Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/fs/namespace.c
4 *
5 * (C) Copyright Al Viro 2000, 2001
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
11#include <linux/syscalls.h>
12#include <linux/export.h>
13#include <linux/capability.h>
14#include <linux/mnt_namespace.h>
15#include <linux/user_namespace.h>
16#include <linux/namei.h>
17#include <linux/security.h>
18#include <linux/cred.h>
19#include <linux/idr.h>
20#include <linux/init.h> /* init_rootfs */
21#include <linux/fs_struct.h> /* get_fs_root et.al. */
22#include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23#include <linux/file.h>
24#include <linux/uaccess.h>
25#include <linux/proc_ns.h>
26#include <linux/magic.h>
27#include <linux/memblock.h>
28#include <linux/proc_fs.h>
29#include <linux/task_work.h>
30#include <linux/sched/task.h>
31#include <uapi/linux/mount.h>
32#include <linux/fs_context.h>
33#include <linux/shmem_fs.h>
34#include <linux/mnt_idmapping.h>
35#include <linux/pidfs.h>
36#include <linux/nstree.h>
37
38#include "pnode.h"
39#include "internal.h"
40
41/* Maximum number of mounts in a mount namespace */
42static unsigned int sysctl_mount_max __read_mostly = 100000;
43
44static unsigned int m_hash_mask __ro_after_init;
45static unsigned int m_hash_shift __ro_after_init;
46static unsigned int mp_hash_mask __ro_after_init;
47static unsigned int mp_hash_shift __ro_after_init;
48
49static __initdata unsigned long mhash_entries;
50static int __init set_mhash_entries(char *str)
51{
52 if (!str)
53 return 0;
54 mhash_entries = simple_strtoul(str, &str, 0);
55 return 1;
56}
57__setup("mhash_entries=", set_mhash_entries);
58
59static __initdata unsigned long mphash_entries;
60static int __init set_mphash_entries(char *str)
61{
62 if (!str)
63 return 0;
64 mphash_entries = simple_strtoul(str, &str, 0);
65 return 1;
66}
67__setup("mphash_entries=", set_mphash_entries);
68
69static char * __initdata initramfs_options;
70static int __init initramfs_options_setup(char *str)
71{
72 initramfs_options = str;
73 return 1;
74}
75
76__setup("initramfs_options=", initramfs_options_setup);
77
78static u64 event;
79static DEFINE_XARRAY_FLAGS(mnt_id_xa, XA_FLAGS_ALLOC);
80static DEFINE_IDA(mnt_group_ida);
81
82/* Don't allow confusion with old 32bit mount ID */
83#define MNT_UNIQUE_ID_OFFSET (1ULL << 31)
84static u64 mnt_id_ctr = MNT_UNIQUE_ID_OFFSET;
85
86static struct hlist_head *mount_hashtable __ro_after_init;
87static struct hlist_head *mountpoint_hashtable __ro_after_init;
88static struct kmem_cache *mnt_cache __ro_after_init;
89static DECLARE_RWSEM(namespace_sem);
90static HLIST_HEAD(unmounted); /* protected by namespace_sem */
91static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */
92static struct mnt_namespace *emptied_ns; /* protected by namespace_sem */
93
94static inline void namespace_lock(void);
95static void namespace_unlock(void);
96DEFINE_LOCK_GUARD_0(namespace_excl, namespace_lock(), namespace_unlock())
97DEFINE_LOCK_GUARD_0(namespace_shared, down_read(&namespace_sem),
98 up_read(&namespace_sem))
99
100DEFINE_FREE(mntput, struct vfsmount *, if (!IS_ERR(_T)) mntput(_T))
101
102#ifdef CONFIG_FSNOTIFY
103LIST_HEAD(notify_list); /* protected by namespace_sem */
104#endif
105
106enum mount_kattr_flags_t {
107 MOUNT_KATTR_RECURSE = (1 << 0),
108 MOUNT_KATTR_IDMAP_REPLACE = (1 << 1),
109};
110
111struct mount_kattr {
112 unsigned int attr_set;
113 unsigned int attr_clr;
114 unsigned int propagation;
115 unsigned int lookup_flags;
116 enum mount_kattr_flags_t kflags;
117 struct user_namespace *mnt_userns;
118 struct mnt_idmap *mnt_idmap;
119};
120
121/* /sys/fs */
122struct kobject *fs_kobj __ro_after_init;
123EXPORT_SYMBOL_GPL(fs_kobj);
124
125/*
126 * vfsmount lock may be taken for read to prevent changes to the
127 * vfsmount hash, ie. during mountpoint lookups or walking back
128 * up the tree.
129 *
130 * It should be taken for write in all cases where the vfsmount
131 * tree or hash is modified or when a vfsmount structure is modified.
132 */
133__cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
134
135static void mnt_ns_release(struct mnt_namespace *ns)
136{
137 /* keep alive for {list,stat}mount() */
138 if (ns && refcount_dec_and_test(&ns->passive)) {
139 fsnotify_mntns_delete(ns);
140 put_user_ns(ns->user_ns);
141 kfree(ns);
142 }
143}
144DEFINE_FREE(mnt_ns_release, struct mnt_namespace *,
145 if (!IS_ERR(_T)) mnt_ns_release(_T))
146
147static void mnt_ns_release_rcu(struct rcu_head *rcu)
148{
149 mnt_ns_release(container_of(rcu, struct mnt_namespace, ns.ns_rcu));
150}
151
152static void mnt_ns_tree_remove(struct mnt_namespace *ns)
153{
154 /* remove from global mount namespace list */
155 if (ns_tree_active(ns))
156 ns_tree_remove(ns);
157
158 call_rcu(&ns->ns.ns_rcu, mnt_ns_release_rcu);
159}
160
161/*
162 * Lookup a mount namespace by id and take a passive reference count. Taking a
163 * passive reference means the mount namespace can be emptied if e.g., the last
164 * task holding an active reference exits. To access the mounts of the
165 * namespace the @namespace_sem must first be acquired. If the namespace has
166 * already shut down before acquiring @namespace_sem, {list,stat}mount() will
167 * see that the mount rbtree of the namespace is empty.
168 *
169 * Note the lookup is lockless protected by a sequence counter. We only
170 * need to guard against false negatives as false positives aren't
171 * possible. So if we didn't find a mount namespace and the sequence
172 * counter has changed we need to retry. If the sequence counter is
173 * still the same we know the search actually failed.
174 */
175static struct mnt_namespace *lookup_mnt_ns(u64 mnt_ns_id)
176{
177 struct mnt_namespace *mnt_ns;
178 struct ns_common *ns;
179
180 guard(rcu)();
181 ns = ns_tree_lookup_rcu(mnt_ns_id, CLONE_NEWNS);
182 if (!ns)
183 return NULL;
184
185 /*
186 * The last reference count is put with RCU delay so we can
187 * unconditonally acquire a reference here.
188 */
189 mnt_ns = container_of(ns, struct mnt_namespace, ns);
190 refcount_inc(&mnt_ns->passive);
191 return mnt_ns;
192}
193
194static inline void lock_mount_hash(void)
195{
196 write_seqlock(&mount_lock);
197}
198
199static inline void unlock_mount_hash(void)
200{
201 write_sequnlock(&mount_lock);
202}
203
204static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
205{
206 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
207 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
208 tmp = tmp + (tmp >> m_hash_shift);
209 return &mount_hashtable[tmp & m_hash_mask];
210}
211
212static inline struct hlist_head *mp_hash(struct dentry *dentry)
213{
214 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
215 tmp = tmp + (tmp >> mp_hash_shift);
216 return &mountpoint_hashtable[tmp & mp_hash_mask];
217}
218
219static int mnt_alloc_id(struct mount *mnt)
220{
221 int res;
222
223 xa_lock(&mnt_id_xa);
224 res = __xa_alloc(&mnt_id_xa, &mnt->mnt_id, mnt, XA_LIMIT(1, INT_MAX), GFP_KERNEL);
225 if (!res)
226 mnt->mnt_id_unique = ++mnt_id_ctr;
227 xa_unlock(&mnt_id_xa);
228 return res;
229}
230
231static void mnt_free_id(struct mount *mnt)
232{
233 xa_erase(&mnt_id_xa, mnt->mnt_id);
234}
235
236/*
237 * Allocate a new peer group ID
238 */
239static int mnt_alloc_group_id(struct mount *mnt)
240{
241 int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
242
243 if (res < 0)
244 return res;
245 mnt->mnt_group_id = res;
246 return 0;
247}
248
249/*
250 * Release a peer group ID
251 */
252void mnt_release_group_id(struct mount *mnt)
253{
254 ida_free(&mnt_group_ida, mnt->mnt_group_id);
255 mnt->mnt_group_id = 0;
256}
257
258/*
259 * vfsmount lock must be held for read
260 */
261static inline void mnt_add_count(struct mount *mnt, int n)
262{
263#ifdef CONFIG_SMP
264 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
265#else
266 preempt_disable();
267 mnt->mnt_count += n;
268 preempt_enable();
269#endif
270}
271
272/*
273 * vfsmount lock must be held for write
274 */
275int mnt_get_count(struct mount *mnt)
276{
277#ifdef CONFIG_SMP
278 int count = 0;
279 int cpu;
280
281 for_each_possible_cpu(cpu) {
282 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
283 }
284
285 return count;
286#else
287 return mnt->mnt_count;
288#endif
289}
290
291static struct mount *alloc_vfsmnt(const char *name)
292{
293 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
294 if (mnt) {
295 int err;
296
297 err = mnt_alloc_id(mnt);
298 if (err)
299 goto out_free_cache;
300
301 if (name)
302 mnt->mnt_devname = kstrdup_const(name,
303 GFP_KERNEL_ACCOUNT);
304 else
305 mnt->mnt_devname = "none";
306 if (!mnt->mnt_devname)
307 goto out_free_id;
308
309#ifdef CONFIG_SMP
310 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
311 if (!mnt->mnt_pcp)
312 goto out_free_devname;
313
314 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
315#else
316 mnt->mnt_count = 1;
317 mnt->mnt_writers = 0;
318#endif
319
320 INIT_HLIST_NODE(&mnt->mnt_hash);
321 INIT_LIST_HEAD(&mnt->mnt_child);
322 INIT_LIST_HEAD(&mnt->mnt_mounts);
323 INIT_LIST_HEAD(&mnt->mnt_list);
324 INIT_LIST_HEAD(&mnt->mnt_expire);
325 INIT_LIST_HEAD(&mnt->mnt_share);
326 INIT_HLIST_HEAD(&mnt->mnt_slave_list);
327 INIT_HLIST_NODE(&mnt->mnt_slave);
328 INIT_HLIST_NODE(&mnt->mnt_mp_list);
329 INIT_HLIST_HEAD(&mnt->mnt_stuck_children);
330 RB_CLEAR_NODE(&mnt->mnt_node);
331 mnt->mnt.mnt_idmap = &nop_mnt_idmap;
332 }
333 return mnt;
334
335#ifdef CONFIG_SMP
336out_free_devname:
337 kfree_const(mnt->mnt_devname);
338#endif
339out_free_id:
340 mnt_free_id(mnt);
341out_free_cache:
342 kmem_cache_free(mnt_cache, mnt);
343 return NULL;
344}
345
346/*
347 * Most r/o checks on a fs are for operations that take
348 * discrete amounts of time, like a write() or unlink().
349 * We must keep track of when those operations start
350 * (for permission checks) and when they end, so that
351 * we can determine when writes are able to occur to
352 * a filesystem.
353 */
354/*
355 * __mnt_is_readonly: check whether a mount is read-only
356 * @mnt: the mount to check for its write status
357 *
358 * This shouldn't be used directly ouside of the VFS.
359 * It does not guarantee that the filesystem will stay
360 * r/w, just that it is right *now*. This can not and
361 * should not be used in place of IS_RDONLY(inode).
362 * mnt_want/drop_write() will _keep_ the filesystem
363 * r/w.
364 */
365bool __mnt_is_readonly(const struct vfsmount *mnt)
366{
367 return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
368}
369EXPORT_SYMBOL_GPL(__mnt_is_readonly);
370
371static inline void mnt_inc_writers(struct mount *mnt)
372{
373#ifdef CONFIG_SMP
374 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
375#else
376 mnt->mnt_writers++;
377#endif
378}
379
380static inline void mnt_dec_writers(struct mount *mnt)
381{
382#ifdef CONFIG_SMP
383 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
384#else
385 mnt->mnt_writers--;
386#endif
387}
388
389static unsigned int mnt_get_writers(struct mount *mnt)
390{
391#ifdef CONFIG_SMP
392 unsigned int count = 0;
393 int cpu;
394
395 for_each_possible_cpu(cpu) {
396 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
397 }
398
399 return count;
400#else
401 return mnt->mnt_writers;
402#endif
403}
404
405static int mnt_is_readonly(const struct vfsmount *mnt)
406{
407 if (READ_ONCE(mnt->mnt_sb->s_readonly_remount))
408 return 1;
409 /*
410 * The barrier pairs with the barrier in sb_start_ro_state_change()
411 * making sure if we don't see s_readonly_remount set yet, we also will
412 * not see any superblock / mount flag changes done by remount.
413 * It also pairs with the barrier in sb_end_ro_state_change()
414 * assuring that if we see s_readonly_remount already cleared, we will
415 * see the values of superblock / mount flags updated by remount.
416 */
417 smp_rmb();
418 return __mnt_is_readonly(mnt);
419}
420
421/*
422 * Most r/o & frozen checks on a fs are for operations that take discrete
423 * amounts of time, like a write() or unlink(). We must keep track of when
424 * those operations start (for permission checks) and when they end, so that we
425 * can determine when writes are able to occur to a filesystem.
426 */
427/**
428 * mnt_get_write_access - get write access to a mount without freeze protection
429 * @m: the mount on which to take a write
430 *
431 * This tells the low-level filesystem that a write is about to be performed to
432 * it, and makes sure that writes are allowed (mnt it read-write) before
433 * returning success. This operation does not protect against filesystem being
434 * frozen. When the write operation is finished, mnt_put_write_access() must be
435 * called. This is effectively a refcount.
436 */
437int mnt_get_write_access(struct vfsmount *m)
438{
439 struct mount *mnt = real_mount(m);
440 int ret = 0;
441
442 preempt_disable();
443 mnt_inc_writers(mnt);
444 /*
445 * The store to mnt_inc_writers must be visible before we pass
446 * WRITE_HOLD loop below, so that the slowpath can see our
447 * incremented count after it has set WRITE_HOLD.
448 */
449 smp_mb();
450 might_lock(&mount_lock.lock);
451 while (__test_write_hold(READ_ONCE(mnt->mnt_pprev_for_sb))) {
452 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
453 cpu_relax();
454 } else {
455 /*
456 * This prevents priority inversion, if the task
457 * setting WRITE_HOLD got preempted on a remote
458 * CPU, and it prevents life lock if the task setting
459 * WRITE_HOLD has a lower priority and is bound to
460 * the same CPU as the task that is spinning here.
461 */
462 preempt_enable();
463 read_seqlock_excl(&mount_lock);
464 read_sequnlock_excl(&mount_lock);
465 preempt_disable();
466 }
467 }
468 /*
469 * The barrier pairs with the barrier sb_start_ro_state_change() making
470 * sure that if we see WRITE_HOLD cleared, we will also see
471 * s_readonly_remount set (or even SB_RDONLY / MNT_READONLY flags) in
472 * mnt_is_readonly() and bail in case we are racing with remount
473 * read-only.
474 */
475 smp_rmb();
476 if (mnt_is_readonly(m)) {
477 mnt_dec_writers(mnt);
478 ret = -EROFS;
479 }
480 preempt_enable();
481
482 return ret;
483}
484EXPORT_SYMBOL_GPL(mnt_get_write_access);
485
486/**
487 * mnt_want_write - get write access to a mount
488 * @m: the mount on which to take a write
489 *
490 * This tells the low-level filesystem that a write is about to be performed to
491 * it, and makes sure that writes are allowed (mount is read-write, filesystem
492 * is not frozen) before returning success. When the write operation is
493 * finished, mnt_drop_write() must be called. This is effectively a refcount.
494 */
495int mnt_want_write(struct vfsmount *m)
496{
497 int ret;
498
499 sb_start_write(m->mnt_sb);
500 ret = mnt_get_write_access(m);
501 if (ret)
502 sb_end_write(m->mnt_sb);
503 return ret;
504}
505EXPORT_SYMBOL_GPL(mnt_want_write);
506
507/**
508 * mnt_get_write_access_file - get write access to a file's mount
509 * @file: the file who's mount on which to take a write
510 *
511 * This is like mnt_get_write_access, but if @file is already open for write it
512 * skips incrementing mnt_writers (since the open file already has a reference)
513 * and instead only does the check for emergency r/o remounts. This must be
514 * paired with mnt_put_write_access_file.
515 */
516int mnt_get_write_access_file(struct file *file)
517{
518 if (file->f_mode & FMODE_WRITER) {
519 /*
520 * Superblock may have become readonly while there are still
521 * writable fd's, e.g. due to a fs error with errors=remount-ro
522 */
523 if (__mnt_is_readonly(file->f_path.mnt))
524 return -EROFS;
525 return 0;
526 }
527 return mnt_get_write_access(file->f_path.mnt);
528}
529
530/**
531 * mnt_want_write_file - get write access to a file's mount
532 * @file: the file who's mount on which to take a write
533 *
534 * This is like mnt_want_write, but if the file is already open for writing it
535 * skips incrementing mnt_writers (since the open file already has a reference)
536 * and instead only does the freeze protection and the check for emergency r/o
537 * remounts. This must be paired with mnt_drop_write_file.
538 */
539int mnt_want_write_file(struct file *file)
540{
541 int ret;
542
543 sb_start_write(file_inode(file)->i_sb);
544 ret = mnt_get_write_access_file(file);
545 if (ret)
546 sb_end_write(file_inode(file)->i_sb);
547 return ret;
548}
549EXPORT_SYMBOL_GPL(mnt_want_write_file);
550
551/**
552 * mnt_put_write_access - give up write access to a mount
553 * @mnt: the mount on which to give up write access
554 *
555 * Tells the low-level filesystem that we are done
556 * performing writes to it. Must be matched with
557 * mnt_get_write_access() call above.
558 */
559void mnt_put_write_access(struct vfsmount *mnt)
560{
561 preempt_disable();
562 mnt_dec_writers(real_mount(mnt));
563 preempt_enable();
564}
565EXPORT_SYMBOL_GPL(mnt_put_write_access);
566
567/**
568 * mnt_drop_write - give up write access to a mount
569 * @mnt: the mount on which to give up write access
570 *
571 * Tells the low-level filesystem that we are done performing writes to it and
572 * also allows filesystem to be frozen again. Must be matched with
573 * mnt_want_write() call above.
574 */
575void mnt_drop_write(struct vfsmount *mnt)
576{
577 mnt_put_write_access(mnt);
578 sb_end_write(mnt->mnt_sb);
579}
580EXPORT_SYMBOL_GPL(mnt_drop_write);
581
582void mnt_put_write_access_file(struct file *file)
583{
584 if (!(file->f_mode & FMODE_WRITER))
585 mnt_put_write_access(file->f_path.mnt);
586}
587
588void mnt_drop_write_file(struct file *file)
589{
590 mnt_put_write_access_file(file);
591 sb_end_write(file_inode(file)->i_sb);
592}
593EXPORT_SYMBOL(mnt_drop_write_file);
594
595/**
596 * mnt_hold_writers - prevent write access to the given mount
597 * @mnt: mnt to prevent write access to
598 *
599 * Prevents write access to @mnt if there are no active writers for @mnt.
600 * This function needs to be called and return successfully before changing
601 * properties of @mnt that need to remain stable for callers with write access
602 * to @mnt.
603 *
604 * After this functions has been called successfully callers must pair it with
605 * a call to mnt_unhold_writers() in order to stop preventing write access to
606 * @mnt.
607 *
608 * Context: This function expects to be in mount_locked_reader scope serializing
609 * setting WRITE_HOLD.
610 * Return: On success 0 is returned.
611 * On error, -EBUSY is returned.
612 */
613static inline int mnt_hold_writers(struct mount *mnt)
614{
615 set_write_hold(mnt);
616 /*
617 * After storing WRITE_HOLD, we'll read the counters. This store
618 * should be visible before we do.
619 */
620 smp_mb();
621
622 /*
623 * With writers on hold, if this value is zero, then there are
624 * definitely no active writers (although held writers may subsequently
625 * increment the count, they'll have to wait, and decrement it after
626 * seeing MNT_READONLY).
627 *
628 * It is OK to have counter incremented on one CPU and decremented on
629 * another: the sum will add up correctly. The danger would be when we
630 * sum up each counter, if we read a counter before it is incremented,
631 * but then read another CPU's count which it has been subsequently
632 * decremented from -- we would see more decrements than we should.
633 * WRITE_HOLD protects against this scenario, because
634 * mnt_want_write first increments count, then smp_mb, then spins on
635 * WRITE_HOLD, so it can't be decremented by another CPU while
636 * we're counting up here.
637 */
638 if (mnt_get_writers(mnt) > 0)
639 return -EBUSY;
640
641 return 0;
642}
643
644/**
645 * mnt_unhold_writers - stop preventing write access to the given mount
646 * @mnt: mnt to stop preventing write access to
647 *
648 * Stop preventing write access to @mnt allowing callers to gain write access
649 * to @mnt again.
650 *
651 * This function can only be called after a call to mnt_hold_writers().
652 *
653 * Context: This function expects to be in the same mount_locked_reader scope
654 * as the matching mnt_hold_writers().
655 */
656static inline void mnt_unhold_writers(struct mount *mnt)
657{
658 if (!test_write_hold(mnt))
659 return;
660 /*
661 * MNT_READONLY must become visible before ~WRITE_HOLD, so writers
662 * that become unheld will see MNT_READONLY.
663 */
664 smp_wmb();
665 clear_write_hold(mnt);
666}
667
668static inline void mnt_del_instance(struct mount *m)
669{
670 struct mount **p = m->mnt_pprev_for_sb;
671 struct mount *next = m->mnt_next_for_sb;
672
673 if (next)
674 next->mnt_pprev_for_sb = p;
675 *p = next;
676}
677
678static inline void mnt_add_instance(struct mount *m, struct super_block *s)
679{
680 struct mount *first = s->s_mounts;
681
682 if (first)
683 first->mnt_pprev_for_sb = &m->mnt_next_for_sb;
684 m->mnt_next_for_sb = first;
685 m->mnt_pprev_for_sb = &s->s_mounts;
686 s->s_mounts = m;
687}
688
689static int mnt_make_readonly(struct mount *mnt)
690{
691 int ret;
692
693 ret = mnt_hold_writers(mnt);
694 if (!ret)
695 mnt->mnt.mnt_flags |= MNT_READONLY;
696 mnt_unhold_writers(mnt);
697 return ret;
698}
699
700int sb_prepare_remount_readonly(struct super_block *sb)
701{
702 int err = 0;
703
704 /* Racy optimization. Recheck the counter under WRITE_HOLD */
705 if (atomic_long_read(&sb->s_remove_count))
706 return -EBUSY;
707
708 guard(mount_locked_reader)();
709
710 for (struct mount *m = sb->s_mounts; m; m = m->mnt_next_for_sb) {
711 if (!(m->mnt.mnt_flags & MNT_READONLY)) {
712 err = mnt_hold_writers(m);
713 if (err)
714 break;
715 }
716 }
717 if (!err && atomic_long_read(&sb->s_remove_count))
718 err = -EBUSY;
719
720 if (!err)
721 sb_start_ro_state_change(sb);
722 for (struct mount *m = sb->s_mounts; m; m = m->mnt_next_for_sb) {
723 if (test_write_hold(m))
724 clear_write_hold(m);
725 }
726
727 return err;
728}
729
730static void free_vfsmnt(struct mount *mnt)
731{
732 mnt_idmap_put(mnt_idmap(&mnt->mnt));
733 kfree_const(mnt->mnt_devname);
734#ifdef CONFIG_SMP
735 free_percpu(mnt->mnt_pcp);
736#endif
737 kmem_cache_free(mnt_cache, mnt);
738}
739
740static void delayed_free_vfsmnt(struct rcu_head *head)
741{
742 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
743}
744
745/* call under rcu_read_lock */
746int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
747{
748 struct mount *mnt;
749 if (read_seqretry(&mount_lock, seq))
750 return 1;
751 if (bastard == NULL)
752 return 0;
753 mnt = real_mount(bastard);
754 mnt_add_count(mnt, 1);
755 smp_mb(); // see mntput_no_expire() and do_umount()
756 if (likely(!read_seqretry(&mount_lock, seq)))
757 return 0;
758 lock_mount_hash();
759 if (unlikely(bastard->mnt_flags & (MNT_SYNC_UMOUNT | MNT_DOOMED))) {
760 mnt_add_count(mnt, -1);
761 unlock_mount_hash();
762 return 1;
763 }
764 unlock_mount_hash();
765 /* caller will mntput() */
766 return -1;
767}
768
769/* call under rcu_read_lock */
770static bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
771{
772 int res = __legitimize_mnt(bastard, seq);
773 if (likely(!res))
774 return true;
775 if (unlikely(res < 0)) {
776 rcu_read_unlock();
777 mntput(bastard);
778 rcu_read_lock();
779 }
780 return false;
781}
782
783/**
784 * __lookup_mnt - mount hash lookup
785 * @mnt: parent mount
786 * @dentry: dentry of mountpoint
787 *
788 * If @mnt has a child mount @c mounted on @dentry find and return it.
789 * Caller must either hold the spinlock component of @mount_lock or
790 * hold rcu_read_lock(), sample the seqcount component before the call
791 * and recheck it afterwards.
792 *
793 * Return: The child of @mnt mounted on @dentry or %NULL.
794 */
795struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
796{
797 struct hlist_head *head = m_hash(mnt, dentry);
798 struct mount *p;
799
800 hlist_for_each_entry_rcu(p, head, mnt_hash)
801 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
802 return p;
803 return NULL;
804}
805
806/**
807 * lookup_mnt - Return the child mount mounted at given location
808 * @path: location in the namespace
809 *
810 * Acquires and returns a new reference to mount at given location
811 * or %NULL if nothing is mounted there.
812 */
813struct vfsmount *lookup_mnt(const struct path *path)
814{
815 struct mount *child_mnt;
816 struct vfsmount *m;
817 unsigned seq;
818
819 rcu_read_lock();
820 do {
821 seq = read_seqbegin(&mount_lock);
822 child_mnt = __lookup_mnt(path->mnt, path->dentry);
823 m = child_mnt ? &child_mnt->mnt : NULL;
824 } while (!legitimize_mnt(m, seq));
825 rcu_read_unlock();
826 return m;
827}
828
829/*
830 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
831 * current mount namespace.
832 *
833 * The common case is dentries are not mountpoints at all and that
834 * test is handled inline. For the slow case when we are actually
835 * dealing with a mountpoint of some kind, walk through all of the
836 * mounts in the current mount namespace and test to see if the dentry
837 * is a mountpoint.
838 *
839 * The mount_hashtable is not usable in the context because we
840 * need to identify all mounts that may be in the current mount
841 * namespace not just a mount that happens to have some specified
842 * parent mount.
843 */
844bool __is_local_mountpoint(const struct dentry *dentry)
845{
846 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
847 struct mount *mnt, *n;
848
849 guard(namespace_shared)();
850
851 rbtree_postorder_for_each_entry_safe(mnt, n, &ns->mounts, mnt_node)
852 if (mnt->mnt_mountpoint == dentry)
853 return true;
854
855 return false;
856}
857
858struct pinned_mountpoint {
859 struct hlist_node node;
860 struct mountpoint *mp;
861 struct mount *parent;
862};
863
864static bool lookup_mountpoint(struct dentry *dentry, struct pinned_mountpoint *m)
865{
866 struct hlist_head *chain = mp_hash(dentry);
867 struct mountpoint *mp;
868
869 hlist_for_each_entry(mp, chain, m_hash) {
870 if (mp->m_dentry == dentry) {
871 hlist_add_head(&m->node, &mp->m_list);
872 m->mp = mp;
873 return true;
874 }
875 }
876 return false;
877}
878
879static int get_mountpoint(struct dentry *dentry, struct pinned_mountpoint *m)
880{
881 struct mountpoint *mp __free(kfree) = NULL;
882 bool found;
883 int ret;
884
885 if (d_mountpoint(dentry)) {
886 /* might be worth a WARN_ON() */
887 if (d_unlinked(dentry))
888 return -ENOENT;
889mountpoint:
890 read_seqlock_excl(&mount_lock);
891 found = lookup_mountpoint(dentry, m);
892 read_sequnlock_excl(&mount_lock);
893 if (found)
894 return 0;
895 }
896
897 if (!mp)
898 mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
899 if (!mp)
900 return -ENOMEM;
901
902 /* Exactly one processes may set d_mounted */
903 ret = d_set_mounted(dentry);
904
905 /* Someone else set d_mounted? */
906 if (ret == -EBUSY)
907 goto mountpoint;
908
909 /* The dentry is not available as a mountpoint? */
910 if (ret)
911 return ret;
912
913 /* Add the new mountpoint to the hash table */
914 read_seqlock_excl(&mount_lock);
915 mp->m_dentry = dget(dentry);
916 hlist_add_head(&mp->m_hash, mp_hash(dentry));
917 INIT_HLIST_HEAD(&mp->m_list);
918 hlist_add_head(&m->node, &mp->m_list);
919 m->mp = no_free_ptr(mp);
920 read_sequnlock_excl(&mount_lock);
921 return 0;
922}
923
924/*
925 * vfsmount lock must be held. Additionally, the caller is responsible
926 * for serializing calls for given disposal list.
927 */
928static void maybe_free_mountpoint(struct mountpoint *mp, struct list_head *list)
929{
930 if (hlist_empty(&mp->m_list)) {
931 struct dentry *dentry = mp->m_dentry;
932 spin_lock(&dentry->d_lock);
933 dentry->d_flags &= ~DCACHE_MOUNTED;
934 spin_unlock(&dentry->d_lock);
935 dput_to_list(dentry, list);
936 hlist_del(&mp->m_hash);
937 kfree(mp);
938 }
939}
940
941/*
942 * locks: mount_lock [read_seqlock_excl], namespace_sem [excl]
943 */
944static void unpin_mountpoint(struct pinned_mountpoint *m)
945{
946 if (m->mp) {
947 hlist_del(&m->node);
948 maybe_free_mountpoint(m->mp, &ex_mountpoints);
949 }
950}
951
952static inline int check_mnt(const struct mount *mnt)
953{
954 return mnt->mnt_ns == current->nsproxy->mnt_ns;
955}
956
957static inline bool check_anonymous_mnt(struct mount *mnt)
958{
959 u64 seq;
960
961 if (!is_anon_ns(mnt->mnt_ns))
962 return false;
963
964 seq = mnt->mnt_ns->seq_origin;
965 return !seq || (seq == current->nsproxy->mnt_ns->ns.ns_id);
966}
967
968/*
969 * vfsmount lock must be held for write
970 */
971static void touch_mnt_namespace(struct mnt_namespace *ns)
972{
973 if (ns) {
974 ns->event = ++event;
975 wake_up_interruptible(&ns->poll);
976 }
977}
978
979/*
980 * vfsmount lock must be held for write
981 */
982static void __touch_mnt_namespace(struct mnt_namespace *ns)
983{
984 if (ns && ns->event != event) {
985 ns->event = event;
986 wake_up_interruptible(&ns->poll);
987 }
988}
989
990/*
991 * locks: mount_lock[write_seqlock]
992 */
993static void __umount_mnt(struct mount *mnt, struct list_head *shrink_list)
994{
995 struct mountpoint *mp;
996 struct mount *parent = mnt->mnt_parent;
997 if (unlikely(parent->overmount == mnt))
998 parent->overmount = NULL;
999 mnt->mnt_parent = mnt;
1000 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1001 list_del_init(&mnt->mnt_child);
1002 hlist_del_init_rcu(&mnt->mnt_hash);
1003 hlist_del_init(&mnt->mnt_mp_list);
1004 mp = mnt->mnt_mp;
1005 mnt->mnt_mp = NULL;
1006 maybe_free_mountpoint(mp, shrink_list);
1007}
1008
1009/*
1010 * locks: mount_lock[write_seqlock], namespace_sem[excl] (for ex_mountpoints)
1011 */
1012static void umount_mnt(struct mount *mnt)
1013{
1014 __umount_mnt(mnt, &ex_mountpoints);
1015}
1016
1017/*
1018 * vfsmount lock must be held for write
1019 */
1020void mnt_set_mountpoint(struct mount *mnt,
1021 struct mountpoint *mp,
1022 struct mount *child_mnt)
1023{
1024 child_mnt->mnt_mountpoint = mp->m_dentry;
1025 child_mnt->mnt_parent = mnt;
1026 child_mnt->mnt_mp = mp;
1027 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
1028}
1029
1030static void make_visible(struct mount *mnt)
1031{
1032 struct mount *parent = mnt->mnt_parent;
1033 if (unlikely(mnt->mnt_mountpoint == parent->mnt.mnt_root))
1034 parent->overmount = mnt;
1035 hlist_add_head_rcu(&mnt->mnt_hash,
1036 m_hash(&parent->mnt, mnt->mnt_mountpoint));
1037 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
1038}
1039
1040/**
1041 * attach_mnt - mount a mount, attach to @mount_hashtable and parent's
1042 * list of child mounts
1043 * @parent: the parent
1044 * @mnt: the new mount
1045 * @mp: the new mountpoint
1046 *
1047 * Mount @mnt at @mp on @parent. Then attach @mnt
1048 * to @parent's child mount list and to @mount_hashtable.
1049 *
1050 * Note, when make_visible() is called @mnt->mnt_parent already points
1051 * to the correct parent.
1052 *
1053 * Context: This function expects namespace_lock() and lock_mount_hash()
1054 * to have been acquired in that order.
1055 */
1056static void attach_mnt(struct mount *mnt, struct mount *parent,
1057 struct mountpoint *mp)
1058{
1059 mnt_set_mountpoint(parent, mp, mnt);
1060 make_visible(mnt);
1061}
1062
1063void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
1064{
1065 struct mountpoint *old_mp = mnt->mnt_mp;
1066
1067 list_del_init(&mnt->mnt_child);
1068 hlist_del_init(&mnt->mnt_mp_list);
1069 hlist_del_init_rcu(&mnt->mnt_hash);
1070
1071 attach_mnt(mnt, parent, mp);
1072
1073 maybe_free_mountpoint(old_mp, &ex_mountpoints);
1074}
1075
1076static inline struct mount *node_to_mount(struct rb_node *node)
1077{
1078 return node ? rb_entry(node, struct mount, mnt_node) : NULL;
1079}
1080
1081static void mnt_add_to_ns(struct mnt_namespace *ns, struct mount *mnt)
1082{
1083 struct rb_node **link = &ns->mounts.rb_node;
1084 struct rb_node *parent = NULL;
1085 bool mnt_first_node = true, mnt_last_node = true;
1086
1087 WARN_ON(mnt_ns_attached(mnt));
1088 mnt->mnt_ns = ns;
1089 while (*link) {
1090 parent = *link;
1091 if (mnt->mnt_id_unique < node_to_mount(parent)->mnt_id_unique) {
1092 link = &parent->rb_left;
1093 mnt_last_node = false;
1094 } else {
1095 link = &parent->rb_right;
1096 mnt_first_node = false;
1097 }
1098 }
1099
1100 if (mnt_last_node)
1101 ns->mnt_last_node = &mnt->mnt_node;
1102 if (mnt_first_node)
1103 ns->mnt_first_node = &mnt->mnt_node;
1104 rb_link_node(&mnt->mnt_node, parent, link);
1105 rb_insert_color(&mnt->mnt_node, &ns->mounts);
1106
1107 mnt_notify_add(mnt);
1108}
1109
1110static struct mount *next_mnt(struct mount *p, struct mount *root)
1111{
1112 struct list_head *next = p->mnt_mounts.next;
1113 if (next == &p->mnt_mounts) {
1114 while (1) {
1115 if (p == root)
1116 return NULL;
1117 next = p->mnt_child.next;
1118 if (next != &p->mnt_parent->mnt_mounts)
1119 break;
1120 p = p->mnt_parent;
1121 }
1122 }
1123 return list_entry(next, struct mount, mnt_child);
1124}
1125
1126static struct mount *skip_mnt_tree(struct mount *p)
1127{
1128 struct list_head *prev = p->mnt_mounts.prev;
1129 while (prev != &p->mnt_mounts) {
1130 p = list_entry(prev, struct mount, mnt_child);
1131 prev = p->mnt_mounts.prev;
1132 }
1133 return p;
1134}
1135
1136/*
1137 * vfsmount lock must be held for write
1138 */
1139static void commit_tree(struct mount *mnt)
1140{
1141 struct mnt_namespace *n = mnt->mnt_parent->mnt_ns;
1142
1143 if (!mnt_ns_attached(mnt)) {
1144 for (struct mount *m = mnt; m; m = next_mnt(m, mnt))
1145 mnt_add_to_ns(n, m);
1146 n->nr_mounts += n->pending_mounts;
1147 n->pending_mounts = 0;
1148 }
1149
1150 make_visible(mnt);
1151 touch_mnt_namespace(n);
1152}
1153
1154static void setup_mnt(struct mount *m, struct dentry *root)
1155{
1156 struct super_block *s = root->d_sb;
1157
1158 atomic_inc(&s->s_active);
1159 m->mnt.mnt_sb = s;
1160 m->mnt.mnt_root = dget(root);
1161 m->mnt_mountpoint = m->mnt.mnt_root;
1162 m->mnt_parent = m;
1163
1164 guard(mount_locked_reader)();
1165 mnt_add_instance(m, s);
1166}
1167
1168/**
1169 * vfs_create_mount - Create a mount for a configured superblock
1170 * @fc: The configuration context with the superblock attached
1171 *
1172 * Create a mount to an already configured superblock. If necessary, the
1173 * caller should invoke vfs_get_tree() before calling this.
1174 *
1175 * Note that this does not attach the mount to anything.
1176 */
1177struct vfsmount *vfs_create_mount(struct fs_context *fc)
1178{
1179 struct mount *mnt;
1180
1181 if (!fc->root)
1182 return ERR_PTR(-EINVAL);
1183
1184 mnt = alloc_vfsmnt(fc->source);
1185 if (!mnt)
1186 return ERR_PTR(-ENOMEM);
1187
1188 if (fc->sb_flags & SB_KERNMOUNT)
1189 mnt->mnt.mnt_flags = MNT_INTERNAL;
1190
1191 setup_mnt(mnt, fc->root);
1192
1193 return &mnt->mnt;
1194}
1195EXPORT_SYMBOL(vfs_create_mount);
1196
1197struct vfsmount *fc_mount(struct fs_context *fc)
1198{
1199 int err = vfs_get_tree(fc);
1200 if (!err) {
1201 up_write(&fc->root->d_sb->s_umount);
1202 return vfs_create_mount(fc);
1203 }
1204 return ERR_PTR(err);
1205}
1206EXPORT_SYMBOL(fc_mount);
1207
1208struct vfsmount *fc_mount_longterm(struct fs_context *fc)
1209{
1210 struct vfsmount *mnt = fc_mount(fc);
1211 if (!IS_ERR(mnt))
1212 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
1213 return mnt;
1214}
1215EXPORT_SYMBOL(fc_mount_longterm);
1216
1217struct vfsmount *vfs_kern_mount(struct file_system_type *type,
1218 int flags, const char *name,
1219 void *data)
1220{
1221 struct fs_context *fc;
1222 struct vfsmount *mnt;
1223 int ret = 0;
1224
1225 if (!type)
1226 return ERR_PTR(-EINVAL);
1227
1228 fc = fs_context_for_mount(type, flags);
1229 if (IS_ERR(fc))
1230 return ERR_CAST(fc);
1231
1232 if (name)
1233 ret = vfs_parse_fs_string(fc, "source", name);
1234 if (!ret)
1235 ret = parse_monolithic_mount_data(fc, data);
1236 if (!ret)
1237 mnt = fc_mount(fc);
1238 else
1239 mnt = ERR_PTR(ret);
1240
1241 put_fs_context(fc);
1242 return mnt;
1243}
1244EXPORT_SYMBOL_GPL(vfs_kern_mount);
1245
1246static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1247 int flag)
1248{
1249 struct mount *mnt;
1250 int err;
1251
1252 mnt = alloc_vfsmnt(old->mnt_devname);
1253 if (!mnt)
1254 return ERR_PTR(-ENOMEM);
1255
1256 mnt->mnt.mnt_flags = READ_ONCE(old->mnt.mnt_flags) &
1257 ~MNT_INTERNAL_FLAGS;
1258
1259 if (flag & (CL_SLAVE | CL_PRIVATE))
1260 mnt->mnt_group_id = 0; /* not a peer of original */
1261 else
1262 mnt->mnt_group_id = old->mnt_group_id;
1263
1264 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1265 err = mnt_alloc_group_id(mnt);
1266 if (err)
1267 goto out_free;
1268 }
1269
1270 if (mnt->mnt_group_id)
1271 set_mnt_shared(mnt);
1272
1273 mnt->mnt.mnt_idmap = mnt_idmap_get(mnt_idmap(&old->mnt));
1274
1275 setup_mnt(mnt, root);
1276
1277 if (flag & CL_PRIVATE) // we are done with it
1278 return mnt;
1279
1280 if (peers(mnt, old))
1281 list_add(&mnt->mnt_share, &old->mnt_share);
1282
1283 if ((flag & CL_SLAVE) && old->mnt_group_id) {
1284 hlist_add_head(&mnt->mnt_slave, &old->mnt_slave_list);
1285 mnt->mnt_master = old;
1286 } else if (IS_MNT_SLAVE(old)) {
1287 hlist_add_behind(&mnt->mnt_slave, &old->mnt_slave);
1288 mnt->mnt_master = old->mnt_master;
1289 }
1290 return mnt;
1291
1292 out_free:
1293 mnt_free_id(mnt);
1294 free_vfsmnt(mnt);
1295 return ERR_PTR(err);
1296}
1297
1298static void cleanup_mnt(struct mount *mnt)
1299{
1300 struct hlist_node *p;
1301 struct mount *m;
1302 /*
1303 * The warning here probably indicates that somebody messed
1304 * up a mnt_want/drop_write() pair. If this happens, the
1305 * filesystem was probably unable to make r/w->r/o transitions.
1306 * The locking used to deal with mnt_count decrement provides barriers,
1307 * so mnt_get_writers() below is safe.
1308 */
1309 WARN_ON(mnt_get_writers(mnt));
1310 if (unlikely(mnt->mnt_pins.first))
1311 mnt_pin_kill(mnt);
1312 hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) {
1313 hlist_del(&m->mnt_umount);
1314 mntput(&m->mnt);
1315 }
1316 fsnotify_vfsmount_delete(&mnt->mnt);
1317 dput(mnt->mnt.mnt_root);
1318 deactivate_super(mnt->mnt.mnt_sb);
1319 mnt_free_id(mnt);
1320 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1321}
1322
1323static void __cleanup_mnt(struct rcu_head *head)
1324{
1325 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1326}
1327
1328static LLIST_HEAD(delayed_mntput_list);
1329static void delayed_mntput(struct work_struct *unused)
1330{
1331 struct llist_node *node = llist_del_all(&delayed_mntput_list);
1332 struct mount *m, *t;
1333
1334 llist_for_each_entry_safe(m, t, node, mnt_llist)
1335 cleanup_mnt(m);
1336}
1337static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1338
1339static void noinline mntput_no_expire_slowpath(struct mount *mnt)
1340{
1341 LIST_HEAD(list);
1342 int count;
1343
1344 VFS_BUG_ON(mnt->mnt_ns);
1345 lock_mount_hash();
1346 /*
1347 * make sure that if __legitimize_mnt() has not seen us grab
1348 * mount_lock, we'll see their refcount increment here.
1349 */
1350 smp_mb();
1351 mnt_add_count(mnt, -1);
1352 count = mnt_get_count(mnt);
1353 if (count != 0) {
1354 WARN_ON(count < 0);
1355 rcu_read_unlock();
1356 unlock_mount_hash();
1357 return;
1358 }
1359 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1360 rcu_read_unlock();
1361 unlock_mount_hash();
1362 return;
1363 }
1364 mnt->mnt.mnt_flags |= MNT_DOOMED;
1365 rcu_read_unlock();
1366
1367 mnt_del_instance(mnt);
1368 if (unlikely(!list_empty(&mnt->mnt_expire)))
1369 list_del(&mnt->mnt_expire);
1370
1371 if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1372 struct mount *p, *tmp;
1373 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
1374 __umount_mnt(p, &list);
1375 hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children);
1376 }
1377 }
1378 unlock_mount_hash();
1379 shrink_dentry_list(&list);
1380
1381 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1382 struct task_struct *task = current;
1383 if (likely(!(task->flags & PF_KTHREAD))) {
1384 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1385 if (!task_work_add(task, &mnt->mnt_rcu, TWA_RESUME))
1386 return;
1387 }
1388 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1389 schedule_delayed_work(&delayed_mntput_work, 1);
1390 return;
1391 }
1392 cleanup_mnt(mnt);
1393}
1394
1395static void mntput_no_expire(struct mount *mnt)
1396{
1397 rcu_read_lock();
1398 if (likely(READ_ONCE(mnt->mnt_ns))) {
1399 /*
1400 * Since we don't do lock_mount_hash() here,
1401 * ->mnt_ns can change under us. However, if it's
1402 * non-NULL, then there's a reference that won't
1403 * be dropped until after an RCU delay done after
1404 * turning ->mnt_ns NULL. So if we observe it
1405 * non-NULL under rcu_read_lock(), the reference
1406 * we are dropping is not the final one.
1407 */
1408 mnt_add_count(mnt, -1);
1409 rcu_read_unlock();
1410 return;
1411 }
1412 mntput_no_expire_slowpath(mnt);
1413}
1414
1415void mntput(struct vfsmount *mnt)
1416{
1417 if (mnt) {
1418 struct mount *m = real_mount(mnt);
1419 /* avoid cacheline pingpong */
1420 if (unlikely(m->mnt_expiry_mark))
1421 WRITE_ONCE(m->mnt_expiry_mark, 0);
1422 mntput_no_expire(m);
1423 }
1424}
1425EXPORT_SYMBOL(mntput);
1426
1427struct vfsmount *mntget(struct vfsmount *mnt)
1428{
1429 if (mnt)
1430 mnt_add_count(real_mount(mnt), 1);
1431 return mnt;
1432}
1433EXPORT_SYMBOL(mntget);
1434
1435/*
1436 * Make a mount point inaccessible to new lookups.
1437 * Because there may still be current users, the caller MUST WAIT
1438 * for an RCU grace period before destroying the mount point.
1439 */
1440void mnt_make_shortterm(struct vfsmount *mnt)
1441{
1442 if (mnt)
1443 real_mount(mnt)->mnt_ns = NULL;
1444}
1445
1446/**
1447 * path_is_mountpoint() - Check if path is a mount in the current namespace.
1448 * @path: path to check
1449 *
1450 * d_mountpoint() can only be used reliably to establish if a dentry is
1451 * not mounted in any namespace and that common case is handled inline.
1452 * d_mountpoint() isn't aware of the possibility there may be multiple
1453 * mounts using a given dentry in a different namespace. This function
1454 * checks if the passed in path is a mountpoint rather than the dentry
1455 * alone.
1456 */
1457bool path_is_mountpoint(const struct path *path)
1458{
1459 unsigned seq;
1460 bool res;
1461
1462 if (!d_mountpoint(path->dentry))
1463 return false;
1464
1465 rcu_read_lock();
1466 do {
1467 seq = read_seqbegin(&mount_lock);
1468 res = __path_is_mountpoint(path);
1469 } while (read_seqretry(&mount_lock, seq));
1470 rcu_read_unlock();
1471
1472 return res;
1473}
1474EXPORT_SYMBOL(path_is_mountpoint);
1475
1476struct vfsmount *mnt_clone_internal(const struct path *path)
1477{
1478 struct mount *p;
1479 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1480 if (IS_ERR(p))
1481 return ERR_CAST(p);
1482 p->mnt.mnt_flags |= MNT_INTERNAL;
1483 return &p->mnt;
1484}
1485
1486/*
1487 * Returns the mount which either has the specified mnt_id, or has the next
1488 * smallest id afer the specified one.
1489 */
1490static struct mount *mnt_find_id_at(struct mnt_namespace *ns, u64 mnt_id)
1491{
1492 struct rb_node *node = ns->mounts.rb_node;
1493 struct mount *ret = NULL;
1494
1495 while (node) {
1496 struct mount *m = node_to_mount(node);
1497
1498 if (mnt_id <= m->mnt_id_unique) {
1499 ret = node_to_mount(node);
1500 if (mnt_id == m->mnt_id_unique)
1501 break;
1502 node = node->rb_left;
1503 } else {
1504 node = node->rb_right;
1505 }
1506 }
1507 return ret;
1508}
1509
1510/*
1511 * Returns the mount which either has the specified mnt_id, or has the next
1512 * greater id before the specified one.
1513 */
1514static struct mount *mnt_find_id_at_reverse(struct mnt_namespace *ns, u64 mnt_id)
1515{
1516 struct rb_node *node = ns->mounts.rb_node;
1517 struct mount *ret = NULL;
1518
1519 while (node) {
1520 struct mount *m = node_to_mount(node);
1521
1522 if (mnt_id >= m->mnt_id_unique) {
1523 ret = node_to_mount(node);
1524 if (mnt_id == m->mnt_id_unique)
1525 break;
1526 node = node->rb_right;
1527 } else {
1528 node = node->rb_left;
1529 }
1530 }
1531 return ret;
1532}
1533
1534#ifdef CONFIG_PROC_FS
1535
1536/* iterator; we want it to have access to namespace_sem, thus here... */
1537static void *m_start(struct seq_file *m, loff_t *pos)
1538{
1539 struct proc_mounts *p = m->private;
1540
1541 down_read(&namespace_sem);
1542
1543 return mnt_find_id_at(p->ns, *pos);
1544}
1545
1546static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1547{
1548 struct mount *next = NULL, *mnt = v;
1549 struct rb_node *node = rb_next(&mnt->mnt_node);
1550
1551 ++*pos;
1552 if (node) {
1553 next = node_to_mount(node);
1554 *pos = next->mnt_id_unique;
1555 }
1556 return next;
1557}
1558
1559static void m_stop(struct seq_file *m, void *v)
1560{
1561 up_read(&namespace_sem);
1562}
1563
1564static int m_show(struct seq_file *m, void *v)
1565{
1566 struct proc_mounts *p = m->private;
1567 struct mount *r = v;
1568 return p->show(m, &r->mnt);
1569}
1570
1571const struct seq_operations mounts_op = {
1572 .start = m_start,
1573 .next = m_next,
1574 .stop = m_stop,
1575 .show = m_show,
1576};
1577
1578#endif /* CONFIG_PROC_FS */
1579
1580/**
1581 * may_umount_tree - check if a mount tree is busy
1582 * @m: root of mount tree
1583 *
1584 * This is called to check if a tree of mounts has any
1585 * open files, pwds, chroots or sub mounts that are
1586 * busy.
1587 */
1588int may_umount_tree(struct vfsmount *m)
1589{
1590 struct mount *mnt = real_mount(m);
1591 bool busy = false;
1592
1593 /* write lock needed for mnt_get_count */
1594 lock_mount_hash();
1595 for (struct mount *p = mnt; p; p = next_mnt(p, mnt)) {
1596 if (mnt_get_count(p) > (p == mnt ? 2 : 1)) {
1597 busy = true;
1598 break;
1599 }
1600 }
1601 unlock_mount_hash();
1602
1603 return !busy;
1604}
1605
1606EXPORT_SYMBOL(may_umount_tree);
1607
1608/**
1609 * may_umount - check if a mount point is busy
1610 * @mnt: root of mount
1611 *
1612 * This is called to check if a mount point has any
1613 * open files, pwds, chroots or sub mounts. If the
1614 * mount has sub mounts this will return busy
1615 * regardless of whether the sub mounts are busy.
1616 *
1617 * Doesn't take quota and stuff into account. IOW, in some cases it will
1618 * give false negatives. The main reason why it's here is that we need
1619 * a non-destructive way to look for easily umountable filesystems.
1620 */
1621int may_umount(struct vfsmount *mnt)
1622{
1623 int ret = 1;
1624 down_read(&namespace_sem);
1625 lock_mount_hash();
1626 if (propagate_mount_busy(real_mount(mnt), 2))
1627 ret = 0;
1628 unlock_mount_hash();
1629 up_read(&namespace_sem);
1630 return ret;
1631}
1632
1633EXPORT_SYMBOL(may_umount);
1634
1635#ifdef CONFIG_FSNOTIFY
1636static void mnt_notify(struct mount *p)
1637{
1638 if (!p->prev_ns && p->mnt_ns) {
1639 fsnotify_mnt_attach(p->mnt_ns, &p->mnt);
1640 } else if (p->prev_ns && !p->mnt_ns) {
1641 fsnotify_mnt_detach(p->prev_ns, &p->mnt);
1642 } else if (p->prev_ns == p->mnt_ns) {
1643 fsnotify_mnt_move(p->mnt_ns, &p->mnt);
1644 } else {
1645 fsnotify_mnt_detach(p->prev_ns, &p->mnt);
1646 fsnotify_mnt_attach(p->mnt_ns, &p->mnt);
1647 }
1648 p->prev_ns = p->mnt_ns;
1649}
1650
1651static void notify_mnt_list(void)
1652{
1653 struct mount *m, *tmp;
1654 /*
1655 * Notify about mounts that were added/reparented/detached/remain
1656 * connected after unmount.
1657 */
1658 list_for_each_entry_safe(m, tmp, ¬ify_list, to_notify) {
1659 mnt_notify(m);
1660 list_del_init(&m->to_notify);
1661 }
1662}
1663
1664static bool need_notify_mnt_list(void)
1665{
1666 return !list_empty(¬ify_list);
1667}
1668#else
1669static void notify_mnt_list(void)
1670{
1671}
1672
1673static bool need_notify_mnt_list(void)
1674{
1675 return false;
1676}
1677#endif
1678
1679static void free_mnt_ns(struct mnt_namespace *);
1680static void namespace_unlock(void)
1681{
1682 struct hlist_head head;
1683 struct hlist_node *p;
1684 struct mount *m;
1685 struct mnt_namespace *ns = emptied_ns;
1686 LIST_HEAD(list);
1687
1688 hlist_move_list(&unmounted, &head);
1689 list_splice_init(&ex_mountpoints, &list);
1690 emptied_ns = NULL;
1691
1692 if (need_notify_mnt_list()) {
1693 /*
1694 * No point blocking out concurrent readers while notifications
1695 * are sent. This will also allow statmount()/listmount() to run
1696 * concurrently.
1697 */
1698 downgrade_write(&namespace_sem);
1699 notify_mnt_list();
1700 up_read(&namespace_sem);
1701 } else {
1702 up_write(&namespace_sem);
1703 }
1704 if (unlikely(ns)) {
1705 /* Make sure we notice when we leak mounts. */
1706 VFS_WARN_ON_ONCE(!mnt_ns_empty(ns));
1707 free_mnt_ns(ns);
1708 }
1709
1710 shrink_dentry_list(&list);
1711
1712 if (likely(hlist_empty(&head)))
1713 return;
1714
1715 synchronize_rcu_expedited();
1716
1717 hlist_for_each_entry_safe(m, p, &head, mnt_umount) {
1718 hlist_del(&m->mnt_umount);
1719 mntput(&m->mnt);
1720 }
1721}
1722
1723static inline void namespace_lock(void)
1724{
1725 down_write(&namespace_sem);
1726}
1727
1728enum umount_tree_flags {
1729 UMOUNT_SYNC = 1,
1730 UMOUNT_PROPAGATE = 2,
1731 UMOUNT_CONNECTED = 4,
1732};
1733
1734static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1735{
1736 /* Leaving mounts connected is only valid for lazy umounts */
1737 if (how & UMOUNT_SYNC)
1738 return true;
1739
1740 /* A mount without a parent has nothing to be connected to */
1741 if (!mnt_has_parent(mnt))
1742 return true;
1743
1744 /* Because the reference counting rules change when mounts are
1745 * unmounted and connected, umounted mounts may not be
1746 * connected to mounted mounts.
1747 */
1748 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1749 return true;
1750
1751 /* Has it been requested that the mount remain connected? */
1752 if (how & UMOUNT_CONNECTED)
1753 return false;
1754
1755 /* Is the mount locked such that it needs to remain connected? */
1756 if (IS_MNT_LOCKED(mnt))
1757 return false;
1758
1759 /* By default disconnect the mount */
1760 return true;
1761}
1762
1763/*
1764 * mount_lock must be held
1765 * namespace_sem must be held for write
1766 */
1767static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1768{
1769 LIST_HEAD(tmp_list);
1770 struct mount *p;
1771
1772 if (how & UMOUNT_PROPAGATE)
1773 propagate_mount_unlock(mnt);
1774
1775 /* Gather the mounts to umount */
1776 for (p = mnt; p; p = next_mnt(p, mnt)) {
1777 p->mnt.mnt_flags |= MNT_UMOUNT;
1778 if (mnt_ns_attached(p))
1779 move_from_ns(p);
1780 list_add_tail(&p->mnt_list, &tmp_list);
1781 }
1782
1783 /* Hide the mounts from mnt_mounts */
1784 list_for_each_entry(p, &tmp_list, mnt_list) {
1785 list_del_init(&p->mnt_child);
1786 }
1787
1788 /* Add propagated mounts to the tmp_list */
1789 if (how & UMOUNT_PROPAGATE)
1790 propagate_umount(&tmp_list);
1791
1792 bulk_make_private(&tmp_list);
1793
1794 while (!list_empty(&tmp_list)) {
1795 struct mnt_namespace *ns;
1796 bool disconnect;
1797 p = list_first_entry(&tmp_list, struct mount, mnt_list);
1798 list_del_init(&p->mnt_expire);
1799 list_del_init(&p->mnt_list);
1800 ns = p->mnt_ns;
1801 if (ns) {
1802 ns->nr_mounts--;
1803 __touch_mnt_namespace(ns);
1804 }
1805 p->mnt_ns = NULL;
1806 if (how & UMOUNT_SYNC)
1807 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1808
1809 disconnect = disconnect_mount(p, how);
1810 if (mnt_has_parent(p)) {
1811 if (!disconnect) {
1812 /* Don't forget about p */
1813 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1814 } else {
1815 umount_mnt(p);
1816 }
1817 }
1818 if (disconnect)
1819 hlist_add_head(&p->mnt_umount, &unmounted);
1820
1821 /*
1822 * At this point p->mnt_ns is NULL, notification will be queued
1823 * only if
1824 *
1825 * - p->prev_ns is non-NULL *and*
1826 * - p->prev_ns->n_fsnotify_marks is non-NULL
1827 *
1828 * This will preclude queuing the mount if this is a cleanup
1829 * after a failed copy_tree() or destruction of an anonymous
1830 * namespace, etc.
1831 */
1832 mnt_notify_add(p);
1833 }
1834}
1835
1836static void shrink_submounts(struct mount *mnt);
1837
1838static int do_umount_root(struct super_block *sb)
1839{
1840 int ret = 0;
1841
1842 down_write(&sb->s_umount);
1843 if (!sb_rdonly(sb)) {
1844 struct fs_context *fc;
1845
1846 fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY,
1847 SB_RDONLY);
1848 if (IS_ERR(fc)) {
1849 ret = PTR_ERR(fc);
1850 } else {
1851 ret = parse_monolithic_mount_data(fc, NULL);
1852 if (!ret)
1853 ret = reconfigure_super(fc);
1854 put_fs_context(fc);
1855 }
1856 }
1857 up_write(&sb->s_umount);
1858 return ret;
1859}
1860
1861static int do_umount(struct mount *mnt, int flags)
1862{
1863 struct super_block *sb = mnt->mnt.mnt_sb;
1864 int retval;
1865
1866 retval = security_sb_umount(&mnt->mnt, flags);
1867 if (retval)
1868 return retval;
1869
1870 /*
1871 * Allow userspace to request a mountpoint be expired rather than
1872 * unmounting unconditionally. Unmount only happens if:
1873 * (1) the mark is already set (the mark is cleared by mntput())
1874 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1875 */
1876 if (flags & MNT_EXPIRE) {
1877 if (&mnt->mnt == current->fs->root.mnt ||
1878 flags & (MNT_FORCE | MNT_DETACH))
1879 return -EINVAL;
1880
1881 /*
1882 * probably don't strictly need the lock here if we examined
1883 * all race cases, but it's a slowpath.
1884 */
1885 lock_mount_hash();
1886 if (!list_empty(&mnt->mnt_mounts) || mnt_get_count(mnt) != 2) {
1887 unlock_mount_hash();
1888 return -EBUSY;
1889 }
1890 unlock_mount_hash();
1891
1892 if (!xchg(&mnt->mnt_expiry_mark, 1))
1893 return -EAGAIN;
1894 }
1895
1896 /*
1897 * If we may have to abort operations to get out of this
1898 * mount, and they will themselves hold resources we must
1899 * allow the fs to do things. In the Unix tradition of
1900 * 'Gee thats tricky lets do it in userspace' the umount_begin
1901 * might fail to complete on the first run through as other tasks
1902 * must return, and the like. Thats for the mount program to worry
1903 * about for the moment.
1904 */
1905
1906 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1907 sb->s_op->umount_begin(sb);
1908 }
1909
1910 /*
1911 * No sense to grab the lock for this test, but test itself looks
1912 * somewhat bogus. Suggestions for better replacement?
1913 * Ho-hum... In principle, we might treat that as umount + switch
1914 * to rootfs. GC would eventually take care of the old vfsmount.
1915 * Actually it makes sense, especially if rootfs would contain a
1916 * /reboot - static binary that would close all descriptors and
1917 * call reboot(9). Then init(8) could umount root and exec /reboot.
1918 */
1919 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1920 /*
1921 * Special case for "unmounting" root ...
1922 * we just try to remount it readonly.
1923 */
1924 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
1925 return -EPERM;
1926 return do_umount_root(sb);
1927 }
1928
1929 namespace_lock();
1930 lock_mount_hash();
1931
1932 /* Repeat the earlier racy checks, now that we are holding the locks */
1933 retval = -EINVAL;
1934 if (!check_mnt(mnt))
1935 goto out;
1936
1937 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1938 goto out;
1939
1940 if (!mnt_has_parent(mnt)) /* not the absolute root */
1941 goto out;
1942
1943 event++;
1944 if (flags & MNT_DETACH) {
1945 umount_tree(mnt, UMOUNT_PROPAGATE);
1946 retval = 0;
1947 } else {
1948 smp_mb(); // paired with __legitimize_mnt()
1949 shrink_submounts(mnt);
1950 retval = -EBUSY;
1951 if (!propagate_mount_busy(mnt, 2)) {
1952 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1953 retval = 0;
1954 }
1955 }
1956out:
1957 unlock_mount_hash();
1958 namespace_unlock();
1959 return retval;
1960}
1961
1962/*
1963 * __detach_mounts - lazily unmount all mounts on the specified dentry
1964 *
1965 * During unlink, rmdir, and d_drop it is possible to loose the path
1966 * to an existing mountpoint, and wind up leaking the mount.
1967 * detach_mounts allows lazily unmounting those mounts instead of
1968 * leaking them.
1969 *
1970 * The caller may hold dentry->d_inode->i_rwsem.
1971 */
1972void __detach_mounts(struct dentry *dentry)
1973{
1974 struct pinned_mountpoint mp = {};
1975 struct mount *mnt;
1976
1977 guard(namespace_excl)();
1978 guard(mount_writer)();
1979
1980 if (!lookup_mountpoint(dentry, &mp))
1981 return;
1982
1983 event++;
1984 while (mp.node.next) {
1985 mnt = hlist_entry(mp.node.next, struct mount, mnt_mp_list);
1986 if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1987 umount_mnt(mnt);
1988 hlist_add_head(&mnt->mnt_umount, &unmounted);
1989 }
1990 else umount_tree(mnt, UMOUNT_CONNECTED);
1991 }
1992 unpin_mountpoint(&mp);
1993}
1994
1995/*
1996 * Is the caller allowed to modify his namespace?
1997 */
1998bool may_mount(void)
1999{
2000 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
2001}
2002
2003static void warn_mandlock(void)
2004{
2005 pr_warn_once("=======================================================\n"
2006 "WARNING: The mand mount option has been deprecated and\n"
2007 " and is ignored by this kernel. Remove the mand\n"
2008 " option from the mount to silence this warning.\n"
2009 "=======================================================\n");
2010}
2011
2012static int can_umount(const struct path *path, int flags)
2013{
2014 struct mount *mnt = real_mount(path->mnt);
2015 struct super_block *sb = path->dentry->d_sb;
2016
2017 if (!may_mount())
2018 return -EPERM;
2019 if (!path_mounted(path))
2020 return -EINVAL;
2021 if (!check_mnt(mnt))
2022 return -EINVAL;
2023 if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
2024 return -EINVAL;
2025 if (flags & MNT_FORCE && !ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
2026 return -EPERM;
2027 return 0;
2028}
2029
2030// caller is responsible for flags being sane
2031int path_umount(const struct path *path, int flags)
2032{
2033 struct mount *mnt = real_mount(path->mnt);
2034 int ret;
2035
2036 ret = can_umount(path, flags);
2037 if (!ret)
2038 ret = do_umount(mnt, flags);
2039
2040 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
2041 dput(path->dentry);
2042 mntput_no_expire(mnt);
2043 return ret;
2044}
2045
2046static int ksys_umount(char __user *name, int flags)
2047{
2048 int lookup_flags = LOOKUP_MOUNTPOINT;
2049 struct path path;
2050 int ret;
2051
2052 // basic validity checks done first
2053 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
2054 return -EINVAL;
2055
2056 if (!(flags & UMOUNT_NOFOLLOW))
2057 lookup_flags |= LOOKUP_FOLLOW;
2058 ret = user_path_at(AT_FDCWD, name, lookup_flags, &path);
2059 if (ret)
2060 return ret;
2061 return path_umount(&path, flags);
2062}
2063
2064SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
2065{
2066 return ksys_umount(name, flags);
2067}
2068
2069#ifdef __ARCH_WANT_SYS_OLDUMOUNT
2070
2071/*
2072 * The 2.0 compatible umount. No flags.
2073 */
2074SYSCALL_DEFINE1(oldumount, char __user *, name)
2075{
2076 return ksys_umount(name, 0);
2077}
2078
2079#endif
2080
2081static bool is_mnt_ns_file(struct dentry *dentry)
2082{
2083 struct ns_common *ns;
2084
2085 /* Is this a proxy for a mount namespace? */
2086 if (dentry->d_op != &ns_dentry_operations)
2087 return false;
2088
2089 ns = d_inode(dentry)->i_private;
2090
2091 return ns->ops == &mntns_operations;
2092}
2093
2094struct ns_common *from_mnt_ns(struct mnt_namespace *mnt)
2095{
2096 return &mnt->ns;
2097}
2098
2099struct mnt_namespace *get_sequential_mnt_ns(struct mnt_namespace *mntns, bool previous)
2100{
2101 struct ns_common *ns;
2102
2103 guard(rcu)();
2104
2105 for (;;) {
2106 ns = ns_tree_adjoined_rcu(mntns, previous);
2107 if (IS_ERR(ns))
2108 return ERR_CAST(ns);
2109
2110 mntns = to_mnt_ns(ns);
2111
2112 /*
2113 * The last passive reference count is put with RCU
2114 * delay so accessing the mount namespace is not just
2115 * safe but all relevant members are still valid.
2116 */
2117 if (!ns_capable_noaudit(mntns->user_ns, CAP_SYS_ADMIN))
2118 continue;
2119
2120 /*
2121 * We need an active reference count as we're persisting
2122 * the mount namespace and it might already be on its
2123 * deathbed.
2124 */
2125 if (!ns_ref_get(mntns))
2126 continue;
2127
2128 return mntns;
2129 }
2130}
2131
2132struct mnt_namespace *mnt_ns_from_dentry(struct dentry *dentry)
2133{
2134 if (!is_mnt_ns_file(dentry))
2135 return NULL;
2136
2137 return to_mnt_ns(get_proc_ns(dentry->d_inode));
2138}
2139
2140static bool mnt_ns_loop(struct dentry *dentry)
2141{
2142 /* Could bind mounting the mount namespace inode cause a
2143 * mount namespace loop?
2144 */
2145 struct mnt_namespace *mnt_ns = mnt_ns_from_dentry(dentry);
2146
2147 if (!mnt_ns)
2148 return false;
2149
2150 return current->nsproxy->mnt_ns->ns.ns_id >= mnt_ns->ns.ns_id;
2151}
2152
2153struct mount *copy_tree(struct mount *src_root, struct dentry *dentry,
2154 int flag)
2155{
2156 struct mount *res, *src_parent, *src_root_child, *src_mnt,
2157 *dst_parent, *dst_mnt;
2158
2159 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(src_root))
2160 return ERR_PTR(-EINVAL);
2161
2162 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
2163 return ERR_PTR(-EINVAL);
2164
2165 res = dst_mnt = clone_mnt(src_root, dentry, flag);
2166 if (IS_ERR(dst_mnt))
2167 return dst_mnt;
2168
2169 src_parent = src_root;
2170
2171 list_for_each_entry(src_root_child, &src_root->mnt_mounts, mnt_child) {
2172 if (!is_subdir(src_root_child->mnt_mountpoint, dentry))
2173 continue;
2174
2175 for (src_mnt = src_root_child; src_mnt;
2176 src_mnt = next_mnt(src_mnt, src_root_child)) {
2177 if (!(flag & CL_COPY_UNBINDABLE) &&
2178 IS_MNT_UNBINDABLE(src_mnt)) {
2179 if (src_mnt->mnt.mnt_flags & MNT_LOCKED) {
2180 /* Both unbindable and locked. */
2181 dst_mnt = ERR_PTR(-EPERM);
2182 goto out;
2183 } else {
2184 src_mnt = skip_mnt_tree(src_mnt);
2185 continue;
2186 }
2187 }
2188 if (!(flag & CL_COPY_MNT_NS_FILE) &&
2189 is_mnt_ns_file(src_mnt->mnt.mnt_root)) {
2190 src_mnt = skip_mnt_tree(src_mnt);
2191 continue;
2192 }
2193 while (src_parent != src_mnt->mnt_parent) {
2194 src_parent = src_parent->mnt_parent;
2195 dst_mnt = dst_mnt->mnt_parent;
2196 }
2197
2198 src_parent = src_mnt;
2199 dst_parent = dst_mnt;
2200 dst_mnt = clone_mnt(src_mnt, src_mnt->mnt.mnt_root, flag);
2201 if (IS_ERR(dst_mnt))
2202 goto out;
2203 lock_mount_hash();
2204 if (src_mnt->mnt.mnt_flags & MNT_LOCKED)
2205 dst_mnt->mnt.mnt_flags |= MNT_LOCKED;
2206 if (unlikely(flag & CL_EXPIRE)) {
2207 /* stick the duplicate mount on the same expiry
2208 * list as the original if that was on one */
2209 if (!list_empty(&src_mnt->mnt_expire))
2210 list_add(&dst_mnt->mnt_expire,
2211 &src_mnt->mnt_expire);
2212 }
2213 attach_mnt(dst_mnt, dst_parent, src_parent->mnt_mp);
2214 unlock_mount_hash();
2215 }
2216 }
2217 return res;
2218
2219out:
2220 if (res) {
2221 lock_mount_hash();
2222 umount_tree(res, UMOUNT_SYNC);
2223 unlock_mount_hash();
2224 }
2225 return dst_mnt;
2226}
2227
2228static inline bool extend_array(struct path **res, struct path **to_free,
2229 unsigned n, unsigned *count, unsigned new_count)
2230{
2231 struct path *p;
2232
2233 if (likely(n < *count))
2234 return true;
2235 p = kmalloc_array(new_count, sizeof(struct path), GFP_KERNEL);
2236 if (p && *count)
2237 memcpy(p, *res, *count * sizeof(struct path));
2238 *count = new_count;
2239 kfree(*to_free);
2240 *to_free = *res = p;
2241 return p;
2242}
2243
2244const struct path *collect_paths(const struct path *path,
2245 struct path *prealloc, unsigned count)
2246{
2247 struct mount *root = real_mount(path->mnt);
2248 struct mount *child;
2249 struct path *res = prealloc, *to_free = NULL;
2250 unsigned n = 0;
2251
2252 guard(namespace_shared)();
2253
2254 if (!check_mnt(root))
2255 return ERR_PTR(-EINVAL);
2256 if (!extend_array(&res, &to_free, 0, &count, 32))
2257 return ERR_PTR(-ENOMEM);
2258 res[n++] = *path;
2259 list_for_each_entry(child, &root->mnt_mounts, mnt_child) {
2260 if (!is_subdir(child->mnt_mountpoint, path->dentry))
2261 continue;
2262 for (struct mount *m = child; m; m = next_mnt(m, child)) {
2263 if (!extend_array(&res, &to_free, n, &count, 2 * count))
2264 return ERR_PTR(-ENOMEM);
2265 res[n].mnt = &m->mnt;
2266 res[n].dentry = m->mnt.mnt_root;
2267 n++;
2268 }
2269 }
2270 if (!extend_array(&res, &to_free, n, &count, count + 1))
2271 return ERR_PTR(-ENOMEM);
2272 memset(res + n, 0, (count - n) * sizeof(struct path));
2273 for (struct path *p = res; p->mnt; p++)
2274 path_get(p);
2275 return res;
2276}
2277
2278void drop_collected_paths(const struct path *paths, const struct path *prealloc)
2279{
2280 for (const struct path *p = paths; p->mnt; p++)
2281 path_put(p);
2282 if (paths != prealloc)
2283 kfree(paths);
2284}
2285
2286static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool);
2287
2288void dissolve_on_fput(struct vfsmount *mnt)
2289{
2290 struct mount *m = real_mount(mnt);
2291
2292 /*
2293 * m used to be the root of anon namespace; if it still is one,
2294 * we need to dissolve the mount tree and free that namespace.
2295 * Let's try to avoid taking namespace_sem if we can determine
2296 * that there's nothing to do without it - rcu_read_lock() is
2297 * enough to make anon_ns_root() memory-safe and once m has
2298 * left its namespace, it's no longer our concern, since it will
2299 * never become a root of anon ns again.
2300 */
2301
2302 scoped_guard(rcu) {
2303 if (!anon_ns_root(m))
2304 return;
2305 }
2306
2307 scoped_guard(namespace_excl) {
2308 if (!anon_ns_root(m))
2309 return;
2310
2311 emptied_ns = m->mnt_ns;
2312 lock_mount_hash();
2313 umount_tree(m, UMOUNT_CONNECTED);
2314 unlock_mount_hash();
2315 }
2316}
2317
2318/* locks: namespace_shared && pinned(mnt) || mount_locked_reader */
2319static bool __has_locked_children(struct mount *mnt, struct dentry *dentry)
2320{
2321 struct mount *child;
2322
2323 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2324 if (!is_subdir(child->mnt_mountpoint, dentry))
2325 continue;
2326
2327 if (child->mnt.mnt_flags & MNT_LOCKED)
2328 return true;
2329 }
2330 return false;
2331}
2332
2333bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2334{
2335 guard(mount_locked_reader)();
2336 return __has_locked_children(mnt, dentry);
2337}
2338
2339/*
2340 * Check that there aren't references to earlier/same mount namespaces in the
2341 * specified subtree. Such references can act as pins for mount namespaces
2342 * that aren't checked by the mount-cycle checking code, thereby allowing
2343 * cycles to be made.
2344 *
2345 * locks: mount_locked_reader || namespace_shared && pinned(subtree)
2346 */
2347static bool check_for_nsfs_mounts(struct mount *subtree)
2348{
2349 for (struct mount *p = subtree; p; p = next_mnt(p, subtree))
2350 if (mnt_ns_loop(p->mnt.mnt_root))
2351 return false;
2352 return true;
2353}
2354
2355/**
2356 * clone_private_mount - create a private clone of a path
2357 * @path: path to clone
2358 *
2359 * This creates a new vfsmount, which will be the clone of @path. The new mount
2360 * will not be attached anywhere in the namespace and will be private (i.e.
2361 * changes to the originating mount won't be propagated into this).
2362 *
2363 * This assumes caller has called or done the equivalent of may_mount().
2364 *
2365 * Release with mntput().
2366 */
2367struct vfsmount *clone_private_mount(const struct path *path)
2368{
2369 struct mount *old_mnt = real_mount(path->mnt);
2370 struct mount *new_mnt;
2371
2372 guard(namespace_shared)();
2373
2374 if (IS_MNT_UNBINDABLE(old_mnt))
2375 return ERR_PTR(-EINVAL);
2376
2377 /*
2378 * Make sure the source mount is acceptable.
2379 * Anything mounted in our mount namespace is allowed.
2380 * Otherwise, it must be the root of an anonymous mount
2381 * namespace, and we need to make sure no namespace
2382 * loops get created.
2383 */
2384 if (!check_mnt(old_mnt)) {
2385 if (!anon_ns_root(old_mnt))
2386 return ERR_PTR(-EINVAL);
2387
2388 if (!check_for_nsfs_mounts(old_mnt))
2389 return ERR_PTR(-EINVAL);
2390 }
2391
2392 if (!ns_capable(old_mnt->mnt_ns->user_ns, CAP_SYS_ADMIN))
2393 return ERR_PTR(-EPERM);
2394
2395 if (__has_locked_children(old_mnt, path->dentry))
2396 return ERR_PTR(-EINVAL);
2397
2398 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
2399 if (IS_ERR(new_mnt))
2400 return ERR_PTR(-EINVAL);
2401
2402 /* Longterm mount to be removed by kern_unmount*() */
2403 new_mnt->mnt_ns = MNT_NS_INTERNAL;
2404 return &new_mnt->mnt;
2405}
2406EXPORT_SYMBOL_GPL(clone_private_mount);
2407
2408static void lock_mnt_tree(struct mount *mnt)
2409{
2410 struct mount *p;
2411
2412 for (p = mnt; p; p = next_mnt(p, mnt)) {
2413 int flags = p->mnt.mnt_flags;
2414 /* Don't allow unprivileged users to change mount flags */
2415 flags |= MNT_LOCK_ATIME;
2416
2417 if (flags & MNT_READONLY)
2418 flags |= MNT_LOCK_READONLY;
2419
2420 if (flags & MNT_NODEV)
2421 flags |= MNT_LOCK_NODEV;
2422
2423 if (flags & MNT_NOSUID)
2424 flags |= MNT_LOCK_NOSUID;
2425
2426 if (flags & MNT_NOEXEC)
2427 flags |= MNT_LOCK_NOEXEC;
2428 /* Don't allow unprivileged users to reveal what is under a mount */
2429 if (list_empty(&p->mnt_expire) && p != mnt)
2430 flags |= MNT_LOCKED;
2431 p->mnt.mnt_flags = flags;
2432 }
2433}
2434
2435static void cleanup_group_ids(struct mount *mnt, struct mount *end)
2436{
2437 struct mount *p;
2438
2439 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
2440 if (p->mnt_group_id && !IS_MNT_SHARED(p))
2441 mnt_release_group_id(p);
2442 }
2443}
2444
2445static int invent_group_ids(struct mount *mnt, bool recurse)
2446{
2447 struct mount *p;
2448
2449 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
2450 if (!p->mnt_group_id) {
2451 int err = mnt_alloc_group_id(p);
2452 if (err) {
2453 cleanup_group_ids(mnt, p);
2454 return err;
2455 }
2456 }
2457 }
2458
2459 return 0;
2460}
2461
2462int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
2463{
2464 unsigned int max = READ_ONCE(sysctl_mount_max);
2465 unsigned int mounts = 0;
2466 struct mount *p;
2467
2468 if (ns->nr_mounts >= max)
2469 return -ENOSPC;
2470 max -= ns->nr_mounts;
2471 if (ns->pending_mounts >= max)
2472 return -ENOSPC;
2473 max -= ns->pending_mounts;
2474
2475 for (p = mnt; p; p = next_mnt(p, mnt))
2476 mounts++;
2477
2478 if (mounts > max)
2479 return -ENOSPC;
2480
2481 ns->pending_mounts += mounts;
2482 return 0;
2483}
2484
2485enum mnt_tree_flags_t {
2486 MNT_TREE_BENEATH = BIT(0),
2487 MNT_TREE_PROPAGATION = BIT(1),
2488};
2489
2490/**
2491 * attach_recursive_mnt - attach a source mount tree
2492 * @source_mnt: mount tree to be attached
2493 * @dest: the context for mounting at the place where the tree should go
2494 *
2495 * NOTE: in the table below explains the semantics when a source mount
2496 * of a given type is attached to a destination mount of a given type.
2497 * ---------------------------------------------------------------------------
2498 * | BIND MOUNT OPERATION |
2499 * |**************************************************************************
2500 * | source-->| shared | private | slave | unbindable |
2501 * | dest | | | | |
2502 * | | | | | | |
2503 * | v | | | | |
2504 * |**************************************************************************
2505 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
2506 * | | | | | |
2507 * |non-shared| shared (+) | private | slave (*) | invalid |
2508 * ***************************************************************************
2509 * A bind operation clones the source mount and mounts the clone on the
2510 * destination mount.
2511 *
2512 * (++) the cloned mount is propagated to all the mounts in the propagation
2513 * tree of the destination mount and the cloned mount is added to
2514 * the peer group of the source mount.
2515 * (+) the cloned mount is created under the destination mount and is marked
2516 * as shared. The cloned mount is added to the peer group of the source
2517 * mount.
2518 * (+++) the mount is propagated to all the mounts in the propagation tree
2519 * of the destination mount and the cloned mount is made slave
2520 * of the same master as that of the source mount. The cloned mount
2521 * is marked as 'shared and slave'.
2522 * (*) the cloned mount is made a slave of the same master as that of the
2523 * source mount.
2524 *
2525 * ---------------------------------------------------------------------------
2526 * | MOVE MOUNT OPERATION |
2527 * |**************************************************************************
2528 * | source-->| shared | private | slave | unbindable |
2529 * | dest | | | | |
2530 * | | | | | | |
2531 * | v | | | | |
2532 * |**************************************************************************
2533 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
2534 * | | | | | |
2535 * |non-shared| shared (+*) | private | slave (*) | unbindable |
2536 * ***************************************************************************
2537 *
2538 * (+) the mount is moved to the destination. And is then propagated to
2539 * all the mounts in the propagation tree of the destination mount.
2540 * (+*) the mount is moved to the destination.
2541 * (+++) the mount is moved to the destination and is then propagated to
2542 * all the mounts belonging to the destination mount's propagation tree.
2543 * the mount is marked as 'shared and slave'.
2544 * (*) the mount continues to be a slave at the new location.
2545 *
2546 * if the source mount is a tree, the operations explained above is
2547 * applied to each mount in the tree.
2548 * Must be called without spinlocks held, since this function can sleep
2549 * in allocations.
2550 *
2551 * Context: The function expects namespace_lock() to be held.
2552 * Return: If @source_mnt was successfully attached 0 is returned.
2553 * Otherwise a negative error code is returned.
2554 */
2555static int attach_recursive_mnt(struct mount *source_mnt,
2556 const struct pinned_mountpoint *dest)
2557{
2558 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2559 struct mount *dest_mnt = dest->parent;
2560 struct mountpoint *dest_mp = dest->mp;
2561 HLIST_HEAD(tree_list);
2562 struct mnt_namespace *ns = dest_mnt->mnt_ns;
2563 struct pinned_mountpoint root = {};
2564 struct mountpoint *shorter = NULL;
2565 struct mount *child, *p;
2566 struct mount *top;
2567 struct hlist_node *n;
2568 int err = 0;
2569 bool moving = mnt_has_parent(source_mnt);
2570
2571 /*
2572 * Preallocate a mountpoint in case the new mounts need to be
2573 * mounted beneath mounts on the same mountpoint.
2574 */
2575 for (top = source_mnt; unlikely(top->overmount); top = top->overmount) {
2576 if (!shorter && is_mnt_ns_file(top->mnt.mnt_root))
2577 shorter = top->mnt_mp;
2578 }
2579 err = get_mountpoint(top->mnt.mnt_root, &root);
2580 if (err)
2581 return err;
2582
2583 /* Is there space to add these mounts to the mount namespace? */
2584 if (!moving) {
2585 err = count_mounts(ns, source_mnt);
2586 if (err)
2587 goto out;
2588 }
2589
2590 if (IS_MNT_SHARED(dest_mnt)) {
2591 err = invent_group_ids(source_mnt, true);
2592 if (err)
2593 goto out;
2594 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2595 }
2596 lock_mount_hash();
2597 if (err)
2598 goto out_cleanup_ids;
2599
2600 if (IS_MNT_SHARED(dest_mnt)) {
2601 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2602 set_mnt_shared(p);
2603 }
2604
2605 if (moving) {
2606 umount_mnt(source_mnt);
2607 mnt_notify_add(source_mnt);
2608 /* if the mount is moved, it should no longer be expired
2609 * automatically */
2610 list_del_init(&source_mnt->mnt_expire);
2611 } else {
2612 if (source_mnt->mnt_ns) {
2613 /* move from anon - the caller will destroy */
2614 emptied_ns = source_mnt->mnt_ns;
2615 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2616 move_from_ns(p);
2617 }
2618 }
2619
2620 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2621 /*
2622 * Now the original copy is in the same state as the secondaries -
2623 * its root attached to mountpoint, but not hashed and all mounts
2624 * in it are either in our namespace or in no namespace at all.
2625 * Add the original to the list of copies and deal with the
2626 * rest of work for all of them uniformly.
2627 */
2628 hlist_add_head(&source_mnt->mnt_hash, &tree_list);
2629
2630 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2631 struct mount *q;
2632 hlist_del_init(&child->mnt_hash);
2633 /* Notice when we are propagating across user namespaces */
2634 if (child->mnt_parent->mnt_ns->user_ns != user_ns)
2635 lock_mnt_tree(child);
2636 q = __lookup_mnt(&child->mnt_parent->mnt,
2637 child->mnt_mountpoint);
2638 commit_tree(child);
2639 if (q) {
2640 struct mount *r = topmost_overmount(child);
2641 struct mountpoint *mp = root.mp;
2642
2643 if (unlikely(shorter) && child != source_mnt)
2644 mp = shorter;
2645 mnt_change_mountpoint(r, mp, q);
2646 }
2647 }
2648 unpin_mountpoint(&root);
2649 unlock_mount_hash();
2650
2651 return 0;
2652
2653 out_cleanup_ids:
2654 while (!hlist_empty(&tree_list)) {
2655 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2656 child->mnt_parent->mnt_ns->pending_mounts = 0;
2657 umount_tree(child, UMOUNT_SYNC);
2658 }
2659 unlock_mount_hash();
2660 cleanup_group_ids(source_mnt, NULL);
2661 out:
2662 ns->pending_mounts = 0;
2663
2664 read_seqlock_excl(&mount_lock);
2665 unpin_mountpoint(&root);
2666 read_sequnlock_excl(&mount_lock);
2667
2668 return err;
2669}
2670
2671static inline struct mount *where_to_mount(const struct path *path,
2672 struct dentry **dentry,
2673 bool beneath)
2674{
2675 struct mount *m;
2676
2677 if (unlikely(beneath)) {
2678 m = topmost_overmount(real_mount(path->mnt));
2679 *dentry = m->mnt_mountpoint;
2680 return m->mnt_parent;
2681 }
2682 m = __lookup_mnt(path->mnt, path->dentry);
2683 if (unlikely(m)) {
2684 m = topmost_overmount(m);
2685 *dentry = m->mnt.mnt_root;
2686 return m;
2687 }
2688 *dentry = path->dentry;
2689 return real_mount(path->mnt);
2690}
2691
2692/**
2693 * do_lock_mount - acquire environment for mounting
2694 * @path: target path
2695 * @res: context to set up
2696 * @beneath: whether the intention is to mount beneath @path
2697 *
2698 * To mount something at given location, we need
2699 * namespace_sem locked exclusive
2700 * inode of dentry we are mounting on locked exclusive
2701 * struct mountpoint for that dentry
2702 * struct mount we are mounting on
2703 *
2704 * Results are stored in caller-supplied context (pinned_mountpoint);
2705 * on success we have res->parent and res->mp pointing to parent and
2706 * mountpoint respectively and res->node inserted into the ->m_list
2707 * of the mountpoint, making sure the mountpoint won't disappear.
2708 * On failure we have res->parent set to ERR_PTR(-E...), res->mp
2709 * left NULL, res->node - empty.
2710 * In case of success do_lock_mount returns with locks acquired (in
2711 * proper order - inode lock nests outside of namespace_sem).
2712 *
2713 * Request to mount on overmounted location is treated as "mount on
2714 * top of whatever's overmounting it"; request to mount beneath
2715 * a location - "mount immediately beneath the topmost mount at that
2716 * place".
2717 *
2718 * In all cases the location must not have been unmounted and the
2719 * chosen mountpoint must be allowed to be mounted on. For "beneath"
2720 * case we also require the location to be at the root of a mount
2721 * that has a parent (i.e. is not a root of some namespace).
2722 */
2723static void do_lock_mount(const struct path *path,
2724 struct pinned_mountpoint *res,
2725 bool beneath)
2726{
2727 int err;
2728
2729 if (unlikely(beneath) && !path_mounted(path)) {
2730 res->parent = ERR_PTR(-EINVAL);
2731 return;
2732 }
2733
2734 do {
2735 struct dentry *dentry, *d;
2736 struct mount *m, *n;
2737
2738 scoped_guard(mount_locked_reader) {
2739 m = where_to_mount(path, &dentry, beneath);
2740 if (&m->mnt != path->mnt) {
2741 mntget(&m->mnt);
2742 dget(dentry);
2743 }
2744 }
2745
2746 inode_lock(dentry->d_inode);
2747 namespace_lock();
2748
2749 // check if the chain of mounts (if any) has changed.
2750 scoped_guard(mount_locked_reader)
2751 n = where_to_mount(path, &d, beneath);
2752
2753 if (unlikely(n != m || dentry != d))
2754 err = -EAGAIN; // something moved, retry
2755 else if (unlikely(cant_mount(dentry) || !is_mounted(path->mnt)))
2756 err = -ENOENT; // not to be mounted on
2757 else if (beneath && &m->mnt == path->mnt && !m->overmount)
2758 err = -EINVAL;
2759 else
2760 err = get_mountpoint(dentry, res);
2761
2762 if (unlikely(err)) {
2763 res->parent = ERR_PTR(err);
2764 namespace_unlock();
2765 inode_unlock(dentry->d_inode);
2766 } else {
2767 res->parent = m;
2768 }
2769 /*
2770 * Drop the temporary references. This is subtle - on success
2771 * we are doing that under namespace_sem, which would normally
2772 * be forbidden. However, in that case we are guaranteed that
2773 * refcounts won't reach zero, since we know that path->mnt
2774 * is mounted and thus all mounts reachable from it are pinned
2775 * and stable, along with their mountpoints and roots.
2776 */
2777 if (&m->mnt != path->mnt) {
2778 dput(dentry);
2779 mntput(&m->mnt);
2780 }
2781 } while (err == -EAGAIN);
2782}
2783
2784static void __unlock_mount(struct pinned_mountpoint *m)
2785{
2786 inode_unlock(m->mp->m_dentry->d_inode);
2787 read_seqlock_excl(&mount_lock);
2788 unpin_mountpoint(m);
2789 read_sequnlock_excl(&mount_lock);
2790 namespace_unlock();
2791}
2792
2793static inline void unlock_mount(struct pinned_mountpoint *m)
2794{
2795 if (!IS_ERR(m->parent))
2796 __unlock_mount(m);
2797}
2798
2799#define LOCK_MOUNT_MAYBE_BENEATH(mp, path, beneath) \
2800 struct pinned_mountpoint mp __cleanup(unlock_mount) = {}; \
2801 do_lock_mount((path), &mp, (beneath))
2802#define LOCK_MOUNT(mp, path) LOCK_MOUNT_MAYBE_BENEATH(mp, (path), false)
2803#define LOCK_MOUNT_EXACT(mp, path) \
2804 struct pinned_mountpoint mp __cleanup(unlock_mount) = {}; \
2805 lock_mount_exact((path), &mp)
2806
2807static int graft_tree(struct mount *mnt, const struct pinned_mountpoint *mp)
2808{
2809 if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2810 return -EINVAL;
2811
2812 if (d_is_dir(mp->mp->m_dentry) !=
2813 d_is_dir(mnt->mnt.mnt_root))
2814 return -ENOTDIR;
2815
2816 return attach_recursive_mnt(mnt, mp);
2817}
2818
2819static int may_change_propagation(const struct mount *m)
2820{
2821 struct mnt_namespace *ns = m->mnt_ns;
2822
2823 // it must be mounted in some namespace
2824 if (IS_ERR_OR_NULL(ns)) // is_mounted()
2825 return -EINVAL;
2826 // and the caller must be admin in userns of that namespace
2827 if (!ns_capable(ns->user_ns, CAP_SYS_ADMIN))
2828 return -EPERM;
2829 return 0;
2830}
2831
2832/*
2833 * Sanity check the flags to change_mnt_propagation.
2834 */
2835
2836static int flags_to_propagation_type(int ms_flags)
2837{
2838 int type = ms_flags & ~(MS_REC | MS_SILENT);
2839
2840 /* Fail if any non-propagation flags are set */
2841 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2842 return 0;
2843 /* Only one propagation flag should be set */
2844 if (!is_power_of_2(type))
2845 return 0;
2846 return type;
2847}
2848
2849/*
2850 * recursively change the type of the mountpoint.
2851 */
2852static int do_change_type(const struct path *path, int ms_flags)
2853{
2854 struct mount *m;
2855 struct mount *mnt = real_mount(path->mnt);
2856 int recurse = ms_flags & MS_REC;
2857 int type;
2858 int err;
2859
2860 if (!path_mounted(path))
2861 return -EINVAL;
2862
2863 type = flags_to_propagation_type(ms_flags);
2864 if (!type)
2865 return -EINVAL;
2866
2867 guard(namespace_excl)();
2868
2869 err = may_change_propagation(mnt);
2870 if (err)
2871 return err;
2872
2873 if (type == MS_SHARED) {
2874 err = invent_group_ids(mnt, recurse);
2875 if (err)
2876 return err;
2877 }
2878
2879 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2880 change_mnt_propagation(m, type);
2881
2882 return 0;
2883}
2884
2885/* may_copy_tree() - check if a mount tree can be copied
2886 * @path: path to the mount tree to be copied
2887 *
2888 * This helper checks if the caller may copy the mount tree starting
2889 * from @path->mnt. The caller may copy the mount tree under the
2890 * following circumstances:
2891 *
2892 * (1) The caller is located in the mount namespace of the mount tree.
2893 * This also implies that the mount does not belong to an anonymous
2894 * mount namespace.
2895 * (2) The caller tries to copy an nfs mount referring to a mount
2896 * namespace, i.e., the caller is trying to copy a mount namespace
2897 * entry from nsfs.
2898 * (3) The caller tries to copy a pidfs mount referring to a pidfd.
2899 * (4) The caller is trying to copy a mount tree that belongs to an
2900 * anonymous mount namespace.
2901 *
2902 * For that to be safe, this helper enforces that the origin mount
2903 * namespace the anonymous mount namespace was created from is the
2904 * same as the caller's mount namespace by comparing the sequence
2905 * numbers.
2906 *
2907 * This is not strictly necessary. The current semantics of the new
2908 * mount api enforce that the caller must be located in the same
2909 * mount namespace as the mount tree it interacts with. Using the
2910 * origin sequence number preserves these semantics even for
2911 * anonymous mount namespaces. However, one could envision extending
2912 * the api to directly operate across mount namespace if needed.
2913 *
2914 * The ownership of a non-anonymous mount namespace such as the
2915 * caller's cannot change.
2916 * => We know that the caller's mount namespace is stable.
2917 *
2918 * If the origin sequence number of the anonymous mount namespace is
2919 * the same as the sequence number of the caller's mount namespace.
2920 * => The owning namespaces are the same.
2921 *
2922 * ==> The earlier capability check on the owning namespace of the
2923 * caller's mount namespace ensures that the caller has the
2924 * ability to copy the mount tree.
2925 *
2926 * Returns true if the mount tree can be copied, false otherwise.
2927 */
2928static inline bool may_copy_tree(const struct path *path)
2929{
2930 struct mount *mnt = real_mount(path->mnt);
2931 const struct dentry_operations *d_op;
2932
2933 if (check_mnt(mnt))
2934 return true;
2935
2936 d_op = path->dentry->d_op;
2937 if (d_op == &ns_dentry_operations)
2938 return true;
2939
2940 if (d_op == &pidfs_dentry_operations)
2941 return true;
2942
2943 if (!is_mounted(path->mnt))
2944 return false;
2945
2946 return check_anonymous_mnt(mnt);
2947}
2948
2949
2950static struct mount *__do_loopback(const struct path *old_path, int recurse)
2951{
2952 struct mount *old = real_mount(old_path->mnt);
2953
2954 if (IS_MNT_UNBINDABLE(old))
2955 return ERR_PTR(-EINVAL);
2956
2957 if (!may_copy_tree(old_path))
2958 return ERR_PTR(-EINVAL);
2959
2960 if (!recurse && __has_locked_children(old, old_path->dentry))
2961 return ERR_PTR(-EINVAL);
2962
2963 if (recurse)
2964 return copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE);
2965 else
2966 return clone_mnt(old, old_path->dentry, 0);
2967}
2968
2969/*
2970 * do loopback mount.
2971 */
2972static int do_loopback(const struct path *path, const char *old_name,
2973 int recurse)
2974{
2975 struct path old_path __free(path_put) = {};
2976 struct mount *mnt = NULL;
2977 int err;
2978 if (!old_name || !*old_name)
2979 return -EINVAL;
2980 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2981 if (err)
2982 return err;
2983
2984 if (mnt_ns_loop(old_path.dentry))
2985 return -EINVAL;
2986
2987 LOCK_MOUNT(mp, path);
2988 if (IS_ERR(mp.parent))
2989 return PTR_ERR(mp.parent);
2990
2991 if (!check_mnt(mp.parent))
2992 return -EINVAL;
2993
2994 mnt = __do_loopback(&old_path, recurse);
2995 if (IS_ERR(mnt))
2996 return PTR_ERR(mnt);
2997
2998 err = graft_tree(mnt, &mp);
2999 if (err) {
3000 lock_mount_hash();
3001 umount_tree(mnt, UMOUNT_SYNC);
3002 unlock_mount_hash();
3003 }
3004 return err;
3005}
3006
3007static struct mnt_namespace *get_detached_copy(const struct path *path, bool recursive)
3008{
3009 struct mnt_namespace *ns, *mnt_ns = current->nsproxy->mnt_ns, *src_mnt_ns;
3010 struct user_namespace *user_ns = mnt_ns->user_ns;
3011 struct mount *mnt, *p;
3012
3013 ns = alloc_mnt_ns(user_ns, true);
3014 if (IS_ERR(ns))
3015 return ns;
3016
3017 guard(namespace_excl)();
3018
3019 /*
3020 * Record the sequence number of the source mount namespace.
3021 * This needs to hold namespace_sem to ensure that the mount
3022 * doesn't get attached.
3023 */
3024 if (is_mounted(path->mnt)) {
3025 src_mnt_ns = real_mount(path->mnt)->mnt_ns;
3026 if (is_anon_ns(src_mnt_ns))
3027 ns->seq_origin = src_mnt_ns->seq_origin;
3028 else
3029 ns->seq_origin = src_mnt_ns->ns.ns_id;
3030 }
3031
3032 mnt = __do_loopback(path, recursive);
3033 if (IS_ERR(mnt)) {
3034 emptied_ns = ns;
3035 return ERR_CAST(mnt);
3036 }
3037
3038 for (p = mnt; p; p = next_mnt(p, mnt)) {
3039 mnt_add_to_ns(ns, p);
3040 ns->nr_mounts++;
3041 }
3042 ns->root = mnt;
3043 return ns;
3044}
3045
3046static struct file *open_detached_copy(struct path *path, bool recursive)
3047{
3048 struct mnt_namespace *ns = get_detached_copy(path, recursive);
3049 struct file *file;
3050
3051 if (IS_ERR(ns))
3052 return ERR_CAST(ns);
3053
3054 mntput(path->mnt);
3055 path->mnt = mntget(&ns->root->mnt);
3056 file = dentry_open(path, O_PATH, current_cred());
3057 if (IS_ERR(file))
3058 dissolve_on_fput(path->mnt);
3059 else
3060 file->f_mode |= FMODE_NEED_UNMOUNT;
3061 return file;
3062}
3063
3064static struct file *vfs_open_tree(int dfd, const char __user *filename, unsigned int flags)
3065{
3066 int ret;
3067 struct path path __free(path_put) = {};
3068 int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
3069 bool detached = flags & OPEN_TREE_CLONE;
3070
3071 BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC);
3072
3073 if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE |
3074 AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE |
3075 OPEN_TREE_CLOEXEC))
3076 return ERR_PTR(-EINVAL);
3077
3078 if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE)
3079 return ERR_PTR(-EINVAL);
3080
3081 if (flags & AT_NO_AUTOMOUNT)
3082 lookup_flags &= ~LOOKUP_AUTOMOUNT;
3083 if (flags & AT_SYMLINK_NOFOLLOW)
3084 lookup_flags &= ~LOOKUP_FOLLOW;
3085 if (flags & AT_EMPTY_PATH)
3086 lookup_flags |= LOOKUP_EMPTY;
3087
3088 if (detached && !may_mount())
3089 return ERR_PTR(-EPERM);
3090
3091 ret = user_path_at(dfd, filename, lookup_flags, &path);
3092 if (unlikely(ret))
3093 return ERR_PTR(ret);
3094
3095 if (detached)
3096 return open_detached_copy(&path, flags & AT_RECURSIVE);
3097
3098 return dentry_open(&path, O_PATH, current_cred());
3099}
3100
3101SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags)
3102{
3103 return FD_ADD(flags, vfs_open_tree(dfd, filename, flags));
3104}
3105
3106/*
3107 * Don't allow locked mount flags to be cleared.
3108 *
3109 * No locks need to be held here while testing the various MNT_LOCK
3110 * flags because those flags can never be cleared once they are set.
3111 */
3112static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
3113{
3114 unsigned int fl = mnt->mnt.mnt_flags;
3115
3116 if ((fl & MNT_LOCK_READONLY) &&
3117 !(mnt_flags & MNT_READONLY))
3118 return false;
3119
3120 if ((fl & MNT_LOCK_NODEV) &&
3121 !(mnt_flags & MNT_NODEV))
3122 return false;
3123
3124 if ((fl & MNT_LOCK_NOSUID) &&
3125 !(mnt_flags & MNT_NOSUID))
3126 return false;
3127
3128 if ((fl & MNT_LOCK_NOEXEC) &&
3129 !(mnt_flags & MNT_NOEXEC))
3130 return false;
3131
3132 if ((fl & MNT_LOCK_ATIME) &&
3133 ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
3134 return false;
3135
3136 return true;
3137}
3138
3139static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
3140{
3141 bool readonly_request = (mnt_flags & MNT_READONLY);
3142
3143 if (readonly_request == __mnt_is_readonly(&mnt->mnt))
3144 return 0;
3145
3146 if (readonly_request)
3147 return mnt_make_readonly(mnt);
3148
3149 mnt->mnt.mnt_flags &= ~MNT_READONLY;
3150 return 0;
3151}
3152
3153static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
3154{
3155 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
3156 mnt->mnt.mnt_flags = mnt_flags;
3157 touch_mnt_namespace(mnt->mnt_ns);
3158}
3159
3160static void mnt_warn_timestamp_expiry(const struct path *mountpoint,
3161 struct vfsmount *mnt)
3162{
3163 struct super_block *sb = mnt->mnt_sb;
3164
3165 if (!__mnt_is_readonly(mnt) &&
3166 (!(sb->s_iflags & SB_I_TS_EXPIRY_WARNED)) &&
3167 (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) {
3168 char *buf, *mntpath;
3169
3170 buf = (char *)__get_free_page(GFP_KERNEL);
3171 if (buf)
3172 mntpath = d_path(mountpoint, buf, PAGE_SIZE);
3173 else
3174 mntpath = ERR_PTR(-ENOMEM);
3175 if (IS_ERR(mntpath))
3176 mntpath = "(unknown)";
3177
3178 pr_warn("%s filesystem being %s at %s supports timestamps until %ptTd (0x%llx)\n",
3179 sb->s_type->name,
3180 is_mounted(mnt) ? "remounted" : "mounted",
3181 mntpath, &sb->s_time_max,
3182 (unsigned long long)sb->s_time_max);
3183
3184 sb->s_iflags |= SB_I_TS_EXPIRY_WARNED;
3185 if (buf)
3186 free_page((unsigned long)buf);
3187 }
3188}
3189
3190/*
3191 * Handle reconfiguration of the mountpoint only without alteration of the
3192 * superblock it refers to. This is triggered by specifying MS_REMOUNT|MS_BIND
3193 * to mount(2).
3194 */
3195static int do_reconfigure_mnt(const struct path *path, unsigned int mnt_flags)
3196{
3197 struct super_block *sb = path->mnt->mnt_sb;
3198 struct mount *mnt = real_mount(path->mnt);
3199 int ret;
3200
3201 if (!check_mnt(mnt))
3202 return -EINVAL;
3203
3204 if (!path_mounted(path))
3205 return -EINVAL;
3206
3207 if (!can_change_locked_flags(mnt, mnt_flags))
3208 return -EPERM;
3209
3210 /*
3211 * We're only checking whether the superblock is read-only not
3212 * changing it, so only take down_read(&sb->s_umount).
3213 */
3214 down_read(&sb->s_umount);
3215 lock_mount_hash();
3216 ret = change_mount_ro_state(mnt, mnt_flags);
3217 if (ret == 0)
3218 set_mount_attributes(mnt, mnt_flags);
3219 unlock_mount_hash();
3220 up_read(&sb->s_umount);
3221
3222 mnt_warn_timestamp_expiry(path, &mnt->mnt);
3223
3224 return ret;
3225}
3226
3227/*
3228 * change filesystem flags. dir should be a physical root of filesystem.
3229 * If you've mounted a non-root directory somewhere and want to do remount
3230 * on it - tough luck.
3231 */
3232static int do_remount(const struct path *path, int sb_flags,
3233 int mnt_flags, void *data)
3234{
3235 int err;
3236 struct super_block *sb = path->mnt->mnt_sb;
3237 struct mount *mnt = real_mount(path->mnt);
3238 struct fs_context *fc;
3239
3240 if (!check_mnt(mnt))
3241 return -EINVAL;
3242
3243 if (!path_mounted(path))
3244 return -EINVAL;
3245
3246 if (!can_change_locked_flags(mnt, mnt_flags))
3247 return -EPERM;
3248
3249 fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK);
3250 if (IS_ERR(fc))
3251 return PTR_ERR(fc);
3252
3253 /*
3254 * Indicate to the filesystem that the remount request is coming
3255 * from the legacy mount system call.
3256 */
3257 fc->oldapi = true;
3258
3259 err = parse_monolithic_mount_data(fc, data);
3260 if (!err) {
3261 down_write(&sb->s_umount);
3262 err = -EPERM;
3263 if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
3264 err = reconfigure_super(fc);
3265 if (!err) {
3266 lock_mount_hash();
3267 set_mount_attributes(mnt, mnt_flags);
3268 unlock_mount_hash();
3269 }
3270 }
3271 up_write(&sb->s_umount);
3272 }
3273
3274 mnt_warn_timestamp_expiry(path, &mnt->mnt);
3275
3276 put_fs_context(fc);
3277 return err;
3278}
3279
3280static inline int tree_contains_unbindable(struct mount *mnt)
3281{
3282 struct mount *p;
3283 for (p = mnt; p; p = next_mnt(p, mnt)) {
3284 if (IS_MNT_UNBINDABLE(p))
3285 return 1;
3286 }
3287 return 0;
3288}
3289
3290static int do_set_group(const struct path *from_path, const struct path *to_path)
3291{
3292 struct mount *from = real_mount(from_path->mnt);
3293 struct mount *to = real_mount(to_path->mnt);
3294 int err;
3295
3296 guard(namespace_excl)();
3297
3298 err = may_change_propagation(from);
3299 if (err)
3300 return err;
3301 err = may_change_propagation(to);
3302 if (err)
3303 return err;
3304
3305 /* To and From paths should be mount roots */
3306 if (!path_mounted(from_path))
3307 return -EINVAL;
3308 if (!path_mounted(to_path))
3309 return -EINVAL;
3310
3311 /* Setting sharing groups is only allowed across same superblock */
3312 if (from->mnt.mnt_sb != to->mnt.mnt_sb)
3313 return -EINVAL;
3314
3315 /* From mount root should be wider than To mount root */
3316 if (!is_subdir(to->mnt.mnt_root, from->mnt.mnt_root))
3317 return -EINVAL;
3318
3319 /* From mount should not have locked children in place of To's root */
3320 if (__has_locked_children(from, to->mnt.mnt_root))
3321 return -EINVAL;
3322
3323 /* Setting sharing groups is only allowed on private mounts */
3324 if (IS_MNT_SHARED(to) || IS_MNT_SLAVE(to))
3325 return -EINVAL;
3326
3327 /* From should not be private */
3328 if (!IS_MNT_SHARED(from) && !IS_MNT_SLAVE(from))
3329 return -EINVAL;
3330
3331 if (IS_MNT_SLAVE(from)) {
3332 hlist_add_behind(&to->mnt_slave, &from->mnt_slave);
3333 to->mnt_master = from->mnt_master;
3334 }
3335
3336 if (IS_MNT_SHARED(from)) {
3337 to->mnt_group_id = from->mnt_group_id;
3338 list_add(&to->mnt_share, &from->mnt_share);
3339 set_mnt_shared(to);
3340 }
3341 return 0;
3342}
3343
3344/**
3345 * path_overmounted - check if path is overmounted
3346 * @path: path to check
3347 *
3348 * Check if path is overmounted, i.e., if there's a mount on top of
3349 * @path->mnt with @path->dentry as mountpoint.
3350 *
3351 * Context: namespace_sem must be held at least shared.
3352 * MUST NOT be called under lock_mount_hash() (there one should just
3353 * call __lookup_mnt() and check if it returns NULL).
3354 * Return: If path is overmounted true is returned, false if not.
3355 */
3356static inline bool path_overmounted(const struct path *path)
3357{
3358 unsigned seq = read_seqbegin(&mount_lock);
3359 bool no_child;
3360
3361 rcu_read_lock();
3362 no_child = !__lookup_mnt(path->mnt, path->dentry);
3363 rcu_read_unlock();
3364 if (need_seqretry(&mount_lock, seq)) {
3365 read_seqlock_excl(&mount_lock);
3366 no_child = !__lookup_mnt(path->mnt, path->dentry);
3367 read_sequnlock_excl(&mount_lock);
3368 }
3369 return unlikely(!no_child);
3370}
3371
3372/*
3373 * Check if there is a possibly empty chain of descent from p1 to p2.
3374 * Locks: namespace_sem (shared) or mount_lock (read_seqlock_excl).
3375 */
3376static bool mount_is_ancestor(const struct mount *p1, const struct mount *p2)
3377{
3378 while (p2 != p1 && mnt_has_parent(p2))
3379 p2 = p2->mnt_parent;
3380 return p2 == p1;
3381}
3382
3383/**
3384 * can_move_mount_beneath - check that we can mount beneath the top mount
3385 * @mnt_from: mount we are trying to move
3386 * @mnt_to: mount under which to mount
3387 * @mp: mountpoint of @mnt_to
3388 *
3389 * - Make sure that nothing can be mounted beneath the caller's current
3390 * root or the rootfs of the namespace.
3391 * - Make sure that the caller can unmount the topmost mount ensuring
3392 * that the caller could reveal the underlying mountpoint.
3393 * - Ensure that nothing has been mounted on top of @mnt_from before we
3394 * grabbed @namespace_sem to avoid creating pointless shadow mounts.
3395 * - Prevent mounting beneath a mount if the propagation relationship
3396 * between the source mount, parent mount, and top mount would lead to
3397 * nonsensical mount trees.
3398 *
3399 * Context: This function expects namespace_lock() to be held.
3400 * Return: On success 0, and on error a negative error code is returned.
3401 */
3402static int can_move_mount_beneath(const struct mount *mnt_from,
3403 const struct mount *mnt_to,
3404 const struct mountpoint *mp)
3405{
3406 struct mount *parent_mnt_to = mnt_to->mnt_parent;
3407
3408 if (IS_MNT_LOCKED(mnt_to))
3409 return -EINVAL;
3410
3411 /* Avoid creating shadow mounts during mount propagation. */
3412 if (mnt_from->overmount)
3413 return -EINVAL;
3414
3415 /*
3416 * Mounting beneath the rootfs only makes sense when the
3417 * semantics of pivot_root(".", ".") are used.
3418 */
3419 if (&mnt_to->mnt == current->fs->root.mnt)
3420 return -EINVAL;
3421 if (parent_mnt_to == current->nsproxy->mnt_ns->root)
3422 return -EINVAL;
3423
3424 if (mount_is_ancestor(mnt_to, mnt_from))
3425 return -EINVAL;
3426
3427 /*
3428 * If the parent mount propagates to the child mount this would
3429 * mean mounting @mnt_from on @mnt_to->mnt_parent and then
3430 * propagating a copy @c of @mnt_from on top of @mnt_to. This
3431 * defeats the whole purpose of mounting beneath another mount.
3432 */
3433 if (propagation_would_overmount(parent_mnt_to, mnt_to, mp))
3434 return -EINVAL;
3435
3436 /*
3437 * If @mnt_to->mnt_parent propagates to @mnt_from this would
3438 * mean propagating a copy @c of @mnt_from on top of @mnt_from.
3439 * Afterwards @mnt_from would be mounted on top of
3440 * @mnt_to->mnt_parent and @mnt_to would be unmounted from
3441 * @mnt->mnt_parent and remounted on @mnt_from. But since @c is
3442 * already mounted on @mnt_from, @mnt_to would ultimately be
3443 * remounted on top of @c. Afterwards, @mnt_from would be
3444 * covered by a copy @c of @mnt_from and @c would be covered by
3445 * @mnt_from itself. This defeats the whole purpose of mounting
3446 * @mnt_from beneath @mnt_to.
3447 */
3448 if (check_mnt(mnt_from) &&
3449 propagation_would_overmount(parent_mnt_to, mnt_from, mp))
3450 return -EINVAL;
3451
3452 return 0;
3453}
3454
3455/* may_use_mount() - check if a mount tree can be used
3456 * @mnt: vfsmount to be used
3457 *
3458 * This helper checks if the caller may use the mount tree starting
3459 * from @path->mnt. The caller may use the mount tree under the
3460 * following circumstances:
3461 *
3462 * (1) The caller is located in the mount namespace of the mount tree.
3463 * This also implies that the mount does not belong to an anonymous
3464 * mount namespace.
3465 * (2) The caller is trying to use a mount tree that belongs to an
3466 * anonymous mount namespace.
3467 *
3468 * For that to be safe, this helper enforces that the origin mount
3469 * namespace the anonymous mount namespace was created from is the
3470 * same as the caller's mount namespace by comparing the sequence
3471 * numbers.
3472 *
3473 * The ownership of a non-anonymous mount namespace such as the
3474 * caller's cannot change.
3475 * => We know that the caller's mount namespace is stable.
3476 *
3477 * If the origin sequence number of the anonymous mount namespace is
3478 * the same as the sequence number of the caller's mount namespace.
3479 * => The owning namespaces are the same.
3480 *
3481 * ==> The earlier capability check on the owning namespace of the
3482 * caller's mount namespace ensures that the caller has the
3483 * ability to use the mount tree.
3484 *
3485 * Returns true if the mount tree can be used, false otherwise.
3486 */
3487static inline bool may_use_mount(struct mount *mnt)
3488{
3489 if (check_mnt(mnt))
3490 return true;
3491
3492 /*
3493 * Make sure that noone unmounted the target path or somehow
3494 * managed to get their hands on something purely kernel
3495 * internal.
3496 */
3497 if (!is_mounted(&mnt->mnt))
3498 return false;
3499
3500 return check_anonymous_mnt(mnt);
3501}
3502
3503static int do_move_mount(const struct path *old_path,
3504 const struct path *new_path,
3505 enum mnt_tree_flags_t flags)
3506{
3507 struct mount *old = real_mount(old_path->mnt);
3508 int err;
3509 bool beneath = flags & MNT_TREE_BENEATH;
3510
3511 if (!path_mounted(old_path))
3512 return -EINVAL;
3513
3514 if (d_is_dir(new_path->dentry) != d_is_dir(old_path->dentry))
3515 return -EINVAL;
3516
3517 LOCK_MOUNT_MAYBE_BENEATH(mp, new_path, beneath);
3518 if (IS_ERR(mp.parent))
3519 return PTR_ERR(mp.parent);
3520
3521 if (check_mnt(old)) {
3522 /* if the source is in our namespace... */
3523 /* ... it should be detachable from parent */
3524 if (!mnt_has_parent(old) || IS_MNT_LOCKED(old))
3525 return -EINVAL;
3526 /* ... which should not be shared */
3527 if (IS_MNT_SHARED(old->mnt_parent))
3528 return -EINVAL;
3529 /* ... and the target should be in our namespace */
3530 if (!check_mnt(mp.parent))
3531 return -EINVAL;
3532 } else {
3533 /*
3534 * otherwise the source must be the root of some anon namespace.
3535 */
3536 if (!anon_ns_root(old))
3537 return -EINVAL;
3538 /*
3539 * Bail out early if the target is within the same namespace -
3540 * subsequent checks would've rejected that, but they lose
3541 * some corner cases if we check it early.
3542 */
3543 if (old->mnt_ns == mp.parent->mnt_ns)
3544 return -EINVAL;
3545 /*
3546 * Target should be either in our namespace or in an acceptable
3547 * anon namespace, sensu check_anonymous_mnt().
3548 */
3549 if (!may_use_mount(mp.parent))
3550 return -EINVAL;
3551 }
3552
3553 if (beneath) {
3554 struct mount *over = real_mount(new_path->mnt);
3555
3556 if (mp.parent != over->mnt_parent)
3557 over = mp.parent->overmount;
3558 err = can_move_mount_beneath(old, over, mp.mp);
3559 if (err)
3560 return err;
3561 }
3562
3563 /*
3564 * Don't move a mount tree containing unbindable mounts to a destination
3565 * mount which is shared.
3566 */
3567 if (IS_MNT_SHARED(mp.parent) && tree_contains_unbindable(old))
3568 return -EINVAL;
3569 if (!check_for_nsfs_mounts(old))
3570 return -ELOOP;
3571 if (mount_is_ancestor(old, mp.parent))
3572 return -ELOOP;
3573
3574 return attach_recursive_mnt(old, &mp);
3575}
3576
3577static int do_move_mount_old(const struct path *path, const char *old_name)
3578{
3579 struct path old_path __free(path_put) = {};
3580 int err;
3581
3582 if (!old_name || !*old_name)
3583 return -EINVAL;
3584
3585 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
3586 if (err)
3587 return err;
3588
3589 return do_move_mount(&old_path, path, 0);
3590}
3591
3592/*
3593 * add a mount into a namespace's mount tree
3594 */
3595static int do_add_mount(struct mount *newmnt, const struct pinned_mountpoint *mp,
3596 int mnt_flags)
3597{
3598 struct mount *parent = mp->parent;
3599
3600 if (IS_ERR(parent))
3601 return PTR_ERR(parent);
3602
3603 mnt_flags &= ~MNT_INTERNAL_FLAGS;
3604
3605 if (unlikely(!check_mnt(parent))) {
3606 /* that's acceptable only for automounts done in private ns */
3607 if (!(mnt_flags & MNT_SHRINKABLE))
3608 return -EINVAL;
3609 /* ... and for those we'd better have mountpoint still alive */
3610 if (!parent->mnt_ns)
3611 return -EINVAL;
3612 }
3613
3614 /* Refuse the same filesystem on the same mount point */
3615 if (parent->mnt.mnt_sb == newmnt->mnt.mnt_sb &&
3616 parent->mnt.mnt_root == mp->mp->m_dentry)
3617 return -EBUSY;
3618
3619 if (d_is_symlink(newmnt->mnt.mnt_root))
3620 return -EINVAL;
3621
3622 newmnt->mnt.mnt_flags = mnt_flags;
3623 return graft_tree(newmnt, mp);
3624}
3625
3626static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags);
3627
3628/*
3629 * Create a new mount using a superblock configuration and request it
3630 * be added to the namespace tree.
3631 */
3632static int do_new_mount_fc(struct fs_context *fc, const struct path *mountpoint,
3633 unsigned int mnt_flags)
3634{
3635 struct super_block *sb;
3636 struct vfsmount *mnt __free(mntput) = fc_mount(fc);
3637 int error;
3638
3639 if (IS_ERR(mnt))
3640 return PTR_ERR(mnt);
3641
3642 sb = fc->root->d_sb;
3643 error = security_sb_kern_mount(sb);
3644 if (unlikely(error))
3645 return error;
3646
3647 if (unlikely(mount_too_revealing(sb, &mnt_flags))) {
3648 errorfcp(fc, "VFS", "Mount too revealing");
3649 return -EPERM;
3650 }
3651
3652 mnt_warn_timestamp_expiry(mountpoint, mnt);
3653
3654 LOCK_MOUNT(mp, mountpoint);
3655 error = do_add_mount(real_mount(mnt), &mp, mnt_flags);
3656 if (!error)
3657 retain_and_null_ptr(mnt); // consumed on success
3658 return error;
3659}
3660
3661/*
3662 * create a new mount for userspace and request it to be added into the
3663 * namespace's tree
3664 */
3665static int do_new_mount(const struct path *path, const char *fstype,
3666 int sb_flags, int mnt_flags,
3667 const char *name, void *data)
3668{
3669 struct file_system_type *type;
3670 struct fs_context *fc;
3671 const char *subtype = NULL;
3672 int err = 0;
3673
3674 if (!fstype)
3675 return -EINVAL;
3676
3677 type = get_fs_type(fstype);
3678 if (!type)
3679 return -ENODEV;
3680
3681 if (type->fs_flags & FS_HAS_SUBTYPE) {
3682 subtype = strchr(fstype, '.');
3683 if (subtype) {
3684 subtype++;
3685 if (!*subtype) {
3686 put_filesystem(type);
3687 return -EINVAL;
3688 }
3689 }
3690 }
3691
3692 fc = fs_context_for_mount(type, sb_flags);
3693 put_filesystem(type);
3694 if (IS_ERR(fc))
3695 return PTR_ERR(fc);
3696
3697 /*
3698 * Indicate to the filesystem that the mount request is coming
3699 * from the legacy mount system call.
3700 */
3701 fc->oldapi = true;
3702
3703 if (subtype)
3704 err = vfs_parse_fs_string(fc, "subtype", subtype);
3705 if (!err && name)
3706 err = vfs_parse_fs_string(fc, "source", name);
3707 if (!err)
3708 err = parse_monolithic_mount_data(fc, data);
3709 if (!err && !mount_capable(fc))
3710 err = -EPERM;
3711 if (!err)
3712 err = do_new_mount_fc(fc, path, mnt_flags);
3713
3714 put_fs_context(fc);
3715 return err;
3716}
3717
3718static void lock_mount_exact(const struct path *path,
3719 struct pinned_mountpoint *mp)
3720{
3721 struct dentry *dentry = path->dentry;
3722 int err;
3723
3724 inode_lock(dentry->d_inode);
3725 namespace_lock();
3726 if (unlikely(cant_mount(dentry)))
3727 err = -ENOENT;
3728 else if (path_overmounted(path))
3729 err = -EBUSY;
3730 else
3731 err = get_mountpoint(dentry, mp);
3732 if (unlikely(err)) {
3733 namespace_unlock();
3734 inode_unlock(dentry->d_inode);
3735 mp->parent = ERR_PTR(err);
3736 } else {
3737 mp->parent = real_mount(path->mnt);
3738 }
3739}
3740
3741int finish_automount(struct vfsmount *__m, const struct path *path)
3742{
3743 struct vfsmount *m __free(mntput) = __m;
3744 struct mount *mnt;
3745 int err;
3746
3747 if (!m)
3748 return 0;
3749 if (IS_ERR(m))
3750 return PTR_ERR(m);
3751
3752 mnt = real_mount(m);
3753
3754 if (m->mnt_root == path->dentry)
3755 return -ELOOP;
3756
3757 /*
3758 * we don't want to use LOCK_MOUNT() - in this case finding something
3759 * that overmounts our mountpoint to be means "quitely drop what we've
3760 * got", not "try to mount it on top".
3761 */
3762 LOCK_MOUNT_EXACT(mp, path);
3763 if (mp.parent == ERR_PTR(-EBUSY))
3764 return 0;
3765
3766 err = do_add_mount(mnt, &mp, path->mnt->mnt_flags | MNT_SHRINKABLE);
3767 if (likely(!err))
3768 retain_and_null_ptr(m);
3769 return err;
3770}
3771
3772/**
3773 * mnt_set_expiry - Put a mount on an expiration list
3774 * @mnt: The mount to list.
3775 * @expiry_list: The list to add the mount to.
3776 */
3777void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
3778{
3779 guard(mount_locked_reader)();
3780 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
3781}
3782EXPORT_SYMBOL(mnt_set_expiry);
3783
3784/*
3785 * process a list of expirable mountpoints with the intent of discarding any
3786 * mountpoints that aren't in use and haven't been touched since last we came
3787 * here
3788 */
3789void mark_mounts_for_expiry(struct list_head *mounts)
3790{
3791 struct mount *mnt, *next;
3792 LIST_HEAD(graveyard);
3793
3794 if (list_empty(mounts))
3795 return;
3796
3797 guard(namespace_excl)();
3798 guard(mount_writer)();
3799
3800 /* extract from the expiration list every vfsmount that matches the
3801 * following criteria:
3802 * - already mounted
3803 * - only referenced by its parent vfsmount
3804 * - still marked for expiry (marked on the last call here; marks are
3805 * cleared by mntput())
3806 */
3807 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
3808 if (!is_mounted(&mnt->mnt))
3809 continue;
3810 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
3811 propagate_mount_busy(mnt, 1))
3812 continue;
3813 list_move(&mnt->mnt_expire, &graveyard);
3814 }
3815 while (!list_empty(&graveyard)) {
3816 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
3817 touch_mnt_namespace(mnt->mnt_ns);
3818 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3819 }
3820}
3821
3822EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
3823
3824/*
3825 * Ripoff of 'select_parent()'
3826 *
3827 * search the list of submounts for a given mountpoint, and move any
3828 * shrinkable submounts to the 'graveyard' list.
3829 */
3830static int select_submounts(struct mount *parent, struct list_head *graveyard)
3831{
3832 struct mount *this_parent = parent;
3833 struct list_head *next;
3834 int found = 0;
3835
3836repeat:
3837 next = this_parent->mnt_mounts.next;
3838resume:
3839 while (next != &this_parent->mnt_mounts) {
3840 struct list_head *tmp = next;
3841 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
3842
3843 next = tmp->next;
3844 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
3845 continue;
3846 /*
3847 * Descend a level if the d_mounts list is non-empty.
3848 */
3849 if (!list_empty(&mnt->mnt_mounts)) {
3850 this_parent = mnt;
3851 goto repeat;
3852 }
3853
3854 if (!propagate_mount_busy(mnt, 1)) {
3855 list_move_tail(&mnt->mnt_expire, graveyard);
3856 found++;
3857 }
3858 }
3859 /*
3860 * All done at this level ... ascend and resume the search
3861 */
3862 if (this_parent != parent) {
3863 next = this_parent->mnt_child.next;
3864 this_parent = this_parent->mnt_parent;
3865 goto resume;
3866 }
3867 return found;
3868}
3869
3870/*
3871 * process a list of expirable mountpoints with the intent of discarding any
3872 * submounts of a specific parent mountpoint
3873 *
3874 * mount_lock must be held for write
3875 */
3876static void shrink_submounts(struct mount *mnt)
3877{
3878 LIST_HEAD(graveyard);
3879 struct mount *m;
3880
3881 /* extract submounts of 'mountpoint' from the expiration list */
3882 while (select_submounts(mnt, &graveyard)) {
3883 while (!list_empty(&graveyard)) {
3884 m = list_first_entry(&graveyard, struct mount,
3885 mnt_expire);
3886 touch_mnt_namespace(m->mnt_ns);
3887 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3888 }
3889 }
3890}
3891
3892static void *copy_mount_options(const void __user * data)
3893{
3894 char *copy;
3895 unsigned left, offset;
3896
3897 if (!data)
3898 return NULL;
3899
3900 copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
3901 if (!copy)
3902 return ERR_PTR(-ENOMEM);
3903
3904 left = copy_from_user(copy, data, PAGE_SIZE);
3905
3906 /*
3907 * Not all architectures have an exact copy_from_user(). Resort to
3908 * byte at a time.
3909 */
3910 offset = PAGE_SIZE - left;
3911 while (left) {
3912 char c;
3913 if (get_user(c, (const char __user *)data + offset))
3914 break;
3915 copy[offset] = c;
3916 left--;
3917 offset++;
3918 }
3919
3920 if (left == PAGE_SIZE) {
3921 kfree(copy);
3922 return ERR_PTR(-EFAULT);
3923 }
3924
3925 return copy;
3926}
3927
3928static char *copy_mount_string(const void __user *data)
3929{
3930 return data ? strndup_user(data, PATH_MAX) : NULL;
3931}
3932
3933/*
3934 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
3935 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
3936 *
3937 * data is a (void *) that can point to any structure up to
3938 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
3939 * information (or be NULL).
3940 *
3941 * Pre-0.97 versions of mount() didn't have a flags word.
3942 * When the flags word was introduced its top half was required
3943 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
3944 * Therefore, if this magic number is present, it carries no information
3945 * and must be discarded.
3946 */
3947int path_mount(const char *dev_name, const struct path *path,
3948 const char *type_page, unsigned long flags, void *data_page)
3949{
3950 unsigned int mnt_flags = 0, sb_flags;
3951 int ret;
3952
3953 /* Discard magic */
3954 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
3955 flags &= ~MS_MGC_MSK;
3956
3957 /* Basic sanity checks */
3958 if (data_page)
3959 ((char *)data_page)[PAGE_SIZE - 1] = 0;
3960
3961 if (flags & MS_NOUSER)
3962 return -EINVAL;
3963
3964 ret = security_sb_mount(dev_name, path, type_page, flags, data_page);
3965 if (ret)
3966 return ret;
3967 if (!may_mount())
3968 return -EPERM;
3969 if (flags & SB_MANDLOCK)
3970 warn_mandlock();
3971
3972 /* Default to relatime unless overriden */
3973 if (!(flags & MS_NOATIME))
3974 mnt_flags |= MNT_RELATIME;
3975
3976 /* Separate the per-mountpoint flags */
3977 if (flags & MS_NOSUID)
3978 mnt_flags |= MNT_NOSUID;
3979 if (flags & MS_NODEV)
3980 mnt_flags |= MNT_NODEV;
3981 if (flags & MS_NOEXEC)
3982 mnt_flags |= MNT_NOEXEC;
3983 if (flags & MS_NOATIME)
3984 mnt_flags |= MNT_NOATIME;
3985 if (flags & MS_NODIRATIME)
3986 mnt_flags |= MNT_NODIRATIME;
3987 if (flags & MS_STRICTATIME)
3988 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
3989 if (flags & MS_RDONLY)
3990 mnt_flags |= MNT_READONLY;
3991 if (flags & MS_NOSYMFOLLOW)
3992 mnt_flags |= MNT_NOSYMFOLLOW;
3993
3994 /* The default atime for remount is preservation */
3995 if ((flags & MS_REMOUNT) &&
3996 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
3997 MS_STRICTATIME)) == 0)) {
3998 mnt_flags &= ~MNT_ATIME_MASK;
3999 mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK;
4000 }
4001
4002 sb_flags = flags & (SB_RDONLY |
4003 SB_SYNCHRONOUS |
4004 SB_MANDLOCK |
4005 SB_DIRSYNC |
4006 SB_SILENT |
4007 SB_POSIXACL |
4008 SB_LAZYTIME |
4009 SB_I_VERSION);
4010
4011 if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
4012 return do_reconfigure_mnt(path, mnt_flags);
4013 if (flags & MS_REMOUNT)
4014 return do_remount(path, sb_flags, mnt_flags, data_page);
4015 if (flags & MS_BIND)
4016 return do_loopback(path, dev_name, flags & MS_REC);
4017 if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
4018 return do_change_type(path, flags);
4019 if (flags & MS_MOVE)
4020 return do_move_mount_old(path, dev_name);
4021
4022 return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name,
4023 data_page);
4024}
4025
4026int do_mount(const char *dev_name, const char __user *dir_name,
4027 const char *type_page, unsigned long flags, void *data_page)
4028{
4029 struct path path __free(path_put) = {};
4030 int ret;
4031
4032 ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path);
4033 if (ret)
4034 return ret;
4035 return path_mount(dev_name, &path, type_page, flags, data_page);
4036}
4037
4038static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
4039{
4040 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
4041}
4042
4043static void dec_mnt_namespaces(struct ucounts *ucounts)
4044{
4045 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
4046}
4047
4048static void free_mnt_ns(struct mnt_namespace *ns)
4049{
4050 if (!is_anon_ns(ns))
4051 ns_common_free(ns);
4052 dec_mnt_namespaces(ns->ucounts);
4053 mnt_ns_tree_remove(ns);
4054}
4055
4056static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
4057{
4058 struct mnt_namespace *new_ns;
4059 struct ucounts *ucounts;
4060 int ret;
4061
4062 ucounts = inc_mnt_namespaces(user_ns);
4063 if (!ucounts)
4064 return ERR_PTR(-ENOSPC);
4065
4066 new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL_ACCOUNT);
4067 if (!new_ns) {
4068 dec_mnt_namespaces(ucounts);
4069 return ERR_PTR(-ENOMEM);
4070 }
4071
4072 if (anon)
4073 ret = ns_common_init_inum(new_ns, MNT_NS_ANON_INO);
4074 else
4075 ret = ns_common_init(new_ns);
4076 if (ret) {
4077 kfree(new_ns);
4078 dec_mnt_namespaces(ucounts);
4079 return ERR_PTR(ret);
4080 }
4081 ns_tree_gen_id(new_ns);
4082
4083 new_ns->is_anon = anon;
4084 refcount_set(&new_ns->passive, 1);
4085 new_ns->mounts = RB_ROOT;
4086 init_waitqueue_head(&new_ns->poll);
4087 new_ns->user_ns = get_user_ns(user_ns);
4088 new_ns->ucounts = ucounts;
4089 return new_ns;
4090}
4091
4092__latent_entropy
4093struct mnt_namespace *copy_mnt_ns(u64 flags, struct mnt_namespace *ns,
4094 struct user_namespace *user_ns, struct fs_struct *new_fs)
4095{
4096 struct mnt_namespace *new_ns;
4097 struct vfsmount *rootmnt __free(mntput) = NULL;
4098 struct vfsmount *pwdmnt __free(mntput) = NULL;
4099 struct mount *p, *q;
4100 struct mount *old;
4101 struct mount *new;
4102 int copy_flags;
4103
4104 BUG_ON(!ns);
4105
4106 if (likely(!(flags & CLONE_NEWNS))) {
4107 get_mnt_ns(ns);
4108 return ns;
4109 }
4110
4111 old = ns->root;
4112
4113 new_ns = alloc_mnt_ns(user_ns, false);
4114 if (IS_ERR(new_ns))
4115 return new_ns;
4116
4117 guard(namespace_excl)();
4118 /* First pass: copy the tree topology */
4119 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
4120 if (user_ns != ns->user_ns)
4121 copy_flags |= CL_SLAVE;
4122 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
4123 if (IS_ERR(new)) {
4124 emptied_ns = new_ns;
4125 return ERR_CAST(new);
4126 }
4127 if (user_ns != ns->user_ns) {
4128 guard(mount_writer)();
4129 lock_mnt_tree(new);
4130 }
4131 new_ns->root = new;
4132
4133 /*
4134 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
4135 * as belonging to new namespace. We have already acquired a private
4136 * fs_struct, so tsk->fs->lock is not needed.
4137 */
4138 p = old;
4139 q = new;
4140 while (p) {
4141 mnt_add_to_ns(new_ns, q);
4142 new_ns->nr_mounts++;
4143 if (new_fs) {
4144 if (&p->mnt == new_fs->root.mnt) {
4145 new_fs->root.mnt = mntget(&q->mnt);
4146 rootmnt = &p->mnt;
4147 }
4148 if (&p->mnt == new_fs->pwd.mnt) {
4149 new_fs->pwd.mnt = mntget(&q->mnt);
4150 pwdmnt = &p->mnt;
4151 }
4152 }
4153 p = next_mnt(p, old);
4154 q = next_mnt(q, new);
4155 if (!q)
4156 break;
4157 // an mntns binding we'd skipped?
4158 while (p->mnt.mnt_root != q->mnt.mnt_root)
4159 p = next_mnt(skip_mnt_tree(p), old);
4160 }
4161 ns_tree_add_raw(new_ns);
4162 return new_ns;
4163}
4164
4165struct dentry *mount_subtree(struct vfsmount *m, const char *name)
4166{
4167 struct mount *mnt = real_mount(m);
4168 struct mnt_namespace *ns;
4169 struct super_block *s;
4170 struct path path;
4171 int err;
4172
4173 ns = alloc_mnt_ns(&init_user_ns, true);
4174 if (IS_ERR(ns)) {
4175 mntput(m);
4176 return ERR_CAST(ns);
4177 }
4178 ns->root = mnt;
4179 ns->nr_mounts++;
4180 mnt_add_to_ns(ns, mnt);
4181
4182 err = vfs_path_lookup(m->mnt_root, m,
4183 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
4184
4185 put_mnt_ns(ns);
4186
4187 if (err)
4188 return ERR_PTR(err);
4189
4190 /* trade a vfsmount reference for active sb one */
4191 s = path.mnt->mnt_sb;
4192 atomic_inc(&s->s_active);
4193 mntput(path.mnt);
4194 /* lock the sucker */
4195 down_write(&s->s_umount);
4196 /* ... and return the root of (sub)tree on it */
4197 return path.dentry;
4198}
4199EXPORT_SYMBOL(mount_subtree);
4200
4201SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
4202 char __user *, type, unsigned long, flags, void __user *, data)
4203{
4204 int ret;
4205 char *kernel_type;
4206 char *kernel_dev;
4207 void *options;
4208
4209 kernel_type = copy_mount_string(type);
4210 ret = PTR_ERR(kernel_type);
4211 if (IS_ERR(kernel_type))
4212 goto out_type;
4213
4214 kernel_dev = copy_mount_string(dev_name);
4215 ret = PTR_ERR(kernel_dev);
4216 if (IS_ERR(kernel_dev))
4217 goto out_dev;
4218
4219 options = copy_mount_options(data);
4220 ret = PTR_ERR(options);
4221 if (IS_ERR(options))
4222 goto out_data;
4223
4224 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
4225
4226 kfree(options);
4227out_data:
4228 kfree(kernel_dev);
4229out_dev:
4230 kfree(kernel_type);
4231out_type:
4232 return ret;
4233}
4234
4235#define FSMOUNT_VALID_FLAGS \
4236 (MOUNT_ATTR_RDONLY | MOUNT_ATTR_NOSUID | MOUNT_ATTR_NODEV | \
4237 MOUNT_ATTR_NOEXEC | MOUNT_ATTR__ATIME | MOUNT_ATTR_NODIRATIME | \
4238 MOUNT_ATTR_NOSYMFOLLOW)
4239
4240#define MOUNT_SETATTR_VALID_FLAGS (FSMOUNT_VALID_FLAGS | MOUNT_ATTR_IDMAP)
4241
4242#define MOUNT_SETATTR_PROPAGATION_FLAGS \
4243 (MS_UNBINDABLE | MS_PRIVATE | MS_SLAVE | MS_SHARED)
4244
4245static unsigned int attr_flags_to_mnt_flags(u64 attr_flags)
4246{
4247 unsigned int mnt_flags = 0;
4248
4249 if (attr_flags & MOUNT_ATTR_RDONLY)
4250 mnt_flags |= MNT_READONLY;
4251 if (attr_flags & MOUNT_ATTR_NOSUID)
4252 mnt_flags |= MNT_NOSUID;
4253 if (attr_flags & MOUNT_ATTR_NODEV)
4254 mnt_flags |= MNT_NODEV;
4255 if (attr_flags & MOUNT_ATTR_NOEXEC)
4256 mnt_flags |= MNT_NOEXEC;
4257 if (attr_flags & MOUNT_ATTR_NODIRATIME)
4258 mnt_flags |= MNT_NODIRATIME;
4259 if (attr_flags & MOUNT_ATTR_NOSYMFOLLOW)
4260 mnt_flags |= MNT_NOSYMFOLLOW;
4261
4262 return mnt_flags;
4263}
4264
4265/*
4266 * Create a kernel mount representation for a new, prepared superblock
4267 * (specified by fs_fd) and attach to an open_tree-like file descriptor.
4268 */
4269SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags,
4270 unsigned int, attr_flags)
4271{
4272 struct path new_path __free(path_put) = {};
4273 struct mnt_namespace *ns;
4274 struct fs_context *fc;
4275 struct vfsmount *new_mnt;
4276 struct mount *mnt;
4277 unsigned int mnt_flags = 0;
4278 long ret;
4279
4280 if (!may_mount())
4281 return -EPERM;
4282
4283 if ((flags & ~(FSMOUNT_CLOEXEC)) != 0)
4284 return -EINVAL;
4285
4286 if (attr_flags & ~FSMOUNT_VALID_FLAGS)
4287 return -EINVAL;
4288
4289 mnt_flags = attr_flags_to_mnt_flags(attr_flags);
4290
4291 switch (attr_flags & MOUNT_ATTR__ATIME) {
4292 case MOUNT_ATTR_STRICTATIME:
4293 break;
4294 case MOUNT_ATTR_NOATIME:
4295 mnt_flags |= MNT_NOATIME;
4296 break;
4297 case MOUNT_ATTR_RELATIME:
4298 mnt_flags |= MNT_RELATIME;
4299 break;
4300 default:
4301 return -EINVAL;
4302 }
4303
4304 CLASS(fd, f)(fs_fd);
4305 if (fd_empty(f))
4306 return -EBADF;
4307
4308 if (fd_file(f)->f_op != &fscontext_fops)
4309 return -EINVAL;
4310
4311 fc = fd_file(f)->private_data;
4312
4313 ACQUIRE(mutex_intr, uapi_mutex)(&fc->uapi_mutex);
4314 ret = ACQUIRE_ERR(mutex_intr, &uapi_mutex);
4315 if (ret)
4316 return ret;
4317
4318 /* There must be a valid superblock or we can't mount it */
4319 ret = -EINVAL;
4320 if (!fc->root)
4321 return ret;
4322
4323 ret = -EPERM;
4324 if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) {
4325 errorfcp(fc, "VFS", "Mount too revealing");
4326 return ret;
4327 }
4328
4329 ret = -EBUSY;
4330 if (fc->phase != FS_CONTEXT_AWAITING_MOUNT)
4331 return ret;
4332
4333 if (fc->sb_flags & SB_MANDLOCK)
4334 warn_mandlock();
4335
4336 new_mnt = vfs_create_mount(fc);
4337 if (IS_ERR(new_mnt))
4338 return PTR_ERR(new_mnt);
4339 new_mnt->mnt_flags = mnt_flags;
4340
4341 new_path.dentry = dget(fc->root);
4342 new_path.mnt = new_mnt;
4343
4344 /* We've done the mount bit - now move the file context into more or
4345 * less the same state as if we'd done an fspick(). We don't want to
4346 * do any memory allocation or anything like that at this point as we
4347 * don't want to have to handle any errors incurred.
4348 */
4349 vfs_clean_context(fc);
4350
4351 ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true);
4352 if (IS_ERR(ns))
4353 return PTR_ERR(ns);
4354 mnt = real_mount(new_path.mnt);
4355 ns->root = mnt;
4356 ns->nr_mounts = 1;
4357 mnt_add_to_ns(ns, mnt);
4358 mntget(new_path.mnt);
4359
4360 FD_PREPARE(fdf, (flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0,
4361 dentry_open(&new_path, O_PATH, fc->cred));
4362 if (fdf.err) {
4363 dissolve_on_fput(new_path.mnt);
4364 return fdf.err;
4365 }
4366
4367 /*
4368 * Attach to an apparent O_PATH fd with a note that we
4369 * need to unmount it, not just simply put it.
4370 */
4371 fd_prepare_file(fdf)->f_mode |= FMODE_NEED_UNMOUNT;
4372 return fd_publish(fdf);
4373}
4374
4375static inline int vfs_move_mount(const struct path *from_path,
4376 const struct path *to_path,
4377 enum mnt_tree_flags_t mflags)
4378{
4379 int ret;
4380
4381 ret = security_move_mount(from_path, to_path);
4382 if (ret)
4383 return ret;
4384
4385 if (mflags & MNT_TREE_PROPAGATION)
4386 return do_set_group(from_path, to_path);
4387
4388 return do_move_mount(from_path, to_path, mflags);
4389}
4390
4391/*
4392 * Move a mount from one place to another. In combination with
4393 * fsopen()/fsmount() this is used to install a new mount and in combination
4394 * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy
4395 * a mount subtree.
4396 *
4397 * Note the flags value is a combination of MOVE_MOUNT_* flags.
4398 */
4399SYSCALL_DEFINE5(move_mount,
4400 int, from_dfd, const char __user *, from_pathname,
4401 int, to_dfd, const char __user *, to_pathname,
4402 unsigned int, flags)
4403{
4404 struct path to_path __free(path_put) = {};
4405 struct path from_path __free(path_put) = {};
4406 struct filename *to_name __free(putname) = NULL;
4407 struct filename *from_name __free(putname) = NULL;
4408 unsigned int lflags, uflags;
4409 enum mnt_tree_flags_t mflags = 0;
4410 int ret = 0;
4411
4412 if (!may_mount())
4413 return -EPERM;
4414
4415 if (flags & ~MOVE_MOUNT__MASK)
4416 return -EINVAL;
4417
4418 if ((flags & (MOVE_MOUNT_BENEATH | MOVE_MOUNT_SET_GROUP)) ==
4419 (MOVE_MOUNT_BENEATH | MOVE_MOUNT_SET_GROUP))
4420 return -EINVAL;
4421
4422 if (flags & MOVE_MOUNT_SET_GROUP) mflags |= MNT_TREE_PROPAGATION;
4423 if (flags & MOVE_MOUNT_BENEATH) mflags |= MNT_TREE_BENEATH;
4424
4425 uflags = 0;
4426 if (flags & MOVE_MOUNT_T_EMPTY_PATH)
4427 uflags = AT_EMPTY_PATH;
4428
4429 to_name = getname_maybe_null(to_pathname, uflags);
4430 if (IS_ERR(to_name))
4431 return PTR_ERR(to_name);
4432
4433 if (!to_name && to_dfd >= 0) {
4434 CLASS(fd_raw, f_to)(to_dfd);
4435 if (fd_empty(f_to))
4436 return -EBADF;
4437
4438 to_path = fd_file(f_to)->f_path;
4439 path_get(&to_path);
4440 } else {
4441 lflags = 0;
4442 if (flags & MOVE_MOUNT_T_SYMLINKS)
4443 lflags |= LOOKUP_FOLLOW;
4444 if (flags & MOVE_MOUNT_T_AUTOMOUNTS)
4445 lflags |= LOOKUP_AUTOMOUNT;
4446 ret = filename_lookup(to_dfd, to_name, lflags, &to_path, NULL);
4447 if (ret)
4448 return ret;
4449 }
4450
4451 uflags = 0;
4452 if (flags & MOVE_MOUNT_F_EMPTY_PATH)
4453 uflags = AT_EMPTY_PATH;
4454
4455 from_name = getname_maybe_null(from_pathname, uflags);
4456 if (IS_ERR(from_name))
4457 return PTR_ERR(from_name);
4458
4459 if (!from_name && from_dfd >= 0) {
4460 CLASS(fd_raw, f_from)(from_dfd);
4461 if (fd_empty(f_from))
4462 return -EBADF;
4463
4464 return vfs_move_mount(&fd_file(f_from)->f_path, &to_path, mflags);
4465 }
4466
4467 lflags = 0;
4468 if (flags & MOVE_MOUNT_F_SYMLINKS)
4469 lflags |= LOOKUP_FOLLOW;
4470 if (flags & MOVE_MOUNT_F_AUTOMOUNTS)
4471 lflags |= LOOKUP_AUTOMOUNT;
4472 ret = filename_lookup(from_dfd, from_name, lflags, &from_path, NULL);
4473 if (ret)
4474 return ret;
4475
4476 return vfs_move_mount(&from_path, &to_path, mflags);
4477}
4478
4479/*
4480 * Return true if path is reachable from root
4481 *
4482 * locks: mount_locked_reader || namespace_shared && is_mounted(mnt)
4483 */
4484bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
4485 const struct path *root)
4486{
4487 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
4488 dentry = mnt->mnt_mountpoint;
4489 mnt = mnt->mnt_parent;
4490 }
4491 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
4492}
4493
4494bool path_is_under(const struct path *path1, const struct path *path2)
4495{
4496 guard(mount_locked_reader)();
4497 return is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
4498}
4499EXPORT_SYMBOL(path_is_under);
4500
4501/*
4502 * pivot_root Semantics:
4503 * Moves the root file system of the current process to the directory put_old,
4504 * makes new_root as the new root file system of the current process, and sets
4505 * root/cwd of all processes which had them on the current root to new_root.
4506 *
4507 * Restrictions:
4508 * The new_root and put_old must be directories, and must not be on the
4509 * same file system as the current process root. The put_old must be
4510 * underneath new_root, i.e. adding a non-zero number of /.. to the string
4511 * pointed to by put_old must yield the same directory as new_root. No other
4512 * file system may be mounted on put_old. After all, new_root is a mountpoint.
4513 *
4514 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
4515 * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives
4516 * in this situation.
4517 *
4518 * Notes:
4519 * - we don't move root/cwd if they are not at the root (reason: if something
4520 * cared enough to change them, it's probably wrong to force them elsewhere)
4521 * - it's okay to pick a root that isn't the root of a file system, e.g.
4522 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
4523 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
4524 * first.
4525 */
4526SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
4527 const char __user *, put_old)
4528{
4529 struct path new __free(path_put) = {};
4530 struct path old __free(path_put) = {};
4531 struct path root __free(path_put) = {};
4532 struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent;
4533 int error;
4534
4535 if (!may_mount())
4536 return -EPERM;
4537
4538 error = user_path_at(AT_FDCWD, new_root,
4539 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new);
4540 if (error)
4541 return error;
4542
4543 error = user_path_at(AT_FDCWD, put_old,
4544 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old);
4545 if (error)
4546 return error;
4547
4548 error = security_sb_pivotroot(&old, &new);
4549 if (error)
4550 return error;
4551
4552 get_fs_root(current->fs, &root);
4553
4554 LOCK_MOUNT(old_mp, &old);
4555 old_mnt = old_mp.parent;
4556 if (IS_ERR(old_mnt))
4557 return PTR_ERR(old_mnt);
4558
4559 new_mnt = real_mount(new.mnt);
4560 root_mnt = real_mount(root.mnt);
4561 ex_parent = new_mnt->mnt_parent;
4562 root_parent = root_mnt->mnt_parent;
4563 if (IS_MNT_SHARED(old_mnt) ||
4564 IS_MNT_SHARED(ex_parent) ||
4565 IS_MNT_SHARED(root_parent))
4566 return -EINVAL;
4567 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
4568 return -EINVAL;
4569 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
4570 return -EINVAL;
4571 if (d_unlinked(new.dentry))
4572 return -ENOENT;
4573 if (new_mnt == root_mnt || old_mnt == root_mnt)
4574 return -EBUSY; /* loop, on the same file system */
4575 if (!path_mounted(&root))
4576 return -EINVAL; /* not a mountpoint */
4577 if (!mnt_has_parent(root_mnt))
4578 return -EINVAL; /* absolute root */
4579 if (!path_mounted(&new))
4580 return -EINVAL; /* not a mountpoint */
4581 if (!mnt_has_parent(new_mnt))
4582 return -EINVAL; /* absolute root */
4583 /* make sure we can reach put_old from new_root */
4584 if (!is_path_reachable(old_mnt, old_mp.mp->m_dentry, &new))
4585 return -EINVAL;
4586 /* make certain new is below the root */
4587 if (!is_path_reachable(new_mnt, new.dentry, &root))
4588 return -EINVAL;
4589 lock_mount_hash();
4590 umount_mnt(new_mnt);
4591 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
4592 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
4593 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
4594 }
4595 /* mount new_root on / */
4596 attach_mnt(new_mnt, root_parent, root_mnt->mnt_mp);
4597 umount_mnt(root_mnt);
4598 /* mount old root on put_old */
4599 attach_mnt(root_mnt, old_mnt, old_mp.mp);
4600 touch_mnt_namespace(current->nsproxy->mnt_ns);
4601 /* A moved mount should not expire automatically */
4602 list_del_init(&new_mnt->mnt_expire);
4603 unlock_mount_hash();
4604 mnt_notify_add(root_mnt);
4605 mnt_notify_add(new_mnt);
4606 chroot_fs_refs(&root, &new);
4607 return 0;
4608}
4609
4610static unsigned int recalc_flags(struct mount_kattr *kattr, struct mount *mnt)
4611{
4612 unsigned int flags = mnt->mnt.mnt_flags;
4613
4614 /* flags to clear */
4615 flags &= ~kattr->attr_clr;
4616 /* flags to raise */
4617 flags |= kattr->attr_set;
4618
4619 return flags;
4620}
4621
4622static int can_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
4623{
4624 struct vfsmount *m = &mnt->mnt;
4625 struct user_namespace *fs_userns = m->mnt_sb->s_user_ns;
4626
4627 if (!kattr->mnt_idmap)
4628 return 0;
4629
4630 /*
4631 * Creating an idmapped mount with the filesystem wide idmapping
4632 * doesn't make sense so block that. We don't allow mushy semantics.
4633 */
4634 if (kattr->mnt_userns == m->mnt_sb->s_user_ns)
4635 return -EINVAL;
4636
4637 /*
4638 * We only allow an mount to change it's idmapping if it has
4639 * never been accessible to userspace.
4640 */
4641 if (!(kattr->kflags & MOUNT_KATTR_IDMAP_REPLACE) && is_idmapped_mnt(m))
4642 return -EPERM;
4643
4644 /* The underlying filesystem doesn't support idmapped mounts yet. */
4645 if (!(m->mnt_sb->s_type->fs_flags & FS_ALLOW_IDMAP))
4646 return -EINVAL;
4647
4648 /* The filesystem has turned off idmapped mounts. */
4649 if (m->mnt_sb->s_iflags & SB_I_NOIDMAP)
4650 return -EINVAL;
4651
4652 /* We're not controlling the superblock. */
4653 if (!ns_capable(fs_userns, CAP_SYS_ADMIN))
4654 return -EPERM;
4655
4656 /* Mount has already been visible in the filesystem hierarchy. */
4657 if (!is_anon_ns(mnt->mnt_ns))
4658 return -EINVAL;
4659
4660 return 0;
4661}
4662
4663/**
4664 * mnt_allow_writers() - check whether the attribute change allows writers
4665 * @kattr: the new mount attributes
4666 * @mnt: the mount to which @kattr will be applied
4667 *
4668 * Check whether thew new mount attributes in @kattr allow concurrent writers.
4669 *
4670 * Return: true if writers need to be held, false if not
4671 */
4672static inline bool mnt_allow_writers(const struct mount_kattr *kattr,
4673 const struct mount *mnt)
4674{
4675 return (!(kattr->attr_set & MNT_READONLY) ||
4676 (mnt->mnt.mnt_flags & MNT_READONLY)) &&
4677 !kattr->mnt_idmap;
4678}
4679
4680static int mount_setattr_prepare(struct mount_kattr *kattr, struct mount *mnt)
4681{
4682 struct mount *m;
4683 int err;
4684
4685 for (m = mnt; m; m = next_mnt(m, mnt)) {
4686 if (!can_change_locked_flags(m, recalc_flags(kattr, m))) {
4687 err = -EPERM;
4688 break;
4689 }
4690
4691 err = can_idmap_mount(kattr, m);
4692 if (err)
4693 break;
4694
4695 if (!mnt_allow_writers(kattr, m)) {
4696 err = mnt_hold_writers(m);
4697 if (err) {
4698 m = next_mnt(m, mnt);
4699 break;
4700 }
4701 }
4702
4703 if (!(kattr->kflags & MOUNT_KATTR_RECURSE))
4704 return 0;
4705 }
4706
4707 if (err) {
4708 /* undo all mnt_hold_writers() we'd done */
4709 for (struct mount *p = mnt; p != m; p = next_mnt(p, mnt))
4710 mnt_unhold_writers(p);
4711 }
4712 return err;
4713}
4714
4715static void do_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
4716{
4717 struct mnt_idmap *old_idmap;
4718
4719 if (!kattr->mnt_idmap)
4720 return;
4721
4722 old_idmap = mnt_idmap(&mnt->mnt);
4723
4724 /* Pairs with smp_load_acquire() in mnt_idmap(). */
4725 smp_store_release(&mnt->mnt.mnt_idmap, mnt_idmap_get(kattr->mnt_idmap));
4726 mnt_idmap_put(old_idmap);
4727}
4728
4729static void mount_setattr_commit(struct mount_kattr *kattr, struct mount *mnt)
4730{
4731 struct mount *m;
4732
4733 for (m = mnt; m; m = next_mnt(m, mnt)) {
4734 unsigned int flags;
4735
4736 do_idmap_mount(kattr, m);
4737 flags = recalc_flags(kattr, m);
4738 WRITE_ONCE(m->mnt.mnt_flags, flags);
4739
4740 /* If we had to hold writers unblock them. */
4741 mnt_unhold_writers(m);
4742
4743 if (kattr->propagation)
4744 change_mnt_propagation(m, kattr->propagation);
4745 if (!(kattr->kflags & MOUNT_KATTR_RECURSE))
4746 break;
4747 }
4748 touch_mnt_namespace(mnt->mnt_ns);
4749}
4750
4751static int do_mount_setattr(const struct path *path, struct mount_kattr *kattr)
4752{
4753 struct mount *mnt = real_mount(path->mnt);
4754 int err = 0;
4755
4756 if (!path_mounted(path))
4757 return -EINVAL;
4758
4759 if (kattr->mnt_userns) {
4760 struct mnt_idmap *mnt_idmap;
4761
4762 mnt_idmap = alloc_mnt_idmap(kattr->mnt_userns);
4763 if (IS_ERR(mnt_idmap))
4764 return PTR_ERR(mnt_idmap);
4765 kattr->mnt_idmap = mnt_idmap;
4766 }
4767
4768 if (kattr->propagation) {
4769 /*
4770 * Only take namespace_lock() if we're actually changing
4771 * propagation.
4772 */
4773 namespace_lock();
4774 if (kattr->propagation == MS_SHARED) {
4775 err = invent_group_ids(mnt, kattr->kflags & MOUNT_KATTR_RECURSE);
4776 if (err) {
4777 namespace_unlock();
4778 return err;
4779 }
4780 }
4781 }
4782
4783 err = -EINVAL;
4784 lock_mount_hash();
4785
4786 if (!anon_ns_root(mnt) && !check_mnt(mnt))
4787 goto out;
4788
4789 /*
4790 * First, we get the mount tree in a shape where we can change mount
4791 * properties without failure. If we succeeded to do so we commit all
4792 * changes and if we failed we clean up.
4793 */
4794 err = mount_setattr_prepare(kattr, mnt);
4795 if (!err)
4796 mount_setattr_commit(kattr, mnt);
4797
4798out:
4799 unlock_mount_hash();
4800
4801 if (kattr->propagation) {
4802 if (err)
4803 cleanup_group_ids(mnt, NULL);
4804 namespace_unlock();
4805 }
4806
4807 return err;
4808}
4809
4810static int build_mount_idmapped(const struct mount_attr *attr, size_t usize,
4811 struct mount_kattr *kattr)
4812{
4813 struct ns_common *ns;
4814 struct user_namespace *mnt_userns;
4815
4816 if (!((attr->attr_set | attr->attr_clr) & MOUNT_ATTR_IDMAP))
4817 return 0;
4818
4819 if (attr->attr_clr & MOUNT_ATTR_IDMAP) {
4820 /*
4821 * We can only remove an idmapping if it's never been
4822 * exposed to userspace.
4823 */
4824 if (!(kattr->kflags & MOUNT_KATTR_IDMAP_REPLACE))
4825 return -EINVAL;
4826
4827 /*
4828 * Removal of idmappings is equivalent to setting
4829 * nop_mnt_idmap.
4830 */
4831 if (!(attr->attr_set & MOUNT_ATTR_IDMAP)) {
4832 kattr->mnt_idmap = &nop_mnt_idmap;
4833 return 0;
4834 }
4835 }
4836
4837 if (attr->userns_fd > INT_MAX)
4838 return -EINVAL;
4839
4840 CLASS(fd, f)(attr->userns_fd);
4841 if (fd_empty(f))
4842 return -EBADF;
4843
4844 if (!proc_ns_file(fd_file(f)))
4845 return -EINVAL;
4846
4847 ns = get_proc_ns(file_inode(fd_file(f)));
4848 if (ns->ns_type != CLONE_NEWUSER)
4849 return -EINVAL;
4850
4851 /*
4852 * The initial idmapping cannot be used to create an idmapped
4853 * mount. We use the initial idmapping as an indicator of a mount
4854 * that is not idmapped. It can simply be passed into helpers that
4855 * are aware of idmapped mounts as a convenient shortcut. A user
4856 * can just create a dedicated identity mapping to achieve the same
4857 * result.
4858 */
4859 mnt_userns = container_of(ns, struct user_namespace, ns);
4860 if (mnt_userns == &init_user_ns)
4861 return -EPERM;
4862
4863 /* We're not controlling the target namespace. */
4864 if (!ns_capable(mnt_userns, CAP_SYS_ADMIN))
4865 return -EPERM;
4866
4867 kattr->mnt_userns = get_user_ns(mnt_userns);
4868 return 0;
4869}
4870
4871static int build_mount_kattr(const struct mount_attr *attr, size_t usize,
4872 struct mount_kattr *kattr)
4873{
4874 if (attr->propagation & ~MOUNT_SETATTR_PROPAGATION_FLAGS)
4875 return -EINVAL;
4876 if (hweight32(attr->propagation & MOUNT_SETATTR_PROPAGATION_FLAGS) > 1)
4877 return -EINVAL;
4878 kattr->propagation = attr->propagation;
4879
4880 if ((attr->attr_set | attr->attr_clr) & ~MOUNT_SETATTR_VALID_FLAGS)
4881 return -EINVAL;
4882
4883 kattr->attr_set = attr_flags_to_mnt_flags(attr->attr_set);
4884 kattr->attr_clr = attr_flags_to_mnt_flags(attr->attr_clr);
4885
4886 /*
4887 * Since the MOUNT_ATTR_<atime> values are an enum, not a bitmap,
4888 * users wanting to transition to a different atime setting cannot
4889 * simply specify the atime setting in @attr_set, but must also
4890 * specify MOUNT_ATTR__ATIME in the @attr_clr field.
4891 * So ensure that MOUNT_ATTR__ATIME can't be partially set in
4892 * @attr_clr and that @attr_set can't have any atime bits set if
4893 * MOUNT_ATTR__ATIME isn't set in @attr_clr.
4894 */
4895 if (attr->attr_clr & MOUNT_ATTR__ATIME) {
4896 if ((attr->attr_clr & MOUNT_ATTR__ATIME) != MOUNT_ATTR__ATIME)
4897 return -EINVAL;
4898
4899 /*
4900 * Clear all previous time settings as they are mutually
4901 * exclusive.
4902 */
4903 kattr->attr_clr |= MNT_RELATIME | MNT_NOATIME;
4904 switch (attr->attr_set & MOUNT_ATTR__ATIME) {
4905 case MOUNT_ATTR_RELATIME:
4906 kattr->attr_set |= MNT_RELATIME;
4907 break;
4908 case MOUNT_ATTR_NOATIME:
4909 kattr->attr_set |= MNT_NOATIME;
4910 break;
4911 case MOUNT_ATTR_STRICTATIME:
4912 break;
4913 default:
4914 return -EINVAL;
4915 }
4916 } else {
4917 if (attr->attr_set & MOUNT_ATTR__ATIME)
4918 return -EINVAL;
4919 }
4920
4921 return build_mount_idmapped(attr, usize, kattr);
4922}
4923
4924static void finish_mount_kattr(struct mount_kattr *kattr)
4925{
4926 if (kattr->mnt_userns) {
4927 put_user_ns(kattr->mnt_userns);
4928 kattr->mnt_userns = NULL;
4929 }
4930
4931 if (kattr->mnt_idmap)
4932 mnt_idmap_put(kattr->mnt_idmap);
4933}
4934
4935static int wants_mount_setattr(struct mount_attr __user *uattr, size_t usize,
4936 struct mount_kattr *kattr)
4937{
4938 int ret;
4939 struct mount_attr attr;
4940
4941 BUILD_BUG_ON(sizeof(struct mount_attr) != MOUNT_ATTR_SIZE_VER0);
4942
4943 if (unlikely(usize > PAGE_SIZE))
4944 return -E2BIG;
4945 if (unlikely(usize < MOUNT_ATTR_SIZE_VER0))
4946 return -EINVAL;
4947
4948 if (!may_mount())
4949 return -EPERM;
4950
4951 ret = copy_struct_from_user(&attr, sizeof(attr), uattr, usize);
4952 if (ret)
4953 return ret;
4954
4955 /* Don't bother walking through the mounts if this is a nop. */
4956 if (attr.attr_set == 0 &&
4957 attr.attr_clr == 0 &&
4958 attr.propagation == 0)
4959 return 0; /* Tell caller to not bother. */
4960
4961 ret = build_mount_kattr(&attr, usize, kattr);
4962 if (ret < 0)
4963 return ret;
4964
4965 return 1;
4966}
4967
4968SYSCALL_DEFINE5(mount_setattr, int, dfd, const char __user *, path,
4969 unsigned int, flags, struct mount_attr __user *, uattr,
4970 size_t, usize)
4971{
4972 int err;
4973 struct path target;
4974 struct mount_kattr kattr;
4975 unsigned int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
4976
4977 if (flags & ~(AT_EMPTY_PATH |
4978 AT_RECURSIVE |
4979 AT_SYMLINK_NOFOLLOW |
4980 AT_NO_AUTOMOUNT))
4981 return -EINVAL;
4982
4983 if (flags & AT_NO_AUTOMOUNT)
4984 lookup_flags &= ~LOOKUP_AUTOMOUNT;
4985 if (flags & AT_SYMLINK_NOFOLLOW)
4986 lookup_flags &= ~LOOKUP_FOLLOW;
4987 if (flags & AT_EMPTY_PATH)
4988 lookup_flags |= LOOKUP_EMPTY;
4989
4990 kattr = (struct mount_kattr) {
4991 .lookup_flags = lookup_flags,
4992 };
4993
4994 if (flags & AT_RECURSIVE)
4995 kattr.kflags |= MOUNT_KATTR_RECURSE;
4996
4997 err = wants_mount_setattr(uattr, usize, &kattr);
4998 if (err <= 0)
4999 return err;
5000
5001 err = user_path_at(dfd, path, kattr.lookup_flags, &target);
5002 if (!err) {
5003 err = do_mount_setattr(&target, &kattr);
5004 path_put(&target);
5005 }
5006 finish_mount_kattr(&kattr);
5007 return err;
5008}
5009
5010SYSCALL_DEFINE5(open_tree_attr, int, dfd, const char __user *, filename,
5011 unsigned, flags, struct mount_attr __user *, uattr,
5012 size_t, usize)
5013{
5014 if (!uattr && usize)
5015 return -EINVAL;
5016
5017 FD_PREPARE(fdf, flags, vfs_open_tree(dfd, filename, flags));
5018 if (fdf.err)
5019 return fdf.err;
5020
5021 if (uattr) {
5022 struct mount_kattr kattr = {};
5023 struct file *file = fd_prepare_file(fdf);
5024 int ret;
5025
5026 if (flags & OPEN_TREE_CLONE)
5027 kattr.kflags = MOUNT_KATTR_IDMAP_REPLACE;
5028 if (flags & AT_RECURSIVE)
5029 kattr.kflags |= MOUNT_KATTR_RECURSE;
5030
5031 ret = wants_mount_setattr(uattr, usize, &kattr);
5032 if (ret > 0) {
5033 ret = do_mount_setattr(&file->f_path, &kattr);
5034 finish_mount_kattr(&kattr);
5035 }
5036 if (ret)
5037 return ret;
5038 }
5039
5040 return fd_publish(fdf);
5041}
5042
5043int show_path(struct seq_file *m, struct dentry *root)
5044{
5045 if (root->d_sb->s_op->show_path)
5046 return root->d_sb->s_op->show_path(m, root);
5047
5048 seq_dentry(m, root, " \t\n\\");
5049 return 0;
5050}
5051
5052static struct vfsmount *lookup_mnt_in_ns(u64 id, struct mnt_namespace *ns)
5053{
5054 struct mount *mnt = mnt_find_id_at(ns, id);
5055
5056 if (!mnt || mnt->mnt_id_unique != id)
5057 return NULL;
5058
5059 return &mnt->mnt;
5060}
5061
5062struct kstatmount {
5063 struct statmount __user *buf;
5064 size_t bufsize;
5065 struct vfsmount *mnt;
5066 struct mnt_idmap *idmap;
5067 u64 mask;
5068 struct path root;
5069 struct seq_file seq;
5070
5071 /* Must be last --ends in a flexible-array member. */
5072 struct statmount sm;
5073};
5074
5075static u64 mnt_to_attr_flags(struct vfsmount *mnt)
5076{
5077 unsigned int mnt_flags = READ_ONCE(mnt->mnt_flags);
5078 u64 attr_flags = 0;
5079
5080 if (mnt_flags & MNT_READONLY)
5081 attr_flags |= MOUNT_ATTR_RDONLY;
5082 if (mnt_flags & MNT_NOSUID)
5083 attr_flags |= MOUNT_ATTR_NOSUID;
5084 if (mnt_flags & MNT_NODEV)
5085 attr_flags |= MOUNT_ATTR_NODEV;
5086 if (mnt_flags & MNT_NOEXEC)
5087 attr_flags |= MOUNT_ATTR_NOEXEC;
5088 if (mnt_flags & MNT_NODIRATIME)
5089 attr_flags |= MOUNT_ATTR_NODIRATIME;
5090 if (mnt_flags & MNT_NOSYMFOLLOW)
5091 attr_flags |= MOUNT_ATTR_NOSYMFOLLOW;
5092
5093 if (mnt_flags & MNT_NOATIME)
5094 attr_flags |= MOUNT_ATTR_NOATIME;
5095 else if (mnt_flags & MNT_RELATIME)
5096 attr_flags |= MOUNT_ATTR_RELATIME;
5097 else
5098 attr_flags |= MOUNT_ATTR_STRICTATIME;
5099
5100 if (is_idmapped_mnt(mnt))
5101 attr_flags |= MOUNT_ATTR_IDMAP;
5102
5103 return attr_flags;
5104}
5105
5106static u64 mnt_to_propagation_flags(struct mount *m)
5107{
5108 u64 propagation = 0;
5109
5110 if (IS_MNT_SHARED(m))
5111 propagation |= MS_SHARED;
5112 if (IS_MNT_SLAVE(m))
5113 propagation |= MS_SLAVE;
5114 if (IS_MNT_UNBINDABLE(m))
5115 propagation |= MS_UNBINDABLE;
5116 if (!propagation)
5117 propagation |= MS_PRIVATE;
5118
5119 return propagation;
5120}
5121
5122u64 vfsmount_to_propagation_flags(struct vfsmount *mnt)
5123{
5124 return mnt_to_propagation_flags(real_mount(mnt));
5125}
5126EXPORT_SYMBOL_GPL(vfsmount_to_propagation_flags);
5127
5128static void statmount_sb_basic(struct kstatmount *s)
5129{
5130 struct super_block *sb = s->mnt->mnt_sb;
5131
5132 s->sm.mask |= STATMOUNT_SB_BASIC;
5133 s->sm.sb_dev_major = MAJOR(sb->s_dev);
5134 s->sm.sb_dev_minor = MINOR(sb->s_dev);
5135 s->sm.sb_magic = sb->s_magic;
5136 s->sm.sb_flags = sb->s_flags & (SB_RDONLY|SB_SYNCHRONOUS|SB_DIRSYNC|SB_LAZYTIME);
5137}
5138
5139static void statmount_mnt_basic(struct kstatmount *s)
5140{
5141 struct mount *m = real_mount(s->mnt);
5142
5143 s->sm.mask |= STATMOUNT_MNT_BASIC;
5144 s->sm.mnt_id = m->mnt_id_unique;
5145 s->sm.mnt_parent_id = m->mnt_parent->mnt_id_unique;
5146 s->sm.mnt_id_old = m->mnt_id;
5147 s->sm.mnt_parent_id_old = m->mnt_parent->mnt_id;
5148 s->sm.mnt_attr = mnt_to_attr_flags(&m->mnt);
5149 s->sm.mnt_propagation = mnt_to_propagation_flags(m);
5150 s->sm.mnt_peer_group = m->mnt_group_id;
5151 s->sm.mnt_master = IS_MNT_SLAVE(m) ? m->mnt_master->mnt_group_id : 0;
5152}
5153
5154static void statmount_propagate_from(struct kstatmount *s)
5155{
5156 struct mount *m = real_mount(s->mnt);
5157
5158 s->sm.mask |= STATMOUNT_PROPAGATE_FROM;
5159 if (IS_MNT_SLAVE(m))
5160 s->sm.propagate_from = get_dominating_id(m, ¤t->fs->root);
5161}
5162
5163static int statmount_mnt_root(struct kstatmount *s, struct seq_file *seq)
5164{
5165 int ret;
5166 size_t start = seq->count;
5167
5168 ret = show_path(seq, s->mnt->mnt_root);
5169 if (ret)
5170 return ret;
5171
5172 if (unlikely(seq_has_overflowed(seq)))
5173 return -EAGAIN;
5174
5175 /*
5176 * Unescape the result. It would be better if supplied string was not
5177 * escaped in the first place, but that's a pretty invasive change.
5178 */
5179 seq->buf[seq->count] = '\0';
5180 seq->count = start;
5181 seq_commit(seq, string_unescape_inplace(seq->buf + start, UNESCAPE_OCTAL));
5182 return 0;
5183}
5184
5185static int statmount_mnt_point(struct kstatmount *s, struct seq_file *seq)
5186{
5187 struct vfsmount *mnt = s->mnt;
5188 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
5189 int err;
5190
5191 err = seq_path_root(seq, &mnt_path, &s->root, "");
5192 return err == SEQ_SKIP ? 0 : err;
5193}
5194
5195static int statmount_fs_type(struct kstatmount *s, struct seq_file *seq)
5196{
5197 struct super_block *sb = s->mnt->mnt_sb;
5198
5199 seq_puts(seq, sb->s_type->name);
5200 return 0;
5201}
5202
5203static void statmount_fs_subtype(struct kstatmount *s, struct seq_file *seq)
5204{
5205 struct super_block *sb = s->mnt->mnt_sb;
5206
5207 if (sb->s_subtype)
5208 seq_puts(seq, sb->s_subtype);
5209}
5210
5211static int statmount_sb_source(struct kstatmount *s, struct seq_file *seq)
5212{
5213 struct super_block *sb = s->mnt->mnt_sb;
5214 struct mount *r = real_mount(s->mnt);
5215
5216 if (sb->s_op->show_devname) {
5217 size_t start = seq->count;
5218 int ret;
5219
5220 ret = sb->s_op->show_devname(seq, s->mnt->mnt_root);
5221 if (ret)
5222 return ret;
5223
5224 if (unlikely(seq_has_overflowed(seq)))
5225 return -EAGAIN;
5226
5227 /* Unescape the result */
5228 seq->buf[seq->count] = '\0';
5229 seq->count = start;
5230 seq_commit(seq, string_unescape_inplace(seq->buf + start, UNESCAPE_OCTAL));
5231 } else {
5232 seq_puts(seq, r->mnt_devname);
5233 }
5234 return 0;
5235}
5236
5237static void statmount_mnt_ns_id(struct kstatmount *s, struct mnt_namespace *ns)
5238{
5239 s->sm.mask |= STATMOUNT_MNT_NS_ID;
5240 s->sm.mnt_ns_id = ns->ns.ns_id;
5241}
5242
5243static int statmount_mnt_opts(struct kstatmount *s, struct seq_file *seq)
5244{
5245 struct vfsmount *mnt = s->mnt;
5246 struct super_block *sb = mnt->mnt_sb;
5247 size_t start = seq->count;
5248 int err;
5249
5250 err = security_sb_show_options(seq, sb);
5251 if (err)
5252 return err;
5253
5254 if (sb->s_op->show_options) {
5255 err = sb->s_op->show_options(seq, mnt->mnt_root);
5256 if (err)
5257 return err;
5258 }
5259
5260 if (unlikely(seq_has_overflowed(seq)))
5261 return -EAGAIN;
5262
5263 if (seq->count == start)
5264 return 0;
5265
5266 /* skip leading comma */
5267 memmove(seq->buf + start, seq->buf + start + 1,
5268 seq->count - start - 1);
5269 seq->count--;
5270
5271 return 0;
5272}
5273
5274static inline int statmount_opt_process(struct seq_file *seq, size_t start)
5275{
5276 char *buf_end, *opt_end, *src, *dst;
5277 int count = 0;
5278
5279 if (unlikely(seq_has_overflowed(seq)))
5280 return -EAGAIN;
5281
5282 buf_end = seq->buf + seq->count;
5283 dst = seq->buf + start;
5284 src = dst + 1; /* skip initial comma */
5285
5286 if (src >= buf_end) {
5287 seq->count = start;
5288 return 0;
5289 }
5290
5291 *buf_end = '\0';
5292 for (; src < buf_end; src = opt_end + 1) {
5293 opt_end = strchrnul(src, ',');
5294 *opt_end = '\0';
5295 dst += string_unescape(src, dst, 0, UNESCAPE_OCTAL) + 1;
5296 if (WARN_ON_ONCE(++count == INT_MAX))
5297 return -EOVERFLOW;
5298 }
5299 seq->count = dst - 1 - seq->buf;
5300 return count;
5301}
5302
5303static int statmount_opt_array(struct kstatmount *s, struct seq_file *seq)
5304{
5305 struct vfsmount *mnt = s->mnt;
5306 struct super_block *sb = mnt->mnt_sb;
5307 size_t start = seq->count;
5308 int err;
5309
5310 if (!sb->s_op->show_options)
5311 return 0;
5312
5313 err = sb->s_op->show_options(seq, mnt->mnt_root);
5314 if (err)
5315 return err;
5316
5317 err = statmount_opt_process(seq, start);
5318 if (err < 0)
5319 return err;
5320
5321 s->sm.opt_num = err;
5322 return 0;
5323}
5324
5325static int statmount_opt_sec_array(struct kstatmount *s, struct seq_file *seq)
5326{
5327 struct vfsmount *mnt = s->mnt;
5328 struct super_block *sb = mnt->mnt_sb;
5329 size_t start = seq->count;
5330 int err;
5331
5332 err = security_sb_show_options(seq, sb);
5333 if (err)
5334 return err;
5335
5336 err = statmount_opt_process(seq, start);
5337 if (err < 0)
5338 return err;
5339
5340 s->sm.opt_sec_num = err;
5341 return 0;
5342}
5343
5344static inline int statmount_mnt_uidmap(struct kstatmount *s, struct seq_file *seq)
5345{
5346 int ret;
5347
5348 ret = statmount_mnt_idmap(s->idmap, seq, true);
5349 if (ret < 0)
5350 return ret;
5351
5352 s->sm.mnt_uidmap_num = ret;
5353 /*
5354 * Always raise STATMOUNT_MNT_UIDMAP even if there are no valid
5355 * mappings. This allows userspace to distinguish between a
5356 * non-idmapped mount and an idmapped mount where none of the
5357 * individual mappings are valid in the caller's idmapping.
5358 */
5359 if (is_valid_mnt_idmap(s->idmap))
5360 s->sm.mask |= STATMOUNT_MNT_UIDMAP;
5361 return 0;
5362}
5363
5364static inline int statmount_mnt_gidmap(struct kstatmount *s, struct seq_file *seq)
5365{
5366 int ret;
5367
5368 ret = statmount_mnt_idmap(s->idmap, seq, false);
5369 if (ret < 0)
5370 return ret;
5371
5372 s->sm.mnt_gidmap_num = ret;
5373 /*
5374 * Always raise STATMOUNT_MNT_GIDMAP even if there are no valid
5375 * mappings. This allows userspace to distinguish between a
5376 * non-idmapped mount and an idmapped mount where none of the
5377 * individual mappings are valid in the caller's idmapping.
5378 */
5379 if (is_valid_mnt_idmap(s->idmap))
5380 s->sm.mask |= STATMOUNT_MNT_GIDMAP;
5381 return 0;
5382}
5383
5384static int statmount_string(struct kstatmount *s, u64 flag)
5385{
5386 int ret = 0;
5387 size_t kbufsize;
5388 struct seq_file *seq = &s->seq;
5389 struct statmount *sm = &s->sm;
5390 u32 start, *offp;
5391
5392 /* Reserve an empty string at the beginning for any unset offsets */
5393 if (!seq->count)
5394 seq_putc(seq, 0);
5395
5396 start = seq->count;
5397
5398 switch (flag) {
5399 case STATMOUNT_FS_TYPE:
5400 offp = &sm->fs_type;
5401 ret = statmount_fs_type(s, seq);
5402 break;
5403 case STATMOUNT_MNT_ROOT:
5404 offp = &sm->mnt_root;
5405 ret = statmount_mnt_root(s, seq);
5406 break;
5407 case STATMOUNT_MNT_POINT:
5408 offp = &sm->mnt_point;
5409 ret = statmount_mnt_point(s, seq);
5410 break;
5411 case STATMOUNT_MNT_OPTS:
5412 offp = &sm->mnt_opts;
5413 ret = statmount_mnt_opts(s, seq);
5414 break;
5415 case STATMOUNT_OPT_ARRAY:
5416 offp = &sm->opt_array;
5417 ret = statmount_opt_array(s, seq);
5418 break;
5419 case STATMOUNT_OPT_SEC_ARRAY:
5420 offp = &sm->opt_sec_array;
5421 ret = statmount_opt_sec_array(s, seq);
5422 break;
5423 case STATMOUNT_FS_SUBTYPE:
5424 offp = &sm->fs_subtype;
5425 statmount_fs_subtype(s, seq);
5426 break;
5427 case STATMOUNT_SB_SOURCE:
5428 offp = &sm->sb_source;
5429 ret = statmount_sb_source(s, seq);
5430 break;
5431 case STATMOUNT_MNT_UIDMAP:
5432 offp = &sm->mnt_uidmap;
5433 ret = statmount_mnt_uidmap(s, seq);
5434 break;
5435 case STATMOUNT_MNT_GIDMAP:
5436 offp = &sm->mnt_gidmap;
5437 ret = statmount_mnt_gidmap(s, seq);
5438 break;
5439 default:
5440 WARN_ON_ONCE(true);
5441 return -EINVAL;
5442 }
5443
5444 /*
5445 * If nothing was emitted, return to avoid setting the flag
5446 * and terminating the buffer.
5447 */
5448 if (seq->count == start)
5449 return ret;
5450 if (unlikely(check_add_overflow(sizeof(*sm), seq->count, &kbufsize)))
5451 return -EOVERFLOW;
5452 if (kbufsize >= s->bufsize)
5453 return -EOVERFLOW;
5454
5455 /* signal a retry */
5456 if (unlikely(seq_has_overflowed(seq)))
5457 return -EAGAIN;
5458
5459 if (ret)
5460 return ret;
5461
5462 seq->buf[seq->count++] = '\0';
5463 sm->mask |= flag;
5464 *offp = start;
5465 return 0;
5466}
5467
5468static int copy_statmount_to_user(struct kstatmount *s)
5469{
5470 struct statmount *sm = &s->sm;
5471 struct seq_file *seq = &s->seq;
5472 char __user *str = ((char __user *)s->buf) + sizeof(*sm);
5473 size_t copysize = min_t(size_t, s->bufsize, sizeof(*sm));
5474
5475 if (seq->count && copy_to_user(str, seq->buf, seq->count))
5476 return -EFAULT;
5477
5478 /* Return the number of bytes copied to the buffer */
5479 sm->size = copysize + seq->count;
5480 if (copy_to_user(s->buf, sm, copysize))
5481 return -EFAULT;
5482
5483 return 0;
5484}
5485
5486static struct mount *listmnt_next(struct mount *curr, bool reverse)
5487{
5488 struct rb_node *node;
5489
5490 if (reverse)
5491 node = rb_prev(&curr->mnt_node);
5492 else
5493 node = rb_next(&curr->mnt_node);
5494
5495 return node_to_mount(node);
5496}
5497
5498static int grab_requested_root(struct mnt_namespace *ns, struct path *root)
5499{
5500 struct mount *first, *child;
5501
5502 rwsem_assert_held(&namespace_sem);
5503
5504 /* We're looking at our own ns, just use get_fs_root. */
5505 if (ns == current->nsproxy->mnt_ns) {
5506 get_fs_root(current->fs, root);
5507 return 0;
5508 }
5509
5510 /*
5511 * We have to find the first mount in our ns and use that, however it
5512 * may not exist, so handle that properly.
5513 */
5514 if (mnt_ns_empty(ns))
5515 return -ENOENT;
5516
5517 first = child = ns->root;
5518 for (;;) {
5519 child = listmnt_next(child, false);
5520 if (!child)
5521 return -ENOENT;
5522 if (child->mnt_parent == first)
5523 break;
5524 }
5525
5526 root->mnt = mntget(&child->mnt);
5527 root->dentry = dget(root->mnt->mnt_root);
5528 return 0;
5529}
5530
5531/* This must be updated whenever a new flag is added */
5532#define STATMOUNT_SUPPORTED (STATMOUNT_SB_BASIC | \
5533 STATMOUNT_MNT_BASIC | \
5534 STATMOUNT_PROPAGATE_FROM | \
5535 STATMOUNT_MNT_ROOT | \
5536 STATMOUNT_MNT_POINT | \
5537 STATMOUNT_FS_TYPE | \
5538 STATMOUNT_MNT_NS_ID | \
5539 STATMOUNT_MNT_OPTS | \
5540 STATMOUNT_FS_SUBTYPE | \
5541 STATMOUNT_SB_SOURCE | \
5542 STATMOUNT_OPT_ARRAY | \
5543 STATMOUNT_OPT_SEC_ARRAY | \
5544 STATMOUNT_SUPPORTED_MASK | \
5545 STATMOUNT_MNT_UIDMAP | \
5546 STATMOUNT_MNT_GIDMAP)
5547
5548/* locks: namespace_shared */
5549static int do_statmount(struct kstatmount *s, u64 mnt_id, u64 mnt_ns_id,
5550 struct mnt_namespace *ns)
5551{
5552 struct mount *m;
5553 int err;
5554
5555 /* Has the namespace already been emptied? */
5556 if (mnt_ns_id && mnt_ns_empty(ns))
5557 return -ENOENT;
5558
5559 s->mnt = lookup_mnt_in_ns(mnt_id, ns);
5560 if (!s->mnt)
5561 return -ENOENT;
5562
5563 err = grab_requested_root(ns, &s->root);
5564 if (err)
5565 return err;
5566
5567 /*
5568 * Don't trigger audit denials. We just want to determine what
5569 * mounts to show users.
5570 */
5571 m = real_mount(s->mnt);
5572 if (!is_path_reachable(m, m->mnt.mnt_root, &s->root) &&
5573 !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN))
5574 return -EPERM;
5575
5576 err = security_sb_statfs(s->mnt->mnt_root);
5577 if (err)
5578 return err;
5579
5580 /*
5581 * Note that mount properties in mnt->mnt_flags, mnt->mnt_idmap
5582 * can change concurrently as we only hold the read-side of the
5583 * namespace semaphore and mount properties may change with only
5584 * the mount lock held.
5585 *
5586 * We could sample the mount lock sequence counter to detect
5587 * those changes and retry. But it's not worth it. Worst that
5588 * happens is that the mnt->mnt_idmap pointer is already changed
5589 * while mnt->mnt_flags isn't or vica versa. So what.
5590 *
5591 * Both mnt->mnt_flags and mnt->mnt_idmap are set and retrieved
5592 * via READ_ONCE()/WRITE_ONCE() and guard against theoretical
5593 * torn read/write. That's all we care about right now.
5594 */
5595 s->idmap = mnt_idmap(s->mnt);
5596 if (s->mask & STATMOUNT_MNT_BASIC)
5597 statmount_mnt_basic(s);
5598
5599 if (s->mask & STATMOUNT_SB_BASIC)
5600 statmount_sb_basic(s);
5601
5602 if (s->mask & STATMOUNT_PROPAGATE_FROM)
5603 statmount_propagate_from(s);
5604
5605 if (s->mask & STATMOUNT_FS_TYPE)
5606 err = statmount_string(s, STATMOUNT_FS_TYPE);
5607
5608 if (!err && s->mask & STATMOUNT_MNT_ROOT)
5609 err = statmount_string(s, STATMOUNT_MNT_ROOT);
5610
5611 if (!err && s->mask & STATMOUNT_MNT_POINT)
5612 err = statmount_string(s, STATMOUNT_MNT_POINT);
5613
5614 if (!err && s->mask & STATMOUNT_MNT_OPTS)
5615 err = statmount_string(s, STATMOUNT_MNT_OPTS);
5616
5617 if (!err && s->mask & STATMOUNT_OPT_ARRAY)
5618 err = statmount_string(s, STATMOUNT_OPT_ARRAY);
5619
5620 if (!err && s->mask & STATMOUNT_OPT_SEC_ARRAY)
5621 err = statmount_string(s, STATMOUNT_OPT_SEC_ARRAY);
5622
5623 if (!err && s->mask & STATMOUNT_FS_SUBTYPE)
5624 err = statmount_string(s, STATMOUNT_FS_SUBTYPE);
5625
5626 if (!err && s->mask & STATMOUNT_SB_SOURCE)
5627 err = statmount_string(s, STATMOUNT_SB_SOURCE);
5628
5629 if (!err && s->mask & STATMOUNT_MNT_UIDMAP)
5630 err = statmount_string(s, STATMOUNT_MNT_UIDMAP);
5631
5632 if (!err && s->mask & STATMOUNT_MNT_GIDMAP)
5633 err = statmount_string(s, STATMOUNT_MNT_GIDMAP);
5634
5635 if (!err && s->mask & STATMOUNT_MNT_NS_ID)
5636 statmount_mnt_ns_id(s, ns);
5637
5638 if (!err && s->mask & STATMOUNT_SUPPORTED_MASK) {
5639 s->sm.mask |= STATMOUNT_SUPPORTED_MASK;
5640 s->sm.supported_mask = STATMOUNT_SUPPORTED;
5641 }
5642
5643 if (err)
5644 return err;
5645
5646 /* Are there bits in the return mask not present in STATMOUNT_SUPPORTED? */
5647 WARN_ON_ONCE(~STATMOUNT_SUPPORTED & s->sm.mask);
5648
5649 return 0;
5650}
5651
5652static inline bool retry_statmount(const long ret, size_t *seq_size)
5653{
5654 if (likely(ret != -EAGAIN))
5655 return false;
5656 if (unlikely(check_mul_overflow(*seq_size, 2, seq_size)))
5657 return false;
5658 if (unlikely(*seq_size > MAX_RW_COUNT))
5659 return false;
5660 return true;
5661}
5662
5663#define STATMOUNT_STRING_REQ (STATMOUNT_MNT_ROOT | STATMOUNT_MNT_POINT | \
5664 STATMOUNT_FS_TYPE | STATMOUNT_MNT_OPTS | \
5665 STATMOUNT_FS_SUBTYPE | STATMOUNT_SB_SOURCE | \
5666 STATMOUNT_OPT_ARRAY | STATMOUNT_OPT_SEC_ARRAY | \
5667 STATMOUNT_MNT_UIDMAP | STATMOUNT_MNT_GIDMAP)
5668
5669static int prepare_kstatmount(struct kstatmount *ks, struct mnt_id_req *kreq,
5670 struct statmount __user *buf, size_t bufsize,
5671 size_t seq_size)
5672{
5673 if (!access_ok(buf, bufsize))
5674 return -EFAULT;
5675
5676 memset(ks, 0, sizeof(*ks));
5677 ks->mask = kreq->param;
5678 ks->buf = buf;
5679 ks->bufsize = bufsize;
5680
5681 if (ks->mask & STATMOUNT_STRING_REQ) {
5682 if (bufsize == sizeof(ks->sm))
5683 return -EOVERFLOW;
5684
5685 ks->seq.buf = kvmalloc(seq_size, GFP_KERNEL_ACCOUNT);
5686 if (!ks->seq.buf)
5687 return -ENOMEM;
5688
5689 ks->seq.size = seq_size;
5690 }
5691
5692 return 0;
5693}
5694
5695static int copy_mnt_id_req(const struct mnt_id_req __user *req,
5696 struct mnt_id_req *kreq)
5697{
5698 int ret;
5699 size_t usize;
5700
5701 BUILD_BUG_ON(sizeof(struct mnt_id_req) != MNT_ID_REQ_SIZE_VER1);
5702
5703 ret = get_user(usize, &req->size);
5704 if (ret)
5705 return -EFAULT;
5706 if (unlikely(usize > PAGE_SIZE))
5707 return -E2BIG;
5708 if (unlikely(usize < MNT_ID_REQ_SIZE_VER0))
5709 return -EINVAL;
5710 memset(kreq, 0, sizeof(*kreq));
5711 ret = copy_struct_from_user(kreq, sizeof(*kreq), req, usize);
5712 if (ret)
5713 return ret;
5714 if (kreq->mnt_ns_fd != 0 && kreq->mnt_ns_id)
5715 return -EINVAL;
5716 /* The first valid unique mount id is MNT_UNIQUE_ID_OFFSET + 1. */
5717 if (kreq->mnt_id <= MNT_UNIQUE_ID_OFFSET)
5718 return -EINVAL;
5719 return 0;
5720}
5721
5722/*
5723 * If the user requested a specific mount namespace id, look that up and return
5724 * that, or if not simply grab a passive reference on our mount namespace and
5725 * return that.
5726 */
5727static struct mnt_namespace *grab_requested_mnt_ns(const struct mnt_id_req *kreq)
5728{
5729 struct mnt_namespace *mnt_ns;
5730
5731 if (kreq->mnt_ns_id) {
5732 mnt_ns = lookup_mnt_ns(kreq->mnt_ns_id);
5733 if (!mnt_ns)
5734 return ERR_PTR(-ENOENT);
5735 } else if (kreq->mnt_ns_fd) {
5736 struct ns_common *ns;
5737
5738 CLASS(fd, f)(kreq->mnt_ns_fd);
5739 if (fd_empty(f))
5740 return ERR_PTR(-EBADF);
5741
5742 if (!proc_ns_file(fd_file(f)))
5743 return ERR_PTR(-EINVAL);
5744
5745 ns = get_proc_ns(file_inode(fd_file(f)));
5746 if (ns->ns_type != CLONE_NEWNS)
5747 return ERR_PTR(-EINVAL);
5748
5749 mnt_ns = to_mnt_ns(ns);
5750 refcount_inc(&mnt_ns->passive);
5751 } else {
5752 mnt_ns = current->nsproxy->mnt_ns;
5753 refcount_inc(&mnt_ns->passive);
5754 }
5755
5756 return mnt_ns;
5757}
5758
5759SYSCALL_DEFINE4(statmount, const struct mnt_id_req __user *, req,
5760 struct statmount __user *, buf, size_t, bufsize,
5761 unsigned int, flags)
5762{
5763 struct mnt_namespace *ns __free(mnt_ns_release) = NULL;
5764 struct kstatmount *ks __free(kfree) = NULL;
5765 struct mnt_id_req kreq;
5766 /* We currently support retrieval of 3 strings. */
5767 size_t seq_size = 3 * PATH_MAX;
5768 int ret;
5769
5770 if (flags)
5771 return -EINVAL;
5772
5773 ret = copy_mnt_id_req(req, &kreq);
5774 if (ret)
5775 return ret;
5776
5777 ns = grab_requested_mnt_ns(&kreq);
5778 if (IS_ERR(ns))
5779 return PTR_ERR(ns);
5780
5781 if (kreq.mnt_ns_id && (ns != current->nsproxy->mnt_ns) &&
5782 !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN))
5783 return -ENOENT;
5784
5785 ks = kmalloc(sizeof(*ks), GFP_KERNEL_ACCOUNT);
5786 if (!ks)
5787 return -ENOMEM;
5788
5789retry:
5790 ret = prepare_kstatmount(ks, &kreq, buf, bufsize, seq_size);
5791 if (ret)
5792 return ret;
5793
5794 scoped_guard(namespace_shared)
5795 ret = do_statmount(ks, kreq.mnt_id, kreq.mnt_ns_id, ns);
5796
5797 if (!ret)
5798 ret = copy_statmount_to_user(ks);
5799 kvfree(ks->seq.buf);
5800 path_put(&ks->root);
5801 if (retry_statmount(ret, &seq_size))
5802 goto retry;
5803 return ret;
5804}
5805
5806struct klistmount {
5807 u64 last_mnt_id;
5808 u64 mnt_parent_id;
5809 u64 *kmnt_ids;
5810 u32 nr_mnt_ids;
5811 struct mnt_namespace *ns;
5812 struct path root;
5813};
5814
5815/* locks: namespace_shared */
5816static ssize_t do_listmount(struct klistmount *kls, bool reverse)
5817{
5818 struct mnt_namespace *ns = kls->ns;
5819 u64 mnt_parent_id = kls->mnt_parent_id;
5820 u64 last_mnt_id = kls->last_mnt_id;
5821 u64 *mnt_ids = kls->kmnt_ids;
5822 size_t nr_mnt_ids = kls->nr_mnt_ids;
5823 struct path orig;
5824 struct mount *r, *first;
5825 ssize_t ret;
5826
5827 rwsem_assert_held(&namespace_sem);
5828
5829 ret = grab_requested_root(ns, &kls->root);
5830 if (ret)
5831 return ret;
5832
5833 if (mnt_parent_id == LSMT_ROOT) {
5834 orig = kls->root;
5835 } else {
5836 orig.mnt = lookup_mnt_in_ns(mnt_parent_id, ns);
5837 if (!orig.mnt)
5838 return -ENOENT;
5839 orig.dentry = orig.mnt->mnt_root;
5840 }
5841
5842 /*
5843 * Don't trigger audit denials. We just want to determine what
5844 * mounts to show users.
5845 */
5846 if (!is_path_reachable(real_mount(orig.mnt), orig.dentry, &kls->root) &&
5847 !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN))
5848 return -EPERM;
5849
5850 ret = security_sb_statfs(orig.dentry);
5851 if (ret)
5852 return ret;
5853
5854 if (!last_mnt_id) {
5855 if (reverse)
5856 first = node_to_mount(ns->mnt_last_node);
5857 else
5858 first = node_to_mount(ns->mnt_first_node);
5859 } else {
5860 if (reverse)
5861 first = mnt_find_id_at_reverse(ns, last_mnt_id - 1);
5862 else
5863 first = mnt_find_id_at(ns, last_mnt_id + 1);
5864 }
5865
5866 for (ret = 0, r = first; r && nr_mnt_ids; r = listmnt_next(r, reverse)) {
5867 if (r->mnt_id_unique == mnt_parent_id)
5868 continue;
5869 if (!is_path_reachable(r, r->mnt.mnt_root, &orig))
5870 continue;
5871 *mnt_ids = r->mnt_id_unique;
5872 mnt_ids++;
5873 nr_mnt_ids--;
5874 ret++;
5875 }
5876 return ret;
5877}
5878
5879static void __free_klistmount_free(const struct klistmount *kls)
5880{
5881 path_put(&kls->root);
5882 kvfree(kls->kmnt_ids);
5883 mnt_ns_release(kls->ns);
5884}
5885
5886static inline int prepare_klistmount(struct klistmount *kls, struct mnt_id_req *kreq,
5887 size_t nr_mnt_ids)
5888{
5889 u64 last_mnt_id = kreq->param;
5890 struct mnt_namespace *ns;
5891
5892 /* The first valid unique mount id is MNT_UNIQUE_ID_OFFSET + 1. */
5893 if (last_mnt_id != 0 && last_mnt_id <= MNT_UNIQUE_ID_OFFSET)
5894 return -EINVAL;
5895
5896 kls->last_mnt_id = last_mnt_id;
5897
5898 kls->nr_mnt_ids = nr_mnt_ids;
5899 kls->kmnt_ids = kvmalloc_array(nr_mnt_ids, sizeof(*kls->kmnt_ids),
5900 GFP_KERNEL_ACCOUNT);
5901 if (!kls->kmnt_ids)
5902 return -ENOMEM;
5903
5904 ns = grab_requested_mnt_ns(kreq);
5905 if (IS_ERR(ns))
5906 return PTR_ERR(ns);
5907 kls->ns = ns;
5908
5909 kls->mnt_parent_id = kreq->mnt_id;
5910 return 0;
5911}
5912
5913SYSCALL_DEFINE4(listmount, const struct mnt_id_req __user *, req,
5914 u64 __user *, mnt_ids, size_t, nr_mnt_ids, unsigned int, flags)
5915{
5916 struct klistmount kls __free(klistmount_free) = {};
5917 const size_t maxcount = 1000000;
5918 struct mnt_id_req kreq;
5919 ssize_t ret;
5920
5921 if (flags & ~LISTMOUNT_REVERSE)
5922 return -EINVAL;
5923
5924 /*
5925 * If the mount namespace really has more than 1 million mounts the
5926 * caller must iterate over the mount namespace (and reconsider their
5927 * system design...).
5928 */
5929 if (unlikely(nr_mnt_ids > maxcount))
5930 return -EOVERFLOW;
5931
5932 if (!access_ok(mnt_ids, nr_mnt_ids * sizeof(*mnt_ids)))
5933 return -EFAULT;
5934
5935 ret = copy_mnt_id_req(req, &kreq);
5936 if (ret)
5937 return ret;
5938
5939 ret = prepare_klistmount(&kls, &kreq, nr_mnt_ids);
5940 if (ret)
5941 return ret;
5942
5943 if (kreq.mnt_ns_id && (kls.ns != current->nsproxy->mnt_ns) &&
5944 !ns_capable_noaudit(kls.ns->user_ns, CAP_SYS_ADMIN))
5945 return -ENOENT;
5946
5947 /*
5948 * We only need to guard against mount topology changes as
5949 * listmount() doesn't care about any mount properties.
5950 */
5951 scoped_guard(namespace_shared)
5952 ret = do_listmount(&kls, (flags & LISTMOUNT_REVERSE));
5953 if (ret <= 0)
5954 return ret;
5955
5956 if (copy_to_user(mnt_ids, kls.kmnt_ids, ret * sizeof(*mnt_ids)))
5957 return -EFAULT;
5958
5959 return ret;
5960}
5961
5962struct mnt_namespace init_mnt_ns = {
5963 .ns = NS_COMMON_INIT(init_mnt_ns),
5964 .user_ns = &init_user_ns,
5965 .passive = REFCOUNT_INIT(1),
5966 .mounts = RB_ROOT,
5967 .poll = __WAIT_QUEUE_HEAD_INITIALIZER(init_mnt_ns.poll),
5968};
5969
5970static void __init init_mount_tree(void)
5971{
5972 struct vfsmount *mnt;
5973 struct mount *m;
5974 struct path root;
5975
5976 mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", initramfs_options);
5977 if (IS_ERR(mnt))
5978 panic("Can't create rootfs");
5979
5980 m = real_mount(mnt);
5981 init_mnt_ns.root = m;
5982 init_mnt_ns.nr_mounts = 1;
5983 mnt_add_to_ns(&init_mnt_ns, m);
5984 init_task.nsproxy->mnt_ns = &init_mnt_ns;
5985 get_mnt_ns(&init_mnt_ns);
5986
5987 root.mnt = mnt;
5988 root.dentry = mnt->mnt_root;
5989
5990 set_fs_pwd(current->fs, &root);
5991 set_fs_root(current->fs, &root);
5992
5993 ns_tree_add(&init_mnt_ns);
5994}
5995
5996void __init mnt_init(void)
5997{
5998 int err;
5999
6000 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
6001 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
6002
6003 mount_hashtable = alloc_large_system_hash("Mount-cache",
6004 sizeof(struct hlist_head),
6005 mhash_entries, 19,
6006 HASH_ZERO,
6007 &m_hash_shift, &m_hash_mask, 0, 0);
6008 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
6009 sizeof(struct hlist_head),
6010 mphash_entries, 19,
6011 HASH_ZERO,
6012 &mp_hash_shift, &mp_hash_mask, 0, 0);
6013
6014 if (!mount_hashtable || !mountpoint_hashtable)
6015 panic("Failed to allocate mount hash table\n");
6016
6017 kernfs_init();
6018
6019 err = sysfs_init();
6020 if (err)
6021 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
6022 __func__, err);
6023 fs_kobj = kobject_create_and_add("fs", NULL);
6024 if (!fs_kobj)
6025 printk(KERN_WARNING "%s: kobj create error\n", __func__);
6026 shmem_init();
6027 init_rootfs();
6028 init_mount_tree();
6029}
6030
6031void put_mnt_ns(struct mnt_namespace *ns)
6032{
6033 if (!ns_ref_put(ns))
6034 return;
6035 guard(namespace_excl)();
6036 emptied_ns = ns;
6037 guard(mount_writer)();
6038 umount_tree(ns->root, 0);
6039}
6040
6041struct vfsmount *kern_mount(struct file_system_type *type)
6042{
6043 struct vfsmount *mnt;
6044 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
6045 if (!IS_ERR(mnt)) {
6046 /*
6047 * it is a longterm mount, don't release mnt until
6048 * we unmount before file sys is unregistered
6049 */
6050 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
6051 }
6052 return mnt;
6053}
6054EXPORT_SYMBOL_GPL(kern_mount);
6055
6056void kern_unmount(struct vfsmount *mnt)
6057{
6058 /* release long term mount so mount point can be released */
6059 if (!IS_ERR(mnt)) {
6060 mnt_make_shortterm(mnt);
6061 synchronize_rcu(); /* yecchhh... */
6062 mntput(mnt);
6063 }
6064}
6065EXPORT_SYMBOL(kern_unmount);
6066
6067void kern_unmount_array(struct vfsmount *mnt[], unsigned int num)
6068{
6069 unsigned int i;
6070
6071 for (i = 0; i < num; i++)
6072 mnt_make_shortterm(mnt[i]);
6073 synchronize_rcu_expedited();
6074 for (i = 0; i < num; i++)
6075 mntput(mnt[i]);
6076}
6077EXPORT_SYMBOL(kern_unmount_array);
6078
6079bool our_mnt(struct vfsmount *mnt)
6080{
6081 return check_mnt(real_mount(mnt));
6082}
6083
6084bool current_chrooted(void)
6085{
6086 /* Does the current process have a non-standard root */
6087 struct path fs_root __free(path_put) = {};
6088 struct mount *root;
6089
6090 get_fs_root(current->fs, &fs_root);
6091
6092 /* Find the namespace root */
6093
6094 guard(mount_locked_reader)();
6095
6096 root = topmost_overmount(current->nsproxy->mnt_ns->root);
6097
6098 return fs_root.mnt != &root->mnt || !path_mounted(&fs_root);
6099}
6100
6101static bool mnt_already_visible(struct mnt_namespace *ns,
6102 const struct super_block *sb,
6103 int *new_mnt_flags)
6104{
6105 int new_flags = *new_mnt_flags;
6106 struct mount *mnt, *n;
6107
6108 guard(namespace_shared)();
6109 rbtree_postorder_for_each_entry_safe(mnt, n, &ns->mounts, mnt_node) {
6110 struct mount *child;
6111 int mnt_flags;
6112
6113 if (mnt->mnt.mnt_sb->s_type != sb->s_type)
6114 continue;
6115
6116 /* This mount is not fully visible if it's root directory
6117 * is not the root directory of the filesystem.
6118 */
6119 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
6120 continue;
6121
6122 /* A local view of the mount flags */
6123 mnt_flags = mnt->mnt.mnt_flags;
6124
6125 /* Don't miss readonly hidden in the superblock flags */
6126 if (sb_rdonly(mnt->mnt.mnt_sb))
6127 mnt_flags |= MNT_LOCK_READONLY;
6128
6129 /* Verify the mount flags are equal to or more permissive
6130 * than the proposed new mount.
6131 */
6132 if ((mnt_flags & MNT_LOCK_READONLY) &&
6133 !(new_flags & MNT_READONLY))
6134 continue;
6135 if ((mnt_flags & MNT_LOCK_ATIME) &&
6136 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
6137 continue;
6138
6139 /* This mount is not fully visible if there are any
6140 * locked child mounts that cover anything except for
6141 * empty directories.
6142 */
6143 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
6144 struct inode *inode = child->mnt_mountpoint->d_inode;
6145 /* Only worry about locked mounts */
6146 if (!(child->mnt.mnt_flags & MNT_LOCKED))
6147 continue;
6148 /* Is the directory permanently empty? */
6149 if (!is_empty_dir_inode(inode))
6150 goto next;
6151 }
6152 /* Preserve the locked attributes */
6153 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
6154 MNT_LOCK_ATIME);
6155 return true;
6156 next: ;
6157 }
6158 return false;
6159}
6160
6161static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags)
6162{
6163 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
6164 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
6165 unsigned long s_iflags;
6166
6167 if (ns->user_ns == &init_user_ns)
6168 return false;
6169
6170 /* Can this filesystem be too revealing? */
6171 s_iflags = sb->s_iflags;
6172 if (!(s_iflags & SB_I_USERNS_VISIBLE))
6173 return false;
6174
6175 if ((s_iflags & required_iflags) != required_iflags) {
6176 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
6177 required_iflags);
6178 return true;
6179 }
6180
6181 return !mnt_already_visible(ns, sb, new_mnt_flags);
6182}
6183
6184bool mnt_may_suid(struct vfsmount *mnt)
6185{
6186 /*
6187 * Foreign mounts (accessed via fchdir or through /proc
6188 * symlinks) are always treated as if they are nosuid. This
6189 * prevents namespaces from trusting potentially unsafe
6190 * suid/sgid bits, file caps, or security labels that originate
6191 * in other namespaces.
6192 */
6193 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
6194 current_in_userns(mnt->mnt_sb->s_user_ns);
6195}
6196
6197static struct ns_common *mntns_get(struct task_struct *task)
6198{
6199 struct ns_common *ns = NULL;
6200 struct nsproxy *nsproxy;
6201
6202 task_lock(task);
6203 nsproxy = task->nsproxy;
6204 if (nsproxy) {
6205 ns = &nsproxy->mnt_ns->ns;
6206 get_mnt_ns(to_mnt_ns(ns));
6207 }
6208 task_unlock(task);
6209
6210 return ns;
6211}
6212
6213static void mntns_put(struct ns_common *ns)
6214{
6215 put_mnt_ns(to_mnt_ns(ns));
6216}
6217
6218static int mntns_install(struct nsset *nsset, struct ns_common *ns)
6219{
6220 struct nsproxy *nsproxy = nsset->nsproxy;
6221 struct fs_struct *fs = nsset->fs;
6222 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
6223 struct user_namespace *user_ns = nsset->cred->user_ns;
6224 struct path root;
6225 int err;
6226
6227 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
6228 !ns_capable(user_ns, CAP_SYS_CHROOT) ||
6229 !ns_capable(user_ns, CAP_SYS_ADMIN))
6230 return -EPERM;
6231
6232 if (is_anon_ns(mnt_ns))
6233 return -EINVAL;
6234
6235 if (fs->users != 1)
6236 return -EINVAL;
6237
6238 get_mnt_ns(mnt_ns);
6239 old_mnt_ns = nsproxy->mnt_ns;
6240 nsproxy->mnt_ns = mnt_ns;
6241
6242 /* Find the root */
6243 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
6244 "/", LOOKUP_DOWN, &root);
6245 if (err) {
6246 /* revert to old namespace */
6247 nsproxy->mnt_ns = old_mnt_ns;
6248 put_mnt_ns(mnt_ns);
6249 return err;
6250 }
6251
6252 put_mnt_ns(old_mnt_ns);
6253
6254 /* Update the pwd and root */
6255 set_fs_pwd(fs, &root);
6256 set_fs_root(fs, &root);
6257
6258 path_put(&root);
6259 return 0;
6260}
6261
6262static struct user_namespace *mntns_owner(struct ns_common *ns)
6263{
6264 return to_mnt_ns(ns)->user_ns;
6265}
6266
6267const struct proc_ns_operations mntns_operations = {
6268 .name = "mnt",
6269 .get = mntns_get,
6270 .put = mntns_put,
6271 .install = mntns_install,
6272 .owner = mntns_owner,
6273};
6274
6275#ifdef CONFIG_SYSCTL
6276static const struct ctl_table fs_namespace_sysctls[] = {
6277 {
6278 .procname = "mount-max",
6279 .data = &sysctl_mount_max,
6280 .maxlen = sizeof(unsigned int),
6281 .mode = 0644,
6282 .proc_handler = proc_dointvec_minmax,
6283 .extra1 = SYSCTL_ONE,
6284 },
6285};
6286
6287static int __init init_fs_namespace_sysctls(void)
6288{
6289 register_sysctl_init("fs", fs_namespace_sysctls);
6290 return 0;
6291}
6292fs_initcall(init_fs_namespace_sysctls);
6293
6294#endif /* CONFIG_SYSCTL */