Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
4 * Copyright 2004-2011 Red Hat, Inc.
5 */
6
7#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8
9#include <linux/fs.h>
10#include <linux/dlm.h>
11#include <linux/slab.h>
12#include <linux/types.h>
13#include <linux/delay.h>
14#include <linux/gfs2_ondisk.h>
15#include <linux/sched/signal.h>
16
17#include "incore.h"
18#include "util.h"
19#include "sys.h"
20#include "trace_gfs2.h"
21
22/**
23 * gfs2_update_stats - Update time based stats
24 * @s: The stats to update (local or global)
25 * @index: The index inside @s
26 * @sample: New data to include
27 */
28static inline void gfs2_update_stats(struct gfs2_lkstats *s, unsigned index,
29 s64 sample)
30{
31 /*
32 * @delta is the difference between the current rtt sample and the
33 * running average srtt. We add 1/8 of that to the srtt in order to
34 * update the current srtt estimate. The variance estimate is a bit
35 * more complicated. We subtract the current variance estimate from
36 * the abs value of the @delta and add 1/4 of that to the running
37 * total. That's equivalent to 3/4 of the current variance
38 * estimate plus 1/4 of the abs of @delta.
39 *
40 * Note that the index points at the array entry containing the
41 * smoothed mean value, and the variance is always in the following
42 * entry
43 *
44 * Reference: TCP/IP Illustrated, vol 2, p. 831,832
45 * All times are in units of integer nanoseconds. Unlike the TCP/IP
46 * case, they are not scaled fixed point.
47 */
48
49 s64 delta = sample - s->stats[index];
50 s->stats[index] += (delta >> 3);
51 index++;
52 s->stats[index] += (s64)(abs(delta) - s->stats[index]) >> 2;
53}
54
55/**
56 * gfs2_update_reply_times - Update locking statistics
57 * @gl: The glock to update
58 * @blocking: The operation may have been blocking
59 *
60 * This assumes that gl->gl_dstamp has been set earlier.
61 *
62 * The rtt (lock round trip time) is an estimate of the time
63 * taken to perform a dlm lock request. We update it on each
64 * reply from the dlm.
65 *
66 * The blocking flag is set on the glock for all dlm requests
67 * which may potentially block due to lock requests from other nodes.
68 * DLM requests where the current lock state is exclusive, the
69 * requested state is null (or unlocked) or where the TRY or
70 * TRY_1CB flags are set are classified as non-blocking. All
71 * other DLM requests are counted as (potentially) blocking.
72 */
73static inline void gfs2_update_reply_times(struct gfs2_glock *gl,
74 bool blocking)
75{
76 struct gfs2_pcpu_lkstats *lks;
77 const unsigned gltype = gl->gl_name.ln_type;
78 unsigned index = blocking ? GFS2_LKS_SRTTB : GFS2_LKS_SRTT;
79 s64 rtt;
80
81 preempt_disable();
82 rtt = ktime_to_ns(ktime_sub(ktime_get_real(), gl->gl_dstamp));
83 lks = this_cpu_ptr(gl->gl_name.ln_sbd->sd_lkstats);
84 gfs2_update_stats(&gl->gl_stats, index, rtt); /* Local */
85 gfs2_update_stats(&lks->lkstats[gltype], index, rtt); /* Global */
86 preempt_enable();
87
88 trace_gfs2_glock_lock_time(gl, rtt);
89}
90
91/**
92 * gfs2_update_request_times - Update locking statistics
93 * @gl: The glock to update
94 *
95 * The irt (lock inter-request times) measures the average time
96 * between requests to the dlm. It is updated immediately before
97 * each dlm call.
98 */
99
100static inline void gfs2_update_request_times(struct gfs2_glock *gl)
101{
102 struct gfs2_pcpu_lkstats *lks;
103 const unsigned gltype = gl->gl_name.ln_type;
104 ktime_t dstamp;
105 s64 irt;
106
107 preempt_disable();
108 dstamp = gl->gl_dstamp;
109 gl->gl_dstamp = ktime_get_real();
110 irt = ktime_to_ns(ktime_sub(gl->gl_dstamp, dstamp));
111 lks = this_cpu_ptr(gl->gl_name.ln_sbd->sd_lkstats);
112 gfs2_update_stats(&gl->gl_stats, GFS2_LKS_SIRT, irt); /* Local */
113 gfs2_update_stats(&lks->lkstats[gltype], GFS2_LKS_SIRT, irt); /* Global */
114 preempt_enable();
115}
116
117static void gdlm_ast(void *arg)
118{
119 struct gfs2_glock *gl = arg;
120 bool blocking;
121 unsigned ret;
122
123 blocking = test_bit(GLF_BLOCKING, &gl->gl_flags);
124 gfs2_update_reply_times(gl, blocking);
125 clear_bit(GLF_BLOCKING, &gl->gl_flags);
126
127 /* If the glock is dead, we only react to a dlm_unlock() reply. */
128 if (__lockref_is_dead(&gl->gl_lockref) &&
129 gl->gl_lksb.sb_status != -DLM_EUNLOCK)
130 return;
131
132 BUG_ON(gl->gl_lksb.sb_flags & DLM_SBF_DEMOTED);
133
134 if ((gl->gl_lksb.sb_flags & DLM_SBF_VALNOTVALID) && gl->gl_lksb.sb_lvbptr)
135 memset(gl->gl_lksb.sb_lvbptr, 0, GDLM_LVB_SIZE);
136
137 switch (gl->gl_lksb.sb_status) {
138 case -DLM_EUNLOCK: /* Unlocked, so glock can be freed */
139 gfs2_glock_free(gl);
140 return;
141 case -DLM_ECANCEL: /* Cancel while getting lock */
142 ret = LM_OUT_CANCELED;
143 goto out;
144 case -EAGAIN: /* Try lock fails */
145 ret = LM_OUT_TRY_AGAIN;
146 goto out;
147 case -EDEADLK: /* Deadlock detected */
148 ret = LM_OUT_DEADLOCK;
149 goto out;
150 case -ETIMEDOUT: /* Canceled due to timeout */
151 ret = LM_OUT_ERROR;
152 goto out;
153 case 0: /* Success */
154 break;
155 default: /* Something unexpected */
156 BUG();
157 }
158
159 ret = gl->gl_req;
160
161 /*
162 * The GLF_INITIAL flag is initially set for new glocks. Upon the
163 * first successful new (non-conversion) request, we clear this flag to
164 * indicate that a DLM lock exists and that gl->gl_lksb.sb_lkid is the
165 * identifier to use for identifying it.
166 *
167 * Any failed initial requests do not create a DLM lock, so we ignore
168 * the gl->gl_lksb.sb_lkid values that come with such requests.
169 */
170
171 clear_bit(GLF_INITIAL, &gl->gl_flags);
172 gfs2_glock_complete(gl, ret);
173 return;
174out:
175 if (test_bit(GLF_INITIAL, &gl->gl_flags))
176 gl->gl_lksb.sb_lkid = 0;
177 gfs2_glock_complete(gl, ret);
178}
179
180static void gdlm_bast(void *arg, int mode)
181{
182 struct gfs2_glock *gl = arg;
183
184 if (__lockref_is_dead(&gl->gl_lockref))
185 return;
186
187 switch (mode) {
188 case DLM_LOCK_EX:
189 gfs2_glock_cb(gl, LM_ST_UNLOCKED);
190 break;
191 case DLM_LOCK_CW:
192 gfs2_glock_cb(gl, LM_ST_DEFERRED);
193 break;
194 case DLM_LOCK_PR:
195 gfs2_glock_cb(gl, LM_ST_SHARED);
196 break;
197 default:
198 fs_err(gl->gl_name.ln_sbd, "unknown bast mode %d\n", mode);
199 BUG();
200 }
201}
202
203/* convert gfs lock-state to dlm lock-mode */
204
205static int make_mode(struct gfs2_sbd *sdp, const unsigned int lmstate)
206{
207 switch (lmstate) {
208 case LM_ST_UNLOCKED:
209 return DLM_LOCK_NL;
210 case LM_ST_EXCLUSIVE:
211 return DLM_LOCK_EX;
212 case LM_ST_DEFERRED:
213 return DLM_LOCK_CW;
214 case LM_ST_SHARED:
215 return DLM_LOCK_PR;
216 }
217 fs_err(sdp, "unknown LM state %d\n", lmstate);
218 BUG();
219 return -1;
220}
221
222/* Taken from fs/dlm/lock.c. */
223
224static bool middle_conversion(int cur, int req)
225{
226 return (cur == DLM_LOCK_PR && req == DLM_LOCK_CW) ||
227 (cur == DLM_LOCK_CW && req == DLM_LOCK_PR);
228}
229
230static bool down_conversion(int cur, int req)
231{
232 return !middle_conversion(cur, req) && req < cur;
233}
234
235static u32 make_flags(struct gfs2_glock *gl, const unsigned int gfs_flags,
236 const int req, bool blocking)
237{
238 u32 lkf = 0;
239
240 if (gl->gl_lksb.sb_lvbptr)
241 lkf |= DLM_LKF_VALBLK;
242
243 if (gfs_flags & LM_FLAG_TRY)
244 lkf |= DLM_LKF_NOQUEUE;
245
246 if (gfs_flags & LM_FLAG_TRY_1CB) {
247 lkf |= DLM_LKF_NOQUEUE;
248 lkf |= DLM_LKF_NOQUEUEBAST;
249 }
250
251 if (!test_bit(GLF_INITIAL, &gl->gl_flags)) {
252 lkf |= DLM_LKF_CONVERT;
253
254 /*
255 * The DLM_LKF_QUECVT flag needs to be set for "first come,
256 * first served" semantics, but it must only be set for
257 * "upward" lock conversions or else DLM will reject the
258 * request as invalid.
259 */
260 if (blocking)
261 lkf |= DLM_LKF_QUECVT;
262 }
263
264 return lkf;
265}
266
267static void gfs2_reverse_hex(char *c, u64 value)
268{
269 *c = '0';
270 while (value) {
271 *c-- = hex_asc[value & 0x0f];
272 value >>= 4;
273 }
274}
275
276static int gdlm_lock(struct gfs2_glock *gl, unsigned int req_state,
277 unsigned int flags)
278{
279 struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct;
280 bool blocking;
281 int cur, req;
282 u32 lkf;
283 char strname[GDLM_STRNAME_BYTES] = "";
284 int error;
285
286 gl->gl_req = req_state;
287 cur = make_mode(gl->gl_name.ln_sbd, gl->gl_state);
288 req = make_mode(gl->gl_name.ln_sbd, req_state);
289 blocking = !down_conversion(cur, req) &&
290 !(flags & (LM_FLAG_TRY|LM_FLAG_TRY_1CB));
291 lkf = make_flags(gl, flags, req, blocking);
292 if (blocking)
293 set_bit(GLF_BLOCKING, &gl->gl_flags);
294 gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT);
295 gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT);
296 if (test_bit(GLF_INITIAL, &gl->gl_flags)) {
297 memset(strname, ' ', GDLM_STRNAME_BYTES - 1);
298 strname[GDLM_STRNAME_BYTES - 1] = '\0';
299 gfs2_reverse_hex(strname + 7, gl->gl_name.ln_type);
300 gfs2_reverse_hex(strname + 23, gl->gl_name.ln_number);
301 gl->gl_dstamp = ktime_get_real();
302 } else {
303 gfs2_update_request_times(gl);
304 }
305 /*
306 * Submit the actual lock request.
307 */
308
309again:
310 down_read(&ls->ls_sem);
311 error = -ENODEV;
312 if (likely(ls->ls_dlm != NULL)) {
313 error = dlm_lock(ls->ls_dlm, req, &gl->gl_lksb, lkf, strname,
314 GDLM_STRNAME_BYTES - 1, 0, gdlm_ast, gl, gdlm_bast);
315 }
316 up_read(&ls->ls_sem);
317 if (error == -EBUSY) {
318 msleep(20);
319 goto again;
320 }
321 return error;
322}
323
324static void gdlm_put_lock(struct gfs2_glock *gl)
325{
326 struct gfs2_sbd *sdp = gl->gl_name.ln_sbd;
327 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
328 uint32_t flags = 0;
329 int error;
330
331 BUG_ON(!__lockref_is_dead(&gl->gl_lockref));
332
333 if (test_bit(GLF_INITIAL, &gl->gl_flags)) {
334 gfs2_glock_free(gl);
335 return;
336 }
337
338 gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT);
339 gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT);
340 gfs2_update_request_times(gl);
341
342 /*
343 * When the lockspace is released, all remaining glocks will be
344 * unlocked automatically. This is more efficient than unlocking them
345 * individually, but when the lock is held in DLM_LOCK_EX or
346 * DLM_LOCK_PW mode, the lock value block (LVB) would be lost.
347 */
348
349 if (test_bit(SDF_SKIP_DLM_UNLOCK, &sdp->sd_flags) &&
350 (!gl->gl_lksb.sb_lvbptr || gl->gl_state != LM_ST_EXCLUSIVE)) {
351 gfs2_glock_free_later(gl);
352 return;
353 }
354
355 if (gl->gl_lksb.sb_lvbptr)
356 flags |= DLM_LKF_VALBLK;
357
358again:
359 down_read(&ls->ls_sem);
360 error = -ENODEV;
361 if (likely(ls->ls_dlm != NULL)) {
362 error = dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, flags,
363 NULL, gl);
364 }
365 up_read(&ls->ls_sem);
366 if (error == -EBUSY) {
367 msleep(20);
368 goto again;
369 }
370
371 if (error == -ENODEV) {
372 gfs2_glock_free(gl);
373 return;
374 }
375
376 if (error) {
377 fs_err(sdp, "gdlm_unlock %x,%llx err=%d\n",
378 gl->gl_name.ln_type,
379 (unsigned long long)gl->gl_name.ln_number, error);
380 }
381}
382
383static void gdlm_cancel(struct gfs2_glock *gl)
384{
385 struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct;
386
387 down_read(&ls->ls_sem);
388 if (likely(ls->ls_dlm != NULL)) {
389 dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_CANCEL, NULL, gl);
390 }
391 up_read(&ls->ls_sem);
392}
393
394/*
395 * dlm/gfs2 recovery coordination using dlm_recover callbacks
396 *
397 * 1. dlm_controld sees lockspace members change
398 * 2. dlm_controld blocks dlm-kernel locking activity
399 * 3. dlm_controld within dlm-kernel notifies gfs2 (recover_prep)
400 * 4. dlm_controld starts and finishes its own user level recovery
401 * 5. dlm_controld starts dlm-kernel dlm_recoverd to do kernel recovery
402 * 6. dlm_recoverd notifies gfs2 of failed nodes (recover_slot)
403 * 7. dlm_recoverd does its own lock recovery
404 * 8. dlm_recoverd unblocks dlm-kernel locking activity
405 * 9. dlm_recoverd notifies gfs2 when done (recover_done with new generation)
406 * 10. gfs2_control updates control_lock lvb with new generation and jid bits
407 * 11. gfs2_control enqueues journals for gfs2_recover to recover (maybe none)
408 * 12. gfs2_recover dequeues and recovers journals of failed nodes
409 * 13. gfs2_recover provides recovery results to gfs2_control (recovery_result)
410 * 14. gfs2_control updates control_lock lvb jid bits for recovered journals
411 * 15. gfs2_control unblocks normal locking when all journals are recovered
412 *
413 * - failures during recovery
414 *
415 * recover_prep() may set BLOCK_LOCKS (step 3) again before gfs2_control
416 * clears BLOCK_LOCKS (step 15), e.g. another node fails while still
417 * recovering for a prior failure. gfs2_control needs a way to detect
418 * this so it can leave BLOCK_LOCKS set in step 15. This is managed using
419 * the recover_block and recover_start values.
420 *
421 * recover_done() provides a new lockspace generation number each time it
422 * is called (step 9). This generation number is saved as recover_start.
423 * When recover_prep() is called, it sets BLOCK_LOCKS and sets
424 * recover_block = recover_start. So, while recover_block is equal to
425 * recover_start, BLOCK_LOCKS should remain set. (recover_spin must
426 * be held around the BLOCK_LOCKS/recover_block/recover_start logic.)
427 *
428 * - more specific gfs2 steps in sequence above
429 *
430 * 3. recover_prep sets BLOCK_LOCKS and sets recover_block = recover_start
431 * 6. recover_slot records any failed jids (maybe none)
432 * 9. recover_done sets recover_start = new generation number
433 * 10. gfs2_control sets control_lock lvb = new gen + bits for failed jids
434 * 12. gfs2_recover does journal recoveries for failed jids identified above
435 * 14. gfs2_control clears control_lock lvb bits for recovered jids
436 * 15. gfs2_control checks if recover_block == recover_start (step 3 occured
437 * again) then do nothing, otherwise if recover_start > recover_block
438 * then clear BLOCK_LOCKS.
439 *
440 * - parallel recovery steps across all nodes
441 *
442 * All nodes attempt to update the control_lock lvb with the new generation
443 * number and jid bits, but only the first to get the control_lock EX will
444 * do so; others will see that it's already done (lvb already contains new
445 * generation number.)
446 *
447 * . All nodes get the same recover_prep/recover_slot/recover_done callbacks
448 * . All nodes attempt to set control_lock lvb gen + bits for the new gen
449 * . One node gets control_lock first and writes the lvb, others see it's done
450 * . All nodes attempt to recover jids for which they see control_lock bits set
451 * . One node succeeds for a jid, and that one clears the jid bit in the lvb
452 * . All nodes will eventually see all lvb bits clear and unblock locks
453 *
454 * - is there a problem with clearing an lvb bit that should be set
455 * and missing a journal recovery?
456 *
457 * 1. jid fails
458 * 2. lvb bit set for step 1
459 * 3. jid recovered for step 1
460 * 4. jid taken again (new mount)
461 * 5. jid fails (for step 4)
462 * 6. lvb bit set for step 5 (will already be set)
463 * 7. lvb bit cleared for step 3
464 *
465 * This is not a problem because the failure in step 5 does not
466 * require recovery, because the mount in step 4 could not have
467 * progressed far enough to unblock locks and access the fs. The
468 * control_mount() function waits for all recoveries to be complete
469 * for the latest lockspace generation before ever unblocking locks
470 * and returning. The mount in step 4 waits until the recovery in
471 * step 1 is done.
472 *
473 * - special case of first mounter: first node to mount the fs
474 *
475 * The first node to mount a gfs2 fs needs to check all the journals
476 * and recover any that need recovery before other nodes are allowed
477 * to mount the fs. (Others may begin mounting, but they must wait
478 * for the first mounter to be done before taking locks on the fs
479 * or accessing the fs.) This has two parts:
480 *
481 * 1. The mounted_lock tells a node it's the first to mount the fs.
482 * Each node holds the mounted_lock in PR while it's mounted.
483 * Each node tries to acquire the mounted_lock in EX when it mounts.
484 * If a node is granted the mounted_lock EX it means there are no
485 * other mounted nodes (no PR locks exist), and it is the first mounter.
486 * The mounted_lock is demoted to PR when first recovery is done, so
487 * others will fail to get an EX lock, but will get a PR lock.
488 *
489 * 2. The control_lock blocks others in control_mount() while the first
490 * mounter is doing first mount recovery of all journals.
491 * A mounting node needs to acquire control_lock in EX mode before
492 * it can proceed. The first mounter holds control_lock in EX while doing
493 * the first mount recovery, blocking mounts from other nodes, then demotes
494 * control_lock to NL when it's done (others_may_mount/first_done),
495 * allowing other nodes to continue mounting.
496 *
497 * first mounter:
498 * control_lock EX/NOQUEUE success
499 * mounted_lock EX/NOQUEUE success (no other PR, so no other mounters)
500 * set first=1
501 * do first mounter recovery
502 * mounted_lock EX->PR
503 * control_lock EX->NL, write lvb generation
504 *
505 * other mounter:
506 * control_lock EX/NOQUEUE success (if fail -EAGAIN, retry)
507 * mounted_lock EX/NOQUEUE fail -EAGAIN (expected due to other mounters PR)
508 * mounted_lock PR/NOQUEUE success
509 * read lvb generation
510 * control_lock EX->NL
511 * set first=0
512 *
513 * - mount during recovery
514 *
515 * If a node mounts while others are doing recovery (not first mounter),
516 * the mounting node will get its initial recover_done() callback without
517 * having seen any previous failures/callbacks.
518 *
519 * It must wait for all recoveries preceding its mount to be finished
520 * before it unblocks locks. It does this by repeating the "other mounter"
521 * steps above until the lvb generation number is >= its mount generation
522 * number (from initial recover_done) and all lvb bits are clear.
523 *
524 * - control_lock lvb format
525 *
526 * 4 bytes generation number: the latest dlm lockspace generation number
527 * from recover_done callback. Indicates the jid bitmap has been updated
528 * to reflect all slot failures through that generation.
529 * 4 bytes unused.
530 * GDLM_LVB_SIZE-8 bytes of jid bit map. If bit N is set, it indicates
531 * that jid N needs recovery.
532 */
533
534#define JID_BITMAP_OFFSET 8 /* 4 byte generation number + 4 byte unused */
535
536static void control_lvb_read(struct lm_lockstruct *ls, uint32_t *lvb_gen,
537 char *lvb_bits)
538{
539 __le32 gen;
540 memcpy(lvb_bits, ls->ls_control_lvb, GDLM_LVB_SIZE);
541 memcpy(&gen, lvb_bits, sizeof(__le32));
542 *lvb_gen = le32_to_cpu(gen);
543}
544
545static void control_lvb_write(struct lm_lockstruct *ls, uint32_t lvb_gen,
546 char *lvb_bits)
547{
548 __le32 gen;
549 memcpy(ls->ls_control_lvb, lvb_bits, GDLM_LVB_SIZE);
550 gen = cpu_to_le32(lvb_gen);
551 memcpy(ls->ls_control_lvb, &gen, sizeof(__le32));
552}
553
554static int all_jid_bits_clear(char *lvb)
555{
556 return !memchr_inv(lvb + JID_BITMAP_OFFSET, 0,
557 GDLM_LVB_SIZE - JID_BITMAP_OFFSET);
558}
559
560static void sync_wait_cb(void *arg)
561{
562 struct lm_lockstruct *ls = arg;
563 complete(&ls->ls_sync_wait);
564}
565
566static int sync_unlock(struct gfs2_sbd *sdp, struct dlm_lksb *lksb, char *name)
567{
568 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
569 int error;
570
571 down_read(&ls->ls_sem);
572 error = -ENODEV;
573 if (likely(ls->ls_dlm != NULL))
574 error = dlm_unlock(ls->ls_dlm, lksb->sb_lkid, 0, lksb, ls);
575 up_read(&ls->ls_sem);
576 if (error) {
577 fs_err(sdp, "%s lkid %x error %d\n",
578 name, lksb->sb_lkid, error);
579 return error;
580 }
581
582 wait_for_completion(&ls->ls_sync_wait);
583
584 if (lksb->sb_status != -DLM_EUNLOCK) {
585 fs_err(sdp, "%s lkid %x status %d\n",
586 name, lksb->sb_lkid, lksb->sb_status);
587 return -1;
588 }
589 return 0;
590}
591
592static int sync_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags,
593 unsigned int num, struct dlm_lksb *lksb, char *name)
594{
595 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
596 char strname[GDLM_STRNAME_BYTES];
597 int error, status;
598
599 memset(strname, 0, GDLM_STRNAME_BYTES);
600 snprintf(strname, GDLM_STRNAME_BYTES, "%8x%16x", LM_TYPE_NONDISK, num);
601
602 down_read(&ls->ls_sem);
603 error = -ENODEV;
604 if (likely(ls->ls_dlm != NULL)) {
605 error = dlm_lock(ls->ls_dlm, mode, lksb, flags,
606 strname, GDLM_STRNAME_BYTES - 1,
607 0, sync_wait_cb, ls, NULL);
608 }
609 up_read(&ls->ls_sem);
610 if (error) {
611 fs_err(sdp, "%s lkid %x flags %x mode %d error %d\n",
612 name, lksb->sb_lkid, flags, mode, error);
613 return error;
614 }
615
616 wait_for_completion(&ls->ls_sync_wait);
617
618 status = lksb->sb_status;
619
620 if (status && status != -EAGAIN) {
621 fs_err(sdp, "%s lkid %x flags %x mode %d status %d\n",
622 name, lksb->sb_lkid, flags, mode, status);
623 }
624
625 return status;
626}
627
628static int mounted_unlock(struct gfs2_sbd *sdp)
629{
630 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
631 return sync_unlock(sdp, &ls->ls_mounted_lksb, "mounted_lock");
632}
633
634static int mounted_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags)
635{
636 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
637 return sync_lock(sdp, mode, flags, GFS2_MOUNTED_LOCK,
638 &ls->ls_mounted_lksb, "mounted_lock");
639}
640
641static int control_unlock(struct gfs2_sbd *sdp)
642{
643 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
644 return sync_unlock(sdp, &ls->ls_control_lksb, "control_lock");
645}
646
647static int control_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags)
648{
649 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
650 return sync_lock(sdp, mode, flags, GFS2_CONTROL_LOCK,
651 &ls->ls_control_lksb, "control_lock");
652}
653
654static void gfs2_control_func(struct work_struct *work)
655{
656 struct gfs2_sbd *sdp = container_of(work, struct gfs2_sbd, sd_control_work.work);
657 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
658 uint32_t block_gen, start_gen, lvb_gen, flags;
659 int recover_set = 0;
660 int write_lvb = 0;
661 int recover_size;
662 int i, error;
663
664 spin_lock(&ls->ls_recover_spin);
665 /*
666 * No MOUNT_DONE means we're still mounting; control_mount()
667 * will set this flag, after which this thread will take over
668 * all further clearing of BLOCK_LOCKS.
669 *
670 * FIRST_MOUNT means this node is doing first mounter recovery,
671 * for which recovery control is handled by
672 * control_mount()/control_first_done(), not this thread.
673 */
674 if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
675 test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
676 spin_unlock(&ls->ls_recover_spin);
677 return;
678 }
679 block_gen = ls->ls_recover_block;
680 start_gen = ls->ls_recover_start;
681 spin_unlock(&ls->ls_recover_spin);
682
683 /*
684 * Equal block_gen and start_gen implies we are between
685 * recover_prep and recover_done callbacks, which means
686 * dlm recovery is in progress and dlm locking is blocked.
687 * There's no point trying to do any work until recover_done.
688 */
689
690 if (block_gen == start_gen)
691 return;
692
693 /*
694 * Propagate recover_submit[] and recover_result[] to lvb:
695 * dlm_recoverd adds to recover_submit[] jids needing recovery
696 * gfs2_recover adds to recover_result[] journal recovery results
697 *
698 * set lvb bit for jids in recover_submit[] if the lvb has not
699 * yet been updated for the generation of the failure
700 *
701 * clear lvb bit for jids in recover_result[] if the result of
702 * the journal recovery is SUCCESS
703 */
704
705 error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_VALBLK);
706 if (error) {
707 fs_err(sdp, "control lock EX error %d\n", error);
708 return;
709 }
710
711 control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits);
712
713 spin_lock(&ls->ls_recover_spin);
714 if (block_gen != ls->ls_recover_block ||
715 start_gen != ls->ls_recover_start) {
716 fs_info(sdp, "recover generation %u block1 %u %u\n",
717 start_gen, block_gen, ls->ls_recover_block);
718 spin_unlock(&ls->ls_recover_spin);
719 control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
720 return;
721 }
722
723 recover_size = ls->ls_recover_size;
724
725 if (lvb_gen <= start_gen) {
726 /*
727 * Clear lvb bits for jids we've successfully recovered.
728 * Because all nodes attempt to recover failed journals,
729 * a journal can be recovered multiple times successfully
730 * in succession. Only the first will really do recovery,
731 * the others find it clean, but still report a successful
732 * recovery. So, another node may have already recovered
733 * the jid and cleared the lvb bit for it.
734 */
735 for (i = 0; i < recover_size; i++) {
736 if (ls->ls_recover_result[i] != LM_RD_SUCCESS)
737 continue;
738
739 ls->ls_recover_result[i] = 0;
740
741 if (!test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET))
742 continue;
743
744 __clear_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET);
745 write_lvb = 1;
746 }
747 }
748
749 if (lvb_gen == start_gen) {
750 /*
751 * Failed slots before start_gen are already set in lvb.
752 */
753 for (i = 0; i < recover_size; i++) {
754 if (!ls->ls_recover_submit[i])
755 continue;
756 if (ls->ls_recover_submit[i] < lvb_gen)
757 ls->ls_recover_submit[i] = 0;
758 }
759 } else if (lvb_gen < start_gen) {
760 /*
761 * Failed slots before start_gen are not yet set in lvb.
762 */
763 for (i = 0; i < recover_size; i++) {
764 if (!ls->ls_recover_submit[i])
765 continue;
766 if (ls->ls_recover_submit[i] < start_gen) {
767 ls->ls_recover_submit[i] = 0;
768 __set_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET);
769 }
770 }
771 /* even if there are no bits to set, we need to write the
772 latest generation to the lvb */
773 write_lvb = 1;
774 } else {
775 /*
776 * we should be getting a recover_done() for lvb_gen soon
777 */
778 }
779 spin_unlock(&ls->ls_recover_spin);
780
781 if (write_lvb) {
782 control_lvb_write(ls, start_gen, ls->ls_lvb_bits);
783 flags = DLM_LKF_CONVERT | DLM_LKF_VALBLK;
784 } else {
785 flags = DLM_LKF_CONVERT;
786 }
787
788 error = control_lock(sdp, DLM_LOCK_NL, flags);
789 if (error) {
790 fs_err(sdp, "control lock NL error %d\n", error);
791 return;
792 }
793
794 /*
795 * Everyone will see jid bits set in the lvb, run gfs2_recover_set(),
796 * and clear a jid bit in the lvb if the recovery is a success.
797 * Eventually all journals will be recovered, all jid bits will
798 * be cleared in the lvb, and everyone will clear BLOCK_LOCKS.
799 */
800
801 for (i = 0; i < recover_size; i++) {
802 if (test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET)) {
803 fs_info(sdp, "recover generation %u jid %d\n",
804 start_gen, i);
805 gfs2_recover_set(sdp, i);
806 recover_set++;
807 }
808 }
809 if (recover_set)
810 return;
811
812 /*
813 * No more jid bits set in lvb, all recovery is done, unblock locks
814 * (unless a new recover_prep callback has occured blocking locks
815 * again while working above)
816 */
817
818 spin_lock(&ls->ls_recover_spin);
819 if (ls->ls_recover_block == block_gen &&
820 ls->ls_recover_start == start_gen) {
821 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
822 spin_unlock(&ls->ls_recover_spin);
823 fs_info(sdp, "recover generation %u done\n", start_gen);
824 gfs2_glock_thaw(sdp);
825 } else {
826 fs_info(sdp, "recover generation %u block2 %u %u\n",
827 start_gen, block_gen, ls->ls_recover_block);
828 spin_unlock(&ls->ls_recover_spin);
829 }
830}
831
832static int control_mount(struct gfs2_sbd *sdp)
833{
834 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
835 uint32_t start_gen, block_gen, mount_gen, lvb_gen;
836 int mounted_mode;
837 int retries = 0;
838 int error;
839
840 memset(&ls->ls_mounted_lksb, 0, sizeof(struct dlm_lksb));
841 memset(&ls->ls_control_lksb, 0, sizeof(struct dlm_lksb));
842 memset(&ls->ls_control_lvb, 0, GDLM_LVB_SIZE);
843 ls->ls_control_lksb.sb_lvbptr = ls->ls_control_lvb;
844 init_completion(&ls->ls_sync_wait);
845
846 set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
847
848 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_VALBLK);
849 if (error) {
850 fs_err(sdp, "control_mount control_lock NL error %d\n", error);
851 return error;
852 }
853
854 error = mounted_lock(sdp, DLM_LOCK_NL, 0);
855 if (error) {
856 fs_err(sdp, "control_mount mounted_lock NL error %d\n", error);
857 control_unlock(sdp);
858 return error;
859 }
860 mounted_mode = DLM_LOCK_NL;
861
862restart:
863 if (retries++ && signal_pending(current)) {
864 error = -EINTR;
865 goto fail;
866 }
867
868 /*
869 * We always start with both locks in NL. control_lock is
870 * demoted to NL below so we don't need to do it here.
871 */
872
873 if (mounted_mode != DLM_LOCK_NL) {
874 error = mounted_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
875 if (error)
876 goto fail;
877 mounted_mode = DLM_LOCK_NL;
878 }
879
880 /*
881 * Other nodes need to do some work in dlm recovery and gfs2_control
882 * before the recover_done and control_lock will be ready for us below.
883 * A delay here is not required but often avoids having to retry.
884 */
885
886 msleep_interruptible(500);
887
888 /*
889 * Acquire control_lock in EX and mounted_lock in either EX or PR.
890 * control_lock lvb keeps track of any pending journal recoveries.
891 * mounted_lock indicates if any other nodes have the fs mounted.
892 */
893
894 error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE|DLM_LKF_VALBLK);
895 if (error == -EAGAIN) {
896 goto restart;
897 } else if (error) {
898 fs_err(sdp, "control_mount control_lock EX error %d\n", error);
899 goto fail;
900 }
901
902 /**
903 * If we're a spectator, we don't want to take the lock in EX because
904 * we cannot do the first-mount responsibility it implies: recovery.
905 */
906 if (sdp->sd_args.ar_spectator)
907 goto locks_done;
908
909 error = mounted_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE);
910 if (!error) {
911 mounted_mode = DLM_LOCK_EX;
912 goto locks_done;
913 } else if (error != -EAGAIN) {
914 fs_err(sdp, "control_mount mounted_lock EX error %d\n", error);
915 goto fail;
916 }
917
918 error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE);
919 if (!error) {
920 mounted_mode = DLM_LOCK_PR;
921 goto locks_done;
922 } else {
923 /* not even -EAGAIN should happen here */
924 fs_err(sdp, "control_mount mounted_lock PR error %d\n", error);
925 goto fail;
926 }
927
928locks_done:
929 /*
930 * If we got both locks above in EX, then we're the first mounter.
931 * If not, then we need to wait for the control_lock lvb to be
932 * updated by other mounted nodes to reflect our mount generation.
933 *
934 * In simple first mounter cases, first mounter will see zero lvb_gen,
935 * but in cases where all existing nodes leave/fail before mounting
936 * nodes finish control_mount, then all nodes will be mounting and
937 * lvb_gen will be non-zero.
938 */
939
940 control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits);
941
942 if (lvb_gen == 0xFFFFFFFF) {
943 /* special value to force mount attempts to fail */
944 fs_err(sdp, "control_mount control_lock disabled\n");
945 error = -EINVAL;
946 goto fail;
947 }
948
949 if (mounted_mode == DLM_LOCK_EX) {
950 /* first mounter, keep both EX while doing first recovery */
951 spin_lock(&ls->ls_recover_spin);
952 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
953 set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags);
954 set_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
955 spin_unlock(&ls->ls_recover_spin);
956 fs_info(sdp, "first mounter control generation %u\n", lvb_gen);
957 return 0;
958 }
959
960 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
961 if (error)
962 goto fail;
963
964 /*
965 * We are not first mounter, now we need to wait for the control_lock
966 * lvb generation to be >= the generation from our first recover_done
967 * and all lvb bits to be clear (no pending journal recoveries.)
968 */
969
970 if (!all_jid_bits_clear(ls->ls_lvb_bits)) {
971 /* journals need recovery, wait until all are clear */
972 fs_info(sdp, "control_mount wait for journal recovery\n");
973 goto restart;
974 }
975
976 spin_lock(&ls->ls_recover_spin);
977 block_gen = ls->ls_recover_block;
978 start_gen = ls->ls_recover_start;
979 mount_gen = ls->ls_recover_mount;
980
981 if (lvb_gen < mount_gen) {
982 /* wait for mounted nodes to update control_lock lvb to our
983 generation, which might include new recovery bits set */
984 if (sdp->sd_args.ar_spectator) {
985 fs_info(sdp, "Recovery is required. Waiting for a "
986 "non-spectator to mount.\n");
987 spin_unlock(&ls->ls_recover_spin);
988 msleep_interruptible(1000);
989 } else {
990 fs_info(sdp, "control_mount wait1 block %u start %u "
991 "mount %u lvb %u flags %lx\n", block_gen,
992 start_gen, mount_gen, lvb_gen,
993 ls->ls_recover_flags);
994 spin_unlock(&ls->ls_recover_spin);
995 }
996 goto restart;
997 }
998
999 if (lvb_gen != start_gen) {
1000 /* wait for mounted nodes to update control_lock lvb to the
1001 latest recovery generation */
1002 fs_info(sdp, "control_mount wait2 block %u start %u mount %u "
1003 "lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
1004 lvb_gen, ls->ls_recover_flags);
1005 spin_unlock(&ls->ls_recover_spin);
1006 goto restart;
1007 }
1008
1009 if (block_gen == start_gen) {
1010 /* dlm recovery in progress, wait for it to finish */
1011 fs_info(sdp, "control_mount wait3 block %u start %u mount %u "
1012 "lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
1013 lvb_gen, ls->ls_recover_flags);
1014 spin_unlock(&ls->ls_recover_spin);
1015 goto restart;
1016 }
1017
1018 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
1019 set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags);
1020 memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t));
1021 memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t));
1022 spin_unlock(&ls->ls_recover_spin);
1023 return 0;
1024
1025fail:
1026 mounted_unlock(sdp);
1027 control_unlock(sdp);
1028 return error;
1029}
1030
1031static int control_first_done(struct gfs2_sbd *sdp)
1032{
1033 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1034 uint32_t start_gen, block_gen;
1035 int error;
1036
1037restart:
1038 spin_lock(&ls->ls_recover_spin);
1039 start_gen = ls->ls_recover_start;
1040 block_gen = ls->ls_recover_block;
1041
1042 if (test_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags) ||
1043 !test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
1044 !test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1045 /* sanity check, should not happen */
1046 fs_err(sdp, "control_first_done start %u block %u flags %lx\n",
1047 start_gen, block_gen, ls->ls_recover_flags);
1048 spin_unlock(&ls->ls_recover_spin);
1049 control_unlock(sdp);
1050 return -1;
1051 }
1052
1053 if (start_gen == block_gen) {
1054 /*
1055 * Wait for the end of a dlm recovery cycle to switch from
1056 * first mounter recovery. We can ignore any recover_slot
1057 * callbacks between the recover_prep and next recover_done
1058 * because we are still the first mounter and any failed nodes
1059 * have not fully mounted, so they don't need recovery.
1060 */
1061 spin_unlock(&ls->ls_recover_spin);
1062 fs_info(sdp, "control_first_done wait gen %u\n", start_gen);
1063
1064 wait_on_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY,
1065 TASK_UNINTERRUPTIBLE);
1066 goto restart;
1067 }
1068
1069 clear_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
1070 set_bit(DFL_FIRST_MOUNT_DONE, &ls->ls_recover_flags);
1071 memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t));
1072 memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t));
1073 spin_unlock(&ls->ls_recover_spin);
1074
1075 memset(ls->ls_lvb_bits, 0, GDLM_LVB_SIZE);
1076 control_lvb_write(ls, start_gen, ls->ls_lvb_bits);
1077
1078 error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT);
1079 if (error)
1080 fs_err(sdp, "control_first_done mounted PR error %d\n", error);
1081
1082 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT|DLM_LKF_VALBLK);
1083 if (error)
1084 fs_err(sdp, "control_first_done control NL error %d\n", error);
1085
1086 return error;
1087}
1088
1089/*
1090 * Expand static jid arrays if necessary (by increments of RECOVER_SIZE_INC)
1091 * to accommodate the largest slot number. (NB dlm slot numbers start at 1,
1092 * gfs2 jids start at 0, so jid = slot - 1)
1093 */
1094
1095#define RECOVER_SIZE_INC 16
1096
1097static int set_recover_size(struct gfs2_sbd *sdp, struct dlm_slot *slots,
1098 int num_slots)
1099{
1100 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1101 uint32_t *submit = NULL;
1102 uint32_t *result = NULL;
1103 uint32_t old_size, new_size;
1104 int i, max_jid;
1105
1106 if (!ls->ls_lvb_bits) {
1107 ls->ls_lvb_bits = kzalloc(GDLM_LVB_SIZE, GFP_NOFS);
1108 if (!ls->ls_lvb_bits)
1109 return -ENOMEM;
1110 }
1111
1112 max_jid = 0;
1113 for (i = 0; i < num_slots; i++) {
1114 if (max_jid < slots[i].slot - 1)
1115 max_jid = slots[i].slot - 1;
1116 }
1117
1118 old_size = ls->ls_recover_size;
1119 new_size = old_size;
1120 while (new_size < max_jid + 1)
1121 new_size += RECOVER_SIZE_INC;
1122 if (new_size == old_size)
1123 return 0;
1124
1125 submit = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS);
1126 result = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS);
1127 if (!submit || !result) {
1128 kfree(submit);
1129 kfree(result);
1130 return -ENOMEM;
1131 }
1132
1133 spin_lock(&ls->ls_recover_spin);
1134 memcpy(submit, ls->ls_recover_submit, old_size * sizeof(uint32_t));
1135 memcpy(result, ls->ls_recover_result, old_size * sizeof(uint32_t));
1136 kfree(ls->ls_recover_submit);
1137 kfree(ls->ls_recover_result);
1138 ls->ls_recover_submit = submit;
1139 ls->ls_recover_result = result;
1140 ls->ls_recover_size = new_size;
1141 spin_unlock(&ls->ls_recover_spin);
1142 return 0;
1143}
1144
1145static void free_recover_size(struct lm_lockstruct *ls)
1146{
1147 kfree(ls->ls_lvb_bits);
1148 kfree(ls->ls_recover_submit);
1149 kfree(ls->ls_recover_result);
1150 ls->ls_recover_submit = NULL;
1151 ls->ls_recover_result = NULL;
1152 ls->ls_recover_size = 0;
1153 ls->ls_lvb_bits = NULL;
1154}
1155
1156/* dlm calls before it does lock recovery */
1157
1158static void gdlm_recover_prep(void *arg)
1159{
1160 struct gfs2_sbd *sdp = arg;
1161 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1162
1163 if (gfs2_withdrawn(sdp)) {
1164 fs_err(sdp, "recover_prep ignored due to withdraw.\n");
1165 return;
1166 }
1167 spin_lock(&ls->ls_recover_spin);
1168 ls->ls_recover_block = ls->ls_recover_start;
1169 set_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags);
1170
1171 if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
1172 test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1173 spin_unlock(&ls->ls_recover_spin);
1174 return;
1175 }
1176 set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
1177 spin_unlock(&ls->ls_recover_spin);
1178}
1179
1180/* dlm calls after recover_prep has been completed on all lockspace members;
1181 identifies slot/jid of failed member */
1182
1183static void gdlm_recover_slot(void *arg, struct dlm_slot *slot)
1184{
1185 struct gfs2_sbd *sdp = arg;
1186 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1187 int jid = slot->slot - 1;
1188
1189 if (gfs2_withdrawn(sdp)) {
1190 fs_err(sdp, "recover_slot jid %d ignored due to withdraw.\n",
1191 jid);
1192 return;
1193 }
1194 spin_lock(&ls->ls_recover_spin);
1195 if (ls->ls_recover_size < jid + 1) {
1196 fs_err(sdp, "recover_slot jid %d gen %u short size %d\n",
1197 jid, ls->ls_recover_block, ls->ls_recover_size);
1198 spin_unlock(&ls->ls_recover_spin);
1199 return;
1200 }
1201
1202 if (ls->ls_recover_submit[jid]) {
1203 fs_info(sdp, "recover_slot jid %d gen %u prev %u\n",
1204 jid, ls->ls_recover_block, ls->ls_recover_submit[jid]);
1205 }
1206 ls->ls_recover_submit[jid] = ls->ls_recover_block;
1207 spin_unlock(&ls->ls_recover_spin);
1208}
1209
1210/* dlm calls after recover_slot and after it completes lock recovery */
1211
1212static void gdlm_recover_done(void *arg, struct dlm_slot *slots, int num_slots,
1213 int our_slot, uint32_t generation)
1214{
1215 struct gfs2_sbd *sdp = arg;
1216 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1217
1218 if (gfs2_withdrawn(sdp)) {
1219 fs_err(sdp, "recover_done ignored due to withdraw.\n");
1220 return;
1221 }
1222 /* ensure the ls jid arrays are large enough */
1223 set_recover_size(sdp, slots, num_slots);
1224
1225 spin_lock(&ls->ls_recover_spin);
1226 ls->ls_recover_start = generation;
1227
1228 if (!ls->ls_recover_mount) {
1229 ls->ls_recover_mount = generation;
1230 ls->ls_jid = our_slot - 1;
1231 }
1232
1233 if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags))
1234 queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work, 0);
1235
1236 clear_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags);
1237 smp_mb__after_atomic();
1238 wake_up_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY);
1239 spin_unlock(&ls->ls_recover_spin);
1240}
1241
1242/* gfs2_recover thread has a journal recovery result */
1243
1244static void gdlm_recovery_result(struct gfs2_sbd *sdp, unsigned int jid,
1245 unsigned int result)
1246{
1247 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1248
1249 if (gfs2_withdrawn(sdp)) {
1250 fs_err(sdp, "recovery_result jid %d ignored due to withdraw.\n",
1251 jid);
1252 return;
1253 }
1254 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1255 return;
1256
1257 /* don't care about the recovery of own journal during mount */
1258 if (jid == ls->ls_jid)
1259 return;
1260
1261 spin_lock(&ls->ls_recover_spin);
1262 if (test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1263 spin_unlock(&ls->ls_recover_spin);
1264 return;
1265 }
1266 if (ls->ls_recover_size < jid + 1) {
1267 fs_err(sdp, "recovery_result jid %d short size %d\n",
1268 jid, ls->ls_recover_size);
1269 spin_unlock(&ls->ls_recover_spin);
1270 return;
1271 }
1272
1273 fs_info(sdp, "recover jid %d result %s\n", jid,
1274 result == LM_RD_GAVEUP ? "busy" : "success");
1275
1276 ls->ls_recover_result[jid] = result;
1277
1278 /* GAVEUP means another node is recovering the journal; delay our
1279 next attempt to recover it, to give the other node a chance to
1280 finish before trying again */
1281
1282 if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags))
1283 queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work,
1284 result == LM_RD_GAVEUP ? HZ : 0);
1285 spin_unlock(&ls->ls_recover_spin);
1286}
1287
1288static const struct dlm_lockspace_ops gdlm_lockspace_ops = {
1289 .recover_prep = gdlm_recover_prep,
1290 .recover_slot = gdlm_recover_slot,
1291 .recover_done = gdlm_recover_done,
1292};
1293
1294static int gdlm_mount(struct gfs2_sbd *sdp, const char *table)
1295{
1296 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1297 char cluster[GFS2_LOCKNAME_LEN];
1298 const char *fsname;
1299 uint32_t flags;
1300 int error, ops_result;
1301
1302 /*
1303 * initialize everything
1304 */
1305
1306 INIT_DELAYED_WORK(&sdp->sd_control_work, gfs2_control_func);
1307 ls->ls_dlm = NULL;
1308 spin_lock_init(&ls->ls_recover_spin);
1309 ls->ls_recover_flags = 0;
1310 ls->ls_recover_mount = 0;
1311 ls->ls_recover_start = 0;
1312 ls->ls_recover_block = 0;
1313 ls->ls_recover_size = 0;
1314 ls->ls_recover_submit = NULL;
1315 ls->ls_recover_result = NULL;
1316 ls->ls_lvb_bits = NULL;
1317
1318 error = set_recover_size(sdp, NULL, 0);
1319 if (error)
1320 goto fail;
1321
1322 /*
1323 * prepare dlm_new_lockspace args
1324 */
1325
1326 fsname = strchr(table, ':');
1327 if (!fsname) {
1328 fs_info(sdp, "no fsname found\n");
1329 error = -EINVAL;
1330 goto fail_free;
1331 }
1332 memset(cluster, 0, sizeof(cluster));
1333 memcpy(cluster, table, strlen(table) - strlen(fsname));
1334 fsname++;
1335
1336 flags = DLM_LSFL_NEWEXCL;
1337
1338 /*
1339 * create/join lockspace
1340 */
1341
1342 init_rwsem(&ls->ls_sem);
1343 error = dlm_new_lockspace(fsname, cluster, flags, GDLM_LVB_SIZE,
1344 &gdlm_lockspace_ops, sdp, &ops_result,
1345 &ls->ls_dlm);
1346 if (error) {
1347 fs_err(sdp, "dlm_new_lockspace error %d\n", error);
1348 goto fail_free;
1349 }
1350
1351 if (ops_result < 0) {
1352 /*
1353 * dlm does not support ops callbacks,
1354 * old dlm_controld/gfs_controld are used, try without ops.
1355 */
1356 fs_info(sdp, "dlm lockspace ops not used\n");
1357 free_recover_size(ls);
1358 set_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags);
1359 return 0;
1360 }
1361
1362 if (!test_bit(SDF_NOJOURNALID, &sdp->sd_flags)) {
1363 fs_err(sdp, "dlm lockspace ops disallow jid preset\n");
1364 error = -EINVAL;
1365 goto fail_release;
1366 }
1367
1368 /*
1369 * control_mount() uses control_lock to determine first mounter,
1370 * and for later mounts, waits for any recoveries to be cleared.
1371 */
1372
1373 error = control_mount(sdp);
1374 if (error) {
1375 fs_err(sdp, "mount control error %d\n", error);
1376 goto fail_release;
1377 }
1378
1379 ls->ls_first = !!test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
1380 clear_bit(SDF_NOJOURNALID, &sdp->sd_flags);
1381 smp_mb__after_atomic();
1382 wake_up_bit(&sdp->sd_flags, SDF_NOJOURNALID);
1383 return 0;
1384
1385fail_release:
1386 dlm_release_lockspace(ls->ls_dlm, DLM_RELEASE_NORMAL);
1387fail_free:
1388 free_recover_size(ls);
1389fail:
1390 return error;
1391}
1392
1393static void gdlm_first_done(struct gfs2_sbd *sdp)
1394{
1395 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1396 int error;
1397
1398 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1399 return;
1400
1401 error = control_first_done(sdp);
1402 if (error)
1403 fs_err(sdp, "mount first_done error %d\n", error);
1404}
1405
1406/*
1407 * gdlm_unmount - release our lockspace
1408 * @sdp: the superblock
1409 * @clean: Indicates whether or not the remaining nodes in the cluster should
1410 * perform recovery. Recovery is necessary when a node withdraws and
1411 * its journal remains dirty. Recovery isn't necessary when a node
1412 * cleanly unmounts a filesystem.
1413 */
1414static void gdlm_unmount(struct gfs2_sbd *sdp, bool clean)
1415{
1416 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1417
1418 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1419 goto release;
1420
1421 /* wait for gfs2_control_wq to be done with this mount */
1422
1423 spin_lock(&ls->ls_recover_spin);
1424 set_bit(DFL_UNMOUNT, &ls->ls_recover_flags);
1425 spin_unlock(&ls->ls_recover_spin);
1426 flush_delayed_work(&sdp->sd_control_work);
1427
1428 /* mounted_lock and control_lock will be purged in dlm recovery */
1429release:
1430 down_write(&ls->ls_sem);
1431 if (ls->ls_dlm) {
1432 dlm_release_lockspace(ls->ls_dlm,
1433 clean ? DLM_RELEASE_NORMAL :
1434 DLM_RELEASE_RECOVER);
1435 ls->ls_dlm = NULL;
1436 }
1437 up_write(&ls->ls_sem);
1438
1439 free_recover_size(ls);
1440}
1441
1442static const match_table_t dlm_tokens = {
1443 { Opt_jid, "jid=%d"},
1444 { Opt_id, "id=%d"},
1445 { Opt_first, "first=%d"},
1446 { Opt_nodir, "nodir=%d"},
1447 { Opt_err, NULL },
1448};
1449
1450const struct lm_lockops gfs2_dlm_ops = {
1451 .lm_proto_name = "lock_dlm",
1452 .lm_mount = gdlm_mount,
1453 .lm_first_done = gdlm_first_done,
1454 .lm_recovery_result = gdlm_recovery_result,
1455 .lm_unmount = gdlm_unmount,
1456 .lm_put_lock = gdlm_put_lock,
1457 .lm_lock = gdlm_lock,
1458 .lm_cancel = gdlm_cancel,
1459 .lm_tokens = &dlm_tokens,
1460};
1461