Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * fs/f2fs/node.h
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8/* start node id of a node block dedicated to the given node id */
9#define START_NID(nid) (((nid) / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK)
10
11/* node block offset on the NAT area dedicated to the given start node id */
12#define NAT_BLOCK_OFFSET(start_nid) ((start_nid) / NAT_ENTRY_PER_BLOCK)
13
14/* # of pages to perform synchronous readahead before building free nids */
15#define FREE_NID_PAGES 8
16#define MAX_FREE_NIDS (NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES)
17
18/* size of free nid batch when shrinking */
19#define SHRINK_NID_BATCH_SIZE 8
20
21#define DEF_RA_NID_PAGES 0 /* # of nid pages to be readaheaded */
22
23/* maximum readahead size for node during getting data blocks */
24#define MAX_RA_NODE 128
25
26/* control the memory footprint threshold (10MB per 1GB ram) */
27#define DEF_RAM_THRESHOLD 1
28
29/* control dirty nats ratio threshold (default: 10% over max nid count) */
30#define DEF_DIRTY_NAT_RATIO_THRESHOLD 10
31/* control total # of nats */
32#define DEF_NAT_CACHE_THRESHOLD 100000
33
34/* control total # of node writes used for roll-forward recovery */
35#define DEF_RF_NODE_BLOCKS 0
36
37/* vector size for gang look-up from nat cache that consists of radix tree */
38#define NAT_VEC_SIZE 32
39
40/* return value for read_node_page */
41#define LOCKED_PAGE 1
42
43/* check pinned file's alignment status of physical blocks */
44#define FILE_NOT_ALIGNED 1
45
46/* For flag in struct node_info */
47enum {
48 IS_CHECKPOINTED, /* is it checkpointed before? */
49 HAS_FSYNCED_INODE, /* is the inode fsynced before? */
50 HAS_LAST_FSYNC, /* has the latest node fsync mark? */
51 IS_DIRTY, /* this nat entry is dirty? */
52 IS_PREALLOC, /* nat entry is preallocated */
53};
54
55/* For node type in __get_node_folio() */
56enum node_type {
57 NODE_TYPE_REGULAR,
58 NODE_TYPE_INODE,
59 NODE_TYPE_XATTR,
60 NODE_TYPE_NON_INODE,
61};
62
63/*
64 * For node information
65 */
66struct node_info {
67 nid_t nid; /* node id */
68 nid_t ino; /* inode number of the node's owner */
69 block_t blk_addr; /* block address of the node */
70 unsigned char version; /* version of the node */
71 unsigned char flag; /* for node information bits */
72};
73
74struct nat_entry {
75 struct list_head list; /* for clean or dirty nat list */
76 struct node_info ni; /* in-memory node information */
77};
78
79#define nat_get_nid(nat) ((nat)->ni.nid)
80#define nat_set_nid(nat, n) ((nat)->ni.nid = (n))
81#define nat_get_blkaddr(nat) ((nat)->ni.blk_addr)
82#define nat_set_blkaddr(nat, b) ((nat)->ni.blk_addr = (b))
83#define nat_get_ino(nat) ((nat)->ni.ino)
84#define nat_set_ino(nat, i) ((nat)->ni.ino = (i))
85#define nat_get_version(nat) ((nat)->ni.version)
86#define nat_set_version(nat, v) ((nat)->ni.version = (v))
87
88#define inc_node_version(version) (++(version))
89
90static inline void copy_node_info(struct node_info *dst,
91 struct node_info *src)
92{
93 dst->nid = src->nid;
94 dst->ino = src->ino;
95 dst->blk_addr = src->blk_addr;
96 dst->version = src->version;
97 /* should not copy flag here */
98}
99
100static inline void set_nat_flag(struct nat_entry *ne,
101 unsigned int type, bool set)
102{
103 if (set)
104 ne->ni.flag |= BIT(type);
105 else
106 ne->ni.flag &= ~BIT(type);
107}
108
109static inline bool get_nat_flag(struct nat_entry *ne, unsigned int type)
110{
111 return ne->ni.flag & BIT(type);
112}
113
114static inline void nat_reset_flag(struct nat_entry *ne)
115{
116 /* these states can be set only after checkpoint was done */
117 set_nat_flag(ne, IS_CHECKPOINTED, true);
118 set_nat_flag(ne, HAS_FSYNCED_INODE, false);
119 set_nat_flag(ne, HAS_LAST_FSYNC, true);
120}
121
122static inline void node_info_from_raw_nat(struct node_info *ni,
123 struct f2fs_nat_entry *raw_ne)
124{
125 ni->ino = le32_to_cpu(raw_ne->ino);
126 ni->blk_addr = le32_to_cpu(raw_ne->block_addr);
127 ni->version = raw_ne->version;
128}
129
130static inline void raw_nat_from_node_info(struct f2fs_nat_entry *raw_ne,
131 struct node_info *ni)
132{
133 raw_ne->ino = cpu_to_le32(ni->ino);
134 raw_ne->block_addr = cpu_to_le32(ni->blk_addr);
135 raw_ne->version = ni->version;
136}
137
138static inline bool excess_dirty_nats(struct f2fs_sb_info *sbi)
139{
140 return NM_I(sbi)->nat_cnt[DIRTY_NAT] >= NM_I(sbi)->max_nid *
141 NM_I(sbi)->dirty_nats_ratio / 100;
142}
143
144static inline bool excess_cached_nats(struct f2fs_sb_info *sbi)
145{
146 return NM_I(sbi)->nat_cnt[TOTAL_NAT] >= DEF_NAT_CACHE_THRESHOLD;
147}
148
149enum mem_type {
150 FREE_NIDS, /* indicates the free nid list */
151 NAT_ENTRIES, /* indicates the cached nat entry */
152 DIRTY_DENTS, /* indicates dirty dentry pages */
153 INO_ENTRIES, /* indicates inode entries */
154 READ_EXTENT_CACHE, /* indicates read extent cache */
155 AGE_EXTENT_CACHE, /* indicates age extent cache */
156 DISCARD_CACHE, /* indicates memory of cached discard cmds */
157 COMPRESS_PAGE, /* indicates memory of cached compressed pages */
158 BASE_CHECK, /* check kernel status */
159};
160
161struct nat_entry_set {
162 struct list_head set_list; /* link with other nat sets */
163 struct list_head entry_list; /* link with dirty nat entries */
164 nid_t set; /* set number*/
165 unsigned int entry_cnt; /* the # of nat entries in set */
166};
167
168struct free_nid {
169 struct list_head list; /* for free node id list */
170 nid_t nid; /* node id */
171 int state; /* in use or not: FREE_NID or PREALLOC_NID */
172};
173
174static inline void next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid)
175{
176 struct f2fs_nm_info *nm_i = NM_I(sbi);
177 struct free_nid *fnid;
178
179 spin_lock(&nm_i->nid_list_lock);
180 if (nm_i->nid_cnt[FREE_NID] <= 0) {
181 spin_unlock(&nm_i->nid_list_lock);
182 return;
183 }
184 fnid = list_first_entry(&nm_i->free_nid_list, struct free_nid, list);
185 *nid = fnid->nid;
186 spin_unlock(&nm_i->nid_list_lock);
187}
188
189/*
190 * inline functions
191 */
192static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr)
193{
194 struct f2fs_nm_info *nm_i = NM_I(sbi);
195
196#ifdef CONFIG_F2FS_CHECK_FS
197 if (memcmp(nm_i->nat_bitmap, nm_i->nat_bitmap_mir,
198 nm_i->bitmap_size))
199 f2fs_bug_on(sbi, 1);
200#endif
201 memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size);
202}
203
204static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start)
205{
206 struct f2fs_nm_info *nm_i = NM_I(sbi);
207 pgoff_t block_off;
208 pgoff_t block_addr;
209
210 /*
211 * block_off = segment_off * 512 + off_in_segment
212 * OLD = (segment_off * 512) * 2 + off_in_segment
213 * NEW = 2 * (segment_off * 512 + off_in_segment) - off_in_segment
214 */
215 block_off = NAT_BLOCK_OFFSET(start);
216
217 block_addr = (pgoff_t)(nm_i->nat_blkaddr +
218 (block_off << 1) -
219 (block_off & (BLKS_PER_SEG(sbi) - 1)));
220
221 if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
222 block_addr += BLKS_PER_SEG(sbi);
223
224 return block_addr;
225}
226
227static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi,
228 pgoff_t block_addr)
229{
230 struct f2fs_nm_info *nm_i = NM_I(sbi);
231
232 block_addr -= nm_i->nat_blkaddr;
233 block_addr ^= BIT(sbi->log_blocks_per_seg);
234 return block_addr + nm_i->nat_blkaddr;
235}
236
237static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid)
238{
239 unsigned int block_off = NAT_BLOCK_OFFSET(start_nid);
240
241 f2fs_change_bit(block_off, nm_i->nat_bitmap);
242#ifdef CONFIG_F2FS_CHECK_FS
243 f2fs_change_bit(block_off, nm_i->nat_bitmap_mir);
244#endif
245}
246
247static inline nid_t ino_of_node(const struct folio *node_folio)
248{
249 struct f2fs_node *rn = F2FS_NODE(node_folio);
250 return le32_to_cpu(rn->footer.ino);
251}
252
253static inline nid_t nid_of_node(const struct folio *node_folio)
254{
255 struct f2fs_node *rn = F2FS_NODE(node_folio);
256 return le32_to_cpu(rn->footer.nid);
257}
258
259static inline unsigned int ofs_of_node(const struct folio *node_folio)
260{
261 struct f2fs_node *rn = F2FS_NODE(node_folio);
262 unsigned flag = le32_to_cpu(rn->footer.flag);
263 return flag >> OFFSET_BIT_SHIFT;
264}
265
266static inline __u64 cpver_of_node(const struct folio *node_folio)
267{
268 struct f2fs_node *rn = F2FS_NODE(node_folio);
269 return le64_to_cpu(rn->footer.cp_ver);
270}
271
272static inline block_t next_blkaddr_of_node(const struct folio *node_folio)
273{
274 struct f2fs_node *rn = F2FS_NODE(node_folio);
275 return le32_to_cpu(rn->footer.next_blkaddr);
276}
277
278static inline void fill_node_footer(const struct folio *folio, nid_t nid,
279 nid_t ino, unsigned int ofs, bool reset)
280{
281 struct f2fs_node *rn = F2FS_NODE(folio);
282 unsigned int old_flag = 0;
283
284 if (reset)
285 memset(rn, 0, sizeof(*rn));
286 else
287 old_flag = le32_to_cpu(rn->footer.flag);
288
289 rn->footer.nid = cpu_to_le32(nid);
290 rn->footer.ino = cpu_to_le32(ino);
291
292 /* should remain old flag bits such as COLD_BIT_SHIFT */
293 rn->footer.flag = cpu_to_le32((ofs << OFFSET_BIT_SHIFT) |
294 (old_flag & OFFSET_BIT_MASK));
295}
296
297static inline void copy_node_footer(const struct folio *dst,
298 const struct folio *src)
299{
300 struct f2fs_node *src_rn = F2FS_NODE(src);
301 struct f2fs_node *dst_rn = F2FS_NODE(dst);
302 memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer));
303}
304
305static inline void fill_node_footer_blkaddr(struct folio *folio, block_t blkaddr)
306{
307 struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_F_SB(folio));
308 struct f2fs_node *rn = F2FS_NODE(folio);
309 __u64 cp_ver = cur_cp_version(ckpt);
310
311 if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG))
312 cp_ver |= (cur_cp_crc(ckpt) << 32);
313
314 rn->footer.cp_ver = cpu_to_le64(cp_ver);
315 rn->footer.next_blkaddr = cpu_to_le32(blkaddr);
316}
317
318static inline bool is_recoverable_dnode(const struct folio *folio)
319{
320 struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_F_SB(folio));
321 __u64 cp_ver = cur_cp_version(ckpt);
322
323 /* Don't care crc part, if fsck.f2fs sets it. */
324 if (__is_set_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG))
325 return (cp_ver << 32) == (cpver_of_node(folio) << 32);
326
327 if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG))
328 cp_ver |= (cur_cp_crc(ckpt) << 32);
329
330 return cp_ver == cpver_of_node(folio);
331}
332
333/*
334 * f2fs assigns the following node offsets described as (num).
335 * N = NIDS_PER_BLOCK
336 *
337 * Inode block (0)
338 * |- direct node (1)
339 * |- direct node (2)
340 * |- indirect node (3)
341 * | `- direct node (4 => 4 + N - 1)
342 * |- indirect node (4 + N)
343 * | `- direct node (5 + N => 5 + 2N - 1)
344 * `- double indirect node (5 + 2N)
345 * `- indirect node (6 + 2N)
346 * `- direct node
347 * ......
348 * `- indirect node ((6 + 2N) + x(N + 1))
349 * `- direct node
350 * ......
351 * `- indirect node ((6 + 2N) + (N - 1)(N + 1))
352 * `- direct node
353 */
354static inline bool IS_DNODE(const struct folio *node_folio)
355{
356 unsigned int ofs = ofs_of_node(node_folio);
357
358 if (f2fs_has_xattr_block(ofs))
359 return true;
360
361 if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK ||
362 ofs == 5 + 2 * NIDS_PER_BLOCK)
363 return false;
364 if (ofs >= 6 + 2 * NIDS_PER_BLOCK) {
365 ofs -= 6 + 2 * NIDS_PER_BLOCK;
366 if (!((long int)ofs % (NIDS_PER_BLOCK + 1)))
367 return false;
368 }
369 return true;
370}
371
372static inline int set_nid(struct folio *folio, int off, nid_t nid, bool i)
373{
374 struct f2fs_node *rn = F2FS_NODE(folio);
375
376 f2fs_folio_wait_writeback(folio, NODE, true, true);
377
378 if (i)
379 rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid);
380 else
381 rn->in.nid[off] = cpu_to_le32(nid);
382 return folio_mark_dirty(folio);
383}
384
385static inline nid_t get_nid(const struct folio *folio, int off, bool i)
386{
387 struct f2fs_node *rn = F2FS_NODE(folio);
388
389 if (i)
390 return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]);
391 return le32_to_cpu(rn->in.nid[off]);
392}
393
394/*
395 * Coldness identification:
396 * - Mark cold files in f2fs_inode_info
397 * - Mark cold node blocks in their node footer
398 * - Mark cold data pages in page cache
399 */
400
401static inline int is_node(const struct folio *folio, int type)
402{
403 struct f2fs_node *rn = F2FS_NODE(folio);
404 return le32_to_cpu(rn->footer.flag) & BIT(type);
405}
406
407#define is_cold_node(folio) is_node(folio, COLD_BIT_SHIFT)
408#define is_fsync_dnode(folio) is_node(folio, FSYNC_BIT_SHIFT)
409#define is_dent_dnode(folio) is_node(folio, DENT_BIT_SHIFT)
410
411static inline void set_cold_node(const struct folio *folio, bool is_dir)
412{
413 struct f2fs_node *rn = F2FS_NODE(folio);
414 unsigned int flag = le32_to_cpu(rn->footer.flag);
415
416 if (is_dir)
417 flag &= ~BIT(COLD_BIT_SHIFT);
418 else
419 flag |= BIT(COLD_BIT_SHIFT);
420 rn->footer.flag = cpu_to_le32(flag);
421}
422
423static inline void set_mark(struct folio *folio, int mark, int type)
424{
425 struct f2fs_node *rn = F2FS_NODE(folio);
426 unsigned int flag = le32_to_cpu(rn->footer.flag);
427 if (mark)
428 flag |= BIT(type);
429 else
430 flag &= ~BIT(type);
431 rn->footer.flag = cpu_to_le32(flag);
432
433#ifdef CONFIG_F2FS_CHECK_FS
434 f2fs_inode_chksum_set(F2FS_F_SB(folio), folio);
435#endif
436}
437#define set_dentry_mark(folio, mark) set_mark(folio, mark, DENT_BIT_SHIFT)
438#define set_fsync_mark(folio, mark) set_mark(folio, mark, FSYNC_BIT_SHIFT)