Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * linux/fs/jbd2/journal.c
4 *
5 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6 *
7 * Copyright 1998 Red Hat corp --- All Rights Reserved
8 *
9 * Generic filesystem journal-writing code; part of the ext2fs
10 * journaling system.
11 *
12 * This file manages journals: areas of disk reserved for logging
13 * transactional updates. This includes the kernel journaling thread
14 * which is responsible for scheduling updates to the log.
15 *
16 * We do not actually manage the physical storage of the journal in this
17 * file: that is left to a per-journal policy function, which allows us
18 * to store the journal within a filesystem-specified area for ext2
19 * journaling (ext2 can use a reserved inode for storing the log).
20 */
21
22#include <linux/module.h>
23#include <linux/time.h>
24#include <linux/fs.h>
25#include <linux/jbd2.h>
26#include <linux/errno.h>
27#include <linux/slab.h>
28#include <linux/init.h>
29#include <linux/mm.h>
30#include <linux/freezer.h>
31#include <linux/pagemap.h>
32#include <linux/kthread.h>
33#include <linux/poison.h>
34#include <linux/proc_fs.h>
35#include <linux/seq_file.h>
36#include <linux/math64.h>
37#include <linux/hash.h>
38#include <linux/log2.h>
39#include <linux/vmalloc.h>
40#include <linux/backing-dev.h>
41#include <linux/bitops.h>
42#include <linux/ratelimit.h>
43#include <linux/sched/mm.h>
44
45#define CREATE_TRACE_POINTS
46#include <trace/events/jbd2.h>
47
48#include <linux/uaccess.h>
49#include <asm/page.h>
50
51#ifdef CONFIG_JBD2_DEBUG
52static ushort jbd2_journal_enable_debug __read_mostly;
53
54module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
55MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
56#endif
57
58EXPORT_SYMBOL(jbd2_journal_extend);
59EXPORT_SYMBOL(jbd2_journal_stop);
60EXPORT_SYMBOL(jbd2_journal_lock_updates);
61EXPORT_SYMBOL(jbd2_journal_unlock_updates);
62EXPORT_SYMBOL(jbd2_journal_get_write_access);
63EXPORT_SYMBOL(jbd2_journal_get_create_access);
64EXPORT_SYMBOL(jbd2_journal_get_undo_access);
65EXPORT_SYMBOL(jbd2_journal_set_triggers);
66EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
67EXPORT_SYMBOL(jbd2_journal_forget);
68EXPORT_SYMBOL(jbd2_journal_flush);
69EXPORT_SYMBOL(jbd2_journal_revoke);
70
71EXPORT_SYMBOL(jbd2_journal_init_dev);
72EXPORT_SYMBOL(jbd2_journal_init_inode);
73EXPORT_SYMBOL(jbd2_journal_check_used_features);
74EXPORT_SYMBOL(jbd2_journal_check_available_features);
75EXPORT_SYMBOL(jbd2_journal_set_features);
76EXPORT_SYMBOL(jbd2_journal_load);
77EXPORT_SYMBOL(jbd2_journal_destroy);
78EXPORT_SYMBOL(jbd2_journal_abort);
79EXPORT_SYMBOL(jbd2_journal_errno);
80EXPORT_SYMBOL(jbd2_journal_ack_err);
81EXPORT_SYMBOL(jbd2_journal_clear_err);
82EXPORT_SYMBOL(jbd2_log_wait_commit);
83EXPORT_SYMBOL(jbd2_journal_start_commit);
84EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
85EXPORT_SYMBOL(jbd2_journal_wipe);
86EXPORT_SYMBOL(jbd2_journal_blocks_per_folio);
87EXPORT_SYMBOL(jbd2_journal_invalidate_folio);
88EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
89EXPORT_SYMBOL(jbd2_journal_force_commit);
90EXPORT_SYMBOL(jbd2_journal_inode_ranged_write);
91EXPORT_SYMBOL(jbd2_journal_inode_ranged_wait);
92EXPORT_SYMBOL(jbd2_journal_finish_inode_data_buffers);
93EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
94EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
95EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
96EXPORT_SYMBOL(jbd2_inode_cache);
97
98static int jbd2_journal_create_slab(size_t slab_size);
99
100#ifdef CONFIG_JBD2_DEBUG
101void __jbd2_debug(int level, const char *file, const char *func,
102 unsigned int line, const char *fmt, ...)
103{
104 struct va_format vaf;
105 va_list args;
106
107 if (level > jbd2_journal_enable_debug)
108 return;
109 va_start(args, fmt);
110 vaf.fmt = fmt;
111 vaf.va = &args;
112 printk(KERN_DEBUG "%s: (%s, %u): %pV", file, func, line, &vaf);
113 va_end(args);
114}
115#endif
116
117/* Checksumming functions */
118static __be32 jbd2_superblock_csum(journal_superblock_t *sb)
119{
120 __u32 csum;
121 __be32 old_csum;
122
123 old_csum = sb->s_checksum;
124 sb->s_checksum = 0;
125 csum = jbd2_chksum(~0, (char *)sb, sizeof(journal_superblock_t));
126 sb->s_checksum = old_csum;
127
128 return cpu_to_be32(csum);
129}
130
131/*
132 * Helper function used to manage commit timeouts
133 */
134
135static void commit_timeout(struct timer_list *t)
136{
137 journal_t *journal = timer_container_of(journal, t, j_commit_timer);
138
139 wake_up_process(journal->j_task);
140}
141
142/*
143 * kjournald2: The main thread function used to manage a logging device
144 * journal.
145 *
146 * This kernel thread is responsible for two things:
147 *
148 * 1) COMMIT: Every so often we need to commit the current state of the
149 * filesystem to disk. The journal thread is responsible for writing
150 * all of the metadata buffers to disk. If a fast commit is ongoing
151 * journal thread waits until it's done and then continues from
152 * there on.
153 *
154 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
155 * of the data in that part of the log has been rewritten elsewhere on
156 * the disk. Flushing these old buffers to reclaim space in the log is
157 * known as checkpointing, and this thread is responsible for that job.
158 */
159
160static int kjournald2(void *arg)
161{
162 journal_t *journal = arg;
163 transaction_t *transaction;
164
165 /*
166 * Set up an interval timer which can be used to trigger a commit wakeup
167 * after the commit interval expires
168 */
169 timer_setup(&journal->j_commit_timer, commit_timeout, 0);
170
171 set_freezable();
172
173 /* Record that the journal thread is running */
174 journal->j_task = current;
175 wake_up(&journal->j_wait_done_commit);
176
177 /*
178 * Make sure that no allocations from this kernel thread will ever
179 * recurse to the fs layer because we are responsible for the
180 * transaction commit and any fs involvement might get stuck waiting for
181 * the trasn. commit.
182 */
183 memalloc_nofs_save();
184
185 /*
186 * And now, wait forever for commit wakeup events.
187 */
188 write_lock(&journal->j_state_lock);
189
190loop:
191 if (journal->j_flags & JBD2_UNMOUNT)
192 goto end_loop;
193
194 jbd2_debug(1, "commit_sequence=%u, commit_request=%u\n",
195 journal->j_commit_sequence, journal->j_commit_request);
196
197 if (journal->j_commit_sequence != journal->j_commit_request) {
198 jbd2_debug(1, "OK, requests differ\n");
199 write_unlock(&journal->j_state_lock);
200 timer_delete_sync(&journal->j_commit_timer);
201 jbd2_journal_commit_transaction(journal);
202 write_lock(&journal->j_state_lock);
203 goto loop;
204 }
205
206 wake_up(&journal->j_wait_done_commit);
207 if (freezing(current)) {
208 /*
209 * The simpler the better. Flushing journal isn't a
210 * good idea, because that depends on threads that may
211 * be already stopped.
212 */
213 jbd2_debug(1, "Now suspending kjournald2\n");
214 write_unlock(&journal->j_state_lock);
215 try_to_freeze();
216 write_lock(&journal->j_state_lock);
217 } else {
218 /*
219 * We assume on resume that commits are already there,
220 * so we don't sleep
221 */
222 DEFINE_WAIT(wait);
223
224 prepare_to_wait(&journal->j_wait_commit, &wait,
225 TASK_INTERRUPTIBLE);
226 transaction = journal->j_running_transaction;
227 if (transaction == NULL ||
228 time_before(jiffies, transaction->t_expires)) {
229 write_unlock(&journal->j_state_lock);
230 schedule();
231 write_lock(&journal->j_state_lock);
232 }
233 finish_wait(&journal->j_wait_commit, &wait);
234 }
235
236 jbd2_debug(1, "kjournald2 wakes\n");
237
238 /*
239 * Were we woken up by a commit wakeup event?
240 */
241 transaction = journal->j_running_transaction;
242 if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
243 journal->j_commit_request = transaction->t_tid;
244 jbd2_debug(1, "woke because of timeout\n");
245 }
246 goto loop;
247
248end_loop:
249 timer_delete_sync(&journal->j_commit_timer);
250 journal->j_task = NULL;
251 wake_up(&journal->j_wait_done_commit);
252 jbd2_debug(1, "Journal thread exiting.\n");
253 write_unlock(&journal->j_state_lock);
254 return 0;
255}
256
257static int jbd2_journal_start_thread(journal_t *journal)
258{
259 struct task_struct *t;
260
261 t = kthread_run(kjournald2, journal, "jbd2/%s",
262 journal->j_devname);
263 if (IS_ERR(t))
264 return PTR_ERR(t);
265
266 wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
267 return 0;
268}
269
270static void journal_kill_thread(journal_t *journal)
271{
272 write_lock(&journal->j_state_lock);
273 journal->j_flags |= JBD2_UNMOUNT;
274
275 while (journal->j_task) {
276 write_unlock(&journal->j_state_lock);
277 wake_up(&journal->j_wait_commit);
278 wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
279 write_lock(&journal->j_state_lock);
280 }
281 write_unlock(&journal->j_state_lock);
282}
283
284static inline bool jbd2_data_needs_escaping(char *data)
285{
286 return *((__be32 *)data) == cpu_to_be32(JBD2_MAGIC_NUMBER);
287}
288
289static inline void jbd2_data_do_escape(char *data)
290{
291 *((unsigned int *)data) = 0;
292}
293
294/*
295 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
296 *
297 * Writes a metadata buffer to a given disk block. The actual IO is not
298 * performed but a new buffer_head is constructed which labels the data
299 * to be written with the correct destination disk block.
300 *
301 * Any magic-number escaping which needs to be done will cause a
302 * copy-out here. If the buffer happens to start with the
303 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
304 * magic number is only written to the log for descripter blocks. In
305 * this case, we copy the data and replace the first word with 0, and we
306 * return a result code which indicates that this buffer needs to be
307 * marked as an escaped buffer in the corresponding log descriptor
308 * block. The missing word can then be restored when the block is read
309 * during recovery.
310 *
311 * If the source buffer has already been modified by a new transaction
312 * since we took the last commit snapshot, we use the frozen copy of
313 * that data for IO. If we end up using the existing buffer_head's data
314 * for the write, then we have to make sure nobody modifies it while the
315 * IO is in progress. do_get_write_access() handles this.
316 *
317 * The function returns a pointer to the buffer_head to be used for IO.
318 *
319 *
320 * Return value:
321 * =0: Finished OK without escape
322 * =1: Finished OK with escape
323 */
324
325int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
326 struct journal_head *jh_in,
327 struct buffer_head **bh_out,
328 sector_t blocknr)
329{
330 int do_escape = 0;
331 struct buffer_head *new_bh;
332 struct folio *new_folio;
333 unsigned int new_offset;
334 struct buffer_head *bh_in = jh2bh(jh_in);
335 journal_t *journal = transaction->t_journal;
336
337 /*
338 * The buffer really shouldn't be locked: only the current committing
339 * transaction is allowed to write it, so nobody else is allowed
340 * to do any IO.
341 *
342 * akpm: except if we're journalling data, and write() output is
343 * also part of a shared mapping, and another thread has
344 * decided to launch a writepage() against this buffer.
345 */
346 J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
347
348 new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
349
350 /* keep subsequent assertions sane */
351 atomic_set(&new_bh->b_count, 1);
352
353 spin_lock(&jh_in->b_state_lock);
354 /*
355 * If a new transaction has already done a buffer copy-out, then
356 * we use that version of the data for the commit.
357 */
358 if (jh_in->b_frozen_data) {
359 new_folio = virt_to_folio(jh_in->b_frozen_data);
360 new_offset = offset_in_folio(new_folio, jh_in->b_frozen_data);
361 do_escape = jbd2_data_needs_escaping(jh_in->b_frozen_data);
362 if (do_escape)
363 jbd2_data_do_escape(jh_in->b_frozen_data);
364 } else {
365 char *tmp;
366 char *mapped_data;
367
368 new_folio = bh_in->b_folio;
369 new_offset = offset_in_folio(new_folio, bh_in->b_data);
370 mapped_data = kmap_local_folio(new_folio, new_offset);
371 /*
372 * Fire data frozen trigger if data already wasn't frozen. Do
373 * this before checking for escaping, as the trigger may modify
374 * the magic offset. If a copy-out happens afterwards, it will
375 * have the correct data in the buffer.
376 */
377 jbd2_buffer_frozen_trigger(jh_in, mapped_data,
378 jh_in->b_triggers);
379 do_escape = jbd2_data_needs_escaping(mapped_data);
380 kunmap_local(mapped_data);
381 /*
382 * Do we need to do a data copy?
383 */
384 if (!do_escape)
385 goto escape_done;
386
387 spin_unlock(&jh_in->b_state_lock);
388 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS | __GFP_NOFAIL);
389 spin_lock(&jh_in->b_state_lock);
390 if (jh_in->b_frozen_data) {
391 jbd2_free(tmp, bh_in->b_size);
392 goto copy_done;
393 }
394
395 jh_in->b_frozen_data = tmp;
396 memcpy_from_folio(tmp, new_folio, new_offset, bh_in->b_size);
397 /*
398 * This isn't strictly necessary, as we're using frozen
399 * data for the escaping, but it keeps consistency with
400 * b_frozen_data usage.
401 */
402 jh_in->b_frozen_triggers = jh_in->b_triggers;
403
404copy_done:
405 new_folio = virt_to_folio(jh_in->b_frozen_data);
406 new_offset = offset_in_folio(new_folio, jh_in->b_frozen_data);
407 jbd2_data_do_escape(jh_in->b_frozen_data);
408 }
409
410escape_done:
411 folio_set_bh(new_bh, new_folio, new_offset);
412 new_bh->b_size = bh_in->b_size;
413 new_bh->b_bdev = journal->j_dev;
414 new_bh->b_blocknr = blocknr;
415 new_bh->b_private = bh_in;
416 set_buffer_mapped(new_bh);
417 set_buffer_dirty(new_bh);
418
419 *bh_out = new_bh;
420
421 /*
422 * The to-be-written buffer needs to get moved to the io queue,
423 * and the original buffer whose contents we are shadowing or
424 * copying is moved to the transaction's shadow queue.
425 */
426 JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
427 spin_lock(&journal->j_list_lock);
428 __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
429 spin_unlock(&journal->j_list_lock);
430 set_buffer_shadow(bh_in);
431 spin_unlock(&jh_in->b_state_lock);
432
433 return do_escape;
434}
435
436/*
437 * Allocation code for the journal file. Manage the space left in the
438 * journal, so that we can begin checkpointing when appropriate.
439 */
440
441/*
442 * Called with j_state_lock locked for writing.
443 * Returns true if a transaction commit was started.
444 */
445static int __jbd2_log_start_commit(journal_t *journal, tid_t target)
446{
447 /* Return if the txn has already requested to be committed */
448 if (journal->j_commit_request == target)
449 return 0;
450
451 /*
452 * The only transaction we can possibly wait upon is the
453 * currently running transaction (if it exists). Otherwise,
454 * the target tid must be an old one.
455 */
456 if (journal->j_running_transaction &&
457 journal->j_running_transaction->t_tid == target) {
458 /*
459 * We want a new commit: OK, mark the request and wakeup the
460 * commit thread. We do _not_ do the commit ourselves.
461 */
462
463 journal->j_commit_request = target;
464 jbd2_debug(1, "JBD2: requesting commit %u/%u\n",
465 journal->j_commit_request,
466 journal->j_commit_sequence);
467 journal->j_running_transaction->t_requested = jiffies;
468 wake_up(&journal->j_wait_commit);
469 return 1;
470 } else if (!tid_geq(journal->j_commit_request, target))
471 /* This should never happen, but if it does, preserve
472 the evidence before kjournald goes into a loop and
473 increments j_commit_sequence beyond all recognition. */
474 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
475 journal->j_commit_request,
476 journal->j_commit_sequence,
477 target, journal->j_running_transaction ?
478 journal->j_running_transaction->t_tid : 0);
479 return 0;
480}
481
482int jbd2_log_start_commit(journal_t *journal, tid_t tid)
483{
484 int ret;
485
486 write_lock(&journal->j_state_lock);
487 ret = __jbd2_log_start_commit(journal, tid);
488 write_unlock(&journal->j_state_lock);
489 return ret;
490}
491
492/*
493 * Force and wait any uncommitted transactions. We can only force the running
494 * transaction if we don't have an active handle, otherwise, we will deadlock.
495 * Returns: <0 in case of error,
496 * 0 if nothing to commit,
497 * 1 if transaction was successfully committed.
498 */
499static int __jbd2_journal_force_commit(journal_t *journal)
500{
501 transaction_t *transaction = NULL;
502 tid_t tid;
503 int need_to_start = 0, ret = 0;
504
505 read_lock(&journal->j_state_lock);
506 if (journal->j_running_transaction && !current->journal_info) {
507 transaction = journal->j_running_transaction;
508 if (!tid_geq(journal->j_commit_request, transaction->t_tid))
509 need_to_start = 1;
510 } else if (journal->j_committing_transaction)
511 transaction = journal->j_committing_transaction;
512
513 if (!transaction) {
514 /* Nothing to commit */
515 read_unlock(&journal->j_state_lock);
516 return 0;
517 }
518 tid = transaction->t_tid;
519 read_unlock(&journal->j_state_lock);
520 if (need_to_start)
521 jbd2_log_start_commit(journal, tid);
522 ret = jbd2_log_wait_commit(journal, tid);
523 if (!ret)
524 ret = 1;
525
526 return ret;
527}
528
529/**
530 * jbd2_journal_force_commit_nested - Force and wait upon a commit if the
531 * calling process is not within transaction.
532 *
533 * @journal: journal to force
534 * Returns true if progress was made.
535 *
536 * This is used for forcing out undo-protected data which contains
537 * bitmaps, when the fs is running out of space.
538 */
539int jbd2_journal_force_commit_nested(journal_t *journal)
540{
541 int ret;
542
543 ret = __jbd2_journal_force_commit(journal);
544 return ret > 0;
545}
546
547/**
548 * jbd2_journal_force_commit() - force any uncommitted transactions
549 * @journal: journal to force
550 *
551 * Caller want unconditional commit. We can only force the running transaction
552 * if we don't have an active handle, otherwise, we will deadlock.
553 */
554int jbd2_journal_force_commit(journal_t *journal)
555{
556 int ret;
557
558 J_ASSERT(!current->journal_info);
559 ret = __jbd2_journal_force_commit(journal);
560 if (ret > 0)
561 ret = 0;
562 return ret;
563}
564
565/*
566 * Start a commit of the current running transaction (if any). Returns true
567 * if a transaction is going to be committed (or is currently already
568 * committing), and fills its tid in at *ptid
569 */
570int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
571{
572 int ret = 0;
573
574 write_lock(&journal->j_state_lock);
575 if (journal->j_running_transaction) {
576 tid_t tid = journal->j_running_transaction->t_tid;
577
578 __jbd2_log_start_commit(journal, tid);
579 /* There's a running transaction and we've just made sure
580 * it's commit has been scheduled. */
581 if (ptid)
582 *ptid = tid;
583 ret = 1;
584 } else if (journal->j_committing_transaction) {
585 /*
586 * If commit has been started, then we have to wait for
587 * completion of that transaction.
588 */
589 if (ptid)
590 *ptid = journal->j_committing_transaction->t_tid;
591 ret = 1;
592 }
593 write_unlock(&journal->j_state_lock);
594 return ret;
595}
596
597/*
598 * Return 1 if a given transaction has not yet sent barrier request
599 * connected with a transaction commit. If 0 is returned, transaction
600 * may or may not have sent the barrier. Used to avoid sending barrier
601 * twice in common cases.
602 */
603int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
604{
605 int ret = 0;
606 transaction_t *commit_trans, *running_trans;
607
608 if (!(journal->j_flags & JBD2_BARRIER))
609 return 0;
610 read_lock(&journal->j_state_lock);
611 /* Transaction already committed? */
612 if (tid_geq(journal->j_commit_sequence, tid))
613 goto out;
614 commit_trans = journal->j_committing_transaction;
615 if (!commit_trans || commit_trans->t_tid != tid) {
616 running_trans = journal->j_running_transaction;
617 /*
618 * The query transaction hasn't started committing,
619 * it must still be running.
620 */
621 if (WARN_ON_ONCE(!running_trans ||
622 running_trans->t_tid != tid))
623 goto out;
624
625 running_trans->t_need_data_flush = 1;
626 ret = 1;
627 goto out;
628 }
629 /*
630 * Transaction is being committed and we already proceeded to
631 * submitting a flush to fs partition?
632 */
633 if (journal->j_fs_dev != journal->j_dev) {
634 if (!commit_trans->t_need_data_flush ||
635 commit_trans->t_state >= T_COMMIT_DFLUSH)
636 goto out;
637 } else {
638 if (commit_trans->t_state >= T_COMMIT_JFLUSH)
639 goto out;
640 }
641 ret = 1;
642out:
643 read_unlock(&journal->j_state_lock);
644 return ret;
645}
646EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
647
648/*
649 * Wait for a specified commit to complete.
650 * The caller may not hold the journal lock.
651 */
652int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
653{
654 int err = 0;
655
656 read_lock(&journal->j_state_lock);
657#ifdef CONFIG_PROVE_LOCKING
658 /*
659 * Some callers make sure transaction is already committing and in that
660 * case we cannot block on open handles anymore. So don't warn in that
661 * case.
662 */
663 if (tid_gt(tid, journal->j_commit_sequence) &&
664 (!journal->j_committing_transaction ||
665 journal->j_committing_transaction->t_tid != tid)) {
666 read_unlock(&journal->j_state_lock);
667 jbd2_might_wait_for_commit(journal);
668 read_lock(&journal->j_state_lock);
669 }
670#endif
671#ifdef CONFIG_JBD2_DEBUG
672 if (!tid_geq(journal->j_commit_request, tid)) {
673 printk(KERN_ERR
674 "%s: error: j_commit_request=%u, tid=%u\n",
675 __func__, journal->j_commit_request, tid);
676 }
677#endif
678 while (tid_gt(tid, journal->j_commit_sequence)) {
679 jbd2_debug(1, "JBD2: want %u, j_commit_sequence=%u\n",
680 tid, journal->j_commit_sequence);
681 read_unlock(&journal->j_state_lock);
682 wake_up(&journal->j_wait_commit);
683 wait_event(journal->j_wait_done_commit,
684 !tid_gt(tid, journal->j_commit_sequence));
685 read_lock(&journal->j_state_lock);
686 }
687 read_unlock(&journal->j_state_lock);
688
689 if (unlikely(is_journal_aborted(journal)))
690 err = -EIO;
691 return err;
692}
693
694/*
695 * Start a fast commit. If there's an ongoing fast or full commit wait for
696 * it to complete. Returns 0 if a new fast commit was started. Returns -EALREADY
697 * if a fast commit is not needed, either because there's an already a commit
698 * going on or this tid has already been committed. Returns -EINVAL if no jbd2
699 * commit has yet been performed.
700 */
701int jbd2_fc_begin_commit(journal_t *journal, tid_t tid)
702{
703 if (unlikely(is_journal_aborted(journal)))
704 return -EIO;
705 /*
706 * Fast commits only allowed if at least one full commit has
707 * been processed.
708 */
709 if (!journal->j_stats.ts_tid)
710 return -EINVAL;
711
712 write_lock(&journal->j_state_lock);
713 if (tid_geq(journal->j_commit_sequence, tid)) {
714 write_unlock(&journal->j_state_lock);
715 return -EALREADY;
716 }
717
718 if (journal->j_flags & JBD2_FULL_COMMIT_ONGOING ||
719 (journal->j_flags & JBD2_FAST_COMMIT_ONGOING)) {
720 DEFINE_WAIT(wait);
721
722 prepare_to_wait(&journal->j_fc_wait, &wait,
723 TASK_UNINTERRUPTIBLE);
724 write_unlock(&journal->j_state_lock);
725 schedule();
726 finish_wait(&journal->j_fc_wait, &wait);
727 return -EALREADY;
728 }
729 journal->j_flags |= JBD2_FAST_COMMIT_ONGOING;
730 write_unlock(&journal->j_state_lock);
731
732 return 0;
733}
734EXPORT_SYMBOL(jbd2_fc_begin_commit);
735
736/*
737 * Stop a fast commit. If fallback is set, this function starts commit of
738 * TID tid before any other fast commit can start.
739 */
740static int __jbd2_fc_end_commit(journal_t *journal, tid_t tid, bool fallback)
741{
742 if (journal->j_fc_cleanup_callback)
743 journal->j_fc_cleanup_callback(journal, 0, tid);
744 write_lock(&journal->j_state_lock);
745 journal->j_flags &= ~JBD2_FAST_COMMIT_ONGOING;
746 if (fallback)
747 journal->j_flags |= JBD2_FULL_COMMIT_ONGOING;
748 write_unlock(&journal->j_state_lock);
749 wake_up(&journal->j_fc_wait);
750 if (fallback)
751 return jbd2_complete_transaction(journal, tid);
752 return 0;
753}
754
755int jbd2_fc_end_commit(journal_t *journal)
756{
757 return __jbd2_fc_end_commit(journal, 0, false);
758}
759EXPORT_SYMBOL(jbd2_fc_end_commit);
760
761int jbd2_fc_end_commit_fallback(journal_t *journal)
762{
763 tid_t tid;
764
765 read_lock(&journal->j_state_lock);
766 tid = journal->j_running_transaction ?
767 journal->j_running_transaction->t_tid : 0;
768 read_unlock(&journal->j_state_lock);
769 return __jbd2_fc_end_commit(journal, tid, true);
770}
771EXPORT_SYMBOL(jbd2_fc_end_commit_fallback);
772
773/* Return 1 when transaction with given tid has already committed. */
774int jbd2_transaction_committed(journal_t *journal, tid_t tid)
775{
776 return tid_geq(READ_ONCE(journal->j_commit_sequence), tid);
777}
778EXPORT_SYMBOL(jbd2_transaction_committed);
779
780/*
781 * When this function returns the transaction corresponding to tid
782 * will be completed. If the transaction has currently running, start
783 * committing that transaction before waiting for it to complete. If
784 * the transaction id is stale, it is by definition already completed,
785 * so just return SUCCESS.
786 */
787int jbd2_complete_transaction(journal_t *journal, tid_t tid)
788{
789 int need_to_wait = 1;
790
791 read_lock(&journal->j_state_lock);
792 if (journal->j_running_transaction &&
793 journal->j_running_transaction->t_tid == tid) {
794 if (journal->j_commit_request != tid) {
795 /* transaction not yet started, so request it */
796 read_unlock(&journal->j_state_lock);
797 jbd2_log_start_commit(journal, tid);
798 goto wait_commit;
799 }
800 } else if (!(journal->j_committing_transaction &&
801 journal->j_committing_transaction->t_tid == tid))
802 need_to_wait = 0;
803 read_unlock(&journal->j_state_lock);
804 if (!need_to_wait)
805 return 0;
806wait_commit:
807 return jbd2_log_wait_commit(journal, tid);
808}
809EXPORT_SYMBOL(jbd2_complete_transaction);
810
811/*
812 * Log buffer allocation routines:
813 */
814
815int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
816{
817 unsigned long blocknr;
818
819 write_lock(&journal->j_state_lock);
820 J_ASSERT(journal->j_free > 1);
821
822 blocknr = journal->j_head;
823 journal->j_head++;
824 journal->j_free--;
825 if (journal->j_head == journal->j_last)
826 journal->j_head = journal->j_first;
827 write_unlock(&journal->j_state_lock);
828 return jbd2_journal_bmap(journal, blocknr, retp);
829}
830
831/* Map one fast commit buffer for use by the file system */
832int jbd2_fc_get_buf(journal_t *journal, struct buffer_head **bh_out)
833{
834 unsigned long long pblock;
835 unsigned long blocknr;
836 int ret = 0;
837 struct buffer_head *bh;
838 int fc_off;
839
840 *bh_out = NULL;
841
842 if (journal->j_fc_off + journal->j_fc_first >= journal->j_fc_last)
843 return -EINVAL;
844
845 fc_off = journal->j_fc_off;
846 blocknr = journal->j_fc_first + fc_off;
847 journal->j_fc_off++;
848 ret = jbd2_journal_bmap(journal, blocknr, &pblock);
849 if (ret)
850 return ret;
851
852 bh = __getblk(journal->j_dev, pblock, journal->j_blocksize);
853 if (!bh)
854 return -ENOMEM;
855
856 journal->j_fc_wbuf[fc_off] = bh;
857
858 *bh_out = bh;
859
860 return 0;
861}
862EXPORT_SYMBOL(jbd2_fc_get_buf);
863
864/*
865 * Wait on fast commit buffers that were allocated by jbd2_fc_get_buf
866 * for completion.
867 */
868int jbd2_fc_wait_bufs(journal_t *journal, int num_blks)
869{
870 struct buffer_head *bh;
871 int i, j_fc_off;
872
873 j_fc_off = journal->j_fc_off;
874
875 /*
876 * Wait in reverse order to minimize chances of us being woken up before
877 * all IOs have completed
878 */
879 for (i = j_fc_off - 1; i >= j_fc_off - num_blks; i--) {
880 bh = journal->j_fc_wbuf[i];
881 wait_on_buffer(bh);
882 /*
883 * Update j_fc_off so jbd2_fc_release_bufs can release remain
884 * buffer head.
885 */
886 if (unlikely(!buffer_uptodate(bh))) {
887 journal->j_fc_off = i + 1;
888 return -EIO;
889 }
890 put_bh(bh);
891 journal->j_fc_wbuf[i] = NULL;
892 }
893
894 return 0;
895}
896EXPORT_SYMBOL(jbd2_fc_wait_bufs);
897
898void jbd2_fc_release_bufs(journal_t *journal)
899{
900 struct buffer_head *bh;
901 int i, j_fc_off;
902
903 j_fc_off = journal->j_fc_off;
904
905 for (i = j_fc_off - 1; i >= 0; i--) {
906 bh = journal->j_fc_wbuf[i];
907 if (!bh)
908 break;
909 put_bh(bh);
910 journal->j_fc_wbuf[i] = NULL;
911 }
912}
913EXPORT_SYMBOL(jbd2_fc_release_bufs);
914
915/*
916 * Conversion of logical to physical block numbers for the journal
917 *
918 * On external journals the journal blocks are identity-mapped, so
919 * this is a no-op. If needed, we can use j_blk_offset - everything is
920 * ready.
921 */
922int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
923 unsigned long long *retp)
924{
925 int err = 0;
926 unsigned long long ret;
927 sector_t block = blocknr;
928
929 if (journal->j_bmap) {
930 err = journal->j_bmap(journal, &block);
931 if (err == 0)
932 *retp = block;
933 } else if (journal->j_inode) {
934 ret = bmap(journal->j_inode, &block);
935
936 if (ret || !block) {
937 printk(KERN_ALERT "%s: journal block not found "
938 "at offset %lu on %s\n",
939 __func__, blocknr, journal->j_devname);
940 jbd2_journal_abort(journal, ret ? ret : -EFSCORRUPTED);
941 err = -EIO;
942 } else {
943 *retp = block;
944 }
945
946 } else {
947 *retp = blocknr; /* +journal->j_blk_offset */
948 }
949 return err;
950}
951
952/*
953 * We play buffer_head aliasing tricks to write data/metadata blocks to
954 * the journal without copying their contents, but for journal
955 * descriptor blocks we do need to generate bona fide buffers.
956 *
957 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
958 * the buffer's contents they really should run flush_dcache_folio(bh->b_folio).
959 * But we don't bother doing that, so there will be coherency problems with
960 * mmaps of blockdevs which hold live JBD-controlled filesystems.
961 */
962struct buffer_head *
963jbd2_journal_get_descriptor_buffer(transaction_t *transaction, int type)
964{
965 journal_t *journal = transaction->t_journal;
966 struct buffer_head *bh;
967 unsigned long long blocknr;
968 journal_header_t *header;
969 int err;
970
971 err = jbd2_journal_next_log_block(journal, &blocknr);
972
973 if (err)
974 return NULL;
975
976 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
977 if (!bh)
978 return NULL;
979 atomic_dec(&transaction->t_outstanding_credits);
980 lock_buffer(bh);
981 memset(bh->b_data, 0, journal->j_blocksize);
982 header = (journal_header_t *)bh->b_data;
983 header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER);
984 header->h_blocktype = cpu_to_be32(type);
985 header->h_sequence = cpu_to_be32(transaction->t_tid);
986 set_buffer_uptodate(bh);
987 unlock_buffer(bh);
988 BUFFER_TRACE(bh, "return this buffer");
989 return bh;
990}
991
992void jbd2_descriptor_block_csum_set(journal_t *j, struct buffer_head *bh)
993{
994 struct jbd2_journal_block_tail *tail;
995 __u32 csum;
996
997 if (!jbd2_journal_has_csum_v2or3(j))
998 return;
999
1000 tail = (struct jbd2_journal_block_tail *)(bh->b_data + j->j_blocksize -
1001 sizeof(struct jbd2_journal_block_tail));
1002 tail->t_checksum = 0;
1003 csum = jbd2_chksum(j->j_csum_seed, bh->b_data, j->j_blocksize);
1004 tail->t_checksum = cpu_to_be32(csum);
1005}
1006
1007/*
1008 * Return tid of the oldest transaction in the journal and block in the journal
1009 * where the transaction starts.
1010 *
1011 * If the journal is now empty, return which will be the next transaction ID
1012 * we will write and where will that transaction start.
1013 *
1014 * The return value is 0 if journal tail cannot be pushed any further, 1 if
1015 * it can.
1016 */
1017int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
1018 unsigned long *block)
1019{
1020 transaction_t *transaction;
1021 int ret;
1022
1023 read_lock(&journal->j_state_lock);
1024 spin_lock(&journal->j_list_lock);
1025 transaction = journal->j_checkpoint_transactions;
1026 if (transaction) {
1027 *tid = transaction->t_tid;
1028 *block = transaction->t_log_start;
1029 } else if ((transaction = journal->j_committing_transaction) != NULL) {
1030 *tid = transaction->t_tid;
1031 *block = transaction->t_log_start;
1032 } else if ((transaction = journal->j_running_transaction) != NULL) {
1033 *tid = transaction->t_tid;
1034 *block = journal->j_head;
1035 } else {
1036 *tid = journal->j_transaction_sequence;
1037 *block = journal->j_head;
1038 }
1039 ret = tid_gt(*tid, journal->j_tail_sequence);
1040 spin_unlock(&journal->j_list_lock);
1041 read_unlock(&journal->j_state_lock);
1042
1043 return ret;
1044}
1045
1046/*
1047 * Update information in journal structure and in on disk journal superblock
1048 * about log tail. This function does not check whether information passed in
1049 * really pushes log tail further. It's responsibility of the caller to make
1050 * sure provided log tail information is valid (e.g. by holding
1051 * j_checkpoint_mutex all the time between computing log tail and calling this
1052 * function as is the case with jbd2_cleanup_journal_tail()).
1053 *
1054 * Requires j_checkpoint_mutex
1055 */
1056int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
1057{
1058 unsigned long freed;
1059 int ret;
1060
1061 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1062
1063 /*
1064 * We cannot afford for write to remain in drive's caches since as
1065 * soon as we update j_tail, next transaction can start reusing journal
1066 * space and if we lose sb update during power failure we'd replay
1067 * old transaction with possibly newly overwritten data.
1068 */
1069 ret = jbd2_journal_update_sb_log_tail(journal, tid, block, REQ_FUA);
1070 if (ret)
1071 goto out;
1072
1073 write_lock(&journal->j_state_lock);
1074 freed = block - journal->j_tail;
1075 if (block < journal->j_tail)
1076 freed += journal->j_last - journal->j_first;
1077
1078 trace_jbd2_update_log_tail(journal, tid, block, freed);
1079 jbd2_debug(1,
1080 "Cleaning journal tail from %u to %u (offset %lu), "
1081 "freeing %lu\n",
1082 journal->j_tail_sequence, tid, block, freed);
1083
1084 journal->j_free += freed;
1085 journal->j_tail_sequence = tid;
1086 journal->j_tail = block;
1087 write_unlock(&journal->j_state_lock);
1088
1089out:
1090 return ret;
1091}
1092
1093/*
1094 * This is a variation of __jbd2_update_log_tail which checks for validity of
1095 * provided log tail and locks j_checkpoint_mutex. So it is safe against races
1096 * with other threads updating log tail.
1097 */
1098void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
1099{
1100 mutex_lock_io(&journal->j_checkpoint_mutex);
1101 if (tid_gt(tid, journal->j_tail_sequence))
1102 __jbd2_update_log_tail(journal, tid, block);
1103 mutex_unlock(&journal->j_checkpoint_mutex);
1104}
1105
1106struct jbd2_stats_proc_session {
1107 journal_t *journal;
1108 struct transaction_stats_s *stats;
1109 int start;
1110 int max;
1111};
1112
1113static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
1114{
1115 return *pos ? NULL : SEQ_START_TOKEN;
1116}
1117
1118static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
1119{
1120 (*pos)++;
1121 return NULL;
1122}
1123
1124static int jbd2_seq_info_show(struct seq_file *seq, void *v)
1125{
1126 struct jbd2_stats_proc_session *s = seq->private;
1127
1128 if (v != SEQ_START_TOKEN)
1129 return 0;
1130 seq_printf(seq, "%lu transactions (%lu requested), "
1131 "each up to %u blocks\n",
1132 s->stats->ts_tid, s->stats->ts_requested,
1133 s->journal->j_max_transaction_buffers);
1134 if (s->stats->ts_tid == 0)
1135 return 0;
1136 seq_printf(seq, "average: \n %ums waiting for transaction\n",
1137 jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
1138 seq_printf(seq, " %ums request delay\n",
1139 (s->stats->ts_requested == 0) ? 0 :
1140 jiffies_to_msecs(s->stats->run.rs_request_delay /
1141 s->stats->ts_requested));
1142 seq_printf(seq, " %ums running transaction\n",
1143 jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
1144 seq_printf(seq, " %ums transaction was being locked\n",
1145 jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
1146 seq_printf(seq, " %ums flushing data (in ordered mode)\n",
1147 jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
1148 seq_printf(seq, " %ums logging transaction\n",
1149 jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
1150 seq_printf(seq, " %lluus average transaction commit time\n",
1151 div_u64(s->journal->j_average_commit_time, 1000));
1152 seq_printf(seq, " %lu handles per transaction\n",
1153 s->stats->run.rs_handle_count / s->stats->ts_tid);
1154 seq_printf(seq, " %lu blocks per transaction\n",
1155 s->stats->run.rs_blocks / s->stats->ts_tid);
1156 seq_printf(seq, " %lu logged blocks per transaction\n",
1157 s->stats->run.rs_blocks_logged / s->stats->ts_tid);
1158 return 0;
1159}
1160
1161static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
1162{
1163}
1164
1165static const struct seq_operations jbd2_seq_info_ops = {
1166 .start = jbd2_seq_info_start,
1167 .next = jbd2_seq_info_next,
1168 .stop = jbd2_seq_info_stop,
1169 .show = jbd2_seq_info_show,
1170};
1171
1172static int jbd2_seq_info_open(struct inode *inode, struct file *file)
1173{
1174 journal_t *journal = pde_data(inode);
1175 struct jbd2_stats_proc_session *s;
1176 int rc, size;
1177
1178 s = kmalloc(sizeof(*s), GFP_KERNEL);
1179 if (s == NULL)
1180 return -ENOMEM;
1181 size = sizeof(struct transaction_stats_s);
1182 s->stats = kmalloc(size, GFP_KERNEL);
1183 if (s->stats == NULL) {
1184 kfree(s);
1185 return -ENOMEM;
1186 }
1187 spin_lock(&journal->j_history_lock);
1188 memcpy(s->stats, &journal->j_stats, size);
1189 s->journal = journal;
1190 spin_unlock(&journal->j_history_lock);
1191
1192 rc = seq_open(file, &jbd2_seq_info_ops);
1193 if (rc == 0) {
1194 struct seq_file *m = file->private_data;
1195 m->private = s;
1196 } else {
1197 kfree(s->stats);
1198 kfree(s);
1199 }
1200 return rc;
1201
1202}
1203
1204static int jbd2_seq_info_release(struct inode *inode, struct file *file)
1205{
1206 struct seq_file *seq = file->private_data;
1207 struct jbd2_stats_proc_session *s = seq->private;
1208 kfree(s->stats);
1209 kfree(s);
1210 return seq_release(inode, file);
1211}
1212
1213static const struct proc_ops jbd2_info_proc_ops = {
1214 .proc_open = jbd2_seq_info_open,
1215 .proc_read = seq_read,
1216 .proc_lseek = seq_lseek,
1217 .proc_release = jbd2_seq_info_release,
1218};
1219
1220static struct proc_dir_entry *proc_jbd2_stats;
1221
1222static void jbd2_stats_proc_init(journal_t *journal)
1223{
1224 journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1225 if (journal->j_proc_entry) {
1226 proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1227 &jbd2_info_proc_ops, journal);
1228 }
1229}
1230
1231static void jbd2_stats_proc_exit(journal_t *journal)
1232{
1233 remove_proc_entry("info", journal->j_proc_entry);
1234 remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1235}
1236
1237/* Minimum size of descriptor tag */
1238static int jbd2_min_tag_size(void)
1239{
1240 /*
1241 * Tag with 32-bit block numbers does not use last four bytes of the
1242 * structure
1243 */
1244 return sizeof(journal_block_tag_t) - 4;
1245}
1246
1247/**
1248 * jbd2_journal_shrink_scan()
1249 * @shrink: shrinker to work on
1250 * @sc: reclaim request to process
1251 *
1252 * Scan the checkpointed buffer on the checkpoint list and release the
1253 * journal_head.
1254 */
1255static unsigned long jbd2_journal_shrink_scan(struct shrinker *shrink,
1256 struct shrink_control *sc)
1257{
1258 journal_t *journal = shrink->private_data;
1259 unsigned long nr_to_scan = sc->nr_to_scan;
1260 unsigned long nr_shrunk;
1261 unsigned long count;
1262
1263 count = percpu_counter_read_positive(&journal->j_checkpoint_jh_count);
1264 trace_jbd2_shrink_scan_enter(journal, sc->nr_to_scan, count);
1265
1266 nr_shrunk = jbd2_journal_shrink_checkpoint_list(journal, &nr_to_scan);
1267
1268 count = percpu_counter_read_positive(&journal->j_checkpoint_jh_count);
1269 trace_jbd2_shrink_scan_exit(journal, nr_to_scan, nr_shrunk, count);
1270
1271 return nr_shrunk;
1272}
1273
1274/**
1275 * jbd2_journal_shrink_count()
1276 * @shrink: shrinker to work on
1277 * @sc: reclaim request to process
1278 *
1279 * Count the number of checkpoint buffers on the checkpoint list.
1280 */
1281static unsigned long jbd2_journal_shrink_count(struct shrinker *shrink,
1282 struct shrink_control *sc)
1283{
1284 journal_t *journal = shrink->private_data;
1285 unsigned long count;
1286
1287 count = percpu_counter_read_positive(&journal->j_checkpoint_jh_count);
1288 trace_jbd2_shrink_count(journal, sc->nr_to_scan, count);
1289
1290 return count;
1291}
1292
1293/*
1294 * If the journal init or create aborts, we need to mark the journal
1295 * superblock as being NULL to prevent the journal destroy from writing
1296 * back a bogus superblock.
1297 */
1298static void journal_fail_superblock(journal_t *journal)
1299{
1300 struct buffer_head *bh = journal->j_sb_buffer;
1301 brelse(bh);
1302 journal->j_sb_buffer = NULL;
1303}
1304
1305/*
1306 * Check the superblock for a given journal, performing initial
1307 * validation of the format.
1308 */
1309static int journal_check_superblock(journal_t *journal)
1310{
1311 journal_superblock_t *sb = journal->j_superblock;
1312 int num_fc_blks;
1313 int err = -EINVAL;
1314
1315 if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1316 sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1317 printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1318 return err;
1319 }
1320
1321 if (be32_to_cpu(sb->s_header.h_blocktype) != JBD2_SUPERBLOCK_V1 &&
1322 be32_to_cpu(sb->s_header.h_blocktype) != JBD2_SUPERBLOCK_V2) {
1323 printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1324 return err;
1325 }
1326
1327 if (be32_to_cpu(sb->s_maxlen) > journal->j_total_len) {
1328 printk(KERN_WARNING "JBD2: journal file too short\n");
1329 return err;
1330 }
1331
1332 if (be32_to_cpu(sb->s_first) == 0 ||
1333 be32_to_cpu(sb->s_first) >= journal->j_total_len) {
1334 printk(KERN_WARNING
1335 "JBD2: Invalid start block of journal: %u\n",
1336 be32_to_cpu(sb->s_first));
1337 return err;
1338 }
1339
1340 /*
1341 * If this is a V2 superblock, then we have to check the
1342 * features flags on it.
1343 */
1344 if (!jbd2_format_support_feature(journal))
1345 return 0;
1346
1347 if ((sb->s_feature_ro_compat &
1348 ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1349 (sb->s_feature_incompat &
1350 ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1351 printk(KERN_WARNING "JBD2: Unrecognised features on journal\n");
1352 return err;
1353 }
1354
1355 num_fc_blks = jbd2_has_feature_fast_commit(journal) ?
1356 jbd2_journal_get_num_fc_blks(sb) : 0;
1357 if (be32_to_cpu(sb->s_maxlen) < JBD2_MIN_JOURNAL_BLOCKS ||
1358 be32_to_cpu(sb->s_maxlen) - JBD2_MIN_JOURNAL_BLOCKS < num_fc_blks) {
1359 printk(KERN_ERR "JBD2: journal file too short %u,%d\n",
1360 be32_to_cpu(sb->s_maxlen), num_fc_blks);
1361 return err;
1362 }
1363
1364 if (jbd2_has_feature_csum2(journal) &&
1365 jbd2_has_feature_csum3(journal)) {
1366 /* Can't have checksum v2 and v3 at the same time! */
1367 printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 "
1368 "at the same time!\n");
1369 return err;
1370 }
1371
1372 if (jbd2_journal_has_csum_v2or3(journal) &&
1373 jbd2_has_feature_checksum(journal)) {
1374 /* Can't have checksum v1 and v2 on at the same time! */
1375 printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 "
1376 "at the same time!\n");
1377 return err;
1378 }
1379
1380 if (jbd2_journal_has_csum_v2or3(journal)) {
1381 if (sb->s_checksum_type != JBD2_CRC32C_CHKSUM) {
1382 printk(KERN_ERR "JBD2: Unknown checksum type\n");
1383 return err;
1384 }
1385
1386 /* Check superblock checksum */
1387 if (sb->s_checksum != jbd2_superblock_csum(sb)) {
1388 printk(KERN_ERR "JBD2: journal checksum error\n");
1389 err = -EFSBADCRC;
1390 return err;
1391 }
1392 }
1393
1394 return 0;
1395}
1396
1397static int journal_revoke_records_per_block(journal_t *journal)
1398{
1399 int record_size;
1400 int space = journal->j_blocksize - sizeof(jbd2_journal_revoke_header_t);
1401
1402 if (jbd2_has_feature_64bit(journal))
1403 record_size = 8;
1404 else
1405 record_size = 4;
1406
1407 if (jbd2_journal_has_csum_v2or3(journal))
1408 space -= sizeof(struct jbd2_journal_block_tail);
1409 return space / record_size;
1410}
1411
1412static int jbd2_journal_get_max_txn_bufs(journal_t *journal)
1413{
1414 return (journal->j_total_len - journal->j_fc_wbufsize) / 3;
1415}
1416
1417/*
1418 * Base amount of descriptor blocks we reserve for each transaction.
1419 */
1420static int jbd2_descriptor_blocks_per_trans(journal_t *journal)
1421{
1422 int tag_space = journal->j_blocksize - sizeof(journal_header_t);
1423 int tags_per_block;
1424
1425 /* Subtract UUID */
1426 tag_space -= 16;
1427 if (jbd2_journal_has_csum_v2or3(journal))
1428 tag_space -= sizeof(struct jbd2_journal_block_tail);
1429 /* Commit code leaves a slack space of 16 bytes at the end of block */
1430 tags_per_block = (tag_space - 16) / journal_tag_bytes(journal);
1431 /*
1432 * Revoke descriptors are accounted separately so we need to reserve
1433 * space for commit block and normal transaction descriptor blocks.
1434 */
1435 return 1 + DIV_ROUND_UP(jbd2_journal_get_max_txn_bufs(journal),
1436 tags_per_block);
1437}
1438
1439/*
1440 * Initialize number of blocks each transaction reserves for its bookkeeping
1441 * and maximum number of blocks a transaction can use. This needs to be called
1442 * after the journal size and the fastcommit area size are initialized.
1443 */
1444static void jbd2_journal_init_transaction_limits(journal_t *journal)
1445{
1446 journal->j_revoke_records_per_block =
1447 journal_revoke_records_per_block(journal);
1448 journal->j_transaction_overhead_buffers =
1449 jbd2_descriptor_blocks_per_trans(journal);
1450 journal->j_max_transaction_buffers =
1451 jbd2_journal_get_max_txn_bufs(journal);
1452}
1453
1454/*
1455 * Load the on-disk journal superblock and read the key fields into the
1456 * journal_t.
1457 */
1458static int journal_load_superblock(journal_t *journal)
1459{
1460 int err;
1461 struct buffer_head *bh;
1462 journal_superblock_t *sb;
1463
1464 bh = getblk_unmovable(journal->j_dev, journal->j_blk_offset,
1465 journal->j_blocksize);
1466 if (bh)
1467 err = bh_read(bh, 0);
1468 if (!bh || err < 0) {
1469 pr_err("%s: Cannot read journal superblock\n", __func__);
1470 brelse(bh);
1471 return -EIO;
1472 }
1473
1474 journal->j_sb_buffer = bh;
1475 sb = (journal_superblock_t *)bh->b_data;
1476 journal->j_superblock = sb;
1477 err = journal_check_superblock(journal);
1478 if (err) {
1479 journal_fail_superblock(journal);
1480 return err;
1481 }
1482
1483 journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1484 journal->j_tail = be32_to_cpu(sb->s_start);
1485 journal->j_first = be32_to_cpu(sb->s_first);
1486 journal->j_errno = be32_to_cpu(sb->s_errno);
1487 journal->j_last = be32_to_cpu(sb->s_maxlen);
1488
1489 if (be32_to_cpu(sb->s_maxlen) < journal->j_total_len)
1490 journal->j_total_len = be32_to_cpu(sb->s_maxlen);
1491 /* Precompute checksum seed for all metadata */
1492 if (jbd2_journal_has_csum_v2or3(journal))
1493 journal->j_csum_seed = jbd2_chksum(~0, sb->s_uuid,
1494 sizeof(sb->s_uuid));
1495 /* After journal features are set, we can compute transaction limits */
1496 jbd2_journal_init_transaction_limits(journal);
1497
1498 if (jbd2_has_feature_fast_commit(journal)) {
1499 journal->j_fc_last = be32_to_cpu(sb->s_maxlen);
1500 journal->j_last = journal->j_fc_last -
1501 jbd2_journal_get_num_fc_blks(sb);
1502 journal->j_fc_first = journal->j_last + 1;
1503 journal->j_fc_off = 0;
1504 }
1505
1506 return 0;
1507}
1508
1509
1510/*
1511 * Management for journal control blocks: functions to create and
1512 * destroy journal_t structures, and to initialise and read existing
1513 * journal blocks from disk. */
1514
1515/* The journal_init_common() function creates and fills a journal_t object
1516 * in memory. It calls journal_load_superblock() to load the on-disk journal
1517 * superblock and initialize the journal_t object.
1518 */
1519
1520static journal_t *journal_init_common(struct block_device *bdev,
1521 struct block_device *fs_dev,
1522 unsigned long long start, int len, int blocksize)
1523{
1524 journal_t *journal;
1525 int err;
1526 int n;
1527
1528 journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1529 if (!journal)
1530 return ERR_PTR(-ENOMEM);
1531
1532 lockdep_register_key(&journal->jbd2_trans_commit_key);
1533 journal->j_blocksize = blocksize;
1534 journal->j_dev = bdev;
1535 journal->j_fs_dev = fs_dev;
1536 journal->j_blk_offset = start;
1537 journal->j_total_len = len;
1538 jbd2_init_fs_dev_write_error(journal);
1539
1540 err = journal_load_superblock(journal);
1541 if (err)
1542 goto err_cleanup;
1543
1544 init_waitqueue_head(&journal->j_wait_transaction_locked);
1545 init_waitqueue_head(&journal->j_wait_done_commit);
1546 init_waitqueue_head(&journal->j_wait_commit);
1547 init_waitqueue_head(&journal->j_wait_updates);
1548 init_waitqueue_head(&journal->j_wait_reserved);
1549 init_waitqueue_head(&journal->j_fc_wait);
1550 mutex_init(&journal->j_abort_mutex);
1551 mutex_init(&journal->j_barrier);
1552 mutex_init(&journal->j_checkpoint_mutex);
1553 spin_lock_init(&journal->j_revoke_lock);
1554 spin_lock_init(&journal->j_list_lock);
1555 spin_lock_init(&journal->j_history_lock);
1556 rwlock_init(&journal->j_state_lock);
1557
1558 journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1559 journal->j_min_batch_time = 0;
1560 journal->j_max_batch_time = 15000; /* 15ms */
1561 atomic_set(&journal->j_reserved_credits, 0);
1562 lockdep_init_map(&journal->j_trans_commit_map, "jbd2_handle",
1563 &journal->jbd2_trans_commit_key, 0);
1564
1565 /* The journal is marked for error until we succeed with recovery! */
1566 journal->j_flags = JBD2_ABORT;
1567
1568 /* Set up a default-sized revoke table for the new mount. */
1569 err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1570 if (err)
1571 goto err_cleanup;
1572
1573 /*
1574 * journal descriptor can store up to n blocks, we need enough
1575 * buffers to write out full descriptor block.
1576 */
1577 err = -ENOMEM;
1578 n = journal->j_blocksize / jbd2_min_tag_size();
1579 journal->j_wbufsize = n;
1580 journal->j_fc_wbuf = NULL;
1581 journal->j_wbuf = kmalloc_array(n, sizeof(struct buffer_head *),
1582 GFP_KERNEL);
1583 if (!journal->j_wbuf)
1584 goto err_cleanup;
1585
1586 err = percpu_counter_init(&journal->j_checkpoint_jh_count, 0,
1587 GFP_KERNEL);
1588 if (err)
1589 goto err_cleanup;
1590
1591 journal->j_shrink_transaction = NULL;
1592
1593 journal->j_shrinker = shrinker_alloc(0, "jbd2-journal:(%u:%u)",
1594 MAJOR(bdev->bd_dev),
1595 MINOR(bdev->bd_dev));
1596 if (!journal->j_shrinker) {
1597 err = -ENOMEM;
1598 goto err_cleanup;
1599 }
1600
1601 journal->j_shrinker->scan_objects = jbd2_journal_shrink_scan;
1602 journal->j_shrinker->count_objects = jbd2_journal_shrink_count;
1603 journal->j_shrinker->private_data = journal;
1604
1605 shrinker_register(journal->j_shrinker);
1606
1607 return journal;
1608
1609err_cleanup:
1610 percpu_counter_destroy(&journal->j_checkpoint_jh_count);
1611 kfree(journal->j_wbuf);
1612 jbd2_journal_destroy_revoke(journal);
1613 journal_fail_superblock(journal);
1614 lockdep_unregister_key(&journal->jbd2_trans_commit_key);
1615 kfree(journal);
1616 return ERR_PTR(err);
1617}
1618
1619/* jbd2_journal_init_dev and jbd2_journal_init_inode:
1620 *
1621 * Create a journal structure assigned some fixed set of disk blocks to
1622 * the journal. We don't actually touch those disk blocks yet, but we
1623 * need to set up all of the mapping information to tell the journaling
1624 * system where the journal blocks are.
1625 *
1626 */
1627
1628/**
1629 * journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1630 * @bdev: Block device on which to create the journal
1631 * @fs_dev: Device which hold journalled filesystem for this journal.
1632 * @start: Block nr Start of journal.
1633 * @len: Length of the journal in blocks.
1634 * @blocksize: blocksize of journalling device
1635 *
1636 * Returns: a newly created journal_t *
1637 *
1638 * jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1639 * range of blocks on an arbitrary block device.
1640 *
1641 */
1642journal_t *jbd2_journal_init_dev(struct block_device *bdev,
1643 struct block_device *fs_dev,
1644 unsigned long long start, int len, int blocksize)
1645{
1646 journal_t *journal;
1647
1648 journal = journal_init_common(bdev, fs_dev, start, len, blocksize);
1649 if (IS_ERR(journal))
1650 return ERR_CAST(journal);
1651
1652 snprintf(journal->j_devname, sizeof(journal->j_devname),
1653 "%pg", journal->j_dev);
1654 strreplace(journal->j_devname, '/', '!');
1655 jbd2_stats_proc_init(journal);
1656
1657 return journal;
1658}
1659
1660/**
1661 * journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1662 * @inode: An inode to create the journal in
1663 *
1664 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1665 * the journal. The inode must exist already, must support bmap() and
1666 * must have all data blocks preallocated.
1667 */
1668journal_t *jbd2_journal_init_inode(struct inode *inode)
1669{
1670 journal_t *journal;
1671 sector_t blocknr;
1672 int err = 0;
1673
1674 blocknr = 0;
1675 err = bmap(inode, &blocknr);
1676 if (err || !blocknr) {
1677 pr_err("%s: Cannot locate journal superblock\n", __func__);
1678 return err ? ERR_PTR(err) : ERR_PTR(-EINVAL);
1679 }
1680
1681 jbd2_debug(1, "JBD2: inode %s/%ld, size %lld, bits %d, blksize %ld\n",
1682 inode->i_sb->s_id, inode->i_ino, (long long) inode->i_size,
1683 inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1684
1685 journal = journal_init_common(inode->i_sb->s_bdev, inode->i_sb->s_bdev,
1686 blocknr, inode->i_size >> inode->i_sb->s_blocksize_bits,
1687 inode->i_sb->s_blocksize);
1688 if (IS_ERR(journal))
1689 return ERR_CAST(journal);
1690
1691 journal->j_inode = inode;
1692 snprintf(journal->j_devname, sizeof(journal->j_devname),
1693 "%pg-%lu", journal->j_dev, journal->j_inode->i_ino);
1694 strreplace(journal->j_devname, '/', '!');
1695 jbd2_stats_proc_init(journal);
1696
1697 return journal;
1698}
1699
1700/*
1701 * Given a journal_t structure, initialise the various fields for
1702 * startup of a new journaling session. We use this both when creating
1703 * a journal, and after recovering an old journal to reset it for
1704 * subsequent use.
1705 */
1706
1707static int journal_reset(journal_t *journal)
1708{
1709 journal_superblock_t *sb = journal->j_superblock;
1710 unsigned long long first, last;
1711
1712 first = be32_to_cpu(sb->s_first);
1713 last = be32_to_cpu(sb->s_maxlen);
1714 if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1715 printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1716 first, last);
1717 journal_fail_superblock(journal);
1718 return -EINVAL;
1719 }
1720
1721 journal->j_first = first;
1722 journal->j_last = last;
1723
1724 if (journal->j_head != 0 && journal->j_flags & JBD2_CYCLE_RECORD) {
1725 /*
1726 * Disable the cycled recording mode if the journal head block
1727 * number is not correct.
1728 */
1729 if (journal->j_head < first || journal->j_head >= last) {
1730 printk(KERN_WARNING "JBD2: Incorrect Journal head block %lu, "
1731 "disable journal_cycle_record\n",
1732 journal->j_head);
1733 journal->j_head = journal->j_first;
1734 }
1735 } else {
1736 journal->j_head = journal->j_first;
1737 }
1738 journal->j_tail = journal->j_head;
1739 journal->j_free = journal->j_last - journal->j_first;
1740
1741 journal->j_tail_sequence = journal->j_transaction_sequence;
1742 journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1743 journal->j_commit_request = journal->j_commit_sequence;
1744
1745 /*
1746 * Now that journal recovery is done, turn fast commits off here. This
1747 * way, if fast commit was enabled before the crash but if now FS has
1748 * disabled it, we don't enable fast commits.
1749 */
1750 jbd2_clear_feature_fast_commit(journal);
1751
1752 /*
1753 * As a special case, if the on-disk copy is already marked as needing
1754 * no recovery (s_start == 0), then we can safely defer the superblock
1755 * update until the next commit by setting JBD2_FLUSHED. This avoids
1756 * attempting a write to a potential-readonly device.
1757 */
1758 if (sb->s_start == 0) {
1759 jbd2_debug(1, "JBD2: Skipping superblock update on recovered sb "
1760 "(start %ld, seq %u, errno %d)\n",
1761 journal->j_tail, journal->j_tail_sequence,
1762 journal->j_errno);
1763 journal->j_flags |= JBD2_FLUSHED;
1764 } else {
1765 /* Lock here to make assertions happy... */
1766 mutex_lock_io(&journal->j_checkpoint_mutex);
1767 /*
1768 * Update log tail information. We use REQ_FUA since new
1769 * transaction will start reusing journal space and so we
1770 * must make sure information about current log tail is on
1771 * disk before that.
1772 */
1773 jbd2_journal_update_sb_log_tail(journal,
1774 journal->j_tail_sequence,
1775 journal->j_tail, REQ_FUA);
1776 mutex_unlock(&journal->j_checkpoint_mutex);
1777 }
1778 return jbd2_journal_start_thread(journal);
1779}
1780
1781/*
1782 * This function expects that the caller will have locked the journal
1783 * buffer head, and will return with it unlocked
1784 */
1785static int jbd2_write_superblock(journal_t *journal, blk_opf_t write_flags)
1786{
1787 struct buffer_head *bh = journal->j_sb_buffer;
1788 journal_superblock_t *sb = journal->j_superblock;
1789 int ret = 0;
1790
1791 /* Buffer got discarded which means block device got invalidated */
1792 if (!buffer_mapped(bh)) {
1793 unlock_buffer(bh);
1794 return -EIO;
1795 }
1796
1797 /*
1798 * Always set high priority flags to exempt from block layer's
1799 * QOS policies, e.g. writeback throttle.
1800 */
1801 write_flags |= JBD2_JOURNAL_REQ_FLAGS;
1802 if (!(journal->j_flags & JBD2_BARRIER))
1803 write_flags &= ~(REQ_FUA | REQ_PREFLUSH);
1804
1805 trace_jbd2_write_superblock(journal, write_flags);
1806
1807 if (buffer_write_io_error(bh)) {
1808 /*
1809 * Oh, dear. A previous attempt to write the journal
1810 * superblock failed. This could happen because the
1811 * USB device was yanked out. Or it could happen to
1812 * be a transient write error and maybe the block will
1813 * be remapped. Nothing we can do but to retry the
1814 * write and hope for the best.
1815 */
1816 printk(KERN_ERR "JBD2: previous I/O error detected "
1817 "for journal superblock update for %s.\n",
1818 journal->j_devname);
1819 clear_buffer_write_io_error(bh);
1820 set_buffer_uptodate(bh);
1821 }
1822 if (jbd2_journal_has_csum_v2or3(journal))
1823 sb->s_checksum = jbd2_superblock_csum(sb);
1824 get_bh(bh);
1825 bh->b_end_io = end_buffer_write_sync;
1826 submit_bh(REQ_OP_WRITE | write_flags, bh);
1827 wait_on_buffer(bh);
1828 if (buffer_write_io_error(bh)) {
1829 clear_buffer_write_io_error(bh);
1830 set_buffer_uptodate(bh);
1831 ret = -EIO;
1832 }
1833 if (ret) {
1834 printk(KERN_ERR "JBD2: I/O error when updating journal superblock for %s.\n",
1835 journal->j_devname);
1836 if (!is_journal_aborted(journal))
1837 jbd2_journal_abort(journal, ret);
1838 }
1839
1840 return ret;
1841}
1842
1843/**
1844 * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1845 * @journal: The journal to update.
1846 * @tail_tid: TID of the new transaction at the tail of the log
1847 * @tail_block: The first block of the transaction at the tail of the log
1848 * @write_flags: Flags for the journal sb write operation
1849 *
1850 * Update a journal's superblock information about log tail and write it to
1851 * disk, waiting for the IO to complete.
1852 */
1853int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1854 unsigned long tail_block,
1855 blk_opf_t write_flags)
1856{
1857 journal_superblock_t *sb = journal->j_superblock;
1858 int ret;
1859
1860 if (is_journal_aborted(journal))
1861 return -EIO;
1862 ret = jbd2_check_fs_dev_write_error(journal);
1863 if (ret) {
1864 jbd2_journal_abort(journal, ret);
1865 return -EIO;
1866 }
1867
1868 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1869 jbd2_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1870 tail_block, tail_tid);
1871
1872 lock_buffer(journal->j_sb_buffer);
1873 sb->s_sequence = cpu_to_be32(tail_tid);
1874 sb->s_start = cpu_to_be32(tail_block);
1875
1876 ret = jbd2_write_superblock(journal, write_flags);
1877 if (ret)
1878 goto out;
1879
1880 /* Log is no longer empty */
1881 write_lock(&journal->j_state_lock);
1882 journal->j_flags &= ~JBD2_FLUSHED;
1883 write_unlock(&journal->j_state_lock);
1884
1885out:
1886 return ret;
1887}
1888
1889/**
1890 * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1891 * @journal: The journal to update.
1892 * @write_flags: Flags for the journal sb write operation
1893 *
1894 * Update a journal's dynamic superblock fields to show that journal is empty.
1895 * Write updated superblock to disk waiting for IO to complete.
1896 */
1897static void jbd2_mark_journal_empty(journal_t *journal, blk_opf_t write_flags)
1898{
1899 journal_superblock_t *sb = journal->j_superblock;
1900 bool had_fast_commit = false;
1901
1902 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1903 lock_buffer(journal->j_sb_buffer);
1904 if (sb->s_start == 0) { /* Is it already empty? */
1905 unlock_buffer(journal->j_sb_buffer);
1906 return;
1907 }
1908
1909 jbd2_debug(1, "JBD2: Marking journal as empty (seq %u)\n",
1910 journal->j_tail_sequence);
1911
1912 sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1913 sb->s_start = cpu_to_be32(0);
1914 sb->s_head = cpu_to_be32(journal->j_head);
1915 if (jbd2_has_feature_fast_commit(journal)) {
1916 /*
1917 * When journal is clean, no need to commit fast commit flag and
1918 * make file system incompatible with older kernels.
1919 */
1920 jbd2_clear_feature_fast_commit(journal);
1921 had_fast_commit = true;
1922 }
1923
1924 jbd2_write_superblock(journal, write_flags);
1925
1926 if (had_fast_commit)
1927 jbd2_set_feature_fast_commit(journal);
1928
1929 /* Log is empty */
1930 write_lock(&journal->j_state_lock);
1931 journal->j_flags |= JBD2_FLUSHED;
1932 write_unlock(&journal->j_state_lock);
1933}
1934
1935/**
1936 * __jbd2_journal_erase() - Discard or zeroout journal blocks (excluding superblock)
1937 * @journal: The journal to erase.
1938 * @flags: A discard/zeroout request is sent for each physically contigous
1939 * region of the journal. Either JBD2_JOURNAL_FLUSH_DISCARD or
1940 * JBD2_JOURNAL_FLUSH_ZEROOUT must be set to determine which operation
1941 * to perform.
1942 *
1943 * Note: JBD2_JOURNAL_FLUSH_ZEROOUT attempts to use hardware offload. Zeroes
1944 * will be explicitly written if no hardware offload is available, see
1945 * blkdev_issue_zeroout for more details.
1946 */
1947static int __jbd2_journal_erase(journal_t *journal, unsigned int flags)
1948{
1949 int err = 0;
1950 unsigned long block, log_offset; /* logical */
1951 unsigned long long phys_block, block_start, block_stop; /* physical */
1952 loff_t byte_start, byte_stop, byte_count;
1953
1954 /* flags must be set to either discard or zeroout */
1955 if ((flags & ~JBD2_JOURNAL_FLUSH_VALID) || !flags ||
1956 ((flags & JBD2_JOURNAL_FLUSH_DISCARD) &&
1957 (flags & JBD2_JOURNAL_FLUSH_ZEROOUT)))
1958 return -EINVAL;
1959
1960 if ((flags & JBD2_JOURNAL_FLUSH_DISCARD) &&
1961 !bdev_max_discard_sectors(journal->j_dev))
1962 return -EOPNOTSUPP;
1963
1964 /*
1965 * lookup block mapping and issue discard/zeroout for each
1966 * contiguous region
1967 */
1968 log_offset = be32_to_cpu(journal->j_superblock->s_first);
1969 block_start = ~0ULL;
1970 for (block = log_offset; block < journal->j_total_len; block++) {
1971 err = jbd2_journal_bmap(journal, block, &phys_block);
1972 if (err) {
1973 pr_err("JBD2: bad block at offset %lu", block);
1974 return err;
1975 }
1976
1977 if (block_start == ~0ULL)
1978 block_stop = block_start = phys_block;
1979
1980 /*
1981 * last block not contiguous with current block,
1982 * process last contiguous region and return to this block on
1983 * next loop
1984 */
1985 if (phys_block != block_stop) {
1986 block--;
1987 } else {
1988 block_stop++;
1989 /*
1990 * if this isn't the last block of journal,
1991 * no need to process now because next block may also
1992 * be part of this contiguous region
1993 */
1994 if (block != journal->j_total_len - 1)
1995 continue;
1996 }
1997
1998 /*
1999 * end of contiguous region or this is last block of journal,
2000 * take care of the region
2001 */
2002 byte_start = block_start * journal->j_blocksize;
2003 byte_stop = block_stop * journal->j_blocksize;
2004 byte_count = (block_stop - block_start) * journal->j_blocksize;
2005
2006 truncate_inode_pages_range(journal->j_dev->bd_mapping,
2007 byte_start, byte_stop - 1);
2008
2009 if (flags & JBD2_JOURNAL_FLUSH_DISCARD) {
2010 err = blkdev_issue_discard(journal->j_dev,
2011 byte_start >> SECTOR_SHIFT,
2012 byte_count >> SECTOR_SHIFT,
2013 GFP_NOFS);
2014 } else if (flags & JBD2_JOURNAL_FLUSH_ZEROOUT) {
2015 err = blkdev_issue_zeroout(journal->j_dev,
2016 byte_start >> SECTOR_SHIFT,
2017 byte_count >> SECTOR_SHIFT,
2018 GFP_NOFS, 0);
2019 }
2020
2021 if (unlikely(err != 0)) {
2022 pr_err("JBD2: (error %d) unable to wipe journal at physical blocks [%llu, %llu)",
2023 err, block_start, block_stop);
2024 return err;
2025 }
2026
2027 /* reset start and stop after processing a region */
2028 block_start = ~0ULL;
2029 }
2030
2031 return blkdev_issue_flush(journal->j_dev);
2032}
2033
2034/**
2035 * jbd2_journal_update_sb_errno() - Update error in the journal.
2036 * @journal: The journal to update.
2037 *
2038 * Update a journal's errno. Write updated superblock to disk waiting for IO
2039 * to complete.
2040 */
2041void jbd2_journal_update_sb_errno(journal_t *journal)
2042{
2043 journal_superblock_t *sb = journal->j_superblock;
2044 int errcode;
2045
2046 lock_buffer(journal->j_sb_buffer);
2047 errcode = journal->j_errno;
2048 if (errcode == -ESHUTDOWN)
2049 errcode = 0;
2050 jbd2_debug(1, "JBD2: updating superblock error (errno %d)\n", errcode);
2051 sb->s_errno = cpu_to_be32(errcode);
2052
2053 jbd2_write_superblock(journal, REQ_FUA);
2054}
2055EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
2056
2057/**
2058 * jbd2_journal_load() - Read journal from disk.
2059 * @journal: Journal to act on.
2060 *
2061 * Given a journal_t structure which tells us which disk blocks contain
2062 * a journal, read the journal from disk to initialise the in-memory
2063 * structures.
2064 */
2065int jbd2_journal_load(journal_t *journal)
2066{
2067 int err;
2068 journal_superblock_t *sb = journal->j_superblock;
2069
2070 /*
2071 * Create a slab for this blocksize
2072 */
2073 err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
2074 if (err)
2075 return err;
2076
2077 /* Let the recovery code check whether it needs to recover any
2078 * data from the journal. */
2079 err = jbd2_journal_recover(journal);
2080 if (err) {
2081 pr_warn("JBD2: journal recovery failed\n");
2082 return err;
2083 }
2084
2085 if (journal->j_failed_commit) {
2086 printk(KERN_ERR "JBD2: journal transaction %u on %s "
2087 "is corrupt.\n", journal->j_failed_commit,
2088 journal->j_devname);
2089 return -EFSCORRUPTED;
2090 }
2091 /*
2092 * clear JBD2_ABORT flag initialized in journal_init_common
2093 * here to update log tail information with the newest seq.
2094 */
2095 journal->j_flags &= ~JBD2_ABORT;
2096
2097 /* OK, we've finished with the dynamic journal bits:
2098 * reinitialise the dynamic contents of the superblock in memory
2099 * and reset them on disk. */
2100 err = journal_reset(journal);
2101 if (err) {
2102 pr_warn("JBD2: journal reset failed\n");
2103 return err;
2104 }
2105
2106 journal->j_flags |= JBD2_LOADED;
2107 return 0;
2108}
2109
2110/**
2111 * jbd2_journal_destroy() - Release a journal_t structure.
2112 * @journal: Journal to act on.
2113 *
2114 * Release a journal_t structure once it is no longer in use by the
2115 * journaled object.
2116 * Return <0 if we couldn't clean up the journal.
2117 */
2118int jbd2_journal_destroy(journal_t *journal)
2119{
2120 int err = 0;
2121
2122 /* Wait for the commit thread to wake up and die. */
2123 journal_kill_thread(journal);
2124
2125 /* Force a final log commit */
2126 if (journal->j_running_transaction)
2127 jbd2_journal_commit_transaction(journal);
2128
2129 /* Force any old transactions to disk */
2130
2131 /* Totally anal locking here... */
2132 spin_lock(&journal->j_list_lock);
2133 while (journal->j_checkpoint_transactions != NULL) {
2134 spin_unlock(&journal->j_list_lock);
2135 mutex_lock_io(&journal->j_checkpoint_mutex);
2136 err = jbd2_log_do_checkpoint(journal);
2137 mutex_unlock(&journal->j_checkpoint_mutex);
2138 /*
2139 * If checkpointing failed, just free the buffers to avoid
2140 * looping forever
2141 */
2142 if (err) {
2143 jbd2_journal_destroy_checkpoint(journal);
2144 spin_lock(&journal->j_list_lock);
2145 break;
2146 }
2147 spin_lock(&journal->j_list_lock);
2148 }
2149
2150 J_ASSERT(journal->j_running_transaction == NULL);
2151 J_ASSERT(journal->j_committing_transaction == NULL);
2152 J_ASSERT(journal->j_checkpoint_transactions == NULL);
2153 spin_unlock(&journal->j_list_lock);
2154
2155 /*
2156 * OK, all checkpoint transactions have been checked, now check the
2157 * writeback errseq of fs dev and abort the journal if some buffer
2158 * failed to write back to the original location, otherwise the
2159 * filesystem may become inconsistent.
2160 */
2161 if (!is_journal_aborted(journal)) {
2162 int ret = jbd2_check_fs_dev_write_error(journal);
2163 if (ret)
2164 jbd2_journal_abort(journal, ret);
2165 }
2166
2167 if (journal->j_sb_buffer) {
2168 if (!is_journal_aborted(journal)) {
2169 mutex_lock_io(&journal->j_checkpoint_mutex);
2170
2171 write_lock(&journal->j_state_lock);
2172 journal->j_tail_sequence =
2173 ++journal->j_transaction_sequence;
2174 write_unlock(&journal->j_state_lock);
2175
2176 jbd2_mark_journal_empty(journal, REQ_PREFLUSH | REQ_FUA);
2177 mutex_unlock(&journal->j_checkpoint_mutex);
2178 } else
2179 err = -EIO;
2180 brelse(journal->j_sb_buffer);
2181 }
2182
2183 if (journal->j_shrinker) {
2184 percpu_counter_destroy(&journal->j_checkpoint_jh_count);
2185 shrinker_free(journal->j_shrinker);
2186 }
2187 if (journal->j_proc_entry)
2188 jbd2_stats_proc_exit(journal);
2189 iput(journal->j_inode);
2190 if (journal->j_revoke)
2191 jbd2_journal_destroy_revoke(journal);
2192 kfree(journal->j_fc_wbuf);
2193 kfree(journal->j_wbuf);
2194 lockdep_unregister_key(&journal->jbd2_trans_commit_key);
2195 kfree(journal);
2196
2197 return err;
2198}
2199
2200
2201/**
2202 * jbd2_journal_check_used_features() - Check if features specified are used.
2203 * @journal: Journal to check.
2204 * @compat: bitmask of compatible features
2205 * @ro: bitmask of features that force read-only mount
2206 * @incompat: bitmask of incompatible features
2207 *
2208 * Check whether the journal uses all of a given set of
2209 * features. Return true (non-zero) if it does.
2210 **/
2211
2212int jbd2_journal_check_used_features(journal_t *journal, unsigned long compat,
2213 unsigned long ro, unsigned long incompat)
2214{
2215 journal_superblock_t *sb;
2216
2217 if (!compat && !ro && !incompat)
2218 return 1;
2219 if (!jbd2_format_support_feature(journal))
2220 return 0;
2221
2222 sb = journal->j_superblock;
2223
2224 if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
2225 ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
2226 ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
2227 return 1;
2228
2229 return 0;
2230}
2231
2232/**
2233 * jbd2_journal_check_available_features() - Check feature set in journalling layer
2234 * @journal: Journal to check.
2235 * @compat: bitmask of compatible features
2236 * @ro: bitmask of features that force read-only mount
2237 * @incompat: bitmask of incompatible features
2238 *
2239 * Check whether the journaling code supports the use of
2240 * all of a given set of features on this journal. Return true
2241 * (non-zero) if it can. */
2242
2243int jbd2_journal_check_available_features(journal_t *journal, unsigned long compat,
2244 unsigned long ro, unsigned long incompat)
2245{
2246 if (!compat && !ro && !incompat)
2247 return 1;
2248
2249 if (!jbd2_format_support_feature(journal))
2250 return 0;
2251
2252 if ((compat & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
2253 (ro & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
2254 (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
2255 return 1;
2256
2257 return 0;
2258}
2259
2260static int
2261jbd2_journal_initialize_fast_commit(journal_t *journal)
2262{
2263 journal_superblock_t *sb = journal->j_superblock;
2264 unsigned long long num_fc_blks;
2265
2266 num_fc_blks = jbd2_journal_get_num_fc_blks(sb);
2267 if (journal->j_last - num_fc_blks < JBD2_MIN_JOURNAL_BLOCKS)
2268 return -ENOSPC;
2269
2270 /* Are we called twice? */
2271 WARN_ON(journal->j_fc_wbuf != NULL);
2272 journal->j_fc_wbuf = kmalloc_array(num_fc_blks,
2273 sizeof(struct buffer_head *), GFP_KERNEL);
2274 if (!journal->j_fc_wbuf)
2275 return -ENOMEM;
2276
2277 journal->j_fc_wbufsize = num_fc_blks;
2278 journal->j_fc_last = journal->j_last;
2279 journal->j_last = journal->j_fc_last - num_fc_blks;
2280 journal->j_fc_first = journal->j_last + 1;
2281 journal->j_fc_off = 0;
2282 journal->j_free = journal->j_last - journal->j_first;
2283
2284 return 0;
2285}
2286
2287/**
2288 * jbd2_journal_set_features() - Mark a given journal feature in the superblock
2289 * @journal: Journal to act on.
2290 * @compat: bitmask of compatible features
2291 * @ro: bitmask of features that force read-only mount
2292 * @incompat: bitmask of incompatible features
2293 *
2294 * Mark a given journal feature as present on the
2295 * superblock. Returns true if the requested features could be set.
2296 *
2297 */
2298
2299int jbd2_journal_set_features(journal_t *journal, unsigned long compat,
2300 unsigned long ro, unsigned long incompat)
2301{
2302#define INCOMPAT_FEATURE_ON(f) \
2303 ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
2304#define COMPAT_FEATURE_ON(f) \
2305 ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
2306 journal_superblock_t *sb;
2307
2308 if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
2309 return 1;
2310
2311 if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
2312 return 0;
2313
2314 /* If enabling v2 checksums, turn on v3 instead */
2315 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) {
2316 incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2;
2317 incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3;
2318 }
2319
2320 /* Asking for checksumming v3 and v1? Only give them v3. */
2321 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 &&
2322 compat & JBD2_FEATURE_COMPAT_CHECKSUM)
2323 compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
2324
2325 jbd2_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
2326 compat, ro, incompat);
2327
2328 sb = journal->j_superblock;
2329
2330 if (incompat & JBD2_FEATURE_INCOMPAT_FAST_COMMIT) {
2331 if (jbd2_journal_initialize_fast_commit(journal)) {
2332 pr_err("JBD2: Cannot enable fast commits.\n");
2333 return 0;
2334 }
2335 }
2336
2337 lock_buffer(journal->j_sb_buffer);
2338
2339 /* If enabling v3 checksums, update superblock and precompute seed */
2340 if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
2341 sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
2342 sb->s_feature_compat &=
2343 ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
2344 journal->j_csum_seed = jbd2_chksum(~0, sb->s_uuid,
2345 sizeof(sb->s_uuid));
2346 }
2347
2348 /* If enabling v1 checksums, downgrade superblock */
2349 if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
2350 sb->s_feature_incompat &=
2351 ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 |
2352 JBD2_FEATURE_INCOMPAT_CSUM_V3);
2353
2354 sb->s_feature_compat |= cpu_to_be32(compat);
2355 sb->s_feature_ro_compat |= cpu_to_be32(ro);
2356 sb->s_feature_incompat |= cpu_to_be32(incompat);
2357 /*
2358 * Update the checksum now so that it is valid even for read-only
2359 * filesystems where jbd2_write_superblock() doesn't get called.
2360 */
2361 if (jbd2_journal_has_csum_v2or3(journal))
2362 sb->s_checksum = jbd2_superblock_csum(sb);
2363 unlock_buffer(journal->j_sb_buffer);
2364 jbd2_journal_init_transaction_limits(journal);
2365
2366 return 1;
2367#undef COMPAT_FEATURE_ON
2368#undef INCOMPAT_FEATURE_ON
2369}
2370
2371/*
2372 * jbd2_journal_clear_features() - Clear a given journal feature in the
2373 * superblock
2374 * @journal: Journal to act on.
2375 * @compat: bitmask of compatible features
2376 * @ro: bitmask of features that force read-only mount
2377 * @incompat: bitmask of incompatible features
2378 *
2379 * Clear a given journal feature as present on the
2380 * superblock.
2381 */
2382void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
2383 unsigned long ro, unsigned long incompat)
2384{
2385 journal_superblock_t *sb;
2386
2387 jbd2_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
2388 compat, ro, incompat);
2389
2390 sb = journal->j_superblock;
2391
2392 lock_buffer(journal->j_sb_buffer);
2393 sb->s_feature_compat &= ~cpu_to_be32(compat);
2394 sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
2395 sb->s_feature_incompat &= ~cpu_to_be32(incompat);
2396 /*
2397 * Update the checksum now so that it is valid even for read-only
2398 * filesystems where jbd2_write_superblock() doesn't get called.
2399 */
2400 if (jbd2_journal_has_csum_v2or3(journal))
2401 sb->s_checksum = jbd2_superblock_csum(sb);
2402 unlock_buffer(journal->j_sb_buffer);
2403 jbd2_journal_init_transaction_limits(journal);
2404}
2405EXPORT_SYMBOL(jbd2_journal_clear_features);
2406
2407/**
2408 * jbd2_journal_flush() - Flush journal
2409 * @journal: Journal to act on.
2410 * @flags: optional operation on the journal blocks after the flush (see below)
2411 *
2412 * Flush all data for a given journal to disk and empty the journal.
2413 * Filesystems can use this when remounting readonly to ensure that
2414 * recovery does not need to happen on remount. Optionally, a discard or zeroout
2415 * can be issued on the journal blocks after flushing.
2416 *
2417 * flags:
2418 * JBD2_JOURNAL_FLUSH_DISCARD: issues discards for the journal blocks
2419 * JBD2_JOURNAL_FLUSH_ZEROOUT: issues zeroouts for the journal blocks
2420 */
2421int jbd2_journal_flush(journal_t *journal, unsigned int flags)
2422{
2423 int err = 0;
2424 transaction_t *transaction = NULL;
2425
2426 write_lock(&journal->j_state_lock);
2427
2428 /* Force everything buffered to the log... */
2429 if (journal->j_running_transaction) {
2430 transaction = journal->j_running_transaction;
2431 __jbd2_log_start_commit(journal, transaction->t_tid);
2432 } else if (journal->j_committing_transaction)
2433 transaction = journal->j_committing_transaction;
2434
2435 /* Wait for the log commit to complete... */
2436 if (transaction) {
2437 tid_t tid = transaction->t_tid;
2438
2439 write_unlock(&journal->j_state_lock);
2440 jbd2_log_wait_commit(journal, tid);
2441 } else {
2442 write_unlock(&journal->j_state_lock);
2443 }
2444
2445 /* ...and flush everything in the log out to disk. */
2446 spin_lock(&journal->j_list_lock);
2447 while (!err && journal->j_checkpoint_transactions != NULL) {
2448 spin_unlock(&journal->j_list_lock);
2449 mutex_lock_io(&journal->j_checkpoint_mutex);
2450 err = jbd2_log_do_checkpoint(journal);
2451 mutex_unlock(&journal->j_checkpoint_mutex);
2452 spin_lock(&journal->j_list_lock);
2453 }
2454 spin_unlock(&journal->j_list_lock);
2455
2456 if (is_journal_aborted(journal))
2457 return -EIO;
2458
2459 mutex_lock_io(&journal->j_checkpoint_mutex);
2460 if (!err) {
2461 err = jbd2_cleanup_journal_tail(journal);
2462 if (err < 0) {
2463 mutex_unlock(&journal->j_checkpoint_mutex);
2464 goto out;
2465 }
2466 err = 0;
2467 }
2468
2469 /* Finally, mark the journal as really needing no recovery.
2470 * This sets s_start==0 in the underlying superblock, which is
2471 * the magic code for a fully-recovered superblock. Any future
2472 * commits of data to the journal will restore the current
2473 * s_start value. */
2474 jbd2_mark_journal_empty(journal, REQ_FUA);
2475
2476 if (flags)
2477 err = __jbd2_journal_erase(journal, flags);
2478
2479 mutex_unlock(&journal->j_checkpoint_mutex);
2480 write_lock(&journal->j_state_lock);
2481 J_ASSERT(!journal->j_running_transaction);
2482 J_ASSERT(!journal->j_committing_transaction);
2483 J_ASSERT(!journal->j_checkpoint_transactions);
2484 J_ASSERT(journal->j_head == journal->j_tail);
2485 J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
2486 write_unlock(&journal->j_state_lock);
2487out:
2488 return err;
2489}
2490
2491/**
2492 * jbd2_journal_wipe() - Wipe journal contents
2493 * @journal: Journal to act on.
2494 * @write: flag (see below)
2495 *
2496 * Wipe out all of the contents of a journal, safely. This will produce
2497 * a warning if the journal contains any valid recovery information.
2498 * Must be called between journal_init_*() and jbd2_journal_load().
2499 *
2500 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
2501 * we merely suppress recovery.
2502 */
2503
2504int jbd2_journal_wipe(journal_t *journal, int write)
2505{
2506 int err;
2507
2508 J_ASSERT (!(journal->j_flags & JBD2_LOADED));
2509
2510 if (!journal->j_tail)
2511 return 0;
2512
2513 printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
2514 write ? "Clearing" : "Ignoring");
2515
2516 err = jbd2_journal_skip_recovery(journal);
2517 if (write) {
2518 /* Lock to make assertions happy... */
2519 mutex_lock_io(&journal->j_checkpoint_mutex);
2520 jbd2_mark_journal_empty(journal, REQ_FUA);
2521 mutex_unlock(&journal->j_checkpoint_mutex);
2522 }
2523
2524 return err;
2525}
2526
2527/**
2528 * jbd2_journal_abort () - Shutdown the journal immediately.
2529 * @journal: the journal to shutdown.
2530 * @errno: an error number to record in the journal indicating
2531 * the reason for the shutdown.
2532 *
2533 * Perform a complete, immediate shutdown of the ENTIRE
2534 * journal (not of a single transaction). This operation cannot be
2535 * undone without closing and reopening the journal.
2536 *
2537 * The jbd2_journal_abort function is intended to support higher level error
2538 * recovery mechanisms such as the ext2/ext3 remount-readonly error
2539 * mode.
2540 *
2541 * Journal abort has very specific semantics. Any existing dirty,
2542 * unjournaled buffers in the main filesystem will still be written to
2543 * disk by bdflush, but the journaling mechanism will be suspended
2544 * immediately and no further transaction commits will be honoured.
2545 *
2546 * Any dirty, journaled buffers will be written back to disk without
2547 * hitting the journal. Atomicity cannot be guaranteed on an aborted
2548 * filesystem, but we _do_ attempt to leave as much data as possible
2549 * behind for fsck to use for cleanup.
2550 *
2551 * Any attempt to get a new transaction handle on a journal which is in
2552 * ABORT state will just result in an -EROFS error return. A
2553 * jbd2_journal_stop on an existing handle will return -EIO if we have
2554 * entered abort state during the update.
2555 *
2556 * Recursive transactions are not disturbed by journal abort until the
2557 * final jbd2_journal_stop, which will receive the -EIO error.
2558 *
2559 * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2560 * which will be recorded (if possible) in the journal superblock. This
2561 * allows a client to record failure conditions in the middle of a
2562 * transaction without having to complete the transaction to record the
2563 * failure to disk. ext3_error, for example, now uses this
2564 * functionality.
2565 *
2566 */
2567
2568void jbd2_journal_abort(journal_t *journal, int errno)
2569{
2570 transaction_t *transaction;
2571
2572 /*
2573 * Lock the aborting procedure until everything is done, this avoid
2574 * races between filesystem's error handling flow (e.g. ext4_abort()),
2575 * ensure panic after the error info is written into journal's
2576 * superblock.
2577 */
2578 mutex_lock(&journal->j_abort_mutex);
2579 /*
2580 * ESHUTDOWN always takes precedence because a file system check
2581 * caused by any other journal abort error is not required after
2582 * a shutdown triggered.
2583 */
2584 write_lock(&journal->j_state_lock);
2585 if (journal->j_flags & JBD2_ABORT) {
2586 int old_errno = journal->j_errno;
2587
2588 write_unlock(&journal->j_state_lock);
2589 if (old_errno != -ESHUTDOWN && errno == -ESHUTDOWN) {
2590 journal->j_errno = errno;
2591 jbd2_journal_update_sb_errno(journal);
2592 }
2593 mutex_unlock(&journal->j_abort_mutex);
2594 return;
2595 }
2596
2597 /*
2598 * Mark the abort as occurred and start current running transaction
2599 * to release all journaled buffer.
2600 */
2601 pr_err("Aborting journal on device %s.\n", journal->j_devname);
2602
2603 journal->j_flags |= JBD2_ABORT;
2604 journal->j_errno = errno;
2605 transaction = journal->j_running_transaction;
2606 if (transaction)
2607 __jbd2_log_start_commit(journal, transaction->t_tid);
2608 write_unlock(&journal->j_state_lock);
2609
2610 /*
2611 * Record errno to the journal super block, so that fsck and jbd2
2612 * layer could realise that a filesystem check is needed.
2613 */
2614 jbd2_journal_update_sb_errno(journal);
2615 mutex_unlock(&journal->j_abort_mutex);
2616}
2617
2618/**
2619 * jbd2_journal_errno() - returns the journal's error state.
2620 * @journal: journal to examine.
2621 *
2622 * This is the errno number set with jbd2_journal_abort(), the last
2623 * time the journal was mounted - if the journal was stopped
2624 * without calling abort this will be 0.
2625 *
2626 * If the journal has been aborted on this mount time -EROFS will
2627 * be returned.
2628 */
2629int jbd2_journal_errno(journal_t *journal)
2630{
2631 int err;
2632
2633 read_lock(&journal->j_state_lock);
2634 if (journal->j_flags & JBD2_ABORT)
2635 err = -EROFS;
2636 else
2637 err = journal->j_errno;
2638 read_unlock(&journal->j_state_lock);
2639 return err;
2640}
2641
2642/**
2643 * jbd2_journal_clear_err() - clears the journal's error state
2644 * @journal: journal to act on.
2645 *
2646 * An error must be cleared or acked to take a FS out of readonly
2647 * mode.
2648 */
2649int jbd2_journal_clear_err(journal_t *journal)
2650{
2651 int err = 0;
2652
2653 write_lock(&journal->j_state_lock);
2654 if (journal->j_flags & JBD2_ABORT)
2655 err = -EROFS;
2656 else
2657 journal->j_errno = 0;
2658 write_unlock(&journal->j_state_lock);
2659 return err;
2660}
2661
2662/**
2663 * jbd2_journal_ack_err() - Ack journal err.
2664 * @journal: journal to act on.
2665 *
2666 * An error must be cleared or acked to take a FS out of readonly
2667 * mode.
2668 */
2669void jbd2_journal_ack_err(journal_t *journal)
2670{
2671 write_lock(&journal->j_state_lock);
2672 if (journal->j_errno)
2673 journal->j_flags |= JBD2_ACK_ERR;
2674 write_unlock(&journal->j_state_lock);
2675}
2676
2677int jbd2_journal_blocks_per_folio(struct inode *inode)
2678{
2679 return 1 << (PAGE_SHIFT + mapping_max_folio_order(inode->i_mapping) -
2680 inode->i_sb->s_blocksize_bits);
2681}
2682
2683/*
2684 * helper functions to deal with 32 or 64bit block numbers.
2685 */
2686size_t journal_tag_bytes(journal_t *journal)
2687{
2688 size_t sz;
2689
2690 if (jbd2_has_feature_csum3(journal))
2691 return sizeof(journal_block_tag3_t);
2692
2693 sz = sizeof(journal_block_tag_t);
2694
2695 if (jbd2_has_feature_csum2(journal))
2696 sz += sizeof(__u16);
2697
2698 if (jbd2_has_feature_64bit(journal))
2699 return sz;
2700 else
2701 return sz - sizeof(__u32);
2702}
2703
2704/*
2705 * JBD memory management
2706 *
2707 * These functions are used to allocate block-sized chunks of memory
2708 * used for making copies of buffer_head data. Very often it will be
2709 * page-sized chunks of data, but sometimes it will be in
2710 * sub-page-size chunks. (For example, 16k pages on Power systems
2711 * with a 4k block file system.) For blocks smaller than a page, we
2712 * use a SLAB allocator. There are slab caches for each block size,
2713 * which are allocated at mount time, if necessary, and we only free
2714 * (all of) the slab caches when/if the jbd2 module is unloaded. For
2715 * this reason we don't need to a mutex to protect access to
2716 * jbd2_slab[] allocating or releasing memory; only in
2717 * jbd2_journal_create_slab().
2718 */
2719#define JBD2_MAX_SLABS 8
2720static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2721
2722static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2723 "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2724 "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2725};
2726
2727
2728static void jbd2_journal_destroy_slabs(void)
2729{
2730 int i;
2731
2732 for (i = 0; i < JBD2_MAX_SLABS; i++) {
2733 kmem_cache_destroy(jbd2_slab[i]);
2734 jbd2_slab[i] = NULL;
2735 }
2736}
2737
2738static int jbd2_journal_create_slab(size_t size)
2739{
2740 static DEFINE_MUTEX(jbd2_slab_create_mutex);
2741 int i = order_base_2(size) - 10;
2742 size_t slab_size;
2743
2744 if (size == PAGE_SIZE)
2745 return 0;
2746
2747 if (i >= JBD2_MAX_SLABS)
2748 return -EINVAL;
2749
2750 if (unlikely(i < 0))
2751 i = 0;
2752 mutex_lock(&jbd2_slab_create_mutex);
2753 if (jbd2_slab[i]) {
2754 mutex_unlock(&jbd2_slab_create_mutex);
2755 return 0; /* Already created */
2756 }
2757
2758 slab_size = 1 << (i+10);
2759 jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2760 slab_size, 0, NULL);
2761 mutex_unlock(&jbd2_slab_create_mutex);
2762 if (!jbd2_slab[i]) {
2763 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2764 return -ENOMEM;
2765 }
2766 return 0;
2767}
2768
2769static struct kmem_cache *get_slab(size_t size)
2770{
2771 int i = order_base_2(size) - 10;
2772
2773 BUG_ON(i >= JBD2_MAX_SLABS);
2774 if (unlikely(i < 0))
2775 i = 0;
2776 BUG_ON(jbd2_slab[i] == NULL);
2777 return jbd2_slab[i];
2778}
2779
2780void *jbd2_alloc(size_t size, gfp_t flags)
2781{
2782 void *ptr;
2783
2784 BUG_ON(size & (size-1)); /* Must be a power of 2 */
2785
2786 if (size < PAGE_SIZE)
2787 ptr = kmem_cache_alloc(get_slab(size), flags);
2788 else
2789 ptr = (void *)__get_free_pages(flags, get_order(size));
2790
2791 /* Check alignment; SLUB has gotten this wrong in the past,
2792 * and this can lead to user data corruption! */
2793 BUG_ON(((unsigned long) ptr) & (size-1));
2794
2795 return ptr;
2796}
2797
2798void jbd2_free(void *ptr, size_t size)
2799{
2800 if (size < PAGE_SIZE)
2801 kmem_cache_free(get_slab(size), ptr);
2802 else
2803 free_pages((unsigned long)ptr, get_order(size));
2804};
2805
2806/*
2807 * Journal_head storage management
2808 */
2809static struct kmem_cache *jbd2_journal_head_cache;
2810#ifdef CONFIG_JBD2_DEBUG
2811static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2812#endif
2813
2814static int __init jbd2_journal_init_journal_head_cache(void)
2815{
2816 J_ASSERT(!jbd2_journal_head_cache);
2817 jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2818 sizeof(struct journal_head),
2819 0, /* offset */
2820 SLAB_TEMPORARY | SLAB_TYPESAFE_BY_RCU,
2821 NULL); /* ctor */
2822 if (!jbd2_journal_head_cache) {
2823 printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2824 return -ENOMEM;
2825 }
2826 return 0;
2827}
2828
2829static void jbd2_journal_destroy_journal_head_cache(void)
2830{
2831 kmem_cache_destroy(jbd2_journal_head_cache);
2832 jbd2_journal_head_cache = NULL;
2833}
2834
2835/*
2836 * journal_head splicing and dicing
2837 */
2838static struct journal_head *journal_alloc_journal_head(void)
2839{
2840 struct journal_head *ret;
2841
2842#ifdef CONFIG_JBD2_DEBUG
2843 atomic_inc(&nr_journal_heads);
2844#endif
2845 ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2846 if (!ret) {
2847 jbd2_debug(1, "out of memory for journal_head\n");
2848 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2849 ret = kmem_cache_zalloc(jbd2_journal_head_cache,
2850 GFP_NOFS | __GFP_NOFAIL);
2851 }
2852 spin_lock_init(&ret->b_state_lock);
2853 return ret;
2854}
2855
2856static void journal_free_journal_head(struct journal_head *jh)
2857{
2858#ifdef CONFIG_JBD2_DEBUG
2859 atomic_dec(&nr_journal_heads);
2860 memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2861#endif
2862 kmem_cache_free(jbd2_journal_head_cache, jh);
2863}
2864
2865/*
2866 * A journal_head is attached to a buffer_head whenever JBD has an
2867 * interest in the buffer.
2868 *
2869 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2870 * is set. This bit is tested in core kernel code where we need to take
2871 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable
2872 * there.
2873 *
2874 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2875 *
2876 * When a buffer has its BH_JBD bit set it is immune from being released by
2877 * core kernel code, mainly via ->b_count.
2878 *
2879 * A journal_head is detached from its buffer_head when the journal_head's
2880 * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2881 * transaction (b_cp_transaction) hold their references to b_jcount.
2882 *
2883 * Various places in the kernel want to attach a journal_head to a buffer_head
2884 * _before_ attaching the journal_head to a transaction. To protect the
2885 * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2886 * journal_head's b_jcount refcount by one. The caller must call
2887 * jbd2_journal_put_journal_head() to undo this.
2888 *
2889 * So the typical usage would be:
2890 *
2891 * (Attach a journal_head if needed. Increments b_jcount)
2892 * struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2893 * ...
2894 * (Get another reference for transaction)
2895 * jbd2_journal_grab_journal_head(bh);
2896 * jh->b_transaction = xxx;
2897 * (Put original reference)
2898 * jbd2_journal_put_journal_head(jh);
2899 */
2900
2901/*
2902 * Give a buffer_head a journal_head.
2903 *
2904 * May sleep.
2905 */
2906struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2907{
2908 struct journal_head *jh;
2909 struct journal_head *new_jh = NULL;
2910
2911repeat:
2912 if (!buffer_jbd(bh))
2913 new_jh = journal_alloc_journal_head();
2914
2915 jbd_lock_bh_journal_head(bh);
2916 if (buffer_jbd(bh)) {
2917 jh = bh2jh(bh);
2918 } else {
2919 J_ASSERT_BH(bh,
2920 (atomic_read(&bh->b_count) > 0) ||
2921 (bh->b_folio && bh->b_folio->mapping));
2922
2923 if (!new_jh) {
2924 jbd_unlock_bh_journal_head(bh);
2925 goto repeat;
2926 }
2927
2928 jh = new_jh;
2929 new_jh = NULL; /* We consumed it */
2930 set_buffer_jbd(bh);
2931 bh->b_private = jh;
2932 jh->b_bh = bh;
2933 get_bh(bh);
2934 BUFFER_TRACE(bh, "added journal_head");
2935 }
2936 jh->b_jcount++;
2937 jbd_unlock_bh_journal_head(bh);
2938 if (new_jh)
2939 journal_free_journal_head(new_jh);
2940 return bh->b_private;
2941}
2942
2943/*
2944 * Grab a ref against this buffer_head's journal_head. If it ended up not
2945 * having a journal_head, return NULL
2946 */
2947struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2948{
2949 struct journal_head *jh = NULL;
2950
2951 jbd_lock_bh_journal_head(bh);
2952 if (buffer_jbd(bh)) {
2953 jh = bh2jh(bh);
2954 jh->b_jcount++;
2955 }
2956 jbd_unlock_bh_journal_head(bh);
2957 return jh;
2958}
2959EXPORT_SYMBOL(jbd2_journal_grab_journal_head);
2960
2961static void __journal_remove_journal_head(struct buffer_head *bh)
2962{
2963 struct journal_head *jh = bh2jh(bh);
2964
2965 J_ASSERT_JH(jh, jh->b_transaction == NULL);
2966 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2967 J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2968 J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2969 J_ASSERT_BH(bh, buffer_jbd(bh));
2970 J_ASSERT_BH(bh, jh2bh(jh) == bh);
2971 BUFFER_TRACE(bh, "remove journal_head");
2972
2973 /* Unlink before dropping the lock */
2974 bh->b_private = NULL;
2975 jh->b_bh = NULL; /* debug, really */
2976 clear_buffer_jbd(bh);
2977}
2978
2979static void journal_release_journal_head(struct journal_head *jh, size_t b_size)
2980{
2981 if (jh->b_frozen_data) {
2982 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2983 jbd2_free(jh->b_frozen_data, b_size);
2984 }
2985 if (jh->b_committed_data) {
2986 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2987 jbd2_free(jh->b_committed_data, b_size);
2988 }
2989 journal_free_journal_head(jh);
2990}
2991
2992/*
2993 * Drop a reference on the passed journal_head. If it fell to zero then
2994 * release the journal_head from the buffer_head.
2995 */
2996void jbd2_journal_put_journal_head(struct journal_head *jh)
2997{
2998 struct buffer_head *bh = jh2bh(jh);
2999
3000 jbd_lock_bh_journal_head(bh);
3001 J_ASSERT_JH(jh, jh->b_jcount > 0);
3002 --jh->b_jcount;
3003 if (!jh->b_jcount) {
3004 __journal_remove_journal_head(bh);
3005 jbd_unlock_bh_journal_head(bh);
3006 journal_release_journal_head(jh, bh->b_size);
3007 __brelse(bh);
3008 } else {
3009 jbd_unlock_bh_journal_head(bh);
3010 }
3011}
3012EXPORT_SYMBOL(jbd2_journal_put_journal_head);
3013
3014/*
3015 * Initialize jbd inode head
3016 */
3017void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
3018{
3019 jinode->i_transaction = NULL;
3020 jinode->i_next_transaction = NULL;
3021 jinode->i_vfs_inode = inode;
3022 jinode->i_flags = 0;
3023 jinode->i_dirty_start = 0;
3024 jinode->i_dirty_end = 0;
3025 INIT_LIST_HEAD(&jinode->i_list);
3026}
3027
3028/*
3029 * Function to be called before we start removing inode from memory (i.e.,
3030 * clear_inode() is a fine place to be called from). It removes inode from
3031 * transaction's lists.
3032 */
3033void jbd2_journal_release_jbd_inode(journal_t *journal,
3034 struct jbd2_inode *jinode)
3035{
3036 if (!journal)
3037 return;
3038restart:
3039 spin_lock(&journal->j_list_lock);
3040 /* Is commit writing out inode - we have to wait */
3041 if (jinode->i_flags & JI_COMMIT_RUNNING) {
3042 wait_queue_head_t *wq;
3043 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
3044 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
3045 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
3046 spin_unlock(&journal->j_list_lock);
3047 schedule();
3048 finish_wait(wq, &wait.wq_entry);
3049 goto restart;
3050 }
3051
3052 if (jinode->i_transaction) {
3053 list_del(&jinode->i_list);
3054 jinode->i_transaction = NULL;
3055 }
3056 spin_unlock(&journal->j_list_lock);
3057}
3058
3059
3060#ifdef CONFIG_PROC_FS
3061
3062#define JBD2_STATS_PROC_NAME "fs/jbd2"
3063
3064static void __init jbd2_create_jbd_stats_proc_entry(void)
3065{
3066 proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
3067}
3068
3069static void __exit jbd2_remove_jbd_stats_proc_entry(void)
3070{
3071 if (proc_jbd2_stats)
3072 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
3073}
3074
3075#else
3076
3077#define jbd2_create_jbd_stats_proc_entry() do {} while (0)
3078#define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
3079
3080#endif
3081
3082struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
3083
3084static int __init jbd2_journal_init_inode_cache(void)
3085{
3086 J_ASSERT(!jbd2_inode_cache);
3087 jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
3088 if (!jbd2_inode_cache) {
3089 pr_emerg("JBD2: failed to create inode cache\n");
3090 return -ENOMEM;
3091 }
3092 return 0;
3093}
3094
3095static int __init jbd2_journal_init_handle_cache(void)
3096{
3097 J_ASSERT(!jbd2_handle_cache);
3098 jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
3099 if (!jbd2_handle_cache) {
3100 printk(KERN_EMERG "JBD2: failed to create handle cache\n");
3101 return -ENOMEM;
3102 }
3103 return 0;
3104}
3105
3106static void jbd2_journal_destroy_inode_cache(void)
3107{
3108 kmem_cache_destroy(jbd2_inode_cache);
3109 jbd2_inode_cache = NULL;
3110}
3111
3112static void jbd2_journal_destroy_handle_cache(void)
3113{
3114 kmem_cache_destroy(jbd2_handle_cache);
3115 jbd2_handle_cache = NULL;
3116}
3117
3118/*
3119 * Module startup and shutdown
3120 */
3121
3122static int __init journal_init_caches(void)
3123{
3124 int ret;
3125
3126 ret = jbd2_journal_init_revoke_record_cache();
3127 if (ret == 0)
3128 ret = jbd2_journal_init_revoke_table_cache();
3129 if (ret == 0)
3130 ret = jbd2_journal_init_journal_head_cache();
3131 if (ret == 0)
3132 ret = jbd2_journal_init_handle_cache();
3133 if (ret == 0)
3134 ret = jbd2_journal_init_inode_cache();
3135 if (ret == 0)
3136 ret = jbd2_journal_init_transaction_cache();
3137 return ret;
3138}
3139
3140static void jbd2_journal_destroy_caches(void)
3141{
3142 jbd2_journal_destroy_revoke_record_cache();
3143 jbd2_journal_destroy_revoke_table_cache();
3144 jbd2_journal_destroy_journal_head_cache();
3145 jbd2_journal_destroy_handle_cache();
3146 jbd2_journal_destroy_inode_cache();
3147 jbd2_journal_destroy_transaction_cache();
3148 jbd2_journal_destroy_slabs();
3149}
3150
3151static int __init journal_init(void)
3152{
3153 int ret;
3154
3155 BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
3156
3157 ret = journal_init_caches();
3158 if (ret == 0) {
3159 jbd2_create_jbd_stats_proc_entry();
3160 } else {
3161 jbd2_journal_destroy_caches();
3162 }
3163 return ret;
3164}
3165
3166static void __exit journal_exit(void)
3167{
3168#ifdef CONFIG_JBD2_DEBUG
3169 int n = atomic_read(&nr_journal_heads);
3170 if (n)
3171 printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n);
3172#endif
3173 jbd2_remove_jbd_stats_proc_entry();
3174 jbd2_journal_destroy_caches();
3175}
3176
3177MODULE_DESCRIPTION("Generic filesystem journal-writing module");
3178MODULE_LICENSE("GPL");
3179module_init(journal_init);
3180module_exit(journal_exit);
3181