Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * linux/fs/ext4/super.c
4 *
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
9 *
10 * from
11 *
12 * linux/fs/minix/inode.c
13 *
14 * Copyright (C) 1991, 1992 Linus Torvalds
15 *
16 * Big-endian to little-endian byte-swapping/bitmaps by
17 * David S. Miller (davem@caip.rutgers.edu), 1995
18 */
19
20#include <linux/module.h>
21#include <linux/string.h>
22#include <linux/fs.h>
23#include <linux/time.h>
24#include <linux/vmalloc.h>
25#include <linux/slab.h>
26#include <linux/init.h>
27#include <linux/blkdev.h>
28#include <linux/backing-dev.h>
29#include <linux/parser.h>
30#include <linux/buffer_head.h>
31#include <linux/exportfs.h>
32#include <linux/vfs.h>
33#include <linux/random.h>
34#include <linux/mount.h>
35#include <linux/namei.h>
36#include <linux/quotaops.h>
37#include <linux/seq_file.h>
38#include <linux/ctype.h>
39#include <linux/log2.h>
40#include <linux/crc16.h>
41#include <linux/dax.h>
42#include <linux/uaccess.h>
43#include <linux/iversion.h>
44#include <linux/unicode.h>
45#include <linux/part_stat.h>
46#include <linux/kthread.h>
47#include <linux/freezer.h>
48#include <linux/fsnotify.h>
49#include <linux/fs_context.h>
50#include <linux/fs_parser.h>
51
52#include "ext4.h"
53#include "ext4_extents.h" /* Needed for trace points definition */
54#include "ext4_jbd2.h"
55#include "xattr.h"
56#include "acl.h"
57#include "mballoc.h"
58#include "fsmap.h"
59
60#define CREATE_TRACE_POINTS
61#include <trace/events/ext4.h>
62
63static struct ext4_lazy_init *ext4_li_info;
64static DEFINE_MUTEX(ext4_li_mtx);
65static struct ratelimit_state ext4_mount_msg_ratelimit;
66
67static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
68 unsigned long journal_devnum);
69static int ext4_show_options(struct seq_file *seq, struct dentry *root);
70static void ext4_update_super(struct super_block *sb);
71static int ext4_commit_super(struct super_block *sb);
72static int ext4_mark_recovery_complete(struct super_block *sb,
73 struct ext4_super_block *es);
74static int ext4_clear_journal_err(struct super_block *sb,
75 struct ext4_super_block *es);
76static int ext4_sync_fs(struct super_block *sb, int wait);
77static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
78static int ext4_unfreeze(struct super_block *sb);
79static int ext4_freeze(struct super_block *sb);
80static inline int ext2_feature_set_ok(struct super_block *sb);
81static inline int ext3_feature_set_ok(struct super_block *sb);
82static void ext4_unregister_li_request(struct super_block *sb);
83static void ext4_clear_request_list(void);
84static struct inode *ext4_get_journal_inode(struct super_block *sb,
85 unsigned int journal_inum);
86static int ext4_validate_options(struct fs_context *fc);
87static int ext4_check_opt_consistency(struct fs_context *fc,
88 struct super_block *sb);
89static void ext4_apply_options(struct fs_context *fc, struct super_block *sb);
90static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param);
91static int ext4_get_tree(struct fs_context *fc);
92static int ext4_reconfigure(struct fs_context *fc);
93static void ext4_fc_free(struct fs_context *fc);
94static int ext4_init_fs_context(struct fs_context *fc);
95static void ext4_kill_sb(struct super_block *sb);
96static const struct fs_parameter_spec ext4_param_specs[];
97
98/*
99 * Lock ordering
100 *
101 * page fault path:
102 * mmap_lock -> sb_start_pagefault -> invalidate_lock (r) -> transaction start
103 * -> page lock -> i_data_sem (rw)
104 *
105 * buffered write path:
106 * sb_start_write -> i_mutex -> mmap_lock
107 * sb_start_write -> i_mutex -> transaction start -> page lock ->
108 * i_data_sem (rw)
109 *
110 * truncate:
111 * sb_start_write -> i_mutex -> invalidate_lock (w) -> i_mmap_rwsem (w) ->
112 * page lock
113 * sb_start_write -> i_mutex -> invalidate_lock (w) -> transaction start ->
114 * i_data_sem (rw)
115 *
116 * direct IO:
117 * sb_start_write -> i_mutex -> mmap_lock
118 * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw)
119 *
120 * writepages:
121 * transaction start -> page lock(s) -> i_data_sem (rw)
122 */
123
124static const struct fs_context_operations ext4_context_ops = {
125 .parse_param = ext4_parse_param,
126 .get_tree = ext4_get_tree,
127 .reconfigure = ext4_reconfigure,
128 .free = ext4_fc_free,
129};
130
131
132#if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
133static struct file_system_type ext2_fs_type = {
134 .owner = THIS_MODULE,
135 .name = "ext2",
136 .init_fs_context = ext4_init_fs_context,
137 .parameters = ext4_param_specs,
138 .kill_sb = ext4_kill_sb,
139 .fs_flags = FS_REQUIRES_DEV,
140};
141MODULE_ALIAS_FS("ext2");
142MODULE_ALIAS("ext2");
143#define IS_EXT2_SB(sb) ((sb)->s_type == &ext2_fs_type)
144#else
145#define IS_EXT2_SB(sb) (0)
146#endif
147
148
149static struct file_system_type ext3_fs_type = {
150 .owner = THIS_MODULE,
151 .name = "ext3",
152 .init_fs_context = ext4_init_fs_context,
153 .parameters = ext4_param_specs,
154 .kill_sb = ext4_kill_sb,
155 .fs_flags = FS_REQUIRES_DEV,
156};
157MODULE_ALIAS_FS("ext3");
158MODULE_ALIAS("ext3");
159#define IS_EXT3_SB(sb) ((sb)->s_type == &ext3_fs_type)
160
161
162static inline void __ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags,
163 bh_end_io_t *end_io, bool simu_fail)
164{
165 if (simu_fail) {
166 clear_buffer_uptodate(bh);
167 unlock_buffer(bh);
168 return;
169 }
170
171 /*
172 * buffer's verified bit is no longer valid after reading from
173 * disk again due to write out error, clear it to make sure we
174 * recheck the buffer contents.
175 */
176 clear_buffer_verified(bh);
177
178 bh->b_end_io = end_io ? end_io : end_buffer_read_sync;
179 get_bh(bh);
180 submit_bh(REQ_OP_READ | op_flags, bh);
181}
182
183void ext4_read_bh_nowait(struct buffer_head *bh, blk_opf_t op_flags,
184 bh_end_io_t *end_io, bool simu_fail)
185{
186 BUG_ON(!buffer_locked(bh));
187
188 if (ext4_buffer_uptodate(bh)) {
189 unlock_buffer(bh);
190 return;
191 }
192 __ext4_read_bh(bh, op_flags, end_io, simu_fail);
193}
194
195int ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags,
196 bh_end_io_t *end_io, bool simu_fail)
197{
198 BUG_ON(!buffer_locked(bh));
199
200 if (ext4_buffer_uptodate(bh)) {
201 unlock_buffer(bh);
202 return 0;
203 }
204
205 __ext4_read_bh(bh, op_flags, end_io, simu_fail);
206
207 wait_on_buffer(bh);
208 if (buffer_uptodate(bh))
209 return 0;
210 return -EIO;
211}
212
213int ext4_read_bh_lock(struct buffer_head *bh, blk_opf_t op_flags, bool wait)
214{
215 lock_buffer(bh);
216 if (!wait) {
217 ext4_read_bh_nowait(bh, op_flags, NULL, false);
218 return 0;
219 }
220 return ext4_read_bh(bh, op_flags, NULL, false);
221}
222
223/*
224 * This works like __bread_gfp() except it uses ERR_PTR for error
225 * returns. Currently with sb_bread it's impossible to distinguish
226 * between ENOMEM and EIO situations (since both result in a NULL
227 * return.
228 */
229static struct buffer_head *__ext4_sb_bread_gfp(struct super_block *sb,
230 sector_t block,
231 blk_opf_t op_flags, gfp_t gfp)
232{
233 struct buffer_head *bh;
234 int ret;
235
236 bh = sb_getblk_gfp(sb, block, gfp);
237 if (bh == NULL)
238 return ERR_PTR(-ENOMEM);
239 if (ext4_buffer_uptodate(bh))
240 return bh;
241
242 ret = ext4_read_bh_lock(bh, REQ_META | op_flags, true);
243 if (ret) {
244 put_bh(bh);
245 return ERR_PTR(ret);
246 }
247 return bh;
248}
249
250struct buffer_head *ext4_sb_bread(struct super_block *sb, sector_t block,
251 blk_opf_t op_flags)
252{
253 gfp_t gfp = mapping_gfp_constraint(sb->s_bdev->bd_mapping,
254 ~__GFP_FS) | __GFP_MOVABLE;
255
256 return __ext4_sb_bread_gfp(sb, block, op_flags, gfp);
257}
258
259struct buffer_head *ext4_sb_bread_unmovable(struct super_block *sb,
260 sector_t block)
261{
262 gfp_t gfp = mapping_gfp_constraint(sb->s_bdev->bd_mapping,
263 ~__GFP_FS);
264
265 return __ext4_sb_bread_gfp(sb, block, 0, gfp);
266}
267
268struct buffer_head *ext4_sb_bread_nofail(struct super_block *sb,
269 sector_t block)
270{
271 gfp_t gfp = mapping_gfp_constraint(sb->s_bdev->bd_mapping,
272 ~__GFP_FS) | __GFP_MOVABLE | __GFP_NOFAIL;
273
274 return __ext4_sb_bread_gfp(sb, block, 0, gfp);
275}
276
277void ext4_sb_breadahead_unmovable(struct super_block *sb, sector_t block)
278{
279 struct buffer_head *bh = bdev_getblk(sb->s_bdev, block,
280 sb->s_blocksize, GFP_NOWAIT);
281
282 if (likely(bh)) {
283 if (trylock_buffer(bh))
284 ext4_read_bh_nowait(bh, REQ_RAHEAD, NULL, false);
285 brelse(bh);
286 }
287}
288
289static int ext4_verify_csum_type(struct super_block *sb,
290 struct ext4_super_block *es)
291{
292 if (!ext4_has_feature_metadata_csum(sb))
293 return 1;
294
295 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
296}
297
298__le32 ext4_superblock_csum(struct ext4_super_block *es)
299{
300 int offset = offsetof(struct ext4_super_block, s_checksum);
301 __u32 csum;
302
303 csum = ext4_chksum(~0, (char *)es, offset);
304
305 return cpu_to_le32(csum);
306}
307
308static int ext4_superblock_csum_verify(struct super_block *sb,
309 struct ext4_super_block *es)
310{
311 if (!ext4_has_feature_metadata_csum(sb))
312 return 1;
313
314 return es->s_checksum == ext4_superblock_csum(es);
315}
316
317void ext4_superblock_csum_set(struct super_block *sb)
318{
319 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
320
321 if (!ext4_has_feature_metadata_csum(sb))
322 return;
323
324 es->s_checksum = ext4_superblock_csum(es);
325}
326
327ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
328 struct ext4_group_desc *bg)
329{
330 return le32_to_cpu(bg->bg_block_bitmap_lo) |
331 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
332 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
333}
334
335ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
336 struct ext4_group_desc *bg)
337{
338 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
339 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
340 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
341}
342
343ext4_fsblk_t ext4_inode_table(struct super_block *sb,
344 struct ext4_group_desc *bg)
345{
346 return le32_to_cpu(bg->bg_inode_table_lo) |
347 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
348 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
349}
350
351__u32 ext4_free_group_clusters(struct super_block *sb,
352 struct ext4_group_desc *bg)
353{
354 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
355 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
356 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
357}
358
359__u32 ext4_free_inodes_count(struct super_block *sb,
360 struct ext4_group_desc *bg)
361{
362 return le16_to_cpu(READ_ONCE(bg->bg_free_inodes_count_lo)) |
363 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
364 (__u32)le16_to_cpu(READ_ONCE(bg->bg_free_inodes_count_hi)) << 16 : 0);
365}
366
367__u32 ext4_used_dirs_count(struct super_block *sb,
368 struct ext4_group_desc *bg)
369{
370 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
371 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
372 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
373}
374
375__u32 ext4_itable_unused_count(struct super_block *sb,
376 struct ext4_group_desc *bg)
377{
378 return le16_to_cpu(bg->bg_itable_unused_lo) |
379 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
380 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
381}
382
383void ext4_block_bitmap_set(struct super_block *sb,
384 struct ext4_group_desc *bg, ext4_fsblk_t blk)
385{
386 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
387 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
388 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
389}
390
391void ext4_inode_bitmap_set(struct super_block *sb,
392 struct ext4_group_desc *bg, ext4_fsblk_t blk)
393{
394 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
395 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
396 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
397}
398
399void ext4_inode_table_set(struct super_block *sb,
400 struct ext4_group_desc *bg, ext4_fsblk_t blk)
401{
402 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
403 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
404 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
405}
406
407void ext4_free_group_clusters_set(struct super_block *sb,
408 struct ext4_group_desc *bg, __u32 count)
409{
410 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
411 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
412 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
413}
414
415void ext4_free_inodes_set(struct super_block *sb,
416 struct ext4_group_desc *bg, __u32 count)
417{
418 WRITE_ONCE(bg->bg_free_inodes_count_lo, cpu_to_le16((__u16)count));
419 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
420 WRITE_ONCE(bg->bg_free_inodes_count_hi, cpu_to_le16(count >> 16));
421}
422
423void ext4_used_dirs_set(struct super_block *sb,
424 struct ext4_group_desc *bg, __u32 count)
425{
426 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
427 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
428 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
429}
430
431void ext4_itable_unused_set(struct super_block *sb,
432 struct ext4_group_desc *bg, __u32 count)
433{
434 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
435 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
436 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
437}
438
439static void __ext4_update_tstamp(__le32 *lo, __u8 *hi, time64_t now)
440{
441 now = clamp_val(now, 0, (1ull << 40) - 1);
442
443 *lo = cpu_to_le32(lower_32_bits(now));
444 *hi = upper_32_bits(now);
445}
446
447static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi)
448{
449 return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo);
450}
451#define ext4_update_tstamp(es, tstamp) \
452 __ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi, \
453 ktime_get_real_seconds())
454#define ext4_get_tstamp(es, tstamp) \
455 __ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
456
457/*
458 * The ext4_maybe_update_superblock() function checks and updates the
459 * superblock if needed.
460 *
461 * This function is designed to update the on-disk superblock only under
462 * certain conditions to prevent excessive disk writes and unnecessary
463 * waking of the disk from sleep. The superblock will be updated if:
464 * 1. More than sbi->s_sb_update_sec (def: 1 hour) has passed since the last
465 * superblock update
466 * 2. More than sbi->s_sb_update_kb (def: 16MB) kbs have been written since the
467 * last superblock update.
468 *
469 * @sb: The superblock
470 */
471static void ext4_maybe_update_superblock(struct super_block *sb)
472{
473 struct ext4_sb_info *sbi = EXT4_SB(sb);
474 struct ext4_super_block *es = sbi->s_es;
475 journal_t *journal = sbi->s_journal;
476 time64_t now;
477 __u64 last_update;
478 __u64 lifetime_write_kbytes;
479 __u64 diff_size;
480
481 if (ext4_emergency_state(sb) || sb_rdonly(sb) ||
482 !(sb->s_flags & SB_ACTIVE) || !journal ||
483 journal->j_flags & JBD2_UNMOUNT)
484 return;
485
486 now = ktime_get_real_seconds();
487 last_update = ext4_get_tstamp(es, s_wtime);
488
489 if (likely(now - last_update < sbi->s_sb_update_sec))
490 return;
491
492 lifetime_write_kbytes = sbi->s_kbytes_written +
493 ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) -
494 sbi->s_sectors_written_start) >> 1);
495
496 /* Get the number of kilobytes not written to disk to account
497 * for statistics and compare with a multiple of 16 MB. This
498 * is used to determine when the next superblock commit should
499 * occur (i.e. not more often than once per 16MB if there was
500 * less written in an hour).
501 */
502 diff_size = lifetime_write_kbytes - le64_to_cpu(es->s_kbytes_written);
503
504 if (diff_size > sbi->s_sb_update_kb)
505 schedule_work(&EXT4_SB(sb)->s_sb_upd_work);
506}
507
508static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
509{
510 struct super_block *sb = journal->j_private;
511
512 BUG_ON(txn->t_state == T_FINISHED);
513
514 ext4_process_freed_data(sb, txn->t_tid);
515 ext4_maybe_update_superblock(sb);
516}
517
518static bool ext4_journalled_writepage_needs_redirty(struct jbd2_inode *jinode,
519 struct folio *folio)
520{
521 struct buffer_head *bh, *head;
522 struct journal_head *jh;
523
524 bh = head = folio_buffers(folio);
525 do {
526 /*
527 * We have to redirty a page in these cases:
528 * 1) If buffer is dirty, it means the page was dirty because it
529 * contains a buffer that needs checkpointing. So the dirty bit
530 * needs to be preserved so that checkpointing writes the buffer
531 * properly.
532 * 2) If buffer is not part of the committing transaction
533 * (we may have just accidentally come across this buffer because
534 * inode range tracking is not exact) or if the currently running
535 * transaction already contains this buffer as well, dirty bit
536 * needs to be preserved so that the buffer gets writeprotected
537 * properly on running transaction's commit.
538 */
539 jh = bh2jh(bh);
540 if (buffer_dirty(bh) ||
541 (jh && (jh->b_transaction != jinode->i_transaction ||
542 jh->b_next_transaction)))
543 return true;
544 } while ((bh = bh->b_this_page) != head);
545
546 return false;
547}
548
549static int ext4_journalled_submit_inode_data_buffers(struct jbd2_inode *jinode)
550{
551 struct address_space *mapping = jinode->i_vfs_inode->i_mapping;
552 struct writeback_control wbc = {
553 .sync_mode = WB_SYNC_ALL,
554 .nr_to_write = LONG_MAX,
555 .range_start = jinode->i_dirty_start,
556 .range_end = jinode->i_dirty_end,
557 };
558 struct folio *folio = NULL;
559 int error;
560
561 /*
562 * writeback_iter() already checks for dirty pages and calls
563 * folio_clear_dirty_for_io(), which we want to write protect the
564 * folios.
565 *
566 * However, we may have to redirty a folio sometimes.
567 */
568 while ((folio = writeback_iter(mapping, &wbc, folio, &error))) {
569 if (ext4_journalled_writepage_needs_redirty(jinode, folio))
570 folio_redirty_for_writepage(&wbc, folio);
571 folio_unlock(folio);
572 }
573
574 return error;
575}
576
577static int ext4_journal_submit_inode_data_buffers(struct jbd2_inode *jinode)
578{
579 int ret;
580
581 if (ext4_should_journal_data(jinode->i_vfs_inode))
582 ret = ext4_journalled_submit_inode_data_buffers(jinode);
583 else
584 ret = ext4_normal_submit_inode_data_buffers(jinode);
585 return ret;
586}
587
588static int ext4_journal_finish_inode_data_buffers(struct jbd2_inode *jinode)
589{
590 int ret = 0;
591
592 if (!ext4_should_journal_data(jinode->i_vfs_inode))
593 ret = jbd2_journal_finish_inode_data_buffers(jinode);
594
595 return ret;
596}
597
598static bool system_going_down(void)
599{
600 return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
601 || system_state == SYSTEM_RESTART;
602}
603
604struct ext4_err_translation {
605 int code;
606 int errno;
607};
608
609#define EXT4_ERR_TRANSLATE(err) { .code = EXT4_ERR_##err, .errno = err }
610
611static struct ext4_err_translation err_translation[] = {
612 EXT4_ERR_TRANSLATE(EIO),
613 EXT4_ERR_TRANSLATE(ENOMEM),
614 EXT4_ERR_TRANSLATE(EFSBADCRC),
615 EXT4_ERR_TRANSLATE(EFSCORRUPTED),
616 EXT4_ERR_TRANSLATE(ENOSPC),
617 EXT4_ERR_TRANSLATE(ENOKEY),
618 EXT4_ERR_TRANSLATE(EROFS),
619 EXT4_ERR_TRANSLATE(EFBIG),
620 EXT4_ERR_TRANSLATE(EEXIST),
621 EXT4_ERR_TRANSLATE(ERANGE),
622 EXT4_ERR_TRANSLATE(EOVERFLOW),
623 EXT4_ERR_TRANSLATE(EBUSY),
624 EXT4_ERR_TRANSLATE(ENOTDIR),
625 EXT4_ERR_TRANSLATE(ENOTEMPTY),
626 EXT4_ERR_TRANSLATE(ESHUTDOWN),
627 EXT4_ERR_TRANSLATE(EFAULT),
628};
629
630static int ext4_errno_to_code(int errno)
631{
632 int i;
633
634 for (i = 0; i < ARRAY_SIZE(err_translation); i++)
635 if (err_translation[i].errno == errno)
636 return err_translation[i].code;
637 return EXT4_ERR_UNKNOWN;
638}
639
640static void save_error_info(struct super_block *sb, int error,
641 __u32 ino, __u64 block,
642 const char *func, unsigned int line)
643{
644 struct ext4_sb_info *sbi = EXT4_SB(sb);
645
646 /* We default to EFSCORRUPTED error... */
647 if (error == 0)
648 error = EFSCORRUPTED;
649
650 spin_lock(&sbi->s_error_lock);
651 sbi->s_add_error_count++;
652 sbi->s_last_error_code = error;
653 sbi->s_last_error_line = line;
654 sbi->s_last_error_ino = ino;
655 sbi->s_last_error_block = block;
656 sbi->s_last_error_func = func;
657 sbi->s_last_error_time = ktime_get_real_seconds();
658 if (!sbi->s_first_error_time) {
659 sbi->s_first_error_code = error;
660 sbi->s_first_error_line = line;
661 sbi->s_first_error_ino = ino;
662 sbi->s_first_error_block = block;
663 sbi->s_first_error_func = func;
664 sbi->s_first_error_time = sbi->s_last_error_time;
665 }
666 spin_unlock(&sbi->s_error_lock);
667}
668
669/* Deal with the reporting of failure conditions on a filesystem such as
670 * inconsistencies detected or read IO failures.
671 *
672 * On ext2, we can store the error state of the filesystem in the
673 * superblock. That is not possible on ext4, because we may have other
674 * write ordering constraints on the superblock which prevent us from
675 * writing it out straight away; and given that the journal is about to
676 * be aborted, we can't rely on the current, or future, transactions to
677 * write out the superblock safely.
678 *
679 * We'll just use the jbd2_journal_abort() error code to record an error in
680 * the journal instead. On recovery, the journal will complain about
681 * that error until we've noted it down and cleared it.
682 *
683 * If force_ro is set, we unconditionally force the filesystem into an
684 * ABORT|READONLY state, unless the error response on the fs has been set to
685 * panic in which case we take the easy way out and panic immediately. This is
686 * used to deal with unrecoverable failures such as journal IO errors or ENOMEM
687 * at a critical moment in log management.
688 */
689static void ext4_handle_error(struct super_block *sb, bool force_ro, int error,
690 __u32 ino, __u64 block,
691 const char *func, unsigned int line)
692{
693 journal_t *journal = EXT4_SB(sb)->s_journal;
694 bool continue_fs = !force_ro && test_opt(sb, ERRORS_CONT);
695
696 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
697 if (test_opt(sb, WARN_ON_ERROR))
698 WARN_ON_ONCE(1);
699
700 if (!continue_fs && !ext4_emergency_ro(sb) && journal)
701 jbd2_journal_abort(journal, -error);
702
703 if (!bdev_read_only(sb->s_bdev)) {
704 save_error_info(sb, error, ino, block, func, line);
705 /*
706 * In case the fs should keep running, we need to writeout
707 * superblock through the journal. Due to lock ordering
708 * constraints, it may not be safe to do it right here so we
709 * defer superblock flushing to a workqueue. We just need to be
710 * careful when the journal is already shutting down. If we get
711 * here in that case, just update the sb directly as the last
712 * transaction won't commit anyway.
713 */
714 if (continue_fs && journal &&
715 !ext4_test_mount_flag(sb, EXT4_MF_JOURNAL_DESTROY))
716 schedule_work(&EXT4_SB(sb)->s_sb_upd_work);
717 else
718 ext4_commit_super(sb);
719 }
720
721 /*
722 * We force ERRORS_RO behavior when system is rebooting. Otherwise we
723 * could panic during 'reboot -f' as the underlying device got already
724 * disabled.
725 */
726 if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) {
727 panic("EXT4-fs (device %s): panic forced after error\n",
728 sb->s_id);
729 }
730
731 if (ext4_emergency_ro(sb) || continue_fs)
732 return;
733
734 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
735 /*
736 * We don't set SB_RDONLY because that requires sb->s_umount
737 * semaphore and setting it without proper remount procedure is
738 * confusing code such as freeze_super() leading to deadlocks
739 * and other problems.
740 */
741 set_bit(EXT4_FLAGS_EMERGENCY_RO, &EXT4_SB(sb)->s_ext4_flags);
742}
743
744static void update_super_work(struct work_struct *work)
745{
746 struct ext4_sb_info *sbi = container_of(work, struct ext4_sb_info,
747 s_sb_upd_work);
748 journal_t *journal = sbi->s_journal;
749 handle_t *handle;
750
751 /*
752 * If the journal is still running, we have to write out superblock
753 * through the journal to avoid collisions of other journalled sb
754 * updates.
755 *
756 * We use directly jbd2 functions here to avoid recursing back into
757 * ext4 error handling code during handling of previous errors.
758 */
759 if (!ext4_emergency_state(sbi->s_sb) &&
760 !sb_rdonly(sbi->s_sb) && journal) {
761 struct buffer_head *sbh = sbi->s_sbh;
762 bool call_notify_err = false;
763
764 handle = jbd2_journal_start(journal, 1);
765 if (IS_ERR(handle))
766 goto write_directly;
767 if (jbd2_journal_get_write_access(handle, sbh)) {
768 jbd2_journal_stop(handle);
769 goto write_directly;
770 }
771
772 if (sbi->s_add_error_count > 0)
773 call_notify_err = true;
774
775 ext4_update_super(sbi->s_sb);
776 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
777 ext4_msg(sbi->s_sb, KERN_ERR, "previous I/O error to "
778 "superblock detected");
779 clear_buffer_write_io_error(sbh);
780 set_buffer_uptodate(sbh);
781 }
782
783 if (jbd2_journal_dirty_metadata(handle, sbh)) {
784 jbd2_journal_stop(handle);
785 goto write_directly;
786 }
787 jbd2_journal_stop(handle);
788
789 if (call_notify_err)
790 ext4_notify_error_sysfs(sbi);
791
792 return;
793 }
794write_directly:
795 /*
796 * Write through journal failed. Write sb directly to get error info
797 * out and hope for the best.
798 */
799 ext4_commit_super(sbi->s_sb);
800 ext4_notify_error_sysfs(sbi);
801}
802
803#define ext4_error_ratelimit(sb) \
804 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \
805 "EXT4-fs error")
806
807void __ext4_error(struct super_block *sb, const char *function,
808 unsigned int line, bool force_ro, int error, __u64 block,
809 const char *fmt, ...)
810{
811 struct va_format vaf;
812 va_list args;
813
814 if (unlikely(ext4_emergency_state(sb)))
815 return;
816
817 trace_ext4_error(sb, function, line);
818 if (ext4_error_ratelimit(sb)) {
819 va_start(args, fmt);
820 vaf.fmt = fmt;
821 vaf.va = &args;
822 printk(KERN_CRIT
823 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
824 sb->s_id, function, line, current->comm, &vaf);
825 va_end(args);
826 }
827 fsnotify_sb_error(sb, NULL, error ? error : EFSCORRUPTED);
828
829 ext4_handle_error(sb, force_ro, error, 0, block, function, line);
830}
831
832void __ext4_error_inode(struct inode *inode, const char *function,
833 unsigned int line, ext4_fsblk_t block, int error,
834 const char *fmt, ...)
835{
836 va_list args;
837 struct va_format vaf;
838
839 if (unlikely(ext4_emergency_state(inode->i_sb)))
840 return;
841
842 trace_ext4_error(inode->i_sb, function, line);
843 if (ext4_error_ratelimit(inode->i_sb)) {
844 va_start(args, fmt);
845 vaf.fmt = fmt;
846 vaf.va = &args;
847 if (block)
848 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
849 "inode #%lu: block %llu: comm %s: %pV\n",
850 inode->i_sb->s_id, function, line, inode->i_ino,
851 block, current->comm, &vaf);
852 else
853 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
854 "inode #%lu: comm %s: %pV\n",
855 inode->i_sb->s_id, function, line, inode->i_ino,
856 current->comm, &vaf);
857 va_end(args);
858 }
859 fsnotify_sb_error(inode->i_sb, inode, error ? error : EFSCORRUPTED);
860
861 ext4_handle_error(inode->i_sb, false, error, inode->i_ino, block,
862 function, line);
863}
864
865void __ext4_error_file(struct file *file, const char *function,
866 unsigned int line, ext4_fsblk_t block,
867 const char *fmt, ...)
868{
869 va_list args;
870 struct va_format vaf;
871 struct inode *inode = file_inode(file);
872 char pathname[80], *path;
873
874 if (unlikely(ext4_emergency_state(inode->i_sb)))
875 return;
876
877 trace_ext4_error(inode->i_sb, function, line);
878 if (ext4_error_ratelimit(inode->i_sb)) {
879 path = file_path(file, pathname, sizeof(pathname));
880 if (IS_ERR(path))
881 path = "(unknown)";
882 va_start(args, fmt);
883 vaf.fmt = fmt;
884 vaf.va = &args;
885 if (block)
886 printk(KERN_CRIT
887 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
888 "block %llu: comm %s: path %s: %pV\n",
889 inode->i_sb->s_id, function, line, inode->i_ino,
890 block, current->comm, path, &vaf);
891 else
892 printk(KERN_CRIT
893 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
894 "comm %s: path %s: %pV\n",
895 inode->i_sb->s_id, function, line, inode->i_ino,
896 current->comm, path, &vaf);
897 va_end(args);
898 }
899 fsnotify_sb_error(inode->i_sb, inode, EFSCORRUPTED);
900
901 ext4_handle_error(inode->i_sb, false, EFSCORRUPTED, inode->i_ino, block,
902 function, line);
903}
904
905const char *ext4_decode_error(struct super_block *sb, int errno,
906 char nbuf[16])
907{
908 char *errstr = NULL;
909
910 switch (errno) {
911 case -EFSCORRUPTED:
912 errstr = "Corrupt filesystem";
913 break;
914 case -EFSBADCRC:
915 errstr = "Filesystem failed CRC";
916 break;
917 case -EIO:
918 errstr = "IO failure";
919 break;
920 case -ENOMEM:
921 errstr = "Out of memory";
922 break;
923 case -EROFS:
924 if (!sb || (EXT4_SB(sb)->s_journal &&
925 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
926 errstr = "Journal has aborted";
927 else
928 errstr = "Readonly filesystem";
929 break;
930 default:
931 /* If the caller passed in an extra buffer for unknown
932 * errors, textualise them now. Else we just return
933 * NULL. */
934 if (nbuf) {
935 /* Check for truncated error codes... */
936 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
937 errstr = nbuf;
938 }
939 break;
940 }
941
942 return errstr;
943}
944
945/* __ext4_std_error decodes expected errors from journaling functions
946 * automatically and invokes the appropriate error response. */
947
948void __ext4_std_error(struct super_block *sb, const char *function,
949 unsigned int line, int errno)
950{
951 char nbuf[16];
952 const char *errstr;
953
954 if (unlikely(ext4_emergency_state(sb)))
955 return;
956
957 /* Special case: if the error is EROFS, and we're not already
958 * inside a transaction, then there's really no point in logging
959 * an error. */
960 if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
961 return;
962
963 if (ext4_error_ratelimit(sb)) {
964 errstr = ext4_decode_error(sb, errno, nbuf);
965 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
966 sb->s_id, function, line, errstr);
967 }
968 fsnotify_sb_error(sb, NULL, errno ? errno : EFSCORRUPTED);
969
970 ext4_handle_error(sb, false, -errno, 0, 0, function, line);
971}
972
973void __ext4_msg(struct super_block *sb,
974 const char *prefix, const char *fmt, ...)
975{
976 struct va_format vaf;
977 va_list args;
978
979 if (sb) {
980 atomic_inc(&EXT4_SB(sb)->s_msg_count);
981 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state),
982 "EXT4-fs"))
983 return;
984 }
985
986 va_start(args, fmt);
987 vaf.fmt = fmt;
988 vaf.va = &args;
989 if (sb)
990 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
991 else
992 printk("%sEXT4-fs: %pV\n", prefix, &vaf);
993 va_end(args);
994}
995
996static int ext4_warning_ratelimit(struct super_block *sb)
997{
998 atomic_inc(&EXT4_SB(sb)->s_warning_count);
999 return ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state),
1000 "EXT4-fs warning");
1001}
1002
1003void __ext4_warning(struct super_block *sb, const char *function,
1004 unsigned int line, const char *fmt, ...)
1005{
1006 struct va_format vaf;
1007 va_list args;
1008
1009 if (!ext4_warning_ratelimit(sb))
1010 return;
1011
1012 va_start(args, fmt);
1013 vaf.fmt = fmt;
1014 vaf.va = &args;
1015 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
1016 sb->s_id, function, line, &vaf);
1017 va_end(args);
1018}
1019
1020void __ext4_warning_inode(const struct inode *inode, const char *function,
1021 unsigned int line, const char *fmt, ...)
1022{
1023 struct va_format vaf;
1024 va_list args;
1025
1026 if (!ext4_warning_ratelimit(inode->i_sb))
1027 return;
1028
1029 va_start(args, fmt);
1030 vaf.fmt = fmt;
1031 vaf.va = &args;
1032 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
1033 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
1034 function, line, inode->i_ino, current->comm, &vaf);
1035 va_end(args);
1036}
1037
1038void __ext4_grp_locked_error(const char *function, unsigned int line,
1039 struct super_block *sb, ext4_group_t grp,
1040 unsigned long ino, ext4_fsblk_t block,
1041 const char *fmt, ...)
1042__releases(bitlock)
1043__acquires(bitlock)
1044{
1045 struct va_format vaf;
1046 va_list args;
1047
1048 if (unlikely(ext4_emergency_state(sb)))
1049 return;
1050
1051 trace_ext4_error(sb, function, line);
1052 if (ext4_error_ratelimit(sb)) {
1053 va_start(args, fmt);
1054 vaf.fmt = fmt;
1055 vaf.va = &args;
1056 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
1057 sb->s_id, function, line, grp);
1058 if (ino)
1059 printk(KERN_CONT "inode %lu: ", ino);
1060 if (block)
1061 printk(KERN_CONT "block %llu:",
1062 (unsigned long long) block);
1063 printk(KERN_CONT "%pV\n", &vaf);
1064 va_end(args);
1065 }
1066
1067 if (test_opt(sb, ERRORS_CONT)) {
1068 if (test_opt(sb, WARN_ON_ERROR))
1069 WARN_ON_ONCE(1);
1070 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
1071 if (!bdev_read_only(sb->s_bdev)) {
1072 save_error_info(sb, EFSCORRUPTED, ino, block, function,
1073 line);
1074 schedule_work(&EXT4_SB(sb)->s_sb_upd_work);
1075 }
1076 return;
1077 }
1078 ext4_unlock_group(sb, grp);
1079 ext4_handle_error(sb, false, EFSCORRUPTED, ino, block, function, line);
1080 /*
1081 * We only get here in the ERRORS_RO case; relocking the group
1082 * may be dangerous, but nothing bad will happen since the
1083 * filesystem will have already been marked read/only and the
1084 * journal has been aborted. We return 1 as a hint to callers
1085 * who might what to use the return value from
1086 * ext4_grp_locked_error() to distinguish between the
1087 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
1088 * aggressively from the ext4 function in question, with a
1089 * more appropriate error code.
1090 */
1091 ext4_lock_group(sb, grp);
1092 return;
1093}
1094
1095void ext4_mark_group_bitmap_corrupted(struct super_block *sb,
1096 ext4_group_t group,
1097 unsigned int flags)
1098{
1099 struct ext4_sb_info *sbi = EXT4_SB(sb);
1100 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1101 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
1102 int ret;
1103
1104 if (!grp || !gdp)
1105 return;
1106 if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) {
1107 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
1108 &grp->bb_state);
1109 if (!ret)
1110 percpu_counter_sub(&sbi->s_freeclusters_counter,
1111 grp->bb_free);
1112 }
1113
1114 if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) {
1115 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT,
1116 &grp->bb_state);
1117 if (!ret && gdp) {
1118 int count;
1119
1120 count = ext4_free_inodes_count(sb, gdp);
1121 percpu_counter_sub(&sbi->s_freeinodes_counter,
1122 count);
1123 }
1124 }
1125}
1126
1127void ext4_update_dynamic_rev(struct super_block *sb)
1128{
1129 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
1130
1131 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
1132 return;
1133
1134 ext4_warning(sb,
1135 "updating to rev %d because of new feature flag, "
1136 "running e2fsck is recommended",
1137 EXT4_DYNAMIC_REV);
1138
1139 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
1140 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
1141 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
1142 /* leave es->s_feature_*compat flags alone */
1143 /* es->s_uuid will be set by e2fsck if empty */
1144
1145 /*
1146 * The rest of the superblock fields should be zero, and if not it
1147 * means they are likely already in use, so leave them alone. We
1148 * can leave it up to e2fsck to clean up any inconsistencies there.
1149 */
1150}
1151
1152static inline struct inode *orphan_list_entry(struct list_head *l)
1153{
1154 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
1155}
1156
1157static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
1158{
1159 struct list_head *l;
1160
1161 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
1162 le32_to_cpu(sbi->s_es->s_last_orphan));
1163
1164 printk(KERN_ERR "sb_info orphan list:\n");
1165 list_for_each(l, &sbi->s_orphan) {
1166 struct inode *inode = orphan_list_entry(l);
1167 printk(KERN_ERR " "
1168 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
1169 inode->i_sb->s_id, inode->i_ino, inode,
1170 inode->i_mode, inode->i_nlink,
1171 NEXT_ORPHAN(inode));
1172 }
1173}
1174
1175#ifdef CONFIG_QUOTA
1176static int ext4_quota_off(struct super_block *sb, int type);
1177
1178static inline void ext4_quotas_off(struct super_block *sb, int type)
1179{
1180 BUG_ON(type > EXT4_MAXQUOTAS);
1181
1182 /* Use our quota_off function to clear inode flags etc. */
1183 for (type--; type >= 0; type--)
1184 ext4_quota_off(sb, type);
1185}
1186
1187/*
1188 * This is a helper function which is used in the mount/remount
1189 * codepaths (which holds s_umount) to fetch the quota file name.
1190 */
1191static inline char *get_qf_name(struct super_block *sb,
1192 struct ext4_sb_info *sbi,
1193 int type)
1194{
1195 return rcu_dereference_protected(sbi->s_qf_names[type],
1196 lockdep_is_held(&sb->s_umount));
1197}
1198#else
1199static inline void ext4_quotas_off(struct super_block *sb, int type)
1200{
1201}
1202#endif
1203
1204static int ext4_percpu_param_init(struct ext4_sb_info *sbi)
1205{
1206 ext4_fsblk_t block;
1207 int err;
1208
1209 block = ext4_count_free_clusters(sbi->s_sb);
1210 ext4_free_blocks_count_set(sbi->s_es, EXT4_C2B(sbi, block));
1211 err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
1212 GFP_KERNEL);
1213 if (!err) {
1214 unsigned long freei = ext4_count_free_inodes(sbi->s_sb);
1215 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
1216 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
1217 GFP_KERNEL);
1218 }
1219 if (!err)
1220 err = percpu_counter_init(&sbi->s_dirs_counter,
1221 ext4_count_dirs(sbi->s_sb), GFP_KERNEL);
1222 if (!err)
1223 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
1224 GFP_KERNEL);
1225 if (!err)
1226 err = percpu_counter_init(&sbi->s_sra_exceeded_retry_limit, 0,
1227 GFP_KERNEL);
1228 if (!err)
1229 err = percpu_init_rwsem(&sbi->s_writepages_rwsem);
1230
1231 if (err)
1232 ext4_msg(sbi->s_sb, KERN_ERR, "insufficient memory");
1233
1234 return err;
1235}
1236
1237static void ext4_percpu_param_destroy(struct ext4_sb_info *sbi)
1238{
1239 percpu_counter_destroy(&sbi->s_freeclusters_counter);
1240 percpu_counter_destroy(&sbi->s_freeinodes_counter);
1241 percpu_counter_destroy(&sbi->s_dirs_counter);
1242 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
1243 percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit);
1244 percpu_free_rwsem(&sbi->s_writepages_rwsem);
1245}
1246
1247static void ext4_group_desc_free(struct ext4_sb_info *sbi)
1248{
1249 struct buffer_head **group_desc;
1250 int i;
1251
1252 rcu_read_lock();
1253 group_desc = rcu_dereference(sbi->s_group_desc);
1254 for (i = 0; i < sbi->s_gdb_count; i++)
1255 brelse(group_desc[i]);
1256 kvfree(group_desc);
1257 rcu_read_unlock();
1258}
1259
1260static void ext4_flex_groups_free(struct ext4_sb_info *sbi)
1261{
1262 struct flex_groups **flex_groups;
1263 int i;
1264
1265 rcu_read_lock();
1266 flex_groups = rcu_dereference(sbi->s_flex_groups);
1267 if (flex_groups) {
1268 for (i = 0; i < sbi->s_flex_groups_allocated; i++)
1269 kvfree(flex_groups[i]);
1270 kvfree(flex_groups);
1271 }
1272 rcu_read_unlock();
1273}
1274
1275static void ext4_put_super(struct super_block *sb)
1276{
1277 struct ext4_sb_info *sbi = EXT4_SB(sb);
1278 struct ext4_super_block *es = sbi->s_es;
1279 int aborted = 0;
1280 int err;
1281
1282 /*
1283 * Unregister sysfs before destroying jbd2 journal.
1284 * Since we could still access attr_journal_task attribute via sysfs
1285 * path which could have sbi->s_journal->j_task as NULL
1286 * Unregister sysfs before flush sbi->s_sb_upd_work.
1287 * Since user may read /proc/fs/ext4/xx/mb_groups during umount, If
1288 * read metadata verify failed then will queue error work.
1289 * update_super_work will call start_this_handle may trigger
1290 * BUG_ON.
1291 */
1292 ext4_unregister_sysfs(sb);
1293
1294 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs unmount"))
1295 ext4_msg(sb, KERN_INFO, "unmounting filesystem %pU.",
1296 &sb->s_uuid);
1297
1298 ext4_unregister_li_request(sb);
1299 ext4_quotas_off(sb, EXT4_MAXQUOTAS);
1300
1301 destroy_workqueue(sbi->rsv_conversion_wq);
1302 ext4_release_orphan_info(sb);
1303
1304 if (sbi->s_journal) {
1305 aborted = is_journal_aborted(sbi->s_journal);
1306 err = ext4_journal_destroy(sbi, sbi->s_journal);
1307 if ((err < 0) && !aborted) {
1308 ext4_abort(sb, -err, "Couldn't clean up the journal");
1309 }
1310 } else
1311 flush_work(&sbi->s_sb_upd_work);
1312
1313 ext4_es_unregister_shrinker(sbi);
1314 timer_shutdown_sync(&sbi->s_err_report);
1315 ext4_release_system_zone(sb);
1316 ext4_mb_release(sb);
1317 ext4_ext_release(sb);
1318
1319 if (!ext4_emergency_state(sb) && !sb_rdonly(sb)) {
1320 if (!aborted) {
1321 ext4_clear_feature_journal_needs_recovery(sb);
1322 ext4_clear_feature_orphan_present(sb);
1323 es->s_state = cpu_to_le16(sbi->s_mount_state);
1324 }
1325 ext4_commit_super(sb);
1326 }
1327
1328 ext4_group_desc_free(sbi);
1329 ext4_flex_groups_free(sbi);
1330
1331 WARN_ON_ONCE(!(sbi->s_mount_state & EXT4_ERROR_FS) &&
1332 percpu_counter_sum(&sbi->s_dirtyclusters_counter));
1333 ext4_percpu_param_destroy(sbi);
1334#ifdef CONFIG_QUOTA
1335 for (int i = 0; i < EXT4_MAXQUOTAS; i++)
1336 kfree(get_qf_name(sb, sbi, i));
1337#endif
1338
1339 /* Debugging code just in case the in-memory inode orphan list
1340 * isn't empty. The on-disk one can be non-empty if we've
1341 * detected an error and taken the fs readonly, but the
1342 * in-memory list had better be clean by this point. */
1343 if (!list_empty(&sbi->s_orphan))
1344 dump_orphan_list(sb, sbi);
1345 ASSERT(list_empty(&sbi->s_orphan));
1346
1347 sync_blockdev(sb->s_bdev);
1348 invalidate_bdev(sb->s_bdev);
1349 if (sbi->s_journal_bdev_file) {
1350 /*
1351 * Invalidate the journal device's buffers. We don't want them
1352 * floating about in memory - the physical journal device may
1353 * hotswapped, and it breaks the `ro-after' testing code.
1354 */
1355 sync_blockdev(file_bdev(sbi->s_journal_bdev_file));
1356 invalidate_bdev(file_bdev(sbi->s_journal_bdev_file));
1357 }
1358
1359 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
1360 sbi->s_ea_inode_cache = NULL;
1361
1362 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
1363 sbi->s_ea_block_cache = NULL;
1364
1365 ext4_stop_mmpd(sbi);
1366
1367 brelse(sbi->s_sbh);
1368 sb->s_fs_info = NULL;
1369 /*
1370 * Now that we are completely done shutting down the
1371 * superblock, we need to actually destroy the kobject.
1372 */
1373 kobject_put(&sbi->s_kobj);
1374 wait_for_completion(&sbi->s_kobj_unregister);
1375 kfree(sbi->s_blockgroup_lock);
1376 fs_put_dax(sbi->s_daxdev, NULL);
1377 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
1378#if IS_ENABLED(CONFIG_UNICODE)
1379 utf8_unload(sb->s_encoding);
1380#endif
1381 kfree(sbi);
1382}
1383
1384static struct kmem_cache *ext4_inode_cachep;
1385
1386/*
1387 * Called inside transaction, so use GFP_NOFS
1388 */
1389static struct inode *ext4_alloc_inode(struct super_block *sb)
1390{
1391 struct ext4_inode_info *ei;
1392
1393 ei = alloc_inode_sb(sb, ext4_inode_cachep, GFP_NOFS);
1394 if (!ei)
1395 return NULL;
1396
1397 inode_set_iversion(&ei->vfs_inode, 1);
1398 ei->i_flags = 0;
1399 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
1400 spin_lock_init(&ei->i_raw_lock);
1401 ei->i_prealloc_node = RB_ROOT;
1402 atomic_set(&ei->i_prealloc_active, 0);
1403 rwlock_init(&ei->i_prealloc_lock);
1404 ext4_es_init_tree(&ei->i_es_tree);
1405 rwlock_init(&ei->i_es_lock);
1406 INIT_LIST_HEAD(&ei->i_es_list);
1407 ei->i_es_all_nr = 0;
1408 ei->i_es_shk_nr = 0;
1409 ei->i_es_shrink_lblk = 0;
1410 ei->i_es_seq = 0;
1411 ei->i_reserved_data_blocks = 0;
1412 spin_lock_init(&(ei->i_block_reservation_lock));
1413 ext4_init_pending_tree(&ei->i_pending_tree);
1414#ifdef CONFIG_QUOTA
1415 ei->i_reserved_quota = 0;
1416 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
1417#endif
1418 ei->jinode = NULL;
1419 INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
1420 spin_lock_init(&ei->i_completed_io_lock);
1421 ei->i_sync_tid = 0;
1422 ei->i_datasync_tid = 0;
1423 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
1424 ext4_fc_init_inode(&ei->vfs_inode);
1425 spin_lock_init(&ei->i_fc_lock);
1426 return &ei->vfs_inode;
1427}
1428
1429static int ext4_drop_inode(struct inode *inode)
1430{
1431 int drop = inode_generic_drop(inode);
1432
1433 if (!drop)
1434 drop = fscrypt_drop_inode(inode);
1435
1436 trace_ext4_drop_inode(inode, drop);
1437 return drop;
1438}
1439
1440static void ext4_free_in_core_inode(struct inode *inode)
1441{
1442 fscrypt_free_inode(inode);
1443 if (!list_empty(&(EXT4_I(inode)->i_fc_list))) {
1444 pr_warn("%s: inode %ld still in fc list",
1445 __func__, inode->i_ino);
1446 }
1447 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1448}
1449
1450static void ext4_destroy_inode(struct inode *inode)
1451{
1452 if (ext4_inode_orphan_tracked(inode)) {
1453 ext4_msg(inode->i_sb, KERN_ERR,
1454 "Inode %lu (%p): inode tracked as orphan!",
1455 inode->i_ino, EXT4_I(inode));
1456 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1457 EXT4_I(inode), sizeof(struct ext4_inode_info),
1458 true);
1459 dump_stack();
1460 }
1461
1462 if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ERROR_FS) &&
1463 WARN_ON_ONCE(EXT4_I(inode)->i_reserved_data_blocks))
1464 ext4_msg(inode->i_sb, KERN_ERR,
1465 "Inode %lu (%p): i_reserved_data_blocks (%u) not cleared!",
1466 inode->i_ino, EXT4_I(inode),
1467 EXT4_I(inode)->i_reserved_data_blocks);
1468}
1469
1470static void ext4_shutdown(struct super_block *sb)
1471{
1472 ext4_force_shutdown(sb, EXT4_GOING_FLAGS_NOLOGFLUSH);
1473}
1474
1475static void init_once(void *foo)
1476{
1477 struct ext4_inode_info *ei = foo;
1478
1479 INIT_LIST_HEAD(&ei->i_orphan);
1480 init_rwsem(&ei->xattr_sem);
1481 init_rwsem(&ei->i_data_sem);
1482 inode_init_once(&ei->vfs_inode);
1483 ext4_fc_init_inode(&ei->vfs_inode);
1484#ifdef CONFIG_FS_ENCRYPTION
1485 ei->i_crypt_info = NULL;
1486#endif
1487#ifdef CONFIG_FS_VERITY
1488 ei->i_verity_info = NULL;
1489#endif
1490}
1491
1492static int __init init_inodecache(void)
1493{
1494 ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache",
1495 sizeof(struct ext4_inode_info), 0,
1496 SLAB_RECLAIM_ACCOUNT | SLAB_ACCOUNT,
1497 offsetof(struct ext4_inode_info, i_data),
1498 sizeof_field(struct ext4_inode_info, i_data),
1499 init_once);
1500 if (ext4_inode_cachep == NULL)
1501 return -ENOMEM;
1502 return 0;
1503}
1504
1505static void destroy_inodecache(void)
1506{
1507 /*
1508 * Make sure all delayed rcu free inodes are flushed before we
1509 * destroy cache.
1510 */
1511 rcu_barrier();
1512 kmem_cache_destroy(ext4_inode_cachep);
1513}
1514
1515void ext4_clear_inode(struct inode *inode)
1516{
1517 ext4_fc_del(inode);
1518 invalidate_inode_buffers(inode);
1519 clear_inode(inode);
1520 ext4_discard_preallocations(inode);
1521 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1522 dquot_drop(inode);
1523 if (EXT4_I(inode)->jinode) {
1524 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1525 EXT4_I(inode)->jinode);
1526 jbd2_free_inode(EXT4_I(inode)->jinode);
1527 EXT4_I(inode)->jinode = NULL;
1528 }
1529 fscrypt_put_encryption_info(inode);
1530 fsverity_cleanup_inode(inode);
1531}
1532
1533static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1534 u64 ino, u32 generation)
1535{
1536 struct inode *inode;
1537
1538 /*
1539 * Currently we don't know the generation for parent directory, so
1540 * a generation of 0 means "accept any"
1541 */
1542 inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE);
1543 if (IS_ERR(inode))
1544 return ERR_CAST(inode);
1545 if (generation && inode->i_generation != generation) {
1546 iput(inode);
1547 return ERR_PTR(-ESTALE);
1548 }
1549
1550 return inode;
1551}
1552
1553static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1554 int fh_len, int fh_type)
1555{
1556 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1557 ext4_nfs_get_inode);
1558}
1559
1560static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1561 int fh_len, int fh_type)
1562{
1563 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1564 ext4_nfs_get_inode);
1565}
1566
1567static int ext4_nfs_commit_metadata(struct inode *inode)
1568{
1569 struct writeback_control wbc = {
1570 .sync_mode = WB_SYNC_ALL
1571 };
1572
1573 trace_ext4_nfs_commit_metadata(inode);
1574 return ext4_write_inode(inode, &wbc);
1575}
1576
1577#ifdef CONFIG_QUOTA
1578static const char * const quotatypes[] = INITQFNAMES;
1579#define QTYPE2NAME(t) (quotatypes[t])
1580
1581static int ext4_write_dquot(struct dquot *dquot);
1582static int ext4_acquire_dquot(struct dquot *dquot);
1583static int ext4_release_dquot(struct dquot *dquot);
1584static int ext4_mark_dquot_dirty(struct dquot *dquot);
1585static int ext4_write_info(struct super_block *sb, int type);
1586static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1587 const struct path *path);
1588static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1589 size_t len, loff_t off);
1590static ssize_t ext4_quota_write(struct super_block *sb, int type,
1591 const char *data, size_t len, loff_t off);
1592static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1593 unsigned int flags);
1594
1595static struct dquot __rcu **ext4_get_dquots(struct inode *inode)
1596{
1597 return EXT4_I(inode)->i_dquot;
1598}
1599
1600static const struct dquot_operations ext4_quota_operations = {
1601 .get_reserved_space = ext4_get_reserved_space,
1602 .write_dquot = ext4_write_dquot,
1603 .acquire_dquot = ext4_acquire_dquot,
1604 .release_dquot = ext4_release_dquot,
1605 .mark_dirty = ext4_mark_dquot_dirty,
1606 .write_info = ext4_write_info,
1607 .alloc_dquot = dquot_alloc,
1608 .destroy_dquot = dquot_destroy,
1609 .get_projid = ext4_get_projid,
1610 .get_inode_usage = ext4_get_inode_usage,
1611 .get_next_id = dquot_get_next_id,
1612};
1613
1614static const struct quotactl_ops ext4_qctl_operations = {
1615 .quota_on = ext4_quota_on,
1616 .quota_off = ext4_quota_off,
1617 .quota_sync = dquot_quota_sync,
1618 .get_state = dquot_get_state,
1619 .set_info = dquot_set_dqinfo,
1620 .get_dqblk = dquot_get_dqblk,
1621 .set_dqblk = dquot_set_dqblk,
1622 .get_nextdqblk = dquot_get_next_dqblk,
1623};
1624#endif
1625
1626static const struct super_operations ext4_sops = {
1627 .alloc_inode = ext4_alloc_inode,
1628 .free_inode = ext4_free_in_core_inode,
1629 .destroy_inode = ext4_destroy_inode,
1630 .write_inode = ext4_write_inode,
1631 .dirty_inode = ext4_dirty_inode,
1632 .drop_inode = ext4_drop_inode,
1633 .evict_inode = ext4_evict_inode,
1634 .put_super = ext4_put_super,
1635 .sync_fs = ext4_sync_fs,
1636 .freeze_fs = ext4_freeze,
1637 .unfreeze_fs = ext4_unfreeze,
1638 .statfs = ext4_statfs,
1639 .show_options = ext4_show_options,
1640 .shutdown = ext4_shutdown,
1641#ifdef CONFIG_QUOTA
1642 .quota_read = ext4_quota_read,
1643 .quota_write = ext4_quota_write,
1644 .get_dquots = ext4_get_dquots,
1645#endif
1646};
1647
1648static const struct export_operations ext4_export_ops = {
1649 .encode_fh = generic_encode_ino32_fh,
1650 .fh_to_dentry = ext4_fh_to_dentry,
1651 .fh_to_parent = ext4_fh_to_parent,
1652 .get_parent = ext4_get_parent,
1653 .commit_metadata = ext4_nfs_commit_metadata,
1654};
1655
1656enum {
1657 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1658 Opt_resgid, Opt_resuid, Opt_sb,
1659 Opt_nouid32, Opt_debug, Opt_removed,
1660 Opt_user_xattr, Opt_acl,
1661 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1662 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1663 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1664 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1665 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1666 Opt_inlinecrypt,
1667 Opt_usrjquota, Opt_grpjquota, Opt_quota,
1668 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1669 Opt_usrquota, Opt_grpquota, Opt_prjquota,
1670 Opt_dax, Opt_dax_always, Opt_dax_inode, Opt_dax_never,
1671 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error,
1672 Opt_nowarn_on_error, Opt_mblk_io_submit, Opt_debug_want_extra_isize,
1673 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1674 Opt_inode_readahead_blks, Opt_journal_ioprio,
1675 Opt_dioread_nolock, Opt_dioread_lock,
1676 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1677 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1678 Opt_no_prefetch_block_bitmaps, Opt_mb_optimize_scan,
1679 Opt_errors, Opt_data, Opt_data_err, Opt_jqfmt, Opt_dax_type,
1680#ifdef CONFIG_EXT4_DEBUG
1681 Opt_fc_debug_max_replay, Opt_fc_debug_force
1682#endif
1683};
1684
1685static const struct constant_table ext4_param_errors[] = {
1686 {"continue", EXT4_MOUNT_ERRORS_CONT},
1687 {"panic", EXT4_MOUNT_ERRORS_PANIC},
1688 {"remount-ro", EXT4_MOUNT_ERRORS_RO},
1689 {}
1690};
1691
1692static const struct constant_table ext4_param_data[] = {
1693 {"journal", EXT4_MOUNT_JOURNAL_DATA},
1694 {"ordered", EXT4_MOUNT_ORDERED_DATA},
1695 {"writeback", EXT4_MOUNT_WRITEBACK_DATA},
1696 {}
1697};
1698
1699static const struct constant_table ext4_param_data_err[] = {
1700 {"abort", Opt_data_err_abort},
1701 {"ignore", Opt_data_err_ignore},
1702 {}
1703};
1704
1705static const struct constant_table ext4_param_jqfmt[] = {
1706 {"vfsold", QFMT_VFS_OLD},
1707 {"vfsv0", QFMT_VFS_V0},
1708 {"vfsv1", QFMT_VFS_V1},
1709 {}
1710};
1711
1712static const struct constant_table ext4_param_dax[] = {
1713 {"always", Opt_dax_always},
1714 {"inode", Opt_dax_inode},
1715 {"never", Opt_dax_never},
1716 {}
1717};
1718
1719/*
1720 * Mount option specification
1721 * We don't use fsparam_flag_no because of the way we set the
1722 * options and the way we show them in _ext4_show_options(). To
1723 * keep the changes to a minimum, let's keep the negative options
1724 * separate for now.
1725 */
1726static const struct fs_parameter_spec ext4_param_specs[] = {
1727 fsparam_flag ("bsddf", Opt_bsd_df),
1728 fsparam_flag ("minixdf", Opt_minix_df),
1729 fsparam_flag ("grpid", Opt_grpid),
1730 fsparam_flag ("bsdgroups", Opt_grpid),
1731 fsparam_flag ("nogrpid", Opt_nogrpid),
1732 fsparam_flag ("sysvgroups", Opt_nogrpid),
1733 fsparam_gid ("resgid", Opt_resgid),
1734 fsparam_uid ("resuid", Opt_resuid),
1735 fsparam_u32 ("sb", Opt_sb),
1736 fsparam_enum ("errors", Opt_errors, ext4_param_errors),
1737 fsparam_flag ("nouid32", Opt_nouid32),
1738 fsparam_flag ("debug", Opt_debug),
1739 fsparam_flag ("oldalloc", Opt_removed),
1740 fsparam_flag ("orlov", Opt_removed),
1741 fsparam_flag ("user_xattr", Opt_user_xattr),
1742 fsparam_flag ("acl", Opt_acl),
1743 fsparam_flag ("norecovery", Opt_noload),
1744 fsparam_flag ("noload", Opt_noload),
1745 fsparam_flag ("bh", Opt_removed),
1746 fsparam_flag ("nobh", Opt_removed),
1747 fsparam_u32 ("commit", Opt_commit),
1748 fsparam_u32 ("min_batch_time", Opt_min_batch_time),
1749 fsparam_u32 ("max_batch_time", Opt_max_batch_time),
1750 fsparam_u32 ("journal_dev", Opt_journal_dev),
1751 fsparam_bdev ("journal_path", Opt_journal_path),
1752 fsparam_flag ("journal_checksum", Opt_journal_checksum),
1753 fsparam_flag ("nojournal_checksum", Opt_nojournal_checksum),
1754 fsparam_flag ("journal_async_commit",Opt_journal_async_commit),
1755 fsparam_flag ("abort", Opt_abort),
1756 fsparam_enum ("data", Opt_data, ext4_param_data),
1757 fsparam_enum ("data_err", Opt_data_err,
1758 ext4_param_data_err),
1759 fsparam_string_empty
1760 ("usrjquota", Opt_usrjquota),
1761 fsparam_string_empty
1762 ("grpjquota", Opt_grpjquota),
1763 fsparam_enum ("jqfmt", Opt_jqfmt, ext4_param_jqfmt),
1764 fsparam_flag ("grpquota", Opt_grpquota),
1765 fsparam_flag ("quota", Opt_quota),
1766 fsparam_flag ("noquota", Opt_noquota),
1767 fsparam_flag ("usrquota", Opt_usrquota),
1768 fsparam_flag ("prjquota", Opt_prjquota),
1769 fsparam_flag ("barrier", Opt_barrier),
1770 fsparam_u32 ("barrier", Opt_barrier),
1771 fsparam_flag ("nobarrier", Opt_nobarrier),
1772 fsparam_flag ("i_version", Opt_removed),
1773 fsparam_flag ("dax", Opt_dax),
1774 fsparam_enum ("dax", Opt_dax_type, ext4_param_dax),
1775 fsparam_u32 ("stripe", Opt_stripe),
1776 fsparam_flag ("delalloc", Opt_delalloc),
1777 fsparam_flag ("nodelalloc", Opt_nodelalloc),
1778 fsparam_flag ("warn_on_error", Opt_warn_on_error),
1779 fsparam_flag ("nowarn_on_error", Opt_nowarn_on_error),
1780 fsparam_u32 ("debug_want_extra_isize",
1781 Opt_debug_want_extra_isize),
1782 fsparam_flag ("mblk_io_submit", Opt_removed),
1783 fsparam_flag ("nomblk_io_submit", Opt_removed),
1784 fsparam_flag ("block_validity", Opt_block_validity),
1785 fsparam_flag ("noblock_validity", Opt_noblock_validity),
1786 fsparam_u32 ("inode_readahead_blks",
1787 Opt_inode_readahead_blks),
1788 fsparam_u32 ("journal_ioprio", Opt_journal_ioprio),
1789 fsparam_u32 ("auto_da_alloc", Opt_auto_da_alloc),
1790 fsparam_flag ("auto_da_alloc", Opt_auto_da_alloc),
1791 fsparam_flag ("noauto_da_alloc", Opt_noauto_da_alloc),
1792 fsparam_flag ("dioread_nolock", Opt_dioread_nolock),
1793 fsparam_flag ("nodioread_nolock", Opt_dioread_lock),
1794 fsparam_flag ("dioread_lock", Opt_dioread_lock),
1795 fsparam_flag ("discard", Opt_discard),
1796 fsparam_flag ("nodiscard", Opt_nodiscard),
1797 fsparam_u32 ("init_itable", Opt_init_itable),
1798 fsparam_flag ("init_itable", Opt_init_itable),
1799 fsparam_flag ("noinit_itable", Opt_noinit_itable),
1800#ifdef CONFIG_EXT4_DEBUG
1801 fsparam_flag ("fc_debug_force", Opt_fc_debug_force),
1802 fsparam_u32 ("fc_debug_max_replay", Opt_fc_debug_max_replay),
1803#endif
1804 fsparam_u32 ("max_dir_size_kb", Opt_max_dir_size_kb),
1805 fsparam_flag ("test_dummy_encryption",
1806 Opt_test_dummy_encryption),
1807 fsparam_string ("test_dummy_encryption",
1808 Opt_test_dummy_encryption),
1809 fsparam_flag ("inlinecrypt", Opt_inlinecrypt),
1810 fsparam_flag ("nombcache", Opt_nombcache),
1811 fsparam_flag ("no_mbcache", Opt_nombcache), /* for backward compatibility */
1812 fsparam_flag ("prefetch_block_bitmaps",
1813 Opt_removed),
1814 fsparam_flag ("no_prefetch_block_bitmaps",
1815 Opt_no_prefetch_block_bitmaps),
1816 fsparam_s32 ("mb_optimize_scan", Opt_mb_optimize_scan),
1817 fsparam_string ("check", Opt_removed), /* mount option from ext2/3 */
1818 fsparam_flag ("nocheck", Opt_removed), /* mount option from ext2/3 */
1819 fsparam_flag ("reservation", Opt_removed), /* mount option from ext2/3 */
1820 fsparam_flag ("noreservation", Opt_removed), /* mount option from ext2/3 */
1821 fsparam_u32 ("journal", Opt_removed), /* mount option from ext2/3 */
1822 {}
1823};
1824
1825
1826#define MOPT_SET 0x0001
1827#define MOPT_CLEAR 0x0002
1828#define MOPT_NOSUPPORT 0x0004
1829#define MOPT_EXPLICIT 0x0008
1830#ifdef CONFIG_QUOTA
1831#define MOPT_Q 0
1832#define MOPT_QFMT 0x0010
1833#else
1834#define MOPT_Q MOPT_NOSUPPORT
1835#define MOPT_QFMT MOPT_NOSUPPORT
1836#endif
1837#define MOPT_NO_EXT2 0x0020
1838#define MOPT_NO_EXT3 0x0040
1839#define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1840#define MOPT_SKIP 0x0080
1841#define MOPT_2 0x0100
1842
1843static const struct mount_opts {
1844 int token;
1845 int mount_opt;
1846 int flags;
1847} ext4_mount_opts[] = {
1848 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1849 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1850 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1851 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1852 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1853 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1854 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1855 MOPT_EXT4_ONLY | MOPT_SET},
1856 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1857 MOPT_EXT4_ONLY | MOPT_CLEAR},
1858 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1859 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1860 {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1861 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1862 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1863 MOPT_EXT4_ONLY | MOPT_CLEAR},
1864 {Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET},
1865 {Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR},
1866 {Opt_commit, 0, MOPT_NO_EXT2},
1867 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1868 MOPT_EXT4_ONLY | MOPT_CLEAR},
1869 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1870 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1871 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1872 EXT4_MOUNT_JOURNAL_CHECKSUM),
1873 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1874 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1875 {Opt_data_err, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_NO_EXT2},
1876 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1877 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1878 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1879 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1880 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1881 {Opt_dax_type, 0, MOPT_EXT4_ONLY},
1882 {Opt_journal_dev, 0, MOPT_NO_EXT2},
1883 {Opt_journal_path, 0, MOPT_NO_EXT2},
1884 {Opt_journal_ioprio, 0, MOPT_NO_EXT2},
1885 {Opt_data, 0, MOPT_NO_EXT2},
1886 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1887#ifdef CONFIG_EXT4_FS_POSIX_ACL
1888 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1889#else
1890 {Opt_acl, 0, MOPT_NOSUPPORT},
1891#endif
1892 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1893 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1894 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1895 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1896 MOPT_SET | MOPT_Q},
1897 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1898 MOPT_SET | MOPT_Q},
1899 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1900 MOPT_SET | MOPT_Q},
1901 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1902 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1903 MOPT_CLEAR | MOPT_Q},
1904 {Opt_usrjquota, 0, MOPT_Q},
1905 {Opt_grpjquota, 0, MOPT_Q},
1906 {Opt_jqfmt, 0, MOPT_QFMT},
1907 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
1908 {Opt_no_prefetch_block_bitmaps, EXT4_MOUNT_NO_PREFETCH_BLOCK_BITMAPS,
1909 MOPT_SET},
1910#ifdef CONFIG_EXT4_DEBUG
1911 {Opt_fc_debug_force, EXT4_MOUNT2_JOURNAL_FAST_COMMIT,
1912 MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY},
1913#endif
1914 {Opt_abort, EXT4_MOUNT2_ABORT, MOPT_SET | MOPT_2},
1915 {Opt_err, 0, 0}
1916};
1917
1918#if IS_ENABLED(CONFIG_UNICODE)
1919static const struct ext4_sb_encodings {
1920 __u16 magic;
1921 char *name;
1922 unsigned int version;
1923} ext4_sb_encoding_map[] = {
1924 {EXT4_ENC_UTF8_12_1, "utf8", UNICODE_AGE(12, 1, 0)},
1925};
1926
1927static const struct ext4_sb_encodings *
1928ext4_sb_read_encoding(const struct ext4_super_block *es)
1929{
1930 __u16 magic = le16_to_cpu(es->s_encoding);
1931 int i;
1932
1933 for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++)
1934 if (magic == ext4_sb_encoding_map[i].magic)
1935 return &ext4_sb_encoding_map[i];
1936
1937 return NULL;
1938}
1939#endif
1940
1941#define EXT4_SPEC_JQUOTA (1 << 0)
1942#define EXT4_SPEC_JQFMT (1 << 1)
1943#define EXT4_SPEC_DATAJ (1 << 2)
1944#define EXT4_SPEC_SB_BLOCK (1 << 3)
1945#define EXT4_SPEC_JOURNAL_DEV (1 << 4)
1946#define EXT4_SPEC_JOURNAL_IOPRIO (1 << 5)
1947#define EXT4_SPEC_s_want_extra_isize (1 << 7)
1948#define EXT4_SPEC_s_max_batch_time (1 << 8)
1949#define EXT4_SPEC_s_min_batch_time (1 << 9)
1950#define EXT4_SPEC_s_inode_readahead_blks (1 << 10)
1951#define EXT4_SPEC_s_li_wait_mult (1 << 11)
1952#define EXT4_SPEC_s_max_dir_size_kb (1 << 12)
1953#define EXT4_SPEC_s_stripe (1 << 13)
1954#define EXT4_SPEC_s_resuid (1 << 14)
1955#define EXT4_SPEC_s_resgid (1 << 15)
1956#define EXT4_SPEC_s_commit_interval (1 << 16)
1957#define EXT4_SPEC_s_fc_debug_max_replay (1 << 17)
1958#define EXT4_SPEC_s_sb_block (1 << 18)
1959#define EXT4_SPEC_mb_optimize_scan (1 << 19)
1960
1961struct ext4_fs_context {
1962 char *s_qf_names[EXT4_MAXQUOTAS];
1963 struct fscrypt_dummy_policy dummy_enc_policy;
1964 int s_jquota_fmt; /* Format of quota to use */
1965#ifdef CONFIG_EXT4_DEBUG
1966 int s_fc_debug_max_replay;
1967#endif
1968 unsigned short qname_spec;
1969 unsigned long vals_s_flags; /* Bits to set in s_flags */
1970 unsigned long mask_s_flags; /* Bits changed in s_flags */
1971 unsigned long journal_devnum;
1972 unsigned long s_commit_interval;
1973 unsigned long s_stripe;
1974 unsigned int s_inode_readahead_blks;
1975 unsigned int s_want_extra_isize;
1976 unsigned int s_li_wait_mult;
1977 unsigned int s_max_dir_size_kb;
1978 unsigned int journal_ioprio;
1979 unsigned int vals_s_mount_opt;
1980 unsigned int mask_s_mount_opt;
1981 unsigned int vals_s_mount_opt2;
1982 unsigned int mask_s_mount_opt2;
1983 unsigned int opt_flags; /* MOPT flags */
1984 unsigned int spec;
1985 u32 s_max_batch_time;
1986 u32 s_min_batch_time;
1987 kuid_t s_resuid;
1988 kgid_t s_resgid;
1989 ext4_fsblk_t s_sb_block;
1990};
1991
1992static void ext4_fc_free(struct fs_context *fc)
1993{
1994 struct ext4_fs_context *ctx = fc->fs_private;
1995 int i;
1996
1997 if (!ctx)
1998 return;
1999
2000 for (i = 0; i < EXT4_MAXQUOTAS; i++)
2001 kfree(ctx->s_qf_names[i]);
2002
2003 fscrypt_free_dummy_policy(&ctx->dummy_enc_policy);
2004 kfree(ctx);
2005}
2006
2007int ext4_init_fs_context(struct fs_context *fc)
2008{
2009 struct ext4_fs_context *ctx;
2010
2011 ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL);
2012 if (!ctx)
2013 return -ENOMEM;
2014
2015 fc->fs_private = ctx;
2016 fc->ops = &ext4_context_ops;
2017
2018 /* i_version is always enabled now */
2019 fc->sb_flags |= SB_I_VERSION;
2020
2021 return 0;
2022}
2023
2024#ifdef CONFIG_QUOTA
2025/*
2026 * Note the name of the specified quota file.
2027 */
2028static int note_qf_name(struct fs_context *fc, int qtype,
2029 struct fs_parameter *param)
2030{
2031 struct ext4_fs_context *ctx = fc->fs_private;
2032 char *qname;
2033
2034 if (param->size < 1) {
2035 ext4_msg(NULL, KERN_ERR, "Missing quota name");
2036 return -EINVAL;
2037 }
2038 if (strchr(param->string, '/')) {
2039 ext4_msg(NULL, KERN_ERR,
2040 "quotafile must be on filesystem root");
2041 return -EINVAL;
2042 }
2043 if (ctx->s_qf_names[qtype]) {
2044 if (strcmp(ctx->s_qf_names[qtype], param->string) != 0) {
2045 ext4_msg(NULL, KERN_ERR,
2046 "%s quota file already specified",
2047 QTYPE2NAME(qtype));
2048 return -EINVAL;
2049 }
2050 return 0;
2051 }
2052
2053 qname = kmemdup_nul(param->string, param->size, GFP_KERNEL);
2054 if (!qname) {
2055 ext4_msg(NULL, KERN_ERR,
2056 "Not enough memory for storing quotafile name");
2057 return -ENOMEM;
2058 }
2059 ctx->s_qf_names[qtype] = qname;
2060 ctx->qname_spec |= 1 << qtype;
2061 ctx->spec |= EXT4_SPEC_JQUOTA;
2062 return 0;
2063}
2064
2065/*
2066 * Clear the name of the specified quota file.
2067 */
2068static int unnote_qf_name(struct fs_context *fc, int qtype)
2069{
2070 struct ext4_fs_context *ctx = fc->fs_private;
2071
2072 kfree(ctx->s_qf_names[qtype]);
2073
2074 ctx->s_qf_names[qtype] = NULL;
2075 ctx->qname_spec |= 1 << qtype;
2076 ctx->spec |= EXT4_SPEC_JQUOTA;
2077 return 0;
2078}
2079#endif
2080
2081static int ext4_parse_test_dummy_encryption(const struct fs_parameter *param,
2082 struct ext4_fs_context *ctx)
2083{
2084 int err;
2085
2086 if (!IS_ENABLED(CONFIG_FS_ENCRYPTION)) {
2087 ext4_msg(NULL, KERN_WARNING,
2088 "test_dummy_encryption option not supported");
2089 return -EINVAL;
2090 }
2091 err = fscrypt_parse_test_dummy_encryption(param,
2092 &ctx->dummy_enc_policy);
2093 if (err == -EINVAL) {
2094 ext4_msg(NULL, KERN_WARNING,
2095 "Value of option \"%s\" is unrecognized", param->key);
2096 } else if (err == -EEXIST) {
2097 ext4_msg(NULL, KERN_WARNING,
2098 "Conflicting test_dummy_encryption options");
2099 return -EINVAL;
2100 }
2101 return err;
2102}
2103
2104#define EXT4_SET_CTX(name) \
2105static inline __maybe_unused \
2106void ctx_set_##name(struct ext4_fs_context *ctx, unsigned long flag) \
2107{ \
2108 ctx->mask_s_##name |= flag; \
2109 ctx->vals_s_##name |= flag; \
2110}
2111
2112#define EXT4_CLEAR_CTX(name) \
2113static inline __maybe_unused \
2114void ctx_clear_##name(struct ext4_fs_context *ctx, unsigned long flag) \
2115{ \
2116 ctx->mask_s_##name |= flag; \
2117 ctx->vals_s_##name &= ~flag; \
2118}
2119
2120#define EXT4_TEST_CTX(name) \
2121static inline unsigned long \
2122ctx_test_##name(struct ext4_fs_context *ctx, unsigned long flag) \
2123{ \
2124 return (ctx->vals_s_##name & flag); \
2125}
2126
2127EXT4_SET_CTX(flags); /* set only */
2128EXT4_SET_CTX(mount_opt);
2129EXT4_CLEAR_CTX(mount_opt);
2130EXT4_TEST_CTX(mount_opt);
2131EXT4_SET_CTX(mount_opt2);
2132EXT4_CLEAR_CTX(mount_opt2);
2133EXT4_TEST_CTX(mount_opt2);
2134
2135static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param)
2136{
2137 struct ext4_fs_context *ctx = fc->fs_private;
2138 struct fs_parse_result result;
2139 const struct mount_opts *m;
2140 int is_remount;
2141 int token;
2142
2143 token = fs_parse(fc, ext4_param_specs, param, &result);
2144 if (token < 0)
2145 return token;
2146 is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE;
2147
2148 for (m = ext4_mount_opts; m->token != Opt_err; m++)
2149 if (token == m->token)
2150 break;
2151
2152 ctx->opt_flags |= m->flags;
2153
2154 if (m->flags & MOPT_EXPLICIT) {
2155 if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
2156 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_EXPLICIT_DELALLOC);
2157 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
2158 ctx_set_mount_opt2(ctx,
2159 EXT4_MOUNT2_EXPLICIT_JOURNAL_CHECKSUM);
2160 } else
2161 return -EINVAL;
2162 }
2163
2164 if (m->flags & MOPT_NOSUPPORT) {
2165 ext4_msg(NULL, KERN_ERR, "%s option not supported",
2166 param->key);
2167 return 0;
2168 }
2169
2170 switch (token) {
2171#ifdef CONFIG_QUOTA
2172 case Opt_usrjquota:
2173 if (!*param->string)
2174 return unnote_qf_name(fc, USRQUOTA);
2175 else
2176 return note_qf_name(fc, USRQUOTA, param);
2177 case Opt_grpjquota:
2178 if (!*param->string)
2179 return unnote_qf_name(fc, GRPQUOTA);
2180 else
2181 return note_qf_name(fc, GRPQUOTA, param);
2182#endif
2183 case Opt_sb:
2184 if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2185 ext4_msg(NULL, KERN_WARNING,
2186 "Ignoring %s option on remount", param->key);
2187 } else {
2188 ctx->s_sb_block = result.uint_32;
2189 ctx->spec |= EXT4_SPEC_s_sb_block;
2190 }
2191 return 0;
2192 case Opt_removed:
2193 ext4_msg(NULL, KERN_WARNING, "Ignoring removed %s option",
2194 param->key);
2195 return 0;
2196 case Opt_inlinecrypt:
2197#ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
2198 ctx_set_flags(ctx, SB_INLINECRYPT);
2199#else
2200 ext4_msg(NULL, KERN_ERR, "inline encryption not supported");
2201#endif
2202 return 0;
2203 case Opt_errors:
2204 ctx_clear_mount_opt(ctx, EXT4_MOUNT_ERRORS_MASK);
2205 ctx_set_mount_opt(ctx, result.uint_32);
2206 return 0;
2207#ifdef CONFIG_QUOTA
2208 case Opt_jqfmt:
2209 ctx->s_jquota_fmt = result.uint_32;
2210 ctx->spec |= EXT4_SPEC_JQFMT;
2211 return 0;
2212#endif
2213 case Opt_data:
2214 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS);
2215 ctx_set_mount_opt(ctx, result.uint_32);
2216 ctx->spec |= EXT4_SPEC_DATAJ;
2217 return 0;
2218 case Opt_commit:
2219 if (result.uint_32 == 0)
2220 result.uint_32 = JBD2_DEFAULT_MAX_COMMIT_AGE;
2221 else if (result.uint_32 > INT_MAX / HZ) {
2222 ext4_msg(NULL, KERN_ERR,
2223 "Invalid commit interval %d, "
2224 "must be smaller than %d",
2225 result.uint_32, INT_MAX / HZ);
2226 return -EINVAL;
2227 }
2228 ctx->s_commit_interval = HZ * result.uint_32;
2229 ctx->spec |= EXT4_SPEC_s_commit_interval;
2230 return 0;
2231 case Opt_debug_want_extra_isize:
2232 if ((result.uint_32 & 1) || (result.uint_32 < 4)) {
2233 ext4_msg(NULL, KERN_ERR,
2234 "Invalid want_extra_isize %d", result.uint_32);
2235 return -EINVAL;
2236 }
2237 ctx->s_want_extra_isize = result.uint_32;
2238 ctx->spec |= EXT4_SPEC_s_want_extra_isize;
2239 return 0;
2240 case Opt_max_batch_time:
2241 ctx->s_max_batch_time = result.uint_32;
2242 ctx->spec |= EXT4_SPEC_s_max_batch_time;
2243 return 0;
2244 case Opt_min_batch_time:
2245 ctx->s_min_batch_time = result.uint_32;
2246 ctx->spec |= EXT4_SPEC_s_min_batch_time;
2247 return 0;
2248 case Opt_inode_readahead_blks:
2249 if (result.uint_32 &&
2250 (result.uint_32 > (1 << 30) ||
2251 !is_power_of_2(result.uint_32))) {
2252 ext4_msg(NULL, KERN_ERR,
2253 "EXT4-fs: inode_readahead_blks must be "
2254 "0 or a power of 2 smaller than 2^31");
2255 return -EINVAL;
2256 }
2257 ctx->s_inode_readahead_blks = result.uint_32;
2258 ctx->spec |= EXT4_SPEC_s_inode_readahead_blks;
2259 return 0;
2260 case Opt_init_itable:
2261 ctx_set_mount_opt(ctx, EXT4_MOUNT_INIT_INODE_TABLE);
2262 ctx->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
2263 if (param->type == fs_value_is_string)
2264 ctx->s_li_wait_mult = result.uint_32;
2265 ctx->spec |= EXT4_SPEC_s_li_wait_mult;
2266 return 0;
2267 case Opt_max_dir_size_kb:
2268 ctx->s_max_dir_size_kb = result.uint_32;
2269 ctx->spec |= EXT4_SPEC_s_max_dir_size_kb;
2270 return 0;
2271#ifdef CONFIG_EXT4_DEBUG
2272 case Opt_fc_debug_max_replay:
2273 ctx->s_fc_debug_max_replay = result.uint_32;
2274 ctx->spec |= EXT4_SPEC_s_fc_debug_max_replay;
2275 return 0;
2276#endif
2277 case Opt_stripe:
2278 ctx->s_stripe = result.uint_32;
2279 ctx->spec |= EXT4_SPEC_s_stripe;
2280 return 0;
2281 case Opt_resuid:
2282 ctx->s_resuid = result.uid;
2283 ctx->spec |= EXT4_SPEC_s_resuid;
2284 return 0;
2285 case Opt_resgid:
2286 ctx->s_resgid = result.gid;
2287 ctx->spec |= EXT4_SPEC_s_resgid;
2288 return 0;
2289 case Opt_journal_dev:
2290 if (is_remount) {
2291 ext4_msg(NULL, KERN_ERR,
2292 "Cannot specify journal on remount");
2293 return -EINVAL;
2294 }
2295 ctx->journal_devnum = result.uint_32;
2296 ctx->spec |= EXT4_SPEC_JOURNAL_DEV;
2297 return 0;
2298 case Opt_journal_path:
2299 {
2300 struct inode *journal_inode;
2301 struct path path;
2302 int error;
2303
2304 if (is_remount) {
2305 ext4_msg(NULL, KERN_ERR,
2306 "Cannot specify journal on remount");
2307 return -EINVAL;
2308 }
2309
2310 error = fs_lookup_param(fc, param, 1, LOOKUP_FOLLOW, &path);
2311 if (error) {
2312 ext4_msg(NULL, KERN_ERR, "error: could not find "
2313 "journal device path");
2314 return -EINVAL;
2315 }
2316
2317 journal_inode = d_inode(path.dentry);
2318 ctx->journal_devnum = new_encode_dev(journal_inode->i_rdev);
2319 ctx->spec |= EXT4_SPEC_JOURNAL_DEV;
2320 path_put(&path);
2321 return 0;
2322 }
2323 case Opt_journal_ioprio:
2324 if (result.uint_32 > 7) {
2325 ext4_msg(NULL, KERN_ERR, "Invalid journal IO priority"
2326 " (must be 0-7)");
2327 return -EINVAL;
2328 }
2329 ctx->journal_ioprio =
2330 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, result.uint_32);
2331 ctx->spec |= EXT4_SPEC_JOURNAL_IOPRIO;
2332 return 0;
2333 case Opt_test_dummy_encryption:
2334 return ext4_parse_test_dummy_encryption(param, ctx);
2335 case Opt_dax:
2336 case Opt_dax_type:
2337#ifdef CONFIG_FS_DAX
2338 {
2339 int type = (token == Opt_dax) ?
2340 Opt_dax : result.uint_32;
2341
2342 switch (type) {
2343 case Opt_dax:
2344 case Opt_dax_always:
2345 ctx_set_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2346 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2347 break;
2348 case Opt_dax_never:
2349 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2350 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2351 break;
2352 case Opt_dax_inode:
2353 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2354 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2355 /* Strictly for printing options */
2356 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE);
2357 break;
2358 }
2359 return 0;
2360 }
2361#else
2362 ext4_msg(NULL, KERN_INFO, "dax option not supported");
2363 return -EINVAL;
2364#endif
2365 case Opt_data_err:
2366 if (result.uint_32 == Opt_data_err_abort)
2367 ctx_set_mount_opt(ctx, m->mount_opt);
2368 else if (result.uint_32 == Opt_data_err_ignore)
2369 ctx_clear_mount_opt(ctx, m->mount_opt);
2370 return 0;
2371 case Opt_mb_optimize_scan:
2372 if (result.int_32 == 1) {
2373 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN);
2374 ctx->spec |= EXT4_SPEC_mb_optimize_scan;
2375 } else if (result.int_32 == 0) {
2376 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN);
2377 ctx->spec |= EXT4_SPEC_mb_optimize_scan;
2378 } else {
2379 ext4_msg(NULL, KERN_WARNING,
2380 "mb_optimize_scan should be set to 0 or 1.");
2381 return -EINVAL;
2382 }
2383 return 0;
2384 }
2385
2386 /*
2387 * At this point we should only be getting options requiring MOPT_SET,
2388 * or MOPT_CLEAR. Anything else is a bug
2389 */
2390 if (m->token == Opt_err) {
2391 ext4_msg(NULL, KERN_WARNING, "buggy handling of option %s",
2392 param->key);
2393 WARN_ON(1);
2394 return -EINVAL;
2395 }
2396
2397 else {
2398 unsigned int set = 0;
2399
2400 if ((param->type == fs_value_is_flag) ||
2401 result.uint_32 > 0)
2402 set = 1;
2403
2404 if (m->flags & MOPT_CLEAR)
2405 set = !set;
2406 else if (unlikely(!(m->flags & MOPT_SET))) {
2407 ext4_msg(NULL, KERN_WARNING,
2408 "buggy handling of option %s",
2409 param->key);
2410 WARN_ON(1);
2411 return -EINVAL;
2412 }
2413 if (m->flags & MOPT_2) {
2414 if (set != 0)
2415 ctx_set_mount_opt2(ctx, m->mount_opt);
2416 else
2417 ctx_clear_mount_opt2(ctx, m->mount_opt);
2418 } else {
2419 if (set != 0)
2420 ctx_set_mount_opt(ctx, m->mount_opt);
2421 else
2422 ctx_clear_mount_opt(ctx, m->mount_opt);
2423 }
2424 }
2425
2426 return 0;
2427}
2428
2429static int parse_options(struct fs_context *fc, char *options)
2430{
2431 struct fs_parameter param;
2432 int ret;
2433 char *key;
2434
2435 if (!options)
2436 return 0;
2437
2438 while ((key = strsep(&options, ",")) != NULL) {
2439 if (*key) {
2440 size_t v_len = 0;
2441 char *value = strchr(key, '=');
2442
2443 param.type = fs_value_is_flag;
2444 param.string = NULL;
2445
2446 if (value) {
2447 if (value == key)
2448 continue;
2449
2450 *value++ = 0;
2451 v_len = strlen(value);
2452 param.string = kmemdup_nul(value, v_len,
2453 GFP_KERNEL);
2454 if (!param.string)
2455 return -ENOMEM;
2456 param.type = fs_value_is_string;
2457 }
2458
2459 param.key = key;
2460 param.size = v_len;
2461
2462 ret = ext4_parse_param(fc, ¶m);
2463 kfree(param.string);
2464 if (ret < 0)
2465 return ret;
2466 }
2467 }
2468
2469 ret = ext4_validate_options(fc);
2470 if (ret < 0)
2471 return ret;
2472
2473 return 0;
2474}
2475
2476static int parse_apply_sb_mount_options(struct super_block *sb,
2477 struct ext4_fs_context *m_ctx)
2478{
2479 struct ext4_sb_info *sbi = EXT4_SB(sb);
2480 char s_mount_opts[64];
2481 struct ext4_fs_context *s_ctx = NULL;
2482 struct fs_context *fc = NULL;
2483 int ret = -ENOMEM;
2484
2485 if (!sbi->s_es->s_mount_opts[0])
2486 return 0;
2487
2488 if (strscpy_pad(s_mount_opts, sbi->s_es->s_mount_opts) < 0)
2489 return -E2BIG;
2490
2491 fc = kzalloc(sizeof(struct fs_context), GFP_KERNEL);
2492 if (!fc)
2493 return -ENOMEM;
2494
2495 s_ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL);
2496 if (!s_ctx)
2497 goto out_free;
2498
2499 fc->fs_private = s_ctx;
2500 fc->s_fs_info = sbi;
2501
2502 ret = parse_options(fc, s_mount_opts);
2503 if (ret < 0)
2504 goto parse_failed;
2505
2506 ret = ext4_check_opt_consistency(fc, sb);
2507 if (ret < 0) {
2508parse_failed:
2509 ext4_msg(sb, KERN_WARNING,
2510 "failed to parse options in superblock: %s",
2511 s_mount_opts);
2512 ret = 0;
2513 goto out_free;
2514 }
2515
2516 if (s_ctx->spec & EXT4_SPEC_JOURNAL_DEV)
2517 m_ctx->journal_devnum = s_ctx->journal_devnum;
2518 if (s_ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)
2519 m_ctx->journal_ioprio = s_ctx->journal_ioprio;
2520
2521 ext4_apply_options(fc, sb);
2522 ret = 0;
2523
2524out_free:
2525 ext4_fc_free(fc);
2526 kfree(fc);
2527 return ret;
2528}
2529
2530static void ext4_apply_quota_options(struct fs_context *fc,
2531 struct super_block *sb)
2532{
2533#ifdef CONFIG_QUOTA
2534 bool quota_feature = ext4_has_feature_quota(sb);
2535 struct ext4_fs_context *ctx = fc->fs_private;
2536 struct ext4_sb_info *sbi = EXT4_SB(sb);
2537 char *qname;
2538 int i;
2539
2540 if (quota_feature)
2541 return;
2542
2543 if (ctx->spec & EXT4_SPEC_JQUOTA) {
2544 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2545 if (!(ctx->qname_spec & (1 << i)))
2546 continue;
2547
2548 qname = ctx->s_qf_names[i]; /* May be NULL */
2549 if (qname)
2550 set_opt(sb, QUOTA);
2551 ctx->s_qf_names[i] = NULL;
2552 qname = rcu_replace_pointer(sbi->s_qf_names[i], qname,
2553 lockdep_is_held(&sb->s_umount));
2554 if (qname)
2555 kfree_rcu_mightsleep(qname);
2556 }
2557 }
2558
2559 if (ctx->spec & EXT4_SPEC_JQFMT)
2560 sbi->s_jquota_fmt = ctx->s_jquota_fmt;
2561#endif
2562}
2563
2564/*
2565 * Check quota settings consistency.
2566 */
2567static int ext4_check_quota_consistency(struct fs_context *fc,
2568 struct super_block *sb)
2569{
2570#ifdef CONFIG_QUOTA
2571 struct ext4_fs_context *ctx = fc->fs_private;
2572 struct ext4_sb_info *sbi = EXT4_SB(sb);
2573 bool quota_feature = ext4_has_feature_quota(sb);
2574 bool quota_loaded = sb_any_quota_loaded(sb);
2575 bool usr_qf_name, grp_qf_name, usrquota, grpquota;
2576 int quota_flags, i;
2577
2578 /*
2579 * We do the test below only for project quotas. 'usrquota' and
2580 * 'grpquota' mount options are allowed even without quota feature
2581 * to support legacy quotas in quota files.
2582 */
2583 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_PRJQUOTA) &&
2584 !ext4_has_feature_project(sb)) {
2585 ext4_msg(NULL, KERN_ERR, "Project quota feature not enabled. "
2586 "Cannot enable project quota enforcement.");
2587 return -EINVAL;
2588 }
2589
2590 quota_flags = EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
2591 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA;
2592 if (quota_loaded &&
2593 ctx->mask_s_mount_opt & quota_flags &&
2594 !ctx_test_mount_opt(ctx, quota_flags))
2595 goto err_quota_change;
2596
2597 if (ctx->spec & EXT4_SPEC_JQUOTA) {
2598
2599 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2600 if (!(ctx->qname_spec & (1 << i)))
2601 continue;
2602
2603 if (quota_loaded &&
2604 !!sbi->s_qf_names[i] != !!ctx->s_qf_names[i])
2605 goto err_jquota_change;
2606
2607 if (sbi->s_qf_names[i] && ctx->s_qf_names[i] &&
2608 strcmp(get_qf_name(sb, sbi, i),
2609 ctx->s_qf_names[i]) != 0)
2610 goto err_jquota_specified;
2611 }
2612
2613 if (quota_feature) {
2614 ext4_msg(NULL, KERN_INFO,
2615 "Journaled quota options ignored when "
2616 "QUOTA feature is enabled");
2617 return 0;
2618 }
2619 }
2620
2621 if (ctx->spec & EXT4_SPEC_JQFMT) {
2622 if (sbi->s_jquota_fmt != ctx->s_jquota_fmt && quota_loaded)
2623 goto err_jquota_change;
2624 if (quota_feature) {
2625 ext4_msg(NULL, KERN_INFO, "Quota format mount options "
2626 "ignored when QUOTA feature is enabled");
2627 return 0;
2628 }
2629 }
2630
2631 /* Make sure we don't mix old and new quota format */
2632 usr_qf_name = (get_qf_name(sb, sbi, USRQUOTA) ||
2633 ctx->s_qf_names[USRQUOTA]);
2634 grp_qf_name = (get_qf_name(sb, sbi, GRPQUOTA) ||
2635 ctx->s_qf_names[GRPQUOTA]);
2636
2637 usrquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) ||
2638 test_opt(sb, USRQUOTA));
2639
2640 grpquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) ||
2641 test_opt(sb, GRPQUOTA));
2642
2643 if (usr_qf_name) {
2644 ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA);
2645 usrquota = false;
2646 }
2647 if (grp_qf_name) {
2648 ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA);
2649 grpquota = false;
2650 }
2651
2652 if (usr_qf_name || grp_qf_name) {
2653 if (usrquota || grpquota) {
2654 ext4_msg(NULL, KERN_ERR, "old and new quota "
2655 "format mixing");
2656 return -EINVAL;
2657 }
2658
2659 if (!(ctx->spec & EXT4_SPEC_JQFMT || sbi->s_jquota_fmt)) {
2660 ext4_msg(NULL, KERN_ERR, "journaled quota format "
2661 "not specified");
2662 return -EINVAL;
2663 }
2664 }
2665
2666 return 0;
2667
2668err_quota_change:
2669 ext4_msg(NULL, KERN_ERR,
2670 "Cannot change quota options when quota turned on");
2671 return -EINVAL;
2672err_jquota_change:
2673 ext4_msg(NULL, KERN_ERR, "Cannot change journaled quota "
2674 "options when quota turned on");
2675 return -EINVAL;
2676err_jquota_specified:
2677 ext4_msg(NULL, KERN_ERR, "%s quota file already specified",
2678 QTYPE2NAME(i));
2679 return -EINVAL;
2680#else
2681 return 0;
2682#endif
2683}
2684
2685static int ext4_check_test_dummy_encryption(const struct fs_context *fc,
2686 struct super_block *sb)
2687{
2688 const struct ext4_fs_context *ctx = fc->fs_private;
2689 const struct ext4_sb_info *sbi = EXT4_SB(sb);
2690
2691 if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy))
2692 return 0;
2693
2694 if (!ext4_has_feature_encrypt(sb)) {
2695 ext4_msg(NULL, KERN_WARNING,
2696 "test_dummy_encryption requires encrypt feature");
2697 return -EINVAL;
2698 }
2699 /*
2700 * This mount option is just for testing, and it's not worthwhile to
2701 * implement the extra complexity (e.g. RCU protection) that would be
2702 * needed to allow it to be set or changed during remount. We do allow
2703 * it to be specified during remount, but only if there is no change.
2704 */
2705 if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2706 if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy,
2707 &ctx->dummy_enc_policy))
2708 return 0;
2709 ext4_msg(NULL, KERN_WARNING,
2710 "Can't set or change test_dummy_encryption on remount");
2711 return -EINVAL;
2712 }
2713 /* Also make sure s_mount_opts didn't contain a conflicting value. */
2714 if (fscrypt_is_dummy_policy_set(&sbi->s_dummy_enc_policy)) {
2715 if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy,
2716 &ctx->dummy_enc_policy))
2717 return 0;
2718 ext4_msg(NULL, KERN_WARNING,
2719 "Conflicting test_dummy_encryption options");
2720 return -EINVAL;
2721 }
2722 return 0;
2723}
2724
2725static void ext4_apply_test_dummy_encryption(struct ext4_fs_context *ctx,
2726 struct super_block *sb)
2727{
2728 if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy) ||
2729 /* if already set, it was already verified to be the same */
2730 fscrypt_is_dummy_policy_set(&EXT4_SB(sb)->s_dummy_enc_policy))
2731 return;
2732 EXT4_SB(sb)->s_dummy_enc_policy = ctx->dummy_enc_policy;
2733 memset(&ctx->dummy_enc_policy, 0, sizeof(ctx->dummy_enc_policy));
2734 ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled");
2735}
2736
2737static int ext4_check_opt_consistency(struct fs_context *fc,
2738 struct super_block *sb)
2739{
2740 struct ext4_fs_context *ctx = fc->fs_private;
2741 struct ext4_sb_info *sbi = fc->s_fs_info;
2742 int is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE;
2743 int err;
2744
2745 if ((ctx->opt_flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
2746 ext4_msg(NULL, KERN_ERR,
2747 "Mount option(s) incompatible with ext2");
2748 return -EINVAL;
2749 }
2750 if ((ctx->opt_flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
2751 ext4_msg(NULL, KERN_ERR,
2752 "Mount option(s) incompatible with ext3");
2753 return -EINVAL;
2754 }
2755
2756 if (ctx->s_want_extra_isize >
2757 (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE)) {
2758 ext4_msg(NULL, KERN_ERR,
2759 "Invalid want_extra_isize %d",
2760 ctx->s_want_extra_isize);
2761 return -EINVAL;
2762 }
2763
2764 err = ext4_check_test_dummy_encryption(fc, sb);
2765 if (err)
2766 return err;
2767
2768 if ((ctx->spec & EXT4_SPEC_DATAJ) && is_remount) {
2769 if (!sbi->s_journal) {
2770 ext4_msg(NULL, KERN_WARNING,
2771 "Remounting file system with no journal "
2772 "so ignoring journalled data option");
2773 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS);
2774 } else if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS) !=
2775 test_opt(sb, DATA_FLAGS)) {
2776 ext4_msg(NULL, KERN_ERR, "Cannot change data mode "
2777 "on remount");
2778 return -EINVAL;
2779 }
2780 }
2781
2782 if (is_remount) {
2783 if (!sbi->s_journal &&
2784 ctx_test_mount_opt(ctx, EXT4_MOUNT_DATA_ERR_ABORT)) {
2785 ext4_msg(NULL, KERN_WARNING,
2786 "Remounting fs w/o journal so ignoring data_err option");
2787 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_ERR_ABORT);
2788 }
2789
2790 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) &&
2791 (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)) {
2792 ext4_msg(NULL, KERN_ERR, "can't mount with "
2793 "both data=journal and dax");
2794 return -EINVAL;
2795 }
2796
2797 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) &&
2798 (!(sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2799 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER))) {
2800fail_dax_change_remount:
2801 ext4_msg(NULL, KERN_ERR, "can't change "
2802 "dax mount option while remounting");
2803 return -EINVAL;
2804 } else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER) &&
2805 (!(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2806 (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS))) {
2807 goto fail_dax_change_remount;
2808 } else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE) &&
2809 ((sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2810 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2811 !(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_INODE))) {
2812 goto fail_dax_change_remount;
2813 }
2814 }
2815
2816 return ext4_check_quota_consistency(fc, sb);
2817}
2818
2819static void ext4_apply_options(struct fs_context *fc, struct super_block *sb)
2820{
2821 struct ext4_fs_context *ctx = fc->fs_private;
2822 struct ext4_sb_info *sbi = fc->s_fs_info;
2823
2824 sbi->s_mount_opt &= ~ctx->mask_s_mount_opt;
2825 sbi->s_mount_opt |= ctx->vals_s_mount_opt;
2826 sbi->s_mount_opt2 &= ~ctx->mask_s_mount_opt2;
2827 sbi->s_mount_opt2 |= ctx->vals_s_mount_opt2;
2828 sb->s_flags &= ~ctx->mask_s_flags;
2829 sb->s_flags |= ctx->vals_s_flags;
2830
2831#define APPLY(X) ({ if (ctx->spec & EXT4_SPEC_##X) sbi->X = ctx->X; })
2832 APPLY(s_commit_interval);
2833 APPLY(s_stripe);
2834 APPLY(s_max_batch_time);
2835 APPLY(s_min_batch_time);
2836 APPLY(s_want_extra_isize);
2837 APPLY(s_inode_readahead_blks);
2838 APPLY(s_max_dir_size_kb);
2839 APPLY(s_li_wait_mult);
2840 APPLY(s_resgid);
2841 APPLY(s_resuid);
2842
2843#ifdef CONFIG_EXT4_DEBUG
2844 APPLY(s_fc_debug_max_replay);
2845#endif
2846
2847 ext4_apply_quota_options(fc, sb);
2848 ext4_apply_test_dummy_encryption(ctx, sb);
2849}
2850
2851
2852static int ext4_validate_options(struct fs_context *fc)
2853{
2854#ifdef CONFIG_QUOTA
2855 struct ext4_fs_context *ctx = fc->fs_private;
2856 char *usr_qf_name, *grp_qf_name;
2857
2858 usr_qf_name = ctx->s_qf_names[USRQUOTA];
2859 grp_qf_name = ctx->s_qf_names[GRPQUOTA];
2860
2861 if (usr_qf_name || grp_qf_name) {
2862 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) && usr_qf_name)
2863 ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA);
2864
2865 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) && grp_qf_name)
2866 ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA);
2867
2868 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) ||
2869 ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA)) {
2870 ext4_msg(NULL, KERN_ERR, "old and new quota "
2871 "format mixing");
2872 return -EINVAL;
2873 }
2874 }
2875#endif
2876 return 1;
2877}
2878
2879static inline void ext4_show_quota_options(struct seq_file *seq,
2880 struct super_block *sb)
2881{
2882#if defined(CONFIG_QUOTA)
2883 struct ext4_sb_info *sbi = EXT4_SB(sb);
2884 char *usr_qf_name, *grp_qf_name;
2885
2886 if (sbi->s_jquota_fmt) {
2887 char *fmtname = "";
2888
2889 switch (sbi->s_jquota_fmt) {
2890 case QFMT_VFS_OLD:
2891 fmtname = "vfsold";
2892 break;
2893 case QFMT_VFS_V0:
2894 fmtname = "vfsv0";
2895 break;
2896 case QFMT_VFS_V1:
2897 fmtname = "vfsv1";
2898 break;
2899 }
2900 seq_printf(seq, ",jqfmt=%s", fmtname);
2901 }
2902
2903 rcu_read_lock();
2904 usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]);
2905 grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]);
2906 if (usr_qf_name)
2907 seq_show_option(seq, "usrjquota", usr_qf_name);
2908 if (grp_qf_name)
2909 seq_show_option(seq, "grpjquota", grp_qf_name);
2910 rcu_read_unlock();
2911#endif
2912}
2913
2914static const char *token2str(int token)
2915{
2916 const struct fs_parameter_spec *spec;
2917
2918 for (spec = ext4_param_specs; spec->name != NULL; spec++)
2919 if (spec->opt == token && !spec->type)
2920 break;
2921 return spec->name;
2922}
2923
2924/*
2925 * Show an option if
2926 * - it's set to a non-default value OR
2927 * - if the per-sb default is different from the global default
2928 */
2929static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2930 int nodefs)
2931{
2932 struct ext4_sb_info *sbi = EXT4_SB(sb);
2933 struct ext4_super_block *es = sbi->s_es;
2934 int def_errors;
2935 const struct mount_opts *m;
2936 char sep = nodefs ? '\n' : ',';
2937
2938#define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2939#define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2940
2941 if (sbi->s_sb_block != 1)
2942 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2943
2944 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2945 int want_set = m->flags & MOPT_SET;
2946 int opt_2 = m->flags & MOPT_2;
2947 unsigned int mount_opt, def_mount_opt;
2948
2949 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2950 m->flags & MOPT_SKIP)
2951 continue;
2952
2953 if (opt_2) {
2954 mount_opt = sbi->s_mount_opt2;
2955 def_mount_opt = sbi->s_def_mount_opt2;
2956 } else {
2957 mount_opt = sbi->s_mount_opt;
2958 def_mount_opt = sbi->s_def_mount_opt;
2959 }
2960 /* skip if same as the default */
2961 if (!nodefs && !(m->mount_opt & (mount_opt ^ def_mount_opt)))
2962 continue;
2963 /* select Opt_noFoo vs Opt_Foo */
2964 if ((want_set &&
2965 (mount_opt & m->mount_opt) != m->mount_opt) ||
2966 (!want_set && (mount_opt & m->mount_opt)))
2967 continue;
2968 SEQ_OPTS_PRINT("%s", token2str(m->token));
2969 }
2970
2971 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2972 ext4_get_resuid(es) != EXT4_DEF_RESUID)
2973 SEQ_OPTS_PRINT("resuid=%u",
2974 from_kuid_munged(&init_user_ns, sbi->s_resuid));
2975 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
2976 ext4_get_resgid(es) != EXT4_DEF_RESGID)
2977 SEQ_OPTS_PRINT("resgid=%u",
2978 from_kgid_munged(&init_user_ns, sbi->s_resgid));
2979 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
2980 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
2981 SEQ_OPTS_PUTS("errors=remount-ro");
2982 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
2983 SEQ_OPTS_PUTS("errors=continue");
2984 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
2985 SEQ_OPTS_PUTS("errors=panic");
2986 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
2987 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
2988 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
2989 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
2990 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
2991 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
2992 if (nodefs && sb->s_flags & SB_I_VERSION)
2993 SEQ_OPTS_PUTS("i_version");
2994 if (nodefs || sbi->s_stripe)
2995 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
2996 if (nodefs || EXT4_MOUNT_DATA_FLAGS &
2997 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
2998 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2999 SEQ_OPTS_PUTS("data=journal");
3000 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
3001 SEQ_OPTS_PUTS("data=ordered");
3002 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
3003 SEQ_OPTS_PUTS("data=writeback");
3004 }
3005 if (nodefs ||
3006 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
3007 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
3008 sbi->s_inode_readahead_blks);
3009
3010 if (test_opt(sb, INIT_INODE_TABLE) && (nodefs ||
3011 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
3012 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
3013 if (nodefs || sbi->s_max_dir_size_kb)
3014 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
3015 if (test_opt(sb, DATA_ERR_ABORT))
3016 SEQ_OPTS_PUTS("data_err=abort");
3017
3018 fscrypt_show_test_dummy_encryption(seq, sep, sb);
3019
3020 if (sb->s_flags & SB_INLINECRYPT)
3021 SEQ_OPTS_PUTS("inlinecrypt");
3022
3023 if (test_opt(sb, DAX_ALWAYS)) {
3024 if (IS_EXT2_SB(sb))
3025 SEQ_OPTS_PUTS("dax");
3026 else
3027 SEQ_OPTS_PUTS("dax=always");
3028 } else if (test_opt2(sb, DAX_NEVER)) {
3029 SEQ_OPTS_PUTS("dax=never");
3030 } else if (test_opt2(sb, DAX_INODE)) {
3031 SEQ_OPTS_PUTS("dax=inode");
3032 }
3033
3034 if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD &&
3035 !test_opt2(sb, MB_OPTIMIZE_SCAN)) {
3036 SEQ_OPTS_PUTS("mb_optimize_scan=0");
3037 } else if (sbi->s_groups_count < MB_DEFAULT_LINEAR_SCAN_THRESHOLD &&
3038 test_opt2(sb, MB_OPTIMIZE_SCAN)) {
3039 SEQ_OPTS_PUTS("mb_optimize_scan=1");
3040 }
3041
3042 if (nodefs && !test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS))
3043 SEQ_OPTS_PUTS("prefetch_block_bitmaps");
3044
3045 if (ext4_emergency_ro(sb))
3046 SEQ_OPTS_PUTS("emergency_ro");
3047
3048 if (ext4_forced_shutdown(sb))
3049 SEQ_OPTS_PUTS("shutdown");
3050
3051 ext4_show_quota_options(seq, sb);
3052 return 0;
3053}
3054
3055static int ext4_show_options(struct seq_file *seq, struct dentry *root)
3056{
3057 return _ext4_show_options(seq, root->d_sb, 0);
3058}
3059
3060int ext4_seq_options_show(struct seq_file *seq, void *offset)
3061{
3062 struct super_block *sb = seq->private;
3063 int rc;
3064
3065 seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
3066 rc = _ext4_show_options(seq, sb, 1);
3067 seq_putc(seq, '\n');
3068 return rc;
3069}
3070
3071static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
3072 int read_only)
3073{
3074 struct ext4_sb_info *sbi = EXT4_SB(sb);
3075 int err = 0;
3076
3077 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
3078 ext4_msg(sb, KERN_ERR, "revision level too high, "
3079 "forcing read-only mode");
3080 err = -EROFS;
3081 goto done;
3082 }
3083 if (read_only)
3084 goto done;
3085 if (!(sbi->s_mount_state & EXT4_VALID_FS))
3086 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
3087 "running e2fsck is recommended");
3088 else if (sbi->s_mount_state & EXT4_ERROR_FS)
3089 ext4_msg(sb, KERN_WARNING,
3090 "warning: mounting fs with errors, "
3091 "running e2fsck is recommended");
3092 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
3093 le16_to_cpu(es->s_mnt_count) >=
3094 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
3095 ext4_msg(sb, KERN_WARNING,
3096 "warning: maximal mount count reached, "
3097 "running e2fsck is recommended");
3098 else if (le32_to_cpu(es->s_checkinterval) &&
3099 (ext4_get_tstamp(es, s_lastcheck) +
3100 le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds()))
3101 ext4_msg(sb, KERN_WARNING,
3102 "warning: checktime reached, "
3103 "running e2fsck is recommended");
3104 if (!sbi->s_journal)
3105 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
3106 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
3107 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
3108 le16_add_cpu(&es->s_mnt_count, 1);
3109 ext4_update_tstamp(es, s_mtime);
3110 if (sbi->s_journal) {
3111 ext4_set_feature_journal_needs_recovery(sb);
3112 if (ext4_has_feature_orphan_file(sb))
3113 ext4_set_feature_orphan_present(sb);
3114 }
3115
3116 err = ext4_commit_super(sb);
3117done:
3118 if (test_opt(sb, DEBUG))
3119 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
3120 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
3121 sb->s_blocksize,
3122 sbi->s_groups_count,
3123 EXT4_BLOCKS_PER_GROUP(sb),
3124 EXT4_INODES_PER_GROUP(sb),
3125 sbi->s_mount_opt, sbi->s_mount_opt2);
3126 return err;
3127}
3128
3129int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
3130{
3131 struct ext4_sb_info *sbi = EXT4_SB(sb);
3132 struct flex_groups **old_groups, **new_groups;
3133 int size, i, j;
3134
3135 if (!sbi->s_log_groups_per_flex)
3136 return 0;
3137
3138 size = ext4_flex_group(sbi, ngroup - 1) + 1;
3139 if (size <= sbi->s_flex_groups_allocated)
3140 return 0;
3141
3142 new_groups = kvzalloc(roundup_pow_of_two(size *
3143 sizeof(*sbi->s_flex_groups)), GFP_KERNEL);
3144 if (!new_groups) {
3145 ext4_msg(sb, KERN_ERR,
3146 "not enough memory for %d flex group pointers", size);
3147 return -ENOMEM;
3148 }
3149 for (i = sbi->s_flex_groups_allocated; i < size; i++) {
3150 new_groups[i] = kvzalloc(roundup_pow_of_two(
3151 sizeof(struct flex_groups)),
3152 GFP_KERNEL);
3153 if (!new_groups[i]) {
3154 for (j = sbi->s_flex_groups_allocated; j < i; j++)
3155 kvfree(new_groups[j]);
3156 kvfree(new_groups);
3157 ext4_msg(sb, KERN_ERR,
3158 "not enough memory for %d flex groups", size);
3159 return -ENOMEM;
3160 }
3161 }
3162 rcu_read_lock();
3163 old_groups = rcu_dereference(sbi->s_flex_groups);
3164 if (old_groups)
3165 memcpy(new_groups, old_groups,
3166 (sbi->s_flex_groups_allocated *
3167 sizeof(struct flex_groups *)));
3168 rcu_read_unlock();
3169 rcu_assign_pointer(sbi->s_flex_groups, new_groups);
3170 sbi->s_flex_groups_allocated = size;
3171 if (old_groups)
3172 ext4_kvfree_array_rcu(old_groups);
3173 return 0;
3174}
3175
3176static int ext4_fill_flex_info(struct super_block *sb)
3177{
3178 struct ext4_sb_info *sbi = EXT4_SB(sb);
3179 struct ext4_group_desc *gdp = NULL;
3180 struct flex_groups *fg;
3181 ext4_group_t flex_group;
3182 int i, err;
3183
3184 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
3185 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
3186 sbi->s_log_groups_per_flex = 0;
3187 return 1;
3188 }
3189
3190 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
3191 if (err)
3192 goto failed;
3193
3194 for (i = 0; i < sbi->s_groups_count; i++) {
3195 gdp = ext4_get_group_desc(sb, i, NULL);
3196
3197 flex_group = ext4_flex_group(sbi, i);
3198 fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group);
3199 atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes);
3200 atomic64_add(ext4_free_group_clusters(sb, gdp),
3201 &fg->free_clusters);
3202 atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs);
3203 }
3204
3205 return 1;
3206failed:
3207 return 0;
3208}
3209
3210static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
3211 struct ext4_group_desc *gdp)
3212{
3213 int offset = offsetof(struct ext4_group_desc, bg_checksum);
3214 __u16 crc = 0;
3215 __le32 le_group = cpu_to_le32(block_group);
3216 struct ext4_sb_info *sbi = EXT4_SB(sb);
3217
3218 if (ext4_has_feature_metadata_csum(sbi->s_sb)) {
3219 /* Use new metadata_csum algorithm */
3220 __u32 csum32;
3221 __u16 dummy_csum = 0;
3222
3223 csum32 = ext4_chksum(sbi->s_csum_seed, (__u8 *)&le_group,
3224 sizeof(le_group));
3225 csum32 = ext4_chksum(csum32, (__u8 *)gdp, offset);
3226 csum32 = ext4_chksum(csum32, (__u8 *)&dummy_csum,
3227 sizeof(dummy_csum));
3228 offset += sizeof(dummy_csum);
3229 if (offset < sbi->s_desc_size)
3230 csum32 = ext4_chksum(csum32, (__u8 *)gdp + offset,
3231 sbi->s_desc_size - offset);
3232
3233 crc = csum32 & 0xFFFF;
3234 goto out;
3235 }
3236
3237 /* old crc16 code */
3238 if (!ext4_has_feature_gdt_csum(sb))
3239 return 0;
3240
3241 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
3242 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
3243 crc = crc16(crc, (__u8 *)gdp, offset);
3244 offset += sizeof(gdp->bg_checksum); /* skip checksum */
3245 /* for checksum of struct ext4_group_desc do the rest...*/
3246 if (ext4_has_feature_64bit(sb) && offset < sbi->s_desc_size)
3247 crc = crc16(crc, (__u8 *)gdp + offset,
3248 sbi->s_desc_size - offset);
3249
3250out:
3251 return cpu_to_le16(crc);
3252}
3253
3254int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
3255 struct ext4_group_desc *gdp)
3256{
3257 if (ext4_has_group_desc_csum(sb) &&
3258 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
3259 return 0;
3260
3261 return 1;
3262}
3263
3264void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
3265 struct ext4_group_desc *gdp)
3266{
3267 if (!ext4_has_group_desc_csum(sb))
3268 return;
3269 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
3270}
3271
3272/* Called at mount-time, super-block is locked */
3273static int ext4_check_descriptors(struct super_block *sb,
3274 ext4_fsblk_t sb_block,
3275 ext4_group_t *first_not_zeroed)
3276{
3277 struct ext4_sb_info *sbi = EXT4_SB(sb);
3278 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
3279 ext4_fsblk_t last_block;
3280 ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0);
3281 ext4_fsblk_t block_bitmap;
3282 ext4_fsblk_t inode_bitmap;
3283 ext4_fsblk_t inode_table;
3284 int flexbg_flag = 0;
3285 ext4_group_t i, grp = sbi->s_groups_count;
3286
3287 if (ext4_has_feature_flex_bg(sb))
3288 flexbg_flag = 1;
3289
3290 ext4_debug("Checking group descriptors");
3291
3292 for (i = 0; i < sbi->s_groups_count; i++) {
3293 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
3294
3295 if (i == sbi->s_groups_count - 1 || flexbg_flag)
3296 last_block = ext4_blocks_count(sbi->s_es) - 1;
3297 else
3298 last_block = first_block +
3299 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
3300
3301 if ((grp == sbi->s_groups_count) &&
3302 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3303 grp = i;
3304
3305 block_bitmap = ext4_block_bitmap(sb, gdp);
3306 if (block_bitmap == sb_block) {
3307 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3308 "Block bitmap for group %u overlaps "
3309 "superblock", i);
3310 if (!sb_rdonly(sb))
3311 return 0;
3312 }
3313 if (block_bitmap >= sb_block + 1 &&
3314 block_bitmap <= last_bg_block) {
3315 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3316 "Block bitmap for group %u overlaps "
3317 "block group descriptors", i);
3318 if (!sb_rdonly(sb))
3319 return 0;
3320 }
3321 if (block_bitmap < first_block || block_bitmap > last_block) {
3322 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3323 "Block bitmap for group %u not in group "
3324 "(block %llu)!", i, block_bitmap);
3325 return 0;
3326 }
3327 inode_bitmap = ext4_inode_bitmap(sb, gdp);
3328 if (inode_bitmap == sb_block) {
3329 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3330 "Inode bitmap for group %u overlaps "
3331 "superblock", i);
3332 if (!sb_rdonly(sb))
3333 return 0;
3334 }
3335 if (inode_bitmap >= sb_block + 1 &&
3336 inode_bitmap <= last_bg_block) {
3337 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3338 "Inode bitmap for group %u overlaps "
3339 "block group descriptors", i);
3340 if (!sb_rdonly(sb))
3341 return 0;
3342 }
3343 if (inode_bitmap < first_block || inode_bitmap > last_block) {
3344 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3345 "Inode bitmap for group %u not in group "
3346 "(block %llu)!", i, inode_bitmap);
3347 return 0;
3348 }
3349 inode_table = ext4_inode_table(sb, gdp);
3350 if (inode_table == sb_block) {
3351 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3352 "Inode table for group %u overlaps "
3353 "superblock", i);
3354 if (!sb_rdonly(sb))
3355 return 0;
3356 }
3357 if (inode_table >= sb_block + 1 &&
3358 inode_table <= last_bg_block) {
3359 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3360 "Inode table for group %u overlaps "
3361 "block group descriptors", i);
3362 if (!sb_rdonly(sb))
3363 return 0;
3364 }
3365 if (inode_table < first_block ||
3366 inode_table + sbi->s_itb_per_group - 1 > last_block) {
3367 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3368 "Inode table for group %u not in group "
3369 "(block %llu)!", i, inode_table);
3370 return 0;
3371 }
3372 ext4_lock_group(sb, i);
3373 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
3374 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3375 "Checksum for group %u failed (%u!=%u)",
3376 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
3377 gdp)), le16_to_cpu(gdp->bg_checksum));
3378 if (!sb_rdonly(sb)) {
3379 ext4_unlock_group(sb, i);
3380 return 0;
3381 }
3382 }
3383 ext4_unlock_group(sb, i);
3384 if (!flexbg_flag)
3385 first_block += EXT4_BLOCKS_PER_GROUP(sb);
3386 }
3387 if (NULL != first_not_zeroed)
3388 *first_not_zeroed = grp;
3389 return 1;
3390}
3391
3392/*
3393 * Maximal extent format file size.
3394 * Resulting logical blkno at s_maxbytes must fit in our on-disk
3395 * extent format containers, within a sector_t, and within i_blocks
3396 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
3397 * so that won't be a limiting factor.
3398 *
3399 * However there is other limiting factor. We do store extents in the form
3400 * of starting block and length, hence the resulting length of the extent
3401 * covering maximum file size must fit into on-disk format containers as
3402 * well. Given that length is always by 1 unit bigger than max unit (because
3403 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
3404 *
3405 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
3406 */
3407static loff_t ext4_max_size(int blkbits, int has_huge_files)
3408{
3409 loff_t res;
3410 loff_t upper_limit = MAX_LFS_FILESIZE;
3411
3412 BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64));
3413
3414 if (!has_huge_files) {
3415 upper_limit = (1LL << 32) - 1;
3416
3417 /* total blocks in file system block size */
3418 upper_limit >>= (blkbits - 9);
3419 upper_limit <<= blkbits;
3420 }
3421
3422 /*
3423 * 32-bit extent-start container, ee_block. We lower the maxbytes
3424 * by one fs block, so ee_len can cover the extent of maximum file
3425 * size
3426 */
3427 res = (1LL << 32) - 1;
3428 res <<= blkbits;
3429
3430 /* Sanity check against vm- & vfs- imposed limits */
3431 if (res > upper_limit)
3432 res = upper_limit;
3433
3434 return res;
3435}
3436
3437/*
3438 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
3439 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
3440 * We need to be 1 filesystem block less than the 2^48 sector limit.
3441 */
3442static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
3443{
3444 loff_t upper_limit, res = EXT4_NDIR_BLOCKS;
3445 int meta_blocks;
3446 unsigned int ppb = 1 << (bits - 2);
3447
3448 /*
3449 * This is calculated to be the largest file size for a dense, block
3450 * mapped file such that the file's total number of 512-byte sectors,
3451 * including data and all indirect blocks, does not exceed (2^48 - 1).
3452 *
3453 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
3454 * number of 512-byte sectors of the file.
3455 */
3456 if (!has_huge_files) {
3457 /*
3458 * !has_huge_files or implies that the inode i_block field
3459 * represents total file blocks in 2^32 512-byte sectors ==
3460 * size of vfs inode i_blocks * 8
3461 */
3462 upper_limit = (1LL << 32) - 1;
3463
3464 /* total blocks in file system block size */
3465 upper_limit >>= (bits - 9);
3466
3467 } else {
3468 /*
3469 * We use 48 bit ext4_inode i_blocks
3470 * With EXT4_HUGE_FILE_FL set the i_blocks
3471 * represent total number of blocks in
3472 * file system block size
3473 */
3474 upper_limit = (1LL << 48) - 1;
3475
3476 }
3477
3478 /* Compute how many blocks we can address by block tree */
3479 res += ppb;
3480 res += ppb * ppb;
3481 res += ((loff_t)ppb) * ppb * ppb;
3482 /* Compute how many metadata blocks are needed */
3483 meta_blocks = 1;
3484 meta_blocks += 1 + ppb;
3485 meta_blocks += 1 + ppb + ppb * ppb;
3486 /* Does block tree limit file size? */
3487 if (res + meta_blocks <= upper_limit)
3488 goto check_lfs;
3489
3490 res = upper_limit;
3491 /* How many metadata blocks are needed for addressing upper_limit? */
3492 upper_limit -= EXT4_NDIR_BLOCKS;
3493 /* indirect blocks */
3494 meta_blocks = 1;
3495 upper_limit -= ppb;
3496 /* double indirect blocks */
3497 if (upper_limit < ppb * ppb) {
3498 meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb);
3499 res -= meta_blocks;
3500 goto check_lfs;
3501 }
3502 meta_blocks += 1 + ppb;
3503 upper_limit -= ppb * ppb;
3504 /* tripple indirect blocks for the rest */
3505 meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb) +
3506 DIV_ROUND_UP_ULL(upper_limit, ppb*ppb);
3507 res -= meta_blocks;
3508check_lfs:
3509 res <<= bits;
3510 if (res > MAX_LFS_FILESIZE)
3511 res = MAX_LFS_FILESIZE;
3512
3513 return res;
3514}
3515
3516static ext4_fsblk_t descriptor_loc(struct super_block *sb,
3517 ext4_fsblk_t logical_sb_block, int nr)
3518{
3519 struct ext4_sb_info *sbi = EXT4_SB(sb);
3520 ext4_group_t bg, first_meta_bg;
3521 int has_super = 0;
3522
3523 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
3524
3525 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
3526 return logical_sb_block + nr + 1;
3527 bg = sbi->s_desc_per_block * nr;
3528 if (ext4_bg_has_super(sb, bg))
3529 has_super = 1;
3530
3531 /*
3532 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
3533 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled
3534 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
3535 * compensate.
3536 */
3537 if (sb->s_blocksize == 1024 && nr == 0 &&
3538 le32_to_cpu(sbi->s_es->s_first_data_block) == 0)
3539 has_super++;
3540
3541 return (has_super + ext4_group_first_block_no(sb, bg));
3542}
3543
3544/**
3545 * ext4_get_stripe_size: Get the stripe size.
3546 * @sbi: In memory super block info
3547 *
3548 * If we have specified it via mount option, then
3549 * use the mount option value. If the value specified at mount time is
3550 * greater than the blocks per group use the super block value.
3551 * If the super block value is greater than blocks per group return 0.
3552 * Allocator needs it be less than blocks per group.
3553 *
3554 */
3555static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
3556{
3557 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
3558 unsigned long stripe_width =
3559 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
3560 int ret;
3561
3562 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
3563 ret = sbi->s_stripe;
3564 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
3565 ret = stripe_width;
3566 else if (stride && stride <= sbi->s_blocks_per_group)
3567 ret = stride;
3568 else
3569 ret = 0;
3570
3571 /*
3572 * If the stripe width is 1, this makes no sense and
3573 * we set it to 0 to turn off stripe handling code.
3574 */
3575 if (ret <= 1)
3576 ret = 0;
3577
3578 return ret;
3579}
3580
3581/*
3582 * Check whether this filesystem can be mounted based on
3583 * the features present and the RDONLY/RDWR mount requested.
3584 * Returns 1 if this filesystem can be mounted as requested,
3585 * 0 if it cannot be.
3586 */
3587int ext4_feature_set_ok(struct super_block *sb, int readonly)
3588{
3589 if (ext4_has_unknown_ext4_incompat_features(sb)) {
3590 ext4_msg(sb, KERN_ERR,
3591 "Couldn't mount because of "
3592 "unsupported optional features (%x)",
3593 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
3594 ~EXT4_FEATURE_INCOMPAT_SUPP));
3595 return 0;
3596 }
3597
3598 if (!IS_ENABLED(CONFIG_UNICODE) && ext4_has_feature_casefold(sb)) {
3599 ext4_msg(sb, KERN_ERR,
3600 "Filesystem with casefold feature cannot be "
3601 "mounted without CONFIG_UNICODE");
3602 return 0;
3603 }
3604
3605 if (readonly)
3606 return 1;
3607
3608 if (ext4_has_feature_readonly(sb)) {
3609 ext4_msg(sb, KERN_INFO, "filesystem is read-only");
3610 sb->s_flags |= SB_RDONLY;
3611 return 1;
3612 }
3613
3614 /* Check that feature set is OK for a read-write mount */
3615 if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
3616 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
3617 "unsupported optional features (%x)",
3618 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
3619 ~EXT4_FEATURE_RO_COMPAT_SUPP));
3620 return 0;
3621 }
3622 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
3623 ext4_msg(sb, KERN_ERR,
3624 "Can't support bigalloc feature without "
3625 "extents feature\n");
3626 return 0;
3627 }
3628
3629#if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2)
3630 if (!readonly && (ext4_has_feature_quota(sb) ||
3631 ext4_has_feature_project(sb))) {
3632 ext4_msg(sb, KERN_ERR,
3633 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2");
3634 return 0;
3635 }
3636#endif /* CONFIG_QUOTA */
3637 return 1;
3638}
3639
3640/*
3641 * This function is called once a day if we have errors logged
3642 * on the file system
3643 */
3644static void print_daily_error_info(struct timer_list *t)
3645{
3646 struct ext4_sb_info *sbi = timer_container_of(sbi, t, s_err_report);
3647 struct super_block *sb = sbi->s_sb;
3648 struct ext4_super_block *es = sbi->s_es;
3649
3650 if (es->s_error_count)
3651 /* fsck newer than v1.41.13 is needed to clean this condition. */
3652 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
3653 le32_to_cpu(es->s_error_count));
3654 if (es->s_first_error_time) {
3655 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d",
3656 sb->s_id,
3657 ext4_get_tstamp(es, s_first_error_time),
3658 (int) sizeof(es->s_first_error_func),
3659 es->s_first_error_func,
3660 le32_to_cpu(es->s_first_error_line));
3661 if (es->s_first_error_ino)
3662 printk(KERN_CONT ": inode %u",
3663 le32_to_cpu(es->s_first_error_ino));
3664 if (es->s_first_error_block)
3665 printk(KERN_CONT ": block %llu", (unsigned long long)
3666 le64_to_cpu(es->s_first_error_block));
3667 printk(KERN_CONT "\n");
3668 }
3669 if (es->s_last_error_time) {
3670 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d",
3671 sb->s_id,
3672 ext4_get_tstamp(es, s_last_error_time),
3673 (int) sizeof(es->s_last_error_func),
3674 es->s_last_error_func,
3675 le32_to_cpu(es->s_last_error_line));
3676 if (es->s_last_error_ino)
3677 printk(KERN_CONT ": inode %u",
3678 le32_to_cpu(es->s_last_error_ino));
3679 if (es->s_last_error_block)
3680 printk(KERN_CONT ": block %llu", (unsigned long long)
3681 le64_to_cpu(es->s_last_error_block));
3682 printk(KERN_CONT "\n");
3683 }
3684 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
3685}
3686
3687/* Find next suitable group and run ext4_init_inode_table */
3688static int ext4_run_li_request(struct ext4_li_request *elr)
3689{
3690 struct ext4_group_desc *gdp = NULL;
3691 struct super_block *sb = elr->lr_super;
3692 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3693 ext4_group_t group = elr->lr_next_group;
3694 unsigned int prefetch_ios = 0;
3695 int ret = 0;
3696 int nr = EXT4_SB(sb)->s_mb_prefetch;
3697 u64 start_time;
3698
3699 if (elr->lr_mode == EXT4_LI_MODE_PREFETCH_BBITMAP) {
3700 elr->lr_next_group = ext4_mb_prefetch(sb, group, nr, &prefetch_ios);
3701 ext4_mb_prefetch_fini(sb, elr->lr_next_group, nr);
3702 trace_ext4_prefetch_bitmaps(sb, group, elr->lr_next_group, nr);
3703 if (group >= elr->lr_next_group) {
3704 ret = 1;
3705 if (elr->lr_first_not_zeroed != ngroups &&
3706 !ext4_emergency_state(sb) && !sb_rdonly(sb) &&
3707 test_opt(sb, INIT_INODE_TABLE)) {
3708 elr->lr_next_group = elr->lr_first_not_zeroed;
3709 elr->lr_mode = EXT4_LI_MODE_ITABLE;
3710 ret = 0;
3711 }
3712 }
3713 return ret;
3714 }
3715
3716 for (; group < ngroups; group++) {
3717 gdp = ext4_get_group_desc(sb, group, NULL);
3718 if (!gdp) {
3719 ret = 1;
3720 break;
3721 }
3722
3723 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3724 break;
3725 }
3726
3727 if (group >= ngroups)
3728 ret = 1;
3729
3730 if (!ret) {
3731 start_time = ktime_get_ns();
3732 ret = ext4_init_inode_table(sb, group,
3733 elr->lr_timeout ? 0 : 1);
3734 trace_ext4_lazy_itable_init(sb, group);
3735 if (elr->lr_timeout == 0) {
3736 elr->lr_timeout = nsecs_to_jiffies((ktime_get_ns() - start_time) *
3737 EXT4_SB(elr->lr_super)->s_li_wait_mult);
3738 }
3739 elr->lr_next_sched = jiffies + elr->lr_timeout;
3740 elr->lr_next_group = group + 1;
3741 }
3742 return ret;
3743}
3744
3745/*
3746 * Remove lr_request from the list_request and free the
3747 * request structure. Should be called with li_list_mtx held
3748 */
3749static void ext4_remove_li_request(struct ext4_li_request *elr)
3750{
3751 if (!elr)
3752 return;
3753
3754 list_del(&elr->lr_request);
3755 EXT4_SB(elr->lr_super)->s_li_request = NULL;
3756 kfree(elr);
3757}
3758
3759static void ext4_unregister_li_request(struct super_block *sb)
3760{
3761 mutex_lock(&ext4_li_mtx);
3762 if (!ext4_li_info) {
3763 mutex_unlock(&ext4_li_mtx);
3764 return;
3765 }
3766
3767 mutex_lock(&ext4_li_info->li_list_mtx);
3768 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
3769 mutex_unlock(&ext4_li_info->li_list_mtx);
3770 mutex_unlock(&ext4_li_mtx);
3771}
3772
3773static struct task_struct *ext4_lazyinit_task;
3774
3775/*
3776 * This is the function where ext4lazyinit thread lives. It walks
3777 * through the request list searching for next scheduled filesystem.
3778 * When such a fs is found, run the lazy initialization request
3779 * (ext4_rn_li_request) and keep track of the time spend in this
3780 * function. Based on that time we compute next schedule time of
3781 * the request. When walking through the list is complete, compute
3782 * next waking time and put itself into sleep.
3783 */
3784static int ext4_lazyinit_thread(void *arg)
3785{
3786 struct ext4_lazy_init *eli = arg;
3787 struct list_head *pos, *n;
3788 struct ext4_li_request *elr;
3789 unsigned long next_wakeup, cur;
3790
3791 BUG_ON(NULL == eli);
3792 set_freezable();
3793
3794cont_thread:
3795 while (true) {
3796 bool next_wakeup_initialized = false;
3797
3798 next_wakeup = 0;
3799 mutex_lock(&eli->li_list_mtx);
3800 if (list_empty(&eli->li_request_list)) {
3801 mutex_unlock(&eli->li_list_mtx);
3802 goto exit_thread;
3803 }
3804 list_for_each_safe(pos, n, &eli->li_request_list) {
3805 int err = 0;
3806 int progress = 0;
3807 elr = list_entry(pos, struct ext4_li_request,
3808 lr_request);
3809
3810 if (time_before(jiffies, elr->lr_next_sched)) {
3811 if (!next_wakeup_initialized ||
3812 time_before(elr->lr_next_sched, next_wakeup)) {
3813 next_wakeup = elr->lr_next_sched;
3814 next_wakeup_initialized = true;
3815 }
3816 continue;
3817 }
3818 if (down_read_trylock(&elr->lr_super->s_umount)) {
3819 if (sb_start_write_trylock(elr->lr_super)) {
3820 progress = 1;
3821 /*
3822 * We hold sb->s_umount, sb can not
3823 * be removed from the list, it is
3824 * now safe to drop li_list_mtx
3825 */
3826 mutex_unlock(&eli->li_list_mtx);
3827 err = ext4_run_li_request(elr);
3828 sb_end_write(elr->lr_super);
3829 mutex_lock(&eli->li_list_mtx);
3830 n = pos->next;
3831 }
3832 up_read((&elr->lr_super->s_umount));
3833 }
3834 /* error, remove the lazy_init job */
3835 if (err) {
3836 ext4_remove_li_request(elr);
3837 continue;
3838 }
3839 if (!progress) {
3840 elr->lr_next_sched = jiffies +
3841 get_random_u32_below(EXT4_DEF_LI_MAX_START_DELAY * HZ);
3842 }
3843 if (!next_wakeup_initialized ||
3844 time_before(elr->lr_next_sched, next_wakeup)) {
3845 next_wakeup = elr->lr_next_sched;
3846 next_wakeup_initialized = true;
3847 }
3848 }
3849 mutex_unlock(&eli->li_list_mtx);
3850
3851 try_to_freeze();
3852
3853 cur = jiffies;
3854 if (!next_wakeup_initialized || time_after_eq(cur, next_wakeup)) {
3855 cond_resched();
3856 continue;
3857 }
3858
3859 schedule_timeout_interruptible(next_wakeup - cur);
3860
3861 if (kthread_should_stop()) {
3862 ext4_clear_request_list();
3863 goto exit_thread;
3864 }
3865 }
3866
3867exit_thread:
3868 /*
3869 * It looks like the request list is empty, but we need
3870 * to check it under the li_list_mtx lock, to prevent any
3871 * additions into it, and of course we should lock ext4_li_mtx
3872 * to atomically free the list and ext4_li_info, because at
3873 * this point another ext4 filesystem could be registering
3874 * new one.
3875 */
3876 mutex_lock(&ext4_li_mtx);
3877 mutex_lock(&eli->li_list_mtx);
3878 if (!list_empty(&eli->li_request_list)) {
3879 mutex_unlock(&eli->li_list_mtx);
3880 mutex_unlock(&ext4_li_mtx);
3881 goto cont_thread;
3882 }
3883 mutex_unlock(&eli->li_list_mtx);
3884 kfree(ext4_li_info);
3885 ext4_li_info = NULL;
3886 mutex_unlock(&ext4_li_mtx);
3887
3888 return 0;
3889}
3890
3891static void ext4_clear_request_list(void)
3892{
3893 struct list_head *pos, *n;
3894 struct ext4_li_request *elr;
3895
3896 mutex_lock(&ext4_li_info->li_list_mtx);
3897 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3898 elr = list_entry(pos, struct ext4_li_request,
3899 lr_request);
3900 ext4_remove_li_request(elr);
3901 }
3902 mutex_unlock(&ext4_li_info->li_list_mtx);
3903}
3904
3905static int ext4_run_lazyinit_thread(void)
3906{
3907 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3908 ext4_li_info, "ext4lazyinit");
3909 if (IS_ERR(ext4_lazyinit_task)) {
3910 int err = PTR_ERR(ext4_lazyinit_task);
3911 ext4_clear_request_list();
3912 kfree(ext4_li_info);
3913 ext4_li_info = NULL;
3914 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3915 "initialization thread\n",
3916 err);
3917 return err;
3918 }
3919 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3920 return 0;
3921}
3922
3923/*
3924 * Check whether it make sense to run itable init. thread or not.
3925 * If there is at least one uninitialized inode table, return
3926 * corresponding group number, else the loop goes through all
3927 * groups and return total number of groups.
3928 */
3929static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3930{
3931 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3932 struct ext4_group_desc *gdp = NULL;
3933
3934 if (!ext4_has_group_desc_csum(sb))
3935 return ngroups;
3936
3937 for (group = 0; group < ngroups; group++) {
3938 gdp = ext4_get_group_desc(sb, group, NULL);
3939 if (!gdp)
3940 continue;
3941
3942 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3943 break;
3944 }
3945
3946 return group;
3947}
3948
3949static int ext4_li_info_new(void)
3950{
3951 struct ext4_lazy_init *eli = NULL;
3952
3953 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3954 if (!eli)
3955 return -ENOMEM;
3956
3957 INIT_LIST_HEAD(&eli->li_request_list);
3958 mutex_init(&eli->li_list_mtx);
3959
3960 eli->li_state |= EXT4_LAZYINIT_QUIT;
3961
3962 ext4_li_info = eli;
3963
3964 return 0;
3965}
3966
3967static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3968 ext4_group_t start)
3969{
3970 struct ext4_li_request *elr;
3971
3972 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3973 if (!elr)
3974 return NULL;
3975
3976 elr->lr_super = sb;
3977 elr->lr_first_not_zeroed = start;
3978 if (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS)) {
3979 elr->lr_mode = EXT4_LI_MODE_ITABLE;
3980 elr->lr_next_group = start;
3981 } else {
3982 elr->lr_mode = EXT4_LI_MODE_PREFETCH_BBITMAP;
3983 }
3984
3985 /*
3986 * Randomize first schedule time of the request to
3987 * spread the inode table initialization requests
3988 * better.
3989 */
3990 elr->lr_next_sched = jiffies + get_random_u32_below(EXT4_DEF_LI_MAX_START_DELAY * HZ);
3991 return elr;
3992}
3993
3994int ext4_register_li_request(struct super_block *sb,
3995 ext4_group_t first_not_zeroed)
3996{
3997 struct ext4_sb_info *sbi = EXT4_SB(sb);
3998 struct ext4_li_request *elr = NULL;
3999 ext4_group_t ngroups = sbi->s_groups_count;
4000 int ret = 0;
4001
4002 mutex_lock(&ext4_li_mtx);
4003 if (sbi->s_li_request != NULL) {
4004 /*
4005 * Reset timeout so it can be computed again, because
4006 * s_li_wait_mult might have changed.
4007 */
4008 sbi->s_li_request->lr_timeout = 0;
4009 goto out;
4010 }
4011
4012 if (ext4_emergency_state(sb) || sb_rdonly(sb) ||
4013 (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS) &&
4014 (first_not_zeroed == ngroups || !test_opt(sb, INIT_INODE_TABLE))))
4015 goto out;
4016
4017 elr = ext4_li_request_new(sb, first_not_zeroed);
4018 if (!elr) {
4019 ret = -ENOMEM;
4020 goto out;
4021 }
4022
4023 if (NULL == ext4_li_info) {
4024 ret = ext4_li_info_new();
4025 if (ret)
4026 goto out;
4027 }
4028
4029 mutex_lock(&ext4_li_info->li_list_mtx);
4030 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
4031 mutex_unlock(&ext4_li_info->li_list_mtx);
4032
4033 sbi->s_li_request = elr;
4034 /*
4035 * set elr to NULL here since it has been inserted to
4036 * the request_list and the removal and free of it is
4037 * handled by ext4_clear_request_list from now on.
4038 */
4039 elr = NULL;
4040
4041 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
4042 ret = ext4_run_lazyinit_thread();
4043 if (ret)
4044 goto out;
4045 }
4046out:
4047 mutex_unlock(&ext4_li_mtx);
4048 if (ret)
4049 kfree(elr);
4050 return ret;
4051}
4052
4053/*
4054 * We do not need to lock anything since this is called on
4055 * module unload.
4056 */
4057static void ext4_destroy_lazyinit_thread(void)
4058{
4059 /*
4060 * If thread exited earlier
4061 * there's nothing to be done.
4062 */
4063 if (!ext4_li_info || !ext4_lazyinit_task)
4064 return;
4065
4066 kthread_stop(ext4_lazyinit_task);
4067}
4068
4069static int set_journal_csum_feature_set(struct super_block *sb)
4070{
4071 int ret = 1;
4072 int compat, incompat;
4073 struct ext4_sb_info *sbi = EXT4_SB(sb);
4074
4075 if (ext4_has_feature_metadata_csum(sb)) {
4076 /* journal checksum v3 */
4077 compat = 0;
4078 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
4079 } else {
4080 /* journal checksum v1 */
4081 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
4082 incompat = 0;
4083 }
4084
4085 jbd2_journal_clear_features(sbi->s_journal,
4086 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
4087 JBD2_FEATURE_INCOMPAT_CSUM_V3 |
4088 JBD2_FEATURE_INCOMPAT_CSUM_V2);
4089 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4090 ret = jbd2_journal_set_features(sbi->s_journal,
4091 compat, 0,
4092 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
4093 incompat);
4094 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
4095 ret = jbd2_journal_set_features(sbi->s_journal,
4096 compat, 0,
4097 incompat);
4098 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
4099 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
4100 } else {
4101 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
4102 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
4103 }
4104
4105 return ret;
4106}
4107
4108/*
4109 * Note: calculating the overhead so we can be compatible with
4110 * historical BSD practice is quite difficult in the face of
4111 * clusters/bigalloc. This is because multiple metadata blocks from
4112 * different block group can end up in the same allocation cluster.
4113 * Calculating the exact overhead in the face of clustered allocation
4114 * requires either O(all block bitmaps) in memory or O(number of block
4115 * groups**2) in time. We will still calculate the superblock for
4116 * older file systems --- and if we come across with a bigalloc file
4117 * system with zero in s_overhead_clusters the estimate will be close to
4118 * correct especially for very large cluster sizes --- but for newer
4119 * file systems, it's better to calculate this figure once at mkfs
4120 * time, and store it in the superblock. If the superblock value is
4121 * present (even for non-bigalloc file systems), we will use it.
4122 */
4123static int count_overhead(struct super_block *sb, ext4_group_t grp,
4124 char *buf)
4125{
4126 struct ext4_sb_info *sbi = EXT4_SB(sb);
4127 struct ext4_group_desc *gdp;
4128 ext4_fsblk_t first_block, last_block, b;
4129 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4130 int s, j, count = 0;
4131 int has_super = ext4_bg_has_super(sb, grp);
4132
4133 if (!ext4_has_feature_bigalloc(sb))
4134 return (has_super + ext4_bg_num_gdb(sb, grp) +
4135 (has_super ? le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) : 0) +
4136 sbi->s_itb_per_group + 2);
4137
4138 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
4139 (grp * EXT4_BLOCKS_PER_GROUP(sb));
4140 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
4141 for (i = 0; i < ngroups; i++) {
4142 gdp = ext4_get_group_desc(sb, i, NULL);
4143 b = ext4_block_bitmap(sb, gdp);
4144 if (b >= first_block && b <= last_block) {
4145 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
4146 count++;
4147 }
4148 b = ext4_inode_bitmap(sb, gdp);
4149 if (b >= first_block && b <= last_block) {
4150 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
4151 count++;
4152 }
4153 b = ext4_inode_table(sb, gdp);
4154 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
4155 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
4156 int c = EXT4_B2C(sbi, b - first_block);
4157 ext4_set_bit(c, buf);
4158 count++;
4159 }
4160 if (i != grp)
4161 continue;
4162 s = 0;
4163 if (ext4_bg_has_super(sb, grp)) {
4164 ext4_set_bit(s++, buf);
4165 count++;
4166 }
4167 j = ext4_bg_num_gdb(sb, grp);
4168 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
4169 ext4_error(sb, "Invalid number of block group "
4170 "descriptor blocks: %d", j);
4171 j = EXT4_BLOCKS_PER_GROUP(sb) - s;
4172 }
4173 count += j;
4174 for (; j > 0; j--)
4175 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
4176 }
4177 if (!count)
4178 return 0;
4179 return EXT4_CLUSTERS_PER_GROUP(sb) -
4180 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
4181}
4182
4183/*
4184 * Compute the overhead and stash it in sbi->s_overhead
4185 */
4186int ext4_calculate_overhead(struct super_block *sb)
4187{
4188 struct ext4_sb_info *sbi = EXT4_SB(sb);
4189 struct ext4_super_block *es = sbi->s_es;
4190 struct inode *j_inode;
4191 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
4192 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4193 ext4_fsblk_t overhead = 0;
4194 char *buf = kvmalloc(sb->s_blocksize, GFP_NOFS | __GFP_ZERO);
4195
4196 if (!buf)
4197 return -ENOMEM;
4198
4199 /*
4200 * Compute the overhead (FS structures). This is constant
4201 * for a given filesystem unless the number of block groups
4202 * changes so we cache the previous value until it does.
4203 */
4204
4205 /*
4206 * All of the blocks before first_data_block are overhead
4207 */
4208 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
4209
4210 /*
4211 * Add the overhead found in each block group
4212 */
4213 for (i = 0; i < ngroups; i++) {
4214 int blks;
4215
4216 blks = count_overhead(sb, i, buf);
4217 overhead += blks;
4218 if (blks)
4219 memset(buf, 0, sb->s_blocksize);
4220 cond_resched();
4221 }
4222
4223 /*
4224 * Add the internal journal blocks whether the journal has been
4225 * loaded or not
4226 */
4227 if (sbi->s_journal && !sbi->s_journal_bdev_file)
4228 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_total_len);
4229 else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) {
4230 /* j_inum for internal journal is non-zero */
4231 j_inode = ext4_get_journal_inode(sb, j_inum);
4232 if (!IS_ERR(j_inode)) {
4233 j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
4234 overhead += EXT4_NUM_B2C(sbi, j_blocks);
4235 iput(j_inode);
4236 } else {
4237 ext4_msg(sb, KERN_ERR, "can't get journal size");
4238 }
4239 }
4240 sbi->s_overhead = overhead;
4241 smp_wmb();
4242 kvfree(buf);
4243 return 0;
4244}
4245
4246static void ext4_set_resv_clusters(struct super_block *sb)
4247{
4248 ext4_fsblk_t resv_clusters;
4249 struct ext4_sb_info *sbi = EXT4_SB(sb);
4250
4251 /*
4252 * There's no need to reserve anything when we aren't using extents.
4253 * The space estimates are exact, there are no unwritten extents,
4254 * hole punching doesn't need new metadata... This is needed especially
4255 * to keep ext2/3 backward compatibility.
4256 */
4257 if (!ext4_has_feature_extents(sb))
4258 return;
4259 /*
4260 * By default we reserve 2% or 4096 clusters, whichever is smaller.
4261 * This should cover the situations where we can not afford to run
4262 * out of space like for example punch hole, or converting
4263 * unwritten extents in delalloc path. In most cases such
4264 * allocation would require 1, or 2 blocks, higher numbers are
4265 * very rare.
4266 */
4267 resv_clusters = (ext4_blocks_count(sbi->s_es) >>
4268 sbi->s_cluster_bits);
4269
4270 do_div(resv_clusters, 50);
4271 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
4272
4273 atomic64_set(&sbi->s_resv_clusters, resv_clusters);
4274}
4275
4276static const char *ext4_quota_mode(struct super_block *sb)
4277{
4278#ifdef CONFIG_QUOTA
4279 if (!ext4_quota_capable(sb))
4280 return "none";
4281
4282 if (EXT4_SB(sb)->s_journal && ext4_is_quota_journalled(sb))
4283 return "journalled";
4284 else
4285 return "writeback";
4286#else
4287 return "disabled";
4288#endif
4289}
4290
4291static void ext4_setup_csum_trigger(struct super_block *sb,
4292 enum ext4_journal_trigger_type type,
4293 void (*trigger)(
4294 struct jbd2_buffer_trigger_type *type,
4295 struct buffer_head *bh,
4296 void *mapped_data,
4297 size_t size))
4298{
4299 struct ext4_sb_info *sbi = EXT4_SB(sb);
4300
4301 sbi->s_journal_triggers[type].sb = sb;
4302 sbi->s_journal_triggers[type].tr_triggers.t_frozen = trigger;
4303}
4304
4305static void ext4_free_sbi(struct ext4_sb_info *sbi)
4306{
4307 if (!sbi)
4308 return;
4309
4310 kfree(sbi->s_blockgroup_lock);
4311 fs_put_dax(sbi->s_daxdev, NULL);
4312 kfree(sbi);
4313}
4314
4315static struct ext4_sb_info *ext4_alloc_sbi(struct super_block *sb)
4316{
4317 struct ext4_sb_info *sbi;
4318
4319 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
4320 if (!sbi)
4321 return NULL;
4322
4323 sbi->s_daxdev = fs_dax_get_by_bdev(sb->s_bdev, &sbi->s_dax_part_off,
4324 NULL, NULL);
4325
4326 sbi->s_blockgroup_lock =
4327 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
4328
4329 if (!sbi->s_blockgroup_lock)
4330 goto err_out;
4331
4332 sb->s_fs_info = sbi;
4333 sbi->s_sb = sb;
4334 return sbi;
4335err_out:
4336 fs_put_dax(sbi->s_daxdev, NULL);
4337 kfree(sbi);
4338 return NULL;
4339}
4340
4341static void ext4_set_def_opts(struct super_block *sb,
4342 struct ext4_super_block *es)
4343{
4344 unsigned long def_mount_opts;
4345
4346 /* Set defaults before we parse the mount options */
4347 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
4348 set_opt(sb, INIT_INODE_TABLE);
4349 if (def_mount_opts & EXT4_DEFM_DEBUG)
4350 set_opt(sb, DEBUG);
4351 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
4352 set_opt(sb, GRPID);
4353 if (def_mount_opts & EXT4_DEFM_UID16)
4354 set_opt(sb, NO_UID32);
4355 /* xattr user namespace & acls are now defaulted on */
4356 set_opt(sb, XATTR_USER);
4357#ifdef CONFIG_EXT4_FS_POSIX_ACL
4358 set_opt(sb, POSIX_ACL);
4359#endif
4360 if (ext4_has_feature_fast_commit(sb))
4361 set_opt2(sb, JOURNAL_FAST_COMMIT);
4362 /* don't forget to enable journal_csum when metadata_csum is enabled. */
4363 if (ext4_has_feature_metadata_csum(sb))
4364 set_opt(sb, JOURNAL_CHECKSUM);
4365
4366 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
4367 set_opt(sb, JOURNAL_DATA);
4368 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
4369 set_opt(sb, ORDERED_DATA);
4370 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
4371 set_opt(sb, WRITEBACK_DATA);
4372
4373 if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_PANIC)
4374 set_opt(sb, ERRORS_PANIC);
4375 else if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_CONTINUE)
4376 set_opt(sb, ERRORS_CONT);
4377 else
4378 set_opt(sb, ERRORS_RO);
4379 /* block_validity enabled by default; disable with noblock_validity */
4380 set_opt(sb, BLOCK_VALIDITY);
4381 if (def_mount_opts & EXT4_DEFM_DISCARD)
4382 set_opt(sb, DISCARD);
4383
4384 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
4385 set_opt(sb, BARRIER);
4386
4387 /*
4388 * enable delayed allocation by default
4389 * Use -o nodelalloc to turn it off
4390 */
4391 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
4392 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
4393 set_opt(sb, DELALLOC);
4394
4395 set_opt(sb, DIOREAD_NOLOCK);
4396}
4397
4398static int ext4_handle_clustersize(struct super_block *sb)
4399{
4400 struct ext4_sb_info *sbi = EXT4_SB(sb);
4401 struct ext4_super_block *es = sbi->s_es;
4402 int clustersize;
4403
4404 /* Handle clustersize */
4405 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
4406 if (ext4_has_feature_bigalloc(sb)) {
4407 if (clustersize < sb->s_blocksize) {
4408 ext4_msg(sb, KERN_ERR,
4409 "cluster size (%d) smaller than "
4410 "block size (%lu)", clustersize, sb->s_blocksize);
4411 return -EINVAL;
4412 }
4413 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
4414 le32_to_cpu(es->s_log_block_size);
4415 } else {
4416 if (clustersize != sb->s_blocksize) {
4417 ext4_msg(sb, KERN_ERR,
4418 "fragment/cluster size (%d) != "
4419 "block size (%lu)", clustersize, sb->s_blocksize);
4420 return -EINVAL;
4421 }
4422 if (sbi->s_blocks_per_group > sb->s_blocksize * 8) {
4423 ext4_msg(sb, KERN_ERR,
4424 "#blocks per group too big: %lu",
4425 sbi->s_blocks_per_group);
4426 return -EINVAL;
4427 }
4428 sbi->s_cluster_bits = 0;
4429 }
4430 sbi->s_clusters_per_group = le32_to_cpu(es->s_clusters_per_group);
4431 if (sbi->s_clusters_per_group > sb->s_blocksize * 8) {
4432 ext4_msg(sb, KERN_ERR, "#clusters per group too big: %lu",
4433 sbi->s_clusters_per_group);
4434 return -EINVAL;
4435 }
4436 if (sbi->s_blocks_per_group !=
4437 (sbi->s_clusters_per_group * (clustersize / sb->s_blocksize))) {
4438 ext4_msg(sb, KERN_ERR,
4439 "blocks per group (%lu) and clusters per group (%lu) inconsistent",
4440 sbi->s_blocks_per_group, sbi->s_clusters_per_group);
4441 return -EINVAL;
4442 }
4443 sbi->s_cluster_ratio = clustersize / sb->s_blocksize;
4444
4445 /* Do we have standard group size of clustersize * 8 blocks ? */
4446 if (sbi->s_blocks_per_group == clustersize << 3)
4447 set_opt2(sb, STD_GROUP_SIZE);
4448
4449 return 0;
4450}
4451
4452/*
4453 * ext4_atomic_write_init: Initializes filesystem min & max atomic write units.
4454 * With non-bigalloc filesystem awu will be based upon filesystem blocksize
4455 * & bdev awu units.
4456 * With bigalloc it will be based upon bigalloc cluster size & bdev awu units.
4457 * @sb: super block
4458 */
4459static void ext4_atomic_write_init(struct super_block *sb)
4460{
4461 struct ext4_sb_info *sbi = EXT4_SB(sb);
4462 struct block_device *bdev = sb->s_bdev;
4463 unsigned int clustersize = EXT4_CLUSTER_SIZE(sb);
4464
4465 if (!bdev_can_atomic_write(bdev))
4466 return;
4467
4468 if (!ext4_has_feature_extents(sb))
4469 return;
4470
4471 sbi->s_awu_min = max(sb->s_blocksize,
4472 bdev_atomic_write_unit_min_bytes(bdev));
4473 sbi->s_awu_max = min(clustersize,
4474 bdev_atomic_write_unit_max_bytes(bdev));
4475 if (sbi->s_awu_min && sbi->s_awu_max &&
4476 sbi->s_awu_min <= sbi->s_awu_max) {
4477 ext4_msg(sb, KERN_NOTICE, "Supports (experimental) DIO atomic writes awu_min: %u, awu_max: %u",
4478 sbi->s_awu_min, sbi->s_awu_max);
4479 } else {
4480 sbi->s_awu_min = 0;
4481 sbi->s_awu_max = 0;
4482 }
4483}
4484
4485static void ext4_fast_commit_init(struct super_block *sb)
4486{
4487 struct ext4_sb_info *sbi = EXT4_SB(sb);
4488
4489 /* Initialize fast commit stuff */
4490 atomic_set(&sbi->s_fc_subtid, 0);
4491 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_MAIN]);
4492 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_STAGING]);
4493 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_MAIN]);
4494 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_STAGING]);
4495 sbi->s_fc_bytes = 0;
4496 ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
4497 sbi->s_fc_ineligible_tid = 0;
4498 mutex_init(&sbi->s_fc_lock);
4499 memset(&sbi->s_fc_stats, 0, sizeof(sbi->s_fc_stats));
4500 sbi->s_fc_replay_state.fc_regions = NULL;
4501 sbi->s_fc_replay_state.fc_regions_size = 0;
4502 sbi->s_fc_replay_state.fc_regions_used = 0;
4503 sbi->s_fc_replay_state.fc_regions_valid = 0;
4504 sbi->s_fc_replay_state.fc_modified_inodes = NULL;
4505 sbi->s_fc_replay_state.fc_modified_inodes_size = 0;
4506 sbi->s_fc_replay_state.fc_modified_inodes_used = 0;
4507}
4508
4509static int ext4_inode_info_init(struct super_block *sb,
4510 struct ext4_super_block *es)
4511{
4512 struct ext4_sb_info *sbi = EXT4_SB(sb);
4513
4514 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
4515 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
4516 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
4517 } else {
4518 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
4519 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
4520 if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) {
4521 ext4_msg(sb, KERN_ERR, "invalid first ino: %u",
4522 sbi->s_first_ino);
4523 return -EINVAL;
4524 }
4525 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
4526 (!is_power_of_2(sbi->s_inode_size)) ||
4527 (sbi->s_inode_size > sb->s_blocksize)) {
4528 ext4_msg(sb, KERN_ERR,
4529 "unsupported inode size: %d",
4530 sbi->s_inode_size);
4531 ext4_msg(sb, KERN_ERR, "blocksize: %lu", sb->s_blocksize);
4532 return -EINVAL;
4533 }
4534 /*
4535 * i_atime_extra is the last extra field available for
4536 * [acm]times in struct ext4_inode. Checking for that
4537 * field should suffice to ensure we have extra space
4538 * for all three.
4539 */
4540 if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) +
4541 sizeof(((struct ext4_inode *)0)->i_atime_extra)) {
4542 sb->s_time_gran = 1;
4543 sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX;
4544 } else {
4545 sb->s_time_gran = NSEC_PER_SEC;
4546 sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX;
4547 }
4548 sb->s_time_min = EXT4_TIMESTAMP_MIN;
4549 }
4550
4551 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
4552 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4553 EXT4_GOOD_OLD_INODE_SIZE;
4554 if (ext4_has_feature_extra_isize(sb)) {
4555 unsigned v, max = (sbi->s_inode_size -
4556 EXT4_GOOD_OLD_INODE_SIZE);
4557
4558 v = le16_to_cpu(es->s_want_extra_isize);
4559 if (v > max) {
4560 ext4_msg(sb, KERN_ERR,
4561 "bad s_want_extra_isize: %d", v);
4562 return -EINVAL;
4563 }
4564 if (sbi->s_want_extra_isize < v)
4565 sbi->s_want_extra_isize = v;
4566
4567 v = le16_to_cpu(es->s_min_extra_isize);
4568 if (v > max) {
4569 ext4_msg(sb, KERN_ERR,
4570 "bad s_min_extra_isize: %d", v);
4571 return -EINVAL;
4572 }
4573 if (sbi->s_want_extra_isize < v)
4574 sbi->s_want_extra_isize = v;
4575 }
4576 }
4577
4578 return 0;
4579}
4580
4581#if IS_ENABLED(CONFIG_UNICODE)
4582static int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es)
4583{
4584 const struct ext4_sb_encodings *encoding_info;
4585 struct unicode_map *encoding;
4586 __u16 encoding_flags = le16_to_cpu(es->s_encoding_flags);
4587
4588 if (!ext4_has_feature_casefold(sb) || sb->s_encoding)
4589 return 0;
4590
4591 encoding_info = ext4_sb_read_encoding(es);
4592 if (!encoding_info) {
4593 ext4_msg(sb, KERN_ERR,
4594 "Encoding requested by superblock is unknown");
4595 return -EINVAL;
4596 }
4597
4598 encoding = utf8_load(encoding_info->version);
4599 if (IS_ERR(encoding)) {
4600 ext4_msg(sb, KERN_ERR,
4601 "can't mount with superblock charset: %s-%u.%u.%u "
4602 "not supported by the kernel. flags: 0x%x.",
4603 encoding_info->name,
4604 unicode_major(encoding_info->version),
4605 unicode_minor(encoding_info->version),
4606 unicode_rev(encoding_info->version),
4607 encoding_flags);
4608 return -EINVAL;
4609 }
4610 ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: "
4611 "%s-%u.%u.%u with flags 0x%hx", encoding_info->name,
4612 unicode_major(encoding_info->version),
4613 unicode_minor(encoding_info->version),
4614 unicode_rev(encoding_info->version),
4615 encoding_flags);
4616
4617 sb->s_encoding = encoding;
4618 sb->s_encoding_flags = encoding_flags;
4619
4620 return 0;
4621}
4622#else
4623static inline int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es)
4624{
4625 return 0;
4626}
4627#endif
4628
4629static int ext4_init_metadata_csum(struct super_block *sb, struct ext4_super_block *es)
4630{
4631 struct ext4_sb_info *sbi = EXT4_SB(sb);
4632
4633 /* Warn if metadata_csum and gdt_csum are both set. */
4634 if (ext4_has_feature_metadata_csum(sb) &&
4635 ext4_has_feature_gdt_csum(sb))
4636 ext4_warning(sb, "metadata_csum and uninit_bg are "
4637 "redundant flags; please run fsck.");
4638
4639 /* Check for a known checksum algorithm */
4640 if (!ext4_verify_csum_type(sb, es)) {
4641 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4642 "unknown checksum algorithm.");
4643 return -EINVAL;
4644 }
4645 ext4_setup_csum_trigger(sb, EXT4_JTR_ORPHAN_FILE,
4646 ext4_orphan_file_block_trigger);
4647
4648 /* Check superblock checksum */
4649 if (!ext4_superblock_csum_verify(sb, es)) {
4650 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4651 "invalid superblock checksum. Run e2fsck?");
4652 return -EFSBADCRC;
4653 }
4654
4655 /* Precompute checksum seed for all metadata */
4656 if (ext4_has_feature_csum_seed(sb))
4657 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
4658 else if (ext4_has_feature_metadata_csum(sb) ||
4659 ext4_has_feature_ea_inode(sb))
4660 sbi->s_csum_seed = ext4_chksum(~0, es->s_uuid,
4661 sizeof(es->s_uuid));
4662 return 0;
4663}
4664
4665static int ext4_check_feature_compatibility(struct super_block *sb,
4666 struct ext4_super_block *es,
4667 int silent)
4668{
4669 struct ext4_sb_info *sbi = EXT4_SB(sb);
4670
4671 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
4672 (ext4_has_compat_features(sb) ||
4673 ext4_has_ro_compat_features(sb) ||
4674 ext4_has_incompat_features(sb)))
4675 ext4_msg(sb, KERN_WARNING,
4676 "feature flags set on rev 0 fs, "
4677 "running e2fsck is recommended");
4678
4679 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
4680 set_opt2(sb, HURD_COMPAT);
4681 if (ext4_has_feature_64bit(sb)) {
4682 ext4_msg(sb, KERN_ERR,
4683 "The Hurd can't support 64-bit file systems");
4684 return -EINVAL;
4685 }
4686
4687 /*
4688 * ea_inode feature uses l_i_version field which is not
4689 * available in HURD_COMPAT mode.
4690 */
4691 if (ext4_has_feature_ea_inode(sb)) {
4692 ext4_msg(sb, KERN_ERR,
4693 "ea_inode feature is not supported for Hurd");
4694 return -EINVAL;
4695 }
4696 }
4697
4698 if (IS_EXT2_SB(sb)) {
4699 if (ext2_feature_set_ok(sb))
4700 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
4701 "using the ext4 subsystem");
4702 else {
4703 /*
4704 * If we're probing be silent, if this looks like
4705 * it's actually an ext[34] filesystem.
4706 */
4707 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4708 return -EINVAL;
4709 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
4710 "to feature incompatibilities");
4711 return -EINVAL;
4712 }
4713 }
4714
4715 if (IS_EXT3_SB(sb)) {
4716 if (ext3_feature_set_ok(sb))
4717 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
4718 "using the ext4 subsystem");
4719 else {
4720 /*
4721 * If we're probing be silent, if this looks like
4722 * it's actually an ext4 filesystem.
4723 */
4724 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4725 return -EINVAL;
4726 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
4727 "to feature incompatibilities");
4728 return -EINVAL;
4729 }
4730 }
4731
4732 /*
4733 * Check feature flags regardless of the revision level, since we
4734 * previously didn't change the revision level when setting the flags,
4735 * so there is a chance incompat flags are set on a rev 0 filesystem.
4736 */
4737 if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
4738 return -EINVAL;
4739
4740 if (sbi->s_daxdev) {
4741 if (sb->s_blocksize == PAGE_SIZE)
4742 set_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags);
4743 else
4744 ext4_msg(sb, KERN_ERR, "unsupported blocksize for DAX\n");
4745 }
4746
4747 if (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) {
4748 if (ext4_has_feature_inline_data(sb)) {
4749 ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
4750 " that may contain inline data");
4751 return -EINVAL;
4752 }
4753 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) {
4754 ext4_msg(sb, KERN_ERR,
4755 "DAX unsupported by block device.");
4756 return -EINVAL;
4757 }
4758 }
4759
4760 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
4761 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
4762 es->s_encryption_level);
4763 return -EINVAL;
4764 }
4765
4766 return 0;
4767}
4768
4769static int ext4_check_geometry(struct super_block *sb,
4770 struct ext4_super_block *es)
4771{
4772 struct ext4_sb_info *sbi = EXT4_SB(sb);
4773 __u64 blocks_count;
4774 int err;
4775
4776 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (sb->s_blocksize / 4)) {
4777 ext4_msg(sb, KERN_ERR,
4778 "Number of reserved GDT blocks insanely large: %d",
4779 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
4780 return -EINVAL;
4781 }
4782 /*
4783 * Test whether we have more sectors than will fit in sector_t,
4784 * and whether the max offset is addressable by the page cache.
4785 */
4786 err = generic_check_addressable(sb->s_blocksize_bits,
4787 ext4_blocks_count(es));
4788 if (err) {
4789 ext4_msg(sb, KERN_ERR, "filesystem"
4790 " too large to mount safely on this system");
4791 return err;
4792 }
4793
4794 /* check blocks count against device size */
4795 blocks_count = sb_bdev_nr_blocks(sb);
4796 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
4797 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
4798 "exceeds size of device (%llu blocks)",
4799 ext4_blocks_count(es), blocks_count);
4800 return -EINVAL;
4801 }
4802
4803 /*
4804 * It makes no sense for the first data block to be beyond the end
4805 * of the filesystem.
4806 */
4807 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
4808 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4809 "block %u is beyond end of filesystem (%llu)",
4810 le32_to_cpu(es->s_first_data_block),
4811 ext4_blocks_count(es));
4812 return -EINVAL;
4813 }
4814 if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) &&
4815 (sbi->s_cluster_ratio == 1)) {
4816 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4817 "block is 0 with a 1k block and cluster size");
4818 return -EINVAL;
4819 }
4820
4821 blocks_count = (ext4_blocks_count(es) -
4822 le32_to_cpu(es->s_first_data_block) +
4823 EXT4_BLOCKS_PER_GROUP(sb) - 1);
4824 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
4825 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
4826 ext4_msg(sb, KERN_WARNING, "groups count too large: %llu "
4827 "(block count %llu, first data block %u, "
4828 "blocks per group %lu)", blocks_count,
4829 ext4_blocks_count(es),
4830 le32_to_cpu(es->s_first_data_block),
4831 EXT4_BLOCKS_PER_GROUP(sb));
4832 return -EINVAL;
4833 }
4834 sbi->s_groups_count = blocks_count;
4835 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
4836 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
4837 if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) !=
4838 le32_to_cpu(es->s_inodes_count)) {
4839 ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu",
4840 le32_to_cpu(es->s_inodes_count),
4841 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group));
4842 return -EINVAL;
4843 }
4844
4845 return 0;
4846}
4847
4848static int ext4_group_desc_init(struct super_block *sb,
4849 struct ext4_super_block *es,
4850 ext4_fsblk_t logical_sb_block,
4851 ext4_group_t *first_not_zeroed)
4852{
4853 struct ext4_sb_info *sbi = EXT4_SB(sb);
4854 unsigned int db_count;
4855 ext4_fsblk_t block;
4856 int i;
4857
4858 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
4859 EXT4_DESC_PER_BLOCK(sb);
4860 if (ext4_has_feature_meta_bg(sb)) {
4861 if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
4862 ext4_msg(sb, KERN_WARNING,
4863 "first meta block group too large: %u "
4864 "(group descriptor block count %u)",
4865 le32_to_cpu(es->s_first_meta_bg), db_count);
4866 return -EINVAL;
4867 }
4868 }
4869 rcu_assign_pointer(sbi->s_group_desc,
4870 kvmalloc_array(db_count,
4871 sizeof(struct buffer_head *),
4872 GFP_KERNEL));
4873 if (sbi->s_group_desc == NULL) {
4874 ext4_msg(sb, KERN_ERR, "not enough memory");
4875 return -ENOMEM;
4876 }
4877
4878 bgl_lock_init(sbi->s_blockgroup_lock);
4879
4880 /* Pre-read the descriptors into the buffer cache */
4881 for (i = 0; i < db_count; i++) {
4882 block = descriptor_loc(sb, logical_sb_block, i);
4883 ext4_sb_breadahead_unmovable(sb, block);
4884 }
4885
4886 for (i = 0; i < db_count; i++) {
4887 struct buffer_head *bh;
4888
4889 block = descriptor_loc(sb, logical_sb_block, i);
4890 bh = ext4_sb_bread_unmovable(sb, block);
4891 if (IS_ERR(bh)) {
4892 ext4_msg(sb, KERN_ERR,
4893 "can't read group descriptor %d", i);
4894 sbi->s_gdb_count = i;
4895 return PTR_ERR(bh);
4896 }
4897 rcu_read_lock();
4898 rcu_dereference(sbi->s_group_desc)[i] = bh;
4899 rcu_read_unlock();
4900 }
4901 sbi->s_gdb_count = db_count;
4902 if (!ext4_check_descriptors(sb, logical_sb_block, first_not_zeroed)) {
4903 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
4904 return -EFSCORRUPTED;
4905 }
4906
4907 return 0;
4908}
4909
4910static int ext4_load_and_init_journal(struct super_block *sb,
4911 struct ext4_super_block *es,
4912 struct ext4_fs_context *ctx)
4913{
4914 struct ext4_sb_info *sbi = EXT4_SB(sb);
4915 int err;
4916
4917 err = ext4_load_journal(sb, es, ctx->journal_devnum);
4918 if (err)
4919 return err;
4920
4921 if (ext4_has_feature_64bit(sb) &&
4922 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4923 JBD2_FEATURE_INCOMPAT_64BIT)) {
4924 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4925 goto out;
4926 }
4927
4928 if (!set_journal_csum_feature_set(sb)) {
4929 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4930 "feature set");
4931 goto out;
4932 }
4933
4934 if (test_opt2(sb, JOURNAL_FAST_COMMIT) &&
4935 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4936 JBD2_FEATURE_INCOMPAT_FAST_COMMIT)) {
4937 ext4_msg(sb, KERN_ERR,
4938 "Failed to set fast commit journal feature");
4939 goto out;
4940 }
4941
4942 /* We have now updated the journal if required, so we can
4943 * validate the data journaling mode. */
4944 switch (test_opt(sb, DATA_FLAGS)) {
4945 case 0:
4946 /* No mode set, assume a default based on the journal
4947 * capabilities: ORDERED_DATA if the journal can
4948 * cope, else JOURNAL_DATA
4949 */
4950 if (jbd2_journal_check_available_features
4951 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4952 set_opt(sb, ORDERED_DATA);
4953 sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
4954 } else {
4955 set_opt(sb, JOURNAL_DATA);
4956 sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
4957 }
4958 break;
4959
4960 case EXT4_MOUNT_ORDERED_DATA:
4961 case EXT4_MOUNT_WRITEBACK_DATA:
4962 if (!jbd2_journal_check_available_features
4963 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4964 ext4_msg(sb, KERN_ERR, "Journal does not support "
4965 "requested data journaling mode");
4966 goto out;
4967 }
4968 break;
4969 default:
4970 break;
4971 }
4972
4973 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4974 test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4975 ext4_msg(sb, KERN_ERR, "can't mount with "
4976 "journal_async_commit in data=ordered mode");
4977 goto out;
4978 }
4979
4980 set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio);
4981
4982 sbi->s_journal->j_submit_inode_data_buffers =
4983 ext4_journal_submit_inode_data_buffers;
4984 sbi->s_journal->j_finish_inode_data_buffers =
4985 ext4_journal_finish_inode_data_buffers;
4986
4987 return 0;
4988
4989out:
4990 ext4_journal_destroy(sbi, sbi->s_journal);
4991 return -EINVAL;
4992}
4993
4994static int ext4_check_journal_data_mode(struct super_block *sb)
4995{
4996 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4997 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with "
4998 "data=journal disables delayed allocation, "
4999 "dioread_nolock, O_DIRECT and fast_commit support!\n");
5000 /* can't mount with both data=journal and dioread_nolock. */
5001 clear_opt(sb, DIOREAD_NOLOCK);
5002 clear_opt2(sb, JOURNAL_FAST_COMMIT);
5003 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
5004 ext4_msg(sb, KERN_ERR, "can't mount with "
5005 "both data=journal and delalloc");
5006 return -EINVAL;
5007 }
5008 if (test_opt(sb, DAX_ALWAYS)) {
5009 ext4_msg(sb, KERN_ERR, "can't mount with "
5010 "both data=journal and dax");
5011 return -EINVAL;
5012 }
5013 if (ext4_has_feature_encrypt(sb)) {
5014 ext4_msg(sb, KERN_WARNING,
5015 "encrypted files will use data=ordered "
5016 "instead of data journaling mode");
5017 }
5018 if (test_opt(sb, DELALLOC))
5019 clear_opt(sb, DELALLOC);
5020 } else {
5021 sb->s_iflags |= SB_I_CGROUPWB;
5022 }
5023
5024 return 0;
5025}
5026
5027static const char *ext4_has_journal_option(struct super_block *sb)
5028{
5029 struct ext4_sb_info *sbi = EXT4_SB(sb);
5030
5031 if (test_opt(sb, JOURNAL_ASYNC_COMMIT))
5032 return "journal_async_commit";
5033 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM))
5034 return "journal_checksum";
5035 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
5036 return "commit=";
5037 if (EXT4_MOUNT_DATA_FLAGS &
5038 (sbi->s_mount_opt ^ sbi->s_def_mount_opt))
5039 return "data=";
5040 if (test_opt(sb, DATA_ERR_ABORT))
5041 return "data_err=abort";
5042 return NULL;
5043}
5044
5045/*
5046 * Limit the maximum folio order to 2048 blocks to prevent overestimation
5047 * of reserve handle credits during the folio writeback in environments
5048 * where the PAGE_SIZE exceeds 4KB.
5049 */
5050#define EXT4_MAX_PAGECACHE_ORDER(sb) \
5051 umin(MAX_PAGECACHE_ORDER, (11 + (sb)->s_blocksize_bits - PAGE_SHIFT))
5052static void ext4_set_max_mapping_order(struct super_block *sb)
5053{
5054 struct ext4_sb_info *sbi = EXT4_SB(sb);
5055
5056 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
5057 sbi->s_max_folio_order = sbi->s_min_folio_order;
5058 else
5059 sbi->s_max_folio_order = EXT4_MAX_PAGECACHE_ORDER(sb);
5060}
5061
5062static int ext4_check_large_folio(struct super_block *sb)
5063{
5064 const char *err_str = NULL;
5065
5066 if (ext4_has_feature_encrypt(sb))
5067 err_str = "encrypt";
5068
5069 if (!err_str) {
5070 ext4_set_max_mapping_order(sb);
5071 } else if (sb->s_blocksize > PAGE_SIZE) {
5072 ext4_msg(sb, KERN_ERR, "bs(%lu) > ps(%lu) unsupported for %s",
5073 sb->s_blocksize, PAGE_SIZE, err_str);
5074 return -EINVAL;
5075 }
5076
5077 return 0;
5078}
5079
5080static int ext4_load_super(struct super_block *sb, ext4_fsblk_t *lsb,
5081 int silent)
5082{
5083 struct ext4_sb_info *sbi = EXT4_SB(sb);
5084 struct ext4_super_block *es;
5085 ext4_fsblk_t logical_sb_block;
5086 unsigned long offset = 0;
5087 struct buffer_head *bh;
5088 int ret = -EINVAL;
5089 int blocksize;
5090
5091 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
5092 if (!blocksize) {
5093 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
5094 return -EINVAL;
5095 }
5096
5097 /*
5098 * The ext4 superblock will not be buffer aligned for other than 1kB
5099 * block sizes. We need to calculate the offset from buffer start.
5100 */
5101 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
5102 logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE;
5103 offset = do_div(logical_sb_block, blocksize);
5104 } else {
5105 logical_sb_block = sbi->s_sb_block;
5106 }
5107
5108 bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
5109 if (IS_ERR(bh)) {
5110 ext4_msg(sb, KERN_ERR, "unable to read superblock");
5111 return PTR_ERR(bh);
5112 }
5113 /*
5114 * Note: s_es must be initialized as soon as possible because
5115 * some ext4 macro-instructions depend on its value
5116 */
5117 es = (struct ext4_super_block *) (bh->b_data + offset);
5118 sbi->s_es = es;
5119 sb->s_magic = le16_to_cpu(es->s_magic);
5120 if (sb->s_magic != EXT4_SUPER_MAGIC) {
5121 if (!silent)
5122 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
5123 goto out;
5124 }
5125
5126 if (le32_to_cpu(es->s_log_block_size) >
5127 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
5128 ext4_msg(sb, KERN_ERR,
5129 "Invalid log block size: %u",
5130 le32_to_cpu(es->s_log_block_size));
5131 goto out;
5132 }
5133 if (le32_to_cpu(es->s_log_cluster_size) >
5134 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
5135 ext4_msg(sb, KERN_ERR,
5136 "Invalid log cluster size: %u",
5137 le32_to_cpu(es->s_log_cluster_size));
5138 goto out;
5139 }
5140
5141 blocksize = EXT4_MIN_BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
5142
5143 /*
5144 * If the default block size is not the same as the real block size,
5145 * we need to reload it.
5146 */
5147 if (sb->s_blocksize == blocksize)
5148 goto success;
5149
5150 /*
5151 * bh must be released before kill_bdev(), otherwise
5152 * it won't be freed and its page also. kill_bdev()
5153 * is called by sb_set_blocksize().
5154 */
5155 brelse(bh);
5156 /* Validate the filesystem blocksize */
5157 if (!sb_set_blocksize(sb, blocksize)) {
5158 ext4_msg(sb, KERN_ERR, "bad block size %d",
5159 blocksize);
5160 bh = NULL;
5161 goto out;
5162 }
5163
5164 logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE;
5165 offset = do_div(logical_sb_block, blocksize);
5166 bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
5167 if (IS_ERR(bh)) {
5168 ext4_msg(sb, KERN_ERR, "Can't read superblock on 2nd try");
5169 ret = PTR_ERR(bh);
5170 bh = NULL;
5171 goto out;
5172 }
5173 es = (struct ext4_super_block *)(bh->b_data + offset);
5174 sbi->s_es = es;
5175 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
5176 ext4_msg(sb, KERN_ERR, "Magic mismatch, very weird!");
5177 goto out;
5178 }
5179
5180success:
5181 sbi->s_min_folio_order = get_order(blocksize);
5182 *lsb = logical_sb_block;
5183 sbi->s_sbh = bh;
5184 return 0;
5185out:
5186 brelse(bh);
5187 return ret;
5188}
5189
5190static int ext4_hash_info_init(struct super_block *sb)
5191{
5192 struct ext4_sb_info *sbi = EXT4_SB(sb);
5193 struct ext4_super_block *es = sbi->s_es;
5194 unsigned int i;
5195
5196 sbi->s_def_hash_version = es->s_def_hash_version;
5197
5198 if (sbi->s_def_hash_version > DX_HASH_LAST) {
5199 ext4_msg(sb, KERN_ERR,
5200 "Invalid default hash set in the superblock");
5201 return -EINVAL;
5202 } else if (sbi->s_def_hash_version == DX_HASH_SIPHASH) {
5203 ext4_msg(sb, KERN_ERR,
5204 "SIPHASH is not a valid default hash value");
5205 return -EINVAL;
5206 }
5207
5208 for (i = 0; i < 4; i++)
5209 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
5210
5211 if (ext4_has_feature_dir_index(sb)) {
5212 i = le32_to_cpu(es->s_flags);
5213 if (i & EXT2_FLAGS_UNSIGNED_HASH)
5214 sbi->s_hash_unsigned = 3;
5215 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
5216#ifdef __CHAR_UNSIGNED__
5217 if (!sb_rdonly(sb))
5218 es->s_flags |=
5219 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
5220 sbi->s_hash_unsigned = 3;
5221#else
5222 if (!sb_rdonly(sb))
5223 es->s_flags |=
5224 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
5225#endif
5226 }
5227 }
5228 return 0;
5229}
5230
5231static int ext4_block_group_meta_init(struct super_block *sb, int silent)
5232{
5233 struct ext4_sb_info *sbi = EXT4_SB(sb);
5234 struct ext4_super_block *es = sbi->s_es;
5235 int has_huge_files;
5236
5237 has_huge_files = ext4_has_feature_huge_file(sb);
5238 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
5239 has_huge_files);
5240 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
5241
5242 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
5243 if (ext4_has_feature_64bit(sb)) {
5244 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
5245 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
5246 !is_power_of_2(sbi->s_desc_size)) {
5247 ext4_msg(sb, KERN_ERR,
5248 "unsupported descriptor size %lu",
5249 sbi->s_desc_size);
5250 return -EINVAL;
5251 }
5252 } else
5253 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
5254
5255 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
5256 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
5257
5258 sbi->s_inodes_per_block = sb->s_blocksize / EXT4_INODE_SIZE(sb);
5259 if (sbi->s_inodes_per_block == 0 || sbi->s_blocks_per_group == 0) {
5260 if (!silent)
5261 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
5262 return -EINVAL;
5263 }
5264 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
5265 sbi->s_inodes_per_group > sb->s_blocksize * 8) {
5266 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
5267 sbi->s_inodes_per_group);
5268 return -EINVAL;
5269 }
5270 sbi->s_itb_per_group = sbi->s_inodes_per_group /
5271 sbi->s_inodes_per_block;
5272 sbi->s_desc_per_block = sb->s_blocksize / EXT4_DESC_SIZE(sb);
5273 sbi->s_mount_state = le16_to_cpu(es->s_state) & ~EXT4_FC_REPLAY;
5274 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
5275 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
5276
5277 return 0;
5278}
5279
5280/*
5281 * It's hard to get stripe aligned blocks if stripe is not aligned with
5282 * cluster, just disable stripe and alert user to simplify code and avoid
5283 * stripe aligned allocation which will rarely succeed.
5284 */
5285static bool ext4_is_stripe_incompatible(struct super_block *sb, unsigned long stripe)
5286{
5287 struct ext4_sb_info *sbi = EXT4_SB(sb);
5288 return (stripe > 0 && sbi->s_cluster_ratio > 1 &&
5289 stripe % sbi->s_cluster_ratio != 0);
5290}
5291
5292static int __ext4_fill_super(struct fs_context *fc, struct super_block *sb)
5293{
5294 struct ext4_super_block *es = NULL;
5295 struct ext4_sb_info *sbi = EXT4_SB(sb);
5296 ext4_fsblk_t logical_sb_block;
5297 struct inode *root;
5298 int needs_recovery;
5299 int err;
5300 ext4_group_t first_not_zeroed;
5301 struct ext4_fs_context *ctx = fc->fs_private;
5302 int silent = fc->sb_flags & SB_SILENT;
5303
5304 /* Set defaults for the variables that will be set during parsing */
5305 if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO))
5306 ctx->journal_ioprio = EXT4_DEF_JOURNAL_IOPRIO;
5307
5308 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
5309 sbi->s_sectors_written_start =
5310 part_stat_read(sb->s_bdev, sectors[STAT_WRITE]);
5311
5312 err = ext4_load_super(sb, &logical_sb_block, silent);
5313 if (err)
5314 goto out_fail;
5315
5316 es = sbi->s_es;
5317 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
5318
5319 err = ext4_init_metadata_csum(sb, es);
5320 if (err)
5321 goto failed_mount;
5322
5323 ext4_set_def_opts(sb, es);
5324
5325 sbi->s_resuid = make_kuid(&init_user_ns, ext4_get_resuid(es));
5326 sbi->s_resgid = make_kgid(&init_user_ns, ext4_get_resuid(es));
5327 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
5328 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
5329 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
5330 sbi->s_sb_update_kb = EXT4_DEF_SB_UPDATE_INTERVAL_KB;
5331 sbi->s_sb_update_sec = EXT4_DEF_SB_UPDATE_INTERVAL_SEC;
5332
5333 /*
5334 * set default s_li_wait_mult for lazyinit, for the case there is
5335 * no mount option specified.
5336 */
5337 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
5338
5339 err = ext4_inode_info_init(sb, es);
5340 if (err)
5341 goto failed_mount;
5342
5343 err = parse_apply_sb_mount_options(sb, ctx);
5344 if (err < 0)
5345 goto failed_mount;
5346
5347 sbi->s_def_mount_opt = sbi->s_mount_opt;
5348 sbi->s_def_mount_opt2 = sbi->s_mount_opt2;
5349
5350 err = ext4_check_opt_consistency(fc, sb);
5351 if (err < 0)
5352 goto failed_mount;
5353
5354 ext4_apply_options(fc, sb);
5355
5356 err = ext4_check_large_folio(sb);
5357 if (err < 0)
5358 goto failed_mount;
5359
5360 err = ext4_encoding_init(sb, es);
5361 if (err)
5362 goto failed_mount;
5363
5364 err = ext4_check_journal_data_mode(sb);
5365 if (err)
5366 goto failed_mount;
5367
5368 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
5369 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
5370
5371 /* HSM events are allowed by default. */
5372 sb->s_iflags |= SB_I_ALLOW_HSM;
5373
5374 err = ext4_check_feature_compatibility(sb, es, silent);
5375 if (err)
5376 goto failed_mount;
5377
5378 err = ext4_block_group_meta_init(sb, silent);
5379 if (err)
5380 goto failed_mount;
5381
5382 err = ext4_hash_info_init(sb);
5383 if (err)
5384 goto failed_mount;
5385
5386 err = ext4_handle_clustersize(sb);
5387 if (err)
5388 goto failed_mount;
5389
5390 err = ext4_check_geometry(sb, es);
5391 if (err)
5392 goto failed_mount;
5393
5394 timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
5395 spin_lock_init(&sbi->s_error_lock);
5396 INIT_WORK(&sbi->s_sb_upd_work, update_super_work);
5397
5398 err = ext4_group_desc_init(sb, es, logical_sb_block, &first_not_zeroed);
5399 if (err)
5400 goto failed_mount3;
5401
5402 err = ext4_es_register_shrinker(sbi);
5403 if (err)
5404 goto failed_mount3;
5405
5406 sbi->s_stripe = ext4_get_stripe_size(sbi);
5407 if (ext4_is_stripe_incompatible(sb, sbi->s_stripe)) {
5408 ext4_msg(sb, KERN_WARNING,
5409 "stripe (%lu) is not aligned with cluster size (%u), "
5410 "stripe is disabled",
5411 sbi->s_stripe, sbi->s_cluster_ratio);
5412 sbi->s_stripe = 0;
5413 }
5414 sbi->s_extent_max_zeroout_kb = 32;
5415
5416 /*
5417 * set up enough so that it can read an inode
5418 */
5419 sb->s_op = &ext4_sops;
5420 sb->s_export_op = &ext4_export_ops;
5421 sb->s_xattr = ext4_xattr_handlers;
5422#ifdef CONFIG_FS_ENCRYPTION
5423 sb->s_cop = &ext4_cryptops;
5424#endif
5425#ifdef CONFIG_FS_VERITY
5426 sb->s_vop = &ext4_verityops;
5427#endif
5428#ifdef CONFIG_QUOTA
5429 sb->dq_op = &ext4_quota_operations;
5430 if (ext4_has_feature_quota(sb))
5431 sb->s_qcop = &dquot_quotactl_sysfile_ops;
5432 else
5433 sb->s_qcop = &ext4_qctl_operations;
5434 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
5435#endif
5436 super_set_uuid(sb, es->s_uuid, sizeof(es->s_uuid));
5437 super_set_sysfs_name_bdev(sb);
5438
5439 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
5440 mutex_init(&sbi->s_orphan_lock);
5441
5442 spin_lock_init(&sbi->s_bdev_wb_lock);
5443
5444 ext4_atomic_write_init(sb);
5445 ext4_fast_commit_init(sb);
5446
5447 sb->s_root = NULL;
5448
5449 needs_recovery = (es->s_last_orphan != 0 ||
5450 ext4_has_feature_orphan_present(sb) ||
5451 ext4_has_feature_journal_needs_recovery(sb));
5452
5453 if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb)) {
5454 err = ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block));
5455 if (err)
5456 goto failed_mount3a;
5457 }
5458
5459 err = -EINVAL;
5460 /*
5461 * The first inode we look at is the journal inode. Don't try
5462 * root first: it may be modified in the journal!
5463 */
5464 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
5465 err = ext4_load_and_init_journal(sb, es, ctx);
5466 if (err)
5467 goto failed_mount3a;
5468 if (bdev_read_only(sb->s_bdev))
5469 needs_recovery = 0;
5470 } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
5471 ext4_has_feature_journal_needs_recovery(sb)) {
5472 ext4_msg(sb, KERN_ERR, "required journal recovery "
5473 "suppressed and not mounted read-only");
5474 goto failed_mount3a;
5475 } else {
5476 const char *journal_option;
5477
5478 /* Nojournal mode, all journal mount options are illegal */
5479 journal_option = ext4_has_journal_option(sb);
5480 if (journal_option != NULL) {
5481 ext4_msg(sb, KERN_ERR,
5482 "can't mount with %s, fs mounted w/o journal",
5483 journal_option);
5484 goto failed_mount3a;
5485 }
5486
5487 sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM;
5488 clear_opt(sb, JOURNAL_CHECKSUM);
5489 clear_opt(sb, DATA_FLAGS);
5490 clear_opt2(sb, JOURNAL_FAST_COMMIT);
5491 sbi->s_journal = NULL;
5492 needs_recovery = 0;
5493 }
5494
5495 if (!test_opt(sb, NO_MBCACHE)) {
5496 sbi->s_ea_block_cache = ext4_xattr_create_cache();
5497 if (!sbi->s_ea_block_cache) {
5498 ext4_msg(sb, KERN_ERR,
5499 "Failed to create ea_block_cache");
5500 err = -EINVAL;
5501 goto failed_mount_wq;
5502 }
5503
5504 if (ext4_has_feature_ea_inode(sb)) {
5505 sbi->s_ea_inode_cache = ext4_xattr_create_cache();
5506 if (!sbi->s_ea_inode_cache) {
5507 ext4_msg(sb, KERN_ERR,
5508 "Failed to create ea_inode_cache");
5509 err = -EINVAL;
5510 goto failed_mount_wq;
5511 }
5512 }
5513 }
5514
5515 /*
5516 * Get the # of file system overhead blocks from the
5517 * superblock if present.
5518 */
5519 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
5520 /* ignore the precalculated value if it is ridiculous */
5521 if (sbi->s_overhead > ext4_blocks_count(es))
5522 sbi->s_overhead = 0;
5523 /*
5524 * If the bigalloc feature is not enabled recalculating the
5525 * overhead doesn't take long, so we might as well just redo
5526 * it to make sure we are using the correct value.
5527 */
5528 if (!ext4_has_feature_bigalloc(sb))
5529 sbi->s_overhead = 0;
5530 if (sbi->s_overhead == 0) {
5531 err = ext4_calculate_overhead(sb);
5532 if (err)
5533 goto failed_mount_wq;
5534 }
5535
5536 /*
5537 * The maximum number of concurrent works can be high and
5538 * concurrency isn't really necessary. Limit it to 1.
5539 */
5540 EXT4_SB(sb)->rsv_conversion_wq =
5541 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
5542 if (!EXT4_SB(sb)->rsv_conversion_wq) {
5543 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
5544 err = -ENOMEM;
5545 goto failed_mount4;
5546 }
5547
5548 /*
5549 * The jbd2_journal_load will have done any necessary log recovery,
5550 * so we can safely mount the rest of the filesystem now.
5551 */
5552
5553 root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL);
5554 if (IS_ERR(root)) {
5555 ext4_msg(sb, KERN_ERR, "get root inode failed");
5556 err = PTR_ERR(root);
5557 root = NULL;
5558 goto failed_mount4;
5559 }
5560 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
5561 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
5562 iput(root);
5563 err = -EFSCORRUPTED;
5564 goto failed_mount4;
5565 }
5566
5567 generic_set_sb_d_ops(sb);
5568 sb->s_root = d_make_root(root);
5569 if (!sb->s_root) {
5570 ext4_msg(sb, KERN_ERR, "get root dentry failed");
5571 err = -ENOMEM;
5572 goto failed_mount4;
5573 }
5574
5575 err = ext4_setup_super(sb, es, sb_rdonly(sb));
5576 if (err == -EROFS) {
5577 sb->s_flags |= SB_RDONLY;
5578 } else if (err)
5579 goto failed_mount4a;
5580
5581 ext4_set_resv_clusters(sb);
5582
5583 if (test_opt(sb, BLOCK_VALIDITY)) {
5584 err = ext4_setup_system_zone(sb);
5585 if (err) {
5586 ext4_msg(sb, KERN_ERR, "failed to initialize system "
5587 "zone (%d)", err);
5588 goto failed_mount4a;
5589 }
5590 }
5591 ext4_fc_replay_cleanup(sb);
5592
5593 ext4_ext_init(sb);
5594
5595 /*
5596 * Enable optimize_scan if number of groups is > threshold. This can be
5597 * turned off by passing "mb_optimize_scan=0". This can also be
5598 * turned on forcefully by passing "mb_optimize_scan=1".
5599 */
5600 if (!(ctx->spec & EXT4_SPEC_mb_optimize_scan)) {
5601 if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD)
5602 set_opt2(sb, MB_OPTIMIZE_SCAN);
5603 else
5604 clear_opt2(sb, MB_OPTIMIZE_SCAN);
5605 }
5606
5607 err = ext4_mb_init(sb);
5608 if (err) {
5609 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
5610 err);
5611 goto failed_mount5;
5612 }
5613
5614 /*
5615 * We can only set up the journal commit callback once
5616 * mballoc is initialized
5617 */
5618 if (sbi->s_journal)
5619 sbi->s_journal->j_commit_callback =
5620 ext4_journal_commit_callback;
5621
5622 err = ext4_percpu_param_init(sbi);
5623 if (err)
5624 goto failed_mount6;
5625
5626 if (ext4_has_feature_flex_bg(sb))
5627 if (!ext4_fill_flex_info(sb)) {
5628 ext4_msg(sb, KERN_ERR,
5629 "unable to initialize "
5630 "flex_bg meta info!");
5631 err = -ENOMEM;
5632 goto failed_mount6;
5633 }
5634
5635 err = ext4_register_li_request(sb, first_not_zeroed);
5636 if (err)
5637 goto failed_mount6;
5638
5639 err = ext4_init_orphan_info(sb);
5640 if (err)
5641 goto failed_mount7;
5642#ifdef CONFIG_QUOTA
5643 /* Enable quota usage during mount. */
5644 if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
5645 err = ext4_enable_quotas(sb);
5646 if (err)
5647 goto failed_mount8;
5648 }
5649#endif /* CONFIG_QUOTA */
5650
5651 /*
5652 * Save the original bdev mapping's wb_err value which could be
5653 * used to detect the metadata async write error.
5654 */
5655 errseq_check_and_advance(&sb->s_bdev->bd_mapping->wb_err,
5656 &sbi->s_bdev_wb_err);
5657 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
5658 ext4_orphan_cleanup(sb, es);
5659 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
5660 /*
5661 * Update the checksum after updating free space/inode counters and
5662 * ext4_orphan_cleanup. Otherwise the superblock can have an incorrect
5663 * checksum in the buffer cache until it is written out and
5664 * e2fsprogs programs trying to open a file system immediately
5665 * after it is mounted can fail.
5666 */
5667 ext4_superblock_csum_set(sb);
5668 if (needs_recovery) {
5669 ext4_msg(sb, KERN_INFO, "recovery complete");
5670 err = ext4_mark_recovery_complete(sb, es);
5671 if (err)
5672 goto failed_mount9;
5673 }
5674
5675 if (test_opt(sb, DISCARD) && !bdev_max_discard_sectors(sb->s_bdev)) {
5676 ext4_msg(sb, KERN_WARNING,
5677 "mounting with \"discard\" option, but the device does not support discard");
5678 clear_opt(sb, DISCARD);
5679 }
5680
5681 if (es->s_error_count)
5682 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
5683
5684 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */
5685 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
5686 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
5687 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
5688 atomic_set(&sbi->s_warning_count, 0);
5689 atomic_set(&sbi->s_msg_count, 0);
5690
5691 /* Register sysfs after all initializations are complete. */
5692 err = ext4_register_sysfs(sb);
5693 if (err)
5694 goto failed_mount9;
5695
5696 return 0;
5697
5698failed_mount9:
5699 ext4_quotas_off(sb, EXT4_MAXQUOTAS);
5700failed_mount8: __maybe_unused
5701 ext4_release_orphan_info(sb);
5702failed_mount7:
5703 ext4_unregister_li_request(sb);
5704failed_mount6:
5705 ext4_mb_release(sb);
5706 ext4_flex_groups_free(sbi);
5707 ext4_percpu_param_destroy(sbi);
5708failed_mount5:
5709 ext4_ext_release(sb);
5710 ext4_release_system_zone(sb);
5711failed_mount4a:
5712 dput(sb->s_root);
5713 sb->s_root = NULL;
5714failed_mount4:
5715 ext4_msg(sb, KERN_ERR, "mount failed");
5716 if (EXT4_SB(sb)->rsv_conversion_wq)
5717 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
5718failed_mount_wq:
5719 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
5720 sbi->s_ea_inode_cache = NULL;
5721
5722 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
5723 sbi->s_ea_block_cache = NULL;
5724
5725 if (sbi->s_journal) {
5726 ext4_journal_destroy(sbi, sbi->s_journal);
5727 }
5728failed_mount3a:
5729 ext4_es_unregister_shrinker(sbi);
5730failed_mount3:
5731 /* flush s_sb_upd_work before sbi destroy */
5732 flush_work(&sbi->s_sb_upd_work);
5733 ext4_stop_mmpd(sbi);
5734 timer_delete_sync(&sbi->s_err_report);
5735 ext4_group_desc_free(sbi);
5736failed_mount:
5737#if IS_ENABLED(CONFIG_UNICODE)
5738 utf8_unload(sb->s_encoding);
5739#endif
5740
5741#ifdef CONFIG_QUOTA
5742 for (unsigned int i = 0; i < EXT4_MAXQUOTAS; i++)
5743 kfree(get_qf_name(sb, sbi, i));
5744#endif
5745 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
5746 brelse(sbi->s_sbh);
5747 if (sbi->s_journal_bdev_file) {
5748 invalidate_bdev(file_bdev(sbi->s_journal_bdev_file));
5749 bdev_fput(sbi->s_journal_bdev_file);
5750 }
5751out_fail:
5752 invalidate_bdev(sb->s_bdev);
5753 sb->s_fs_info = NULL;
5754 return err;
5755}
5756
5757static int ext4_fill_super(struct super_block *sb, struct fs_context *fc)
5758{
5759 struct ext4_fs_context *ctx = fc->fs_private;
5760 struct ext4_sb_info *sbi;
5761 const char *descr;
5762 int ret;
5763
5764 sbi = ext4_alloc_sbi(sb);
5765 if (!sbi)
5766 return -ENOMEM;
5767
5768 fc->s_fs_info = sbi;
5769
5770 /* Cleanup superblock name */
5771 strreplace(sb->s_id, '/', '!');
5772
5773 sbi->s_sb_block = 1; /* Default super block location */
5774 if (ctx->spec & EXT4_SPEC_s_sb_block)
5775 sbi->s_sb_block = ctx->s_sb_block;
5776
5777 ret = __ext4_fill_super(fc, sb);
5778 if (ret < 0)
5779 goto free_sbi;
5780
5781 if (sbi->s_journal) {
5782 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
5783 descr = " journalled data mode";
5784 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
5785 descr = " ordered data mode";
5786 else
5787 descr = " writeback data mode";
5788 } else
5789 descr = "out journal";
5790
5791 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
5792 ext4_msg(sb, KERN_INFO, "mounted filesystem %pU %s with%s. "
5793 "Quota mode: %s.", &sb->s_uuid,
5794 sb_rdonly(sb) ? "ro" : "r/w", descr,
5795 ext4_quota_mode(sb));
5796
5797 /* Update the s_overhead_clusters if necessary */
5798 ext4_update_overhead(sb, false);
5799 return 0;
5800
5801free_sbi:
5802 ext4_free_sbi(sbi);
5803 fc->s_fs_info = NULL;
5804 return ret;
5805}
5806
5807static int ext4_get_tree(struct fs_context *fc)
5808{
5809 return get_tree_bdev(fc, ext4_fill_super);
5810}
5811
5812/*
5813 * Setup any per-fs journal parameters now. We'll do this both on
5814 * initial mount, once the journal has been initialised but before we've
5815 * done any recovery; and again on any subsequent remount.
5816 */
5817static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
5818{
5819 struct ext4_sb_info *sbi = EXT4_SB(sb);
5820
5821 journal->j_commit_interval = sbi->s_commit_interval;
5822 journal->j_min_batch_time = sbi->s_min_batch_time;
5823 journal->j_max_batch_time = sbi->s_max_batch_time;
5824 ext4_fc_init(sb, journal);
5825
5826 write_lock(&journal->j_state_lock);
5827 if (test_opt(sb, BARRIER))
5828 journal->j_flags |= JBD2_BARRIER;
5829 else
5830 journal->j_flags &= ~JBD2_BARRIER;
5831 /*
5832 * Always enable journal cycle record option, letting the journal
5833 * records log transactions continuously between each mount.
5834 */
5835 journal->j_flags |= JBD2_CYCLE_RECORD;
5836 write_unlock(&journal->j_state_lock);
5837}
5838
5839static struct inode *ext4_get_journal_inode(struct super_block *sb,
5840 unsigned int journal_inum)
5841{
5842 struct inode *journal_inode;
5843
5844 /*
5845 * Test for the existence of a valid inode on disk. Bad things
5846 * happen if we iget() an unused inode, as the subsequent iput()
5847 * will try to delete it.
5848 */
5849 journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL);
5850 if (IS_ERR(journal_inode)) {
5851 ext4_msg(sb, KERN_ERR, "no journal found");
5852 return ERR_CAST(journal_inode);
5853 }
5854 if (!journal_inode->i_nlink) {
5855 make_bad_inode(journal_inode);
5856 iput(journal_inode);
5857 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
5858 return ERR_PTR(-EFSCORRUPTED);
5859 }
5860 if (!S_ISREG(journal_inode->i_mode) || IS_ENCRYPTED(journal_inode)) {
5861 ext4_msg(sb, KERN_ERR, "invalid journal inode");
5862 iput(journal_inode);
5863 return ERR_PTR(-EFSCORRUPTED);
5864 }
5865
5866 ext4_debug("Journal inode found at %p: %lld bytes\n",
5867 journal_inode, journal_inode->i_size);
5868 return journal_inode;
5869}
5870
5871static int ext4_journal_bmap(journal_t *journal, sector_t *block)
5872{
5873 struct ext4_map_blocks map;
5874 int ret;
5875
5876 if (journal->j_inode == NULL)
5877 return 0;
5878
5879 map.m_lblk = *block;
5880 map.m_len = 1;
5881 ret = ext4_map_blocks(NULL, journal->j_inode, &map, 0);
5882 if (ret <= 0) {
5883 ext4_msg(journal->j_inode->i_sb, KERN_CRIT,
5884 "journal bmap failed: block %llu ret %d\n",
5885 *block, ret);
5886 jbd2_journal_abort(journal, ret ? ret : -EFSCORRUPTED);
5887 return ret;
5888 }
5889 *block = map.m_pblk;
5890 return 0;
5891}
5892
5893static journal_t *ext4_open_inode_journal(struct super_block *sb,
5894 unsigned int journal_inum)
5895{
5896 struct inode *journal_inode;
5897 journal_t *journal;
5898
5899 journal_inode = ext4_get_journal_inode(sb, journal_inum);
5900 if (IS_ERR(journal_inode))
5901 return ERR_CAST(journal_inode);
5902
5903 journal = jbd2_journal_init_inode(journal_inode);
5904 if (IS_ERR(journal)) {
5905 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
5906 iput(journal_inode);
5907 return ERR_CAST(journal);
5908 }
5909 journal->j_private = sb;
5910 journal->j_bmap = ext4_journal_bmap;
5911 ext4_init_journal_params(sb, journal);
5912 return journal;
5913}
5914
5915static struct file *ext4_get_journal_blkdev(struct super_block *sb,
5916 dev_t j_dev, ext4_fsblk_t *j_start,
5917 ext4_fsblk_t *j_len)
5918{
5919 struct buffer_head *bh;
5920 struct block_device *bdev;
5921 struct file *bdev_file;
5922 int hblock, blocksize;
5923 ext4_fsblk_t sb_block;
5924 unsigned long offset;
5925 struct ext4_super_block *es;
5926 int errno;
5927
5928 bdev_file = bdev_file_open_by_dev(j_dev,
5929 BLK_OPEN_READ | BLK_OPEN_WRITE | BLK_OPEN_RESTRICT_WRITES,
5930 sb, &fs_holder_ops);
5931 if (IS_ERR(bdev_file)) {
5932 ext4_msg(sb, KERN_ERR,
5933 "failed to open journal device unknown-block(%u,%u) %ld",
5934 MAJOR(j_dev), MINOR(j_dev), PTR_ERR(bdev_file));
5935 return bdev_file;
5936 }
5937
5938 bdev = file_bdev(bdev_file);
5939 blocksize = sb->s_blocksize;
5940 hblock = bdev_logical_block_size(bdev);
5941 if (blocksize < hblock) {
5942 ext4_msg(sb, KERN_ERR,
5943 "blocksize too small for journal device");
5944 errno = -EINVAL;
5945 goto out_bdev;
5946 }
5947
5948 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
5949 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
5950 set_blocksize(bdev_file, blocksize);
5951 bh = __bread(bdev, sb_block, blocksize);
5952 if (!bh) {
5953 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
5954 "external journal");
5955 errno = -EINVAL;
5956 goto out_bdev;
5957 }
5958
5959 es = (struct ext4_super_block *) (bh->b_data + offset);
5960 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
5961 !(le32_to_cpu(es->s_feature_incompat) &
5962 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
5963 ext4_msg(sb, KERN_ERR, "external journal has bad superblock");
5964 errno = -EFSCORRUPTED;
5965 goto out_bh;
5966 }
5967
5968 if ((le32_to_cpu(es->s_feature_ro_compat) &
5969 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
5970 es->s_checksum != ext4_superblock_csum(es)) {
5971 ext4_msg(sb, KERN_ERR, "external journal has corrupt superblock");
5972 errno = -EFSCORRUPTED;
5973 goto out_bh;
5974 }
5975
5976 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
5977 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
5978 errno = -EFSCORRUPTED;
5979 goto out_bh;
5980 }
5981
5982 *j_start = sb_block + 1;
5983 *j_len = ext4_blocks_count(es);
5984 brelse(bh);
5985 return bdev_file;
5986
5987out_bh:
5988 brelse(bh);
5989out_bdev:
5990 bdev_fput(bdev_file);
5991 return ERR_PTR(errno);
5992}
5993
5994static journal_t *ext4_open_dev_journal(struct super_block *sb,
5995 dev_t j_dev)
5996{
5997 journal_t *journal;
5998 ext4_fsblk_t j_start;
5999 ext4_fsblk_t j_len;
6000 struct file *bdev_file;
6001 int errno = 0;
6002
6003 bdev_file = ext4_get_journal_blkdev(sb, j_dev, &j_start, &j_len);
6004 if (IS_ERR(bdev_file))
6005 return ERR_CAST(bdev_file);
6006
6007 journal = jbd2_journal_init_dev(file_bdev(bdev_file), sb->s_bdev, j_start,
6008 j_len, sb->s_blocksize);
6009 if (IS_ERR(journal)) {
6010 ext4_msg(sb, KERN_ERR, "failed to create device journal");
6011 errno = PTR_ERR(journal);
6012 goto out_bdev;
6013 }
6014 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
6015 ext4_msg(sb, KERN_ERR, "External journal has more than one "
6016 "user (unsupported) - %d",
6017 be32_to_cpu(journal->j_superblock->s_nr_users));
6018 errno = -EINVAL;
6019 goto out_journal;
6020 }
6021 journal->j_private = sb;
6022 EXT4_SB(sb)->s_journal_bdev_file = bdev_file;
6023 ext4_init_journal_params(sb, journal);
6024 return journal;
6025
6026out_journal:
6027 ext4_journal_destroy(EXT4_SB(sb), journal);
6028out_bdev:
6029 bdev_fput(bdev_file);
6030 return ERR_PTR(errno);
6031}
6032
6033static int ext4_load_journal(struct super_block *sb,
6034 struct ext4_super_block *es,
6035 unsigned long journal_devnum)
6036{
6037 journal_t *journal;
6038 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
6039 dev_t journal_dev;
6040 int err = 0;
6041 int really_read_only;
6042 int journal_dev_ro;
6043
6044 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
6045 return -EFSCORRUPTED;
6046
6047 if (journal_devnum &&
6048 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
6049 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
6050 "numbers have changed");
6051 journal_dev = new_decode_dev(journal_devnum);
6052 } else
6053 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
6054
6055 if (journal_inum && journal_dev) {
6056 ext4_msg(sb, KERN_ERR,
6057 "filesystem has both journal inode and journal device!");
6058 return -EINVAL;
6059 }
6060
6061 if (journal_inum) {
6062 journal = ext4_open_inode_journal(sb, journal_inum);
6063 if (IS_ERR(journal))
6064 return PTR_ERR(journal);
6065 } else {
6066 journal = ext4_open_dev_journal(sb, journal_dev);
6067 if (IS_ERR(journal))
6068 return PTR_ERR(journal);
6069 }
6070
6071 journal_dev_ro = bdev_read_only(journal->j_dev);
6072 really_read_only = bdev_read_only(sb->s_bdev) | journal_dev_ro;
6073
6074 if (journal_dev_ro && !sb_rdonly(sb)) {
6075 ext4_msg(sb, KERN_ERR,
6076 "journal device read-only, try mounting with '-o ro'");
6077 err = -EROFS;
6078 goto err_out;
6079 }
6080
6081 /*
6082 * Are we loading a blank journal or performing recovery after a
6083 * crash? For recovery, we need to check in advance whether we
6084 * can get read-write access to the device.
6085 */
6086 if (ext4_has_feature_journal_needs_recovery(sb)) {
6087 if (sb_rdonly(sb)) {
6088 ext4_msg(sb, KERN_INFO, "INFO: recovery "
6089 "required on readonly filesystem");
6090 if (really_read_only) {
6091 ext4_msg(sb, KERN_ERR, "write access "
6092 "unavailable, cannot proceed "
6093 "(try mounting with noload)");
6094 err = -EROFS;
6095 goto err_out;
6096 }
6097 ext4_msg(sb, KERN_INFO, "write access will "
6098 "be enabled during recovery");
6099 }
6100 }
6101
6102 if (!(journal->j_flags & JBD2_BARRIER))
6103 ext4_msg(sb, KERN_INFO, "barriers disabled");
6104
6105 if (!ext4_has_feature_journal_needs_recovery(sb))
6106 err = jbd2_journal_wipe(journal, !really_read_only);
6107 if (!err) {
6108 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
6109 __le16 orig_state;
6110 bool changed = false;
6111
6112 if (save)
6113 memcpy(save, ((char *) es) +
6114 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
6115 err = jbd2_journal_load(journal);
6116 if (save && memcmp(((char *) es) + EXT4_S_ERR_START,
6117 save, EXT4_S_ERR_LEN)) {
6118 memcpy(((char *) es) + EXT4_S_ERR_START,
6119 save, EXT4_S_ERR_LEN);
6120 changed = true;
6121 }
6122 kfree(save);
6123 orig_state = es->s_state;
6124 es->s_state |= cpu_to_le16(EXT4_SB(sb)->s_mount_state &
6125 EXT4_ERROR_FS);
6126 if (orig_state != es->s_state)
6127 changed = true;
6128 /* Write out restored error information to the superblock */
6129 if (changed && !really_read_only) {
6130 int err2;
6131 err2 = ext4_commit_super(sb);
6132 err = err ? : err2;
6133 }
6134 }
6135
6136 if (err) {
6137 ext4_msg(sb, KERN_ERR, "error loading journal");
6138 goto err_out;
6139 }
6140
6141 EXT4_SB(sb)->s_journal = journal;
6142 err = ext4_clear_journal_err(sb, es);
6143 if (err) {
6144 ext4_journal_destroy(EXT4_SB(sb), journal);
6145 return err;
6146 }
6147
6148 if (!really_read_only && journal_devnum &&
6149 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
6150 es->s_journal_dev = cpu_to_le32(journal_devnum);
6151 ext4_commit_super(sb);
6152 }
6153 if (!really_read_only && journal_inum &&
6154 journal_inum != le32_to_cpu(es->s_journal_inum)) {
6155 es->s_journal_inum = cpu_to_le32(journal_inum);
6156 ext4_commit_super(sb);
6157 }
6158
6159 return 0;
6160
6161err_out:
6162 ext4_journal_destroy(EXT4_SB(sb), journal);
6163 return err;
6164}
6165
6166/* Copy state of EXT4_SB(sb) into buffer for on-disk superblock */
6167static void ext4_update_super(struct super_block *sb)
6168{
6169 struct ext4_sb_info *sbi = EXT4_SB(sb);
6170 struct ext4_super_block *es = sbi->s_es;
6171 struct buffer_head *sbh = sbi->s_sbh;
6172
6173 lock_buffer(sbh);
6174 /*
6175 * If the file system is mounted read-only, don't update the
6176 * superblock write time. This avoids updating the superblock
6177 * write time when we are mounting the root file system
6178 * read/only but we need to replay the journal; at that point,
6179 * for people who are east of GMT and who make their clock
6180 * tick in localtime for Windows bug-for-bug compatibility,
6181 * the clock is set in the future, and this will cause e2fsck
6182 * to complain and force a full file system check.
6183 */
6184 if (!sb_rdonly(sb))
6185 ext4_update_tstamp(es, s_wtime);
6186 es->s_kbytes_written =
6187 cpu_to_le64(sbi->s_kbytes_written +
6188 ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) -
6189 sbi->s_sectors_written_start) >> 1));
6190 if (percpu_counter_initialized(&sbi->s_freeclusters_counter))
6191 ext4_free_blocks_count_set(es,
6192 EXT4_C2B(sbi, percpu_counter_sum_positive(
6193 &sbi->s_freeclusters_counter)));
6194 if (percpu_counter_initialized(&sbi->s_freeinodes_counter))
6195 es->s_free_inodes_count =
6196 cpu_to_le32(percpu_counter_sum_positive(
6197 &sbi->s_freeinodes_counter));
6198 /* Copy error information to the on-disk superblock */
6199 spin_lock(&sbi->s_error_lock);
6200 if (sbi->s_add_error_count > 0) {
6201 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
6202 if (!es->s_first_error_time && !es->s_first_error_time_hi) {
6203 __ext4_update_tstamp(&es->s_first_error_time,
6204 &es->s_first_error_time_hi,
6205 sbi->s_first_error_time);
6206 strtomem_pad(es->s_first_error_func,
6207 sbi->s_first_error_func, 0);
6208 es->s_first_error_line =
6209 cpu_to_le32(sbi->s_first_error_line);
6210 es->s_first_error_ino =
6211 cpu_to_le32(sbi->s_first_error_ino);
6212 es->s_first_error_block =
6213 cpu_to_le64(sbi->s_first_error_block);
6214 es->s_first_error_errcode =
6215 ext4_errno_to_code(sbi->s_first_error_code);
6216 }
6217 __ext4_update_tstamp(&es->s_last_error_time,
6218 &es->s_last_error_time_hi,
6219 sbi->s_last_error_time);
6220 strtomem_pad(es->s_last_error_func, sbi->s_last_error_func, 0);
6221 es->s_last_error_line = cpu_to_le32(sbi->s_last_error_line);
6222 es->s_last_error_ino = cpu_to_le32(sbi->s_last_error_ino);
6223 es->s_last_error_block = cpu_to_le64(sbi->s_last_error_block);
6224 es->s_last_error_errcode =
6225 ext4_errno_to_code(sbi->s_last_error_code);
6226 /*
6227 * Start the daily error reporting function if it hasn't been
6228 * started already
6229 */
6230 if (!es->s_error_count)
6231 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);
6232 le32_add_cpu(&es->s_error_count, sbi->s_add_error_count);
6233 sbi->s_add_error_count = 0;
6234 }
6235 spin_unlock(&sbi->s_error_lock);
6236
6237 ext4_superblock_csum_set(sb);
6238 unlock_buffer(sbh);
6239}
6240
6241static int ext4_commit_super(struct super_block *sb)
6242{
6243 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
6244
6245 if (!sbh)
6246 return -EINVAL;
6247
6248 ext4_update_super(sb);
6249
6250 lock_buffer(sbh);
6251 /* Buffer got discarded which means block device got invalidated */
6252 if (!buffer_mapped(sbh)) {
6253 unlock_buffer(sbh);
6254 return -EIO;
6255 }
6256
6257 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
6258 /*
6259 * Oh, dear. A previous attempt to write the
6260 * superblock failed. This could happen because the
6261 * USB device was yanked out. Or it could happen to
6262 * be a transient write error and maybe the block will
6263 * be remapped. Nothing we can do but to retry the
6264 * write and hope for the best.
6265 */
6266 ext4_msg(sb, KERN_ERR, "previous I/O error to "
6267 "superblock detected");
6268 clear_buffer_write_io_error(sbh);
6269 set_buffer_uptodate(sbh);
6270 }
6271 get_bh(sbh);
6272 /* Clear potential dirty bit if it was journalled update */
6273 clear_buffer_dirty(sbh);
6274 sbh->b_end_io = end_buffer_write_sync;
6275 submit_bh(REQ_OP_WRITE | REQ_SYNC |
6276 (test_opt(sb, BARRIER) ? REQ_FUA : 0), sbh);
6277 wait_on_buffer(sbh);
6278 if (buffer_write_io_error(sbh)) {
6279 ext4_msg(sb, KERN_ERR, "I/O error while writing "
6280 "superblock");
6281 clear_buffer_write_io_error(sbh);
6282 set_buffer_uptodate(sbh);
6283 return -EIO;
6284 }
6285 return 0;
6286}
6287
6288/*
6289 * Have we just finished recovery? If so, and if we are mounting (or
6290 * remounting) the filesystem readonly, then we will end up with a
6291 * consistent fs on disk. Record that fact.
6292 */
6293static int ext4_mark_recovery_complete(struct super_block *sb,
6294 struct ext4_super_block *es)
6295{
6296 int err;
6297 journal_t *journal = EXT4_SB(sb)->s_journal;
6298
6299 if (!ext4_has_feature_journal(sb)) {
6300 if (journal != NULL) {
6301 ext4_error(sb, "Journal got removed while the fs was "
6302 "mounted!");
6303 return -EFSCORRUPTED;
6304 }
6305 return 0;
6306 }
6307 jbd2_journal_lock_updates(journal);
6308 err = jbd2_journal_flush(journal, 0);
6309 if (err < 0)
6310 goto out;
6311
6312 if (sb_rdonly(sb) && (ext4_has_feature_journal_needs_recovery(sb) ||
6313 ext4_has_feature_orphan_present(sb))) {
6314 if (!ext4_orphan_file_empty(sb)) {
6315 ext4_error(sb, "Orphan file not empty on read-only fs.");
6316 err = -EFSCORRUPTED;
6317 goto out;
6318 }
6319 ext4_clear_feature_journal_needs_recovery(sb);
6320 ext4_clear_feature_orphan_present(sb);
6321 ext4_commit_super(sb);
6322 }
6323out:
6324 jbd2_journal_unlock_updates(journal);
6325 return err;
6326}
6327
6328/*
6329 * If we are mounting (or read-write remounting) a filesystem whose journal
6330 * has recorded an error from a previous lifetime, move that error to the
6331 * main filesystem now.
6332 */
6333static int ext4_clear_journal_err(struct super_block *sb,
6334 struct ext4_super_block *es)
6335{
6336 journal_t *journal;
6337 int j_errno;
6338 const char *errstr;
6339
6340 if (!ext4_has_feature_journal(sb)) {
6341 ext4_error(sb, "Journal got removed while the fs was mounted!");
6342 return -EFSCORRUPTED;
6343 }
6344
6345 journal = EXT4_SB(sb)->s_journal;
6346
6347 /*
6348 * Now check for any error status which may have been recorded in the
6349 * journal by a prior ext4_error() or ext4_abort()
6350 */
6351
6352 j_errno = jbd2_journal_errno(journal);
6353 if (j_errno) {
6354 char nbuf[16];
6355
6356 errstr = ext4_decode_error(sb, j_errno, nbuf);
6357 ext4_warning(sb, "Filesystem error recorded "
6358 "from previous mount: %s", errstr);
6359
6360 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
6361 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
6362 j_errno = ext4_commit_super(sb);
6363 if (j_errno)
6364 return j_errno;
6365 ext4_warning(sb, "Marked fs in need of filesystem check.");
6366
6367 jbd2_journal_clear_err(journal);
6368 jbd2_journal_update_sb_errno(journal);
6369 }
6370 return 0;
6371}
6372
6373/*
6374 * Force the running and committing transactions to commit,
6375 * and wait on the commit.
6376 */
6377int ext4_force_commit(struct super_block *sb)
6378{
6379 return ext4_journal_force_commit(EXT4_SB(sb)->s_journal);
6380}
6381
6382static int ext4_sync_fs(struct super_block *sb, int wait)
6383{
6384 int ret = 0;
6385 tid_t target;
6386 bool needs_barrier = false;
6387 struct ext4_sb_info *sbi = EXT4_SB(sb);
6388
6389 ret = ext4_emergency_state(sb);
6390 if (unlikely(ret))
6391 return ret;
6392
6393 trace_ext4_sync_fs(sb, wait);
6394 flush_workqueue(sbi->rsv_conversion_wq);
6395 /*
6396 * Writeback quota in non-journalled quota case - journalled quota has
6397 * no dirty dquots
6398 */
6399 dquot_writeback_dquots(sb, -1);
6400 /*
6401 * Data writeback is possible w/o journal transaction, so barrier must
6402 * being sent at the end of the function. But we can skip it if
6403 * transaction_commit will do it for us.
6404 */
6405 if (sbi->s_journal) {
6406 target = jbd2_get_latest_transaction(sbi->s_journal);
6407 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
6408 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
6409 needs_barrier = true;
6410
6411 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
6412 if (wait)
6413 ret = jbd2_log_wait_commit(sbi->s_journal,
6414 target);
6415 }
6416 } else if (wait && test_opt(sb, BARRIER))
6417 needs_barrier = true;
6418 if (needs_barrier) {
6419 int err;
6420 err = blkdev_issue_flush(sb->s_bdev);
6421 if (!ret)
6422 ret = err;
6423 }
6424
6425 return ret;
6426}
6427
6428/*
6429 * LVM calls this function before a (read-only) snapshot is created. This
6430 * gives us a chance to flush the journal completely and mark the fs clean.
6431 *
6432 * Note that only this function cannot bring a filesystem to be in a clean
6433 * state independently. It relies on upper layer to stop all data & metadata
6434 * modifications.
6435 */
6436static int ext4_freeze(struct super_block *sb)
6437{
6438 int error = 0;
6439 journal_t *journal = EXT4_SB(sb)->s_journal;
6440
6441 if (journal) {
6442 /* Now we set up the journal barrier. */
6443 jbd2_journal_lock_updates(journal);
6444
6445 /*
6446 * Don't clear the needs_recovery flag if we failed to
6447 * flush the journal.
6448 */
6449 error = jbd2_journal_flush(journal, 0);
6450 if (error < 0)
6451 goto out;
6452
6453 /* Journal blocked and flushed, clear needs_recovery flag. */
6454 ext4_clear_feature_journal_needs_recovery(sb);
6455 if (ext4_orphan_file_empty(sb))
6456 ext4_clear_feature_orphan_present(sb);
6457 }
6458
6459 error = ext4_commit_super(sb);
6460out:
6461 if (journal)
6462 /* we rely on upper layer to stop further updates */
6463 jbd2_journal_unlock_updates(journal);
6464 return error;
6465}
6466
6467/*
6468 * Called by LVM after the snapshot is done. We need to reset the RECOVER
6469 * flag here, even though the filesystem is not technically dirty yet.
6470 */
6471static int ext4_unfreeze(struct super_block *sb)
6472{
6473 if (ext4_emergency_state(sb))
6474 return 0;
6475
6476 if (EXT4_SB(sb)->s_journal) {
6477 /* Reset the needs_recovery flag before the fs is unlocked. */
6478 ext4_set_feature_journal_needs_recovery(sb);
6479 if (ext4_has_feature_orphan_file(sb))
6480 ext4_set_feature_orphan_present(sb);
6481 }
6482
6483 ext4_commit_super(sb);
6484 return 0;
6485}
6486
6487/*
6488 * Structure to save mount options for ext4_remount's benefit
6489 */
6490struct ext4_mount_options {
6491 unsigned long s_mount_opt;
6492 unsigned long s_mount_opt2;
6493 kuid_t s_resuid;
6494 kgid_t s_resgid;
6495 unsigned long s_commit_interval;
6496 u32 s_min_batch_time, s_max_batch_time;
6497#ifdef CONFIG_QUOTA
6498 int s_jquota_fmt;
6499 char *s_qf_names[EXT4_MAXQUOTAS];
6500#endif
6501};
6502
6503static int __ext4_remount(struct fs_context *fc, struct super_block *sb)
6504{
6505 struct ext4_fs_context *ctx = fc->fs_private;
6506 struct ext4_super_block *es;
6507 struct ext4_sb_info *sbi = EXT4_SB(sb);
6508 unsigned long old_sb_flags;
6509 struct ext4_mount_options old_opts;
6510 ext4_group_t g;
6511 int err = 0;
6512 int alloc_ctx;
6513#ifdef CONFIG_QUOTA
6514 int enable_quota = 0;
6515 int i, j;
6516 char *to_free[EXT4_MAXQUOTAS];
6517#endif
6518
6519
6520 /* Store the original options */
6521 old_sb_flags = sb->s_flags;
6522 old_opts.s_mount_opt = sbi->s_mount_opt;
6523 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
6524 old_opts.s_resuid = sbi->s_resuid;
6525 old_opts.s_resgid = sbi->s_resgid;
6526 old_opts.s_commit_interval = sbi->s_commit_interval;
6527 old_opts.s_min_batch_time = sbi->s_min_batch_time;
6528 old_opts.s_max_batch_time = sbi->s_max_batch_time;
6529#ifdef CONFIG_QUOTA
6530 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
6531 for (i = 0; i < EXT4_MAXQUOTAS; i++)
6532 if (sbi->s_qf_names[i]) {
6533 char *qf_name = get_qf_name(sb, sbi, i);
6534
6535 old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL);
6536 if (!old_opts.s_qf_names[i]) {
6537 for (j = 0; j < i; j++)
6538 kfree(old_opts.s_qf_names[j]);
6539 return -ENOMEM;
6540 }
6541 } else
6542 old_opts.s_qf_names[i] = NULL;
6543#endif
6544 if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)) {
6545 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
6546 ctx->journal_ioprio =
6547 sbi->s_journal->j_task->io_context->ioprio;
6548 else
6549 ctx->journal_ioprio = EXT4_DEF_JOURNAL_IOPRIO;
6550
6551 }
6552
6553 if ((ctx->spec & EXT4_SPEC_s_stripe) &&
6554 ext4_is_stripe_incompatible(sb, ctx->s_stripe)) {
6555 ext4_msg(sb, KERN_WARNING,
6556 "stripe (%lu) is not aligned with cluster size (%u), "
6557 "stripe is disabled",
6558 ctx->s_stripe, sbi->s_cluster_ratio);
6559 ctx->s_stripe = 0;
6560 }
6561
6562 /*
6563 * Changing the DIOREAD_NOLOCK or DELALLOC mount options may cause
6564 * two calls to ext4_should_dioread_nolock() to return inconsistent
6565 * values, triggering WARN_ON in ext4_add_complete_io(). we grab
6566 * here s_writepages_rwsem to avoid race between writepages ops and
6567 * remount.
6568 */
6569 alloc_ctx = ext4_writepages_down_write(sb);
6570 ext4_apply_options(fc, sb);
6571 ext4_writepages_up_write(sb, alloc_ctx);
6572
6573 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
6574 test_opt(sb, JOURNAL_CHECKSUM)) {
6575 ext4_msg(sb, KERN_ERR, "changing journal_checksum "
6576 "during remount not supported; ignoring");
6577 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
6578 }
6579
6580 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
6581 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
6582 ext4_msg(sb, KERN_ERR, "can't mount with "
6583 "both data=journal and delalloc");
6584 err = -EINVAL;
6585 goto restore_opts;
6586 }
6587 if (test_opt(sb, DIOREAD_NOLOCK)) {
6588 ext4_msg(sb, KERN_ERR, "can't mount with "
6589 "both data=journal and dioread_nolock");
6590 err = -EINVAL;
6591 goto restore_opts;
6592 }
6593 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
6594 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
6595 ext4_msg(sb, KERN_ERR, "can't mount with "
6596 "journal_async_commit in data=ordered mode");
6597 err = -EINVAL;
6598 goto restore_opts;
6599 }
6600 }
6601
6602 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
6603 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
6604 err = -EINVAL;
6605 goto restore_opts;
6606 }
6607
6608 if ((old_opts.s_mount_opt & EXT4_MOUNT_DELALLOC) &&
6609 !test_opt(sb, DELALLOC)) {
6610 ext4_msg(sb, KERN_ERR, "can't disable delalloc during remount");
6611 err = -EINVAL;
6612 goto restore_opts;
6613 }
6614
6615 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
6616 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
6617
6618 es = sbi->s_es;
6619
6620 if (sbi->s_journal) {
6621 ext4_init_journal_params(sb, sbi->s_journal);
6622 set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio);
6623 }
6624
6625 /* Flush outstanding errors before changing fs state */
6626 flush_work(&sbi->s_sb_upd_work);
6627
6628 if ((bool)(fc->sb_flags & SB_RDONLY) != sb_rdonly(sb)) {
6629 if (ext4_emergency_state(sb)) {
6630 err = -EROFS;
6631 goto restore_opts;
6632 }
6633
6634 if (fc->sb_flags & SB_RDONLY) {
6635 err = sync_filesystem(sb);
6636 if (err < 0)
6637 goto restore_opts;
6638 err = dquot_suspend(sb, -1);
6639 if (err < 0)
6640 goto restore_opts;
6641
6642 /*
6643 * First of all, the unconditional stuff we have to do
6644 * to disable replay of the journal when we next remount
6645 */
6646 sb->s_flags |= SB_RDONLY;
6647
6648 /*
6649 * OK, test if we are remounting a valid rw partition
6650 * readonly, and if so set the rdonly flag and then
6651 * mark the partition as valid again.
6652 */
6653 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
6654 (sbi->s_mount_state & EXT4_VALID_FS))
6655 es->s_state = cpu_to_le16(sbi->s_mount_state);
6656
6657 if (sbi->s_journal) {
6658 /*
6659 * We let remount-ro finish even if marking fs
6660 * as clean failed...
6661 */
6662 ext4_mark_recovery_complete(sb, es);
6663 }
6664 } else {
6665 /* Make sure we can mount this feature set readwrite */
6666 if (ext4_has_feature_readonly(sb) ||
6667 !ext4_feature_set_ok(sb, 0)) {
6668 err = -EROFS;
6669 goto restore_opts;
6670 }
6671 /*
6672 * Make sure the group descriptor checksums
6673 * are sane. If they aren't, refuse to remount r/w.
6674 */
6675 for (g = 0; g < sbi->s_groups_count; g++) {
6676 struct ext4_group_desc *gdp =
6677 ext4_get_group_desc(sb, g, NULL);
6678
6679 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
6680 ext4_msg(sb, KERN_ERR,
6681 "ext4_remount: Checksum for group %u failed (%u!=%u)",
6682 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
6683 le16_to_cpu(gdp->bg_checksum));
6684 err = -EFSBADCRC;
6685 goto restore_opts;
6686 }
6687 }
6688
6689 /*
6690 * If we have an unprocessed orphan list hanging
6691 * around from a previously readonly bdev mount,
6692 * require a full umount/remount for now.
6693 */
6694 if (es->s_last_orphan || !ext4_orphan_file_empty(sb)) {
6695 ext4_msg(sb, KERN_WARNING, "Couldn't "
6696 "remount RDWR because of unprocessed "
6697 "orphan inode list. Please "
6698 "umount/remount instead");
6699 err = -EINVAL;
6700 goto restore_opts;
6701 }
6702
6703 /*
6704 * Mounting a RDONLY partition read-write, so reread
6705 * and store the current valid flag. (It may have
6706 * been changed by e2fsck since we originally mounted
6707 * the partition.)
6708 */
6709 if (sbi->s_journal) {
6710 err = ext4_clear_journal_err(sb, es);
6711 if (err)
6712 goto restore_opts;
6713 }
6714 sbi->s_mount_state = (le16_to_cpu(es->s_state) &
6715 ~EXT4_FC_REPLAY);
6716
6717 err = ext4_setup_super(sb, es, 0);
6718 if (err)
6719 goto restore_opts;
6720
6721 sb->s_flags &= ~SB_RDONLY;
6722 if (ext4_has_feature_mmp(sb)) {
6723 err = ext4_multi_mount_protect(sb,
6724 le64_to_cpu(es->s_mmp_block));
6725 if (err)
6726 goto restore_opts;
6727 }
6728#ifdef CONFIG_QUOTA
6729 enable_quota = 1;
6730#endif
6731 }
6732 }
6733
6734 /*
6735 * Handle creation of system zone data early because it can fail.
6736 * Releasing of existing data is done when we are sure remount will
6737 * succeed.
6738 */
6739 if (test_opt(sb, BLOCK_VALIDITY) && !sbi->s_system_blks) {
6740 err = ext4_setup_system_zone(sb);
6741 if (err)
6742 goto restore_opts;
6743 }
6744
6745 if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) {
6746 err = ext4_commit_super(sb);
6747 if (err)
6748 goto restore_opts;
6749 }
6750
6751#ifdef CONFIG_QUOTA
6752 if (enable_quota) {
6753 if (sb_any_quota_suspended(sb))
6754 dquot_resume(sb, -1);
6755 else if (ext4_has_feature_quota(sb)) {
6756 err = ext4_enable_quotas(sb);
6757 if (err)
6758 goto restore_opts;
6759 }
6760 }
6761 /* Release old quota file names */
6762 for (i = 0; i < EXT4_MAXQUOTAS; i++)
6763 kfree(old_opts.s_qf_names[i]);
6764#endif
6765 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6766 ext4_release_system_zone(sb);
6767
6768 /*
6769 * Reinitialize lazy itable initialization thread based on
6770 * current settings
6771 */
6772 if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
6773 ext4_unregister_li_request(sb);
6774 else {
6775 ext4_group_t first_not_zeroed;
6776 first_not_zeroed = ext4_has_uninit_itable(sb);
6777 ext4_register_li_request(sb, first_not_zeroed);
6778 }
6779
6780 if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6781 ext4_stop_mmpd(sbi);
6782
6783 /*
6784 * Handle aborting the filesystem as the last thing during remount to
6785 * avoid obsure errors during remount when some option changes fail to
6786 * apply due to shutdown filesystem.
6787 */
6788 if (test_opt2(sb, ABORT))
6789 ext4_abort(sb, ESHUTDOWN, "Abort forced by user");
6790
6791 return 0;
6792
6793restore_opts:
6794 /*
6795 * If there was a failing r/w to ro transition, we may need to
6796 * re-enable quota
6797 */
6798 if (sb_rdonly(sb) && !(old_sb_flags & SB_RDONLY) &&
6799 sb_any_quota_suspended(sb))
6800 dquot_resume(sb, -1);
6801
6802 alloc_ctx = ext4_writepages_down_write(sb);
6803 sb->s_flags = old_sb_flags;
6804 sbi->s_mount_opt = old_opts.s_mount_opt;
6805 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
6806 sbi->s_resuid = old_opts.s_resuid;
6807 sbi->s_resgid = old_opts.s_resgid;
6808 sbi->s_commit_interval = old_opts.s_commit_interval;
6809 sbi->s_min_batch_time = old_opts.s_min_batch_time;
6810 sbi->s_max_batch_time = old_opts.s_max_batch_time;
6811 ext4_writepages_up_write(sb, alloc_ctx);
6812
6813 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6814 ext4_release_system_zone(sb);
6815#ifdef CONFIG_QUOTA
6816 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
6817 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
6818 to_free[i] = get_qf_name(sb, sbi, i);
6819 rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]);
6820 }
6821 synchronize_rcu();
6822 for (i = 0; i < EXT4_MAXQUOTAS; i++)
6823 kfree(to_free[i]);
6824#endif
6825 if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6826 ext4_stop_mmpd(sbi);
6827 return err;
6828}
6829
6830static int ext4_reconfigure(struct fs_context *fc)
6831{
6832 struct super_block *sb = fc->root->d_sb;
6833 int ret;
6834 bool old_ro = sb_rdonly(sb);
6835
6836 fc->s_fs_info = EXT4_SB(sb);
6837
6838 ret = ext4_check_opt_consistency(fc, sb);
6839 if (ret < 0)
6840 return ret;
6841
6842 ret = __ext4_remount(fc, sb);
6843 if (ret < 0)
6844 return ret;
6845
6846 ext4_msg(sb, KERN_INFO, "re-mounted %pU%s.",
6847 &sb->s_uuid,
6848 (old_ro != sb_rdonly(sb)) ? (sb_rdonly(sb) ? " ro" : " r/w") : "");
6849
6850 return 0;
6851}
6852
6853#ifdef CONFIG_QUOTA
6854static int ext4_statfs_project(struct super_block *sb,
6855 kprojid_t projid, struct kstatfs *buf)
6856{
6857 struct kqid qid;
6858 struct dquot *dquot;
6859 u64 limit;
6860 u64 curblock;
6861
6862 qid = make_kqid_projid(projid);
6863 dquot = dqget(sb, qid);
6864 if (IS_ERR(dquot))
6865 return PTR_ERR(dquot);
6866 spin_lock(&dquot->dq_dqb_lock);
6867
6868 limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
6869 dquot->dq_dqb.dqb_bhardlimit);
6870 limit >>= sb->s_blocksize_bits;
6871
6872 if (limit) {
6873 uint64_t remaining = 0;
6874
6875 curblock = (dquot->dq_dqb.dqb_curspace +
6876 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
6877 if (limit > curblock)
6878 remaining = limit - curblock;
6879
6880 buf->f_blocks = min(buf->f_blocks, limit);
6881 buf->f_bfree = min(buf->f_bfree, remaining);
6882 buf->f_bavail = min(buf->f_bavail, remaining);
6883 }
6884
6885 limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
6886 dquot->dq_dqb.dqb_ihardlimit);
6887 if (limit) {
6888 uint64_t remaining = 0;
6889
6890 if (limit > dquot->dq_dqb.dqb_curinodes)
6891 remaining = limit - dquot->dq_dqb.dqb_curinodes;
6892
6893 buf->f_files = min(buf->f_files, limit);
6894 buf->f_ffree = min(buf->f_ffree, remaining);
6895 }
6896
6897 spin_unlock(&dquot->dq_dqb_lock);
6898 dqput(dquot);
6899 return 0;
6900}
6901#endif
6902
6903static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
6904{
6905 struct super_block *sb = dentry->d_sb;
6906 struct ext4_sb_info *sbi = EXT4_SB(sb);
6907 struct ext4_super_block *es = sbi->s_es;
6908 ext4_fsblk_t overhead = 0, resv_blocks;
6909 s64 bfree;
6910 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
6911
6912 if (!test_opt(sb, MINIX_DF))
6913 overhead = sbi->s_overhead;
6914
6915 buf->f_type = EXT4_SUPER_MAGIC;
6916 buf->f_bsize = sb->s_blocksize;
6917 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
6918 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
6919 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
6920 /* prevent underflow in case that few free space is available */
6921 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
6922 buf->f_bavail = buf->f_bfree -
6923 (ext4_r_blocks_count(es) + resv_blocks);
6924 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
6925 buf->f_bavail = 0;
6926 buf->f_files = le32_to_cpu(es->s_inodes_count);
6927 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
6928 buf->f_namelen = EXT4_NAME_LEN;
6929 buf->f_fsid = uuid_to_fsid(es->s_uuid);
6930
6931#ifdef CONFIG_QUOTA
6932 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
6933 sb_has_quota_limits_enabled(sb, PRJQUOTA))
6934 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
6935#endif
6936 return 0;
6937}
6938
6939
6940#ifdef CONFIG_QUOTA
6941
6942/*
6943 * Helper functions so that transaction is started before we acquire dqio_sem
6944 * to keep correct lock ordering of transaction > dqio_sem
6945 */
6946static inline struct inode *dquot_to_inode(struct dquot *dquot)
6947{
6948 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
6949}
6950
6951static int ext4_write_dquot(struct dquot *dquot)
6952{
6953 int ret, err;
6954 handle_t *handle;
6955 struct inode *inode;
6956
6957 inode = dquot_to_inode(dquot);
6958 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
6959 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
6960 if (IS_ERR(handle))
6961 return PTR_ERR(handle);
6962 ret = dquot_commit(dquot);
6963 if (ret < 0)
6964 ext4_error_err(dquot->dq_sb, -ret,
6965 "Failed to commit dquot type %d",
6966 dquot->dq_id.type);
6967 err = ext4_journal_stop(handle);
6968 if (!ret)
6969 ret = err;
6970 return ret;
6971}
6972
6973static int ext4_acquire_dquot(struct dquot *dquot)
6974{
6975 int ret, err;
6976 handle_t *handle;
6977
6978 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6979 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
6980 if (IS_ERR(handle))
6981 return PTR_ERR(handle);
6982 ret = dquot_acquire(dquot);
6983 if (ret < 0)
6984 ext4_error_err(dquot->dq_sb, -ret,
6985 "Failed to acquire dquot type %d",
6986 dquot->dq_id.type);
6987 err = ext4_journal_stop(handle);
6988 if (!ret)
6989 ret = err;
6990 return ret;
6991}
6992
6993static int ext4_release_dquot(struct dquot *dquot)
6994{
6995 int ret, err;
6996 handle_t *handle;
6997 bool freeze_protected = false;
6998
6999 /*
7000 * Trying to sb_start_intwrite() in a running transaction
7001 * can result in a deadlock. Further, running transactions
7002 * are already protected from freezing.
7003 */
7004 if (!ext4_journal_current_handle()) {
7005 sb_start_intwrite(dquot->dq_sb);
7006 freeze_protected = true;
7007 }
7008
7009 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
7010 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
7011 if (IS_ERR(handle)) {
7012 /* Release dquot anyway to avoid endless cycle in dqput() */
7013 dquot_release(dquot);
7014 if (freeze_protected)
7015 sb_end_intwrite(dquot->dq_sb);
7016 return PTR_ERR(handle);
7017 }
7018 ret = dquot_release(dquot);
7019 if (ret < 0)
7020 ext4_error_err(dquot->dq_sb, -ret,
7021 "Failed to release dquot type %d",
7022 dquot->dq_id.type);
7023 err = ext4_journal_stop(handle);
7024 if (!ret)
7025 ret = err;
7026
7027 if (freeze_protected)
7028 sb_end_intwrite(dquot->dq_sb);
7029
7030 return ret;
7031}
7032
7033static int ext4_mark_dquot_dirty(struct dquot *dquot)
7034{
7035 struct super_block *sb = dquot->dq_sb;
7036
7037 if (ext4_is_quota_journalled(sb)) {
7038 dquot_mark_dquot_dirty(dquot);
7039 return ext4_write_dquot(dquot);
7040 } else {
7041 return dquot_mark_dquot_dirty(dquot);
7042 }
7043}
7044
7045static int ext4_write_info(struct super_block *sb, int type)
7046{
7047 int ret, err;
7048 handle_t *handle;
7049
7050 /* Data block + inode block */
7051 handle = ext4_journal_start_sb(sb, EXT4_HT_QUOTA, 2);
7052 if (IS_ERR(handle))
7053 return PTR_ERR(handle);
7054 ret = dquot_commit_info(sb, type);
7055 err = ext4_journal_stop(handle);
7056 if (!ret)
7057 ret = err;
7058 return ret;
7059}
7060
7061static void lockdep_set_quota_inode(struct inode *inode, int subclass)
7062{
7063 struct ext4_inode_info *ei = EXT4_I(inode);
7064
7065 /* The first argument of lockdep_set_subclass has to be
7066 * *exactly* the same as the argument to init_rwsem() --- in
7067 * this case, in init_once() --- or lockdep gets unhappy
7068 * because the name of the lock is set using the
7069 * stringification of the argument to init_rwsem().
7070 */
7071 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */
7072 lockdep_set_subclass(&ei->i_data_sem, subclass);
7073}
7074
7075/*
7076 * Standard function to be called on quota_on
7077 */
7078static int ext4_quota_on(struct super_block *sb, int type, int format_id,
7079 const struct path *path)
7080{
7081 int err;
7082
7083 if (!test_opt(sb, QUOTA))
7084 return -EINVAL;
7085
7086 /* Quotafile not on the same filesystem? */
7087 if (path->dentry->d_sb != sb)
7088 return -EXDEV;
7089
7090 /* Quota already enabled for this file? */
7091 if (IS_NOQUOTA(d_inode(path->dentry)))
7092 return -EBUSY;
7093
7094 /* Journaling quota? */
7095 if (EXT4_SB(sb)->s_qf_names[type]) {
7096 /* Quotafile not in fs root? */
7097 if (path->dentry->d_parent != sb->s_root)
7098 ext4_msg(sb, KERN_WARNING,
7099 "Quota file not on filesystem root. "
7100 "Journaled quota will not work");
7101 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
7102 } else {
7103 /*
7104 * Clear the flag just in case mount options changed since
7105 * last time.
7106 */
7107 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
7108 }
7109
7110 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
7111 err = dquot_quota_on(sb, type, format_id, path);
7112 if (!err) {
7113 struct inode *inode = d_inode(path->dentry);
7114 handle_t *handle;
7115
7116 /*
7117 * Set inode flags to prevent userspace from messing with quota
7118 * files. If this fails, we return success anyway since quotas
7119 * are already enabled and this is not a hard failure.
7120 */
7121 inode_lock(inode);
7122 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
7123 if (IS_ERR(handle))
7124 goto unlock_inode;
7125 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
7126 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
7127 S_NOATIME | S_IMMUTABLE);
7128 err = ext4_mark_inode_dirty(handle, inode);
7129 ext4_journal_stop(handle);
7130 unlock_inode:
7131 inode_unlock(inode);
7132 if (err)
7133 dquot_quota_off(sb, type);
7134 }
7135 if (err)
7136 lockdep_set_quota_inode(path->dentry->d_inode,
7137 I_DATA_SEM_NORMAL);
7138 return err;
7139}
7140
7141static inline bool ext4_check_quota_inum(int type, unsigned long qf_inum)
7142{
7143 switch (type) {
7144 case USRQUOTA:
7145 return qf_inum == EXT4_USR_QUOTA_INO;
7146 case GRPQUOTA:
7147 return qf_inum == EXT4_GRP_QUOTA_INO;
7148 case PRJQUOTA:
7149 return qf_inum >= EXT4_GOOD_OLD_FIRST_INO;
7150 default:
7151 BUG();
7152 }
7153}
7154
7155static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
7156 unsigned int flags)
7157{
7158 int err;
7159 struct inode *qf_inode;
7160 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
7161 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
7162 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
7163 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
7164 };
7165
7166 BUG_ON(!ext4_has_feature_quota(sb));
7167
7168 if (!qf_inums[type])
7169 return -EPERM;
7170
7171 if (!ext4_check_quota_inum(type, qf_inums[type])) {
7172 ext4_error(sb, "Bad quota inum: %lu, type: %d",
7173 qf_inums[type], type);
7174 return -EUCLEAN;
7175 }
7176
7177 qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL);
7178 if (IS_ERR(qf_inode)) {
7179 ext4_error(sb, "Bad quota inode: %lu, type: %d",
7180 qf_inums[type], type);
7181 return PTR_ERR(qf_inode);
7182 }
7183
7184 /* Don't account quota for quota files to avoid recursion */
7185 qf_inode->i_flags |= S_NOQUOTA;
7186 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
7187 err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
7188 if (err)
7189 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
7190 iput(qf_inode);
7191
7192 return err;
7193}
7194
7195/* Enable usage tracking for all quota types. */
7196int ext4_enable_quotas(struct super_block *sb)
7197{
7198 int type, err = 0;
7199 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
7200 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
7201 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
7202 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
7203 };
7204 bool quota_mopt[EXT4_MAXQUOTAS] = {
7205 test_opt(sb, USRQUOTA),
7206 test_opt(sb, GRPQUOTA),
7207 test_opt(sb, PRJQUOTA),
7208 };
7209
7210 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
7211 for (type = 0; type < EXT4_MAXQUOTAS; type++) {
7212 if (qf_inums[type]) {
7213 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
7214 DQUOT_USAGE_ENABLED |
7215 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
7216 if (err) {
7217 ext4_warning(sb,
7218 "Failed to enable quota tracking "
7219 "(type=%d, err=%d, ino=%lu). "
7220 "Please run e2fsck to fix.", type,
7221 err, qf_inums[type]);
7222
7223 ext4_quotas_off(sb, type);
7224 return err;
7225 }
7226 }
7227 }
7228 return 0;
7229}
7230
7231static int ext4_quota_off(struct super_block *sb, int type)
7232{
7233 struct inode *inode = sb_dqopt(sb)->files[type];
7234 handle_t *handle;
7235 int err;
7236
7237 /* Force all delayed allocation blocks to be allocated.
7238 * Caller already holds s_umount sem */
7239 if (test_opt(sb, DELALLOC))
7240 sync_filesystem(sb);
7241
7242 if (!inode || !igrab(inode))
7243 goto out;
7244
7245 err = dquot_quota_off(sb, type);
7246 if (err || ext4_has_feature_quota(sb))
7247 goto out_put;
7248 /*
7249 * When the filesystem was remounted read-only first, we cannot cleanup
7250 * inode flags here. Bad luck but people should be using QUOTA feature
7251 * these days anyway.
7252 */
7253 if (sb_rdonly(sb))
7254 goto out_put;
7255
7256 inode_lock(inode);
7257 /*
7258 * Update modification times of quota files when userspace can
7259 * start looking at them. If we fail, we return success anyway since
7260 * this is not a hard failure and quotas are already disabled.
7261 */
7262 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
7263 if (IS_ERR(handle)) {
7264 err = PTR_ERR(handle);
7265 goto out_unlock;
7266 }
7267 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
7268 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
7269 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
7270 err = ext4_mark_inode_dirty(handle, inode);
7271 ext4_journal_stop(handle);
7272out_unlock:
7273 inode_unlock(inode);
7274out_put:
7275 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
7276 iput(inode);
7277 return err;
7278out:
7279 return dquot_quota_off(sb, type);
7280}
7281
7282/* Read data from quotafile - avoid pagecache and such because we cannot afford
7283 * acquiring the locks... As quota files are never truncated and quota code
7284 * itself serializes the operations (and no one else should touch the files)
7285 * we don't have to be afraid of races */
7286static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
7287 size_t len, loff_t off)
7288{
7289 struct inode *inode = sb_dqopt(sb)->files[type];
7290 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
7291 int offset = off & (sb->s_blocksize - 1);
7292 int tocopy;
7293 size_t toread;
7294 struct buffer_head *bh;
7295 loff_t i_size = i_size_read(inode);
7296
7297 if (off > i_size)
7298 return 0;
7299 if (off+len > i_size)
7300 len = i_size-off;
7301 toread = len;
7302 while (toread > 0) {
7303 tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread);
7304 bh = ext4_bread(NULL, inode, blk, 0);
7305 if (IS_ERR(bh))
7306 return PTR_ERR(bh);
7307 if (!bh) /* A hole? */
7308 memset(data, 0, tocopy);
7309 else
7310 memcpy(data, bh->b_data+offset, tocopy);
7311 brelse(bh);
7312 offset = 0;
7313 toread -= tocopy;
7314 data += tocopy;
7315 blk++;
7316 }
7317 return len;
7318}
7319
7320/* Write to quotafile (we know the transaction is already started and has
7321 * enough credits) */
7322static ssize_t ext4_quota_write(struct super_block *sb, int type,
7323 const char *data, size_t len, loff_t off)
7324{
7325 struct inode *inode = sb_dqopt(sb)->files[type];
7326 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
7327 int err = 0, err2 = 0, offset = off & (sb->s_blocksize - 1);
7328 int retries = 0;
7329 struct buffer_head *bh;
7330 handle_t *handle = journal_current_handle();
7331
7332 if (!handle) {
7333 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
7334 " cancelled because transaction is not started",
7335 (unsigned long long)off, (unsigned long long)len);
7336 return -EIO;
7337 }
7338 /*
7339 * Since we account only one data block in transaction credits,
7340 * then it is impossible to cross a block boundary.
7341 */
7342 if (sb->s_blocksize - offset < len) {
7343 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
7344 " cancelled because not block aligned",
7345 (unsigned long long)off, (unsigned long long)len);
7346 return -EIO;
7347 }
7348
7349 do {
7350 bh = ext4_bread(handle, inode, blk,
7351 EXT4_GET_BLOCKS_CREATE |
7352 EXT4_GET_BLOCKS_METADATA_NOFAIL);
7353 } while (PTR_ERR(bh) == -ENOSPC &&
7354 ext4_should_retry_alloc(inode->i_sb, &retries));
7355 if (IS_ERR(bh))
7356 return PTR_ERR(bh);
7357 if (!bh)
7358 goto out;
7359 BUFFER_TRACE(bh, "get write access");
7360 err = ext4_journal_get_write_access(handle, sb, bh, EXT4_JTR_NONE);
7361 if (err) {
7362 brelse(bh);
7363 return err;
7364 }
7365 lock_buffer(bh);
7366 memcpy(bh->b_data+offset, data, len);
7367 flush_dcache_folio(bh->b_folio);
7368 unlock_buffer(bh);
7369 err = ext4_handle_dirty_metadata(handle, NULL, bh);
7370 brelse(bh);
7371out:
7372 if (inode->i_size < off + len) {
7373 i_size_write(inode, off + len);
7374 EXT4_I(inode)->i_disksize = inode->i_size;
7375 err2 = ext4_mark_inode_dirty(handle, inode);
7376 if (unlikely(err2 && !err))
7377 err = err2;
7378 }
7379 return err ? err : len;
7380}
7381#endif
7382
7383#if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
7384static inline void register_as_ext2(void)
7385{
7386 int err = register_filesystem(&ext2_fs_type);
7387 if (err)
7388 printk(KERN_WARNING
7389 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
7390}
7391
7392static inline void unregister_as_ext2(void)
7393{
7394 unregister_filesystem(&ext2_fs_type);
7395}
7396
7397static inline int ext2_feature_set_ok(struct super_block *sb)
7398{
7399 if (ext4_has_unknown_ext2_incompat_features(sb))
7400 return 0;
7401 if (sb_rdonly(sb))
7402 return 1;
7403 if (ext4_has_unknown_ext2_ro_compat_features(sb))
7404 return 0;
7405 return 1;
7406}
7407#else
7408static inline void register_as_ext2(void) { }
7409static inline void unregister_as_ext2(void) { }
7410static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
7411#endif
7412
7413static inline void register_as_ext3(void)
7414{
7415 int err = register_filesystem(&ext3_fs_type);
7416 if (err)
7417 printk(KERN_WARNING
7418 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
7419}
7420
7421static inline void unregister_as_ext3(void)
7422{
7423 unregister_filesystem(&ext3_fs_type);
7424}
7425
7426static inline int ext3_feature_set_ok(struct super_block *sb)
7427{
7428 if (ext4_has_unknown_ext3_incompat_features(sb))
7429 return 0;
7430 if (!ext4_has_feature_journal(sb))
7431 return 0;
7432 if (sb_rdonly(sb))
7433 return 1;
7434 if (ext4_has_unknown_ext3_ro_compat_features(sb))
7435 return 0;
7436 return 1;
7437}
7438
7439static void ext4_kill_sb(struct super_block *sb)
7440{
7441 struct ext4_sb_info *sbi = EXT4_SB(sb);
7442 struct file *bdev_file = sbi ? sbi->s_journal_bdev_file : NULL;
7443
7444 kill_block_super(sb);
7445
7446 if (bdev_file)
7447 bdev_fput(bdev_file);
7448}
7449
7450static struct file_system_type ext4_fs_type = {
7451 .owner = THIS_MODULE,
7452 .name = "ext4",
7453 .init_fs_context = ext4_init_fs_context,
7454 .parameters = ext4_param_specs,
7455 .kill_sb = ext4_kill_sb,
7456 .fs_flags = FS_REQUIRES_DEV | FS_ALLOW_IDMAP | FS_MGTIME |
7457 FS_LBS,
7458};
7459MODULE_ALIAS_FS("ext4");
7460
7461static int __init ext4_init_fs(void)
7462{
7463 int err;
7464
7465 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
7466 ext4_li_info = NULL;
7467
7468 /* Build-time check for flags consistency */
7469 ext4_check_flag_values();
7470
7471 err = ext4_init_es();
7472 if (err)
7473 return err;
7474
7475 err = ext4_init_pending();
7476 if (err)
7477 goto out7;
7478
7479 err = ext4_init_post_read_processing();
7480 if (err)
7481 goto out6;
7482
7483 err = ext4_init_pageio();
7484 if (err)
7485 goto out5;
7486
7487 err = ext4_init_system_zone();
7488 if (err)
7489 goto out4;
7490
7491 err = ext4_init_sysfs();
7492 if (err)
7493 goto out3;
7494
7495 err = ext4_init_mballoc();
7496 if (err)
7497 goto out2;
7498 err = init_inodecache();
7499 if (err)
7500 goto out1;
7501
7502 err = ext4_fc_init_dentry_cache();
7503 if (err)
7504 goto out05;
7505
7506 register_as_ext3();
7507 register_as_ext2();
7508 err = register_filesystem(&ext4_fs_type);
7509 if (err)
7510 goto out;
7511
7512 return 0;
7513out:
7514 unregister_as_ext2();
7515 unregister_as_ext3();
7516 ext4_fc_destroy_dentry_cache();
7517out05:
7518 destroy_inodecache();
7519out1:
7520 ext4_exit_mballoc();
7521out2:
7522 ext4_exit_sysfs();
7523out3:
7524 ext4_exit_system_zone();
7525out4:
7526 ext4_exit_pageio();
7527out5:
7528 ext4_exit_post_read_processing();
7529out6:
7530 ext4_exit_pending();
7531out7:
7532 ext4_exit_es();
7533
7534 return err;
7535}
7536
7537static void __exit ext4_exit_fs(void)
7538{
7539 ext4_destroy_lazyinit_thread();
7540 unregister_as_ext2();
7541 unregister_as_ext3();
7542 unregister_filesystem(&ext4_fs_type);
7543 ext4_fc_destroy_dentry_cache();
7544 destroy_inodecache();
7545 ext4_exit_mballoc();
7546 ext4_exit_sysfs();
7547 ext4_exit_system_zone();
7548 ext4_exit_pageio();
7549 ext4_exit_post_read_processing();
7550 ext4_exit_es();
7551 ext4_exit_pending();
7552}
7553
7554MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
7555MODULE_DESCRIPTION("Fourth Extended Filesystem");
7556MODULE_LICENSE("GPL");
7557module_init(ext4_init_fs)
7558module_exit(ext4_exit_fs)