Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * linux/fs/ext4/readpage.c
4 *
5 * Copyright (C) 2002, Linus Torvalds.
6 * Copyright (C) 2015, Google, Inc.
7 *
8 * This was originally taken from fs/mpage.c
9 *
10 * The ext4_mpage_readpages() function here is intended to
11 * replace mpage_readahead() in the general case, not just for
12 * encrypted files. It has some limitations (see below), where it
13 * will fall back to read_block_full_page(), but these limitations
14 * should only be hit when page_size != block_size.
15 *
16 * This will allow us to attach a callback function to support ext4
17 * encryption.
18 *
19 * If anything unusual happens, such as:
20 *
21 * - encountering a page which has buffers
22 * - encountering a page which has a non-hole after a hole
23 * - encountering a page with non-contiguous blocks
24 *
25 * then this code just gives up and calls the buffer_head-based read function.
26 * It does handle a page which has holes at the end - that is a common case:
27 * the end-of-file on blocksize < PAGE_SIZE setups.
28 *
29 */
30
31#include <linux/kernel.h>
32#include <linux/export.h>
33#include <linux/mm.h>
34#include <linux/kdev_t.h>
35#include <linux/gfp.h>
36#include <linux/bio.h>
37#include <linux/fs.h>
38#include <linux/buffer_head.h>
39#include <linux/blk-crypto.h>
40#include <linux/blkdev.h>
41#include <linux/highmem.h>
42#include <linux/prefetch.h>
43#include <linux/mpage.h>
44#include <linux/writeback.h>
45#include <linux/backing-dev.h>
46#include <linux/pagevec.h>
47
48#include "ext4.h"
49#include <trace/events/ext4.h>
50
51#define NUM_PREALLOC_POST_READ_CTXS 128
52
53static struct kmem_cache *bio_post_read_ctx_cache;
54static mempool_t *bio_post_read_ctx_pool;
55
56/* postprocessing steps for read bios */
57enum bio_post_read_step {
58 STEP_INITIAL = 0,
59 STEP_DECRYPT,
60 STEP_VERITY,
61 STEP_MAX,
62};
63
64struct bio_post_read_ctx {
65 struct bio *bio;
66 struct fsverity_info *vi;
67 struct work_struct work;
68 unsigned int cur_step;
69 unsigned int enabled_steps;
70};
71
72static void __read_end_io(struct bio *bio)
73{
74 struct folio_iter fi;
75
76 bio_for_each_folio_all(fi, bio)
77 folio_end_read(fi.folio, bio->bi_status == 0);
78 if (bio->bi_private)
79 mempool_free(bio->bi_private, bio_post_read_ctx_pool);
80 bio_put(bio);
81}
82
83static void bio_post_read_processing(struct bio_post_read_ctx *ctx);
84
85static void decrypt_work(struct work_struct *work)
86{
87 struct bio_post_read_ctx *ctx =
88 container_of(work, struct bio_post_read_ctx, work);
89 struct bio *bio = ctx->bio;
90
91 if (fscrypt_decrypt_bio(bio))
92 bio_post_read_processing(ctx);
93 else
94 __read_end_io(bio);
95}
96
97static void verity_work(struct work_struct *work)
98{
99 struct bio_post_read_ctx *ctx =
100 container_of(work, struct bio_post_read_ctx, work);
101 struct bio *bio = ctx->bio;
102 struct fsverity_info *vi = ctx->vi;
103
104 /*
105 * fsverity_verify_bio() may call readahead() again, and although verity
106 * will be disabled for that, decryption may still be needed, causing
107 * another bio_post_read_ctx to be allocated. So to guarantee that
108 * mempool_alloc() never deadlocks we must free the current ctx first.
109 * This is safe because verity is the last post-read step.
110 */
111 BUILD_BUG_ON(STEP_VERITY + 1 != STEP_MAX);
112 mempool_free(ctx, bio_post_read_ctx_pool);
113 bio->bi_private = NULL;
114
115 fsverity_verify_bio(vi, bio);
116
117 __read_end_io(bio);
118}
119
120static void bio_post_read_processing(struct bio_post_read_ctx *ctx)
121{
122 /*
123 * We use different work queues for decryption and for verity because
124 * verity may require reading metadata pages that need decryption, and
125 * we shouldn't recurse to the same workqueue.
126 */
127 switch (++ctx->cur_step) {
128 case STEP_DECRYPT:
129 if (ctx->enabled_steps & (1 << STEP_DECRYPT)) {
130 INIT_WORK(&ctx->work, decrypt_work);
131 fscrypt_enqueue_decrypt_work(&ctx->work);
132 return;
133 }
134 ctx->cur_step++;
135 fallthrough;
136 case STEP_VERITY:
137 if (IS_ENABLED(CONFIG_FS_VERITY) &&
138 ctx->enabled_steps & (1 << STEP_VERITY)) {
139 INIT_WORK(&ctx->work, verity_work);
140 fsverity_enqueue_verify_work(&ctx->work);
141 return;
142 }
143 ctx->cur_step++;
144 fallthrough;
145 default:
146 __read_end_io(ctx->bio);
147 }
148}
149
150static bool bio_post_read_required(struct bio *bio)
151{
152 return bio->bi_private && !bio->bi_status;
153}
154
155/*
156 * I/O completion handler for multipage BIOs.
157 *
158 * The mpage code never puts partial pages into a BIO (except for end-of-file).
159 * If a page does not map to a contiguous run of blocks then it simply falls
160 * back to block_read_full_folio().
161 *
162 * Why is this? If a page's completion depends on a number of different BIOs
163 * which can complete in any order (or at the same time) then determining the
164 * status of that page is hard. See end_buffer_async_read() for the details.
165 * There is no point in duplicating all that complexity.
166 */
167static void mpage_end_io(struct bio *bio)
168{
169 if (bio_post_read_required(bio)) {
170 struct bio_post_read_ctx *ctx = bio->bi_private;
171
172 ctx->cur_step = STEP_INITIAL;
173 bio_post_read_processing(ctx);
174 return;
175 }
176 __read_end_io(bio);
177}
178
179static void ext4_set_bio_post_read_ctx(struct bio *bio,
180 const struct inode *inode,
181 struct fsverity_info *vi)
182{
183 unsigned int post_read_steps = 0;
184
185 if (fscrypt_inode_uses_fs_layer_crypto(inode))
186 post_read_steps |= 1 << STEP_DECRYPT;
187
188 if (vi)
189 post_read_steps |= 1 << STEP_VERITY;
190
191 if (post_read_steps) {
192 /* Due to the mempool, this never fails. */
193 struct bio_post_read_ctx *ctx =
194 mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
195
196 ctx->bio = bio;
197 ctx->vi = vi;
198 ctx->enabled_steps = post_read_steps;
199 bio->bi_private = ctx;
200 }
201}
202
203static inline loff_t ext4_readpage_limit(struct inode *inode)
204{
205 if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode))
206 return inode->i_sb->s_maxbytes;
207
208 return i_size_read(inode);
209}
210
211static int ext4_mpage_readpages(struct inode *inode, struct fsverity_info *vi,
212 struct readahead_control *rac, struct folio *folio)
213{
214 struct bio *bio = NULL;
215 sector_t last_block_in_bio = 0;
216 const unsigned blkbits = inode->i_blkbits;
217 const unsigned blocksize = 1 << blkbits;
218 sector_t next_block;
219 sector_t block_in_file;
220 sector_t last_block;
221 sector_t last_block_in_file;
222 sector_t first_block;
223 unsigned page_block;
224 struct block_device *bdev = inode->i_sb->s_bdev;
225 int length;
226 unsigned relative_block = 0;
227 struct ext4_map_blocks map;
228 unsigned int nr_pages, folio_pages;
229
230 map.m_pblk = 0;
231 map.m_lblk = 0;
232 map.m_len = 0;
233 map.m_flags = 0;
234
235 nr_pages = rac ? readahead_count(rac) : folio_nr_pages(folio);
236 for (; nr_pages; nr_pages -= folio_pages) {
237 int fully_mapped = 1;
238 unsigned int first_hole;
239 unsigned int blocks_per_folio;
240
241 if (rac)
242 folio = readahead_folio(rac);
243
244 folio_pages = folio_nr_pages(folio);
245 prefetchw(&folio->flags);
246
247 if (folio_buffers(folio))
248 goto confused;
249
250 blocks_per_folio = folio_size(folio) >> blkbits;
251 first_hole = blocks_per_folio;
252 block_in_file = next_block = EXT4_PG_TO_LBLK(inode, folio->index);
253 last_block = EXT4_PG_TO_LBLK(inode, folio->index + nr_pages);
254 last_block_in_file = (ext4_readpage_limit(inode) +
255 blocksize - 1) >> blkbits;
256 if (last_block > last_block_in_file)
257 last_block = last_block_in_file;
258 page_block = 0;
259
260 /*
261 * Map blocks using the previous result first.
262 */
263 if ((map.m_flags & EXT4_MAP_MAPPED) &&
264 block_in_file > map.m_lblk &&
265 block_in_file < (map.m_lblk + map.m_len)) {
266 unsigned map_offset = block_in_file - map.m_lblk;
267 unsigned last = map.m_len - map_offset;
268
269 first_block = map.m_pblk + map_offset;
270 for (relative_block = 0; ; relative_block++) {
271 if (relative_block == last) {
272 /* needed? */
273 map.m_flags &= ~EXT4_MAP_MAPPED;
274 break;
275 }
276 if (page_block == blocks_per_folio)
277 break;
278 page_block++;
279 block_in_file++;
280 }
281 }
282
283 /*
284 * Then do more ext4_map_blocks() calls until we are
285 * done with this folio.
286 */
287 while (page_block < blocks_per_folio) {
288 if (block_in_file < last_block) {
289 map.m_lblk = block_in_file;
290 map.m_len = last_block - block_in_file;
291
292 if (ext4_map_blocks(NULL, inode, &map, 0) < 0) {
293 set_error_page:
294 folio_zero_segment(folio, 0,
295 folio_size(folio));
296 folio_unlock(folio);
297 goto next_page;
298 }
299 }
300 if ((map.m_flags & EXT4_MAP_MAPPED) == 0) {
301 fully_mapped = 0;
302 if (first_hole == blocks_per_folio)
303 first_hole = page_block;
304 page_block++;
305 block_in_file++;
306 continue;
307 }
308 if (first_hole != blocks_per_folio)
309 goto confused; /* hole -> non-hole */
310
311 /* Contiguous blocks? */
312 if (!page_block)
313 first_block = map.m_pblk;
314 else if (first_block + page_block != map.m_pblk)
315 goto confused;
316 for (relative_block = 0; ; relative_block++) {
317 if (relative_block == map.m_len) {
318 /* needed? */
319 map.m_flags &= ~EXT4_MAP_MAPPED;
320 break;
321 } else if (page_block == blocks_per_folio)
322 break;
323 page_block++;
324 block_in_file++;
325 }
326 }
327 if (first_hole != blocks_per_folio) {
328 folio_zero_segment(folio, first_hole << blkbits,
329 folio_size(folio));
330 if (first_hole == 0) {
331 if (vi && !fsverity_verify_folio(vi, folio))
332 goto set_error_page;
333 folio_end_read(folio, true);
334 continue;
335 }
336 } else if (fully_mapped) {
337 folio_set_mappedtodisk(folio);
338 }
339
340 /*
341 * This folio will go to BIO. Do we need to send this
342 * BIO off first?
343 */
344 if (bio && (last_block_in_bio != first_block - 1 ||
345 !fscrypt_mergeable_bio(bio, inode, next_block))) {
346 submit_and_realloc:
347 blk_crypto_submit_bio(bio);
348 bio = NULL;
349 }
350 if (bio == NULL) {
351 /*
352 * bio_alloc will _always_ be able to allocate a bio if
353 * __GFP_DIRECT_RECLAIM is set, see bio_alloc_bioset().
354 */
355 bio = bio_alloc(bdev, bio_max_segs(nr_pages),
356 REQ_OP_READ, GFP_KERNEL);
357 fscrypt_set_bio_crypt_ctx(bio, inode, next_block,
358 GFP_KERNEL);
359 ext4_set_bio_post_read_ctx(bio, inode, vi);
360 bio->bi_iter.bi_sector = first_block << (blkbits - 9);
361 bio->bi_end_io = mpage_end_io;
362 if (rac)
363 bio->bi_opf |= REQ_RAHEAD;
364 }
365
366 length = first_hole << blkbits;
367 if (!bio_add_folio(bio, folio, length, 0))
368 goto submit_and_realloc;
369
370 if (((map.m_flags & EXT4_MAP_BOUNDARY) &&
371 (relative_block == map.m_len)) ||
372 (first_hole != blocks_per_folio)) {
373 blk_crypto_submit_bio(bio);
374 bio = NULL;
375 } else
376 last_block_in_bio = first_block + blocks_per_folio - 1;
377 continue;
378 confused:
379 if (bio) {
380 blk_crypto_submit_bio(bio);
381 bio = NULL;
382 }
383 if (!folio_test_uptodate(folio))
384 block_read_full_folio(folio, ext4_get_block);
385 else
386 folio_unlock(folio);
387next_page:
388 ; /* A label shall be followed by a statement until C23 */
389 }
390 if (bio)
391 blk_crypto_submit_bio(bio);
392 return 0;
393}
394
395int ext4_read_folio(struct file *file, struct folio *folio)
396{
397 struct inode *inode = folio->mapping->host;
398 struct fsverity_info *vi = NULL;
399 int ret;
400
401 trace_ext4_read_folio(inode, folio);
402
403 if (ext4_has_inline_data(inode)) {
404 ret = ext4_readpage_inline(inode, folio);
405 if (ret != -EAGAIN)
406 return ret;
407 }
408
409 if (folio->index < DIV_ROUND_UP(inode->i_size, PAGE_SIZE))
410 vi = fsverity_get_info(inode);
411 if (vi)
412 fsverity_readahead(vi, folio->index, folio_nr_pages(folio));
413 return ext4_mpage_readpages(inode, vi, NULL, folio);
414}
415
416void ext4_readahead(struct readahead_control *rac)
417{
418 struct inode *inode = rac->mapping->host;
419 struct fsverity_info *vi = NULL;
420
421 /* If the file has inline data, no need to do readahead. */
422 if (ext4_has_inline_data(inode))
423 return;
424
425 if (readahead_index(rac) < DIV_ROUND_UP(inode->i_size, PAGE_SIZE))
426 vi = fsverity_get_info(inode);
427 if (vi)
428 fsverity_readahead(vi, readahead_index(rac),
429 readahead_count(rac));
430 ext4_mpage_readpages(inode, vi, rac, NULL);
431}
432
433int __init ext4_init_post_read_processing(void)
434{
435 bio_post_read_ctx_cache = KMEM_CACHE(bio_post_read_ctx, SLAB_RECLAIM_ACCOUNT);
436
437 if (!bio_post_read_ctx_cache)
438 goto fail;
439 bio_post_read_ctx_pool =
440 mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
441 bio_post_read_ctx_cache);
442 if (!bio_post_read_ctx_pool)
443 goto fail_free_cache;
444 return 0;
445
446fail_free_cache:
447 kmem_cache_destroy(bio_post_read_ctx_cache);
448fail:
449 return -ENOMEM;
450}
451
452void ext4_exit_post_read_processing(void)
453{
454 mempool_destroy(bio_post_read_ctx_pool);
455 kmem_cache_destroy(bio_post_read_ctx_cache);
456}