584}