Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
4 * Written by Alex Tomas <alex@clusterfs.com>
5 */
6
7
8/*
9 * mballoc.c contains the multiblocks allocation routines
10 */
11
12#include "ext4_jbd2.h"
13#include "mballoc.h"
14#include <linux/log2.h>
15#include <linux/module.h>
16#include <linux/slab.h>
17#include <linux/nospec.h>
18#include <linux/backing-dev.h>
19#include <linux/freezer.h>
20#include <trace/events/ext4.h>
21#include <kunit/static_stub.h>
22
23/*
24 * MUSTDO:
25 * - test ext4_ext_search_left() and ext4_ext_search_right()
26 * - search for metadata in few groups
27 *
28 * TODO v4:
29 * - normalization should take into account whether file is still open
30 * - discard preallocations if no free space left (policy?)
31 * - don't normalize tails
32 * - quota
33 * - reservation for superuser
34 *
35 * TODO v3:
36 * - bitmap read-ahead (proposed by Oleg Drokin aka green)
37 * - track min/max extents in each group for better group selection
38 * - mb_mark_used() may allocate chunk right after splitting buddy
39 * - tree of groups sorted by number of free blocks
40 * - error handling
41 */
42
43/*
44 * The allocation request involve request for multiple number of blocks
45 * near to the goal(block) value specified.
46 *
47 * During initialization phase of the allocator we decide to use the
48 * group preallocation or inode preallocation depending on the size of
49 * the file. The size of the file could be the resulting file size we
50 * would have after allocation, or the current file size, which ever
51 * is larger. If the size is less than sbi->s_mb_stream_request we
52 * select to use the group preallocation. The default value of
53 * s_mb_stream_request is 16 blocks. This can also be tuned via
54 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
55 * terms of number of blocks.
56 *
57 * The main motivation for having small file use group preallocation is to
58 * ensure that we have small files closer together on the disk.
59 *
60 * First stage the allocator looks at the inode prealloc list,
61 * ext4_inode_info->i_prealloc_list, which contains list of prealloc
62 * spaces for this particular inode. The inode prealloc space is
63 * represented as:
64 *
65 * pa_lstart -> the logical start block for this prealloc space
66 * pa_pstart -> the physical start block for this prealloc space
67 * pa_len -> length for this prealloc space (in clusters)
68 * pa_free -> free space available in this prealloc space (in clusters)
69 *
70 * The inode preallocation space is used looking at the _logical_ start
71 * block. If only the logical file block falls within the range of prealloc
72 * space we will consume the particular prealloc space. This makes sure that
73 * we have contiguous physical blocks representing the file blocks
74 *
75 * The important thing to be noted in case of inode prealloc space is that
76 * we don't modify the values associated to inode prealloc space except
77 * pa_free.
78 *
79 * If we are not able to find blocks in the inode prealloc space and if we
80 * have the group allocation flag set then we look at the locality group
81 * prealloc space. These are per CPU prealloc list represented as
82 *
83 * ext4_sb_info.s_locality_groups[smp_processor_id()]
84 *
85 * The reason for having a per cpu locality group is to reduce the contention
86 * between CPUs. It is possible to get scheduled at this point.
87 *
88 * The locality group prealloc space is used looking at whether we have
89 * enough free space (pa_free) within the prealloc space.
90 *
91 * If we can't allocate blocks via inode prealloc or/and locality group
92 * prealloc then we look at the buddy cache. The buddy cache is represented
93 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
94 * mapped to the buddy and bitmap information regarding different
95 * groups. The buddy information is attached to buddy cache inode so that
96 * we can access them through the page cache. The information regarding
97 * each group is loaded via ext4_mb_load_buddy. The information involve
98 * block bitmap and buddy information. The information are stored in the
99 * inode as:
100 *
101 * { folio }
102 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
103 *
104 *
105 * one block each for bitmap and buddy information. So for each group we
106 * take up 2 blocks. A folio can contain blocks_per_folio (folio_size /
107 * blocksize) blocks. So it can have information regarding groups_per_folio
108 * which is blocks_per_folio/2
109 *
110 * The buddy cache inode is not stored on disk. The inode is thrown
111 * away when the filesystem is unmounted.
112 *
113 * We look for count number of blocks in the buddy cache. If we were able
114 * to locate that many free blocks we return with additional information
115 * regarding rest of the contiguous physical block available
116 *
117 * Before allocating blocks via buddy cache we normalize the request
118 * blocks. This ensure we ask for more blocks that we needed. The extra
119 * blocks that we get after allocation is added to the respective prealloc
120 * list. In case of inode preallocation we follow a list of heuristics
121 * based on file size. This can be found in ext4_mb_normalize_request. If
122 * we are doing a group prealloc we try to normalize the request to
123 * sbi->s_mb_group_prealloc. The default value of s_mb_group_prealloc is
124 * dependent on the cluster size; for non-bigalloc file systems, it is
125 * 512 blocks. This can be tuned via
126 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
127 * terms of number of blocks. If we have mounted the file system with -O
128 * stripe=<value> option the group prealloc request is normalized to the
129 * smallest multiple of the stripe value (sbi->s_stripe) which is
130 * greater than the default mb_group_prealloc.
131 *
132 * If "mb_optimize_scan" mount option is set, we maintain in memory group info
133 * structures in two data structures:
134 *
135 * 1) Array of largest free order xarrays (sbi->s_mb_largest_free_orders)
136 *
137 * Locking: Writers use xa_lock, readers use rcu_read_lock.
138 *
139 * This is an array of xarrays where the index in the array represents the
140 * largest free order in the buddy bitmap of the participating group infos of
141 * that xarray. So, there are exactly MB_NUM_ORDERS(sb) (which means total
142 * number of buddy bitmap orders possible) number of xarrays. Group-infos are
143 * placed in appropriate xarrays.
144 *
145 * 2) Average fragment size xarrays (sbi->s_mb_avg_fragment_size)
146 *
147 * Locking: Writers use xa_lock, readers use rcu_read_lock.
148 *
149 * This is an array of xarrays where in the i-th xarray there are groups with
150 * average fragment size >= 2^i and < 2^(i+1). The average fragment size
151 * is computed as ext4_group_info->bb_free / ext4_group_info->bb_fragments.
152 * Note that we don't bother with a special xarray for completely empty
153 * groups so we only have MB_NUM_ORDERS(sb) xarrays. Group-infos are placed
154 * in appropriate xarrays.
155 *
156 * In xarray, the index is the block group number, the value is the block group
157 * information, and a non-empty value indicates the block group is present in
158 * the current xarray.
159 *
160 * When "mb_optimize_scan" mount option is set, mballoc consults the above data
161 * structures to decide the order in which groups are to be traversed for
162 * fulfilling an allocation request.
163 *
164 * At CR_POWER2_ALIGNED , we look for groups which have the largest_free_order
165 * >= the order of the request. We directly look at the largest free order list
166 * in the data structure (1) above where largest_free_order = order of the
167 * request. If that list is empty, we look at remaining list in the increasing
168 * order of largest_free_order. This allows us to perform CR_POWER2_ALIGNED
169 * lookup in O(1) time.
170 *
171 * At CR_GOAL_LEN_FAST, we only consider groups where
172 * average fragment size > request size. So, we lookup a group which has average
173 * fragment size just above or equal to request size using our average fragment
174 * size group lists (data structure 2) in O(1) time.
175 *
176 * At CR_BEST_AVAIL_LEN, we aim to optimize allocations which can't be satisfied
177 * in CR_GOAL_LEN_FAST. The fact that we couldn't find a group in
178 * CR_GOAL_LEN_FAST suggests that there is no BG that has avg
179 * fragment size > goal length. So before falling to the slower
180 * CR_GOAL_LEN_SLOW, in CR_BEST_AVAIL_LEN we proactively trim goal length and
181 * then use the same fragment lists as CR_GOAL_LEN_FAST to find a BG with a big
182 * enough average fragment size. This increases the chances of finding a
183 * suitable block group in O(1) time and results in faster allocation at the
184 * cost of reduced size of allocation.
185 *
186 * If "mb_optimize_scan" mount option is not set, mballoc traverses groups in
187 * linear order which requires O(N) search time for each CR_POWER2_ALIGNED and
188 * CR_GOAL_LEN_FAST phase.
189 *
190 * The regular allocator (using the buddy cache) supports a few tunables.
191 *
192 * /sys/fs/ext4/<partition>/mb_min_to_scan
193 * /sys/fs/ext4/<partition>/mb_max_to_scan
194 * /sys/fs/ext4/<partition>/mb_order2_req
195 * /sys/fs/ext4/<partition>/mb_max_linear_groups
196 *
197 * The regular allocator uses buddy scan only if the request len is power of
198 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
199 * value of s_mb_order2_reqs can be tuned via
200 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to
201 * stripe size (sbi->s_stripe), we try to search for contiguous block in
202 * stripe size. This should result in better allocation on RAID setups. If
203 * not, we search in the specific group using bitmap for best extents. The
204 * tunable min_to_scan and max_to_scan control the behaviour here.
205 * min_to_scan indicate how long the mballoc __must__ look for a best
206 * extent and max_to_scan indicates how long the mballoc __can__ look for a
207 * best extent in the found extents. Searching for the blocks starts with
208 * the group specified as the goal value in allocation context via
209 * ac_g_ex. Each group is first checked based on the criteria whether it
210 * can be used for allocation. ext4_mb_good_group explains how the groups are
211 * checked.
212 *
213 * When "mb_optimize_scan" is turned on, as mentioned above, the groups may not
214 * get traversed linearly. That may result in subsequent allocations being not
215 * close to each other. And so, the underlying device may get filled up in a
216 * non-linear fashion. While that may not matter on non-rotational devices, for
217 * rotational devices that may result in higher seek times. "mb_max_linear_groups"
218 * tells mballoc how many groups mballoc should search linearly before
219 * performing consulting above data structures for more efficient lookups. For
220 * non rotational devices, this value defaults to 0 and for rotational devices
221 * this is set to MB_DEFAULT_LINEAR_LIMIT.
222 *
223 * Both the prealloc space are getting populated as above. So for the first
224 * request we will hit the buddy cache which will result in this prealloc
225 * space getting filled. The prealloc space is then later used for the
226 * subsequent request.
227 */
228
229/*
230 * mballoc operates on the following data:
231 * - on-disk bitmap
232 * - in-core buddy (actually includes buddy and bitmap)
233 * - preallocation descriptors (PAs)
234 *
235 * there are two types of preallocations:
236 * - inode
237 * assiged to specific inode and can be used for this inode only.
238 * it describes part of inode's space preallocated to specific
239 * physical blocks. any block from that preallocated can be used
240 * independent. the descriptor just tracks number of blocks left
241 * unused. so, before taking some block from descriptor, one must
242 * make sure corresponded logical block isn't allocated yet. this
243 * also means that freeing any block within descriptor's range
244 * must discard all preallocated blocks.
245 * - locality group
246 * assigned to specific locality group which does not translate to
247 * permanent set of inodes: inode can join and leave group. space
248 * from this type of preallocation can be used for any inode. thus
249 * it's consumed from the beginning to the end.
250 *
251 * relation between them can be expressed as:
252 * in-core buddy = on-disk bitmap + preallocation descriptors
253 *
254 * this mean blocks mballoc considers used are:
255 * - allocated blocks (persistent)
256 * - preallocated blocks (non-persistent)
257 *
258 * consistency in mballoc world means that at any time a block is either
259 * free or used in ALL structures. notice: "any time" should not be read
260 * literally -- time is discrete and delimited by locks.
261 *
262 * to keep it simple, we don't use block numbers, instead we count number of
263 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
264 *
265 * all operations can be expressed as:
266 * - init buddy: buddy = on-disk + PAs
267 * - new PA: buddy += N; PA = N
268 * - use inode PA: on-disk += N; PA -= N
269 * - discard inode PA buddy -= on-disk - PA; PA = 0
270 * - use locality group PA on-disk += N; PA -= N
271 * - discard locality group PA buddy -= PA; PA = 0
272 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
273 * is used in real operation because we can't know actual used
274 * bits from PA, only from on-disk bitmap
275 *
276 * if we follow this strict logic, then all operations above should be atomic.
277 * given some of them can block, we'd have to use something like semaphores
278 * killing performance on high-end SMP hardware. let's try to relax it using
279 * the following knowledge:
280 * 1) if buddy is referenced, it's already initialized
281 * 2) while block is used in buddy and the buddy is referenced,
282 * nobody can re-allocate that block
283 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
284 * bit set and PA claims same block, it's OK. IOW, one can set bit in
285 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded
286 * block
287 *
288 * so, now we're building a concurrency table:
289 * - init buddy vs.
290 * - new PA
291 * blocks for PA are allocated in the buddy, buddy must be referenced
292 * until PA is linked to allocation group to avoid concurrent buddy init
293 * - use inode PA
294 * we need to make sure that either on-disk bitmap or PA has uptodate data
295 * given (3) we care that PA-=N operation doesn't interfere with init
296 * - discard inode PA
297 * the simplest way would be to have buddy initialized by the discard
298 * - use locality group PA
299 * again PA-=N must be serialized with init
300 * - discard locality group PA
301 * the simplest way would be to have buddy initialized by the discard
302 * - new PA vs.
303 * - use inode PA
304 * i_data_sem serializes them
305 * - discard inode PA
306 * discard process must wait until PA isn't used by another process
307 * - use locality group PA
308 * some mutex should serialize them
309 * - discard locality group PA
310 * discard process must wait until PA isn't used by another process
311 * - use inode PA
312 * - use inode PA
313 * i_data_sem or another mutex should serializes them
314 * - discard inode PA
315 * discard process must wait until PA isn't used by another process
316 * - use locality group PA
317 * nothing wrong here -- they're different PAs covering different blocks
318 * - discard locality group PA
319 * discard process must wait until PA isn't used by another process
320 *
321 * now we're ready to make few consequences:
322 * - PA is referenced and while it is no discard is possible
323 * - PA is referenced until block isn't marked in on-disk bitmap
324 * - PA changes only after on-disk bitmap
325 * - discard must not compete with init. either init is done before
326 * any discard or they're serialized somehow
327 * - buddy init as sum of on-disk bitmap and PAs is done atomically
328 *
329 * a special case when we've used PA to emptiness. no need to modify buddy
330 * in this case, but we should care about concurrent init
331 *
332 */
333
334 /*
335 * Logic in few words:
336 *
337 * - allocation:
338 * load group
339 * find blocks
340 * mark bits in on-disk bitmap
341 * release group
342 *
343 * - use preallocation:
344 * find proper PA (per-inode or group)
345 * load group
346 * mark bits in on-disk bitmap
347 * release group
348 * release PA
349 *
350 * - free:
351 * load group
352 * mark bits in on-disk bitmap
353 * release group
354 *
355 * - discard preallocations in group:
356 * mark PAs deleted
357 * move them onto local list
358 * load on-disk bitmap
359 * load group
360 * remove PA from object (inode or locality group)
361 * mark free blocks in-core
362 *
363 * - discard inode's preallocations:
364 */
365
366/*
367 * Locking rules
368 *
369 * Locks:
370 * - bitlock on a group (group)
371 * - object (inode/locality) (object)
372 * - per-pa lock (pa)
373 * - cr_power2_aligned lists lock (cr_power2_aligned)
374 * - cr_goal_len_fast lists lock (cr_goal_len_fast)
375 *
376 * Paths:
377 * - new pa
378 * object
379 * group
380 *
381 * - find and use pa:
382 * pa
383 *
384 * - release consumed pa:
385 * pa
386 * group
387 * object
388 *
389 * - generate in-core bitmap:
390 * group
391 * pa
392 *
393 * - discard all for given object (inode, locality group):
394 * object
395 * pa
396 * group
397 *
398 * - discard all for given group:
399 * group
400 * pa
401 * group
402 * object
403 *
404 * - allocation path (ext4_mb_regular_allocator)
405 * group
406 * cr_power2_aligned/cr_goal_len_fast
407 */
408static struct kmem_cache *ext4_pspace_cachep;
409static struct kmem_cache *ext4_ac_cachep;
410static struct kmem_cache *ext4_free_data_cachep;
411
412/* We create slab caches for groupinfo data structures based on the
413 * superblock block size. There will be one per mounted filesystem for
414 * each unique s_blocksize_bits */
415#define NR_GRPINFO_CACHES 8
416static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
417
418static const char * const ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
419 "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
420 "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
421 "ext4_groupinfo_64k", "ext4_groupinfo_128k"
422};
423
424static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
425 ext4_group_t group);
426static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac);
427
428static int ext4_mb_scan_group(struct ext4_allocation_context *ac,
429 ext4_group_t group);
430
431static int ext4_try_to_trim_range(struct super_block *sb,
432 struct ext4_buddy *e4b, ext4_grpblk_t start,
433 ext4_grpblk_t max, ext4_grpblk_t minblocks);
434
435/*
436 * The algorithm using this percpu seq counter goes below:
437 * 1. We sample the percpu discard_pa_seq counter before trying for block
438 * allocation in ext4_mb_new_blocks().
439 * 2. We increment this percpu discard_pa_seq counter when we either allocate
440 * or free these blocks i.e. while marking those blocks as used/free in
441 * mb_mark_used()/mb_free_blocks().
442 * 3. We also increment this percpu seq counter when we successfully identify
443 * that the bb_prealloc_list is not empty and hence proceed for discarding
444 * of those PAs inside ext4_mb_discard_group_preallocations().
445 *
446 * Now to make sure that the regular fast path of block allocation is not
447 * affected, as a small optimization we only sample the percpu seq counter
448 * on that cpu. Only when the block allocation fails and when freed blocks
449 * found were 0, that is when we sample percpu seq counter for all cpus using
450 * below function ext4_get_discard_pa_seq_sum(). This happens after making
451 * sure that all the PAs on grp->bb_prealloc_list got freed or if it's empty.
452 */
453static DEFINE_PER_CPU(u64, discard_pa_seq);
454static inline u64 ext4_get_discard_pa_seq_sum(void)
455{
456 int __cpu;
457 u64 __seq = 0;
458
459 for_each_possible_cpu(__cpu)
460 __seq += per_cpu(discard_pa_seq, __cpu);
461 return __seq;
462}
463
464static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
465{
466#if BITS_PER_LONG == 64
467 *bit += ((unsigned long) addr & 7UL) << 3;
468 addr = (void *) ((unsigned long) addr & ~7UL);
469#elif BITS_PER_LONG == 32
470 *bit += ((unsigned long) addr & 3UL) << 3;
471 addr = (void *) ((unsigned long) addr & ~3UL);
472#else
473#error "how many bits you are?!"
474#endif
475 return addr;
476}
477
478static inline int mb_test_bit(int bit, void *addr)
479{
480 /*
481 * ext4_test_bit on architecture like powerpc
482 * needs unsigned long aligned address
483 */
484 addr = mb_correct_addr_and_bit(&bit, addr);
485 return ext4_test_bit(bit, addr);
486}
487
488static inline void mb_set_bit(int bit, void *addr)
489{
490 addr = mb_correct_addr_and_bit(&bit, addr);
491 ext4_set_bit(bit, addr);
492}
493
494static inline void mb_clear_bit(int bit, void *addr)
495{
496 addr = mb_correct_addr_and_bit(&bit, addr);
497 ext4_clear_bit(bit, addr);
498}
499
500static inline int mb_test_and_clear_bit(int bit, void *addr)
501{
502 addr = mb_correct_addr_and_bit(&bit, addr);
503 return ext4_test_and_clear_bit(bit, addr);
504}
505
506static inline int mb_find_next_zero_bit(void *addr, int max, int start)
507{
508 int fix = 0, ret, tmpmax;
509 addr = mb_correct_addr_and_bit(&fix, addr);
510 tmpmax = max + fix;
511 start += fix;
512
513 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
514 if (ret > max)
515 return max;
516 return ret;
517}
518
519static inline int mb_find_next_bit(void *addr, int max, int start)
520{
521 int fix = 0, ret, tmpmax;
522 addr = mb_correct_addr_and_bit(&fix, addr);
523 tmpmax = max + fix;
524 start += fix;
525
526 ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
527 if (ret > max)
528 return max;
529 return ret;
530}
531
532static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
533{
534 char *bb;
535
536 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
537 BUG_ON(max == NULL);
538
539 if (order > e4b->bd_blkbits + 1) {
540 *max = 0;
541 return NULL;
542 }
543
544 /* at order 0 we see each particular block */
545 if (order == 0) {
546 *max = 1 << (e4b->bd_blkbits + 3);
547 return e4b->bd_bitmap;
548 }
549
550 bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
551 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
552
553 return bb;
554}
555
556#ifdef DOUBLE_CHECK
557static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
558 int first, int count)
559{
560 int i;
561 struct super_block *sb = e4b->bd_sb;
562
563 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
564 return;
565 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
566 for (i = 0; i < count; i++) {
567 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
568 ext4_fsblk_t blocknr;
569
570 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
571 blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
572 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
573 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
574 ext4_grp_locked_error(sb, e4b->bd_group,
575 inode ? inode->i_ino : 0,
576 blocknr,
577 "freeing block already freed "
578 "(bit %u)",
579 first + i);
580 }
581 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
582 }
583}
584
585static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
586{
587 int i;
588
589 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
590 return;
591 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
592 for (i = 0; i < count; i++) {
593 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
594 mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
595 }
596}
597
598static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
599{
600 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
601 return;
602 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
603 unsigned char *b1, *b2;
604 int i;
605 b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
606 b2 = (unsigned char *) bitmap;
607 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
608 if (b1[i] != b2[i]) {
609 ext4_msg(e4b->bd_sb, KERN_ERR,
610 "corruption in group %u "
611 "at byte %u(%u): %x in copy != %x "
612 "on disk/prealloc",
613 e4b->bd_group, i, i * 8, b1[i], b2[i]);
614 BUG();
615 }
616 }
617 }
618}
619
620static void mb_group_bb_bitmap_alloc(struct super_block *sb,
621 struct ext4_group_info *grp, ext4_group_t group)
622{
623 struct buffer_head *bh;
624
625 grp->bb_bitmap = kmalloc(sb->s_blocksize, GFP_NOFS);
626 if (!grp->bb_bitmap)
627 return;
628
629 bh = ext4_read_block_bitmap(sb, group);
630 if (IS_ERR_OR_NULL(bh)) {
631 kfree(grp->bb_bitmap);
632 grp->bb_bitmap = NULL;
633 return;
634 }
635
636 memcpy(grp->bb_bitmap, bh->b_data, sb->s_blocksize);
637 put_bh(bh);
638}
639
640static void mb_group_bb_bitmap_free(struct ext4_group_info *grp)
641{
642 kfree(grp->bb_bitmap);
643}
644
645#else
646static inline void mb_free_blocks_double(struct inode *inode,
647 struct ext4_buddy *e4b, int first, int count)
648{
649 return;
650}
651static inline void mb_mark_used_double(struct ext4_buddy *e4b,
652 int first, int count)
653{
654 return;
655}
656static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
657{
658 return;
659}
660
661static inline void mb_group_bb_bitmap_alloc(struct super_block *sb,
662 struct ext4_group_info *grp, ext4_group_t group)
663{
664 return;
665}
666
667static inline void mb_group_bb_bitmap_free(struct ext4_group_info *grp)
668{
669 return;
670}
671#endif
672
673#ifdef AGGRESSIVE_CHECK
674
675#define MB_CHECK_ASSERT(assert) \
676do { \
677 if (!(assert)) { \
678 printk(KERN_EMERG \
679 "Assertion failure in %s() at %s:%d: \"%s\"\n", \
680 function, file, line, # assert); \
681 BUG(); \
682 } \
683} while (0)
684
685/*
686 * Perform buddy integrity check with the following steps:
687 *
688 * 1. Top-down validation (from highest order down to order 1, excluding order-0 bitmap):
689 * For each pair of adjacent orders, if a higher-order bit is set (indicating a free block),
690 * at most one of the two corresponding lower-order bits may be clear (free).
691 *
692 * 2. Order-0 (bitmap) validation, performed on bit pairs:
693 * - If either bit in a pair is set (1, allocated), then all corresponding higher-order bits
694 * must not be free (0).
695 * - If both bits in a pair are clear (0, free), then exactly one of the corresponding
696 * higher-order bits must be free (0).
697 *
698 * 3. Preallocation (pa) list validation:
699 * For each preallocated block (pa) in the group:
700 * - Verify that pa_pstart falls within the bounds of this block group.
701 * - Ensure the corresponding bit(s) in the order-0 bitmap are marked as allocated (1).
702 */
703static void __mb_check_buddy(struct ext4_buddy *e4b, char *file,
704 const char *function, int line)
705{
706 struct super_block *sb = e4b->bd_sb;
707 int order = e4b->bd_blkbits + 1;
708 int max;
709 int max2;
710 int i;
711 int j;
712 int k;
713 int count;
714 struct ext4_group_info *grp;
715 int fragments = 0;
716 int fstart;
717 struct list_head *cur;
718 void *buddy;
719 void *buddy2;
720
721 if (e4b->bd_info->bb_check_counter++ % 10)
722 return;
723
724 while (order > 1) {
725 buddy = mb_find_buddy(e4b, order, &max);
726 MB_CHECK_ASSERT(buddy);
727 buddy2 = mb_find_buddy(e4b, order - 1, &max2);
728 MB_CHECK_ASSERT(buddy2);
729 MB_CHECK_ASSERT(buddy != buddy2);
730 MB_CHECK_ASSERT(max * 2 == max2);
731
732 count = 0;
733 for (i = 0; i < max; i++) {
734
735 if (mb_test_bit(i, buddy)) {
736 /* only single bit in buddy2 may be 0 */
737 if (!mb_test_bit(i << 1, buddy2)) {
738 MB_CHECK_ASSERT(
739 mb_test_bit((i<<1)+1, buddy2));
740 }
741 continue;
742 }
743
744 count++;
745 }
746 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
747 order--;
748 }
749
750 fstart = -1;
751 buddy = mb_find_buddy(e4b, 0, &max);
752 for (i = 0; i < max; i++) {
753 if (!mb_test_bit(i, buddy)) {
754 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
755 if (fstart == -1) {
756 fragments++;
757 fstart = i;
758 }
759 } else {
760 fstart = -1;
761 }
762 if (!(i & 1)) {
763 int in_use, zero_bit_count = 0;
764
765 in_use = mb_test_bit(i, buddy) || mb_test_bit(i + 1, buddy);
766 for (j = 1; j < e4b->bd_blkbits + 2; j++) {
767 buddy2 = mb_find_buddy(e4b, j, &max2);
768 k = i >> j;
769 MB_CHECK_ASSERT(k < max2);
770 if (!mb_test_bit(k, buddy2))
771 zero_bit_count++;
772 }
773 MB_CHECK_ASSERT(zero_bit_count == !in_use);
774 }
775 }
776 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
777 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
778
779 grp = ext4_get_group_info(sb, e4b->bd_group);
780 if (!grp)
781 return;
782 list_for_each(cur, &grp->bb_prealloc_list) {
783 ext4_group_t groupnr;
784 struct ext4_prealloc_space *pa;
785 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
786 if (!pa->pa_len)
787 continue;
788 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
789 MB_CHECK_ASSERT(groupnr == e4b->bd_group);
790 for (i = 0; i < pa->pa_len; i++)
791 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
792 }
793}
794#undef MB_CHECK_ASSERT
795#define mb_check_buddy(e4b) __mb_check_buddy(e4b, \
796 __FILE__, __func__, __LINE__)
797#else
798#define mb_check_buddy(e4b)
799#endif
800
801/*
802 * Divide blocks started from @first with length @len into
803 * smaller chunks with power of 2 blocks.
804 * Clear the bits in bitmap which the blocks of the chunk(s) covered,
805 * then increase bb_counters[] for corresponded chunk size.
806 */
807static void ext4_mb_mark_free_simple(struct super_block *sb,
808 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
809 struct ext4_group_info *grp)
810{
811 struct ext4_sb_info *sbi = EXT4_SB(sb);
812 ext4_grpblk_t min;
813 ext4_grpblk_t max;
814 ext4_grpblk_t chunk;
815 unsigned int border;
816
817 BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
818
819 border = 2 << sb->s_blocksize_bits;
820
821 while (len > 0) {
822 /* find how many blocks can be covered since this position */
823 max = ffs(first | border) - 1;
824
825 /* find how many blocks of power 2 we need to mark */
826 min = fls(len) - 1;
827
828 if (max < min)
829 min = max;
830 chunk = 1 << min;
831
832 /* mark multiblock chunks only */
833 grp->bb_counters[min]++;
834 if (min > 0)
835 mb_clear_bit(first >> min,
836 buddy + sbi->s_mb_offsets[min]);
837
838 len -= chunk;
839 first += chunk;
840 }
841}
842
843static int mb_avg_fragment_size_order(struct super_block *sb, ext4_grpblk_t len)
844{
845 int order;
846
847 /*
848 * We don't bother with a special lists groups with only 1 block free
849 * extents and for completely empty groups.
850 */
851 order = fls(len) - 2;
852 if (order < 0)
853 return 0;
854 if (order == MB_NUM_ORDERS(sb))
855 order--;
856 if (WARN_ON_ONCE(order > MB_NUM_ORDERS(sb)))
857 order = MB_NUM_ORDERS(sb) - 1;
858 return order;
859}
860
861/* Move group to appropriate avg_fragment_size list */
862static void
863mb_update_avg_fragment_size(struct super_block *sb, struct ext4_group_info *grp)
864{
865 struct ext4_sb_info *sbi = EXT4_SB(sb);
866 int new, old;
867
868 if (!test_opt2(sb, MB_OPTIMIZE_SCAN))
869 return;
870
871 old = grp->bb_avg_fragment_size_order;
872 new = grp->bb_fragments == 0 ? -1 :
873 mb_avg_fragment_size_order(sb, grp->bb_free / grp->bb_fragments);
874 if (new == old)
875 return;
876
877 if (old >= 0)
878 xa_erase(&sbi->s_mb_avg_fragment_size[old], grp->bb_group);
879
880 grp->bb_avg_fragment_size_order = new;
881 if (new >= 0) {
882 /*
883 * Cannot use __GFP_NOFAIL because we hold the group lock.
884 * Although allocation for insertion may fails, it's not fatal
885 * as we have linear traversal to fall back on.
886 */
887 int err = xa_insert(&sbi->s_mb_avg_fragment_size[new],
888 grp->bb_group, grp, GFP_ATOMIC);
889 if (err)
890 mb_debug(sb, "insert group: %u to s_mb_avg_fragment_size[%d] failed, err %d",
891 grp->bb_group, new, err);
892 }
893}
894
895static int ext4_mb_scan_groups_xa_range(struct ext4_allocation_context *ac,
896 struct xarray *xa,
897 ext4_group_t start, ext4_group_t end)
898{
899 struct super_block *sb = ac->ac_sb;
900 struct ext4_sb_info *sbi = EXT4_SB(sb);
901 enum criteria cr = ac->ac_criteria;
902 ext4_group_t ngroups = ext4_get_groups_count(sb);
903 unsigned long group = start;
904 struct ext4_group_info *grp;
905
906 if (WARN_ON_ONCE(end > ngroups || start >= end))
907 return 0;
908
909 xa_for_each_range(xa, group, grp, start, end - 1) {
910 int err;
911
912 if (sbi->s_mb_stats)
913 atomic64_inc(&sbi->s_bal_cX_groups_considered[cr]);
914
915 err = ext4_mb_scan_group(ac, grp->bb_group);
916 if (err || ac->ac_status != AC_STATUS_CONTINUE)
917 return err;
918
919 cond_resched();
920 }
921
922 return 0;
923}
924
925/*
926 * Find a suitable group of given order from the largest free orders xarray.
927 */
928static inline int
929ext4_mb_scan_groups_largest_free_order_range(struct ext4_allocation_context *ac,
930 int order, ext4_group_t start,
931 ext4_group_t end)
932{
933 struct xarray *xa = &EXT4_SB(ac->ac_sb)->s_mb_largest_free_orders[order];
934
935 if (xa_empty(xa))
936 return 0;
937
938 return ext4_mb_scan_groups_xa_range(ac, xa, start, end);
939}
940
941/*
942 * Choose next group by traversing largest_free_order lists. Updates *new_cr if
943 * cr level needs an update.
944 */
945static int ext4_mb_scan_groups_p2_aligned(struct ext4_allocation_context *ac,
946 ext4_group_t group)
947{
948 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
949 int i;
950 int ret = 0;
951 ext4_group_t start, end;
952
953 start = group;
954 end = ext4_get_groups_count(ac->ac_sb);
955wrap_around:
956 for (i = ac->ac_2order; i < MB_NUM_ORDERS(ac->ac_sb); i++) {
957 ret = ext4_mb_scan_groups_largest_free_order_range(ac, i,
958 start, end);
959 if (ret || ac->ac_status != AC_STATUS_CONTINUE)
960 return ret;
961 }
962 if (start) {
963 end = start;
964 start = 0;
965 goto wrap_around;
966 }
967
968 if (sbi->s_mb_stats)
969 atomic64_inc(&sbi->s_bal_cX_failed[ac->ac_criteria]);
970
971 /* Increment cr and search again if no group is found */
972 ac->ac_criteria = CR_GOAL_LEN_FAST;
973 return ret;
974}
975
976/*
977 * Find a suitable group of given order from the average fragments xarray.
978 */
979static int
980ext4_mb_scan_groups_avg_frag_order_range(struct ext4_allocation_context *ac,
981 int order, ext4_group_t start,
982 ext4_group_t end)
983{
984 struct xarray *xa = &EXT4_SB(ac->ac_sb)->s_mb_avg_fragment_size[order];
985
986 if (xa_empty(xa))
987 return 0;
988
989 return ext4_mb_scan_groups_xa_range(ac, xa, start, end);
990}
991
992/*
993 * Choose next group by traversing average fragment size list of suitable
994 * order. Updates *new_cr if cr level needs an update.
995 */
996static int ext4_mb_scan_groups_goal_fast(struct ext4_allocation_context *ac,
997 ext4_group_t group)
998{
999 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1000 int i, ret = 0;
1001 ext4_group_t start, end;
1002
1003 start = group;
1004 end = ext4_get_groups_count(ac->ac_sb);
1005wrap_around:
1006 i = mb_avg_fragment_size_order(ac->ac_sb, ac->ac_g_ex.fe_len);
1007 for (; i < MB_NUM_ORDERS(ac->ac_sb); i++) {
1008 ret = ext4_mb_scan_groups_avg_frag_order_range(ac, i,
1009 start, end);
1010 if (ret || ac->ac_status != AC_STATUS_CONTINUE)
1011 return ret;
1012 }
1013 if (start) {
1014 end = start;
1015 start = 0;
1016 goto wrap_around;
1017 }
1018
1019 if (sbi->s_mb_stats)
1020 atomic64_inc(&sbi->s_bal_cX_failed[ac->ac_criteria]);
1021 /*
1022 * CR_BEST_AVAIL_LEN works based on the concept that we have
1023 * a larger normalized goal len request which can be trimmed to
1024 * a smaller goal len such that it can still satisfy original
1025 * request len. However, allocation request for non-regular
1026 * files never gets normalized.
1027 * See function ext4_mb_normalize_request() (EXT4_MB_HINT_DATA).
1028 */
1029 if (ac->ac_flags & EXT4_MB_HINT_DATA)
1030 ac->ac_criteria = CR_BEST_AVAIL_LEN;
1031 else
1032 ac->ac_criteria = CR_GOAL_LEN_SLOW;
1033
1034 return ret;
1035}
1036
1037/*
1038 * We couldn't find a group in CR_GOAL_LEN_FAST so try to find the highest free fragment
1039 * order we have and proactively trim the goal request length to that order to
1040 * find a suitable group faster.
1041 *
1042 * This optimizes allocation speed at the cost of slightly reduced
1043 * preallocations. However, we make sure that we don't trim the request too
1044 * much and fall to CR_GOAL_LEN_SLOW in that case.
1045 */
1046static int ext4_mb_scan_groups_best_avail(struct ext4_allocation_context *ac,
1047 ext4_group_t group)
1048{
1049 int ret = 0;
1050 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1051 int i, order, min_order;
1052 unsigned long num_stripe_clusters = 0;
1053 ext4_group_t start, end;
1054
1055 /*
1056 * mb_avg_fragment_size_order() returns order in a way that makes
1057 * retrieving back the length using (1 << order) inaccurate. Hence, use
1058 * fls() instead since we need to know the actual length while modifying
1059 * goal length.
1060 */
1061 order = fls(ac->ac_g_ex.fe_len) - 1;
1062 if (WARN_ON_ONCE(order - 1 > MB_NUM_ORDERS(ac->ac_sb)))
1063 order = MB_NUM_ORDERS(ac->ac_sb);
1064 min_order = order - sbi->s_mb_best_avail_max_trim_order;
1065 if (min_order < 0)
1066 min_order = 0;
1067
1068 if (sbi->s_stripe > 0) {
1069 /*
1070 * We are assuming that stripe size is always a multiple of
1071 * cluster ratio otherwise __ext4_fill_super exists early.
1072 */
1073 num_stripe_clusters = EXT4_NUM_B2C(sbi, sbi->s_stripe);
1074 if (1 << min_order < num_stripe_clusters)
1075 /*
1076 * We consider 1 order less because later we round
1077 * up the goal len to num_stripe_clusters
1078 */
1079 min_order = fls(num_stripe_clusters) - 1;
1080 }
1081
1082 if (1 << min_order < ac->ac_o_ex.fe_len)
1083 min_order = fls(ac->ac_o_ex.fe_len);
1084
1085 start = group;
1086 end = ext4_get_groups_count(ac->ac_sb);
1087wrap_around:
1088 for (i = order; i >= min_order; i--) {
1089 int frag_order;
1090 /*
1091 * Scale down goal len to make sure we find something
1092 * in the free fragments list. Basically, reduce
1093 * preallocations.
1094 */
1095 ac->ac_g_ex.fe_len = 1 << i;
1096
1097 if (num_stripe_clusters > 0) {
1098 /*
1099 * Try to round up the adjusted goal length to
1100 * stripe size (in cluster units) multiple for
1101 * efficiency.
1102 */
1103 ac->ac_g_ex.fe_len = roundup(ac->ac_g_ex.fe_len,
1104 num_stripe_clusters);
1105 }
1106
1107 frag_order = mb_avg_fragment_size_order(ac->ac_sb,
1108 ac->ac_g_ex.fe_len);
1109
1110 ret = ext4_mb_scan_groups_avg_frag_order_range(ac, frag_order,
1111 start, end);
1112 if (ret || ac->ac_status != AC_STATUS_CONTINUE)
1113 return ret;
1114 }
1115 if (start) {
1116 end = start;
1117 start = 0;
1118 goto wrap_around;
1119 }
1120
1121 /* Reset goal length to original goal length before falling into CR_GOAL_LEN_SLOW */
1122 ac->ac_g_ex.fe_len = ac->ac_orig_goal_len;
1123 if (sbi->s_mb_stats)
1124 atomic64_inc(&sbi->s_bal_cX_failed[ac->ac_criteria]);
1125 ac->ac_criteria = CR_GOAL_LEN_SLOW;
1126
1127 return ret;
1128}
1129
1130static inline int should_optimize_scan(struct ext4_allocation_context *ac)
1131{
1132 if (unlikely(!test_opt2(ac->ac_sb, MB_OPTIMIZE_SCAN)))
1133 return 0;
1134 if (ac->ac_criteria >= CR_GOAL_LEN_SLOW)
1135 return 0;
1136 if (!ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS))
1137 return 0;
1138 return 1;
1139}
1140
1141/*
1142 * next linear group for allocation.
1143 */
1144static void next_linear_group(ext4_group_t *group, ext4_group_t ngroups)
1145{
1146 /*
1147 * Artificially restricted ngroups for non-extent
1148 * files makes group > ngroups possible on first loop.
1149 */
1150 *group = *group + 1 >= ngroups ? 0 : *group + 1;
1151}
1152
1153static int ext4_mb_scan_groups_linear(struct ext4_allocation_context *ac,
1154 ext4_group_t ngroups, ext4_group_t *start, ext4_group_t count)
1155{
1156 int ret, i;
1157 enum criteria cr = ac->ac_criteria;
1158 struct super_block *sb = ac->ac_sb;
1159 struct ext4_sb_info *sbi = EXT4_SB(sb);
1160 ext4_group_t group = *start;
1161
1162 for (i = 0; i < count; i++, next_linear_group(&group, ngroups)) {
1163 ret = ext4_mb_scan_group(ac, group);
1164 if (ret || ac->ac_status != AC_STATUS_CONTINUE)
1165 return ret;
1166 cond_resched();
1167 }
1168
1169 *start = group;
1170 if (count == ngroups)
1171 ac->ac_criteria++;
1172
1173 /* Processed all groups and haven't found blocks */
1174 if (sbi->s_mb_stats && i == ngroups)
1175 atomic64_inc(&sbi->s_bal_cX_failed[cr]);
1176
1177 return 0;
1178}
1179
1180static int ext4_mb_scan_groups(struct ext4_allocation_context *ac)
1181{
1182 int ret = 0;
1183 ext4_group_t start;
1184 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1185 ext4_group_t ngroups = ext4_get_groups_count(ac->ac_sb);
1186
1187 /* non-extent files are limited to low blocks/groups */
1188 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
1189 ngroups = sbi->s_blockfile_groups;
1190
1191 /* searching for the right group start from the goal value specified */
1192 start = ac->ac_g_ex.fe_group;
1193 ac->ac_prefetch_grp = start;
1194 ac->ac_prefetch_nr = 0;
1195
1196 if (!should_optimize_scan(ac))
1197 return ext4_mb_scan_groups_linear(ac, ngroups, &start, ngroups);
1198
1199 /*
1200 * Optimized scanning can return non adjacent groups which can cause
1201 * seek overhead for rotational disks. So try few linear groups before
1202 * trying optimized scan.
1203 */
1204 if (sbi->s_mb_max_linear_groups)
1205 ret = ext4_mb_scan_groups_linear(ac, ngroups, &start,
1206 sbi->s_mb_max_linear_groups);
1207 if (ret || ac->ac_status != AC_STATUS_CONTINUE)
1208 return ret;
1209
1210 switch (ac->ac_criteria) {
1211 case CR_POWER2_ALIGNED:
1212 return ext4_mb_scan_groups_p2_aligned(ac, start);
1213 case CR_GOAL_LEN_FAST:
1214 return ext4_mb_scan_groups_goal_fast(ac, start);
1215 case CR_BEST_AVAIL_LEN:
1216 return ext4_mb_scan_groups_best_avail(ac, start);
1217 default:
1218 /*
1219 * TODO: For CR_GOAL_LEN_SLOW, we can arrange groups in an
1220 * rb tree sorted by bb_free. But until that happens, we should
1221 * never come here.
1222 */
1223 WARN_ON(1);
1224 }
1225
1226 return 0;
1227}
1228
1229/*
1230 * Cache the order of the largest free extent we have available in this block
1231 * group.
1232 */
1233static void
1234mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
1235{
1236 struct ext4_sb_info *sbi = EXT4_SB(sb);
1237 int new, old = grp->bb_largest_free_order;
1238
1239 for (new = MB_NUM_ORDERS(sb) - 1; new >= 0; new--)
1240 if (grp->bb_counters[new] > 0)
1241 break;
1242
1243 /* No need to move between order lists? */
1244 if (new == old)
1245 return;
1246
1247 if (old >= 0) {
1248 struct xarray *xa = &sbi->s_mb_largest_free_orders[old];
1249
1250 if (!xa_empty(xa) && xa_load(xa, grp->bb_group))
1251 xa_erase(xa, grp->bb_group);
1252 }
1253
1254 grp->bb_largest_free_order = new;
1255 if (test_opt2(sb, MB_OPTIMIZE_SCAN) && new >= 0 && grp->bb_free) {
1256 /*
1257 * Cannot use __GFP_NOFAIL because we hold the group lock.
1258 * Although allocation for insertion may fails, it's not fatal
1259 * as we have linear traversal to fall back on.
1260 */
1261 int err = xa_insert(&sbi->s_mb_largest_free_orders[new],
1262 grp->bb_group, grp, GFP_ATOMIC);
1263 if (err)
1264 mb_debug(sb, "insert group: %u to s_mb_largest_free_orders[%d] failed, err %d",
1265 grp->bb_group, new, err);
1266 }
1267}
1268
1269static noinline_for_stack
1270void ext4_mb_generate_buddy(struct super_block *sb,
1271 void *buddy, void *bitmap, ext4_group_t group,
1272 struct ext4_group_info *grp)
1273{
1274 struct ext4_sb_info *sbi = EXT4_SB(sb);
1275 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
1276 ext4_grpblk_t i = 0;
1277 ext4_grpblk_t first;
1278 ext4_grpblk_t len;
1279 unsigned free = 0;
1280 unsigned fragments = 0;
1281 unsigned long long period = get_cycles();
1282
1283 /* initialize buddy from bitmap which is aggregation
1284 * of on-disk bitmap and preallocations */
1285 i = mb_find_next_zero_bit(bitmap, max, 0);
1286 grp->bb_first_free = i;
1287 while (i < max) {
1288 fragments++;
1289 first = i;
1290 i = mb_find_next_bit(bitmap, max, i);
1291 len = i - first;
1292 free += len;
1293 if (len > 1)
1294 ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
1295 else
1296 grp->bb_counters[0]++;
1297 if (i < max)
1298 i = mb_find_next_zero_bit(bitmap, max, i);
1299 }
1300 grp->bb_fragments = fragments;
1301
1302 if (free != grp->bb_free) {
1303 ext4_grp_locked_error(sb, group, 0, 0,
1304 "block bitmap and bg descriptor "
1305 "inconsistent: %u vs %u free clusters",
1306 free, grp->bb_free);
1307 /*
1308 * If we intend to continue, we consider group descriptor
1309 * corrupt and update bb_free using bitmap value
1310 */
1311 grp->bb_free = free;
1312 ext4_mark_group_bitmap_corrupted(sb, group,
1313 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1314 }
1315 mb_set_largest_free_order(sb, grp);
1316 mb_update_avg_fragment_size(sb, grp);
1317
1318 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
1319
1320 period = get_cycles() - period;
1321 atomic_inc(&sbi->s_mb_buddies_generated);
1322 atomic64_add(period, &sbi->s_mb_generation_time);
1323}
1324
1325static void mb_regenerate_buddy(struct ext4_buddy *e4b)
1326{
1327 int count;
1328 int order = 1;
1329 void *buddy;
1330
1331 while ((buddy = mb_find_buddy(e4b, order++, &count)))
1332 mb_set_bits(buddy, 0, count);
1333
1334 e4b->bd_info->bb_fragments = 0;
1335 memset(e4b->bd_info->bb_counters, 0,
1336 sizeof(*e4b->bd_info->bb_counters) *
1337 (e4b->bd_sb->s_blocksize_bits + 2));
1338
1339 ext4_mb_generate_buddy(e4b->bd_sb, e4b->bd_buddy,
1340 e4b->bd_bitmap, e4b->bd_group, e4b->bd_info);
1341}
1342
1343/* The buddy information is attached the buddy cache inode
1344 * for convenience. The information regarding each group
1345 * is loaded via ext4_mb_load_buddy. The information involve
1346 * block bitmap and buddy information. The information are
1347 * stored in the inode as
1348 *
1349 * { folio }
1350 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
1351 *
1352 *
1353 * one block each for bitmap and buddy information.
1354 * So for each group we take up 2 blocks. A folio can
1355 * contain blocks_per_folio (folio_size / blocksize) blocks.
1356 * So it can have information regarding groups_per_folio which
1357 * is blocks_per_folio/2
1358 *
1359 * Locking note: This routine takes the block group lock of all groups
1360 * for this folio; do not hold this lock when calling this routine!
1361 */
1362static int ext4_mb_init_cache(struct folio *folio, char *incore, gfp_t gfp)
1363{
1364 ext4_group_t ngroups;
1365 unsigned int blocksize;
1366 int blocks_per_folio;
1367 int groups_per_folio;
1368 int err = 0;
1369 int i;
1370 ext4_group_t first_group, group;
1371 int first_block;
1372 struct super_block *sb;
1373 struct buffer_head *bhs;
1374 struct buffer_head **bh = NULL;
1375 struct inode *inode;
1376 char *data;
1377 char *bitmap;
1378 struct ext4_group_info *grinfo;
1379
1380 inode = folio->mapping->host;
1381 sb = inode->i_sb;
1382 ngroups = ext4_get_groups_count(sb);
1383 blocksize = i_blocksize(inode);
1384 blocks_per_folio = folio_size(folio) / blocksize;
1385 WARN_ON_ONCE(!blocks_per_folio);
1386 groups_per_folio = DIV_ROUND_UP(blocks_per_folio, 2);
1387
1388 mb_debug(sb, "init folio %lu\n", folio->index);
1389
1390 /* allocate buffer_heads to read bitmaps */
1391 if (groups_per_folio > 1) {
1392 i = sizeof(struct buffer_head *) * groups_per_folio;
1393 bh = kzalloc(i, gfp);
1394 if (bh == NULL)
1395 return -ENOMEM;
1396 } else
1397 bh = &bhs;
1398
1399 /* read all groups the folio covers into the cache */
1400 first_group = EXT4_PG_TO_LBLK(inode, folio->index) / 2;
1401 for (i = 0, group = first_group; i < groups_per_folio; i++, group++) {
1402 if (group >= ngroups)
1403 break;
1404
1405 grinfo = ext4_get_group_info(sb, group);
1406 if (!grinfo)
1407 continue;
1408 /*
1409 * If folio is uptodate then we came here after online resize
1410 * which added some new uninitialized group info structs, so
1411 * we must skip all initialized uptodate buddies on the folio,
1412 * which may be currently in use by an allocating task.
1413 */
1414 if (folio_test_uptodate(folio) &&
1415 !EXT4_MB_GRP_NEED_INIT(grinfo)) {
1416 bh[i] = NULL;
1417 continue;
1418 }
1419 bh[i] = ext4_read_block_bitmap_nowait(sb, group, false);
1420 if (IS_ERR(bh[i])) {
1421 err = PTR_ERR(bh[i]);
1422 bh[i] = NULL;
1423 goto out;
1424 }
1425 mb_debug(sb, "read bitmap for group %u\n", group);
1426 }
1427
1428 /* wait for I/O completion */
1429 for (i = 0, group = first_group; i < groups_per_folio; i++, group++) {
1430 int err2;
1431
1432 if (!bh[i])
1433 continue;
1434 err2 = ext4_wait_block_bitmap(sb, group, bh[i]);
1435 if (!err)
1436 err = err2;
1437 }
1438
1439 first_block = EXT4_PG_TO_LBLK(inode, folio->index);
1440 for (i = 0; i < blocks_per_folio; i++) {
1441 group = (first_block + i) >> 1;
1442 if (group >= ngroups)
1443 break;
1444
1445 if (!bh[group - first_group])
1446 /* skip initialized uptodate buddy */
1447 continue;
1448
1449 if (!buffer_verified(bh[group - first_group]))
1450 /* Skip faulty bitmaps */
1451 continue;
1452 err = 0;
1453
1454 /*
1455 * data carry information regarding this
1456 * particular group in the format specified
1457 * above
1458 *
1459 */
1460 data = folio_address(folio) + (i * blocksize);
1461 bitmap = bh[group - first_group]->b_data;
1462
1463 /*
1464 * We place the buddy block and bitmap block
1465 * close together
1466 */
1467 grinfo = ext4_get_group_info(sb, group);
1468 if (!grinfo) {
1469 err = -EFSCORRUPTED;
1470 goto out;
1471 }
1472 if ((first_block + i) & 1) {
1473 /* this is block of buddy */
1474 BUG_ON(incore == NULL);
1475 mb_debug(sb, "put buddy for group %u in folio %lu/%x\n",
1476 group, folio->index, i * blocksize);
1477 trace_ext4_mb_buddy_bitmap_load(sb, group);
1478 grinfo->bb_fragments = 0;
1479 memset(grinfo->bb_counters, 0,
1480 sizeof(*grinfo->bb_counters) *
1481 (MB_NUM_ORDERS(sb)));
1482 /*
1483 * incore got set to the group block bitmap below
1484 */
1485 ext4_lock_group(sb, group);
1486 /* init the buddy */
1487 memset(data, 0xff, blocksize);
1488 ext4_mb_generate_buddy(sb, data, incore, group, grinfo);
1489 ext4_unlock_group(sb, group);
1490 incore = NULL;
1491 } else {
1492 /* this is block of bitmap */
1493 BUG_ON(incore != NULL);
1494 mb_debug(sb, "put bitmap for group %u in folio %lu/%x\n",
1495 group, folio->index, i * blocksize);
1496 trace_ext4_mb_bitmap_load(sb, group);
1497
1498 /* see comments in ext4_mb_put_pa() */
1499 ext4_lock_group(sb, group);
1500 memcpy(data, bitmap, blocksize);
1501
1502 /* mark all preallocated blks used in in-core bitmap */
1503 ext4_mb_generate_from_pa(sb, data, group);
1504 WARN_ON_ONCE(!RB_EMPTY_ROOT(&grinfo->bb_free_root));
1505 ext4_unlock_group(sb, group);
1506
1507 /* set incore so that the buddy information can be
1508 * generated using this
1509 */
1510 incore = data;
1511 }
1512 }
1513 folio_mark_uptodate(folio);
1514
1515out:
1516 if (bh) {
1517 for (i = 0; i < groups_per_folio; i++)
1518 brelse(bh[i]);
1519 if (bh != &bhs)
1520 kfree(bh);
1521 }
1522 return err;
1523}
1524
1525/*
1526 * Lock the buddy and bitmap folios. This makes sure other parallel init_group
1527 * on the same buddy folio doesn't happen while holding the buddy folio lock.
1528 * Return locked buddy and bitmap folios on e4b struct. If buddy and bitmap
1529 * are on the same folio e4b->bd_buddy_folio is NULL and return value is 0.
1530 */
1531static int ext4_mb_get_buddy_folio_lock(struct super_block *sb,
1532 ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp)
1533{
1534 struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
1535 int block, pnum;
1536 struct folio *folio;
1537
1538 e4b->bd_buddy_folio = NULL;
1539 e4b->bd_bitmap_folio = NULL;
1540
1541 /*
1542 * the buddy cache inode stores the block bitmap
1543 * and buddy information in consecutive blocks.
1544 * So for each group we need two blocks.
1545 */
1546 block = group * 2;
1547 pnum = EXT4_LBLK_TO_PG(inode, block);
1548 folio = __filemap_get_folio(inode->i_mapping, pnum,
1549 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, gfp);
1550 if (IS_ERR(folio))
1551 return PTR_ERR(folio);
1552 BUG_ON(folio->mapping != inode->i_mapping);
1553 WARN_ON_ONCE(folio_size(folio) < sb->s_blocksize);
1554 e4b->bd_bitmap_folio = folio;
1555 e4b->bd_bitmap = folio_address(folio) +
1556 offset_in_folio(folio, EXT4_LBLK_TO_B(inode, block));
1557
1558 block++;
1559 pnum = EXT4_LBLK_TO_PG(inode, block);
1560 if (folio_contains(folio, pnum)) {
1561 /* buddy and bitmap are on the same folio */
1562 return 0;
1563 }
1564
1565 /* we need another folio for the buddy */
1566 folio = __filemap_get_folio(inode->i_mapping, pnum,
1567 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, gfp);
1568 if (IS_ERR(folio))
1569 return PTR_ERR(folio);
1570 BUG_ON(folio->mapping != inode->i_mapping);
1571 WARN_ON_ONCE(folio_size(folio) < sb->s_blocksize);
1572 e4b->bd_buddy_folio = folio;
1573 return 0;
1574}
1575
1576static void ext4_mb_put_buddy_folio_lock(struct ext4_buddy *e4b)
1577{
1578 if (e4b->bd_bitmap_folio) {
1579 folio_unlock(e4b->bd_bitmap_folio);
1580 folio_put(e4b->bd_bitmap_folio);
1581 }
1582 if (e4b->bd_buddy_folio) {
1583 folio_unlock(e4b->bd_buddy_folio);
1584 folio_put(e4b->bd_buddy_folio);
1585 }
1586}
1587
1588/*
1589 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1590 * block group lock of all groups for this folio; do not hold the BG lock when
1591 * calling this routine!
1592 */
1593static noinline_for_stack
1594int ext4_mb_init_group(struct super_block *sb, ext4_group_t group, gfp_t gfp)
1595{
1596
1597 struct ext4_group_info *this_grp;
1598 struct ext4_buddy e4b;
1599 struct folio *folio;
1600 int ret = 0;
1601
1602 might_sleep();
1603 mb_debug(sb, "init group %u\n", group);
1604 this_grp = ext4_get_group_info(sb, group);
1605 if (!this_grp)
1606 return -EFSCORRUPTED;
1607
1608 /*
1609 * This ensures that we don't reinit the buddy cache
1610 * folio which map to the group from which we are already
1611 * allocating. If we are looking at the buddy cache we would
1612 * have taken a reference using ext4_mb_load_buddy and that
1613 * would have pinned buddy folio to page cache.
1614 * The call to ext4_mb_get_buddy_folio_lock will mark the
1615 * folio accessed.
1616 */
1617 ret = ext4_mb_get_buddy_folio_lock(sb, group, &e4b, gfp);
1618 if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1619 /*
1620 * somebody initialized the group
1621 * return without doing anything
1622 */
1623 goto err;
1624 }
1625
1626 folio = e4b.bd_bitmap_folio;
1627 ret = ext4_mb_init_cache(folio, NULL, gfp);
1628 if (ret)
1629 goto err;
1630 if (!folio_test_uptodate(folio)) {
1631 ret = -EIO;
1632 goto err;
1633 }
1634
1635 if (e4b.bd_buddy_folio == NULL) {
1636 /*
1637 * If both the bitmap and buddy are in
1638 * the same folio we don't need to force
1639 * init the buddy
1640 */
1641 ret = 0;
1642 goto err;
1643 }
1644 /* init buddy cache */
1645 folio = e4b.bd_buddy_folio;
1646 ret = ext4_mb_init_cache(folio, e4b.bd_bitmap, gfp);
1647 if (ret)
1648 goto err;
1649 if (!folio_test_uptodate(folio)) {
1650 ret = -EIO;
1651 goto err;
1652 }
1653err:
1654 ext4_mb_put_buddy_folio_lock(&e4b);
1655 return ret;
1656}
1657
1658/*
1659 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1660 * block group lock of all groups for this folio; do not hold the BG lock when
1661 * calling this routine!
1662 */
1663static noinline_for_stack int
1664ext4_mb_load_buddy_gfp(struct super_block *sb, ext4_group_t group,
1665 struct ext4_buddy *e4b, gfp_t gfp)
1666{
1667 int block;
1668 int pnum;
1669 struct folio *folio;
1670 int ret;
1671 struct ext4_group_info *grp;
1672 struct ext4_sb_info *sbi = EXT4_SB(sb);
1673 struct inode *inode = sbi->s_buddy_cache;
1674
1675 might_sleep();
1676 mb_debug(sb, "load group %u\n", group);
1677
1678 grp = ext4_get_group_info(sb, group);
1679 if (!grp)
1680 return -EFSCORRUPTED;
1681
1682 e4b->bd_blkbits = sb->s_blocksize_bits;
1683 e4b->bd_info = grp;
1684 e4b->bd_sb = sb;
1685 e4b->bd_group = group;
1686 e4b->bd_buddy_folio = NULL;
1687 e4b->bd_bitmap_folio = NULL;
1688
1689 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1690 /*
1691 * we need full data about the group
1692 * to make a good selection
1693 */
1694 ret = ext4_mb_init_group(sb, group, gfp);
1695 if (ret)
1696 return ret;
1697 }
1698
1699 /*
1700 * the buddy cache inode stores the block bitmap
1701 * and buddy information in consecutive blocks.
1702 * So for each group we need two blocks.
1703 */
1704 block = group * 2;
1705 pnum = EXT4_LBLK_TO_PG(inode, block);
1706
1707 /* Avoid locking the folio in the fast path ... */
1708 folio = __filemap_get_folio(inode->i_mapping, pnum, FGP_ACCESSED, 0);
1709 if (IS_ERR(folio) || !folio_test_uptodate(folio)) {
1710 if (!IS_ERR(folio))
1711 /*
1712 * drop the folio reference and try
1713 * to get the folio with lock. If we
1714 * are not uptodate that implies
1715 * somebody just created the folio but
1716 * is yet to initialize it. So
1717 * wait for it to initialize.
1718 */
1719 folio_put(folio);
1720 folio = __filemap_get_folio(inode->i_mapping, pnum,
1721 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, gfp);
1722 if (!IS_ERR(folio)) {
1723 if (WARN_RATELIMIT(folio->mapping != inode->i_mapping,
1724 "ext4: bitmap's mapping != inode->i_mapping\n")) {
1725 /* should never happen */
1726 folio_unlock(folio);
1727 ret = -EINVAL;
1728 goto err;
1729 }
1730 if (!folio_test_uptodate(folio)) {
1731 ret = ext4_mb_init_cache(folio, NULL, gfp);
1732 if (ret) {
1733 folio_unlock(folio);
1734 goto err;
1735 }
1736 mb_cmp_bitmaps(e4b, folio_address(folio) +
1737 offset_in_folio(folio,
1738 EXT4_LBLK_TO_B(inode, block)));
1739 }
1740 folio_unlock(folio);
1741 }
1742 }
1743 if (IS_ERR(folio)) {
1744 ret = PTR_ERR(folio);
1745 goto err;
1746 }
1747 if (!folio_test_uptodate(folio)) {
1748 ret = -EIO;
1749 goto err;
1750 }
1751
1752 /* Folios marked accessed already */
1753 e4b->bd_bitmap_folio = folio;
1754 e4b->bd_bitmap = folio_address(folio) +
1755 offset_in_folio(folio, EXT4_LBLK_TO_B(inode, block));
1756
1757 block++;
1758 pnum = EXT4_LBLK_TO_PG(inode, block);
1759 /* buddy and bitmap are on the same folio? */
1760 if (folio_contains(folio, pnum)) {
1761 folio_get(folio);
1762 goto update_buddy;
1763 }
1764
1765 /* we need another folio for the buddy */
1766 folio = __filemap_get_folio(inode->i_mapping, pnum, FGP_ACCESSED, 0);
1767 if (IS_ERR(folio) || !folio_test_uptodate(folio)) {
1768 if (!IS_ERR(folio))
1769 folio_put(folio);
1770 folio = __filemap_get_folio(inode->i_mapping, pnum,
1771 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, gfp);
1772 if (!IS_ERR(folio)) {
1773 if (WARN_RATELIMIT(folio->mapping != inode->i_mapping,
1774 "ext4: buddy bitmap's mapping != inode->i_mapping\n")) {
1775 /* should never happen */
1776 folio_unlock(folio);
1777 ret = -EINVAL;
1778 goto err;
1779 }
1780 if (!folio_test_uptodate(folio)) {
1781 ret = ext4_mb_init_cache(folio, e4b->bd_bitmap,
1782 gfp);
1783 if (ret) {
1784 folio_unlock(folio);
1785 goto err;
1786 }
1787 }
1788 folio_unlock(folio);
1789 }
1790 }
1791 if (IS_ERR(folio)) {
1792 ret = PTR_ERR(folio);
1793 goto err;
1794 }
1795 if (!folio_test_uptodate(folio)) {
1796 ret = -EIO;
1797 goto err;
1798 }
1799
1800update_buddy:
1801 /* Folios marked accessed already */
1802 e4b->bd_buddy_folio = folio;
1803 e4b->bd_buddy = folio_address(folio) +
1804 offset_in_folio(folio, EXT4_LBLK_TO_B(inode, block));
1805
1806 return 0;
1807
1808err:
1809 if (!IS_ERR_OR_NULL(folio))
1810 folio_put(folio);
1811 if (e4b->bd_bitmap_folio)
1812 folio_put(e4b->bd_bitmap_folio);
1813
1814 e4b->bd_buddy = NULL;
1815 e4b->bd_bitmap = NULL;
1816 return ret;
1817}
1818
1819static int ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1820 struct ext4_buddy *e4b)
1821{
1822 return ext4_mb_load_buddy_gfp(sb, group, e4b, GFP_NOFS);
1823}
1824
1825static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1826{
1827 if (e4b->bd_bitmap_folio)
1828 folio_put(e4b->bd_bitmap_folio);
1829 if (e4b->bd_buddy_folio)
1830 folio_put(e4b->bd_buddy_folio);
1831}
1832
1833
1834static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1835{
1836 int order = 1, max;
1837 void *bb;
1838
1839 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1840 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1841
1842 while (order <= e4b->bd_blkbits + 1) {
1843 bb = mb_find_buddy(e4b, order, &max);
1844 if (!mb_test_bit(block >> order, bb)) {
1845 /* this block is part of buddy of order 'order' */
1846 return order;
1847 }
1848 order++;
1849 }
1850 return 0;
1851}
1852
1853static void mb_clear_bits(void *bm, int cur, int len)
1854{
1855 __u32 *addr;
1856
1857 len = cur + len;
1858 while (cur < len) {
1859 if ((cur & 31) == 0 && (len - cur) >= 32) {
1860 /* fast path: clear whole word at once */
1861 addr = bm + (cur >> 3);
1862 *addr = 0;
1863 cur += 32;
1864 continue;
1865 }
1866 mb_clear_bit(cur, bm);
1867 cur++;
1868 }
1869}
1870
1871/* clear bits in given range
1872 * will return first found zero bit if any, -1 otherwise
1873 */
1874static int mb_test_and_clear_bits(void *bm, int cur, int len)
1875{
1876 __u32 *addr;
1877 int zero_bit = -1;
1878
1879 len = cur + len;
1880 while (cur < len) {
1881 if ((cur & 31) == 0 && (len - cur) >= 32) {
1882 /* fast path: clear whole word at once */
1883 addr = bm + (cur >> 3);
1884 if (*addr != (__u32)(-1) && zero_bit == -1)
1885 zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0);
1886 *addr = 0;
1887 cur += 32;
1888 continue;
1889 }
1890 if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1)
1891 zero_bit = cur;
1892 cur++;
1893 }
1894
1895 return zero_bit;
1896}
1897
1898void mb_set_bits(void *bm, int cur, int len)
1899{
1900 __u32 *addr;
1901
1902 len = cur + len;
1903 while (cur < len) {
1904 if ((cur & 31) == 0 && (len - cur) >= 32) {
1905 /* fast path: set whole word at once */
1906 addr = bm + (cur >> 3);
1907 *addr = 0xffffffff;
1908 cur += 32;
1909 continue;
1910 }
1911 mb_set_bit(cur, bm);
1912 cur++;
1913 }
1914}
1915
1916static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side)
1917{
1918 if (mb_test_bit(*bit + side, bitmap)) {
1919 mb_clear_bit(*bit, bitmap);
1920 (*bit) -= side;
1921 return 1;
1922 }
1923 else {
1924 (*bit) += side;
1925 mb_set_bit(*bit, bitmap);
1926 return -1;
1927 }
1928}
1929
1930static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last)
1931{
1932 int max;
1933 int order = 1;
1934 void *buddy = mb_find_buddy(e4b, order, &max);
1935
1936 while (buddy) {
1937 void *buddy2;
1938
1939 /* Bits in range [first; last] are known to be set since
1940 * corresponding blocks were allocated. Bits in range
1941 * (first; last) will stay set because they form buddies on
1942 * upper layer. We just deal with borders if they don't
1943 * align with upper layer and then go up.
1944 * Releasing entire group is all about clearing
1945 * single bit of highest order buddy.
1946 */
1947
1948 /* Example:
1949 * ---------------------------------
1950 * | 1 | 1 | 1 | 1 |
1951 * ---------------------------------
1952 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1953 * ---------------------------------
1954 * 0 1 2 3 4 5 6 7
1955 * \_____________________/
1956 *
1957 * Neither [1] nor [6] is aligned to above layer.
1958 * Left neighbour [0] is free, so mark it busy,
1959 * decrease bb_counters and extend range to
1960 * [0; 6]
1961 * Right neighbour [7] is busy. It can't be coaleasced with [6], so
1962 * mark [6] free, increase bb_counters and shrink range to
1963 * [0; 5].
1964 * Then shift range to [0; 2], go up and do the same.
1965 */
1966
1967
1968 if (first & 1)
1969 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1);
1970 if (!(last & 1))
1971 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1);
1972 if (first > last)
1973 break;
1974 order++;
1975
1976 buddy2 = mb_find_buddy(e4b, order, &max);
1977 if (!buddy2) {
1978 mb_clear_bits(buddy, first, last - first + 1);
1979 e4b->bd_info->bb_counters[order - 1] += last - first + 1;
1980 break;
1981 }
1982 first >>= 1;
1983 last >>= 1;
1984 buddy = buddy2;
1985 }
1986}
1987
1988static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1989 int first, int count)
1990{
1991 int left_is_free = 0;
1992 int right_is_free = 0;
1993 int block;
1994 int last = first + count - 1;
1995 struct super_block *sb = e4b->bd_sb;
1996
1997 if (WARN_ON(count == 0))
1998 return;
1999 BUG_ON(last >= (sb->s_blocksize << 3));
2000 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
2001 /* Don't bother if the block group is corrupt. */
2002 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
2003 return;
2004
2005 mb_check_buddy(e4b);
2006 mb_free_blocks_double(inode, e4b, first, count);
2007
2008 /* access memory sequentially: check left neighbour,
2009 * clear range and then check right neighbour
2010 */
2011 if (first != 0)
2012 left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap);
2013 block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count);
2014 if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0])
2015 right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap);
2016
2017 if (unlikely(block != -1)) {
2018 struct ext4_sb_info *sbi = EXT4_SB(sb);
2019 ext4_fsblk_t blocknr;
2020
2021 /*
2022 * Fastcommit replay can free already freed blocks which
2023 * corrupts allocation info. Regenerate it.
2024 */
2025 if (sbi->s_mount_state & EXT4_FC_REPLAY) {
2026 mb_regenerate_buddy(e4b);
2027 goto check;
2028 }
2029
2030 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
2031 blocknr += EXT4_C2B(sbi, block);
2032 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
2033 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2034 ext4_grp_locked_error(sb, e4b->bd_group,
2035 inode ? inode->i_ino : 0, blocknr,
2036 "freeing already freed block (bit %u); block bitmap corrupt.",
2037 block);
2038 return;
2039 }
2040
2041 this_cpu_inc(discard_pa_seq);
2042 e4b->bd_info->bb_free += count;
2043 if (first < e4b->bd_info->bb_first_free)
2044 e4b->bd_info->bb_first_free = first;
2045
2046 /* let's maintain fragments counter */
2047 if (left_is_free && right_is_free)
2048 e4b->bd_info->bb_fragments--;
2049 else if (!left_is_free && !right_is_free)
2050 e4b->bd_info->bb_fragments++;
2051
2052 /* buddy[0] == bd_bitmap is a special case, so handle
2053 * it right away and let mb_buddy_mark_free stay free of
2054 * zero order checks.
2055 * Check if neighbours are to be coaleasced,
2056 * adjust bitmap bb_counters and borders appropriately.
2057 */
2058 if (first & 1) {
2059 first += !left_is_free;
2060 e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1;
2061 }
2062 if (!(last & 1)) {
2063 last -= !right_is_free;
2064 e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1;
2065 }
2066
2067 if (first <= last)
2068 mb_buddy_mark_free(e4b, first >> 1, last >> 1);
2069
2070 mb_set_largest_free_order(sb, e4b->bd_info);
2071 mb_update_avg_fragment_size(sb, e4b->bd_info);
2072check:
2073 mb_check_buddy(e4b);
2074}
2075
2076static int mb_find_extent(struct ext4_buddy *e4b, int block,
2077 int needed, struct ext4_free_extent *ex)
2078{
2079 int max, order, next;
2080 void *buddy;
2081
2082 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
2083 BUG_ON(ex == NULL);
2084
2085 buddy = mb_find_buddy(e4b, 0, &max);
2086 BUG_ON(buddy == NULL);
2087 BUG_ON(block >= max);
2088 if (mb_test_bit(block, buddy)) {
2089 ex->fe_len = 0;
2090 ex->fe_start = 0;
2091 ex->fe_group = 0;
2092 return 0;
2093 }
2094
2095 /* find actual order */
2096 order = mb_find_order_for_block(e4b, block);
2097
2098 ex->fe_len = (1 << order) - (block & ((1 << order) - 1));
2099 ex->fe_start = block;
2100 ex->fe_group = e4b->bd_group;
2101
2102 block = block >> order;
2103
2104 while (needed > ex->fe_len &&
2105 mb_find_buddy(e4b, order, &max)) {
2106
2107 if (block + 1 >= max)
2108 break;
2109
2110 next = (block + 1) * (1 << order);
2111 if (mb_test_bit(next, e4b->bd_bitmap))
2112 break;
2113
2114 order = mb_find_order_for_block(e4b, next);
2115
2116 block = next >> order;
2117 ex->fe_len += 1 << order;
2118 }
2119
2120 if (ex->fe_start + ex->fe_len > EXT4_CLUSTERS_PER_GROUP(e4b->bd_sb)) {
2121 /* Should never happen! (but apparently sometimes does?!?) */
2122 WARN_ON(1);
2123 ext4_grp_locked_error(e4b->bd_sb, e4b->bd_group, 0, 0,
2124 "corruption or bug in mb_find_extent "
2125 "block=%d, order=%d needed=%d ex=%u/%d/%d@%u",
2126 block, order, needed, ex->fe_group, ex->fe_start,
2127 ex->fe_len, ex->fe_logical);
2128 ex->fe_len = 0;
2129 ex->fe_start = 0;
2130 ex->fe_group = 0;
2131 }
2132 return ex->fe_len;
2133}
2134
2135static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
2136{
2137 int ord;
2138 int mlen = 0;
2139 int max = 0;
2140 int start = ex->fe_start;
2141 int len = ex->fe_len;
2142 unsigned ret = 0;
2143 int len0 = len;
2144 void *buddy;
2145 int ord_start, ord_end;
2146
2147 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
2148 BUG_ON(e4b->bd_group != ex->fe_group);
2149 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
2150 mb_check_buddy(e4b);
2151 mb_mark_used_double(e4b, start, len);
2152
2153 this_cpu_inc(discard_pa_seq);
2154 e4b->bd_info->bb_free -= len;
2155 if (e4b->bd_info->bb_first_free == start)
2156 e4b->bd_info->bb_first_free += len;
2157
2158 /* let's maintain fragments counter */
2159 if (start != 0)
2160 mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
2161 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
2162 max = !mb_test_bit(start + len, e4b->bd_bitmap);
2163 if (mlen && max)
2164 e4b->bd_info->bb_fragments++;
2165 else if (!mlen && !max)
2166 e4b->bd_info->bb_fragments--;
2167
2168 /* let's maintain buddy itself */
2169 while (len) {
2170 ord = mb_find_order_for_block(e4b, start);
2171
2172 if (((start >> ord) << ord) == start && len >= (1 << ord)) {
2173 /* the whole chunk may be allocated at once! */
2174 mlen = 1 << ord;
2175 buddy = mb_find_buddy(e4b, ord, &max);
2176 BUG_ON((start >> ord) >= max);
2177 mb_set_bit(start >> ord, buddy);
2178 e4b->bd_info->bb_counters[ord]--;
2179 start += mlen;
2180 len -= mlen;
2181 BUG_ON(len < 0);
2182 continue;
2183 }
2184
2185 /* store for history */
2186 if (ret == 0)
2187 ret = len | (ord << 16);
2188
2189 BUG_ON(ord <= 0);
2190 buddy = mb_find_buddy(e4b, ord, &max);
2191 mb_set_bit(start >> ord, buddy);
2192 e4b->bd_info->bb_counters[ord]--;
2193
2194 ord_start = (start >> ord) << ord;
2195 ord_end = ord_start + (1 << ord);
2196 /* first chunk */
2197 if (start > ord_start)
2198 ext4_mb_mark_free_simple(e4b->bd_sb, e4b->bd_buddy,
2199 ord_start, start - ord_start,
2200 e4b->bd_info);
2201
2202 /* last chunk */
2203 if (start + len < ord_end) {
2204 ext4_mb_mark_free_simple(e4b->bd_sb, e4b->bd_buddy,
2205 start + len,
2206 ord_end - (start + len),
2207 e4b->bd_info);
2208 break;
2209 }
2210 len = start + len - ord_end;
2211 start = ord_end;
2212 }
2213 mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
2214
2215 mb_update_avg_fragment_size(e4b->bd_sb, e4b->bd_info);
2216 mb_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
2217 mb_check_buddy(e4b);
2218
2219 return ret;
2220}
2221
2222/*
2223 * Must be called under group lock!
2224 */
2225static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
2226 struct ext4_buddy *e4b)
2227{
2228 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2229 int ret;
2230
2231 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
2232 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2233
2234 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
2235 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
2236 ret = mb_mark_used(e4b, &ac->ac_b_ex);
2237
2238 /* preallocation can change ac_b_ex, thus we store actually
2239 * allocated blocks for history */
2240 ac->ac_f_ex = ac->ac_b_ex;
2241
2242 ac->ac_status = AC_STATUS_FOUND;
2243 ac->ac_tail = ret & 0xffff;
2244 ac->ac_buddy = ret >> 16;
2245
2246 /*
2247 * take the folio reference. We want the folio to be pinned
2248 * so that we don't get a ext4_mb_init_cache_call for this
2249 * group until we update the bitmap. That would mean we
2250 * double allocate blocks. The reference is dropped
2251 * in ext4_mb_release_context
2252 */
2253 ac->ac_bitmap_folio = e4b->bd_bitmap_folio;
2254 folio_get(ac->ac_bitmap_folio);
2255 ac->ac_buddy_folio = e4b->bd_buddy_folio;
2256 folio_get(ac->ac_buddy_folio);
2257 /* store last allocated for subsequent stream allocation */
2258 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2259 int hash = ac->ac_inode->i_ino % sbi->s_mb_nr_global_goals;
2260
2261 WRITE_ONCE(sbi->s_mb_last_groups[hash], ac->ac_f_ex.fe_group);
2262 }
2263
2264 /*
2265 * As we've just preallocated more space than
2266 * user requested originally, we store allocated
2267 * space in a special descriptor.
2268 */
2269 if (ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
2270 ext4_mb_new_preallocation(ac);
2271
2272}
2273
2274static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
2275 struct ext4_buddy *e4b,
2276 int finish_group)
2277{
2278 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2279 struct ext4_free_extent *bex = &ac->ac_b_ex;
2280 struct ext4_free_extent *gex = &ac->ac_g_ex;
2281
2282 if (ac->ac_status == AC_STATUS_FOUND)
2283 return;
2284 /*
2285 * We don't want to scan for a whole year
2286 */
2287 if (ac->ac_found > sbi->s_mb_max_to_scan &&
2288 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2289 ac->ac_status = AC_STATUS_BREAK;
2290 return;
2291 }
2292
2293 /*
2294 * Haven't found good chunk so far, let's continue
2295 */
2296 if (bex->fe_len < gex->fe_len)
2297 return;
2298
2299 if (finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
2300 ext4_mb_use_best_found(ac, e4b);
2301}
2302
2303/*
2304 * The routine checks whether found extent is good enough. If it is,
2305 * then the extent gets marked used and flag is set to the context
2306 * to stop scanning. Otherwise, the extent is compared with the
2307 * previous found extent and if new one is better, then it's stored
2308 * in the context. Later, the best found extent will be used, if
2309 * mballoc can't find good enough extent.
2310 *
2311 * The algorithm used is roughly as follows:
2312 *
2313 * * If free extent found is exactly as big as goal, then
2314 * stop the scan and use it immediately
2315 *
2316 * * If free extent found is smaller than goal, then keep retrying
2317 * upto a max of sbi->s_mb_max_to_scan times (default 200). After
2318 * that stop scanning and use whatever we have.
2319 *
2320 * * If free extent found is bigger than goal, then keep retrying
2321 * upto a max of sbi->s_mb_min_to_scan times (default 10) before
2322 * stopping the scan and using the extent.
2323 *
2324 *
2325 * FIXME: real allocation policy is to be designed yet!
2326 */
2327static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
2328 struct ext4_free_extent *ex,
2329 struct ext4_buddy *e4b)
2330{
2331 struct ext4_free_extent *bex = &ac->ac_b_ex;
2332 struct ext4_free_extent *gex = &ac->ac_g_ex;
2333
2334 BUG_ON(ex->fe_len <= 0);
2335 BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
2336 BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
2337 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
2338
2339 ac->ac_found++;
2340 ac->ac_cX_found[ac->ac_criteria]++;
2341
2342 /*
2343 * The special case - take what you catch first
2344 */
2345 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2346 *bex = *ex;
2347 ext4_mb_use_best_found(ac, e4b);
2348 return;
2349 }
2350
2351 /*
2352 * Let's check whether the chuck is good enough
2353 */
2354 if (ex->fe_len == gex->fe_len) {
2355 *bex = *ex;
2356 ext4_mb_use_best_found(ac, e4b);
2357 return;
2358 }
2359
2360 /*
2361 * If this is first found extent, just store it in the context
2362 */
2363 if (bex->fe_len == 0) {
2364 *bex = *ex;
2365 return;
2366 }
2367
2368 /*
2369 * If new found extent is better, store it in the context
2370 */
2371 if (bex->fe_len < gex->fe_len) {
2372 /* if the request isn't satisfied, any found extent
2373 * larger than previous best one is better */
2374 if (ex->fe_len > bex->fe_len)
2375 *bex = *ex;
2376 } else if (ex->fe_len > gex->fe_len) {
2377 /* if the request is satisfied, then we try to find
2378 * an extent that still satisfy the request, but is
2379 * smaller than previous one */
2380 if (ex->fe_len < bex->fe_len)
2381 *bex = *ex;
2382 }
2383
2384 ext4_mb_check_limits(ac, e4b, 0);
2385}
2386
2387static noinline_for_stack
2388void ext4_mb_try_best_found(struct ext4_allocation_context *ac,
2389 struct ext4_buddy *e4b)
2390{
2391 struct ext4_free_extent ex = ac->ac_b_ex;
2392 ext4_group_t group = ex.fe_group;
2393 int max;
2394 int err;
2395
2396 BUG_ON(ex.fe_len <= 0);
2397 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
2398 if (err)
2399 return;
2400
2401 ext4_lock_group(ac->ac_sb, group);
2402 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
2403 goto out;
2404
2405 max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex);
2406
2407 if (max > 0) {
2408 ac->ac_b_ex = ex;
2409 ext4_mb_use_best_found(ac, e4b);
2410 }
2411
2412out:
2413 ext4_unlock_group(ac->ac_sb, group);
2414 ext4_mb_unload_buddy(e4b);
2415}
2416
2417static noinline_for_stack
2418int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
2419 struct ext4_buddy *e4b)
2420{
2421 ext4_group_t group = ac->ac_g_ex.fe_group;
2422 int max;
2423 int err;
2424 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2425 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2426 struct ext4_free_extent ex;
2427
2428 if (!grp)
2429 return -EFSCORRUPTED;
2430 if (!(ac->ac_flags & (EXT4_MB_HINT_TRY_GOAL | EXT4_MB_HINT_GOAL_ONLY)))
2431 return 0;
2432 if (grp->bb_free == 0)
2433 return 0;
2434
2435 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
2436 if (err)
2437 return err;
2438
2439 ext4_lock_group(ac->ac_sb, group);
2440 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
2441 goto out;
2442
2443 max = mb_find_extent(e4b, ac->ac_g_ex.fe_start,
2444 ac->ac_g_ex.fe_len, &ex);
2445 ex.fe_logical = 0xDEADFA11; /* debug value */
2446
2447 if (max >= ac->ac_g_ex.fe_len &&
2448 ac->ac_g_ex.fe_len == EXT4_NUM_B2C(sbi, sbi->s_stripe)) {
2449 ext4_fsblk_t start;
2450
2451 start = ext4_grp_offs_to_block(ac->ac_sb, &ex);
2452 /* use do_div to get remainder (would be 64-bit modulo) */
2453 if (do_div(start, sbi->s_stripe) == 0) {
2454 ac->ac_found++;
2455 ac->ac_b_ex = ex;
2456 ext4_mb_use_best_found(ac, e4b);
2457 }
2458 } else if (max >= ac->ac_g_ex.fe_len) {
2459 BUG_ON(ex.fe_len <= 0);
2460 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
2461 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
2462 ac->ac_found++;
2463 ac->ac_b_ex = ex;
2464 ext4_mb_use_best_found(ac, e4b);
2465 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
2466 /* Sometimes, caller may want to merge even small
2467 * number of blocks to an existing extent */
2468 BUG_ON(ex.fe_len <= 0);
2469 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
2470 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
2471 ac->ac_found++;
2472 ac->ac_b_ex = ex;
2473 ext4_mb_use_best_found(ac, e4b);
2474 }
2475out:
2476 ext4_unlock_group(ac->ac_sb, group);
2477 ext4_mb_unload_buddy(e4b);
2478
2479 return 0;
2480}
2481
2482/*
2483 * The routine scans buddy structures (not bitmap!) from given order
2484 * to max order and tries to find big enough chunk to satisfy the req
2485 */
2486static noinline_for_stack
2487void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
2488 struct ext4_buddy *e4b)
2489{
2490 struct super_block *sb = ac->ac_sb;
2491 struct ext4_group_info *grp = e4b->bd_info;
2492 void *buddy;
2493 int i;
2494 int k;
2495 int max;
2496
2497 BUG_ON(ac->ac_2order <= 0);
2498 for (i = ac->ac_2order; i < MB_NUM_ORDERS(sb); i++) {
2499 if (grp->bb_counters[i] == 0)
2500 continue;
2501
2502 buddy = mb_find_buddy(e4b, i, &max);
2503 if (WARN_RATELIMIT(buddy == NULL,
2504 "ext4: mb_simple_scan_group: mb_find_buddy failed, (%d)\n", i))
2505 continue;
2506
2507 k = mb_find_next_zero_bit(buddy, max, 0);
2508 if (k >= max) {
2509 ext4_mark_group_bitmap_corrupted(ac->ac_sb,
2510 e4b->bd_group,
2511 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2512 ext4_grp_locked_error(ac->ac_sb, e4b->bd_group, 0, 0,
2513 "%d free clusters of order %d. But found 0",
2514 grp->bb_counters[i], i);
2515 break;
2516 }
2517 ac->ac_found++;
2518 ac->ac_cX_found[ac->ac_criteria]++;
2519
2520 ac->ac_b_ex.fe_len = 1 << i;
2521 ac->ac_b_ex.fe_start = k << i;
2522 ac->ac_b_ex.fe_group = e4b->bd_group;
2523
2524 ext4_mb_use_best_found(ac, e4b);
2525
2526 BUG_ON(ac->ac_f_ex.fe_len != ac->ac_g_ex.fe_len);
2527
2528 if (EXT4_SB(sb)->s_mb_stats)
2529 atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
2530
2531 break;
2532 }
2533}
2534
2535/*
2536 * The routine scans the group and measures all found extents.
2537 * In order to optimize scanning, caller must pass number of
2538 * free blocks in the group, so the routine can know upper limit.
2539 */
2540static noinline_for_stack
2541void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
2542 struct ext4_buddy *e4b)
2543{
2544 struct super_block *sb = ac->ac_sb;
2545 void *bitmap = e4b->bd_bitmap;
2546 struct ext4_free_extent ex;
2547 int i, j, freelen;
2548 int free;
2549
2550 free = e4b->bd_info->bb_free;
2551 if (WARN_ON(free <= 0))
2552 return;
2553
2554 i = e4b->bd_info->bb_first_free;
2555
2556 while (free && ac->ac_status == AC_STATUS_CONTINUE) {
2557 i = mb_find_next_zero_bit(bitmap,
2558 EXT4_CLUSTERS_PER_GROUP(sb), i);
2559 if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
2560 /*
2561 * IF we have corrupt bitmap, we won't find any
2562 * free blocks even though group info says we
2563 * have free blocks
2564 */
2565 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
2566 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2567 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
2568 "%d free clusters as per "
2569 "group info. But bitmap says 0",
2570 free);
2571 break;
2572 }
2573
2574 if (!ext4_mb_cr_expensive(ac->ac_criteria)) {
2575 /*
2576 * In CR_GOAL_LEN_FAST and CR_BEST_AVAIL_LEN, we are
2577 * sure that this group will have a large enough
2578 * continuous free extent, so skip over the smaller free
2579 * extents
2580 */
2581 j = mb_find_next_bit(bitmap,
2582 EXT4_CLUSTERS_PER_GROUP(sb), i);
2583 freelen = j - i;
2584
2585 if (freelen < ac->ac_g_ex.fe_len) {
2586 i = j;
2587 free -= freelen;
2588 continue;
2589 }
2590 }
2591
2592 mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex);
2593 if (WARN_ON(ex.fe_len <= 0))
2594 break;
2595 if (free < ex.fe_len) {
2596 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
2597 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2598 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
2599 "%d free clusters as per "
2600 "group info. But got %d blocks",
2601 free, ex.fe_len);
2602 /*
2603 * The number of free blocks differs. This mostly
2604 * indicate that the bitmap is corrupt. So exit
2605 * without claiming the space.
2606 */
2607 break;
2608 }
2609 ex.fe_logical = 0xDEADC0DE; /* debug value */
2610 ext4_mb_measure_extent(ac, &ex, e4b);
2611
2612 i += ex.fe_len;
2613 free -= ex.fe_len;
2614 }
2615
2616 ext4_mb_check_limits(ac, e4b, 1);
2617}
2618
2619/*
2620 * This is a special case for storages like raid5
2621 * we try to find stripe-aligned chunks for stripe-size-multiple requests
2622 */
2623static noinline_for_stack
2624void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
2625 struct ext4_buddy *e4b)
2626{
2627 struct super_block *sb = ac->ac_sb;
2628 struct ext4_sb_info *sbi = EXT4_SB(sb);
2629 void *bitmap = e4b->bd_bitmap;
2630 struct ext4_free_extent ex;
2631 ext4_fsblk_t first_group_block;
2632 ext4_fsblk_t a;
2633 ext4_grpblk_t i, stripe;
2634 int max;
2635
2636 BUG_ON(sbi->s_stripe == 0);
2637
2638 /* find first stripe-aligned block in group */
2639 first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
2640
2641 a = first_group_block + sbi->s_stripe - 1;
2642 do_div(a, sbi->s_stripe);
2643 i = (a * sbi->s_stripe) - first_group_block;
2644
2645 stripe = EXT4_NUM_B2C(sbi, sbi->s_stripe);
2646 i = EXT4_B2C(sbi, i);
2647 while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
2648 if (!mb_test_bit(i, bitmap)) {
2649 max = mb_find_extent(e4b, i, stripe, &ex);
2650 if (max >= stripe) {
2651 ac->ac_found++;
2652 ac->ac_cX_found[ac->ac_criteria]++;
2653 ex.fe_logical = 0xDEADF00D; /* debug value */
2654 ac->ac_b_ex = ex;
2655 ext4_mb_use_best_found(ac, e4b);
2656 break;
2657 }
2658 }
2659 i += stripe;
2660 }
2661}
2662
2663static void __ext4_mb_scan_group(struct ext4_allocation_context *ac)
2664{
2665 bool is_stripe_aligned;
2666 struct ext4_sb_info *sbi;
2667 enum criteria cr = ac->ac_criteria;
2668
2669 ac->ac_groups_scanned++;
2670 if (cr == CR_POWER2_ALIGNED)
2671 return ext4_mb_simple_scan_group(ac, ac->ac_e4b);
2672
2673 sbi = EXT4_SB(ac->ac_sb);
2674 is_stripe_aligned = false;
2675 if ((sbi->s_stripe >= sbi->s_cluster_ratio) &&
2676 !(ac->ac_g_ex.fe_len % EXT4_NUM_B2C(sbi, sbi->s_stripe)))
2677 is_stripe_aligned = true;
2678
2679 if ((cr == CR_GOAL_LEN_FAST || cr == CR_BEST_AVAIL_LEN) &&
2680 is_stripe_aligned)
2681 ext4_mb_scan_aligned(ac, ac->ac_e4b);
2682
2683 if (ac->ac_status == AC_STATUS_CONTINUE)
2684 ext4_mb_complex_scan_group(ac, ac->ac_e4b);
2685}
2686
2687/*
2688 * This is also called BEFORE we load the buddy bitmap.
2689 * Returns either 1 or 0 indicating that the group is either suitable
2690 * for the allocation or not.
2691 */
2692static bool ext4_mb_good_group(struct ext4_allocation_context *ac,
2693 ext4_group_t group, enum criteria cr)
2694{
2695 ext4_grpblk_t free, fragments;
2696 int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
2697 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2698
2699 BUG_ON(cr < CR_POWER2_ALIGNED || cr >= EXT4_MB_NUM_CRS);
2700
2701 if (unlikely(!grp || EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2702 return false;
2703
2704 free = grp->bb_free;
2705 if (free == 0)
2706 return false;
2707
2708 fragments = grp->bb_fragments;
2709 if (fragments == 0)
2710 return false;
2711
2712 switch (cr) {
2713 case CR_POWER2_ALIGNED:
2714 BUG_ON(ac->ac_2order == 0);
2715
2716 /* Avoid using the first bg of a flexgroup for data files */
2717 if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
2718 (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
2719 ((group % flex_size) == 0))
2720 return false;
2721
2722 if (free < ac->ac_g_ex.fe_len)
2723 return false;
2724
2725 if (ac->ac_2order >= MB_NUM_ORDERS(ac->ac_sb))
2726 return true;
2727
2728 if (grp->bb_largest_free_order < ac->ac_2order)
2729 return false;
2730
2731 return true;
2732 case CR_GOAL_LEN_FAST:
2733 case CR_BEST_AVAIL_LEN:
2734 if ((free / fragments) >= ac->ac_g_ex.fe_len)
2735 return true;
2736 break;
2737 case CR_GOAL_LEN_SLOW:
2738 if (free >= ac->ac_g_ex.fe_len)
2739 return true;
2740 break;
2741 case CR_ANY_FREE:
2742 return true;
2743 default:
2744 BUG();
2745 }
2746
2747 return false;
2748}
2749
2750/*
2751 * This could return negative error code if something goes wrong
2752 * during ext4_mb_init_group(). This should not be called with
2753 * ext4_lock_group() held.
2754 *
2755 * Note: because we are conditionally operating with the group lock in
2756 * the EXT4_MB_STRICT_CHECK case, we need to fake out sparse in this
2757 * function using __acquire and __release. This means we need to be
2758 * super careful before messing with the error path handling via "goto
2759 * out"!
2760 */
2761static int ext4_mb_good_group_nolock(struct ext4_allocation_context *ac,
2762 ext4_group_t group, enum criteria cr)
2763{
2764 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2765 struct super_block *sb = ac->ac_sb;
2766 struct ext4_sb_info *sbi = EXT4_SB(sb);
2767 bool should_lock = ac->ac_flags & EXT4_MB_STRICT_CHECK;
2768 ext4_grpblk_t free;
2769 int ret = 0;
2770
2771 if (!grp)
2772 return -EFSCORRUPTED;
2773 if (sbi->s_mb_stats)
2774 atomic64_inc(&sbi->s_bal_cX_groups_considered[ac->ac_criteria]);
2775 if (should_lock) {
2776 ext4_lock_group(sb, group);
2777 __release(ext4_group_lock_ptr(sb, group));
2778 }
2779 free = grp->bb_free;
2780 if (free == 0)
2781 goto out;
2782 /*
2783 * In all criterias except CR_ANY_FREE we try to avoid groups that
2784 * can't possibly satisfy the full goal request due to insufficient
2785 * free blocks.
2786 */
2787 if (cr < CR_ANY_FREE && free < ac->ac_g_ex.fe_len)
2788 goto out;
2789 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2790 goto out;
2791 if (should_lock) {
2792 __acquire(ext4_group_lock_ptr(sb, group));
2793 ext4_unlock_group(sb, group);
2794 }
2795
2796 /* We only do this if the grp has never been initialized */
2797 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
2798 struct ext4_group_desc *gdp =
2799 ext4_get_group_desc(sb, group, NULL);
2800 int ret;
2801
2802 /*
2803 * CR_POWER2_ALIGNED/CR_GOAL_LEN_FAST is a very optimistic
2804 * search to find large good chunks almost for free. If buddy
2805 * data is not ready, then this optimization makes no sense. But
2806 * we never skip the first block group in a flex_bg, since this
2807 * gets used for metadata block allocation, and we want to make
2808 * sure we locate metadata blocks in the first block group in
2809 * the flex_bg if possible.
2810 */
2811 if (!ext4_mb_cr_expensive(cr) &&
2812 (!sbi->s_log_groups_per_flex ||
2813 ((group & ((1 << sbi->s_log_groups_per_flex) - 1)) != 0)) &&
2814 !(ext4_has_group_desc_csum(sb) &&
2815 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))))
2816 return 0;
2817 ret = ext4_mb_init_group(sb, group, GFP_NOFS);
2818 if (ret)
2819 return ret;
2820 }
2821
2822 if (should_lock) {
2823 ext4_lock_group(sb, group);
2824 __release(ext4_group_lock_ptr(sb, group));
2825 }
2826 ret = ext4_mb_good_group(ac, group, cr);
2827out:
2828 if (should_lock) {
2829 __acquire(ext4_group_lock_ptr(sb, group));
2830 ext4_unlock_group(sb, group);
2831 }
2832 return ret;
2833}
2834
2835/*
2836 * Start prefetching @nr block bitmaps starting at @group.
2837 * Return the next group which needs to be prefetched.
2838 */
2839ext4_group_t ext4_mb_prefetch(struct super_block *sb, ext4_group_t group,
2840 unsigned int nr, int *cnt)
2841{
2842 ext4_group_t ngroups = ext4_get_groups_count(sb);
2843 struct buffer_head *bh;
2844 struct blk_plug plug;
2845
2846 blk_start_plug(&plug);
2847 while (nr-- > 0) {
2848 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group,
2849 NULL);
2850 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
2851
2852 /*
2853 * Prefetch block groups with free blocks; but don't
2854 * bother if it is marked uninitialized on disk, since
2855 * it won't require I/O to read. Also only try to
2856 * prefetch once, so we avoid getblk() call, which can
2857 * be expensive.
2858 */
2859 if (gdp && grp && !EXT4_MB_GRP_TEST_AND_SET_READ(grp) &&
2860 EXT4_MB_GRP_NEED_INIT(grp) &&
2861 ext4_free_group_clusters(sb, gdp) > 0 ) {
2862 bh = ext4_read_block_bitmap_nowait(sb, group, true);
2863 if (bh && !IS_ERR(bh)) {
2864 if (!buffer_uptodate(bh) && cnt)
2865 (*cnt)++;
2866 brelse(bh);
2867 }
2868 }
2869 if (++group >= ngroups)
2870 group = 0;
2871 }
2872 blk_finish_plug(&plug);
2873 return group;
2874}
2875
2876/*
2877 * Batch reads of the block allocation bitmaps to get
2878 * multiple READs in flight; limit prefetching at inexpensive
2879 * CR, otherwise mballoc can spend a lot of time loading
2880 * imperfect groups
2881 */
2882static void ext4_mb_might_prefetch(struct ext4_allocation_context *ac,
2883 ext4_group_t group)
2884{
2885 struct ext4_sb_info *sbi;
2886
2887 if (ac->ac_prefetch_grp != group)
2888 return;
2889
2890 sbi = EXT4_SB(ac->ac_sb);
2891 if (ext4_mb_cr_expensive(ac->ac_criteria) ||
2892 ac->ac_prefetch_ios < sbi->s_mb_prefetch_limit) {
2893 unsigned int nr = sbi->s_mb_prefetch;
2894
2895 if (ext4_has_feature_flex_bg(ac->ac_sb)) {
2896 nr = 1 << sbi->s_log_groups_per_flex;
2897 nr -= group & (nr - 1);
2898 nr = umin(nr, sbi->s_mb_prefetch);
2899 }
2900
2901 ac->ac_prefetch_nr = nr;
2902 ac->ac_prefetch_grp = ext4_mb_prefetch(ac->ac_sb, group, nr,
2903 &ac->ac_prefetch_ios);
2904 }
2905}
2906
2907/*
2908 * Prefetching reads the block bitmap into the buffer cache; but we
2909 * need to make sure that the buddy bitmap in the page cache has been
2910 * initialized. Note that ext4_mb_init_group() will block if the I/O
2911 * is not yet completed, or indeed if it was not initiated by
2912 * ext4_mb_prefetch did not start the I/O.
2913 *
2914 * TODO: We should actually kick off the buddy bitmap setup in a work
2915 * queue when the buffer I/O is completed, so that we don't block
2916 * waiting for the block allocation bitmap read to finish when
2917 * ext4_mb_prefetch_fini is called from ext4_mb_regular_allocator().
2918 */
2919void ext4_mb_prefetch_fini(struct super_block *sb, ext4_group_t group,
2920 unsigned int nr)
2921{
2922 struct ext4_group_desc *gdp;
2923 struct ext4_group_info *grp;
2924
2925 while (nr-- > 0) {
2926 if (!group)
2927 group = ext4_get_groups_count(sb);
2928 group--;
2929 gdp = ext4_get_group_desc(sb, group, NULL);
2930 grp = ext4_get_group_info(sb, group);
2931
2932 if (grp && gdp && EXT4_MB_GRP_NEED_INIT(grp) &&
2933 ext4_free_group_clusters(sb, gdp) > 0) {
2934 if (ext4_mb_init_group(sb, group, GFP_NOFS))
2935 break;
2936 }
2937 }
2938}
2939
2940static int ext4_mb_scan_group(struct ext4_allocation_context *ac,
2941 ext4_group_t group)
2942{
2943 int ret;
2944 struct super_block *sb = ac->ac_sb;
2945 enum criteria cr = ac->ac_criteria;
2946
2947 ext4_mb_might_prefetch(ac, group);
2948
2949 /* prevent unnecessary buddy loading. */
2950 if (cr < CR_ANY_FREE && spin_is_locked(ext4_group_lock_ptr(sb, group)))
2951 return 0;
2952
2953 /* This now checks without needing the buddy folio */
2954 ret = ext4_mb_good_group_nolock(ac, group, cr);
2955 if (ret <= 0) {
2956 if (!ac->ac_first_err)
2957 ac->ac_first_err = ret;
2958 return 0;
2959 }
2960
2961 ret = ext4_mb_load_buddy(sb, group, ac->ac_e4b);
2962 if (ret)
2963 return ret;
2964
2965 /* skip busy group */
2966 if (cr >= CR_ANY_FREE)
2967 ext4_lock_group(sb, group);
2968 else if (!ext4_try_lock_group(sb, group))
2969 goto out_unload;
2970
2971 /* We need to check again after locking the block group. */
2972 if (unlikely(!ext4_mb_good_group(ac, group, cr)))
2973 goto out_unlock;
2974
2975 __ext4_mb_scan_group(ac);
2976
2977out_unlock:
2978 ext4_unlock_group(sb, group);
2979out_unload:
2980 ext4_mb_unload_buddy(ac->ac_e4b);
2981 return ret;
2982}
2983
2984static noinline_for_stack int
2985ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
2986{
2987 ext4_group_t i;
2988 int err = 0;
2989 struct super_block *sb = ac->ac_sb;
2990 struct ext4_sb_info *sbi = EXT4_SB(sb);
2991 struct ext4_buddy e4b;
2992
2993 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2994
2995 /* first, try the goal */
2996 err = ext4_mb_find_by_goal(ac, &e4b);
2997 if (err || ac->ac_status == AC_STATUS_FOUND)
2998 goto out;
2999
3000 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
3001 goto out;
3002
3003 /*
3004 * ac->ac_2order is set only if the fe_len is a power of 2
3005 * if ac->ac_2order is set we also set criteria to CR_POWER2_ALIGNED
3006 * so that we try exact allocation using buddy.
3007 */
3008 i = fls(ac->ac_g_ex.fe_len);
3009 ac->ac_2order = 0;
3010 /*
3011 * We search using buddy data only if the order of the request
3012 * is greater than equal to the sbi_s_mb_order2_reqs
3013 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
3014 * We also support searching for power-of-two requests only for
3015 * requests upto maximum buddy size we have constructed.
3016 */
3017 if (i >= sbi->s_mb_order2_reqs && i <= MB_NUM_ORDERS(sb)) {
3018 if (is_power_of_2(ac->ac_g_ex.fe_len))
3019 ac->ac_2order = array_index_nospec(i - 1,
3020 MB_NUM_ORDERS(sb));
3021 }
3022
3023 /* if stream allocation is enabled, use global goal */
3024 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
3025 int hash = ac->ac_inode->i_ino % sbi->s_mb_nr_global_goals;
3026
3027 ac->ac_g_ex.fe_group = READ_ONCE(sbi->s_mb_last_groups[hash]);
3028 ac->ac_g_ex.fe_start = -1;
3029 ac->ac_flags &= ~EXT4_MB_HINT_TRY_GOAL;
3030 }
3031
3032 /*
3033 * Let's just scan groups to find more-less suitable blocks We
3034 * start with CR_GOAL_LEN_FAST, unless it is power of 2
3035 * aligned, in which case let's do that faster approach first.
3036 */
3037 ac->ac_criteria = CR_GOAL_LEN_FAST;
3038 if (ac->ac_2order)
3039 ac->ac_criteria = CR_POWER2_ALIGNED;
3040
3041 ac->ac_e4b = &e4b;
3042 ac->ac_prefetch_ios = 0;
3043 ac->ac_first_err = 0;
3044repeat:
3045 while (ac->ac_criteria < EXT4_MB_NUM_CRS) {
3046 err = ext4_mb_scan_groups(ac);
3047 if (err)
3048 goto out;
3049
3050 if (ac->ac_status != AC_STATUS_CONTINUE)
3051 break;
3052 }
3053
3054 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
3055 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
3056 /*
3057 * We've been searching too long. Let's try to allocate
3058 * the best chunk we've found so far
3059 */
3060 ext4_mb_try_best_found(ac, &e4b);
3061 if (ac->ac_status != AC_STATUS_FOUND) {
3062 int lost;
3063
3064 /*
3065 * Someone more lucky has already allocated it.
3066 * The only thing we can do is just take first
3067 * found block(s)
3068 */
3069 lost = atomic_inc_return(&sbi->s_mb_lost_chunks);
3070 mb_debug(sb, "lost chunk, group: %u, start: %d, len: %d, lost: %d\n",
3071 ac->ac_b_ex.fe_group, ac->ac_b_ex.fe_start,
3072 ac->ac_b_ex.fe_len, lost);
3073
3074 ac->ac_b_ex.fe_group = 0;
3075 ac->ac_b_ex.fe_start = 0;
3076 ac->ac_b_ex.fe_len = 0;
3077 ac->ac_status = AC_STATUS_CONTINUE;
3078 ac->ac_flags |= EXT4_MB_HINT_FIRST;
3079 ac->ac_criteria = CR_ANY_FREE;
3080 goto repeat;
3081 }
3082 }
3083
3084 if (sbi->s_mb_stats && ac->ac_status == AC_STATUS_FOUND) {
3085 atomic64_inc(&sbi->s_bal_cX_hits[ac->ac_criteria]);
3086 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC &&
3087 ac->ac_b_ex.fe_group == ac->ac_g_ex.fe_group)
3088 atomic_inc(&sbi->s_bal_stream_goals);
3089 }
3090out:
3091 if (!err && ac->ac_status != AC_STATUS_FOUND && ac->ac_first_err)
3092 err = ac->ac_first_err;
3093
3094 mb_debug(sb, "Best len %d, origin len %d, ac_status %u, ac_flags 0x%x, cr %d ret %d\n",
3095 ac->ac_b_ex.fe_len, ac->ac_o_ex.fe_len, ac->ac_status,
3096 ac->ac_flags, ac->ac_criteria, err);
3097
3098 if (ac->ac_prefetch_nr)
3099 ext4_mb_prefetch_fini(sb, ac->ac_prefetch_grp, ac->ac_prefetch_nr);
3100
3101 return err;
3102}
3103
3104static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
3105{
3106 struct super_block *sb = pde_data(file_inode(seq->file));
3107 ext4_group_t group;
3108
3109 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
3110 return NULL;
3111 group = *pos + 1;
3112 return (void *) ((unsigned long) group);
3113}
3114
3115static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
3116{
3117 struct super_block *sb = pde_data(file_inode(seq->file));
3118 ext4_group_t group;
3119
3120 ++*pos;
3121 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
3122 return NULL;
3123 group = *pos + 1;
3124 return (void *) ((unsigned long) group);
3125}
3126
3127static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
3128{
3129 struct super_block *sb = pde_data(file_inode(seq->file));
3130 ext4_group_t group = (ext4_group_t) ((unsigned long) v);
3131 int i, err;
3132 char nbuf[16];
3133 struct ext4_buddy e4b;
3134 struct ext4_group_info *grinfo;
3135 unsigned char blocksize_bits = min_t(unsigned char,
3136 sb->s_blocksize_bits,
3137 EXT4_MAX_BLOCK_LOG_SIZE);
3138 DEFINE_RAW_FLEX(struct ext4_group_info, sg, bb_counters,
3139 EXT4_MAX_BLOCK_LOG_SIZE + 2);
3140
3141 group--;
3142 if (group == 0)
3143 seq_puts(seq, "#group: free frags first ["
3144 " 2^0 2^1 2^2 2^3 2^4 2^5 2^6 "
3145 " 2^7 2^8 2^9 2^10 2^11 2^12 2^13 ]\n");
3146
3147 i = (blocksize_bits + 2) * sizeof(sg->bb_counters[0]) +
3148 sizeof(struct ext4_group_info);
3149
3150 grinfo = ext4_get_group_info(sb, group);
3151 if (!grinfo)
3152 return 0;
3153 /* Load the group info in memory only if not already loaded. */
3154 if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) {
3155 err = ext4_mb_load_buddy(sb, group, &e4b);
3156 if (err) {
3157 seq_printf(seq, "#%-5u: %s\n", group, ext4_decode_error(NULL, err, nbuf));
3158 return 0;
3159 }
3160 ext4_mb_unload_buddy(&e4b);
3161 }
3162
3163 /*
3164 * We care only about free space counters in the group info and
3165 * these are safe to access even after the buddy has been unloaded
3166 */
3167 memcpy(sg, grinfo, i);
3168 seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg->bb_free,
3169 sg->bb_fragments, sg->bb_first_free);
3170 for (i = 0; i <= 13; i++)
3171 seq_printf(seq, " %-5u", i <= blocksize_bits + 1 ?
3172 sg->bb_counters[i] : 0);
3173 seq_puts(seq, " ]");
3174 if (EXT4_MB_GRP_BBITMAP_CORRUPT(sg))
3175 seq_puts(seq, " Block bitmap corrupted!");
3176 seq_putc(seq, '\n');
3177 return 0;
3178}
3179
3180static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
3181{
3182}
3183
3184const struct seq_operations ext4_mb_seq_groups_ops = {
3185 .start = ext4_mb_seq_groups_start,
3186 .next = ext4_mb_seq_groups_next,
3187 .stop = ext4_mb_seq_groups_stop,
3188 .show = ext4_mb_seq_groups_show,
3189};
3190
3191int ext4_seq_mb_stats_show(struct seq_file *seq, void *offset)
3192{
3193 struct super_block *sb = seq->private;
3194 struct ext4_sb_info *sbi = EXT4_SB(sb);
3195
3196 seq_puts(seq, "mballoc:\n");
3197 if (!sbi->s_mb_stats) {
3198 seq_puts(seq, "\tmb stats collection turned off.\n");
3199 seq_puts(
3200 seq,
3201 "\tTo enable, please write \"1\" to sysfs file mb_stats.\n");
3202 return 0;
3203 }
3204 seq_printf(seq, "\treqs: %u\n", atomic_read(&sbi->s_bal_reqs));
3205 seq_printf(seq, "\tsuccess: %u\n", atomic_read(&sbi->s_bal_success));
3206
3207 seq_printf(seq, "\tgroups_scanned: %u\n",
3208 atomic_read(&sbi->s_bal_groups_scanned));
3209
3210 /* CR_POWER2_ALIGNED stats */
3211 seq_puts(seq, "\tcr_p2_aligned_stats:\n");
3212 seq_printf(seq, "\t\thits: %llu\n",
3213 atomic64_read(&sbi->s_bal_cX_hits[CR_POWER2_ALIGNED]));
3214 seq_printf(
3215 seq, "\t\tgroups_considered: %llu\n",
3216 atomic64_read(
3217 &sbi->s_bal_cX_groups_considered[CR_POWER2_ALIGNED]));
3218 seq_printf(seq, "\t\textents_scanned: %u\n",
3219 atomic_read(&sbi->s_bal_cX_ex_scanned[CR_POWER2_ALIGNED]));
3220 seq_printf(seq, "\t\tuseless_loops: %llu\n",
3221 atomic64_read(&sbi->s_bal_cX_failed[CR_POWER2_ALIGNED]));
3222
3223 /* CR_GOAL_LEN_FAST stats */
3224 seq_puts(seq, "\tcr_goal_fast_stats:\n");
3225 seq_printf(seq, "\t\thits: %llu\n",
3226 atomic64_read(&sbi->s_bal_cX_hits[CR_GOAL_LEN_FAST]));
3227 seq_printf(seq, "\t\tgroups_considered: %llu\n",
3228 atomic64_read(
3229 &sbi->s_bal_cX_groups_considered[CR_GOAL_LEN_FAST]));
3230 seq_printf(seq, "\t\textents_scanned: %u\n",
3231 atomic_read(&sbi->s_bal_cX_ex_scanned[CR_GOAL_LEN_FAST]));
3232 seq_printf(seq, "\t\tuseless_loops: %llu\n",
3233 atomic64_read(&sbi->s_bal_cX_failed[CR_GOAL_LEN_FAST]));
3234
3235 /* CR_BEST_AVAIL_LEN stats */
3236 seq_puts(seq, "\tcr_best_avail_stats:\n");
3237 seq_printf(seq, "\t\thits: %llu\n",
3238 atomic64_read(&sbi->s_bal_cX_hits[CR_BEST_AVAIL_LEN]));
3239 seq_printf(
3240 seq, "\t\tgroups_considered: %llu\n",
3241 atomic64_read(
3242 &sbi->s_bal_cX_groups_considered[CR_BEST_AVAIL_LEN]));
3243 seq_printf(seq, "\t\textents_scanned: %u\n",
3244 atomic_read(&sbi->s_bal_cX_ex_scanned[CR_BEST_AVAIL_LEN]));
3245 seq_printf(seq, "\t\tuseless_loops: %llu\n",
3246 atomic64_read(&sbi->s_bal_cX_failed[CR_BEST_AVAIL_LEN]));
3247
3248 /* CR_GOAL_LEN_SLOW stats */
3249 seq_puts(seq, "\tcr_goal_slow_stats:\n");
3250 seq_printf(seq, "\t\thits: %llu\n",
3251 atomic64_read(&sbi->s_bal_cX_hits[CR_GOAL_LEN_SLOW]));
3252 seq_printf(seq, "\t\tgroups_considered: %llu\n",
3253 atomic64_read(
3254 &sbi->s_bal_cX_groups_considered[CR_GOAL_LEN_SLOW]));
3255 seq_printf(seq, "\t\textents_scanned: %u\n",
3256 atomic_read(&sbi->s_bal_cX_ex_scanned[CR_GOAL_LEN_SLOW]));
3257 seq_printf(seq, "\t\tuseless_loops: %llu\n",
3258 atomic64_read(&sbi->s_bal_cX_failed[CR_GOAL_LEN_SLOW]));
3259
3260 /* CR_ANY_FREE stats */
3261 seq_puts(seq, "\tcr_any_free_stats:\n");
3262 seq_printf(seq, "\t\thits: %llu\n",
3263 atomic64_read(&sbi->s_bal_cX_hits[CR_ANY_FREE]));
3264 seq_printf(
3265 seq, "\t\tgroups_considered: %llu\n",
3266 atomic64_read(&sbi->s_bal_cX_groups_considered[CR_ANY_FREE]));
3267 seq_printf(seq, "\t\textents_scanned: %u\n",
3268 atomic_read(&sbi->s_bal_cX_ex_scanned[CR_ANY_FREE]));
3269 seq_printf(seq, "\t\tuseless_loops: %llu\n",
3270 atomic64_read(&sbi->s_bal_cX_failed[CR_ANY_FREE]));
3271
3272 /* Aggregates */
3273 seq_printf(seq, "\textents_scanned: %u\n",
3274 atomic_read(&sbi->s_bal_ex_scanned));
3275 seq_printf(seq, "\t\tgoal_hits: %u\n", atomic_read(&sbi->s_bal_goals));
3276 seq_printf(seq, "\t\tstream_goal_hits: %u\n",
3277 atomic_read(&sbi->s_bal_stream_goals));
3278 seq_printf(seq, "\t\tlen_goal_hits: %u\n",
3279 atomic_read(&sbi->s_bal_len_goals));
3280 seq_printf(seq, "\t\t2^n_hits: %u\n", atomic_read(&sbi->s_bal_2orders));
3281 seq_printf(seq, "\t\tbreaks: %u\n", atomic_read(&sbi->s_bal_breaks));
3282 seq_printf(seq, "\t\tlost: %u\n", atomic_read(&sbi->s_mb_lost_chunks));
3283 seq_printf(seq, "\tbuddies_generated: %u/%u\n",
3284 atomic_read(&sbi->s_mb_buddies_generated),
3285 ext4_get_groups_count(sb));
3286 seq_printf(seq, "\tbuddies_time_used: %llu\n",
3287 atomic64_read(&sbi->s_mb_generation_time));
3288 seq_printf(seq, "\tpreallocated: %u\n",
3289 atomic_read(&sbi->s_mb_preallocated));
3290 seq_printf(seq, "\tdiscarded: %u\n", atomic_read(&sbi->s_mb_discarded));
3291 return 0;
3292}
3293
3294static void *ext4_mb_seq_structs_summary_start(struct seq_file *seq, loff_t *pos)
3295{
3296 struct super_block *sb = pde_data(file_inode(seq->file));
3297 unsigned long position;
3298
3299 if (*pos < 0 || *pos >= 2*MB_NUM_ORDERS(sb))
3300 return NULL;
3301 position = *pos + 1;
3302 return (void *) ((unsigned long) position);
3303}
3304
3305static void *ext4_mb_seq_structs_summary_next(struct seq_file *seq, void *v, loff_t *pos)
3306{
3307 struct super_block *sb = pde_data(file_inode(seq->file));
3308 unsigned long position;
3309
3310 ++*pos;
3311 if (*pos < 0 || *pos >= 2*MB_NUM_ORDERS(sb))
3312 return NULL;
3313 position = *pos + 1;
3314 return (void *) ((unsigned long) position);
3315}
3316
3317static int ext4_mb_seq_structs_summary_show(struct seq_file *seq, void *v)
3318{
3319 struct super_block *sb = pde_data(file_inode(seq->file));
3320 struct ext4_sb_info *sbi = EXT4_SB(sb);
3321 unsigned long position = ((unsigned long) v);
3322 struct ext4_group_info *grp;
3323 unsigned int count;
3324 unsigned long idx;
3325
3326 position--;
3327 if (position >= MB_NUM_ORDERS(sb)) {
3328 position -= MB_NUM_ORDERS(sb);
3329 if (position == 0)
3330 seq_puts(seq, "avg_fragment_size_lists:\n");
3331
3332 count = 0;
3333 xa_for_each(&sbi->s_mb_avg_fragment_size[position], idx, grp)
3334 count++;
3335 seq_printf(seq, "\tlist_order_%u_groups: %u\n",
3336 (unsigned int)position, count);
3337 return 0;
3338 }
3339
3340 if (position == 0) {
3341 seq_printf(seq, "optimize_scan: %d\n",
3342 test_opt2(sb, MB_OPTIMIZE_SCAN) ? 1 : 0);
3343 seq_puts(seq, "max_free_order_lists:\n");
3344 }
3345 count = 0;
3346 xa_for_each(&sbi->s_mb_largest_free_orders[position], idx, grp)
3347 count++;
3348 seq_printf(seq, "\tlist_order_%u_groups: %u\n",
3349 (unsigned int)position, count);
3350
3351 return 0;
3352}
3353
3354static void ext4_mb_seq_structs_summary_stop(struct seq_file *seq, void *v)
3355{
3356}
3357
3358const struct seq_operations ext4_mb_seq_structs_summary_ops = {
3359 .start = ext4_mb_seq_structs_summary_start,
3360 .next = ext4_mb_seq_structs_summary_next,
3361 .stop = ext4_mb_seq_structs_summary_stop,
3362 .show = ext4_mb_seq_structs_summary_show,
3363};
3364
3365static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
3366{
3367 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
3368 struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
3369
3370 BUG_ON(!cachep);
3371 return cachep;
3372}
3373
3374/*
3375 * Allocate the top-level s_group_info array for the specified number
3376 * of groups
3377 */
3378int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups)
3379{
3380 struct ext4_sb_info *sbi = EXT4_SB(sb);
3381 unsigned size;
3382 struct ext4_group_info ***old_groupinfo, ***new_groupinfo;
3383
3384 size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >>
3385 EXT4_DESC_PER_BLOCK_BITS(sb);
3386 if (size <= sbi->s_group_info_size)
3387 return 0;
3388
3389 size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size);
3390 new_groupinfo = kvzalloc(size, GFP_KERNEL);
3391 if (!new_groupinfo) {
3392 ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
3393 return -ENOMEM;
3394 }
3395 rcu_read_lock();
3396 old_groupinfo = rcu_dereference(sbi->s_group_info);
3397 if (old_groupinfo)
3398 memcpy(new_groupinfo, old_groupinfo,
3399 sbi->s_group_info_size * sizeof(*sbi->s_group_info));
3400 rcu_read_unlock();
3401 rcu_assign_pointer(sbi->s_group_info, new_groupinfo);
3402 sbi->s_group_info_size = size / sizeof(*sbi->s_group_info);
3403 if (old_groupinfo)
3404 ext4_kvfree_array_rcu(old_groupinfo);
3405 ext4_debug("allocated s_groupinfo array for %d meta_bg's\n",
3406 sbi->s_group_info_size);
3407 return 0;
3408}
3409
3410/* Create and initialize ext4_group_info data for the given group. */
3411int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
3412 struct ext4_group_desc *desc)
3413{
3414 int i;
3415 int metalen = 0;
3416 int idx = group >> EXT4_DESC_PER_BLOCK_BITS(sb);
3417 struct ext4_sb_info *sbi = EXT4_SB(sb);
3418 struct ext4_group_info **meta_group_info;
3419 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
3420
3421 /*
3422 * First check if this group is the first of a reserved block.
3423 * If it's true, we have to allocate a new table of pointers
3424 * to ext4_group_info structures
3425 */
3426 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
3427 metalen = sizeof(*meta_group_info) <<
3428 EXT4_DESC_PER_BLOCK_BITS(sb);
3429 meta_group_info = kmalloc(metalen, GFP_NOFS);
3430 if (meta_group_info == NULL) {
3431 ext4_msg(sb, KERN_ERR, "can't allocate mem "
3432 "for a buddy group");
3433 return -ENOMEM;
3434 }
3435 rcu_read_lock();
3436 rcu_dereference(sbi->s_group_info)[idx] = meta_group_info;
3437 rcu_read_unlock();
3438 }
3439
3440 meta_group_info = sbi_array_rcu_deref(sbi, s_group_info, idx);
3441 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
3442
3443 meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS);
3444 if (meta_group_info[i] == NULL) {
3445 ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
3446 goto exit_group_info;
3447 }
3448 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
3449 &(meta_group_info[i]->bb_state));
3450
3451 /*
3452 * initialize bb_free to be able to skip
3453 * empty groups without initialization
3454 */
3455 if (ext4_has_group_desc_csum(sb) &&
3456 (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
3457 meta_group_info[i]->bb_free =
3458 ext4_free_clusters_after_init(sb, group, desc);
3459 } else {
3460 meta_group_info[i]->bb_free =
3461 ext4_free_group_clusters(sb, desc);
3462 }
3463
3464 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
3465 init_rwsem(&meta_group_info[i]->alloc_sem);
3466 meta_group_info[i]->bb_free_root = RB_ROOT;
3467 meta_group_info[i]->bb_largest_free_order = -1; /* uninit */
3468 meta_group_info[i]->bb_avg_fragment_size_order = -1; /* uninit */
3469 meta_group_info[i]->bb_group = group;
3470
3471 mb_group_bb_bitmap_alloc(sb, meta_group_info[i], group);
3472 return 0;
3473
3474exit_group_info:
3475 /* If a meta_group_info table has been allocated, release it now */
3476 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
3477 struct ext4_group_info ***group_info;
3478
3479 rcu_read_lock();
3480 group_info = rcu_dereference(sbi->s_group_info);
3481 kfree(group_info[idx]);
3482 group_info[idx] = NULL;
3483 rcu_read_unlock();
3484 }
3485 return -ENOMEM;
3486} /* ext4_mb_add_groupinfo */
3487
3488static int ext4_mb_init_backend(struct super_block *sb)
3489{
3490 ext4_group_t ngroups = ext4_get_groups_count(sb);
3491 ext4_group_t i;
3492 struct ext4_sb_info *sbi = EXT4_SB(sb);
3493 int err;
3494 struct ext4_group_desc *desc;
3495 struct ext4_group_info ***group_info;
3496 struct kmem_cache *cachep;
3497
3498 err = ext4_mb_alloc_groupinfo(sb, ngroups);
3499 if (err)
3500 return err;
3501
3502 sbi->s_buddy_cache = new_inode(sb);
3503 if (sbi->s_buddy_cache == NULL) {
3504 ext4_msg(sb, KERN_ERR, "can't get new inode");
3505 goto err_freesgi;
3506 }
3507 /* To avoid potentially colliding with an valid on-disk inode number,
3508 * use EXT4_BAD_INO for the buddy cache inode number. This inode is
3509 * not in the inode hash, so it should never be found by iget(), but
3510 * this will avoid confusion if it ever shows up during debugging. */
3511 sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
3512 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
3513 ext4_set_inode_mapping_order(sbi->s_buddy_cache);
3514
3515 for (i = 0; i < ngroups; i++) {
3516 cond_resched();
3517 desc = ext4_get_group_desc(sb, i, NULL);
3518 if (desc == NULL) {
3519 ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
3520 goto err_freebuddy;
3521 }
3522 if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
3523 goto err_freebuddy;
3524 }
3525
3526 if (ext4_has_feature_flex_bg(sb)) {
3527 /* a single flex group is supposed to be read by a single IO.
3528 * 2 ^ s_log_groups_per_flex != UINT_MAX as s_mb_prefetch is
3529 * unsigned integer, so the maximum shift is 32.
3530 */
3531 if (sbi->s_es->s_log_groups_per_flex >= 32) {
3532 ext4_msg(sb, KERN_ERR, "too many log groups per flexible block group");
3533 goto err_freebuddy;
3534 }
3535 sbi->s_mb_prefetch = min_t(uint, 1 << sbi->s_es->s_log_groups_per_flex,
3536 BLK_MAX_SEGMENT_SIZE >> (sb->s_blocksize_bits - 9));
3537 sbi->s_mb_prefetch *= 8; /* 8 prefetch IOs in flight at most */
3538 } else {
3539 sbi->s_mb_prefetch = 32;
3540 }
3541 if (sbi->s_mb_prefetch > ext4_get_groups_count(sb))
3542 sbi->s_mb_prefetch = ext4_get_groups_count(sb);
3543 /*
3544 * now many real IOs to prefetch within a single allocation at
3545 * CR_POWER2_ALIGNED. Given CR_POWER2_ALIGNED is an CPU-related
3546 * optimization we shouldn't try to load too many groups, at some point
3547 * we should start to use what we've got in memory.
3548 * with an average random access time 5ms, it'd take a second to get
3549 * 200 groups (* N with flex_bg), so let's make this limit 4
3550 */
3551 sbi->s_mb_prefetch_limit = sbi->s_mb_prefetch * 4;
3552 if (sbi->s_mb_prefetch_limit > ext4_get_groups_count(sb))
3553 sbi->s_mb_prefetch_limit = ext4_get_groups_count(sb);
3554
3555 return 0;
3556
3557err_freebuddy:
3558 cachep = get_groupinfo_cache(sb->s_blocksize_bits);
3559 while (i-- > 0) {
3560 struct ext4_group_info *grp = ext4_get_group_info(sb, i);
3561
3562 if (grp)
3563 kmem_cache_free(cachep, grp);
3564 }
3565 i = sbi->s_group_info_size;
3566 rcu_read_lock();
3567 group_info = rcu_dereference(sbi->s_group_info);
3568 while (i-- > 0)
3569 kfree(group_info[i]);
3570 rcu_read_unlock();
3571 iput(sbi->s_buddy_cache);
3572err_freesgi:
3573 rcu_read_lock();
3574 kvfree(rcu_dereference(sbi->s_group_info));
3575 rcu_read_unlock();
3576 return -ENOMEM;
3577}
3578
3579static void ext4_groupinfo_destroy_slabs(void)
3580{
3581 int i;
3582
3583 for (i = 0; i < NR_GRPINFO_CACHES; i++) {
3584 kmem_cache_destroy(ext4_groupinfo_caches[i]);
3585 ext4_groupinfo_caches[i] = NULL;
3586 }
3587}
3588
3589static int ext4_groupinfo_create_slab(size_t size)
3590{
3591 static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
3592 int slab_size;
3593 int blocksize_bits = order_base_2(size);
3594 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
3595 struct kmem_cache *cachep;
3596
3597 if (cache_index >= NR_GRPINFO_CACHES)
3598 return -EINVAL;
3599
3600 if (unlikely(cache_index < 0))
3601 cache_index = 0;
3602
3603 mutex_lock(&ext4_grpinfo_slab_create_mutex);
3604 if (ext4_groupinfo_caches[cache_index]) {
3605 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
3606 return 0; /* Already created */
3607 }
3608
3609 slab_size = offsetof(struct ext4_group_info,
3610 bb_counters[blocksize_bits + 2]);
3611
3612 cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
3613 slab_size, 0, SLAB_RECLAIM_ACCOUNT,
3614 NULL);
3615
3616 ext4_groupinfo_caches[cache_index] = cachep;
3617
3618 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
3619 if (!cachep) {
3620 printk(KERN_EMERG
3621 "EXT4-fs: no memory for groupinfo slab cache\n");
3622 return -ENOMEM;
3623 }
3624
3625 return 0;
3626}
3627
3628static void ext4_discard_work(struct work_struct *work)
3629{
3630 struct ext4_sb_info *sbi = container_of(work,
3631 struct ext4_sb_info, s_discard_work);
3632 struct super_block *sb = sbi->s_sb;
3633 struct ext4_free_data *fd, *nfd;
3634 struct ext4_buddy e4b;
3635 LIST_HEAD(discard_list);
3636 ext4_group_t grp, load_grp;
3637 int err = 0;
3638
3639 spin_lock(&sbi->s_md_lock);
3640 list_splice_init(&sbi->s_discard_list, &discard_list);
3641 spin_unlock(&sbi->s_md_lock);
3642
3643 load_grp = UINT_MAX;
3644 list_for_each_entry_safe(fd, nfd, &discard_list, efd_list) {
3645 /*
3646 * If filesystem is umounting or no memory or suffering
3647 * from no space, give up the discard
3648 */
3649 if ((sb->s_flags & SB_ACTIVE) && !err &&
3650 !atomic_read(&sbi->s_retry_alloc_pending)) {
3651 grp = fd->efd_group;
3652 if (grp != load_grp) {
3653 if (load_grp != UINT_MAX)
3654 ext4_mb_unload_buddy(&e4b);
3655
3656 err = ext4_mb_load_buddy(sb, grp, &e4b);
3657 if (err) {
3658 kmem_cache_free(ext4_free_data_cachep, fd);
3659 load_grp = UINT_MAX;
3660 continue;
3661 } else {
3662 load_grp = grp;
3663 }
3664 }
3665
3666 ext4_lock_group(sb, grp);
3667 ext4_try_to_trim_range(sb, &e4b, fd->efd_start_cluster,
3668 fd->efd_start_cluster + fd->efd_count - 1, 1);
3669 ext4_unlock_group(sb, grp);
3670 }
3671 kmem_cache_free(ext4_free_data_cachep, fd);
3672 }
3673
3674 if (load_grp != UINT_MAX)
3675 ext4_mb_unload_buddy(&e4b);
3676}
3677
3678static inline void ext4_mb_avg_fragment_size_destroy(struct ext4_sb_info *sbi)
3679{
3680 if (!sbi->s_mb_avg_fragment_size)
3681 return;
3682
3683 for (int i = 0; i < MB_NUM_ORDERS(sbi->s_sb); i++)
3684 xa_destroy(&sbi->s_mb_avg_fragment_size[i]);
3685
3686 kfree(sbi->s_mb_avg_fragment_size);
3687 sbi->s_mb_avg_fragment_size = NULL;
3688}
3689
3690static inline void ext4_mb_largest_free_orders_destroy(struct ext4_sb_info *sbi)
3691{
3692 if (!sbi->s_mb_largest_free_orders)
3693 return;
3694
3695 for (int i = 0; i < MB_NUM_ORDERS(sbi->s_sb); i++)
3696 xa_destroy(&sbi->s_mb_largest_free_orders[i]);
3697
3698 kfree(sbi->s_mb_largest_free_orders);
3699 sbi->s_mb_largest_free_orders = NULL;
3700}
3701
3702int ext4_mb_init(struct super_block *sb)
3703{
3704 struct ext4_sb_info *sbi = EXT4_SB(sb);
3705 unsigned i, j;
3706 unsigned offset, offset_incr;
3707 unsigned max;
3708 int ret;
3709
3710 i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_offsets);
3711
3712 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
3713 if (sbi->s_mb_offsets == NULL) {
3714 ret = -ENOMEM;
3715 goto out;
3716 }
3717
3718 i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_maxs);
3719 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
3720 if (sbi->s_mb_maxs == NULL) {
3721 ret = -ENOMEM;
3722 goto out;
3723 }
3724
3725 ret = ext4_groupinfo_create_slab(sb->s_blocksize);
3726 if (ret < 0)
3727 goto out;
3728
3729 /* order 0 is regular bitmap */
3730 sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
3731 sbi->s_mb_offsets[0] = 0;
3732
3733 i = 1;
3734 offset = 0;
3735 offset_incr = 1 << (sb->s_blocksize_bits - 1);
3736 max = sb->s_blocksize << 2;
3737 do {
3738 sbi->s_mb_offsets[i] = offset;
3739 sbi->s_mb_maxs[i] = max;
3740 offset += offset_incr;
3741 offset_incr = offset_incr >> 1;
3742 max = max >> 1;
3743 i++;
3744 } while (i < MB_NUM_ORDERS(sb));
3745
3746 sbi->s_mb_avg_fragment_size =
3747 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct xarray),
3748 GFP_KERNEL);
3749 if (!sbi->s_mb_avg_fragment_size) {
3750 ret = -ENOMEM;
3751 goto out;
3752 }
3753 for (i = 0; i < MB_NUM_ORDERS(sb); i++)
3754 xa_init(&sbi->s_mb_avg_fragment_size[i]);
3755
3756 sbi->s_mb_largest_free_orders =
3757 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct xarray),
3758 GFP_KERNEL);
3759 if (!sbi->s_mb_largest_free_orders) {
3760 ret = -ENOMEM;
3761 goto out;
3762 }
3763 for (i = 0; i < MB_NUM_ORDERS(sb); i++)
3764 xa_init(&sbi->s_mb_largest_free_orders[i]);
3765
3766 spin_lock_init(&sbi->s_md_lock);
3767 atomic_set(&sbi->s_mb_free_pending, 0);
3768 INIT_LIST_HEAD(&sbi->s_freed_data_list[0]);
3769 INIT_LIST_HEAD(&sbi->s_freed_data_list[1]);
3770 INIT_LIST_HEAD(&sbi->s_discard_list);
3771 INIT_WORK(&sbi->s_discard_work, ext4_discard_work);
3772 atomic_set(&sbi->s_retry_alloc_pending, 0);
3773
3774 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
3775 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
3776 sbi->s_mb_stats = MB_DEFAULT_STATS;
3777 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
3778 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
3779 sbi->s_mb_best_avail_max_trim_order = MB_DEFAULT_BEST_AVAIL_TRIM_ORDER;
3780
3781 /*
3782 * The default group preallocation is 512, which for 4k block
3783 * sizes translates to 2 megabytes. However for bigalloc file
3784 * systems, this is probably too big (i.e, if the cluster size
3785 * is 1 megabyte, then group preallocation size becomes half a
3786 * gigabyte!). As a default, we will keep a two megabyte
3787 * group pralloc size for cluster sizes up to 64k, and after
3788 * that, we will force a minimum group preallocation size of
3789 * 32 clusters. This translates to 8 megs when the cluster
3790 * size is 256k, and 32 megs when the cluster size is 1 meg,
3791 * which seems reasonable as a default.
3792 */
3793 sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
3794 sbi->s_cluster_bits, 32);
3795 /*
3796 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
3797 * to the lowest multiple of s_stripe which is bigger than
3798 * the s_mb_group_prealloc as determined above. We want
3799 * the preallocation size to be an exact multiple of the
3800 * RAID stripe size so that preallocations don't fragment
3801 * the stripes.
3802 */
3803 if (sbi->s_stripe > 1) {
3804 sbi->s_mb_group_prealloc = roundup(
3805 sbi->s_mb_group_prealloc, EXT4_NUM_B2C(sbi, sbi->s_stripe));
3806 }
3807
3808 sbi->s_mb_nr_global_goals = umin(num_possible_cpus(),
3809 DIV_ROUND_UP(sbi->s_groups_count, 4));
3810 sbi->s_mb_last_groups = kcalloc(sbi->s_mb_nr_global_goals,
3811 sizeof(ext4_group_t), GFP_KERNEL);
3812 if (sbi->s_mb_last_groups == NULL) {
3813 ret = -ENOMEM;
3814 goto out;
3815 }
3816
3817 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
3818 if (sbi->s_locality_groups == NULL) {
3819 ret = -ENOMEM;
3820 goto out_free_last_groups;
3821 }
3822 for_each_possible_cpu(i) {
3823 struct ext4_locality_group *lg;
3824 lg = per_cpu_ptr(sbi->s_locality_groups, i);
3825 mutex_init(&lg->lg_mutex);
3826 for (j = 0; j < PREALLOC_TB_SIZE; j++)
3827 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
3828 spin_lock_init(&lg->lg_prealloc_lock);
3829 }
3830
3831 if (bdev_nonrot(sb->s_bdev))
3832 sbi->s_mb_max_linear_groups = 0;
3833 else
3834 sbi->s_mb_max_linear_groups = MB_DEFAULT_LINEAR_LIMIT;
3835 /* init file for buddy data */
3836 ret = ext4_mb_init_backend(sb);
3837 if (ret != 0)
3838 goto out_free_locality_groups;
3839
3840 return 0;
3841
3842out_free_locality_groups:
3843 free_percpu(sbi->s_locality_groups);
3844 sbi->s_locality_groups = NULL;
3845out_free_last_groups:
3846 kfree(sbi->s_mb_last_groups);
3847 sbi->s_mb_last_groups = NULL;
3848out:
3849 ext4_mb_avg_fragment_size_destroy(sbi);
3850 ext4_mb_largest_free_orders_destroy(sbi);
3851 kfree(sbi->s_mb_offsets);
3852 sbi->s_mb_offsets = NULL;
3853 kfree(sbi->s_mb_maxs);
3854 sbi->s_mb_maxs = NULL;
3855 return ret;
3856}
3857
3858/* need to called with the ext4 group lock held */
3859static int ext4_mb_cleanup_pa(struct ext4_group_info *grp)
3860{
3861 struct ext4_prealloc_space *pa;
3862 struct list_head *cur, *tmp;
3863 int count = 0;
3864
3865 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
3866 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3867 list_del(&pa->pa_group_list);
3868 count++;
3869 kmem_cache_free(ext4_pspace_cachep, pa);
3870 }
3871 return count;
3872}
3873
3874void ext4_mb_release(struct super_block *sb)
3875{
3876 ext4_group_t ngroups = ext4_get_groups_count(sb);
3877 ext4_group_t i;
3878 int num_meta_group_infos;
3879 struct ext4_group_info *grinfo, ***group_info;
3880 struct ext4_sb_info *sbi = EXT4_SB(sb);
3881 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
3882 int count;
3883
3884 if (test_opt(sb, DISCARD)) {
3885 /*
3886 * wait the discard work to drain all of ext4_free_data
3887 */
3888 flush_work(&sbi->s_discard_work);
3889 WARN_ON_ONCE(!list_empty(&sbi->s_discard_list));
3890 }
3891
3892 if (sbi->s_group_info) {
3893 for (i = 0; i < ngroups; i++) {
3894 cond_resched();
3895 grinfo = ext4_get_group_info(sb, i);
3896 if (!grinfo)
3897 continue;
3898 mb_group_bb_bitmap_free(grinfo);
3899 ext4_lock_group(sb, i);
3900 count = ext4_mb_cleanup_pa(grinfo);
3901 if (count)
3902 mb_debug(sb, "mballoc: %d PAs left\n",
3903 count);
3904 ext4_unlock_group(sb, i);
3905 kmem_cache_free(cachep, grinfo);
3906 }
3907 num_meta_group_infos = (ngroups +
3908 EXT4_DESC_PER_BLOCK(sb) - 1) >>
3909 EXT4_DESC_PER_BLOCK_BITS(sb);
3910 rcu_read_lock();
3911 group_info = rcu_dereference(sbi->s_group_info);
3912 for (i = 0; i < num_meta_group_infos; i++)
3913 kfree(group_info[i]);
3914 kvfree(group_info);
3915 rcu_read_unlock();
3916 }
3917 ext4_mb_avg_fragment_size_destroy(sbi);
3918 ext4_mb_largest_free_orders_destroy(sbi);
3919 kfree(sbi->s_mb_offsets);
3920 kfree(sbi->s_mb_maxs);
3921 iput(sbi->s_buddy_cache);
3922 if (sbi->s_mb_stats) {
3923 ext4_msg(sb, KERN_INFO,
3924 "mballoc: %u blocks %u reqs (%u success)",
3925 atomic_read(&sbi->s_bal_allocated),
3926 atomic_read(&sbi->s_bal_reqs),
3927 atomic_read(&sbi->s_bal_success));
3928 ext4_msg(sb, KERN_INFO,
3929 "mballoc: %u extents scanned, %u groups scanned, %u goal hits, "
3930 "%u 2^N hits, %u breaks, %u lost",
3931 atomic_read(&sbi->s_bal_ex_scanned),
3932 atomic_read(&sbi->s_bal_groups_scanned),
3933 atomic_read(&sbi->s_bal_goals),
3934 atomic_read(&sbi->s_bal_2orders),
3935 atomic_read(&sbi->s_bal_breaks),
3936 atomic_read(&sbi->s_mb_lost_chunks));
3937 ext4_msg(sb, KERN_INFO,
3938 "mballoc: %u generated and it took %llu",
3939 atomic_read(&sbi->s_mb_buddies_generated),
3940 atomic64_read(&sbi->s_mb_generation_time));
3941 ext4_msg(sb, KERN_INFO,
3942 "mballoc: %u preallocated, %u discarded",
3943 atomic_read(&sbi->s_mb_preallocated),
3944 atomic_read(&sbi->s_mb_discarded));
3945 }
3946
3947 free_percpu(sbi->s_locality_groups);
3948 kfree(sbi->s_mb_last_groups);
3949}
3950
3951static inline int ext4_issue_discard(struct super_block *sb,
3952 ext4_group_t block_group, ext4_grpblk_t cluster, int count)
3953{
3954 ext4_fsblk_t discard_block;
3955
3956 discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
3957 ext4_group_first_block_no(sb, block_group));
3958 count = EXT4_C2B(EXT4_SB(sb), count);
3959 trace_ext4_discard_blocks(sb,
3960 (unsigned long long) discard_block, count);
3961
3962 return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
3963}
3964
3965static void ext4_free_data_in_buddy(struct super_block *sb,
3966 struct ext4_free_data *entry)
3967{
3968 struct ext4_buddy e4b;
3969 struct ext4_group_info *db;
3970 int err, count = 0;
3971
3972 mb_debug(sb, "gonna free %u blocks in group %u (0x%p):",
3973 entry->efd_count, entry->efd_group, entry);
3974
3975 err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
3976 /* we expect to find existing buddy because it's pinned */
3977 BUG_ON(err != 0);
3978
3979 atomic_sub(entry->efd_count, &EXT4_SB(sb)->s_mb_free_pending);
3980 db = e4b.bd_info;
3981 /* there are blocks to put in buddy to make them really free */
3982 count += entry->efd_count;
3983 ext4_lock_group(sb, entry->efd_group);
3984 /* Take it out of per group rb tree */
3985 rb_erase(&entry->efd_node, &(db->bb_free_root));
3986 mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
3987
3988 /*
3989 * Clear the trimmed flag for the group so that the next
3990 * ext4_trim_fs can trim it.
3991 */
3992 EXT4_MB_GRP_CLEAR_TRIMMED(db);
3993
3994 if (!db->bb_free_root.rb_node) {
3995 /* No more items in the per group rb tree
3996 * balance refcounts from ext4_mb_free_metadata()
3997 */
3998 folio_put(e4b.bd_buddy_folio);
3999 folio_put(e4b.bd_bitmap_folio);
4000 }
4001 ext4_unlock_group(sb, entry->efd_group);
4002 ext4_mb_unload_buddy(&e4b);
4003
4004 mb_debug(sb, "freed %d blocks in 1 structures\n", count);
4005}
4006
4007/*
4008 * This function is called by the jbd2 layer once the commit has finished,
4009 * so we know we can free the blocks that were released with that commit.
4010 */
4011void ext4_process_freed_data(struct super_block *sb, tid_t commit_tid)
4012{
4013 struct ext4_sb_info *sbi = EXT4_SB(sb);
4014 struct ext4_free_data *entry, *tmp;
4015 LIST_HEAD(freed_data_list);
4016 struct list_head *s_freed_head = &sbi->s_freed_data_list[commit_tid & 1];
4017 bool wake;
4018
4019 list_replace_init(s_freed_head, &freed_data_list);
4020
4021 list_for_each_entry(entry, &freed_data_list, efd_list)
4022 ext4_free_data_in_buddy(sb, entry);
4023
4024 if (test_opt(sb, DISCARD)) {
4025 spin_lock(&sbi->s_md_lock);
4026 wake = list_empty(&sbi->s_discard_list);
4027 list_splice_tail(&freed_data_list, &sbi->s_discard_list);
4028 spin_unlock(&sbi->s_md_lock);
4029 if (wake)
4030 queue_work(system_dfl_wq, &sbi->s_discard_work);
4031 } else {
4032 list_for_each_entry_safe(entry, tmp, &freed_data_list, efd_list)
4033 kmem_cache_free(ext4_free_data_cachep, entry);
4034 }
4035}
4036
4037int __init ext4_init_mballoc(void)
4038{
4039 ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
4040 SLAB_RECLAIM_ACCOUNT);
4041 if (ext4_pspace_cachep == NULL)
4042 goto out;
4043
4044 ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
4045 SLAB_RECLAIM_ACCOUNT);
4046 if (ext4_ac_cachep == NULL)
4047 goto out_pa_free;
4048
4049 ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
4050 SLAB_RECLAIM_ACCOUNT);
4051 if (ext4_free_data_cachep == NULL)
4052 goto out_ac_free;
4053
4054 return 0;
4055
4056out_ac_free:
4057 kmem_cache_destroy(ext4_ac_cachep);
4058out_pa_free:
4059 kmem_cache_destroy(ext4_pspace_cachep);
4060out:
4061 return -ENOMEM;
4062}
4063
4064void ext4_exit_mballoc(void)
4065{
4066 /*
4067 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
4068 * before destroying the slab cache.
4069 */
4070 rcu_barrier();
4071 kmem_cache_destroy(ext4_pspace_cachep);
4072 kmem_cache_destroy(ext4_ac_cachep);
4073 kmem_cache_destroy(ext4_free_data_cachep);
4074 ext4_groupinfo_destroy_slabs();
4075}
4076
4077#define EXT4_MB_BITMAP_MARKED_CHECK 0x0001
4078#define EXT4_MB_SYNC_UPDATE 0x0002
4079static int
4080ext4_mb_mark_context(handle_t *handle, struct super_block *sb, bool state,
4081 ext4_group_t group, ext4_grpblk_t blkoff,
4082 ext4_grpblk_t len, int flags, ext4_grpblk_t *ret_changed)
4083{
4084 struct ext4_sb_info *sbi = EXT4_SB(sb);
4085 struct buffer_head *bitmap_bh = NULL;
4086 struct ext4_group_desc *gdp;
4087 struct buffer_head *gdp_bh;
4088 int err;
4089 unsigned int i, already, changed = len;
4090
4091 KUNIT_STATIC_STUB_REDIRECT(ext4_mb_mark_context,
4092 handle, sb, state, group, blkoff, len,
4093 flags, ret_changed);
4094
4095 if (ret_changed)
4096 *ret_changed = 0;
4097 bitmap_bh = ext4_read_block_bitmap(sb, group);
4098 if (IS_ERR(bitmap_bh))
4099 return PTR_ERR(bitmap_bh);
4100
4101 if (handle) {
4102 BUFFER_TRACE(bitmap_bh, "getting write access");
4103 err = ext4_journal_get_write_access(handle, sb, bitmap_bh,
4104 EXT4_JTR_NONE);
4105 if (err)
4106 goto out_err;
4107 }
4108
4109 err = -EIO;
4110 gdp = ext4_get_group_desc(sb, group, &gdp_bh);
4111 if (!gdp)
4112 goto out_err;
4113
4114 if (handle) {
4115 BUFFER_TRACE(gdp_bh, "get_write_access");
4116 err = ext4_journal_get_write_access(handle, sb, gdp_bh,
4117 EXT4_JTR_NONE);
4118 if (err)
4119 goto out_err;
4120 }
4121
4122 ext4_lock_group(sb, group);
4123 if (ext4_has_group_desc_csum(sb) &&
4124 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
4125 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
4126 ext4_free_group_clusters_set(sb, gdp,
4127 ext4_free_clusters_after_init(sb, group, gdp));
4128 }
4129
4130 if (flags & EXT4_MB_BITMAP_MARKED_CHECK) {
4131 already = 0;
4132 for (i = 0; i < len; i++)
4133 if (mb_test_bit(blkoff + i, bitmap_bh->b_data) ==
4134 state)
4135 already++;
4136 changed = len - already;
4137 }
4138
4139 if (state) {
4140 mb_set_bits(bitmap_bh->b_data, blkoff, len);
4141 ext4_free_group_clusters_set(sb, gdp,
4142 ext4_free_group_clusters(sb, gdp) - changed);
4143 } else {
4144 mb_clear_bits(bitmap_bh->b_data, blkoff, len);
4145 ext4_free_group_clusters_set(sb, gdp,
4146 ext4_free_group_clusters(sb, gdp) + changed);
4147 }
4148
4149 ext4_block_bitmap_csum_set(sb, gdp, bitmap_bh);
4150 ext4_group_desc_csum_set(sb, group, gdp);
4151 ext4_unlock_group(sb, group);
4152 if (ret_changed)
4153 *ret_changed = changed;
4154
4155 if (sbi->s_log_groups_per_flex) {
4156 ext4_group_t flex_group = ext4_flex_group(sbi, group);
4157 struct flex_groups *fg = sbi_array_rcu_deref(sbi,
4158 s_flex_groups, flex_group);
4159
4160 if (state)
4161 atomic64_sub(changed, &fg->free_clusters);
4162 else
4163 atomic64_add(changed, &fg->free_clusters);
4164 }
4165
4166 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4167 if (err)
4168 goto out_err;
4169 err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
4170 if (err)
4171 goto out_err;
4172
4173 if (flags & EXT4_MB_SYNC_UPDATE) {
4174 sync_dirty_buffer(bitmap_bh);
4175 sync_dirty_buffer(gdp_bh);
4176 }
4177
4178out_err:
4179 brelse(bitmap_bh);
4180 return err;
4181}
4182
4183/*
4184 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
4185 * Returns 0 if success or error code
4186 */
4187static noinline_for_stack int
4188ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
4189 handle_t *handle, unsigned int reserv_clstrs)
4190{
4191 struct ext4_group_desc *gdp;
4192 struct ext4_sb_info *sbi;
4193 struct super_block *sb;
4194 ext4_fsblk_t block;
4195 int err, len;
4196 int flags = 0;
4197 ext4_grpblk_t changed;
4198
4199 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
4200 BUG_ON(ac->ac_b_ex.fe_len <= 0);
4201
4202 sb = ac->ac_sb;
4203 sbi = EXT4_SB(sb);
4204
4205 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, NULL);
4206 if (!gdp)
4207 return -EIO;
4208 ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
4209 ext4_free_group_clusters(sb, gdp));
4210
4211 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4212 len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4213 if (!ext4_inode_block_valid(ac->ac_inode, block, len)) {
4214 ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
4215 "fs metadata", block, block+len);
4216 /* File system mounted not to panic on error
4217 * Fix the bitmap and return EFSCORRUPTED
4218 * We leak some of the blocks here.
4219 */
4220 err = ext4_mb_mark_context(handle, sb, true,
4221 ac->ac_b_ex.fe_group,
4222 ac->ac_b_ex.fe_start,
4223 ac->ac_b_ex.fe_len,
4224 0, NULL);
4225 if (!err)
4226 err = -EFSCORRUPTED;
4227 return err;
4228 }
4229
4230#ifdef AGGRESSIVE_CHECK
4231 flags |= EXT4_MB_BITMAP_MARKED_CHECK;
4232#endif
4233 err = ext4_mb_mark_context(handle, sb, true, ac->ac_b_ex.fe_group,
4234 ac->ac_b_ex.fe_start, ac->ac_b_ex.fe_len,
4235 flags, &changed);
4236
4237 if (err && changed == 0)
4238 return err;
4239
4240#ifdef AGGRESSIVE_CHECK
4241 BUG_ON(changed != ac->ac_b_ex.fe_len);
4242#endif
4243 percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
4244 /*
4245 * Now reduce the dirty block count also. Should not go negative
4246 */
4247 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
4248 /* release all the reserved blocks if non delalloc */
4249 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
4250 reserv_clstrs);
4251
4252 return err;
4253}
4254
4255/*
4256 * Idempotent helper for Ext4 fast commit replay path to set the state of
4257 * blocks in bitmaps and update counters.
4258 */
4259void ext4_mb_mark_bb(struct super_block *sb, ext4_fsblk_t block,
4260 int len, bool state)
4261{
4262 struct ext4_sb_info *sbi = EXT4_SB(sb);
4263 ext4_group_t group;
4264 ext4_grpblk_t blkoff;
4265 int err = 0;
4266 unsigned int clen, thisgrp_len;
4267
4268 while (len > 0) {
4269 ext4_get_group_no_and_offset(sb, block, &group, &blkoff);
4270
4271 /*
4272 * Check to see if we are freeing blocks across a group
4273 * boundary.
4274 * In case of flex_bg, this can happen that (block, len) may
4275 * span across more than one group. In that case we need to
4276 * get the corresponding group metadata to work with.
4277 * For this we have goto again loop.
4278 */
4279 thisgrp_len = min_t(unsigned int, (unsigned int)len,
4280 EXT4_BLOCKS_PER_GROUP(sb) - EXT4_C2B(sbi, blkoff));
4281 clen = EXT4_NUM_B2C(sbi, thisgrp_len);
4282
4283 if (!ext4_sb_block_valid(sb, NULL, block, thisgrp_len)) {
4284 ext4_error(sb, "Marking blocks in system zone - "
4285 "Block = %llu, len = %u",
4286 block, thisgrp_len);
4287 break;
4288 }
4289
4290 err = ext4_mb_mark_context(NULL, sb, state,
4291 group, blkoff, clen,
4292 EXT4_MB_BITMAP_MARKED_CHECK |
4293 EXT4_MB_SYNC_UPDATE,
4294 NULL);
4295 if (err)
4296 break;
4297
4298 block += thisgrp_len;
4299 len -= thisgrp_len;
4300 BUG_ON(len < 0);
4301 }
4302}
4303
4304/*
4305 * here we normalize request for locality group
4306 * Group request are normalized to s_mb_group_prealloc, which goes to
4307 * s_strip if we set the same via mount option.
4308 * s_mb_group_prealloc can be configured via
4309 * /sys/fs/ext4/<partition>/mb_group_prealloc
4310 *
4311 * XXX: should we try to preallocate more than the group has now?
4312 */
4313static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
4314{
4315 struct super_block *sb = ac->ac_sb;
4316 struct ext4_locality_group *lg = ac->ac_lg;
4317
4318 BUG_ON(lg == NULL);
4319 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
4320 mb_debug(sb, "goal %u blocks for locality group\n", ac->ac_g_ex.fe_len);
4321}
4322
4323/*
4324 * This function returns the next element to look at during inode
4325 * PA rbtree walk. We assume that we have held the inode PA rbtree lock
4326 * (ei->i_prealloc_lock)
4327 *
4328 * new_start The start of the range we want to compare
4329 * cur_start The existing start that we are comparing against
4330 * node The node of the rb_tree
4331 */
4332static inline struct rb_node*
4333ext4_mb_pa_rb_next_iter(ext4_lblk_t new_start, ext4_lblk_t cur_start, struct rb_node *node)
4334{
4335 if (new_start < cur_start)
4336 return node->rb_left;
4337 else
4338 return node->rb_right;
4339}
4340
4341static inline void
4342ext4_mb_pa_assert_overlap(struct ext4_allocation_context *ac,
4343 ext4_lblk_t start, loff_t end)
4344{
4345 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4346 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
4347 struct ext4_prealloc_space *tmp_pa;
4348 ext4_lblk_t tmp_pa_start;
4349 loff_t tmp_pa_end;
4350 struct rb_node *iter;
4351
4352 read_lock(&ei->i_prealloc_lock);
4353 for (iter = ei->i_prealloc_node.rb_node; iter;
4354 iter = ext4_mb_pa_rb_next_iter(start, tmp_pa_start, iter)) {
4355 tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4356 pa_node.inode_node);
4357 tmp_pa_start = tmp_pa->pa_lstart;
4358 tmp_pa_end = pa_logical_end(sbi, tmp_pa);
4359
4360 spin_lock(&tmp_pa->pa_lock);
4361 if (tmp_pa->pa_deleted == 0)
4362 BUG_ON(!(start >= tmp_pa_end || end <= tmp_pa_start));
4363 spin_unlock(&tmp_pa->pa_lock);
4364 }
4365 read_unlock(&ei->i_prealloc_lock);
4366}
4367
4368/*
4369 * Given an allocation context "ac" and a range "start", "end", check
4370 * and adjust boundaries if the range overlaps with any of the existing
4371 * preallocatoins stored in the corresponding inode of the allocation context.
4372 *
4373 * Parameters:
4374 * ac allocation context
4375 * start start of the new range
4376 * end end of the new range
4377 */
4378static inline void
4379ext4_mb_pa_adjust_overlap(struct ext4_allocation_context *ac,
4380 ext4_lblk_t *start, loff_t *end)
4381{
4382 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
4383 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4384 struct ext4_prealloc_space *tmp_pa = NULL, *left_pa = NULL, *right_pa = NULL;
4385 struct rb_node *iter;
4386 ext4_lblk_t new_start, tmp_pa_start, right_pa_start = -1;
4387 loff_t new_end, tmp_pa_end, left_pa_end = -1;
4388
4389 new_start = *start;
4390 new_end = *end;
4391
4392 /*
4393 * Adjust the normalized range so that it doesn't overlap with any
4394 * existing preallocated blocks(PAs). Make sure to hold the rbtree lock
4395 * so it doesn't change underneath us.
4396 */
4397 read_lock(&ei->i_prealloc_lock);
4398
4399 /* Step 1: find any one immediate neighboring PA of the normalized range */
4400 for (iter = ei->i_prealloc_node.rb_node; iter;
4401 iter = ext4_mb_pa_rb_next_iter(ac->ac_o_ex.fe_logical,
4402 tmp_pa_start, iter)) {
4403 tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4404 pa_node.inode_node);
4405 tmp_pa_start = tmp_pa->pa_lstart;
4406 tmp_pa_end = pa_logical_end(sbi, tmp_pa);
4407
4408 /* PA must not overlap original request */
4409 spin_lock(&tmp_pa->pa_lock);
4410 if (tmp_pa->pa_deleted == 0)
4411 BUG_ON(!(ac->ac_o_ex.fe_logical >= tmp_pa_end ||
4412 ac->ac_o_ex.fe_logical < tmp_pa_start));
4413 spin_unlock(&tmp_pa->pa_lock);
4414 }
4415
4416 /*
4417 * Step 2: check if the found PA is left or right neighbor and
4418 * get the other neighbor
4419 */
4420 if (tmp_pa) {
4421 if (tmp_pa->pa_lstart < ac->ac_o_ex.fe_logical) {
4422 struct rb_node *tmp;
4423
4424 left_pa = tmp_pa;
4425 tmp = rb_next(&left_pa->pa_node.inode_node);
4426 if (tmp) {
4427 right_pa = rb_entry(tmp,
4428 struct ext4_prealloc_space,
4429 pa_node.inode_node);
4430 }
4431 } else {
4432 struct rb_node *tmp;
4433
4434 right_pa = tmp_pa;
4435 tmp = rb_prev(&right_pa->pa_node.inode_node);
4436 if (tmp) {
4437 left_pa = rb_entry(tmp,
4438 struct ext4_prealloc_space,
4439 pa_node.inode_node);
4440 }
4441 }
4442 }
4443
4444 /* Step 3: get the non deleted neighbors */
4445 if (left_pa) {
4446 for (iter = &left_pa->pa_node.inode_node;;
4447 iter = rb_prev(iter)) {
4448 if (!iter) {
4449 left_pa = NULL;
4450 break;
4451 }
4452
4453 tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4454 pa_node.inode_node);
4455 left_pa = tmp_pa;
4456 spin_lock(&tmp_pa->pa_lock);
4457 if (tmp_pa->pa_deleted == 0) {
4458 spin_unlock(&tmp_pa->pa_lock);
4459 break;
4460 }
4461 spin_unlock(&tmp_pa->pa_lock);
4462 }
4463 }
4464
4465 if (right_pa) {
4466 for (iter = &right_pa->pa_node.inode_node;;
4467 iter = rb_next(iter)) {
4468 if (!iter) {
4469 right_pa = NULL;
4470 break;
4471 }
4472
4473 tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4474 pa_node.inode_node);
4475 right_pa = tmp_pa;
4476 spin_lock(&tmp_pa->pa_lock);
4477 if (tmp_pa->pa_deleted == 0) {
4478 spin_unlock(&tmp_pa->pa_lock);
4479 break;
4480 }
4481 spin_unlock(&tmp_pa->pa_lock);
4482 }
4483 }
4484
4485 if (left_pa) {
4486 left_pa_end = pa_logical_end(sbi, left_pa);
4487 BUG_ON(left_pa_end > ac->ac_o_ex.fe_logical);
4488 }
4489
4490 if (right_pa) {
4491 right_pa_start = right_pa->pa_lstart;
4492 BUG_ON(right_pa_start <= ac->ac_o_ex.fe_logical);
4493 }
4494
4495 /* Step 4: trim our normalized range to not overlap with the neighbors */
4496 if (left_pa) {
4497 if (left_pa_end > new_start)
4498 new_start = left_pa_end;
4499 }
4500
4501 if (right_pa) {
4502 if (right_pa_start < new_end)
4503 new_end = right_pa_start;
4504 }
4505 read_unlock(&ei->i_prealloc_lock);
4506
4507 /* XXX: extra loop to check we really don't overlap preallocations */
4508 ext4_mb_pa_assert_overlap(ac, new_start, new_end);
4509
4510 *start = new_start;
4511 *end = new_end;
4512}
4513
4514/*
4515 * Normalization means making request better in terms of
4516 * size and alignment
4517 */
4518static noinline_for_stack void
4519ext4_mb_normalize_request(struct ext4_allocation_context *ac,
4520 struct ext4_allocation_request *ar)
4521{
4522 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4523 struct ext4_super_block *es = sbi->s_es;
4524 int bsbits, max;
4525 loff_t size, start_off, end;
4526 loff_t orig_size __maybe_unused;
4527 ext4_lblk_t start;
4528
4529 /* do normalize only data requests, metadata requests
4530 do not need preallocation */
4531 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4532 return;
4533
4534 /* sometime caller may want exact blocks */
4535 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4536 return;
4537
4538 /* caller may indicate that preallocation isn't
4539 * required (it's a tail, for example) */
4540 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
4541 return;
4542
4543 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
4544 ext4_mb_normalize_group_request(ac);
4545 return ;
4546 }
4547
4548 bsbits = ac->ac_sb->s_blocksize_bits;
4549
4550 /* first, let's learn actual file size
4551 * given current request is allocated */
4552 size = extent_logical_end(sbi, &ac->ac_o_ex);
4553 size = size << bsbits;
4554 if (size < i_size_read(ac->ac_inode))
4555 size = i_size_read(ac->ac_inode);
4556 orig_size = size;
4557
4558 /* max size of free chunks */
4559 max = 2 << bsbits;
4560
4561#define NRL_CHECK_SIZE(req, size, max, chunk_size) \
4562 (req <= (size) || max <= (chunk_size))
4563
4564 /* first, try to predict filesize */
4565 /* XXX: should this table be tunable? */
4566 start_off = 0;
4567 if (size <= 16 * 1024) {
4568 size = 16 * 1024;
4569 } else if (size <= 32 * 1024) {
4570 size = 32 * 1024;
4571 } else if (size <= 64 * 1024) {
4572 size = 64 * 1024;
4573 } else if (size <= 128 * 1024) {
4574 size = 128 * 1024;
4575 } else if (size <= 256 * 1024) {
4576 size = 256 * 1024;
4577 } else if (size <= 512 * 1024) {
4578 size = 512 * 1024;
4579 } else if (size <= 1024 * 1024) {
4580 size = 1024 * 1024;
4581 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
4582 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
4583 (21 - bsbits)) << 21;
4584 size = 2 * 1024 * 1024;
4585 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
4586 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
4587 (22 - bsbits)) << 22;
4588 size = 4 * 1024 * 1024;
4589 } else if (NRL_CHECK_SIZE(EXT4_C2B(sbi, ac->ac_o_ex.fe_len),
4590 (8<<20)>>bsbits, max, 8 * 1024)) {
4591 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
4592 (23 - bsbits)) << 23;
4593 size = 8 * 1024 * 1024;
4594 } else {
4595 start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits;
4596 size = (loff_t) EXT4_C2B(sbi,
4597 ac->ac_o_ex.fe_len) << bsbits;
4598 }
4599 size = size >> bsbits;
4600 start = start_off >> bsbits;
4601
4602 /*
4603 * For tiny groups (smaller than 8MB) the chosen allocation
4604 * alignment may be larger than group size. Make sure the
4605 * alignment does not move allocation to a different group which
4606 * makes mballoc fail assertions later.
4607 */
4608 start = max(start, rounddown(ac->ac_o_ex.fe_logical,
4609 (ext4_lblk_t)EXT4_BLOCKS_PER_GROUP(ac->ac_sb)));
4610
4611 /* avoid unnecessary preallocation that may trigger assertions */
4612 if (start + size > EXT_MAX_BLOCKS)
4613 size = EXT_MAX_BLOCKS - start;
4614
4615 /* don't cover already allocated blocks in selected range */
4616 if (ar->pleft && start <= ar->lleft) {
4617 size -= ar->lleft + 1 - start;
4618 start = ar->lleft + 1;
4619 }
4620 if (ar->pright && start + size - 1 >= ar->lright)
4621 size -= start + size - ar->lright;
4622
4623 /*
4624 * Trim allocation request for filesystems with artificially small
4625 * groups.
4626 */
4627 if (size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb))
4628 size = EXT4_BLOCKS_PER_GROUP(ac->ac_sb);
4629
4630 end = start + size;
4631
4632 ext4_mb_pa_adjust_overlap(ac, &start, &end);
4633
4634 size = end - start;
4635
4636 /*
4637 * In this function "start" and "size" are normalized for better
4638 * alignment and length such that we could preallocate more blocks.
4639 * This normalization is done such that original request of
4640 * ac->ac_o_ex.fe_logical & fe_len should always lie within "start" and
4641 * "size" boundaries.
4642 * (Note fe_len can be relaxed since FS block allocation API does not
4643 * provide gurantee on number of contiguous blocks allocation since that
4644 * depends upon free space left, etc).
4645 * In case of inode pa, later we use the allocated blocks
4646 * [pa_pstart + fe_logical - pa_lstart, fe_len/size] from the preallocated
4647 * range of goal/best blocks [start, size] to put it at the
4648 * ac_o_ex.fe_logical extent of this inode.
4649 * (See ext4_mb_use_inode_pa() for more details)
4650 */
4651 if (start + size <= ac->ac_o_ex.fe_logical ||
4652 start > ac->ac_o_ex.fe_logical) {
4653 ext4_msg(ac->ac_sb, KERN_ERR,
4654 "start %lu, size %lu, fe_logical %lu",
4655 (unsigned long) start, (unsigned long) size,
4656 (unsigned long) ac->ac_o_ex.fe_logical);
4657 BUG();
4658 }
4659 BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
4660
4661 /* now prepare goal request */
4662
4663 /* XXX: is it better to align blocks WRT to logical
4664 * placement or satisfy big request as is */
4665 ac->ac_g_ex.fe_logical = start;
4666 ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
4667 ac->ac_orig_goal_len = ac->ac_g_ex.fe_len;
4668
4669 /* define goal start in order to merge */
4670 if (ar->pright && (ar->lright == (start + size)) &&
4671 ar->pright >= size &&
4672 ar->pright - size >= le32_to_cpu(es->s_first_data_block)) {
4673 /* merge to the right */
4674 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
4675 &ac->ac_g_ex.fe_group,
4676 &ac->ac_g_ex.fe_start);
4677 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
4678 }
4679 if (ar->pleft && (ar->lleft + 1 == start) &&
4680 ar->pleft + 1 < ext4_blocks_count(es)) {
4681 /* merge to the left */
4682 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
4683 &ac->ac_g_ex.fe_group,
4684 &ac->ac_g_ex.fe_start);
4685 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
4686 }
4687
4688 mb_debug(ac->ac_sb, "goal: %lld(was %lld) blocks at %u\n", size,
4689 orig_size, start);
4690}
4691
4692static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
4693{
4694 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4695
4696 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len >= 1) {
4697 atomic_inc(&sbi->s_bal_reqs);
4698 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
4699 if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
4700 atomic_inc(&sbi->s_bal_success);
4701
4702 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
4703 for (int i=0; i<EXT4_MB_NUM_CRS; i++) {
4704 atomic_add(ac->ac_cX_found[i], &sbi->s_bal_cX_ex_scanned[i]);
4705 }
4706
4707 atomic_add(ac->ac_groups_scanned, &sbi->s_bal_groups_scanned);
4708 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
4709 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
4710 atomic_inc(&sbi->s_bal_goals);
4711 /* did we allocate as much as normalizer originally wanted? */
4712 if (ac->ac_f_ex.fe_len == ac->ac_orig_goal_len)
4713 atomic_inc(&sbi->s_bal_len_goals);
4714
4715 if (ac->ac_found > sbi->s_mb_max_to_scan)
4716 atomic_inc(&sbi->s_bal_breaks);
4717 }
4718
4719 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
4720 trace_ext4_mballoc_alloc(ac);
4721 else
4722 trace_ext4_mballoc_prealloc(ac);
4723}
4724
4725/*
4726 * Called on failure; free up any blocks from the inode PA for this
4727 * context. We don't need this for MB_GROUP_PA because we only change
4728 * pa_free in ext4_mb_release_context(), but on failure, we've already
4729 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
4730 */
4731static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
4732{
4733 struct ext4_prealloc_space *pa = ac->ac_pa;
4734 struct ext4_buddy e4b;
4735 int err;
4736
4737 if (pa == NULL) {
4738 if (ac->ac_f_ex.fe_len == 0)
4739 return;
4740 err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b);
4741 if (WARN_RATELIMIT(err,
4742 "ext4: mb_load_buddy failed (%d)", err))
4743 /*
4744 * This should never happen since we pin the
4745 * folios in the ext4_allocation_context so
4746 * ext4_mb_load_buddy() should never fail.
4747 */
4748 return;
4749 ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
4750 mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start,
4751 ac->ac_f_ex.fe_len);
4752 ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
4753 ext4_mb_unload_buddy(&e4b);
4754 return;
4755 }
4756 if (pa->pa_type == MB_INODE_PA) {
4757 spin_lock(&pa->pa_lock);
4758 pa->pa_free += ac->ac_b_ex.fe_len;
4759 spin_unlock(&pa->pa_lock);
4760 }
4761}
4762
4763/*
4764 * use blocks preallocated to inode
4765 */
4766static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
4767 struct ext4_prealloc_space *pa)
4768{
4769 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4770 ext4_fsblk_t start;
4771 ext4_fsblk_t end;
4772 int len;
4773
4774 /* found preallocated blocks, use them */
4775 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
4776 end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
4777 start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
4778 len = EXT4_NUM_B2C(sbi, end - start);
4779 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
4780 &ac->ac_b_ex.fe_start);
4781 ac->ac_b_ex.fe_len = len;
4782 ac->ac_status = AC_STATUS_FOUND;
4783 ac->ac_pa = pa;
4784
4785 BUG_ON(start < pa->pa_pstart);
4786 BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
4787 BUG_ON(pa->pa_free < len);
4788 BUG_ON(ac->ac_b_ex.fe_len <= 0);
4789 pa->pa_free -= len;
4790
4791 mb_debug(ac->ac_sb, "use %llu/%d from inode pa %p\n", start, len, pa);
4792}
4793
4794/*
4795 * use blocks preallocated to locality group
4796 */
4797static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
4798 struct ext4_prealloc_space *pa)
4799{
4800 unsigned int len = ac->ac_o_ex.fe_len;
4801
4802 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
4803 &ac->ac_b_ex.fe_group,
4804 &ac->ac_b_ex.fe_start);
4805 ac->ac_b_ex.fe_len = len;
4806 ac->ac_status = AC_STATUS_FOUND;
4807 ac->ac_pa = pa;
4808
4809 /* we don't correct pa_pstart or pa_len here to avoid
4810 * possible race when the group is being loaded concurrently
4811 * instead we correct pa later, after blocks are marked
4812 * in on-disk bitmap -- see ext4_mb_release_context()
4813 * Other CPUs are prevented from allocating from this pa by lg_mutex
4814 */
4815 mb_debug(ac->ac_sb, "use %u/%u from group pa %p\n",
4816 pa->pa_lstart, len, pa);
4817}
4818
4819/*
4820 * Return the prealloc space that have minimal distance
4821 * from the goal block. @cpa is the prealloc
4822 * space that is having currently known minimal distance
4823 * from the goal block.
4824 */
4825static struct ext4_prealloc_space *
4826ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
4827 struct ext4_prealloc_space *pa,
4828 struct ext4_prealloc_space *cpa)
4829{
4830 ext4_fsblk_t cur_distance, new_distance;
4831
4832 if (cpa == NULL) {
4833 atomic_inc(&pa->pa_count);
4834 return pa;
4835 }
4836 cur_distance = abs(goal_block - cpa->pa_pstart);
4837 new_distance = abs(goal_block - pa->pa_pstart);
4838
4839 if (cur_distance <= new_distance)
4840 return cpa;
4841
4842 /* drop the previous reference */
4843 atomic_dec(&cpa->pa_count);
4844 atomic_inc(&pa->pa_count);
4845 return pa;
4846}
4847
4848/*
4849 * check if found pa meets EXT4_MB_HINT_GOAL_ONLY
4850 */
4851static bool
4852ext4_mb_pa_goal_check(struct ext4_allocation_context *ac,
4853 struct ext4_prealloc_space *pa)
4854{
4855 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4856 ext4_fsblk_t start;
4857
4858 if (likely(!(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)))
4859 return true;
4860
4861 /*
4862 * If EXT4_MB_HINT_GOAL_ONLY is set, ac_g_ex will not be adjusted
4863 * in ext4_mb_normalize_request and will keep same with ac_o_ex
4864 * from ext4_mb_initialize_context. Choose ac_g_ex here to keep
4865 * consistent with ext4_mb_find_by_goal.
4866 */
4867 start = pa->pa_pstart +
4868 (ac->ac_g_ex.fe_logical - pa->pa_lstart);
4869 if (ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex) != start)
4870 return false;
4871
4872 if (ac->ac_g_ex.fe_len > pa->pa_len -
4873 EXT4_B2C(sbi, ac->ac_g_ex.fe_logical - pa->pa_lstart))
4874 return false;
4875
4876 return true;
4877}
4878
4879/*
4880 * search goal blocks in preallocated space
4881 */
4882static noinline_for_stack bool
4883ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
4884{
4885 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4886 int order, i;
4887 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
4888 struct ext4_locality_group *lg;
4889 struct ext4_prealloc_space *tmp_pa = NULL, *cpa = NULL;
4890 struct rb_node *iter;
4891 ext4_fsblk_t goal_block;
4892
4893 /* only data can be preallocated */
4894 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4895 return false;
4896
4897 /*
4898 * first, try per-file preallocation by searching the inode pa rbtree.
4899 *
4900 * Here, we can't do a direct traversal of the tree because
4901 * ext4_mb_discard_group_preallocation() can paralelly mark the pa
4902 * deleted and that can cause direct traversal to skip some entries.
4903 */
4904 read_lock(&ei->i_prealloc_lock);
4905
4906 if (RB_EMPTY_ROOT(&ei->i_prealloc_node)) {
4907 goto try_group_pa;
4908 }
4909
4910 /*
4911 * Step 1: Find a pa with logical start immediately adjacent to the
4912 * original logical start. This could be on the left or right.
4913 *
4914 * (tmp_pa->pa_lstart never changes so we can skip locking for it).
4915 */
4916 for (iter = ei->i_prealloc_node.rb_node; iter;
4917 iter = ext4_mb_pa_rb_next_iter(ac->ac_o_ex.fe_logical,
4918 tmp_pa->pa_lstart, iter)) {
4919 tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4920 pa_node.inode_node);
4921 }
4922
4923 /*
4924 * Step 2: The adjacent pa might be to the right of logical start, find
4925 * the left adjacent pa. After this step we'd have a valid tmp_pa whose
4926 * logical start is towards the left of original request's logical start
4927 */
4928 if (tmp_pa->pa_lstart > ac->ac_o_ex.fe_logical) {
4929 struct rb_node *tmp;
4930 tmp = rb_prev(&tmp_pa->pa_node.inode_node);
4931
4932 if (tmp) {
4933 tmp_pa = rb_entry(tmp, struct ext4_prealloc_space,
4934 pa_node.inode_node);
4935 } else {
4936 /*
4937 * If there is no adjacent pa to the left then finding
4938 * an overlapping pa is not possible hence stop searching
4939 * inode pa tree
4940 */
4941 goto try_group_pa;
4942 }
4943 }
4944
4945 BUG_ON(!(tmp_pa && tmp_pa->pa_lstart <= ac->ac_o_ex.fe_logical));
4946
4947 /*
4948 * Step 3: If the left adjacent pa is deleted, keep moving left to find
4949 * the first non deleted adjacent pa. After this step we should have a
4950 * valid tmp_pa which is guaranteed to be non deleted.
4951 */
4952 for (iter = &tmp_pa->pa_node.inode_node;; iter = rb_prev(iter)) {
4953 if (!iter) {
4954 /*
4955 * no non deleted left adjacent pa, so stop searching
4956 * inode pa tree
4957 */
4958 goto try_group_pa;
4959 }
4960 tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4961 pa_node.inode_node);
4962 spin_lock(&tmp_pa->pa_lock);
4963 if (tmp_pa->pa_deleted == 0) {
4964 /*
4965 * We will keep holding the pa_lock from
4966 * this point on because we don't want group discard
4967 * to delete this pa underneath us. Since group
4968 * discard is anyways an ENOSPC operation it
4969 * should be okay for it to wait a few more cycles.
4970 */
4971 break;
4972 } else {
4973 spin_unlock(&tmp_pa->pa_lock);
4974 }
4975 }
4976
4977 BUG_ON(!(tmp_pa && tmp_pa->pa_lstart <= ac->ac_o_ex.fe_logical));
4978 BUG_ON(tmp_pa->pa_deleted == 1);
4979
4980 /*
4981 * Step 4: We now have the non deleted left adjacent pa. Only this
4982 * pa can possibly satisfy the request hence check if it overlaps
4983 * original logical start and stop searching if it doesn't.
4984 */
4985 if (ac->ac_o_ex.fe_logical >= pa_logical_end(sbi, tmp_pa)) {
4986 spin_unlock(&tmp_pa->pa_lock);
4987 goto try_group_pa;
4988 }
4989
4990 /* non-extent files can't have physical blocks past 2^32 */
4991 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
4992 (tmp_pa->pa_pstart + EXT4_C2B(sbi, tmp_pa->pa_len) >
4993 EXT4_MAX_BLOCK_FILE_PHYS)) {
4994 /*
4995 * Since PAs don't overlap, we won't find any other PA to
4996 * satisfy this.
4997 */
4998 spin_unlock(&tmp_pa->pa_lock);
4999 goto try_group_pa;
5000 }
5001
5002 if (tmp_pa->pa_free && likely(ext4_mb_pa_goal_check(ac, tmp_pa))) {
5003 atomic_inc(&tmp_pa->pa_count);
5004 ext4_mb_use_inode_pa(ac, tmp_pa);
5005 spin_unlock(&tmp_pa->pa_lock);
5006 read_unlock(&ei->i_prealloc_lock);
5007 return true;
5008 } else {
5009 /*
5010 * We found a valid overlapping pa but couldn't use it because
5011 * it had no free blocks. This should ideally never happen
5012 * because:
5013 *
5014 * 1. When a new inode pa is added to rbtree it must have
5015 * pa_free > 0 since otherwise we won't actually need
5016 * preallocation.
5017 *
5018 * 2. An inode pa that is in the rbtree can only have it's
5019 * pa_free become zero when another thread calls:
5020 * ext4_mb_new_blocks
5021 * ext4_mb_use_preallocated
5022 * ext4_mb_use_inode_pa
5023 *
5024 * 3. Further, after the above calls make pa_free == 0, we will
5025 * immediately remove it from the rbtree in:
5026 * ext4_mb_new_blocks
5027 * ext4_mb_release_context
5028 * ext4_mb_put_pa
5029 *
5030 * 4. Since the pa_free becoming 0 and pa_free getting removed
5031 * from tree both happen in ext4_mb_new_blocks, which is always
5032 * called with i_data_sem held for data allocations, we can be
5033 * sure that another process will never see a pa in rbtree with
5034 * pa_free == 0.
5035 */
5036 WARN_ON_ONCE(tmp_pa->pa_free == 0);
5037 }
5038 spin_unlock(&tmp_pa->pa_lock);
5039try_group_pa:
5040 read_unlock(&ei->i_prealloc_lock);
5041
5042 /* can we use group allocation? */
5043 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
5044 return false;
5045
5046 /* inode may have no locality group for some reason */
5047 lg = ac->ac_lg;
5048 if (lg == NULL)
5049 return false;
5050 order = fls(ac->ac_o_ex.fe_len) - 1;
5051 if (order > PREALLOC_TB_SIZE - 1)
5052 /* The max size of hash table is PREALLOC_TB_SIZE */
5053 order = PREALLOC_TB_SIZE - 1;
5054
5055 goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
5056 /*
5057 * search for the prealloc space that is having
5058 * minimal distance from the goal block.
5059 */
5060 for (i = order; i < PREALLOC_TB_SIZE; i++) {
5061 rcu_read_lock();
5062 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[i],
5063 pa_node.lg_list) {
5064 spin_lock(&tmp_pa->pa_lock);
5065 if (tmp_pa->pa_deleted == 0 &&
5066 tmp_pa->pa_free >= ac->ac_o_ex.fe_len) {
5067
5068 cpa = ext4_mb_check_group_pa(goal_block,
5069 tmp_pa, cpa);
5070 }
5071 spin_unlock(&tmp_pa->pa_lock);
5072 }
5073 rcu_read_unlock();
5074 }
5075 if (cpa) {
5076 ext4_mb_use_group_pa(ac, cpa);
5077 return true;
5078 }
5079 return false;
5080}
5081
5082/*
5083 * the function goes through all preallocation in this group and marks them
5084 * used in in-core bitmap. buddy must be generated from this bitmap
5085 * Need to be called with ext4 group lock held
5086 */
5087static noinline_for_stack
5088void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
5089 ext4_group_t group)
5090{
5091 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
5092 struct ext4_prealloc_space *pa;
5093 struct list_head *cur;
5094 ext4_group_t groupnr;
5095 ext4_grpblk_t start;
5096 int preallocated = 0;
5097 int len;
5098
5099 if (!grp)
5100 return;
5101
5102 /* all form of preallocation discards first load group,
5103 * so the only competing code is preallocation use.
5104 * we don't need any locking here
5105 * notice we do NOT ignore preallocations with pa_deleted
5106 * otherwise we could leave used blocks available for
5107 * allocation in buddy when concurrent ext4_mb_put_pa()
5108 * is dropping preallocation
5109 */
5110 list_for_each(cur, &grp->bb_prealloc_list) {
5111 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
5112 spin_lock(&pa->pa_lock);
5113 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
5114 &groupnr, &start);
5115 len = pa->pa_len;
5116 spin_unlock(&pa->pa_lock);
5117 if (unlikely(len == 0))
5118 continue;
5119 BUG_ON(groupnr != group);
5120 mb_set_bits(bitmap, start, len);
5121 preallocated += len;
5122 }
5123 mb_debug(sb, "preallocated %d for group %u\n", preallocated, group);
5124}
5125
5126static void ext4_mb_mark_pa_deleted(struct super_block *sb,
5127 struct ext4_prealloc_space *pa)
5128{
5129 struct ext4_inode_info *ei;
5130
5131 if (pa->pa_deleted) {
5132 ext4_warning(sb, "deleted pa, type:%d, pblk:%llu, lblk:%u, len:%d\n",
5133 pa->pa_type, pa->pa_pstart, pa->pa_lstart,
5134 pa->pa_len);
5135 return;
5136 }
5137
5138 pa->pa_deleted = 1;
5139
5140 if (pa->pa_type == MB_INODE_PA) {
5141 ei = EXT4_I(pa->pa_inode);
5142 atomic_dec(&ei->i_prealloc_active);
5143 }
5144}
5145
5146static inline void ext4_mb_pa_free(struct ext4_prealloc_space *pa)
5147{
5148 BUG_ON(!pa);
5149 BUG_ON(atomic_read(&pa->pa_count));
5150 BUG_ON(pa->pa_deleted == 0);
5151 kmem_cache_free(ext4_pspace_cachep, pa);
5152}
5153
5154static void ext4_mb_pa_callback(struct rcu_head *head)
5155{
5156 struct ext4_prealloc_space *pa;
5157
5158 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
5159 ext4_mb_pa_free(pa);
5160}
5161
5162/*
5163 * drops a reference to preallocated space descriptor
5164 * if this was the last reference and the space is consumed
5165 */
5166static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
5167 struct super_block *sb, struct ext4_prealloc_space *pa)
5168{
5169 ext4_group_t grp;
5170 ext4_fsblk_t grp_blk;
5171 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
5172
5173 /* in this short window concurrent discard can set pa_deleted */
5174 spin_lock(&pa->pa_lock);
5175 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) {
5176 spin_unlock(&pa->pa_lock);
5177 return;
5178 }
5179
5180 if (pa->pa_deleted == 1) {
5181 spin_unlock(&pa->pa_lock);
5182 return;
5183 }
5184
5185 ext4_mb_mark_pa_deleted(sb, pa);
5186 spin_unlock(&pa->pa_lock);
5187
5188 grp_blk = pa->pa_pstart;
5189 /*
5190 * If doing group-based preallocation, pa_pstart may be in the
5191 * next group when pa is used up
5192 */
5193 if (pa->pa_type == MB_GROUP_PA)
5194 grp_blk--;
5195
5196 grp = ext4_get_group_number(sb, grp_blk);
5197
5198 /*
5199 * possible race:
5200 *
5201 * P1 (buddy init) P2 (regular allocation)
5202 * find block B in PA
5203 * copy on-disk bitmap to buddy
5204 * mark B in on-disk bitmap
5205 * drop PA from group
5206 * mark all PAs in buddy
5207 *
5208 * thus, P1 initializes buddy with B available. to prevent this
5209 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
5210 * against that pair
5211 */
5212 ext4_lock_group(sb, grp);
5213 list_del(&pa->pa_group_list);
5214 ext4_unlock_group(sb, grp);
5215
5216 if (pa->pa_type == MB_INODE_PA) {
5217 write_lock(pa->pa_node_lock.inode_lock);
5218 rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node);
5219 write_unlock(pa->pa_node_lock.inode_lock);
5220 ext4_mb_pa_free(pa);
5221 } else {
5222 spin_lock(pa->pa_node_lock.lg_lock);
5223 list_del_rcu(&pa->pa_node.lg_list);
5224 spin_unlock(pa->pa_node_lock.lg_lock);
5225 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
5226 }
5227}
5228
5229static void ext4_mb_pa_rb_insert(struct rb_root *root, struct rb_node *new)
5230{
5231 struct rb_node **iter = &root->rb_node, *parent = NULL;
5232 struct ext4_prealloc_space *iter_pa, *new_pa;
5233 ext4_lblk_t iter_start, new_start;
5234
5235 while (*iter) {
5236 iter_pa = rb_entry(*iter, struct ext4_prealloc_space,
5237 pa_node.inode_node);
5238 new_pa = rb_entry(new, struct ext4_prealloc_space,
5239 pa_node.inode_node);
5240 iter_start = iter_pa->pa_lstart;
5241 new_start = new_pa->pa_lstart;
5242
5243 parent = *iter;
5244 if (new_start < iter_start)
5245 iter = &((*iter)->rb_left);
5246 else
5247 iter = &((*iter)->rb_right);
5248 }
5249
5250 rb_link_node(new, parent, iter);
5251 rb_insert_color(new, root);
5252}
5253
5254/*
5255 * creates new preallocated space for given inode
5256 */
5257static noinline_for_stack void
5258ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
5259{
5260 struct super_block *sb = ac->ac_sb;
5261 struct ext4_sb_info *sbi = EXT4_SB(sb);
5262 struct ext4_prealloc_space *pa;
5263 struct ext4_group_info *grp;
5264 struct ext4_inode_info *ei;
5265
5266 /* preallocate only when found space is larger then requested */
5267 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
5268 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
5269 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
5270 BUG_ON(ac->ac_pa == NULL);
5271
5272 pa = ac->ac_pa;
5273
5274 if (ac->ac_b_ex.fe_len < ac->ac_orig_goal_len) {
5275 struct ext4_free_extent ex = {
5276 .fe_logical = ac->ac_g_ex.fe_logical,
5277 .fe_len = ac->ac_orig_goal_len,
5278 };
5279 loff_t orig_goal_end = extent_logical_end(sbi, &ex);
5280 loff_t o_ex_end = extent_logical_end(sbi, &ac->ac_o_ex);
5281
5282 /*
5283 * We can't allocate as much as normalizer wants, so we try
5284 * to get proper lstart to cover the original request, except
5285 * when the goal doesn't cover the original request as below:
5286 *
5287 * orig_ex:2045/2055(10), isize:8417280 -> normalized:0/2048
5288 * best_ex:0/200(200) -> adjusted: 1848/2048(200)
5289 */
5290 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
5291 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
5292
5293 /*
5294 * Use the below logic for adjusting best extent as it keeps
5295 * fragmentation in check while ensuring logical range of best
5296 * extent doesn't overflow out of goal extent:
5297 *
5298 * 1. Check if best ex can be kept at end of goal (before
5299 * cr_best_avail trimmed it) and still cover original start
5300 * 2. Else, check if best ex can be kept at start of goal and
5301 * still cover original end
5302 * 3. Else, keep the best ex at start of original request.
5303 */
5304 ex.fe_len = ac->ac_b_ex.fe_len;
5305
5306 ex.fe_logical = orig_goal_end - EXT4_C2B(sbi, ex.fe_len);
5307 if (ac->ac_o_ex.fe_logical >= ex.fe_logical)
5308 goto adjust_bex;
5309
5310 ex.fe_logical = ac->ac_g_ex.fe_logical;
5311 if (o_ex_end <= extent_logical_end(sbi, &ex))
5312 goto adjust_bex;
5313
5314 ex.fe_logical = ac->ac_o_ex.fe_logical;
5315adjust_bex:
5316 ac->ac_b_ex.fe_logical = ex.fe_logical;
5317
5318 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
5319 BUG_ON(extent_logical_end(sbi, &ex) > orig_goal_end);
5320 }
5321
5322 pa->pa_lstart = ac->ac_b_ex.fe_logical;
5323 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
5324 pa->pa_len = ac->ac_b_ex.fe_len;
5325 pa->pa_free = pa->pa_len;
5326 spin_lock_init(&pa->pa_lock);
5327 INIT_LIST_HEAD(&pa->pa_group_list);
5328 pa->pa_deleted = 0;
5329 pa->pa_type = MB_INODE_PA;
5330
5331 mb_debug(sb, "new inode pa %p: %llu/%d for %u\n", pa, pa->pa_pstart,
5332 pa->pa_len, pa->pa_lstart);
5333 trace_ext4_mb_new_inode_pa(ac, pa);
5334
5335 atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
5336 ext4_mb_use_inode_pa(ac, pa);
5337
5338 ei = EXT4_I(ac->ac_inode);
5339 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
5340 if (!grp)
5341 return;
5342
5343 pa->pa_node_lock.inode_lock = &ei->i_prealloc_lock;
5344 pa->pa_inode = ac->ac_inode;
5345
5346 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
5347
5348 write_lock(pa->pa_node_lock.inode_lock);
5349 ext4_mb_pa_rb_insert(&ei->i_prealloc_node, &pa->pa_node.inode_node);
5350 write_unlock(pa->pa_node_lock.inode_lock);
5351 atomic_inc(&ei->i_prealloc_active);
5352}
5353
5354/*
5355 * creates new preallocated space for locality group inodes belongs to
5356 */
5357static noinline_for_stack void
5358ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
5359{
5360 struct super_block *sb = ac->ac_sb;
5361 struct ext4_locality_group *lg;
5362 struct ext4_prealloc_space *pa;
5363 struct ext4_group_info *grp;
5364
5365 /* preallocate only when found space is larger then requested */
5366 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
5367 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
5368 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
5369 BUG_ON(ac->ac_pa == NULL);
5370
5371 pa = ac->ac_pa;
5372
5373 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
5374 pa->pa_lstart = pa->pa_pstart;
5375 pa->pa_len = ac->ac_b_ex.fe_len;
5376 pa->pa_free = pa->pa_len;
5377 spin_lock_init(&pa->pa_lock);
5378 INIT_LIST_HEAD(&pa->pa_node.lg_list);
5379 INIT_LIST_HEAD(&pa->pa_group_list);
5380 pa->pa_deleted = 0;
5381 pa->pa_type = MB_GROUP_PA;
5382
5383 mb_debug(sb, "new group pa %p: %llu/%d for %u\n", pa, pa->pa_pstart,
5384 pa->pa_len, pa->pa_lstart);
5385 trace_ext4_mb_new_group_pa(ac, pa);
5386
5387 ext4_mb_use_group_pa(ac, pa);
5388 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
5389
5390 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
5391 if (!grp)
5392 return;
5393 lg = ac->ac_lg;
5394 BUG_ON(lg == NULL);
5395
5396 pa->pa_node_lock.lg_lock = &lg->lg_prealloc_lock;
5397 pa->pa_inode = NULL;
5398
5399 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
5400
5401 /*
5402 * We will later add the new pa to the right bucket
5403 * after updating the pa_free in ext4_mb_release_context
5404 */
5405}
5406
5407static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
5408{
5409 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
5410 ext4_mb_new_group_pa(ac);
5411 else
5412 ext4_mb_new_inode_pa(ac);
5413}
5414
5415/*
5416 * finds all unused blocks in on-disk bitmap, frees them in
5417 * in-core bitmap and buddy.
5418 * @pa must be unlinked from inode and group lists, so that
5419 * nobody else can find/use it.
5420 * the caller MUST hold group/inode locks.
5421 * TODO: optimize the case when there are no in-core structures yet
5422 */
5423static noinline_for_stack void
5424ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
5425 struct ext4_prealloc_space *pa)
5426{
5427 struct super_block *sb = e4b->bd_sb;
5428 struct ext4_sb_info *sbi = EXT4_SB(sb);
5429 unsigned int end;
5430 unsigned int next;
5431 ext4_group_t group;
5432 ext4_grpblk_t bit;
5433 unsigned long long grp_blk_start;
5434 int free = 0;
5435
5436 BUG_ON(pa->pa_deleted == 0);
5437 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
5438 grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
5439 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
5440 end = bit + pa->pa_len;
5441
5442 while (bit < end) {
5443 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
5444 if (bit >= end)
5445 break;
5446 next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
5447 mb_debug(sb, "free preallocated %u/%u in group %u\n",
5448 (unsigned) ext4_group_first_block_no(sb, group) + bit,
5449 (unsigned) next - bit, (unsigned) group);
5450 free += next - bit;
5451
5452 trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
5453 trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
5454 EXT4_C2B(sbi, bit)),
5455 next - bit);
5456 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
5457 bit = next + 1;
5458 }
5459 if (free != pa->pa_free) {
5460 ext4_msg(e4b->bd_sb, KERN_CRIT,
5461 "pa %p: logic %lu, phys. %lu, len %d",
5462 pa, (unsigned long) pa->pa_lstart,
5463 (unsigned long) pa->pa_pstart,
5464 pa->pa_len);
5465 ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
5466 free, pa->pa_free);
5467 /*
5468 * pa is already deleted so we use the value obtained
5469 * from the bitmap and continue.
5470 */
5471 }
5472 atomic_add(free, &sbi->s_mb_discarded);
5473}
5474
5475static noinline_for_stack void
5476ext4_mb_release_group_pa(struct ext4_buddy *e4b,
5477 struct ext4_prealloc_space *pa)
5478{
5479 struct super_block *sb = e4b->bd_sb;
5480 ext4_group_t group;
5481 ext4_grpblk_t bit;
5482
5483 trace_ext4_mb_release_group_pa(sb, pa);
5484 BUG_ON(pa->pa_deleted == 0);
5485 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
5486 if (unlikely(group != e4b->bd_group && pa->pa_len != 0)) {
5487 ext4_warning(sb, "bad group: expected %u, group %u, pa_start %llu",
5488 e4b->bd_group, group, pa->pa_pstart);
5489 return;
5490 }
5491 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
5492 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
5493 trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
5494}
5495
5496/*
5497 * releases all preallocations in given group
5498 *
5499 * first, we need to decide discard policy:
5500 * - when do we discard
5501 * 1) ENOSPC
5502 * - how many do we discard
5503 * 1) how many requested
5504 */
5505static noinline_for_stack int
5506ext4_mb_discard_group_preallocations(struct super_block *sb,
5507 ext4_group_t group, int *busy)
5508{
5509 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
5510 struct buffer_head *bitmap_bh = NULL;
5511 struct ext4_prealloc_space *pa, *tmp;
5512 LIST_HEAD(list);
5513 struct ext4_buddy e4b;
5514 struct ext4_inode_info *ei;
5515 int err;
5516 int free = 0;
5517
5518 if (!grp)
5519 return 0;
5520 mb_debug(sb, "discard preallocation for group %u\n", group);
5521 if (list_empty(&grp->bb_prealloc_list))
5522 goto out_dbg;
5523
5524 bitmap_bh = ext4_read_block_bitmap(sb, group);
5525 if (IS_ERR(bitmap_bh)) {
5526 err = PTR_ERR(bitmap_bh);
5527 ext4_error_err(sb, -err,
5528 "Error %d reading block bitmap for %u",
5529 err, group);
5530 goto out_dbg;
5531 }
5532
5533 err = ext4_mb_load_buddy(sb, group, &e4b);
5534 if (err) {
5535 ext4_warning(sb, "Error %d loading buddy information for %u",
5536 err, group);
5537 put_bh(bitmap_bh);
5538 goto out_dbg;
5539 }
5540
5541 ext4_lock_group(sb, group);
5542 list_for_each_entry_safe(pa, tmp,
5543 &grp->bb_prealloc_list, pa_group_list) {
5544 spin_lock(&pa->pa_lock);
5545 if (atomic_read(&pa->pa_count)) {
5546 spin_unlock(&pa->pa_lock);
5547 *busy = 1;
5548 continue;
5549 }
5550 if (pa->pa_deleted) {
5551 spin_unlock(&pa->pa_lock);
5552 continue;
5553 }
5554
5555 /* seems this one can be freed ... */
5556 ext4_mb_mark_pa_deleted(sb, pa);
5557
5558 if (!free)
5559 this_cpu_inc(discard_pa_seq);
5560
5561 /* we can trust pa_free ... */
5562 free += pa->pa_free;
5563
5564 spin_unlock(&pa->pa_lock);
5565
5566 list_del(&pa->pa_group_list);
5567 list_add(&pa->u.pa_tmp_list, &list);
5568 }
5569
5570 /* now free all selected PAs */
5571 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
5572
5573 /* remove from object (inode or locality group) */
5574 if (pa->pa_type == MB_GROUP_PA) {
5575 spin_lock(pa->pa_node_lock.lg_lock);
5576 list_del_rcu(&pa->pa_node.lg_list);
5577 spin_unlock(pa->pa_node_lock.lg_lock);
5578 } else {
5579 write_lock(pa->pa_node_lock.inode_lock);
5580 ei = EXT4_I(pa->pa_inode);
5581 rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node);
5582 write_unlock(pa->pa_node_lock.inode_lock);
5583 }
5584
5585 list_del(&pa->u.pa_tmp_list);
5586
5587 if (pa->pa_type == MB_GROUP_PA) {
5588 ext4_mb_release_group_pa(&e4b, pa);
5589 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
5590 } else {
5591 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
5592 ext4_mb_pa_free(pa);
5593 }
5594 }
5595
5596 ext4_unlock_group(sb, group);
5597 ext4_mb_unload_buddy(&e4b);
5598 put_bh(bitmap_bh);
5599out_dbg:
5600 mb_debug(sb, "discarded (%d) blocks preallocated for group %u bb_free (%d)\n",
5601 free, group, grp->bb_free);
5602 return free;
5603}
5604
5605/*
5606 * releases all non-used preallocated blocks for given inode
5607 *
5608 * It's important to discard preallocations under i_data_sem
5609 * We don't want another block to be served from the prealloc
5610 * space when we are discarding the inode prealloc space.
5611 *
5612 * FIXME!! Make sure it is valid at all the call sites
5613 */
5614void ext4_discard_preallocations(struct inode *inode)
5615{
5616 struct ext4_inode_info *ei = EXT4_I(inode);
5617 struct super_block *sb = inode->i_sb;
5618 struct buffer_head *bitmap_bh = NULL;
5619 struct ext4_prealloc_space *pa, *tmp;
5620 ext4_group_t group = 0;
5621 LIST_HEAD(list);
5622 struct ext4_buddy e4b;
5623 struct rb_node *iter;
5624 int err;
5625
5626 if (!S_ISREG(inode->i_mode))
5627 return;
5628
5629 if (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY)
5630 return;
5631
5632 mb_debug(sb, "discard preallocation for inode %lu\n",
5633 inode->i_ino);
5634 trace_ext4_discard_preallocations(inode,
5635 atomic_read(&ei->i_prealloc_active));
5636
5637repeat:
5638 /* first, collect all pa's in the inode */
5639 write_lock(&ei->i_prealloc_lock);
5640 for (iter = rb_first(&ei->i_prealloc_node); iter;
5641 iter = rb_next(iter)) {
5642 pa = rb_entry(iter, struct ext4_prealloc_space,
5643 pa_node.inode_node);
5644 BUG_ON(pa->pa_node_lock.inode_lock != &ei->i_prealloc_lock);
5645
5646 spin_lock(&pa->pa_lock);
5647 if (atomic_read(&pa->pa_count)) {
5648 /* this shouldn't happen often - nobody should
5649 * use preallocation while we're discarding it */
5650 spin_unlock(&pa->pa_lock);
5651 write_unlock(&ei->i_prealloc_lock);
5652 ext4_msg(sb, KERN_ERR,
5653 "uh-oh! used pa while discarding");
5654 WARN_ON(1);
5655 schedule_timeout_uninterruptible(HZ);
5656 goto repeat;
5657
5658 }
5659 if (pa->pa_deleted == 0) {
5660 ext4_mb_mark_pa_deleted(sb, pa);
5661 spin_unlock(&pa->pa_lock);
5662 rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node);
5663 list_add(&pa->u.pa_tmp_list, &list);
5664 continue;
5665 }
5666
5667 /* someone is deleting pa right now */
5668 spin_unlock(&pa->pa_lock);
5669 write_unlock(&ei->i_prealloc_lock);
5670
5671 /* we have to wait here because pa_deleted
5672 * doesn't mean pa is already unlinked from
5673 * the list. as we might be called from
5674 * ->clear_inode() the inode will get freed
5675 * and concurrent thread which is unlinking
5676 * pa from inode's list may access already
5677 * freed memory, bad-bad-bad */
5678
5679 /* XXX: if this happens too often, we can
5680 * add a flag to force wait only in case
5681 * of ->clear_inode(), but not in case of
5682 * regular truncate */
5683 schedule_timeout_uninterruptible(HZ);
5684 goto repeat;
5685 }
5686 write_unlock(&ei->i_prealloc_lock);
5687
5688 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
5689 BUG_ON(pa->pa_type != MB_INODE_PA);
5690 group = ext4_get_group_number(sb, pa->pa_pstart);
5691
5692 err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
5693 GFP_NOFS|__GFP_NOFAIL);
5694 if (err) {
5695 ext4_error_err(sb, -err, "Error %d loading buddy information for %u",
5696 err, group);
5697 continue;
5698 }
5699
5700 bitmap_bh = ext4_read_block_bitmap(sb, group);
5701 if (IS_ERR(bitmap_bh)) {
5702 err = PTR_ERR(bitmap_bh);
5703 ext4_error_err(sb, -err, "Error %d reading block bitmap for %u",
5704 err, group);
5705 ext4_mb_unload_buddy(&e4b);
5706 continue;
5707 }
5708
5709 ext4_lock_group(sb, group);
5710 list_del(&pa->pa_group_list);
5711 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
5712 ext4_unlock_group(sb, group);
5713
5714 ext4_mb_unload_buddy(&e4b);
5715 put_bh(bitmap_bh);
5716
5717 list_del(&pa->u.pa_tmp_list);
5718 ext4_mb_pa_free(pa);
5719 }
5720}
5721
5722static int ext4_mb_pa_alloc(struct ext4_allocation_context *ac)
5723{
5724 struct ext4_prealloc_space *pa;
5725
5726 BUG_ON(ext4_pspace_cachep == NULL);
5727 pa = kmem_cache_zalloc(ext4_pspace_cachep, GFP_NOFS);
5728 if (!pa)
5729 return -ENOMEM;
5730 atomic_set(&pa->pa_count, 1);
5731 ac->ac_pa = pa;
5732 return 0;
5733}
5734
5735static void ext4_mb_pa_put_free(struct ext4_allocation_context *ac)
5736{
5737 struct ext4_prealloc_space *pa = ac->ac_pa;
5738
5739 BUG_ON(!pa);
5740 ac->ac_pa = NULL;
5741 WARN_ON(!atomic_dec_and_test(&pa->pa_count));
5742 /*
5743 * current function is only called due to an error or due to
5744 * len of found blocks < len of requested blocks hence the PA has not
5745 * been added to grp->bb_prealloc_list. So we don't need to lock it
5746 */
5747 pa->pa_deleted = 1;
5748 ext4_mb_pa_free(pa);
5749}
5750
5751#ifdef CONFIG_EXT4_DEBUG
5752static inline void ext4_mb_show_pa(struct super_block *sb)
5753{
5754 ext4_group_t i, ngroups;
5755
5756 if (ext4_emergency_state(sb))
5757 return;
5758
5759 ngroups = ext4_get_groups_count(sb);
5760 mb_debug(sb, "groups: ");
5761 for (i = 0; i < ngroups; i++) {
5762 struct ext4_group_info *grp = ext4_get_group_info(sb, i);
5763 struct ext4_prealloc_space *pa;
5764 ext4_grpblk_t start;
5765 struct list_head *cur;
5766
5767 if (!grp)
5768 continue;
5769 ext4_lock_group(sb, i);
5770 list_for_each(cur, &grp->bb_prealloc_list) {
5771 pa = list_entry(cur, struct ext4_prealloc_space,
5772 pa_group_list);
5773 spin_lock(&pa->pa_lock);
5774 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
5775 NULL, &start);
5776 spin_unlock(&pa->pa_lock);
5777 mb_debug(sb, "PA:%u:%d:%d\n", i, start,
5778 pa->pa_len);
5779 }
5780 ext4_unlock_group(sb, i);
5781 mb_debug(sb, "%u: %d/%d\n", i, grp->bb_free,
5782 grp->bb_fragments);
5783 }
5784}
5785
5786static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
5787{
5788 struct super_block *sb = ac->ac_sb;
5789
5790 if (ext4_emergency_state(sb))
5791 return;
5792
5793 mb_debug(sb, "Can't allocate:"
5794 " Allocation context details:");
5795 mb_debug(sb, "status %u flags 0x%x",
5796 ac->ac_status, ac->ac_flags);
5797 mb_debug(sb, "orig %lu/%lu/%lu@%lu, "
5798 "goal %lu/%lu/%lu@%lu, "
5799 "best %lu/%lu/%lu@%lu cr %d",
5800 (unsigned long)ac->ac_o_ex.fe_group,
5801 (unsigned long)ac->ac_o_ex.fe_start,
5802 (unsigned long)ac->ac_o_ex.fe_len,
5803 (unsigned long)ac->ac_o_ex.fe_logical,
5804 (unsigned long)ac->ac_g_ex.fe_group,
5805 (unsigned long)ac->ac_g_ex.fe_start,
5806 (unsigned long)ac->ac_g_ex.fe_len,
5807 (unsigned long)ac->ac_g_ex.fe_logical,
5808 (unsigned long)ac->ac_b_ex.fe_group,
5809 (unsigned long)ac->ac_b_ex.fe_start,
5810 (unsigned long)ac->ac_b_ex.fe_len,
5811 (unsigned long)ac->ac_b_ex.fe_logical,
5812 (int)ac->ac_criteria);
5813 mb_debug(sb, "%u found", ac->ac_found);
5814 mb_debug(sb, "used pa: %s, ", str_yes_no(ac->ac_pa));
5815 if (ac->ac_pa)
5816 mb_debug(sb, "pa_type %s\n", ac->ac_pa->pa_type == MB_GROUP_PA ?
5817 "group pa" : "inode pa");
5818 ext4_mb_show_pa(sb);
5819}
5820#else
5821static inline void ext4_mb_show_pa(struct super_block *sb)
5822{
5823}
5824static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
5825{
5826 ext4_mb_show_pa(ac->ac_sb);
5827}
5828#endif
5829
5830/*
5831 * We use locality group preallocation for small size file. The size of the
5832 * file is determined by the current size or the resulting size after
5833 * allocation which ever is larger
5834 *
5835 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
5836 */
5837static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
5838{
5839 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
5840 int bsbits = ac->ac_sb->s_blocksize_bits;
5841 loff_t size, isize;
5842 bool inode_pa_eligible, group_pa_eligible;
5843
5844 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
5845 return;
5846
5847 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
5848 return;
5849
5850 group_pa_eligible = sbi->s_mb_group_prealloc > 0;
5851 inode_pa_eligible = true;
5852 size = extent_logical_end(sbi, &ac->ac_o_ex);
5853 isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
5854 >> bsbits;
5855
5856 /* No point in using inode preallocation for closed files */
5857 if ((size == isize) && !ext4_fs_is_busy(sbi) &&
5858 !inode_is_open_for_write(ac->ac_inode))
5859 inode_pa_eligible = false;
5860
5861 size = max(size, isize);
5862 /* Don't use group allocation for large files */
5863 if (size > sbi->s_mb_stream_request)
5864 group_pa_eligible = false;
5865
5866 if (!group_pa_eligible) {
5867 if (inode_pa_eligible)
5868 ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
5869 else
5870 ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
5871 return;
5872 }
5873
5874 BUG_ON(ac->ac_lg != NULL);
5875 /*
5876 * locality group prealloc space are per cpu. The reason for having
5877 * per cpu locality group is to reduce the contention between block
5878 * request from multiple CPUs.
5879 */
5880 ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups);
5881
5882 /* we're going to use group allocation */
5883 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
5884
5885 /* serialize all allocations in the group */
5886 mutex_lock(&ac->ac_lg->lg_mutex);
5887}
5888
5889static noinline_for_stack void
5890ext4_mb_initialize_context(struct ext4_allocation_context *ac,
5891 struct ext4_allocation_request *ar)
5892{
5893 struct super_block *sb = ar->inode->i_sb;
5894 struct ext4_sb_info *sbi = EXT4_SB(sb);
5895 struct ext4_super_block *es = sbi->s_es;
5896 ext4_group_t group;
5897 unsigned int len;
5898 ext4_fsblk_t goal;
5899 ext4_grpblk_t block;
5900
5901 /* we can't allocate > group size */
5902 len = ar->len;
5903
5904 /* just a dirty hack to filter too big requests */
5905 if (len >= EXT4_CLUSTERS_PER_GROUP(sb))
5906 len = EXT4_CLUSTERS_PER_GROUP(sb);
5907
5908 /* start searching from the goal */
5909 goal = ar->goal;
5910 if (goal < le32_to_cpu(es->s_first_data_block) ||
5911 goal >= ext4_blocks_count(es))
5912 goal = le32_to_cpu(es->s_first_data_block);
5913 ext4_get_group_no_and_offset(sb, goal, &group, &block);
5914
5915 /* set up allocation goals */
5916 ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical);
5917 ac->ac_status = AC_STATUS_CONTINUE;
5918 ac->ac_sb = sb;
5919 ac->ac_inode = ar->inode;
5920 ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
5921 ac->ac_o_ex.fe_group = group;
5922 ac->ac_o_ex.fe_start = block;
5923 ac->ac_o_ex.fe_len = len;
5924 ac->ac_g_ex = ac->ac_o_ex;
5925 ac->ac_orig_goal_len = ac->ac_g_ex.fe_len;
5926 ac->ac_flags = ar->flags;
5927
5928 /* we have to define context: we'll work with a file or
5929 * locality group. this is a policy, actually */
5930 ext4_mb_group_or_file(ac);
5931
5932 mb_debug(sb, "init ac: %u blocks @ %u, goal %u, flags 0x%x, 2^%d, "
5933 "left: %u/%u, right %u/%u to %swritable\n",
5934 (unsigned) ar->len, (unsigned) ar->logical,
5935 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
5936 (unsigned) ar->lleft, (unsigned) ar->pleft,
5937 (unsigned) ar->lright, (unsigned) ar->pright,
5938 inode_is_open_for_write(ar->inode) ? "" : "non-");
5939}
5940
5941static noinline_for_stack void
5942ext4_mb_discard_lg_preallocations(struct super_block *sb,
5943 struct ext4_locality_group *lg,
5944 int order, int total_entries)
5945{
5946 ext4_group_t group = 0;
5947 struct ext4_buddy e4b;
5948 LIST_HEAD(discard_list);
5949 struct ext4_prealloc_space *pa, *tmp;
5950
5951 mb_debug(sb, "discard locality group preallocation\n");
5952
5953 spin_lock(&lg->lg_prealloc_lock);
5954 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
5955 pa_node.lg_list,
5956 lockdep_is_held(&lg->lg_prealloc_lock)) {
5957 spin_lock(&pa->pa_lock);
5958 if (atomic_read(&pa->pa_count)) {
5959 /*
5960 * This is the pa that we just used
5961 * for block allocation. So don't
5962 * free that
5963 */
5964 spin_unlock(&pa->pa_lock);
5965 continue;
5966 }
5967 if (pa->pa_deleted) {
5968 spin_unlock(&pa->pa_lock);
5969 continue;
5970 }
5971 /* only lg prealloc space */
5972 BUG_ON(pa->pa_type != MB_GROUP_PA);
5973
5974 /* seems this one can be freed ... */
5975 ext4_mb_mark_pa_deleted(sb, pa);
5976 spin_unlock(&pa->pa_lock);
5977
5978 list_del_rcu(&pa->pa_node.lg_list);
5979 list_add(&pa->u.pa_tmp_list, &discard_list);
5980
5981 total_entries--;
5982 if (total_entries <= 5) {
5983 /*
5984 * we want to keep only 5 entries
5985 * allowing it to grow to 8. This
5986 * mak sure we don't call discard
5987 * soon for this list.
5988 */
5989 break;
5990 }
5991 }
5992 spin_unlock(&lg->lg_prealloc_lock);
5993
5994 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
5995 int err;
5996
5997 group = ext4_get_group_number(sb, pa->pa_pstart);
5998 err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
5999 GFP_NOFS|__GFP_NOFAIL);
6000 if (err) {
6001 ext4_error_err(sb, -err, "Error %d loading buddy information for %u",
6002 err, group);
6003 continue;
6004 }
6005 ext4_lock_group(sb, group);
6006 list_del(&pa->pa_group_list);
6007 ext4_mb_release_group_pa(&e4b, pa);
6008 ext4_unlock_group(sb, group);
6009
6010 ext4_mb_unload_buddy(&e4b);
6011 list_del(&pa->u.pa_tmp_list);
6012 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
6013 }
6014}
6015
6016/*
6017 * We have incremented pa_count. So it cannot be freed at this
6018 * point. Also we hold lg_mutex. So no parallel allocation is
6019 * possible from this lg. That means pa_free cannot be updated.
6020 *
6021 * A parallel ext4_mb_discard_group_preallocations is possible.
6022 * which can cause the lg_prealloc_list to be updated.
6023 */
6024
6025static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
6026{
6027 int order, added = 0, lg_prealloc_count = 1;
6028 struct super_block *sb = ac->ac_sb;
6029 struct ext4_locality_group *lg = ac->ac_lg;
6030 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
6031
6032 order = fls(pa->pa_free) - 1;
6033 if (order > PREALLOC_TB_SIZE - 1)
6034 /* The max size of hash table is PREALLOC_TB_SIZE */
6035 order = PREALLOC_TB_SIZE - 1;
6036 /* Add the prealloc space to lg */
6037 spin_lock(&lg->lg_prealloc_lock);
6038 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
6039 pa_node.lg_list,
6040 lockdep_is_held(&lg->lg_prealloc_lock)) {
6041 spin_lock(&tmp_pa->pa_lock);
6042 if (tmp_pa->pa_deleted) {
6043 spin_unlock(&tmp_pa->pa_lock);
6044 continue;
6045 }
6046 if (!added && pa->pa_free < tmp_pa->pa_free) {
6047 /* Add to the tail of the previous entry */
6048 list_add_tail_rcu(&pa->pa_node.lg_list,
6049 &tmp_pa->pa_node.lg_list);
6050 added = 1;
6051 /*
6052 * we want to count the total
6053 * number of entries in the list
6054 */
6055 }
6056 spin_unlock(&tmp_pa->pa_lock);
6057 lg_prealloc_count++;
6058 }
6059 if (!added)
6060 list_add_tail_rcu(&pa->pa_node.lg_list,
6061 &lg->lg_prealloc_list[order]);
6062 spin_unlock(&lg->lg_prealloc_lock);
6063
6064 /* Now trim the list to be not more than 8 elements */
6065 if (lg_prealloc_count > 8)
6066 ext4_mb_discard_lg_preallocations(sb, lg,
6067 order, lg_prealloc_count);
6068}
6069
6070/*
6071 * release all resource we used in allocation
6072 */
6073static void ext4_mb_release_context(struct ext4_allocation_context *ac)
6074{
6075 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
6076 struct ext4_prealloc_space *pa = ac->ac_pa;
6077 if (pa) {
6078 if (pa->pa_type == MB_GROUP_PA) {
6079 /* see comment in ext4_mb_use_group_pa() */
6080 spin_lock(&pa->pa_lock);
6081 pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
6082 pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
6083 pa->pa_free -= ac->ac_b_ex.fe_len;
6084 pa->pa_len -= ac->ac_b_ex.fe_len;
6085 spin_unlock(&pa->pa_lock);
6086
6087 /*
6088 * We want to add the pa to the right bucket.
6089 * Remove it from the list and while adding
6090 * make sure the list to which we are adding
6091 * doesn't grow big.
6092 */
6093 if (likely(pa->pa_free)) {
6094 spin_lock(pa->pa_node_lock.lg_lock);
6095 list_del_rcu(&pa->pa_node.lg_list);
6096 spin_unlock(pa->pa_node_lock.lg_lock);
6097 ext4_mb_add_n_trim(ac);
6098 }
6099 }
6100
6101 ext4_mb_put_pa(ac, ac->ac_sb, pa);
6102 }
6103 if (ac->ac_bitmap_folio)
6104 folio_put(ac->ac_bitmap_folio);
6105 if (ac->ac_buddy_folio)
6106 folio_put(ac->ac_buddy_folio);
6107 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
6108 mutex_unlock(&ac->ac_lg->lg_mutex);
6109 ext4_mb_collect_stats(ac);
6110}
6111
6112static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
6113{
6114 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
6115 int ret;
6116 int freed = 0, busy = 0;
6117 int retry = 0;
6118
6119 trace_ext4_mb_discard_preallocations(sb, needed);
6120
6121 if (needed == 0)
6122 needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
6123 repeat:
6124 for (i = 0; i < ngroups && needed > 0; i++) {
6125 ret = ext4_mb_discard_group_preallocations(sb, i, &busy);
6126 freed += ret;
6127 needed -= ret;
6128 cond_resched();
6129 }
6130
6131 if (needed > 0 && busy && ++retry < 3) {
6132 busy = 0;
6133 goto repeat;
6134 }
6135
6136 return freed;
6137}
6138
6139static bool ext4_mb_discard_preallocations_should_retry(struct super_block *sb,
6140 struct ext4_allocation_context *ac, u64 *seq)
6141{
6142 int freed;
6143 u64 seq_retry = 0;
6144 bool ret = false;
6145
6146 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
6147 if (freed) {
6148 ret = true;
6149 goto out_dbg;
6150 }
6151 seq_retry = ext4_get_discard_pa_seq_sum();
6152 if (!(ac->ac_flags & EXT4_MB_STRICT_CHECK) || seq_retry != *seq) {
6153 ac->ac_flags |= EXT4_MB_STRICT_CHECK;
6154 *seq = seq_retry;
6155 ret = true;
6156 }
6157
6158out_dbg:
6159 mb_debug(sb, "freed %d, retry ? %s\n", freed, str_yes_no(ret));
6160 return ret;
6161}
6162
6163/*
6164 * Simple allocator for Ext4 fast commit replay path. It searches for blocks
6165 * linearly starting at the goal block and also excludes the blocks which
6166 * are going to be in use after fast commit replay.
6167 */
6168static ext4_fsblk_t
6169ext4_mb_new_blocks_simple(struct ext4_allocation_request *ar, int *errp)
6170{
6171 struct buffer_head *bitmap_bh;
6172 struct super_block *sb = ar->inode->i_sb;
6173 struct ext4_sb_info *sbi = EXT4_SB(sb);
6174 ext4_group_t group, nr;
6175 ext4_grpblk_t blkoff;
6176 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
6177 ext4_grpblk_t i = 0;
6178 ext4_fsblk_t goal, block;
6179 struct ext4_super_block *es = sbi->s_es;
6180
6181 goal = ar->goal;
6182 if (goal < le32_to_cpu(es->s_first_data_block) ||
6183 goal >= ext4_blocks_count(es))
6184 goal = le32_to_cpu(es->s_first_data_block);
6185
6186 ar->len = 0;
6187 ext4_get_group_no_and_offset(sb, goal, &group, &blkoff);
6188 for (nr = ext4_get_groups_count(sb); nr > 0; nr--) {
6189 bitmap_bh = ext4_read_block_bitmap(sb, group);
6190 if (IS_ERR(bitmap_bh)) {
6191 *errp = PTR_ERR(bitmap_bh);
6192 pr_warn("Failed to read block bitmap\n");
6193 return 0;
6194 }
6195
6196 while (1) {
6197 i = mb_find_next_zero_bit(bitmap_bh->b_data, max,
6198 blkoff);
6199 if (i >= max)
6200 break;
6201 if (ext4_fc_replay_check_excluded(sb,
6202 ext4_group_first_block_no(sb, group) +
6203 EXT4_C2B(sbi, i))) {
6204 blkoff = i + 1;
6205 } else
6206 break;
6207 }
6208 brelse(bitmap_bh);
6209 if (i < max)
6210 break;
6211
6212 if (++group >= ext4_get_groups_count(sb))
6213 group = 0;
6214
6215 blkoff = 0;
6216 }
6217
6218 if (i >= max) {
6219 *errp = -ENOSPC;
6220 return 0;
6221 }
6222
6223 block = ext4_group_first_block_no(sb, group) + EXT4_C2B(sbi, i);
6224 ext4_mb_mark_bb(sb, block, 1, true);
6225 ar->len = 1;
6226
6227 *errp = 0;
6228 return block;
6229}
6230
6231/*
6232 * Main entry point into mballoc to allocate blocks
6233 * it tries to use preallocation first, then falls back
6234 * to usual allocation
6235 */
6236ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
6237 struct ext4_allocation_request *ar, int *errp)
6238{
6239 struct ext4_allocation_context *ac = NULL;
6240 struct ext4_sb_info *sbi;
6241 struct super_block *sb;
6242 ext4_fsblk_t block = 0;
6243 unsigned int inquota = 0;
6244 unsigned int reserv_clstrs = 0;
6245 int retries = 0;
6246 u64 seq;
6247
6248 might_sleep();
6249 sb = ar->inode->i_sb;
6250 sbi = EXT4_SB(sb);
6251
6252 trace_ext4_request_blocks(ar);
6253 if (sbi->s_mount_state & EXT4_FC_REPLAY)
6254 return ext4_mb_new_blocks_simple(ar, errp);
6255
6256 /* Allow to use superuser reservation for quota file */
6257 if (ext4_is_quota_file(ar->inode))
6258 ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;
6259
6260 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) {
6261 /* Without delayed allocation we need to verify
6262 * there is enough free blocks to do block allocation
6263 * and verify allocation doesn't exceed the quota limits.
6264 */
6265 while (ar->len &&
6266 ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
6267
6268 /* let others to free the space */
6269 cond_resched();
6270 ar->len = ar->len >> 1;
6271 }
6272 if (!ar->len) {
6273 ext4_mb_show_pa(sb);
6274 *errp = -ENOSPC;
6275 return 0;
6276 }
6277 reserv_clstrs = ar->len;
6278 if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
6279 dquot_alloc_block_nofail(ar->inode,
6280 EXT4_C2B(sbi, ar->len));
6281 } else {
6282 while (ar->len &&
6283 dquot_alloc_block(ar->inode,
6284 EXT4_C2B(sbi, ar->len))) {
6285
6286 ar->flags |= EXT4_MB_HINT_NOPREALLOC;
6287 ar->len--;
6288 }
6289 }
6290 inquota = ar->len;
6291 if (ar->len == 0) {
6292 *errp = -EDQUOT;
6293 goto out;
6294 }
6295 }
6296
6297 ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS);
6298 if (!ac) {
6299 ar->len = 0;
6300 *errp = -ENOMEM;
6301 goto out;
6302 }
6303
6304 ext4_mb_initialize_context(ac, ar);
6305
6306 ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
6307 seq = this_cpu_read(discard_pa_seq);
6308 if (!ext4_mb_use_preallocated(ac)) {
6309 ac->ac_op = EXT4_MB_HISTORY_ALLOC;
6310 ext4_mb_normalize_request(ac, ar);
6311
6312 *errp = ext4_mb_pa_alloc(ac);
6313 if (*errp)
6314 goto errout;
6315repeat:
6316 /* allocate space in core */
6317 *errp = ext4_mb_regular_allocator(ac);
6318 /*
6319 * pa allocated above is added to grp->bb_prealloc_list only
6320 * when we were able to allocate some block i.e. when
6321 * ac->ac_status == AC_STATUS_FOUND.
6322 * And error from above mean ac->ac_status != AC_STATUS_FOUND
6323 * So we have to free this pa here itself.
6324 */
6325 if (*errp) {
6326 ext4_mb_pa_put_free(ac);
6327 ext4_discard_allocated_blocks(ac);
6328 goto errout;
6329 }
6330 if (ac->ac_status == AC_STATUS_FOUND &&
6331 ac->ac_o_ex.fe_len >= ac->ac_f_ex.fe_len)
6332 ext4_mb_pa_put_free(ac);
6333 }
6334 if (likely(ac->ac_status == AC_STATUS_FOUND)) {
6335 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
6336 if (*errp) {
6337 ext4_discard_allocated_blocks(ac);
6338 goto errout;
6339 } else {
6340 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
6341 ar->len = ac->ac_b_ex.fe_len;
6342 }
6343 } else {
6344 if (++retries < 3 &&
6345 ext4_mb_discard_preallocations_should_retry(sb, ac, &seq))
6346 goto repeat;
6347 /*
6348 * If block allocation fails then the pa allocated above
6349 * needs to be freed here itself.
6350 */
6351 ext4_mb_pa_put_free(ac);
6352 *errp = -ENOSPC;
6353 }
6354
6355 if (*errp) {
6356errout:
6357 ac->ac_b_ex.fe_len = 0;
6358 ar->len = 0;
6359 ext4_mb_show_ac(ac);
6360 }
6361 ext4_mb_release_context(ac);
6362 kmem_cache_free(ext4_ac_cachep, ac);
6363out:
6364 if (inquota && ar->len < inquota)
6365 dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
6366 if (!ar->len) {
6367 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0)
6368 /* release all the reserved blocks if non delalloc */
6369 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
6370 reserv_clstrs);
6371 }
6372
6373 trace_ext4_allocate_blocks(ar, (unsigned long long)block);
6374
6375 return block;
6376}
6377
6378/*
6379 * We can merge two free data extents only if the physical blocks
6380 * are contiguous, AND the extents were freed by the same transaction,
6381 * AND the blocks are associated with the same group.
6382 */
6383static inline bool
6384ext4_freed_extents_can_be_merged(struct ext4_free_data *entry1,
6385 struct ext4_free_data *entry2)
6386{
6387 if (entry1->efd_tid != entry2->efd_tid)
6388 return false;
6389 if (entry1->efd_start_cluster + entry1->efd_count !=
6390 entry2->efd_start_cluster)
6391 return false;
6392 if (WARN_ON_ONCE(entry1->efd_group != entry2->efd_group))
6393 return false;
6394 return true;
6395}
6396
6397static inline void
6398ext4_merge_freed_extents(struct ext4_sb_info *sbi, struct rb_root *root,
6399 struct ext4_free_data *entry1,
6400 struct ext4_free_data *entry2)
6401{
6402 entry1->efd_count += entry2->efd_count;
6403 spin_lock(&sbi->s_md_lock);
6404 list_del(&entry2->efd_list);
6405 spin_unlock(&sbi->s_md_lock);
6406 rb_erase(&entry2->efd_node, root);
6407 kmem_cache_free(ext4_free_data_cachep, entry2);
6408}
6409
6410static inline void
6411ext4_try_merge_freed_extent_prev(struct ext4_sb_info *sbi, struct rb_root *root,
6412 struct ext4_free_data *entry)
6413{
6414 struct ext4_free_data *prev;
6415 struct rb_node *node;
6416
6417 node = rb_prev(&entry->efd_node);
6418 if (!node)
6419 return;
6420
6421 prev = rb_entry(node, struct ext4_free_data, efd_node);
6422 if (ext4_freed_extents_can_be_merged(prev, entry))
6423 ext4_merge_freed_extents(sbi, root, prev, entry);
6424}
6425
6426static inline void
6427ext4_try_merge_freed_extent_next(struct ext4_sb_info *sbi, struct rb_root *root,
6428 struct ext4_free_data *entry)
6429{
6430 struct ext4_free_data *next;
6431 struct rb_node *node;
6432
6433 node = rb_next(&entry->efd_node);
6434 if (!node)
6435 return;
6436
6437 next = rb_entry(node, struct ext4_free_data, efd_node);
6438 if (ext4_freed_extents_can_be_merged(entry, next))
6439 ext4_merge_freed_extents(sbi, root, entry, next);
6440}
6441
6442static noinline_for_stack void
6443ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
6444 struct ext4_free_data *new_entry)
6445{
6446 ext4_group_t group = e4b->bd_group;
6447 ext4_grpblk_t cluster;
6448 ext4_grpblk_t clusters = new_entry->efd_count;
6449 struct ext4_free_data *entry = NULL;
6450 struct ext4_group_info *db = e4b->bd_info;
6451 struct super_block *sb = e4b->bd_sb;
6452 struct ext4_sb_info *sbi = EXT4_SB(sb);
6453 struct rb_root *root = &db->bb_free_root;
6454 struct rb_node **n = &root->rb_node;
6455 struct rb_node *parent = NULL, *new_node;
6456
6457 BUG_ON(!ext4_handle_valid(handle));
6458 BUG_ON(e4b->bd_bitmap_folio == NULL);
6459 BUG_ON(e4b->bd_buddy_folio == NULL);
6460
6461 new_node = &new_entry->efd_node;
6462 cluster = new_entry->efd_start_cluster;
6463
6464 if (!*n) {
6465 /* first free block exent. We need to
6466 protect buddy cache from being freed,
6467 * otherwise we'll refresh it from
6468 * on-disk bitmap and lose not-yet-available
6469 * blocks */
6470 folio_get(e4b->bd_buddy_folio);
6471 folio_get(e4b->bd_bitmap_folio);
6472 }
6473 while (*n) {
6474 parent = *n;
6475 entry = rb_entry(parent, struct ext4_free_data, efd_node);
6476 if (cluster < entry->efd_start_cluster)
6477 n = &(*n)->rb_left;
6478 else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
6479 n = &(*n)->rb_right;
6480 else {
6481 ext4_grp_locked_error(sb, group, 0,
6482 ext4_group_first_block_no(sb, group) +
6483 EXT4_C2B(sbi, cluster),
6484 "Block already on to-be-freed list");
6485 kmem_cache_free(ext4_free_data_cachep, new_entry);
6486 return;
6487 }
6488 }
6489
6490 atomic_add(clusters, &sbi->s_mb_free_pending);
6491 if (!entry)
6492 goto insert;
6493
6494 /* Now try to see the extent can be merged to prev and next */
6495 if (ext4_freed_extents_can_be_merged(new_entry, entry)) {
6496 entry->efd_start_cluster = cluster;
6497 entry->efd_count += new_entry->efd_count;
6498 kmem_cache_free(ext4_free_data_cachep, new_entry);
6499 ext4_try_merge_freed_extent_prev(sbi, root, entry);
6500 return;
6501 }
6502 if (ext4_freed_extents_can_be_merged(entry, new_entry)) {
6503 entry->efd_count += new_entry->efd_count;
6504 kmem_cache_free(ext4_free_data_cachep, new_entry);
6505 ext4_try_merge_freed_extent_next(sbi, root, entry);
6506 return;
6507 }
6508insert:
6509 rb_link_node(new_node, parent, n);
6510 rb_insert_color(new_node, root);
6511
6512 spin_lock(&sbi->s_md_lock);
6513 list_add_tail(&new_entry->efd_list, &sbi->s_freed_data_list[new_entry->efd_tid & 1]);
6514 spin_unlock(&sbi->s_md_lock);
6515}
6516
6517static void ext4_free_blocks_simple(struct inode *inode, ext4_fsblk_t block,
6518 unsigned long count)
6519{
6520 struct super_block *sb = inode->i_sb;
6521 ext4_group_t group;
6522 ext4_grpblk_t blkoff;
6523
6524 ext4_get_group_no_and_offset(sb, block, &group, &blkoff);
6525 ext4_mb_mark_context(NULL, sb, false, group, blkoff, count,
6526 EXT4_MB_BITMAP_MARKED_CHECK |
6527 EXT4_MB_SYNC_UPDATE,
6528 NULL);
6529}
6530
6531/**
6532 * ext4_mb_clear_bb() -- helper function for freeing blocks.
6533 * Used by ext4_free_blocks()
6534 * @handle: handle for this transaction
6535 * @inode: inode
6536 * @block: starting physical block to be freed
6537 * @count: number of blocks to be freed
6538 * @flags: flags used by ext4_free_blocks
6539 */
6540static void ext4_mb_clear_bb(handle_t *handle, struct inode *inode,
6541 ext4_fsblk_t block, unsigned long count,
6542 int flags)
6543{
6544 struct super_block *sb = inode->i_sb;
6545 struct ext4_group_info *grp;
6546 unsigned int overflow;
6547 ext4_grpblk_t bit;
6548 ext4_group_t block_group;
6549 struct ext4_sb_info *sbi;
6550 struct ext4_buddy e4b;
6551 unsigned int count_clusters;
6552 int err = 0;
6553 int mark_flags = 0;
6554 ext4_grpblk_t changed;
6555
6556 sbi = EXT4_SB(sb);
6557
6558 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
6559 !ext4_inode_block_valid(inode, block, count)) {
6560 ext4_error(sb, "Freeing blocks in system zone - "
6561 "Block = %llu, count = %lu", block, count);
6562 /* err = 0. ext4_std_error should be a no op */
6563 goto error_out;
6564 }
6565 flags |= EXT4_FREE_BLOCKS_VALIDATED;
6566
6567do_more:
6568 overflow = 0;
6569 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
6570
6571 grp = ext4_get_group_info(sb, block_group);
6572 if (unlikely(!grp || EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
6573 return;
6574
6575 /*
6576 * Check to see if we are freeing blocks across a group
6577 * boundary.
6578 */
6579 if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
6580 overflow = EXT4_C2B(sbi, bit) + count -
6581 EXT4_BLOCKS_PER_GROUP(sb);
6582 count -= overflow;
6583 /* The range changed so it's no longer validated */
6584 flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6585 }
6586 count_clusters = EXT4_NUM_B2C(sbi, count);
6587 trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
6588
6589 /* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */
6590 err = ext4_mb_load_buddy_gfp(sb, block_group, &e4b,
6591 GFP_NOFS|__GFP_NOFAIL);
6592 if (err)
6593 goto error_out;
6594
6595 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
6596 !ext4_inode_block_valid(inode, block, count)) {
6597 ext4_error(sb, "Freeing blocks in system zone - "
6598 "Block = %llu, count = %lu", block, count);
6599 /* err = 0. ext4_std_error should be a no op */
6600 goto error_clean;
6601 }
6602
6603#ifdef AGGRESSIVE_CHECK
6604 mark_flags |= EXT4_MB_BITMAP_MARKED_CHECK;
6605#endif
6606 err = ext4_mb_mark_context(handle, sb, false, block_group, bit,
6607 count_clusters, mark_flags, &changed);
6608
6609
6610 if (err && changed == 0)
6611 goto error_clean;
6612
6613#ifdef AGGRESSIVE_CHECK
6614 BUG_ON(changed != count_clusters);
6615#endif
6616
6617 /*
6618 * We need to make sure we don't reuse the freed block until after the
6619 * transaction is committed. We make an exception if the inode is to be
6620 * written in writeback mode since writeback mode has weak data
6621 * consistency guarantees.
6622 */
6623 if (ext4_handle_valid(handle) &&
6624 ((flags & EXT4_FREE_BLOCKS_METADATA) ||
6625 !ext4_should_writeback_data(inode))) {
6626 struct ext4_free_data *new_entry;
6627 /*
6628 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed
6629 * to fail.
6630 */
6631 new_entry = kmem_cache_alloc(ext4_free_data_cachep,
6632 GFP_NOFS|__GFP_NOFAIL);
6633 new_entry->efd_start_cluster = bit;
6634 new_entry->efd_group = block_group;
6635 new_entry->efd_count = count_clusters;
6636 new_entry->efd_tid = handle->h_transaction->t_tid;
6637
6638 ext4_lock_group(sb, block_group);
6639 ext4_mb_free_metadata(handle, &e4b, new_entry);
6640 } else {
6641 if (test_opt(sb, DISCARD)) {
6642 err = ext4_issue_discard(sb, block_group, bit,
6643 count_clusters);
6644 /*
6645 * Ignore EOPNOTSUPP error. This is consistent with
6646 * what happens when using journal.
6647 */
6648 if (err == -EOPNOTSUPP)
6649 err = 0;
6650 if (err)
6651 ext4_msg(sb, KERN_WARNING, "discard request in"
6652 " group:%u block:%d count:%lu failed"
6653 " with %d", block_group, bit, count,
6654 err);
6655 }
6656
6657 EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info);
6658
6659 ext4_lock_group(sb, block_group);
6660 mb_free_blocks(inode, &e4b, bit, count_clusters);
6661 }
6662
6663 ext4_unlock_group(sb, block_group);
6664
6665 /*
6666 * on a bigalloc file system, defer the s_freeclusters_counter
6667 * update to the caller (ext4_remove_space and friends) so they
6668 * can determine if a cluster freed here should be rereserved
6669 */
6670 if (!(flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER)) {
6671 if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
6672 dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));
6673 percpu_counter_add(&sbi->s_freeclusters_counter,
6674 count_clusters);
6675 }
6676
6677 if (overflow && !err) {
6678 block += count;
6679 count = overflow;
6680 ext4_mb_unload_buddy(&e4b);
6681 /* The range changed so it's no longer validated */
6682 flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6683 goto do_more;
6684 }
6685
6686error_clean:
6687 ext4_mb_unload_buddy(&e4b);
6688error_out:
6689 ext4_std_error(sb, err);
6690}
6691
6692/**
6693 * ext4_free_blocks() -- Free given blocks and update quota
6694 * @handle: handle for this transaction
6695 * @inode: inode
6696 * @bh: optional buffer of the block to be freed
6697 * @block: starting physical block to be freed
6698 * @count: number of blocks to be freed
6699 * @flags: flags used by ext4_free_blocks
6700 */
6701void ext4_free_blocks(handle_t *handle, struct inode *inode,
6702 struct buffer_head *bh, ext4_fsblk_t block,
6703 unsigned long count, int flags)
6704{
6705 struct super_block *sb = inode->i_sb;
6706 unsigned int overflow;
6707 struct ext4_sb_info *sbi;
6708
6709 sbi = EXT4_SB(sb);
6710
6711 if (bh) {
6712 if (block)
6713 BUG_ON(block != bh->b_blocknr);
6714 else
6715 block = bh->b_blocknr;
6716 }
6717
6718 if (sbi->s_mount_state & EXT4_FC_REPLAY) {
6719 ext4_free_blocks_simple(inode, block, EXT4_NUM_B2C(sbi, count));
6720 return;
6721 }
6722
6723 might_sleep();
6724
6725 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
6726 !ext4_inode_block_valid(inode, block, count)) {
6727 ext4_error(sb, "Freeing blocks not in datazone - "
6728 "block = %llu, count = %lu", block, count);
6729 return;
6730 }
6731 flags |= EXT4_FREE_BLOCKS_VALIDATED;
6732
6733 ext4_debug("freeing block %llu\n", block);
6734 trace_ext4_free_blocks(inode, block, count, flags);
6735
6736 if (bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
6737 BUG_ON(count > 1);
6738
6739 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
6740 inode, bh, block);
6741 }
6742
6743 /*
6744 * If the extent to be freed does not begin on a cluster
6745 * boundary, we need to deal with partial clusters at the
6746 * beginning and end of the extent. Normally we will free
6747 * blocks at the beginning or the end unless we are explicitly
6748 * requested to avoid doing so.
6749 */
6750 overflow = EXT4_PBLK_COFF(sbi, block);
6751 if (overflow) {
6752 if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
6753 overflow = sbi->s_cluster_ratio - overflow;
6754 block += overflow;
6755 if (count > overflow)
6756 count -= overflow;
6757 else
6758 return;
6759 } else {
6760 block -= overflow;
6761 count += overflow;
6762 }
6763 /* The range changed so it's no longer validated */
6764 flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6765 }
6766 overflow = EXT4_LBLK_COFF(sbi, count);
6767 if (overflow) {
6768 if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
6769 if (count > overflow)
6770 count -= overflow;
6771 else
6772 return;
6773 } else
6774 count += sbi->s_cluster_ratio - overflow;
6775 /* The range changed so it's no longer validated */
6776 flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6777 }
6778
6779 if (!bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
6780 int i;
6781 int is_metadata = flags & EXT4_FREE_BLOCKS_METADATA;
6782
6783 for (i = 0; i < count; i++) {
6784 cond_resched();
6785 if (is_metadata)
6786 bh = sb_find_get_block_nonatomic(inode->i_sb,
6787 block + i);
6788 ext4_forget(handle, is_metadata, inode, bh, block + i);
6789 }
6790 }
6791
6792 ext4_mb_clear_bb(handle, inode, block, count, flags);
6793}
6794
6795/**
6796 * ext4_group_add_blocks() -- Add given blocks to an existing group
6797 * @handle: handle to this transaction
6798 * @sb: super block
6799 * @block: start physical block to add to the block group
6800 * @count: number of blocks to free
6801 *
6802 * This marks the blocks as free in the bitmap and buddy.
6803 */
6804int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
6805 ext4_fsblk_t block, unsigned long count)
6806{
6807 ext4_group_t block_group;
6808 ext4_grpblk_t bit;
6809 struct ext4_sb_info *sbi = EXT4_SB(sb);
6810 struct ext4_buddy e4b;
6811 int err = 0;
6812 ext4_fsblk_t first_cluster = EXT4_B2C(sbi, block);
6813 ext4_fsblk_t last_cluster = EXT4_B2C(sbi, block + count - 1);
6814 unsigned long cluster_count = last_cluster - first_cluster + 1;
6815 ext4_grpblk_t changed;
6816
6817 ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
6818
6819 if (cluster_count == 0)
6820 return 0;
6821
6822 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
6823 /*
6824 * Check to see if we are freeing blocks across a group
6825 * boundary.
6826 */
6827 if (bit + cluster_count > EXT4_CLUSTERS_PER_GROUP(sb)) {
6828 ext4_warning(sb, "too many blocks added to group %u",
6829 block_group);
6830 err = -EINVAL;
6831 goto error_out;
6832 }
6833
6834 err = ext4_mb_load_buddy(sb, block_group, &e4b);
6835 if (err)
6836 goto error_out;
6837
6838 if (!ext4_sb_block_valid(sb, NULL, block, count)) {
6839 ext4_error(sb, "Adding blocks in system zones - "
6840 "Block = %llu, count = %lu",
6841 block, count);
6842 err = -EINVAL;
6843 goto error_clean;
6844 }
6845
6846 err = ext4_mb_mark_context(handle, sb, false, block_group, bit,
6847 cluster_count, EXT4_MB_BITMAP_MARKED_CHECK,
6848 &changed);
6849 if (err && changed == 0)
6850 goto error_clean;
6851
6852 if (changed != cluster_count)
6853 ext4_error(sb, "bit already cleared in group %u", block_group);
6854
6855 ext4_lock_group(sb, block_group);
6856 mb_free_blocks(NULL, &e4b, bit, cluster_count);
6857 ext4_unlock_group(sb, block_group);
6858 percpu_counter_add(&sbi->s_freeclusters_counter,
6859 changed);
6860
6861error_clean:
6862 ext4_mb_unload_buddy(&e4b);
6863error_out:
6864 ext4_std_error(sb, err);
6865 return err;
6866}
6867
6868/**
6869 * ext4_trim_extent -- function to TRIM one single free extent in the group
6870 * @sb: super block for the file system
6871 * @start: starting block of the free extent in the alloc. group
6872 * @count: number of blocks to TRIM
6873 * @e4b: ext4 buddy for the group
6874 *
6875 * Trim "count" blocks starting at "start" in the "group". To assure that no
6876 * one will allocate those blocks, mark it as used in buddy bitmap. This must
6877 * be called with under the group lock.
6878 */
6879static int ext4_trim_extent(struct super_block *sb,
6880 int start, int count, struct ext4_buddy *e4b)
6881__releases(bitlock)
6882__acquires(bitlock)
6883{
6884 struct ext4_free_extent ex;
6885 ext4_group_t group = e4b->bd_group;
6886 int ret = 0;
6887
6888 trace_ext4_trim_extent(sb, group, start, count);
6889
6890 assert_spin_locked(ext4_group_lock_ptr(sb, group));
6891
6892 ex.fe_start = start;
6893 ex.fe_group = group;
6894 ex.fe_len = count;
6895
6896 /*
6897 * Mark blocks used, so no one can reuse them while
6898 * being trimmed.
6899 */
6900 mb_mark_used(e4b, &ex);
6901 ext4_unlock_group(sb, group);
6902 ret = ext4_issue_discard(sb, group, start, count);
6903 ext4_lock_group(sb, group);
6904 mb_free_blocks(NULL, e4b, start, ex.fe_len);
6905 return ret;
6906}
6907
6908static ext4_grpblk_t ext4_last_grp_cluster(struct super_block *sb,
6909 ext4_group_t grp)
6910{
6911 unsigned long nr_clusters_in_group;
6912
6913 if (grp < (ext4_get_groups_count(sb) - 1))
6914 nr_clusters_in_group = EXT4_CLUSTERS_PER_GROUP(sb);
6915 else
6916 nr_clusters_in_group = (ext4_blocks_count(EXT4_SB(sb)->s_es) -
6917 ext4_group_first_block_no(sb, grp))
6918 >> EXT4_CLUSTER_BITS(sb);
6919
6920 return nr_clusters_in_group - 1;
6921}
6922
6923static bool ext4_trim_interrupted(void)
6924{
6925 return fatal_signal_pending(current) || freezing(current);
6926}
6927
6928static int ext4_try_to_trim_range(struct super_block *sb,
6929 struct ext4_buddy *e4b, ext4_grpblk_t start,
6930 ext4_grpblk_t max, ext4_grpblk_t minblocks)
6931__acquires(ext4_group_lock_ptr(sb, e4b->bd_group))
6932__releases(ext4_group_lock_ptr(sb, e4b->bd_group))
6933{
6934 ext4_grpblk_t next, count, free_count, last, origin_start;
6935 bool set_trimmed = false;
6936 void *bitmap;
6937
6938 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
6939 return 0;
6940
6941 last = ext4_last_grp_cluster(sb, e4b->bd_group);
6942 bitmap = e4b->bd_bitmap;
6943 if (start == 0 && max >= last)
6944 set_trimmed = true;
6945 origin_start = start;
6946 start = max(e4b->bd_info->bb_first_free, start);
6947 count = 0;
6948 free_count = 0;
6949
6950 while (start <= max) {
6951 start = mb_find_next_zero_bit(bitmap, max + 1, start);
6952 if (start > max)
6953 break;
6954
6955 next = mb_find_next_bit(bitmap, last + 1, start);
6956 if (origin_start == 0 && next >= last)
6957 set_trimmed = true;
6958
6959 if ((next - start) >= minblocks) {
6960 int ret = ext4_trim_extent(sb, start, next - start, e4b);
6961
6962 if (ret && ret != -EOPNOTSUPP)
6963 return count;
6964 count += next - start;
6965 }
6966 free_count += next - start;
6967 start = next + 1;
6968
6969 if (ext4_trim_interrupted())
6970 return count;
6971
6972 if (need_resched()) {
6973 ext4_unlock_group(sb, e4b->bd_group);
6974 cond_resched();
6975 ext4_lock_group(sb, e4b->bd_group);
6976 }
6977
6978 if ((e4b->bd_info->bb_free - free_count) < minblocks)
6979 break;
6980 }
6981
6982 if (set_trimmed)
6983 EXT4_MB_GRP_SET_TRIMMED(e4b->bd_info);
6984
6985 return count;
6986}
6987
6988/**
6989 * ext4_trim_all_free -- function to trim all free space in alloc. group
6990 * @sb: super block for file system
6991 * @group: group to be trimmed
6992 * @start: first group block to examine
6993 * @max: last group block to examine
6994 * @minblocks: minimum extent block count
6995 *
6996 * ext4_trim_all_free walks through group's block bitmap searching for free
6997 * extents. When the free extent is found, mark it as used in group buddy
6998 * bitmap. Then issue a TRIM command on this extent and free the extent in
6999 * the group buddy bitmap.
7000 */
7001static ext4_grpblk_t
7002ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
7003 ext4_grpblk_t start, ext4_grpblk_t max,
7004 ext4_grpblk_t minblocks)
7005{
7006 struct ext4_buddy e4b;
7007 int ret;
7008
7009 trace_ext4_trim_all_free(sb, group, start, max);
7010
7011 ret = ext4_mb_load_buddy(sb, group, &e4b);
7012 if (ret) {
7013 ext4_warning(sb, "Error %d loading buddy information for %u",
7014 ret, group);
7015 return ret;
7016 }
7017
7018 ext4_lock_group(sb, group);
7019
7020 if (!EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) ||
7021 minblocks < EXT4_SB(sb)->s_last_trim_minblks)
7022 ret = ext4_try_to_trim_range(sb, &e4b, start, max, minblocks);
7023 else
7024 ret = 0;
7025
7026 ext4_unlock_group(sb, group);
7027 ext4_mb_unload_buddy(&e4b);
7028
7029 ext4_debug("trimmed %d blocks in the group %d\n",
7030 ret, group);
7031
7032 return ret;
7033}
7034
7035/**
7036 * ext4_trim_fs() -- trim ioctl handle function
7037 * @sb: superblock for filesystem
7038 * @range: fstrim_range structure
7039 *
7040 * start: First Byte to trim
7041 * len: number of Bytes to trim from start
7042 * minlen: minimum extent length in Bytes
7043 * ext4_trim_fs goes through all allocation groups containing Bytes from
7044 * start to start+len. For each such a group ext4_trim_all_free function
7045 * is invoked to trim all free space.
7046 */
7047int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
7048{
7049 unsigned int discard_granularity = bdev_discard_granularity(sb->s_bdev);
7050 struct ext4_group_info *grp;
7051 ext4_group_t group, first_group, last_group;
7052 ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
7053 uint64_t start, end, minlen, trimmed = 0;
7054 ext4_fsblk_t first_data_blk =
7055 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
7056 ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
7057 int ret = 0;
7058
7059 start = range->start >> sb->s_blocksize_bits;
7060 end = start + (range->len >> sb->s_blocksize_bits) - 1;
7061 minlen = EXT4_NUM_B2C(EXT4_SB(sb),
7062 range->minlen >> sb->s_blocksize_bits);
7063
7064 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) ||
7065 start >= max_blks ||
7066 range->len < sb->s_blocksize)
7067 return -EINVAL;
7068 /* No point to try to trim less than discard granularity */
7069 if (range->minlen < discard_granularity) {
7070 minlen = EXT4_NUM_B2C(EXT4_SB(sb),
7071 discard_granularity >> sb->s_blocksize_bits);
7072 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb))
7073 goto out;
7074 }
7075 if (end >= max_blks - 1)
7076 end = max_blks - 1;
7077 if (end <= first_data_blk)
7078 goto out;
7079 if (start < first_data_blk)
7080 start = first_data_blk;
7081
7082 /* Determine first and last group to examine based on start and end */
7083 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
7084 &first_group, &first_cluster);
7085 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
7086 &last_group, &last_cluster);
7087
7088 /* end now represents the last cluster to discard in this group */
7089 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
7090
7091 for (group = first_group; group <= last_group; group++) {
7092 if (ext4_trim_interrupted())
7093 break;
7094 grp = ext4_get_group_info(sb, group);
7095 if (!grp)
7096 continue;
7097 /* We only do this if the grp has never been initialized */
7098 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
7099 ret = ext4_mb_init_group(sb, group, GFP_NOFS);
7100 if (ret)
7101 break;
7102 }
7103
7104 /*
7105 * For all the groups except the last one, last cluster will
7106 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
7107 * change it for the last group, note that last_cluster is
7108 * already computed earlier by ext4_get_group_no_and_offset()
7109 */
7110 if (group == last_group)
7111 end = last_cluster;
7112 if (grp->bb_free >= minlen) {
7113 cnt = ext4_trim_all_free(sb, group, first_cluster,
7114 end, minlen);
7115 if (cnt < 0) {
7116 ret = cnt;
7117 break;
7118 }
7119 trimmed += cnt;
7120 }
7121
7122 /*
7123 * For every group except the first one, we are sure
7124 * that the first cluster to discard will be cluster #0.
7125 */
7126 first_cluster = 0;
7127 }
7128
7129 if (!ret)
7130 EXT4_SB(sb)->s_last_trim_minblks = minlen;
7131
7132out:
7133 range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits;
7134 return ret;
7135}
7136
7137/* Iterate all the free extents in the group. */
7138int
7139ext4_mballoc_query_range(
7140 struct super_block *sb,
7141 ext4_group_t group,
7142 ext4_grpblk_t first,
7143 ext4_grpblk_t end,
7144 ext4_mballoc_query_range_fn meta_formatter,
7145 ext4_mballoc_query_range_fn formatter,
7146 void *priv)
7147{
7148 void *bitmap;
7149 ext4_grpblk_t start, next;
7150 struct ext4_buddy e4b;
7151 int error;
7152
7153 error = ext4_mb_load_buddy(sb, group, &e4b);
7154 if (error)
7155 return error;
7156 bitmap = e4b.bd_bitmap;
7157
7158 ext4_lock_group(sb, group);
7159
7160 start = max(e4b.bd_info->bb_first_free, first);
7161 if (end >= EXT4_CLUSTERS_PER_GROUP(sb))
7162 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
7163 if (meta_formatter && start != first) {
7164 if (start > end)
7165 start = end;
7166 ext4_unlock_group(sb, group);
7167 error = meta_formatter(sb, group, first, start - first,
7168 priv);
7169 if (error)
7170 goto out_unload;
7171 ext4_lock_group(sb, group);
7172 }
7173 while (start <= end) {
7174 start = mb_find_next_zero_bit(bitmap, end + 1, start);
7175 if (start > end)
7176 break;
7177 next = mb_find_next_bit(bitmap, end + 1, start);
7178
7179 ext4_unlock_group(sb, group);
7180 error = formatter(sb, group, start, next - start, priv);
7181 if (error)
7182 goto out_unload;
7183 ext4_lock_group(sb, group);
7184
7185 start = next + 1;
7186 }
7187
7188 ext4_unlock_group(sb, group);
7189out_unload:
7190 ext4_mb_unload_buddy(&e4b);
7191
7192 return error;
7193}
7194
7195#ifdef CONFIG_EXT4_KUNIT_TESTS
7196#include "mballoc-test.c"
7197#endif