Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * linux/fs/file.c
4 *
5 * Copyright (C) 1998-1999, Stephen Tweedie and Bill Hawes
6 *
7 * Manage the dynamic fd arrays in the process files_struct.
8 */
9
10#include <linux/syscalls.h>
11#include <linux/export.h>
12#include <linux/fs.h>
13#include <linux/kernel.h>
14#include <linux/mm.h>
15#include <linux/sched/signal.h>
16#include <linux/slab.h>
17#include <linux/file.h>
18#include <linux/fdtable.h>
19#include <linux/bitops.h>
20#include <linux/spinlock.h>
21#include <linux/rcupdate.h>
22#include <linux/close_range.h>
23#include <linux/file_ref.h>
24#include <net/sock.h>
25#include <linux/init_task.h>
26
27#include "internal.h"
28
29static noinline bool __file_ref_put_badval(file_ref_t *ref, unsigned long cnt)
30{
31 /*
32 * If the reference count was already in the dead zone, then this
33 * put() operation is imbalanced. Warn, put the reference count back to
34 * DEAD and tell the caller to not deconstruct the object.
35 */
36 if (WARN_ONCE(cnt >= FILE_REF_RELEASED, "imbalanced put on file reference count")) {
37 atomic_long_set(&ref->refcnt, FILE_REF_DEAD);
38 return false;
39 }
40
41 /*
42 * This is a put() operation on a saturated refcount. Restore the
43 * mean saturation value and tell the caller to not deconstruct the
44 * object.
45 */
46 if (cnt > FILE_REF_MAXREF)
47 atomic_long_set(&ref->refcnt, FILE_REF_SATURATED);
48 return false;
49}
50
51/**
52 * __file_ref_put - Slowpath of file_ref_put()
53 * @ref: Pointer to the reference count
54 * @cnt: Current reference count
55 *
56 * Invoked when the reference count is outside of the valid zone.
57 *
58 * Return:
59 * True if this was the last reference with no future references
60 * possible. This signals the caller that it can safely schedule the
61 * object, which is protected by the reference counter, for
62 * deconstruction.
63 *
64 * False if there are still active references or the put() raced
65 * with a concurrent get()/put() pair. Caller is not allowed to
66 * deconstruct the protected object.
67 */
68bool __file_ref_put(file_ref_t *ref, unsigned long cnt)
69{
70 /* Did this drop the last reference? */
71 if (likely(cnt == FILE_REF_NOREF)) {
72 /*
73 * Carefully try to set the reference count to FILE_REF_DEAD.
74 *
75 * This can fail if a concurrent get() operation has
76 * elevated it again or the corresponding put() even marked
77 * it dead already. Both are valid situations and do not
78 * require a retry. If this fails the caller is not
79 * allowed to deconstruct the object.
80 */
81 if (!atomic_long_try_cmpxchg_release(&ref->refcnt, &cnt, FILE_REF_DEAD))
82 return false;
83
84 /*
85 * The caller can safely schedule the object for
86 * deconstruction. Provide acquire ordering.
87 */
88 smp_acquire__after_ctrl_dep();
89 return true;
90 }
91
92 return __file_ref_put_badval(ref, cnt);
93}
94EXPORT_SYMBOL_GPL(__file_ref_put);
95
96unsigned int sysctl_nr_open __read_mostly = 1024*1024;
97unsigned int sysctl_nr_open_min = BITS_PER_LONG;
98/* our min() is unusable in constant expressions ;-/ */
99#define __const_min(x, y) ((x) < (y) ? (x) : (y))
100unsigned int sysctl_nr_open_max =
101 __const_min(INT_MAX, ~(size_t)0/sizeof(void *)) & -BITS_PER_LONG;
102
103static void __free_fdtable(struct fdtable *fdt)
104{
105 kvfree(fdt->fd);
106 kvfree(fdt->open_fds);
107 kfree(fdt);
108}
109
110static void free_fdtable_rcu(struct rcu_head *rcu)
111{
112 __free_fdtable(container_of(rcu, struct fdtable, rcu));
113}
114
115#define BITBIT_NR(nr) BITS_TO_LONGS(BITS_TO_LONGS(nr))
116#define BITBIT_SIZE(nr) (BITBIT_NR(nr) * sizeof(long))
117
118#define fdt_words(fdt) ((fdt)->max_fds / BITS_PER_LONG) // words in ->open_fds
119/*
120 * Copy 'count' fd bits from the old table to the new table and clear the extra
121 * space if any. This does not copy the file pointers. Called with the files
122 * spinlock held for write.
123 */
124static inline void copy_fd_bitmaps(struct fdtable *nfdt, struct fdtable *ofdt,
125 unsigned int copy_words)
126{
127 unsigned int nwords = fdt_words(nfdt);
128
129 bitmap_copy_and_extend(nfdt->open_fds, ofdt->open_fds,
130 copy_words * BITS_PER_LONG, nwords * BITS_PER_LONG);
131 bitmap_copy_and_extend(nfdt->close_on_exec, ofdt->close_on_exec,
132 copy_words * BITS_PER_LONG, nwords * BITS_PER_LONG);
133 bitmap_copy_and_extend(nfdt->full_fds_bits, ofdt->full_fds_bits,
134 copy_words, nwords);
135}
136
137/*
138 * Copy all file descriptors from the old table to the new, expanded table and
139 * clear the extra space. Called with the files spinlock held for write.
140 */
141static void copy_fdtable(struct fdtable *nfdt, struct fdtable *ofdt)
142{
143 size_t cpy, set;
144
145 BUG_ON(nfdt->max_fds < ofdt->max_fds);
146
147 cpy = ofdt->max_fds * sizeof(struct file *);
148 set = (nfdt->max_fds - ofdt->max_fds) * sizeof(struct file *);
149 memcpy(nfdt->fd, ofdt->fd, cpy);
150 memset((char *)nfdt->fd + cpy, 0, set);
151
152 copy_fd_bitmaps(nfdt, ofdt, fdt_words(ofdt));
153}
154
155/*
156 * Note how the fdtable bitmap allocations very much have to be a multiple of
157 * BITS_PER_LONG. This is not only because we walk those things in chunks of
158 * 'unsigned long' in some places, but simply because that is how the Linux
159 * kernel bitmaps are defined to work: they are not "bits in an array of bytes",
160 * they are very much "bits in an array of unsigned long".
161 */
162static struct fdtable *alloc_fdtable(unsigned int slots_wanted)
163{
164 struct fdtable *fdt;
165 unsigned int nr;
166 void *data;
167
168 /*
169 * Figure out how many fds we actually want to support in this fdtable.
170 * Allocation steps are keyed to the size of the fdarray, since it
171 * grows far faster than any of the other dynamic data. We try to fit
172 * the fdarray into comfortable page-tuned chunks: starting at 1024B
173 * and growing in powers of two from there on. Since we called only
174 * with slots_wanted > BITS_PER_LONG (embedded instance in files->fdtab
175 * already gives BITS_PER_LONG slots), the above boils down to
176 * 1. use the smallest power of two large enough to give us that many
177 * slots.
178 * 2. on 32bit skip 64 and 128 - the minimal capacity we want there is
179 * 256 slots (i.e. 1Kb fd array).
180 * 3. on 64bit don't skip anything, 1Kb fd array means 128 slots there
181 * and we are never going to be asked for 64 or less.
182 */
183 if (IS_ENABLED(CONFIG_32BIT) && slots_wanted < 256)
184 nr = 256;
185 else
186 nr = roundup_pow_of_two(slots_wanted);
187 /*
188 * Note that this can drive nr *below* what we had passed if sysctl_nr_open
189 * had been set lower between the check in expand_files() and here.
190 *
191 * We make sure that nr remains a multiple of BITS_PER_LONG - otherwise
192 * bitmaps handling below becomes unpleasant, to put it mildly...
193 */
194 if (unlikely(nr > sysctl_nr_open)) {
195 nr = round_down(sysctl_nr_open, BITS_PER_LONG);
196 if (nr < slots_wanted)
197 return ERR_PTR(-EMFILE);
198 }
199
200 /*
201 * Check if the allocation size would exceed INT_MAX. kvmalloc_array()
202 * and kvmalloc() will warn if the allocation size is greater than
203 * INT_MAX, as filp_cachep objects are not __GFP_NOWARN.
204 *
205 * This can happen when sysctl_nr_open is set to a very high value and
206 * a process tries to use a file descriptor near that limit. For example,
207 * if sysctl_nr_open is set to 1073741816 (0x3ffffff8) - which is what
208 * systemd typically sets it to - then trying to use a file descriptor
209 * close to that value will require allocating a file descriptor table
210 * that exceeds 8GB in size.
211 */
212 if (unlikely(nr > INT_MAX / sizeof(struct file *)))
213 return ERR_PTR(-EMFILE);
214
215 fdt = kmalloc(sizeof(struct fdtable), GFP_KERNEL_ACCOUNT);
216 if (!fdt)
217 goto out;
218 fdt->max_fds = nr;
219 data = kvmalloc_array(nr, sizeof(struct file *), GFP_KERNEL_ACCOUNT);
220 if (!data)
221 goto out_fdt;
222 fdt->fd = data;
223
224 data = kvmalloc(max_t(size_t,
225 2 * nr / BITS_PER_BYTE + BITBIT_SIZE(nr), L1_CACHE_BYTES),
226 GFP_KERNEL_ACCOUNT);
227 if (!data)
228 goto out_arr;
229 fdt->open_fds = data;
230 data += nr / BITS_PER_BYTE;
231 fdt->close_on_exec = data;
232 data += nr / BITS_PER_BYTE;
233 fdt->full_fds_bits = data;
234
235 return fdt;
236
237out_arr:
238 kvfree(fdt->fd);
239out_fdt:
240 kfree(fdt);
241out:
242 return ERR_PTR(-ENOMEM);
243}
244
245/*
246 * Expand the file descriptor table.
247 * This function will allocate a new fdtable and both fd array and fdset, of
248 * the given size.
249 * Return <0 error code on error; 0 on successful completion.
250 * The files->file_lock should be held on entry, and will be held on exit.
251 */
252static int expand_fdtable(struct files_struct *files, unsigned int nr)
253 __releases(files->file_lock)
254 __acquires(files->file_lock)
255{
256 struct fdtable *new_fdt, *cur_fdt;
257
258 spin_unlock(&files->file_lock);
259 new_fdt = alloc_fdtable(nr + 1);
260
261 /* make sure all fd_install() have seen resize_in_progress
262 * or have finished their rcu_read_lock_sched() section.
263 */
264 if (atomic_read(&files->count) > 1)
265 synchronize_rcu();
266
267 spin_lock(&files->file_lock);
268 if (IS_ERR(new_fdt))
269 return PTR_ERR(new_fdt);
270 cur_fdt = files_fdtable(files);
271 BUG_ON(nr < cur_fdt->max_fds);
272 copy_fdtable(new_fdt, cur_fdt);
273 rcu_assign_pointer(files->fdt, new_fdt);
274 if (cur_fdt != &files->fdtab)
275 call_rcu(&cur_fdt->rcu, free_fdtable_rcu);
276 /* coupled with smp_rmb() in fd_install() */
277 smp_wmb();
278 return 0;
279}
280
281/*
282 * Expand files.
283 * This function will expand the file structures, if the requested size exceeds
284 * the current capacity and there is room for expansion.
285 * Return <0 error code on error; 0 on success.
286 * The files->file_lock should be held on entry, and will be held on exit.
287 */
288static int expand_files(struct files_struct *files, unsigned int nr)
289 __releases(files->file_lock)
290 __acquires(files->file_lock)
291{
292 struct fdtable *fdt;
293 int error;
294
295repeat:
296 fdt = files_fdtable(files);
297
298 /* Do we need to expand? */
299 if (nr < fdt->max_fds)
300 return 0;
301
302 if (unlikely(files->resize_in_progress)) {
303 spin_unlock(&files->file_lock);
304 wait_event(files->resize_wait, !files->resize_in_progress);
305 spin_lock(&files->file_lock);
306 goto repeat;
307 }
308
309 /* Can we expand? */
310 if (unlikely(nr >= sysctl_nr_open))
311 return -EMFILE;
312
313 /* All good, so we try */
314 files->resize_in_progress = true;
315 error = expand_fdtable(files, nr);
316 files->resize_in_progress = false;
317
318 wake_up_all(&files->resize_wait);
319 return error;
320}
321
322static inline void __set_close_on_exec(unsigned int fd, struct fdtable *fdt,
323 bool set)
324{
325 if (set) {
326 __set_bit(fd, fdt->close_on_exec);
327 } else {
328 if (test_bit(fd, fdt->close_on_exec))
329 __clear_bit(fd, fdt->close_on_exec);
330 }
331}
332
333static inline void __set_open_fd(unsigned int fd, struct fdtable *fdt, bool set)
334{
335 __set_bit(fd, fdt->open_fds);
336 __set_close_on_exec(fd, fdt, set);
337 fd /= BITS_PER_LONG;
338 if (!~fdt->open_fds[fd])
339 __set_bit(fd, fdt->full_fds_bits);
340}
341
342static inline void __clear_open_fd(unsigned int fd, struct fdtable *fdt)
343{
344 __clear_bit(fd, fdt->open_fds);
345 fd /= BITS_PER_LONG;
346 if (test_bit(fd, fdt->full_fds_bits))
347 __clear_bit(fd, fdt->full_fds_bits);
348}
349
350static inline bool fd_is_open(unsigned int fd, const struct fdtable *fdt)
351{
352 return test_bit(fd, fdt->open_fds);
353}
354
355/*
356 * Note that a sane fdtable size always has to be a multiple of
357 * BITS_PER_LONG, since we have bitmaps that are sized by this.
358 *
359 * punch_hole is optional - when close_range() is asked to unshare
360 * and close, we don't need to copy descriptors in that range, so
361 * a smaller cloned descriptor table might suffice if the last
362 * currently opened descriptor falls into that range.
363 */
364static unsigned int sane_fdtable_size(struct fdtable *fdt, struct fd_range *punch_hole)
365{
366 unsigned int last = find_last_bit(fdt->open_fds, fdt->max_fds);
367
368 if (last == fdt->max_fds)
369 return NR_OPEN_DEFAULT;
370 if (punch_hole && punch_hole->to >= last && punch_hole->from <= last) {
371 last = find_last_bit(fdt->open_fds, punch_hole->from);
372 if (last == punch_hole->from)
373 return NR_OPEN_DEFAULT;
374 }
375 return ALIGN(last + 1, BITS_PER_LONG);
376}
377
378/*
379 * Allocate a new descriptor table and copy contents from the passed in
380 * instance. Returns a pointer to cloned table on success, ERR_PTR()
381 * on failure. For 'punch_hole' see sane_fdtable_size().
382 */
383struct files_struct *dup_fd(struct files_struct *oldf, struct fd_range *punch_hole)
384{
385 struct files_struct *newf;
386 struct file **old_fds, **new_fds;
387 unsigned int open_files, i;
388 struct fdtable *old_fdt, *new_fdt;
389
390 newf = kmem_cache_alloc(files_cachep, GFP_KERNEL);
391 if (!newf)
392 return ERR_PTR(-ENOMEM);
393
394 atomic_set(&newf->count, 1);
395
396 spin_lock_init(&newf->file_lock);
397 newf->resize_in_progress = false;
398 init_waitqueue_head(&newf->resize_wait);
399 newf->next_fd = 0;
400 new_fdt = &newf->fdtab;
401 new_fdt->max_fds = NR_OPEN_DEFAULT;
402 new_fdt->close_on_exec = newf->close_on_exec_init;
403 new_fdt->open_fds = newf->open_fds_init;
404 new_fdt->full_fds_bits = newf->full_fds_bits_init;
405 new_fdt->fd = &newf->fd_array[0];
406
407 spin_lock(&oldf->file_lock);
408 old_fdt = files_fdtable(oldf);
409 open_files = sane_fdtable_size(old_fdt, punch_hole);
410
411 /*
412 * Check whether we need to allocate a larger fd array and fd set.
413 */
414 while (unlikely(open_files > new_fdt->max_fds)) {
415 spin_unlock(&oldf->file_lock);
416
417 if (new_fdt != &newf->fdtab)
418 __free_fdtable(new_fdt);
419
420 new_fdt = alloc_fdtable(open_files);
421 if (IS_ERR(new_fdt)) {
422 kmem_cache_free(files_cachep, newf);
423 return ERR_CAST(new_fdt);
424 }
425
426 /*
427 * Reacquire the oldf lock and a pointer to its fd table
428 * who knows it may have a new bigger fd table. We need
429 * the latest pointer.
430 */
431 spin_lock(&oldf->file_lock);
432 old_fdt = files_fdtable(oldf);
433 open_files = sane_fdtable_size(old_fdt, punch_hole);
434 }
435
436 copy_fd_bitmaps(new_fdt, old_fdt, open_files / BITS_PER_LONG);
437
438 old_fds = old_fdt->fd;
439 new_fds = new_fdt->fd;
440
441 /*
442 * We may be racing against fd allocation from other threads using this
443 * files_struct, despite holding ->file_lock.
444 *
445 * alloc_fd() might have already claimed a slot, while fd_install()
446 * did not populate it yet. Note the latter operates locklessly, so
447 * the file can show up as we are walking the array below.
448 *
449 * At the same time we know no files will disappear as all other
450 * operations take the lock.
451 *
452 * Instead of trying to placate userspace racing with itself, we
453 * ref the file if we see it and mark the fd slot as unused otherwise.
454 */
455 for (i = open_files; i != 0; i--) {
456 struct file *f = rcu_dereference_raw(*old_fds++);
457 if (f) {
458 get_file(f);
459 } else {
460 __clear_open_fd(open_files - i, new_fdt);
461 }
462 rcu_assign_pointer(*new_fds++, f);
463 }
464 spin_unlock(&oldf->file_lock);
465
466 /* clear the remainder */
467 memset(new_fds, 0, (new_fdt->max_fds - open_files) * sizeof(struct file *));
468
469 rcu_assign_pointer(newf->fdt, new_fdt);
470
471 return newf;
472}
473
474static struct fdtable *close_files(struct files_struct * files)
475{
476 /*
477 * It is safe to dereference the fd table without RCU or
478 * ->file_lock because this is the last reference to the
479 * files structure.
480 */
481 struct fdtable *fdt = rcu_dereference_raw(files->fdt);
482 unsigned int i, j = 0;
483
484 for (;;) {
485 unsigned long set;
486 i = j * BITS_PER_LONG;
487 if (i >= fdt->max_fds)
488 break;
489 set = fdt->open_fds[j++];
490 while (set) {
491 if (set & 1) {
492 struct file *file = fdt->fd[i];
493 if (file) {
494 filp_close(file, files);
495 cond_resched();
496 }
497 }
498 i++;
499 set >>= 1;
500 }
501 }
502
503 return fdt;
504}
505
506void put_files_struct(struct files_struct *files)
507{
508 if (atomic_dec_and_test(&files->count)) {
509 struct fdtable *fdt = close_files(files);
510
511 /* free the arrays if they are not embedded */
512 if (fdt != &files->fdtab)
513 __free_fdtable(fdt);
514 kmem_cache_free(files_cachep, files);
515 }
516}
517
518void exit_files(struct task_struct *tsk)
519{
520 struct files_struct * files = tsk->files;
521
522 if (files) {
523 task_lock(tsk);
524 tsk->files = NULL;
525 task_unlock(tsk);
526 put_files_struct(files);
527 }
528}
529
530struct files_struct init_files = {
531 .count = ATOMIC_INIT(1),
532 .fdt = &init_files.fdtab,
533 .fdtab = {
534 .max_fds = NR_OPEN_DEFAULT,
535 .fd = &init_files.fd_array[0],
536 .close_on_exec = init_files.close_on_exec_init,
537 .open_fds = init_files.open_fds_init,
538 .full_fds_bits = init_files.full_fds_bits_init,
539 },
540 .file_lock = __SPIN_LOCK_UNLOCKED(init_files.file_lock),
541 .resize_wait = __WAIT_QUEUE_HEAD_INITIALIZER(init_files.resize_wait),
542};
543
544static unsigned int find_next_fd(struct fdtable *fdt, unsigned int start)
545{
546 unsigned int maxfd = fdt->max_fds; /* always multiple of BITS_PER_LONG */
547 unsigned int maxbit = maxfd / BITS_PER_LONG;
548 unsigned int bitbit = start / BITS_PER_LONG;
549 unsigned int bit;
550
551 /*
552 * Try to avoid looking at the second level bitmap
553 */
554 bit = find_next_zero_bit(&fdt->open_fds[bitbit], BITS_PER_LONG,
555 start & (BITS_PER_LONG - 1));
556 if (bit < BITS_PER_LONG)
557 return bit + bitbit * BITS_PER_LONG;
558
559 bitbit = find_next_zero_bit(fdt->full_fds_bits, maxbit, bitbit) * BITS_PER_LONG;
560 if (bitbit >= maxfd)
561 return maxfd;
562 if (bitbit > start)
563 start = bitbit;
564 return find_next_zero_bit(fdt->open_fds, maxfd, start);
565}
566
567/*
568 * allocate a file descriptor, mark it busy.
569 */
570static int alloc_fd(unsigned start, unsigned end, unsigned flags)
571{
572 struct files_struct *files = current->files;
573 unsigned int fd;
574 int error;
575 struct fdtable *fdt;
576
577 spin_lock(&files->file_lock);
578repeat:
579 fdt = files_fdtable(files);
580 fd = start;
581 if (fd < files->next_fd)
582 fd = files->next_fd;
583
584 if (likely(fd < fdt->max_fds))
585 fd = find_next_fd(fdt, fd);
586
587 /*
588 * N.B. For clone tasks sharing a files structure, this test
589 * will limit the total number of files that can be opened.
590 */
591 error = -EMFILE;
592 if (unlikely(fd >= end))
593 goto out;
594
595 if (unlikely(fd >= fdt->max_fds)) {
596 error = expand_files(files, fd);
597 if (error < 0)
598 goto out;
599
600 goto repeat;
601 }
602
603 if (start <= files->next_fd)
604 files->next_fd = fd + 1;
605
606 __set_open_fd(fd, fdt, flags & O_CLOEXEC);
607 error = fd;
608 VFS_BUG_ON(rcu_access_pointer(fdt->fd[fd]) != NULL);
609
610out:
611 spin_unlock(&files->file_lock);
612 return error;
613}
614
615int __get_unused_fd_flags(unsigned flags, unsigned long nofile)
616{
617 return alloc_fd(0, nofile, flags);
618}
619
620int get_unused_fd_flags(unsigned flags)
621{
622 return __get_unused_fd_flags(flags, rlimit(RLIMIT_NOFILE));
623}
624EXPORT_SYMBOL(get_unused_fd_flags);
625
626static void __put_unused_fd(struct files_struct *files, unsigned int fd)
627{
628 struct fdtable *fdt = files_fdtable(files);
629 __clear_open_fd(fd, fdt);
630 if (fd < files->next_fd)
631 files->next_fd = fd;
632}
633
634void put_unused_fd(unsigned int fd)
635{
636 struct files_struct *files = current->files;
637 spin_lock(&files->file_lock);
638 __put_unused_fd(files, fd);
639 spin_unlock(&files->file_lock);
640}
641
642EXPORT_SYMBOL(put_unused_fd);
643
644/*
645 * Install a file pointer in the fd array while it is being resized.
646 *
647 * We need to make sure our update to the array does not get lost as the resizing
648 * thread can be copying the content as we modify it.
649 *
650 * We have two ways to do it:
651 * - go off CPU waiting for resize_in_progress to clear
652 * - take the spin lock
653 *
654 * The latter is trivial to implement and saves us from having to might_sleep()
655 * for debugging purposes.
656 *
657 * This is moved out of line from fd_install() to convince gcc to optimize that
658 * routine better.
659 */
660static void noinline fd_install_slowpath(unsigned int fd, struct file *file)
661{
662 struct files_struct *files = current->files;
663 struct fdtable *fdt;
664
665 spin_lock(&files->file_lock);
666 fdt = files_fdtable(files);
667 VFS_BUG_ON(rcu_access_pointer(fdt->fd[fd]) != NULL);
668 rcu_assign_pointer(fdt->fd[fd], file);
669 spin_unlock(&files->file_lock);
670}
671
672/**
673 * fd_install - install a file pointer in the fd array
674 * @fd: file descriptor to install the file in
675 * @file: the file to install
676 *
677 * This consumes the "file" refcount, so callers should treat it
678 * as if they had called fput(file).
679 */
680void fd_install(unsigned int fd, struct file *file)
681{
682 struct files_struct *files = current->files;
683 struct fdtable *fdt;
684
685 if (WARN_ON_ONCE(unlikely(file->f_mode & FMODE_BACKING)))
686 return;
687
688 rcu_read_lock_sched();
689 if (unlikely(files->resize_in_progress)) {
690 rcu_read_unlock_sched();
691 fd_install_slowpath(fd, file);
692 return;
693 }
694 /* coupled with smp_wmb() in expand_fdtable() */
695 smp_rmb();
696 fdt = rcu_dereference_sched(files->fdt);
697 VFS_BUG_ON(rcu_access_pointer(fdt->fd[fd]) != NULL);
698 rcu_assign_pointer(fdt->fd[fd], file);
699 rcu_read_unlock_sched();
700}
701
702EXPORT_SYMBOL(fd_install);
703
704/**
705 * file_close_fd_locked - return file associated with fd
706 * @files: file struct to retrieve file from
707 * @fd: file descriptor to retrieve file for
708 *
709 * Doesn't take a separate reference count.
710 *
711 * Context: files_lock must be held.
712 *
713 * Returns: The file associated with @fd (NULL if @fd is not open)
714 */
715struct file *file_close_fd_locked(struct files_struct *files, unsigned fd)
716{
717 struct fdtable *fdt = files_fdtable(files);
718 struct file *file;
719
720 lockdep_assert_held(&files->file_lock);
721
722 if (fd >= fdt->max_fds)
723 return NULL;
724
725 fd = array_index_nospec(fd, fdt->max_fds);
726 file = rcu_dereference_raw(fdt->fd[fd]);
727 if (file) {
728 rcu_assign_pointer(fdt->fd[fd], NULL);
729 __put_unused_fd(files, fd);
730 }
731 return file;
732}
733
734int close_fd(unsigned fd)
735{
736 struct files_struct *files = current->files;
737 struct file *file;
738
739 spin_lock(&files->file_lock);
740 file = file_close_fd_locked(files, fd);
741 spin_unlock(&files->file_lock);
742 if (!file)
743 return -EBADF;
744
745 return filp_close(file, files);
746}
747EXPORT_SYMBOL(close_fd);
748
749/**
750 * last_fd - return last valid index into fd table
751 * @fdt: File descriptor table.
752 *
753 * Context: Either rcu read lock or files_lock must be held.
754 *
755 * Returns: Last valid index into fdtable.
756 */
757static inline unsigned last_fd(struct fdtable *fdt)
758{
759 return fdt->max_fds - 1;
760}
761
762static inline void __range_cloexec(struct files_struct *cur_fds,
763 unsigned int fd, unsigned int max_fd)
764{
765 struct fdtable *fdt;
766
767 /* make sure we're using the correct maximum value */
768 spin_lock(&cur_fds->file_lock);
769 fdt = files_fdtable(cur_fds);
770 max_fd = min(last_fd(fdt), max_fd);
771 if (fd <= max_fd)
772 bitmap_set(fdt->close_on_exec, fd, max_fd - fd + 1);
773 spin_unlock(&cur_fds->file_lock);
774}
775
776static inline void __range_close(struct files_struct *files, unsigned int fd,
777 unsigned int max_fd)
778{
779 struct file *file;
780 unsigned n;
781
782 spin_lock(&files->file_lock);
783 n = last_fd(files_fdtable(files));
784 max_fd = min(max_fd, n);
785
786 for (; fd <= max_fd; fd++) {
787 file = file_close_fd_locked(files, fd);
788 if (file) {
789 spin_unlock(&files->file_lock);
790 filp_close(file, files);
791 cond_resched();
792 spin_lock(&files->file_lock);
793 } else if (need_resched()) {
794 spin_unlock(&files->file_lock);
795 cond_resched();
796 spin_lock(&files->file_lock);
797 }
798 }
799 spin_unlock(&files->file_lock);
800}
801
802/**
803 * sys_close_range() - Close all file descriptors in a given range.
804 *
805 * @fd: starting file descriptor to close
806 * @max_fd: last file descriptor to close
807 * @flags: CLOSE_RANGE flags.
808 *
809 * This closes a range of file descriptors. All file descriptors
810 * from @fd up to and including @max_fd are closed.
811 * Currently, errors to close a given file descriptor are ignored.
812 */
813SYSCALL_DEFINE3(close_range, unsigned int, fd, unsigned int, max_fd,
814 unsigned int, flags)
815{
816 struct task_struct *me = current;
817 struct files_struct *cur_fds = me->files, *fds = NULL;
818
819 if (flags & ~(CLOSE_RANGE_UNSHARE | CLOSE_RANGE_CLOEXEC))
820 return -EINVAL;
821
822 if (fd > max_fd)
823 return -EINVAL;
824
825 if ((flags & CLOSE_RANGE_UNSHARE) && atomic_read(&cur_fds->count) > 1) {
826 struct fd_range range = {fd, max_fd}, *punch_hole = ⦥
827
828 /*
829 * If the caller requested all fds to be made cloexec we always
830 * copy all of the file descriptors since they still want to
831 * use them.
832 */
833 if (flags & CLOSE_RANGE_CLOEXEC)
834 punch_hole = NULL;
835
836 fds = dup_fd(cur_fds, punch_hole);
837 if (IS_ERR(fds))
838 return PTR_ERR(fds);
839 /*
840 * We used to share our file descriptor table, and have now
841 * created a private one, make sure we're using it below.
842 */
843 swap(cur_fds, fds);
844 }
845
846 if (flags & CLOSE_RANGE_CLOEXEC)
847 __range_cloexec(cur_fds, fd, max_fd);
848 else
849 __range_close(cur_fds, fd, max_fd);
850
851 if (fds) {
852 /*
853 * We're done closing the files we were supposed to. Time to install
854 * the new file descriptor table and drop the old one.
855 */
856 task_lock(me);
857 me->files = cur_fds;
858 task_unlock(me);
859 put_files_struct(fds);
860 }
861
862 return 0;
863}
864
865/**
866 * file_close_fd - return file associated with fd
867 * @fd: file descriptor to retrieve file for
868 *
869 * Doesn't take a separate reference count.
870 *
871 * Returns: The file associated with @fd (NULL if @fd is not open)
872 */
873struct file *file_close_fd(unsigned int fd)
874{
875 struct files_struct *files = current->files;
876 struct file *file;
877
878 spin_lock(&files->file_lock);
879 file = file_close_fd_locked(files, fd);
880 spin_unlock(&files->file_lock);
881
882 return file;
883}
884
885void do_close_on_exec(struct files_struct *files)
886{
887 unsigned i;
888 struct fdtable *fdt;
889
890 /* exec unshares first */
891 spin_lock(&files->file_lock);
892 for (i = 0; ; i++) {
893 unsigned long set;
894 unsigned fd = i * BITS_PER_LONG;
895 fdt = files_fdtable(files);
896 if (fd >= fdt->max_fds)
897 break;
898 set = fdt->close_on_exec[i];
899 if (!set)
900 continue;
901 fdt->close_on_exec[i] = 0;
902 for ( ; set ; fd++, set >>= 1) {
903 struct file *file;
904 if (!(set & 1))
905 continue;
906 file = fdt->fd[fd];
907 if (!file)
908 continue;
909 rcu_assign_pointer(fdt->fd[fd], NULL);
910 __put_unused_fd(files, fd);
911 spin_unlock(&files->file_lock);
912 filp_close(file, files);
913 cond_resched();
914 spin_lock(&files->file_lock);
915 }
916
917 }
918 spin_unlock(&files->file_lock);
919}
920
921static struct file *__get_file_rcu(struct file __rcu **f)
922{
923 struct file __rcu *file;
924 struct file __rcu *file_reloaded;
925 struct file __rcu *file_reloaded_cmp;
926
927 file = rcu_dereference_raw(*f);
928 if (!file)
929 return NULL;
930
931 if (unlikely(!file_ref_get(&file->f_ref)))
932 return ERR_PTR(-EAGAIN);
933
934 file_reloaded = rcu_dereference_raw(*f);
935
936 /*
937 * Ensure that all accesses have a dependency on the load from
938 * rcu_dereference_raw() above so we get correct ordering
939 * between reuse/allocation and the pointer check below.
940 */
941 file_reloaded_cmp = file_reloaded;
942 OPTIMIZER_HIDE_VAR(file_reloaded_cmp);
943
944 /*
945 * file_ref_get() above provided a full memory barrier when we
946 * acquired a reference.
947 *
948 * This is paired with the write barrier from assigning to the
949 * __rcu protected file pointer so that if that pointer still
950 * matches the current file, we know we have successfully
951 * acquired a reference to the right file.
952 *
953 * If the pointers don't match the file has been reallocated by
954 * SLAB_TYPESAFE_BY_RCU.
955 */
956 if (file == file_reloaded_cmp)
957 return file_reloaded;
958
959 fput(file);
960 return ERR_PTR(-EAGAIN);
961}
962
963/**
964 * get_file_rcu - try go get a reference to a file under rcu
965 * @f: the file to get a reference on
966 *
967 * This function tries to get a reference on @f carefully verifying that
968 * @f hasn't been reused.
969 *
970 * This function should rarely have to be used and only by users who
971 * understand the implications of SLAB_TYPESAFE_BY_RCU. Try to avoid it.
972 *
973 * Return: Returns @f with the reference count increased or NULL.
974 */
975struct file *get_file_rcu(struct file __rcu **f)
976{
977 for (;;) {
978 struct file __rcu *file;
979
980 file = __get_file_rcu(f);
981 if (!IS_ERR(file))
982 return file;
983 }
984}
985EXPORT_SYMBOL_GPL(get_file_rcu);
986
987/**
988 * get_file_active - try go get a reference to a file
989 * @f: the file to get a reference on
990 *
991 * In contast to get_file_rcu() the pointer itself isn't part of the
992 * reference counting.
993 *
994 * This function should rarely have to be used and only by users who
995 * understand the implications of SLAB_TYPESAFE_BY_RCU. Try to avoid it.
996 *
997 * Return: Returns @f with the reference count increased or NULL.
998 */
999struct file *get_file_active(struct file **f)
1000{
1001 struct file __rcu *file;
1002
1003 rcu_read_lock();
1004 file = __get_file_rcu(f);
1005 rcu_read_unlock();
1006 if (IS_ERR(file))
1007 file = NULL;
1008 return file;
1009}
1010EXPORT_SYMBOL_GPL(get_file_active);
1011
1012static inline struct file *__fget_files_rcu(struct files_struct *files,
1013 unsigned int fd, fmode_t mask)
1014{
1015 for (;;) {
1016 struct file *file;
1017 struct fdtable *fdt = rcu_dereference_raw(files->fdt);
1018 struct file __rcu **fdentry;
1019 unsigned long nospec_mask;
1020
1021 /* Mask is a 0 for invalid fd's, ~0 for valid ones */
1022 nospec_mask = array_index_mask_nospec(fd, fdt->max_fds);
1023
1024 /*
1025 * fdentry points to the 'fd' offset, or fdt->fd[0].
1026 * Loading from fdt->fd[0] is always safe, because the
1027 * array always exists.
1028 */
1029 fdentry = fdt->fd + (fd & nospec_mask);
1030
1031 /* Do the load, then mask any invalid result */
1032 file = rcu_dereference_raw(*fdentry);
1033 file = (void *)(nospec_mask & (unsigned long)file);
1034 if (unlikely(!file))
1035 return NULL;
1036
1037 /*
1038 * Ok, we have a file pointer that was valid at
1039 * some point, but it might have become stale since.
1040 *
1041 * We need to confirm it by incrementing the refcount
1042 * and then check the lookup again.
1043 *
1044 * file_ref_get() gives us a full memory barrier. We
1045 * only really need an 'acquire' one to protect the
1046 * loads below, but we don't have that.
1047 */
1048 if (unlikely(!file_ref_get(&file->f_ref)))
1049 continue;
1050
1051 /*
1052 * Such a race can take two forms:
1053 *
1054 * (a) the file ref already went down to zero and the
1055 * file hasn't been reused yet or the file count
1056 * isn't zero but the file has already been reused.
1057 *
1058 * (b) the file table entry has changed under us.
1059 * Note that we don't need to re-check the 'fdt->fd'
1060 * pointer having changed, because it always goes
1061 * hand-in-hand with 'fdt'.
1062 *
1063 * If so, we need to put our ref and try again.
1064 */
1065 if (unlikely(file != rcu_dereference_raw(*fdentry)) ||
1066 unlikely(rcu_dereference_raw(files->fdt) != fdt)) {
1067 fput(file);
1068 continue;
1069 }
1070
1071 /*
1072 * This isn't the file we're looking for or we're not
1073 * allowed to get a reference to it.
1074 */
1075 if (unlikely(file->f_mode & mask)) {
1076 fput(file);
1077 return NULL;
1078 }
1079
1080 /*
1081 * Ok, we have a ref to the file, and checked that it
1082 * still exists.
1083 */
1084 return file;
1085 }
1086}
1087
1088static struct file *__fget_files(struct files_struct *files, unsigned int fd,
1089 fmode_t mask)
1090{
1091 struct file *file;
1092
1093 rcu_read_lock();
1094 file = __fget_files_rcu(files, fd, mask);
1095 rcu_read_unlock();
1096
1097 return file;
1098}
1099
1100static inline struct file *__fget(unsigned int fd, fmode_t mask)
1101{
1102 return __fget_files(current->files, fd, mask);
1103}
1104
1105struct file *fget(unsigned int fd)
1106{
1107 return __fget(fd, FMODE_PATH);
1108}
1109EXPORT_SYMBOL(fget);
1110
1111struct file *fget_raw(unsigned int fd)
1112{
1113 return __fget(fd, 0);
1114}
1115EXPORT_SYMBOL(fget_raw);
1116
1117struct file *fget_task(struct task_struct *task, unsigned int fd)
1118{
1119 struct file *file = NULL;
1120
1121 task_lock(task);
1122 if (task->files)
1123 file = __fget_files(task->files, fd, 0);
1124 task_unlock(task);
1125
1126 return file;
1127}
1128
1129struct file *fget_task_next(struct task_struct *task, unsigned int *ret_fd)
1130{
1131 /* Must be called with rcu_read_lock held */
1132 struct files_struct *files;
1133 unsigned int fd = *ret_fd;
1134 struct file *file = NULL;
1135
1136 task_lock(task);
1137 files = task->files;
1138 if (files) {
1139 rcu_read_lock();
1140 for (; fd < files_fdtable(files)->max_fds; fd++) {
1141 file = __fget_files_rcu(files, fd, 0);
1142 if (file)
1143 break;
1144 }
1145 rcu_read_unlock();
1146 }
1147 task_unlock(task);
1148 *ret_fd = fd;
1149 return file;
1150}
1151EXPORT_SYMBOL(fget_task_next);
1152
1153/*
1154 * Lightweight file lookup - no refcnt increment if fd table isn't shared.
1155 *
1156 * You can use this instead of fget if you satisfy all of the following
1157 * conditions:
1158 * 1) You must call fput_light before exiting the syscall and returning control
1159 * to userspace (i.e. you cannot remember the returned struct file * after
1160 * returning to userspace).
1161 * 2) You must not call filp_close on the returned struct file * in between
1162 * calls to fget_light and fput_light.
1163 * 3) You must not clone the current task in between the calls to fget_light
1164 * and fput_light.
1165 *
1166 * The fput_needed flag returned by fget_light should be passed to the
1167 * corresponding fput_light.
1168 *
1169 * (As an exception to rule 2, you can call filp_close between fget_light and
1170 * fput_light provided that you capture a real refcount with get_file before
1171 * the call to filp_close, and ensure that this real refcount is fput *after*
1172 * the fput_light call.)
1173 *
1174 * See also the documentation in rust/kernel/file.rs.
1175 */
1176static inline struct fd __fget_light(unsigned int fd, fmode_t mask)
1177{
1178 struct files_struct *files = current->files;
1179 struct file *file;
1180
1181 /*
1182 * If another thread is concurrently calling close_fd() followed
1183 * by put_files_struct(), we must not observe the old table
1184 * entry combined with the new refcount - otherwise we could
1185 * return a file that is concurrently being freed.
1186 *
1187 * atomic_read_acquire() pairs with atomic_dec_and_test() in
1188 * put_files_struct().
1189 */
1190 if (likely(atomic_read_acquire(&files->count) == 1)) {
1191 file = files_lookup_fd_raw(files, fd);
1192 if (!file || unlikely(file->f_mode & mask))
1193 return EMPTY_FD;
1194 return BORROWED_FD(file);
1195 } else {
1196 file = __fget_files(files, fd, mask);
1197 if (!file)
1198 return EMPTY_FD;
1199 return CLONED_FD(file);
1200 }
1201}
1202struct fd fdget(unsigned int fd)
1203{
1204 return __fget_light(fd, FMODE_PATH);
1205}
1206EXPORT_SYMBOL(fdget);
1207
1208struct fd fdget_raw(unsigned int fd)
1209{
1210 return __fget_light(fd, 0);
1211}
1212
1213/*
1214 * Try to avoid f_pos locking. We only need it if the
1215 * file is marked for FMODE_ATOMIC_POS, and it can be
1216 * accessed multiple ways.
1217 *
1218 * Always do it for directories, because pidfd_getfd()
1219 * can make a file accessible even if it otherwise would
1220 * not be, and for directories this is a correctness
1221 * issue, not a "POSIX requirement".
1222 */
1223static inline bool file_needs_f_pos_lock(struct file *file)
1224{
1225 if (!(file->f_mode & FMODE_ATOMIC_POS))
1226 return false;
1227 if (__file_ref_read_raw(&file->f_ref) != FILE_REF_ONEREF)
1228 return true;
1229 if (file->f_op->iterate_shared)
1230 return true;
1231 return false;
1232}
1233
1234bool file_seek_cur_needs_f_lock(struct file *file)
1235{
1236 if (!(file->f_mode & FMODE_ATOMIC_POS) && !file->f_op->iterate_shared)
1237 return false;
1238
1239 /*
1240 * Note that we are not guaranteed to be called after fdget_pos() on
1241 * this file obj, in which case the caller is expected to provide the
1242 * appropriate locking.
1243 */
1244
1245 return true;
1246}
1247
1248struct fd fdget_pos(unsigned int fd)
1249{
1250 struct fd f = fdget(fd);
1251 struct file *file = fd_file(f);
1252
1253 if (likely(file) && file_needs_f_pos_lock(file)) {
1254 f.word |= FDPUT_POS_UNLOCK;
1255 mutex_lock(&file->f_pos_lock);
1256 }
1257 return f;
1258}
1259
1260void __f_unlock_pos(struct file *f)
1261{
1262 mutex_unlock(&f->f_pos_lock);
1263}
1264
1265/*
1266 * We only lock f_pos if we have threads or if the file might be
1267 * shared with another process. In both cases we'll have an elevated
1268 * file count (done either by fdget() or by fork()).
1269 */
1270
1271void set_close_on_exec(unsigned int fd, int flag)
1272{
1273 struct files_struct *files = current->files;
1274 spin_lock(&files->file_lock);
1275 __set_close_on_exec(fd, files_fdtable(files), flag);
1276 spin_unlock(&files->file_lock);
1277}
1278
1279bool get_close_on_exec(unsigned int fd)
1280{
1281 bool res;
1282 rcu_read_lock();
1283 res = close_on_exec(fd, current->files);
1284 rcu_read_unlock();
1285 return res;
1286}
1287
1288static int do_dup2(struct files_struct *files,
1289 struct file *file, unsigned fd, unsigned flags)
1290__releases(&files->file_lock)
1291{
1292 struct file *tofree;
1293 struct fdtable *fdt;
1294
1295 /*
1296 * dup2() is expected to close the file installed in the target fd slot
1297 * (if any). However, userspace hand-picking a fd may be racing against
1298 * its own threads which happened to allocate it in open() et al but did
1299 * not populate it yet.
1300 *
1301 * Broadly speaking we may be racing against the following:
1302 * fd = get_unused_fd_flags(); // fd slot reserved, ->fd[fd] == NULL
1303 * file = hard_work_goes_here();
1304 * fd_install(fd, file); // only now ->fd[fd] == file
1305 *
1306 * It is an invariant that a successfully allocated fd has a NULL entry
1307 * in the array until the matching fd_install().
1308 *
1309 * If we fit the window, we have the fd to populate, yet no target file
1310 * to close. Trying to ignore it and install our new file would violate
1311 * the invariant and make fd_install() overwrite our file.
1312 *
1313 * Things can be done(tm) to handle this. However, the issue does not
1314 * concern legitimate programs and we only need to make sure the kernel
1315 * does not trip over it.
1316 *
1317 * The simplest way out is to return an error if we find ourselves here.
1318 *
1319 * POSIX is silent on the issue, we return -EBUSY.
1320 */
1321 fdt = files_fdtable(files);
1322 fd = array_index_nospec(fd, fdt->max_fds);
1323 tofree = rcu_dereference_raw(fdt->fd[fd]);
1324 if (!tofree && fd_is_open(fd, fdt))
1325 goto Ebusy;
1326 get_file(file);
1327 rcu_assign_pointer(fdt->fd[fd], file);
1328 __set_open_fd(fd, fdt, flags & O_CLOEXEC);
1329 spin_unlock(&files->file_lock);
1330
1331 if (tofree)
1332 filp_close(tofree, files);
1333
1334 return fd;
1335
1336Ebusy:
1337 spin_unlock(&files->file_lock);
1338 return -EBUSY;
1339}
1340
1341int replace_fd(unsigned fd, struct file *file, unsigned flags)
1342{
1343 int err;
1344 struct files_struct *files = current->files;
1345
1346 if (!file)
1347 return close_fd(fd);
1348
1349 if (fd >= rlimit(RLIMIT_NOFILE))
1350 return -EBADF;
1351
1352 spin_lock(&files->file_lock);
1353 err = expand_files(files, fd);
1354 if (unlikely(err < 0))
1355 goto out_unlock;
1356 err = do_dup2(files, file, fd, flags);
1357 if (err < 0)
1358 return err;
1359 return 0;
1360
1361out_unlock:
1362 spin_unlock(&files->file_lock);
1363 return err;
1364}
1365
1366/**
1367 * receive_fd() - Install received file into file descriptor table
1368 * @file: struct file that was received from another process
1369 * @ufd: __user pointer to write new fd number to
1370 * @o_flags: the O_* flags to apply to the new fd entry
1371 *
1372 * Installs a received file into the file descriptor table, with appropriate
1373 * checks and count updates. Optionally writes the fd number to userspace, if
1374 * @ufd is non-NULL.
1375 *
1376 * This helper handles its own reference counting of the incoming
1377 * struct file.
1378 *
1379 * Returns newly install fd or -ve on error.
1380 */
1381int receive_fd(struct file *file, int __user *ufd, unsigned int o_flags)
1382{
1383 int error;
1384
1385 error = security_file_receive(file);
1386 if (error)
1387 return error;
1388
1389 FD_PREPARE(fdf, o_flags, file);
1390 if (fdf.err)
1391 return fdf.err;
1392 get_file(file);
1393
1394 if (ufd) {
1395 error = put_user(fd_prepare_fd(fdf), ufd);
1396 if (error)
1397 return error;
1398 }
1399
1400 __receive_sock(fd_prepare_file(fdf));
1401 return fd_publish(fdf);
1402}
1403EXPORT_SYMBOL_GPL(receive_fd);
1404
1405int receive_fd_replace(int new_fd, struct file *file, unsigned int o_flags)
1406{
1407 int error;
1408
1409 error = security_file_receive(file);
1410 if (error)
1411 return error;
1412 error = replace_fd(new_fd, file, o_flags);
1413 if (error)
1414 return error;
1415 __receive_sock(file);
1416 return new_fd;
1417}
1418
1419static int ksys_dup3(unsigned int oldfd, unsigned int newfd, int flags)
1420{
1421 int err = -EBADF;
1422 struct file *file;
1423 struct files_struct *files = current->files;
1424
1425 if ((flags & ~O_CLOEXEC) != 0)
1426 return -EINVAL;
1427
1428 if (unlikely(oldfd == newfd))
1429 return -EINVAL;
1430
1431 if (newfd >= rlimit(RLIMIT_NOFILE))
1432 return -EBADF;
1433
1434 spin_lock(&files->file_lock);
1435 err = expand_files(files, newfd);
1436 file = files_lookup_fd_locked(files, oldfd);
1437 if (unlikely(!file))
1438 goto Ebadf;
1439 if (unlikely(err < 0)) {
1440 if (err == -EMFILE)
1441 goto Ebadf;
1442 goto out_unlock;
1443 }
1444 return do_dup2(files, file, newfd, flags);
1445
1446Ebadf:
1447 err = -EBADF;
1448out_unlock:
1449 spin_unlock(&files->file_lock);
1450 return err;
1451}
1452
1453SYSCALL_DEFINE3(dup3, unsigned int, oldfd, unsigned int, newfd, int, flags)
1454{
1455 return ksys_dup3(oldfd, newfd, flags);
1456}
1457
1458SYSCALL_DEFINE2(dup2, unsigned int, oldfd, unsigned int, newfd)
1459{
1460 if (unlikely(newfd == oldfd)) { /* corner case */
1461 struct files_struct *files = current->files;
1462 struct file *f;
1463 int retval = oldfd;
1464
1465 rcu_read_lock();
1466 f = __fget_files_rcu(files, oldfd, 0);
1467 if (!f)
1468 retval = -EBADF;
1469 rcu_read_unlock();
1470 if (f)
1471 fput(f);
1472 return retval;
1473 }
1474 return ksys_dup3(oldfd, newfd, 0);
1475}
1476
1477SYSCALL_DEFINE1(dup, unsigned int, fildes)
1478{
1479 int ret = -EBADF;
1480 struct file *file = fget_raw(fildes);
1481
1482 if (file) {
1483 ret = get_unused_fd_flags(0);
1484 if (ret >= 0)
1485 fd_install(ret, file);
1486 else
1487 fput(file);
1488 }
1489 return ret;
1490}
1491
1492int f_dupfd(unsigned int from, struct file *file, unsigned flags)
1493{
1494 unsigned long nofile = rlimit(RLIMIT_NOFILE);
1495 int err;
1496 if (from >= nofile)
1497 return -EINVAL;
1498 err = alloc_fd(from, nofile, flags);
1499 if (err >= 0) {
1500 get_file(file);
1501 fd_install(err, file);
1502 }
1503 return err;
1504}
1505
1506int iterate_fd(struct files_struct *files, unsigned n,
1507 int (*f)(const void *, struct file *, unsigned),
1508 const void *p)
1509{
1510 struct fdtable *fdt;
1511 int res = 0;
1512 if (!files)
1513 return 0;
1514 spin_lock(&files->file_lock);
1515 for (fdt = files_fdtable(files); n < fdt->max_fds; n++) {
1516 struct file *file;
1517 file = rcu_dereference_check_fdtable(files, fdt->fd[n]);
1518 if (!file)
1519 continue;
1520 res = f(p, file, n);
1521 if (res)
1522 break;
1523 }
1524 spin_unlock(&files->file_lock);
1525 return res;
1526}
1527EXPORT_SYMBOL(iterate_fd);