at master 82 kB view raw
1// SPDX-License-Identifier: GPL-2.0 2 3#include <linux/bitops.h> 4#include <linux/slab.h> 5#include <linux/blkdev.h> 6#include <linux/sched/mm.h> 7#include <linux/atomic.h> 8#include <linux/vmalloc.h> 9#include "ctree.h" 10#include "volumes.h" 11#include "zoned.h" 12#include "disk-io.h" 13#include "block-group.h" 14#include "dev-replace.h" 15#include "space-info.h" 16#include "fs.h" 17#include "accessors.h" 18#include "bio.h" 19#include "transaction.h" 20#include "sysfs.h" 21 22/* Maximum number of zones to report per blkdev_report_zones() call */ 23#define BTRFS_REPORT_NR_ZONES 4096 24/* Invalid allocation pointer value for missing devices */ 25#define WP_MISSING_DEV ((u64)-1) 26/* Pseudo write pointer value for conventional zone */ 27#define WP_CONVENTIONAL ((u64)-2) 28 29/* 30 * Location of the first zone of superblock logging zone pairs. 31 * 32 * - primary superblock: 0B (zone 0) 33 * - first copy: 512G (zone starting at that offset) 34 * - second copy: 4T (zone starting at that offset) 35 */ 36#define BTRFS_SB_LOG_PRIMARY_OFFSET (0ULL) 37#define BTRFS_SB_LOG_FIRST_OFFSET (512ULL * SZ_1G) 38#define BTRFS_SB_LOG_SECOND_OFFSET (4096ULL * SZ_1G) 39 40#define BTRFS_SB_LOG_FIRST_SHIFT ilog2(BTRFS_SB_LOG_FIRST_OFFSET) 41#define BTRFS_SB_LOG_SECOND_SHIFT ilog2(BTRFS_SB_LOG_SECOND_OFFSET) 42 43/* Number of superblock log zones */ 44#define BTRFS_NR_SB_LOG_ZONES 2 45 46/* Default number of max active zones when the device has no limits. */ 47#define BTRFS_DEFAULT_MAX_ACTIVE_ZONES 128 48 49/* 50 * Minimum of active zones we need: 51 * 52 * - BTRFS_SUPER_MIRROR_MAX zones for superblock mirrors 53 * - 3 zones to ensure at least one zone per SYSTEM, META and DATA block group 54 * - 1 zone for tree-log dedicated block group 55 * - 1 zone for relocation 56 */ 57#define BTRFS_MIN_ACTIVE_ZONES (BTRFS_SUPER_MIRROR_MAX + 5) 58 59/* 60 * Minimum / maximum supported zone size. Currently, SMR disks have a zone 61 * size of 256MiB, and we are expecting ZNS drives to be in the 1-4GiB range. 62 * We do not expect the zone size to become larger than 8GiB or smaller than 63 * 4MiB in the near future. 64 */ 65#define BTRFS_MAX_ZONE_SIZE SZ_8G 66#define BTRFS_MIN_ZONE_SIZE SZ_4M 67 68#define SUPER_INFO_SECTORS ((u64)BTRFS_SUPER_INFO_SIZE >> SECTOR_SHIFT) 69 70static void wait_eb_writebacks(struct btrfs_block_group *block_group); 71static int do_zone_finish(struct btrfs_block_group *block_group, bool fully_written); 72 73static inline bool sb_zone_is_full(const struct blk_zone *zone) 74{ 75 return (zone->cond == BLK_ZONE_COND_FULL) || 76 (zone->wp + SUPER_INFO_SECTORS > zone->start + zone->capacity); 77} 78 79static int copy_zone_info_cb(struct blk_zone *zone, unsigned int idx, void *data) 80{ 81 struct blk_zone *zones = data; 82 83 memcpy(&zones[idx], zone, sizeof(*zone)); 84 85 return 0; 86} 87 88static int sb_write_pointer(struct block_device *bdev, struct blk_zone *zones, 89 u64 *wp_ret) 90{ 91 bool empty[BTRFS_NR_SB_LOG_ZONES]; 92 bool full[BTRFS_NR_SB_LOG_ZONES]; 93 sector_t sector; 94 95 for (int i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) { 96 ASSERT(zones[i].type != BLK_ZONE_TYPE_CONVENTIONAL, 97 "zones[%d].type=%d", i, zones[i].type); 98 empty[i] = (zones[i].cond == BLK_ZONE_COND_EMPTY); 99 full[i] = sb_zone_is_full(&zones[i]); 100 } 101 102 /* 103 * Possible states of log buffer zones 104 * 105 * Empty[0] In use[0] Full[0] 106 * Empty[1] * 0 1 107 * In use[1] x x 1 108 * Full[1] 0 0 C 109 * 110 * Log position: 111 * *: Special case, no superblock is written 112 * 0: Use write pointer of zones[0] 113 * 1: Use write pointer of zones[1] 114 * C: Compare super blocks from zones[0] and zones[1], use the latest 115 * one determined by generation 116 * x: Invalid state 117 */ 118 119 if (empty[0] && empty[1]) { 120 /* Special case to distinguish no superblock to read */ 121 *wp_ret = zones[0].start << SECTOR_SHIFT; 122 return -ENOENT; 123 } else if (full[0] && full[1]) { 124 /* Compare two super blocks */ 125 struct address_space *mapping = bdev->bd_mapping; 126 struct page *page[BTRFS_NR_SB_LOG_ZONES]; 127 struct btrfs_super_block *super[BTRFS_NR_SB_LOG_ZONES]; 128 129 for (int i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) { 130 u64 zone_end = (zones[i].start + zones[i].capacity) << SECTOR_SHIFT; 131 u64 bytenr = ALIGN_DOWN(zone_end, BTRFS_SUPER_INFO_SIZE) - 132 BTRFS_SUPER_INFO_SIZE; 133 134 page[i] = read_cache_page_gfp(mapping, 135 bytenr >> PAGE_SHIFT, GFP_NOFS); 136 if (IS_ERR(page[i])) { 137 if (i == 1) 138 btrfs_release_disk_super(super[0]); 139 return PTR_ERR(page[i]); 140 } 141 super[i] = page_address(page[i]); 142 } 143 144 if (btrfs_super_generation(super[0]) > 145 btrfs_super_generation(super[1])) 146 sector = zones[1].start; 147 else 148 sector = zones[0].start; 149 150 for (int i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) 151 btrfs_release_disk_super(super[i]); 152 } else if (!full[0] && (empty[1] || full[1])) { 153 sector = zones[0].wp; 154 } else if (full[0]) { 155 sector = zones[1].wp; 156 } else { 157 return -EUCLEAN; 158 } 159 *wp_ret = sector << SECTOR_SHIFT; 160 return 0; 161} 162 163/* 164 * Get the first zone number of the superblock mirror 165 */ 166static inline u32 sb_zone_number(int shift, int mirror) 167{ 168 u64 zone = U64_MAX; 169 170 ASSERT(mirror < BTRFS_SUPER_MIRROR_MAX, "mirror=%d", mirror); 171 switch (mirror) { 172 case 0: zone = 0; break; 173 case 1: zone = 1ULL << (BTRFS_SB_LOG_FIRST_SHIFT - shift); break; 174 case 2: zone = 1ULL << (BTRFS_SB_LOG_SECOND_SHIFT - shift); break; 175 } 176 177 ASSERT(zone <= U32_MAX, "zone=%llu", zone); 178 179 return (u32)zone; 180} 181 182static inline sector_t zone_start_sector(u32 zone_number, 183 struct block_device *bdev) 184{ 185 return (sector_t)zone_number << ilog2(bdev_zone_sectors(bdev)); 186} 187 188static inline u64 zone_start_physical(u32 zone_number, 189 struct btrfs_zoned_device_info *zone_info) 190{ 191 return (u64)zone_number << zone_info->zone_size_shift; 192} 193 194/* 195 * Emulate blkdev_report_zones() for a non-zoned device. It slices up the block 196 * device into static sized chunks and fake a conventional zone on each of 197 * them. 198 */ 199static int emulate_report_zones(struct btrfs_device *device, u64 pos, 200 struct blk_zone *zones, unsigned int nr_zones) 201{ 202 const sector_t zone_sectors = device->fs_info->zone_size >> SECTOR_SHIFT; 203 sector_t bdev_size = bdev_nr_sectors(device->bdev); 204 unsigned int i; 205 206 pos >>= SECTOR_SHIFT; 207 for (i = 0; i < nr_zones; i++) { 208 zones[i].start = i * zone_sectors + pos; 209 zones[i].len = zone_sectors; 210 zones[i].capacity = zone_sectors; 211 zones[i].wp = zones[i].start + zone_sectors; 212 zones[i].type = BLK_ZONE_TYPE_CONVENTIONAL; 213 zones[i].cond = BLK_ZONE_COND_NOT_WP; 214 215 if (zones[i].wp >= bdev_size) { 216 i++; 217 break; 218 } 219 } 220 221 return i; 222} 223 224static int btrfs_get_dev_zones(struct btrfs_device *device, u64 pos, 225 struct blk_zone *zones, unsigned int *nr_zones) 226{ 227 struct btrfs_zoned_device_info *zinfo = device->zone_info; 228 int ret; 229 230 if (!*nr_zones) 231 return 0; 232 233 if (!bdev_is_zoned(device->bdev)) { 234 ret = emulate_report_zones(device, pos, zones, *nr_zones); 235 *nr_zones = ret; 236 return 0; 237 } 238 239 /* Check cache */ 240 if (zinfo->zone_cache) { 241 unsigned int i; 242 u32 zno; 243 244 ASSERT(IS_ALIGNED(pos, zinfo->zone_size), 245 "pos=%llu zinfo->zone_size=%llu", pos, zinfo->zone_size); 246 zno = pos >> zinfo->zone_size_shift; 247 /* 248 * We cannot report zones beyond the zone end. So, it is OK to 249 * cap *nr_zones to at the end. 250 */ 251 *nr_zones = min_t(u32, *nr_zones, zinfo->nr_zones - zno); 252 253 for (i = 0; i < *nr_zones; i++) { 254 struct blk_zone *zone_info; 255 256 zone_info = &zinfo->zone_cache[zno + i]; 257 if (!zone_info->len) 258 break; 259 } 260 261 if (i == *nr_zones) { 262 /* Cache hit on all the zones */ 263 memcpy(zones, zinfo->zone_cache + zno, 264 sizeof(*zinfo->zone_cache) * *nr_zones); 265 return 0; 266 } 267 } 268 269 ret = blkdev_report_zones_cached(device->bdev, pos >> SECTOR_SHIFT, 270 *nr_zones, copy_zone_info_cb, zones); 271 if (ret < 0) { 272 btrfs_err(device->fs_info, 273 "zoned: failed to read zone %llu on %s (devid %llu)", 274 pos, rcu_dereference(device->name), 275 device->devid); 276 return ret; 277 } 278 *nr_zones = ret; 279 if (unlikely(!ret)) 280 return -EIO; 281 282 /* Populate cache */ 283 if (zinfo->zone_cache) { 284 u32 zno = pos >> zinfo->zone_size_shift; 285 286 memcpy(zinfo->zone_cache + zno, zones, 287 sizeof(*zinfo->zone_cache) * *nr_zones); 288 } 289 290 return 0; 291} 292 293/* The emulated zone size is determined from the size of device extent */ 294static int calculate_emulated_zone_size(struct btrfs_fs_info *fs_info) 295{ 296 BTRFS_PATH_AUTO_FREE(path); 297 struct btrfs_root *root = fs_info->dev_root; 298 struct btrfs_key key; 299 struct extent_buffer *leaf; 300 struct btrfs_dev_extent *dext; 301 int ret = 0; 302 303 key.objectid = 1; 304 key.type = BTRFS_DEV_EXTENT_KEY; 305 key.offset = 0; 306 307 path = btrfs_alloc_path(); 308 if (!path) 309 return -ENOMEM; 310 311 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 312 if (ret < 0) 313 return ret; 314 315 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 316 ret = btrfs_next_leaf(root, path); 317 if (ret < 0) 318 return ret; 319 /* No dev extents at all? Not good */ 320 if (unlikely(ret > 0)) 321 return -EUCLEAN; 322 } 323 324 leaf = path->nodes[0]; 325 dext = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent); 326 fs_info->zone_size = btrfs_dev_extent_length(leaf, dext); 327 return 0; 328} 329 330int btrfs_get_dev_zone_info_all_devices(struct btrfs_fs_info *fs_info) 331{ 332 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 333 struct btrfs_device *device; 334 int ret = 0; 335 336 /* fs_info->zone_size might not set yet. Use the incomapt flag here. */ 337 if (!btrfs_fs_incompat(fs_info, ZONED)) 338 return 0; 339 340 mutex_lock(&fs_devices->device_list_mutex); 341 list_for_each_entry(device, &fs_devices->devices, dev_list) { 342 /* We can skip reading of zone info for missing devices */ 343 if (!device->bdev) 344 continue; 345 346 ret = btrfs_get_dev_zone_info(device, true); 347 if (ret) 348 break; 349 } 350 mutex_unlock(&fs_devices->device_list_mutex); 351 352 return ret; 353} 354 355int btrfs_get_dev_zone_info(struct btrfs_device *device, bool populate_cache) 356{ 357 struct btrfs_fs_info *fs_info = device->fs_info; 358 struct btrfs_zoned_device_info *zone_info = NULL; 359 struct block_device *bdev = device->bdev; 360 unsigned int max_active_zones; 361 unsigned int nactive; 362 sector_t nr_sectors; 363 sector_t sector = 0; 364 struct blk_zone *zones = NULL; 365 unsigned int i, nreported = 0, nr_zones; 366 sector_t zone_sectors; 367 char *model, *emulated; 368 int ret; 369 370 /* 371 * Cannot use btrfs_is_zoned here, since fs_info::zone_size might not 372 * yet be set. 373 */ 374 if (!btrfs_fs_incompat(fs_info, ZONED)) 375 return 0; 376 377 if (device->zone_info) 378 return 0; 379 380 zone_info = kzalloc(sizeof(*zone_info), GFP_KERNEL); 381 if (!zone_info) 382 return -ENOMEM; 383 384 device->zone_info = zone_info; 385 386 if (!bdev_is_zoned(bdev)) { 387 if (!fs_info->zone_size) { 388 ret = calculate_emulated_zone_size(fs_info); 389 if (ret) 390 goto out; 391 } 392 393 ASSERT(fs_info->zone_size); 394 zone_sectors = fs_info->zone_size >> SECTOR_SHIFT; 395 } else { 396 zone_sectors = bdev_zone_sectors(bdev); 397 } 398 399 ASSERT(is_power_of_two_u64(zone_sectors)); 400 zone_info->zone_size = zone_sectors << SECTOR_SHIFT; 401 402 /* We reject devices with a zone size larger than 8GB */ 403 if (zone_info->zone_size > BTRFS_MAX_ZONE_SIZE) { 404 btrfs_err(fs_info, 405 "zoned: %s: zone size %llu larger than supported maximum %llu", 406 rcu_dereference(device->name), 407 zone_info->zone_size, BTRFS_MAX_ZONE_SIZE); 408 ret = -EINVAL; 409 goto out; 410 } else if (zone_info->zone_size < BTRFS_MIN_ZONE_SIZE) { 411 btrfs_err(fs_info, 412 "zoned: %s: zone size %llu smaller than supported minimum %u", 413 rcu_dereference(device->name), 414 zone_info->zone_size, BTRFS_MIN_ZONE_SIZE); 415 ret = -EINVAL; 416 goto out; 417 } 418 419 nr_sectors = bdev_nr_sectors(bdev); 420 zone_info->zone_size_shift = ilog2(zone_info->zone_size); 421 zone_info->nr_zones = nr_sectors >> ilog2(zone_sectors); 422 if (!IS_ALIGNED(nr_sectors, zone_sectors)) 423 zone_info->nr_zones++; 424 425 max_active_zones = min_not_zero(bdev_max_active_zones(bdev), 426 bdev_max_open_zones(bdev)); 427 if (!max_active_zones && zone_info->nr_zones > BTRFS_DEFAULT_MAX_ACTIVE_ZONES) 428 max_active_zones = BTRFS_DEFAULT_MAX_ACTIVE_ZONES; 429 if (max_active_zones && max_active_zones < BTRFS_MIN_ACTIVE_ZONES) { 430 btrfs_err(fs_info, 431"zoned: %s: max active zones %u is too small, need at least %u active zones", 432 rcu_dereference(device->name), max_active_zones, 433 BTRFS_MIN_ACTIVE_ZONES); 434 ret = -EINVAL; 435 goto out; 436 } 437 zone_info->max_active_zones = max_active_zones; 438 439 zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); 440 if (!zone_info->seq_zones) { 441 ret = -ENOMEM; 442 goto out; 443 } 444 445 zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); 446 if (!zone_info->empty_zones) { 447 ret = -ENOMEM; 448 goto out; 449 } 450 451 zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); 452 if (!zone_info->active_zones) { 453 ret = -ENOMEM; 454 goto out; 455 } 456 457 zones = kvcalloc(BTRFS_REPORT_NR_ZONES, sizeof(struct blk_zone), GFP_KERNEL); 458 if (!zones) { 459 ret = -ENOMEM; 460 goto out; 461 } 462 463 /* 464 * Enable zone cache only for a zoned device. On a non-zoned device, we 465 * fill the zone info with emulated CONVENTIONAL zones, so no need to 466 * use the cache. 467 */ 468 if (populate_cache && bdev_is_zoned(device->bdev)) { 469 zone_info->zone_cache = vcalloc(zone_info->nr_zones, 470 sizeof(struct blk_zone)); 471 if (!zone_info->zone_cache) { 472 btrfs_err(device->fs_info, 473 "zoned: failed to allocate zone cache for %s", 474 rcu_dereference(device->name)); 475 ret = -ENOMEM; 476 goto out; 477 } 478 } 479 480 /* Get zones type */ 481 nactive = 0; 482 while (sector < nr_sectors) { 483 nr_zones = BTRFS_REPORT_NR_ZONES; 484 ret = btrfs_get_dev_zones(device, sector << SECTOR_SHIFT, zones, 485 &nr_zones); 486 if (ret) 487 goto out; 488 489 for (i = 0; i < nr_zones; i++) { 490 if (zones[i].type == BLK_ZONE_TYPE_SEQWRITE_REQ) 491 __set_bit(nreported, zone_info->seq_zones); 492 switch (zones[i].cond) { 493 case BLK_ZONE_COND_EMPTY: 494 __set_bit(nreported, zone_info->empty_zones); 495 break; 496 case BLK_ZONE_COND_IMP_OPEN: 497 case BLK_ZONE_COND_EXP_OPEN: 498 case BLK_ZONE_COND_CLOSED: 499 case BLK_ZONE_COND_ACTIVE: 500 __set_bit(nreported, zone_info->active_zones); 501 nactive++; 502 break; 503 } 504 nreported++; 505 } 506 sector = zones[nr_zones - 1].start + zones[nr_zones - 1].len; 507 } 508 509 if (unlikely(nreported != zone_info->nr_zones)) { 510 btrfs_err(device->fs_info, 511 "inconsistent number of zones on %s (%u/%u)", 512 rcu_dereference(device->name), nreported, 513 zone_info->nr_zones); 514 ret = -EIO; 515 goto out; 516 } 517 518 if (max_active_zones) { 519 if (unlikely(nactive > max_active_zones)) { 520 if (bdev_max_active_zones(bdev) == 0) { 521 max_active_zones = 0; 522 zone_info->max_active_zones = 0; 523 goto validate; 524 } 525 btrfs_err(device->fs_info, 526 "zoned: %u active zones on %s exceeds max_active_zones %u", 527 nactive, rcu_dereference(device->name), 528 max_active_zones); 529 ret = -EIO; 530 goto out; 531 } 532 atomic_set(&zone_info->active_zones_left, 533 max_active_zones - nactive); 534 set_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags); 535 } 536 537validate: 538 /* Validate superblock log */ 539 nr_zones = BTRFS_NR_SB_LOG_ZONES; 540 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 541 u32 sb_zone; 542 u64 sb_wp; 543 int sb_pos = BTRFS_NR_SB_LOG_ZONES * i; 544 545 sb_zone = sb_zone_number(zone_info->zone_size_shift, i); 546 if (sb_zone + 1 >= zone_info->nr_zones) 547 continue; 548 549 ret = btrfs_get_dev_zones(device, 550 zone_start_physical(sb_zone, zone_info), 551 &zone_info->sb_zones[sb_pos], 552 &nr_zones); 553 if (ret) 554 goto out; 555 556 if (unlikely(nr_zones != BTRFS_NR_SB_LOG_ZONES)) { 557 btrfs_err(device->fs_info, 558 "zoned: failed to read super block log zone info at devid %llu zone %u", 559 device->devid, sb_zone); 560 ret = -EUCLEAN; 561 goto out; 562 } 563 564 /* 565 * If zones[0] is conventional, always use the beginning of the 566 * zone to record superblock. No need to validate in that case. 567 */ 568 if (zone_info->sb_zones[BTRFS_NR_SB_LOG_ZONES * i].type == 569 BLK_ZONE_TYPE_CONVENTIONAL) 570 continue; 571 572 ret = sb_write_pointer(device->bdev, 573 &zone_info->sb_zones[sb_pos], &sb_wp); 574 if (unlikely(ret != -ENOENT && ret)) { 575 btrfs_err(device->fs_info, 576 "zoned: super block log zone corrupted devid %llu zone %u", 577 device->devid, sb_zone); 578 ret = -EUCLEAN; 579 goto out; 580 } 581 } 582 583 584 kvfree(zones); 585 586 if (bdev_is_zoned(bdev)) { 587 model = "host-managed zoned"; 588 emulated = ""; 589 } else { 590 model = "regular"; 591 emulated = "emulated "; 592 } 593 594 btrfs_info(fs_info, 595 "%s block device %s, %u %szones of %llu bytes", 596 model, rcu_dereference(device->name), zone_info->nr_zones, 597 emulated, zone_info->zone_size); 598 599 return 0; 600 601out: 602 kvfree(zones); 603 btrfs_destroy_dev_zone_info(device); 604 return ret; 605} 606 607void btrfs_destroy_dev_zone_info(struct btrfs_device *device) 608{ 609 struct btrfs_zoned_device_info *zone_info = device->zone_info; 610 611 if (!zone_info) 612 return; 613 614 bitmap_free(zone_info->active_zones); 615 bitmap_free(zone_info->seq_zones); 616 bitmap_free(zone_info->empty_zones); 617 vfree(zone_info->zone_cache); 618 kfree(zone_info); 619 device->zone_info = NULL; 620} 621 622struct btrfs_zoned_device_info *btrfs_clone_dev_zone_info(struct btrfs_device *orig_dev) 623{ 624 struct btrfs_zoned_device_info *zone_info; 625 626 zone_info = kmemdup(orig_dev->zone_info, sizeof(*zone_info), GFP_KERNEL); 627 if (!zone_info) 628 return NULL; 629 630 zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); 631 if (!zone_info->seq_zones) 632 goto out; 633 634 bitmap_copy(zone_info->seq_zones, orig_dev->zone_info->seq_zones, 635 zone_info->nr_zones); 636 637 zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); 638 if (!zone_info->empty_zones) 639 goto out; 640 641 bitmap_copy(zone_info->empty_zones, orig_dev->zone_info->empty_zones, 642 zone_info->nr_zones); 643 644 zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); 645 if (!zone_info->active_zones) 646 goto out; 647 648 bitmap_copy(zone_info->active_zones, orig_dev->zone_info->active_zones, 649 zone_info->nr_zones); 650 zone_info->zone_cache = NULL; 651 652 return zone_info; 653 654out: 655 bitmap_free(zone_info->seq_zones); 656 bitmap_free(zone_info->empty_zones); 657 bitmap_free(zone_info->active_zones); 658 kfree(zone_info); 659 return NULL; 660} 661 662static int btrfs_get_dev_zone(struct btrfs_device *device, u64 pos, struct blk_zone *zone) 663{ 664 unsigned int nr_zones = 1; 665 int ret; 666 667 ret = btrfs_get_dev_zones(device, pos, zone, &nr_zones); 668 if (ret != 0 || !nr_zones) 669 return ret ? ret : -EIO; 670 671 return 0; 672} 673 674static int btrfs_check_for_zoned_device(struct btrfs_fs_info *fs_info) 675{ 676 struct btrfs_device *device; 677 678 list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) { 679 if (device->bdev && bdev_is_zoned(device->bdev)) { 680 btrfs_err(fs_info, 681 "zoned: mode not enabled but zoned device found: %pg", 682 device->bdev); 683 return -EINVAL; 684 } 685 } 686 687 return 0; 688} 689 690int btrfs_check_zoned_mode(struct btrfs_fs_info *fs_info) 691{ 692 struct queue_limits *lim = &fs_info->limits; 693 struct btrfs_device *device; 694 u64 zone_size = 0; 695 int ret; 696 697 /* 698 * Host-Managed devices can't be used without the ZONED flag. With the 699 * ZONED all devices can be used, using zone emulation if required. 700 */ 701 if (!btrfs_fs_incompat(fs_info, ZONED)) 702 return btrfs_check_for_zoned_device(fs_info); 703 704 blk_set_stacking_limits(lim); 705 706 list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) { 707 struct btrfs_zoned_device_info *zone_info = device->zone_info; 708 709 if (!device->bdev) 710 continue; 711 712 if (!zone_size) { 713 zone_size = zone_info->zone_size; 714 } else if (zone_info->zone_size != zone_size) { 715 btrfs_err(fs_info, 716 "zoned: unequal block device zone sizes: have %llu found %llu", 717 zone_info->zone_size, zone_size); 718 return -EINVAL; 719 } 720 721 /* 722 * With the zoned emulation, we can have non-zoned device on the 723 * zoned mode. In this case, we don't have a valid max zone 724 * append size. 725 */ 726 if (bdev_is_zoned(device->bdev)) 727 blk_stack_limits(lim, bdev_limits(device->bdev), 0); 728 } 729 730 ret = blk_validate_limits(lim); 731 if (ret) { 732 btrfs_err(fs_info, "zoned: failed to validate queue limits"); 733 return ret; 734 } 735 736 /* 737 * stripe_size is always aligned to BTRFS_STRIPE_LEN in 738 * btrfs_create_chunk(). Since we want stripe_len == zone_size, 739 * check the alignment here. 740 */ 741 if (!IS_ALIGNED(zone_size, BTRFS_STRIPE_LEN)) { 742 btrfs_err(fs_info, 743 "zoned: zone size %llu not aligned to stripe %u", 744 zone_size, BTRFS_STRIPE_LEN); 745 return -EINVAL; 746 } 747 748 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) { 749 btrfs_err(fs_info, "zoned: mixed block groups not supported"); 750 return -EINVAL; 751 } 752 753 fs_info->zone_size = zone_size; 754 /* 755 * Also limit max_zone_append_size by max_segments * PAGE_SIZE. 756 * Technically, we can have multiple pages per segment. But, since 757 * we add the pages one by one to a bio, and cannot increase the 758 * metadata reservation even if it increases the number of extents, it 759 * is safe to stick with the limit. 760 */ 761 fs_info->max_zone_append_size = ALIGN_DOWN( 762 min3((u64)lim->max_zone_append_sectors << SECTOR_SHIFT, 763 (u64)lim->max_sectors << SECTOR_SHIFT, 764 (u64)lim->max_segments << PAGE_SHIFT), 765 fs_info->sectorsize); 766 fs_info->fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_ZONED; 767 768 fs_info->max_extent_size = min_not_zero(fs_info->max_extent_size, 769 fs_info->max_zone_append_size); 770 771 /* 772 * Check mount options here, because we might change fs_info->zoned 773 * from fs_info->zone_size. 774 */ 775 ret = btrfs_check_mountopts_zoned(fs_info, &fs_info->mount_opt); 776 if (ret) 777 return ret; 778 779 btrfs_info(fs_info, "zoned mode enabled with zone size %llu", zone_size); 780 return 0; 781} 782 783int btrfs_check_mountopts_zoned(const struct btrfs_fs_info *info, 784 unsigned long long *mount_opt) 785{ 786 if (!btrfs_is_zoned(info)) 787 return 0; 788 789 /* 790 * Space cache writing is not COWed. Disable that to avoid write errors 791 * in sequential zones. 792 */ 793 if (btrfs_raw_test_opt(*mount_opt, SPACE_CACHE)) { 794 btrfs_err(info, "zoned: space cache v1 is not supported"); 795 return -EINVAL; 796 } 797 798 if (btrfs_raw_test_opt(*mount_opt, NODATACOW)) { 799 btrfs_err(info, "zoned: NODATACOW not supported"); 800 return -EINVAL; 801 } 802 803 if (btrfs_raw_test_opt(*mount_opt, DISCARD_ASYNC)) { 804 btrfs_info(info, 805 "zoned: async discard ignored and disabled for zoned mode"); 806 btrfs_clear_opt(*mount_opt, DISCARD_ASYNC); 807 } 808 809 return 0; 810} 811 812static int sb_log_location(struct block_device *bdev, struct blk_zone *zones, 813 int rw, u64 *bytenr_ret) 814{ 815 u64 wp; 816 int ret; 817 818 if (zones[0].type == BLK_ZONE_TYPE_CONVENTIONAL) { 819 *bytenr_ret = zones[0].start << SECTOR_SHIFT; 820 return 0; 821 } 822 823 ret = sb_write_pointer(bdev, zones, &wp); 824 if (ret != -ENOENT && ret < 0) 825 return ret; 826 827 if (rw == WRITE) { 828 struct blk_zone *reset = NULL; 829 830 if (wp == zones[0].start << SECTOR_SHIFT) 831 reset = &zones[0]; 832 else if (wp == zones[1].start << SECTOR_SHIFT) 833 reset = &zones[1]; 834 835 if (reset && reset->cond != BLK_ZONE_COND_EMPTY) { 836 unsigned int nofs_flags; 837 838 ASSERT(sb_zone_is_full(reset)); 839 840 nofs_flags = memalloc_nofs_save(); 841 ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET, 842 reset->start, reset->len); 843 memalloc_nofs_restore(nofs_flags); 844 if (ret) 845 return ret; 846 847 reset->cond = BLK_ZONE_COND_EMPTY; 848 reset->wp = reset->start; 849 } 850 } else if (ret != -ENOENT) { 851 /* 852 * For READ, we want the previous one. Move write pointer to 853 * the end of a zone, if it is at the head of a zone. 854 */ 855 u64 zone_end = 0; 856 857 if (wp == zones[0].start << SECTOR_SHIFT) 858 zone_end = zones[1].start + zones[1].capacity; 859 else if (wp == zones[1].start << SECTOR_SHIFT) 860 zone_end = zones[0].start + zones[0].capacity; 861 if (zone_end) 862 wp = ALIGN_DOWN(zone_end << SECTOR_SHIFT, 863 BTRFS_SUPER_INFO_SIZE); 864 865 wp -= BTRFS_SUPER_INFO_SIZE; 866 } 867 868 *bytenr_ret = wp; 869 return 0; 870 871} 872 873int btrfs_sb_log_location_bdev(struct block_device *bdev, int mirror, int rw, 874 u64 *bytenr_ret) 875{ 876 struct blk_zone zones[BTRFS_NR_SB_LOG_ZONES]; 877 sector_t zone_sectors; 878 u32 sb_zone; 879 int ret; 880 u8 zone_sectors_shift; 881 sector_t nr_sectors; 882 u32 nr_zones; 883 884 if (!bdev_is_zoned(bdev)) { 885 *bytenr_ret = btrfs_sb_offset(mirror); 886 return 0; 887 } 888 889 ASSERT(rw == READ || rw == WRITE); 890 891 zone_sectors = bdev_zone_sectors(bdev); 892 if (!is_power_of_2(zone_sectors)) 893 return -EINVAL; 894 zone_sectors_shift = ilog2(zone_sectors); 895 nr_sectors = bdev_nr_sectors(bdev); 896 nr_zones = nr_sectors >> zone_sectors_shift; 897 898 sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror); 899 if (sb_zone + 1 >= nr_zones) 900 return -ENOENT; 901 902 ret = blkdev_report_zones_cached(bdev, zone_start_sector(sb_zone, bdev), 903 BTRFS_NR_SB_LOG_ZONES, 904 copy_zone_info_cb, zones); 905 if (ret < 0) 906 return ret; 907 if (unlikely(ret != BTRFS_NR_SB_LOG_ZONES)) 908 return -EIO; 909 910 return sb_log_location(bdev, zones, rw, bytenr_ret); 911} 912 913int btrfs_sb_log_location(struct btrfs_device *device, int mirror, int rw, 914 u64 *bytenr_ret) 915{ 916 struct btrfs_zoned_device_info *zinfo = device->zone_info; 917 u32 zone_num; 918 919 /* 920 * For a zoned filesystem on a non-zoned block device, use the same 921 * super block locations as regular filesystem. Doing so, the super 922 * block can always be retrieved and the zoned flag of the volume 923 * detected from the super block information. 924 */ 925 if (!bdev_is_zoned(device->bdev)) { 926 *bytenr_ret = btrfs_sb_offset(mirror); 927 return 0; 928 } 929 930 zone_num = sb_zone_number(zinfo->zone_size_shift, mirror); 931 if (zone_num + 1 >= zinfo->nr_zones) 932 return -ENOENT; 933 934 return sb_log_location(device->bdev, 935 &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror], 936 rw, bytenr_ret); 937} 938 939static inline bool is_sb_log_zone(struct btrfs_zoned_device_info *zinfo, 940 int mirror) 941{ 942 u32 zone_num; 943 944 if (!zinfo) 945 return false; 946 947 zone_num = sb_zone_number(zinfo->zone_size_shift, mirror); 948 if (zone_num + 1 >= zinfo->nr_zones) 949 return false; 950 951 if (!test_bit(zone_num, zinfo->seq_zones)) 952 return false; 953 954 return true; 955} 956 957int btrfs_advance_sb_log(struct btrfs_device *device, int mirror) 958{ 959 struct btrfs_zoned_device_info *zinfo = device->zone_info; 960 struct blk_zone *zone; 961 int i; 962 963 if (!is_sb_log_zone(zinfo, mirror)) 964 return 0; 965 966 zone = &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror]; 967 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) { 968 /* Advance the next zone */ 969 if (zone->cond == BLK_ZONE_COND_FULL) { 970 zone++; 971 continue; 972 } 973 974 if (zone->cond == BLK_ZONE_COND_EMPTY) 975 zone->cond = BLK_ZONE_COND_IMP_OPEN; 976 977 zone->wp += SUPER_INFO_SECTORS; 978 979 if (sb_zone_is_full(zone)) { 980 /* 981 * No room left to write new superblock. Since 982 * superblock is written with REQ_SYNC, it is safe to 983 * finish the zone now. 984 * 985 * If the write pointer is exactly at the capacity, 986 * explicit ZONE_FINISH is not necessary. 987 */ 988 if (zone->wp != zone->start + zone->capacity) { 989 unsigned int nofs_flags; 990 int ret; 991 992 nofs_flags = memalloc_nofs_save(); 993 ret = blkdev_zone_mgmt(device->bdev, 994 REQ_OP_ZONE_FINISH, zone->start, 995 zone->len); 996 memalloc_nofs_restore(nofs_flags); 997 if (ret) 998 return ret; 999 } 1000 1001 zone->wp = zone->start + zone->len; 1002 zone->cond = BLK_ZONE_COND_FULL; 1003 } 1004 return 0; 1005 } 1006 1007 /* All the zones are FULL. Should not reach here. */ 1008 DEBUG_WARN("unexpected state, all zones full"); 1009 return -EIO; 1010} 1011 1012int btrfs_reset_sb_log_zones(struct block_device *bdev, int mirror) 1013{ 1014 unsigned int nofs_flags; 1015 sector_t zone_sectors; 1016 sector_t nr_sectors; 1017 u8 zone_sectors_shift; 1018 u32 sb_zone; 1019 u32 nr_zones; 1020 int ret; 1021 1022 zone_sectors = bdev_zone_sectors(bdev); 1023 zone_sectors_shift = ilog2(zone_sectors); 1024 nr_sectors = bdev_nr_sectors(bdev); 1025 nr_zones = nr_sectors >> zone_sectors_shift; 1026 1027 sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror); 1028 if (sb_zone + 1 >= nr_zones) 1029 return -ENOENT; 1030 1031 nofs_flags = memalloc_nofs_save(); 1032 ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET, 1033 zone_start_sector(sb_zone, bdev), 1034 zone_sectors * BTRFS_NR_SB_LOG_ZONES); 1035 memalloc_nofs_restore(nofs_flags); 1036 return ret; 1037} 1038 1039/* 1040 * Find allocatable zones within a given region. 1041 * 1042 * @device: the device to allocate a region on 1043 * @hole_start: the position of the hole to allocate the region 1044 * @num_bytes: size of wanted region 1045 * @hole_end: the end of the hole 1046 * @return: position of allocatable zones 1047 * 1048 * Allocatable region should not contain any superblock locations. 1049 */ 1050u64 btrfs_find_allocatable_zones(struct btrfs_device *device, u64 hole_start, 1051 u64 hole_end, u64 num_bytes) 1052{ 1053 struct btrfs_zoned_device_info *zinfo = device->zone_info; 1054 const u8 shift = zinfo->zone_size_shift; 1055 u64 nzones = num_bytes >> shift; 1056 u64 pos = hole_start; 1057 u64 begin, end; 1058 bool have_sb; 1059 int i; 1060 1061 ASSERT(IS_ALIGNED(hole_start, zinfo->zone_size), 1062 "hole_start=%llu zinfo->zone_size=%llu", hole_start, zinfo->zone_size); 1063 ASSERT(IS_ALIGNED(num_bytes, zinfo->zone_size), 1064 "num_bytes=%llu zinfo->zone_size=%llu", num_bytes, zinfo->zone_size); 1065 1066 while (pos < hole_end) { 1067 begin = pos >> shift; 1068 end = begin + nzones; 1069 1070 if (end > zinfo->nr_zones) 1071 return hole_end; 1072 1073 /* Check if zones in the region are all empty */ 1074 if (btrfs_dev_is_sequential(device, pos) && 1075 !bitmap_test_range_all_set(zinfo->empty_zones, begin, nzones)) { 1076 pos += zinfo->zone_size; 1077 continue; 1078 } 1079 1080 have_sb = false; 1081 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 1082 u32 sb_zone; 1083 u64 sb_pos; 1084 1085 sb_zone = sb_zone_number(shift, i); 1086 if (!(end <= sb_zone || 1087 sb_zone + BTRFS_NR_SB_LOG_ZONES <= begin)) { 1088 have_sb = true; 1089 pos = zone_start_physical( 1090 sb_zone + BTRFS_NR_SB_LOG_ZONES, zinfo); 1091 break; 1092 } 1093 1094 /* We also need to exclude regular superblock positions */ 1095 sb_pos = btrfs_sb_offset(i); 1096 if (!(pos + num_bytes <= sb_pos || 1097 sb_pos + BTRFS_SUPER_INFO_SIZE <= pos)) { 1098 have_sb = true; 1099 pos = ALIGN(sb_pos + BTRFS_SUPER_INFO_SIZE, 1100 zinfo->zone_size); 1101 break; 1102 } 1103 } 1104 if (!have_sb) 1105 break; 1106 } 1107 1108 return pos; 1109} 1110 1111static bool btrfs_dev_set_active_zone(struct btrfs_device *device, u64 pos) 1112{ 1113 struct btrfs_zoned_device_info *zone_info = device->zone_info; 1114 unsigned int zno = (pos >> zone_info->zone_size_shift); 1115 1116 /* We can use any number of zones */ 1117 if (zone_info->max_active_zones == 0) 1118 return true; 1119 1120 if (!test_bit(zno, zone_info->active_zones)) { 1121 /* Active zone left? */ 1122 if (atomic_dec_if_positive(&zone_info->active_zones_left) < 0) 1123 return false; 1124 if (test_and_set_bit(zno, zone_info->active_zones)) { 1125 /* Someone already set the bit */ 1126 atomic_inc(&zone_info->active_zones_left); 1127 } 1128 } 1129 1130 return true; 1131} 1132 1133static void btrfs_dev_clear_active_zone(struct btrfs_device *device, u64 pos) 1134{ 1135 struct btrfs_zoned_device_info *zone_info = device->zone_info; 1136 unsigned int zno = (pos >> zone_info->zone_size_shift); 1137 1138 /* We can use any number of zones */ 1139 if (zone_info->max_active_zones == 0) 1140 return; 1141 1142 if (test_and_clear_bit(zno, zone_info->active_zones)) 1143 atomic_inc(&zone_info->active_zones_left); 1144} 1145 1146int btrfs_reset_device_zone(struct btrfs_device *device, u64 physical, 1147 u64 length, u64 *bytes) 1148{ 1149 unsigned int nofs_flags; 1150 int ret; 1151 1152 *bytes = 0; 1153 nofs_flags = memalloc_nofs_save(); 1154 ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_RESET, 1155 physical >> SECTOR_SHIFT, length >> SECTOR_SHIFT); 1156 memalloc_nofs_restore(nofs_flags); 1157 if (ret) 1158 return ret; 1159 1160 *bytes = length; 1161 while (length) { 1162 btrfs_dev_set_zone_empty(device, physical); 1163 btrfs_dev_clear_active_zone(device, physical); 1164 physical += device->zone_info->zone_size; 1165 length -= device->zone_info->zone_size; 1166 } 1167 1168 return 0; 1169} 1170 1171int btrfs_ensure_empty_zones(struct btrfs_device *device, u64 start, u64 size) 1172{ 1173 struct btrfs_zoned_device_info *zinfo = device->zone_info; 1174 const u8 shift = zinfo->zone_size_shift; 1175 unsigned long begin = start >> shift; 1176 unsigned long nbits = size >> shift; 1177 u64 pos; 1178 int ret; 1179 1180 ASSERT(IS_ALIGNED(start, zinfo->zone_size), 1181 "start=%llu, zinfo->zone_size=%llu", start, zinfo->zone_size); 1182 ASSERT(IS_ALIGNED(size, zinfo->zone_size), 1183 "size=%llu, zinfo->zone_size=%llu", size, zinfo->zone_size); 1184 1185 if (begin + nbits > zinfo->nr_zones) 1186 return -ERANGE; 1187 1188 /* All the zones are conventional */ 1189 if (bitmap_test_range_all_zero(zinfo->seq_zones, begin, nbits)) 1190 return 0; 1191 1192 /* All the zones are sequential and empty */ 1193 if (bitmap_test_range_all_set(zinfo->seq_zones, begin, nbits) && 1194 bitmap_test_range_all_set(zinfo->empty_zones, begin, nbits)) 1195 return 0; 1196 1197 for (pos = start; pos < start + size; pos += zinfo->zone_size) { 1198 u64 reset_bytes; 1199 1200 if (!btrfs_dev_is_sequential(device, pos) || 1201 btrfs_dev_is_empty_zone(device, pos)) 1202 continue; 1203 1204 /* Free regions should be empty */ 1205 btrfs_warn( 1206 device->fs_info, 1207 "zoned: resetting device %s (devid %llu) zone %llu for allocation", 1208 rcu_dereference(device->name), device->devid, pos >> shift); 1209 WARN_ON_ONCE(1); 1210 1211 ret = btrfs_reset_device_zone(device, pos, zinfo->zone_size, 1212 &reset_bytes); 1213 if (ret) 1214 return ret; 1215 } 1216 1217 return 0; 1218} 1219 1220/* 1221 * Calculate an allocation pointer from the extent allocation information 1222 * for a block group consist of conventional zones. It is pointed to the 1223 * end of the highest addressed extent in the block group as an allocation 1224 * offset. 1225 */ 1226static int calculate_alloc_pointer(struct btrfs_block_group *cache, 1227 u64 *offset_ret, bool new) 1228{ 1229 struct btrfs_fs_info *fs_info = cache->fs_info; 1230 struct btrfs_root *root; 1231 BTRFS_PATH_AUTO_FREE(path); 1232 struct btrfs_key key; 1233 struct btrfs_key found_key; 1234 int ret; 1235 u64 length; 1236 1237 /* 1238 * Avoid tree lookups for a new block group, there's no use for it. 1239 * It must always be 0. 1240 * 1241 * Also, we have a lock chain of extent buffer lock -> chunk mutex. 1242 * For new a block group, this function is called from 1243 * btrfs_make_block_group() which is already taking the chunk mutex. 1244 * Thus, we cannot call calculate_alloc_pointer() which takes extent 1245 * buffer locks to avoid deadlock. 1246 */ 1247 if (new) { 1248 *offset_ret = 0; 1249 return 0; 1250 } 1251 1252 path = btrfs_alloc_path(); 1253 if (!path) 1254 return -ENOMEM; 1255 1256 key.objectid = cache->start + cache->length; 1257 key.type = 0; 1258 key.offset = 0; 1259 1260 root = btrfs_extent_root(fs_info, key.objectid); 1261 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1262 /* We should not find the exact match */ 1263 if (unlikely(!ret)) 1264 ret = -EUCLEAN; 1265 if (ret < 0) 1266 return ret; 1267 1268 ret = btrfs_previous_extent_item(root, path, cache->start); 1269 if (ret) { 1270 if (ret == 1) { 1271 ret = 0; 1272 *offset_ret = 0; 1273 } 1274 return ret; 1275 } 1276 1277 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); 1278 1279 if (found_key.type == BTRFS_EXTENT_ITEM_KEY) 1280 length = found_key.offset; 1281 else 1282 length = fs_info->nodesize; 1283 1284 if (unlikely(!(found_key.objectid >= cache->start && 1285 found_key.objectid + length <= cache->start + cache->length))) { 1286 return -EUCLEAN; 1287 } 1288 *offset_ret = found_key.objectid + length - cache->start; 1289 return 0; 1290} 1291 1292struct zone_info { 1293 u64 physical; 1294 u64 capacity; 1295 u64 alloc_offset; 1296}; 1297 1298static int btrfs_load_zone_info(struct btrfs_fs_info *fs_info, int zone_idx, 1299 struct zone_info *info, unsigned long *active, 1300 struct btrfs_chunk_map *map, bool new) 1301{ 1302 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 1303 struct btrfs_device *device; 1304 int dev_replace_is_ongoing = 0; 1305 unsigned int nofs_flag; 1306 struct blk_zone zone; 1307 int ret; 1308 1309 info->physical = map->stripes[zone_idx].physical; 1310 1311 down_read(&dev_replace->rwsem); 1312 device = map->stripes[zone_idx].dev; 1313 1314 if (!device->bdev) { 1315 up_read(&dev_replace->rwsem); 1316 info->alloc_offset = WP_MISSING_DEV; 1317 return 0; 1318 } 1319 1320 /* Consider a zone as active if we can allow any number of active zones. */ 1321 if (!device->zone_info->max_active_zones) 1322 __set_bit(zone_idx, active); 1323 1324 if (!btrfs_dev_is_sequential(device, info->physical)) { 1325 up_read(&dev_replace->rwsem); 1326 info->alloc_offset = WP_CONVENTIONAL; 1327 info->capacity = device->zone_info->zone_size; 1328 return 0; 1329 } 1330 1331 ASSERT(!new || btrfs_dev_is_empty_zone(device, info->physical)); 1332 1333 /* This zone will be used for allocation, so mark this zone non-empty. */ 1334 btrfs_dev_clear_zone_empty(device, info->physical); 1335 1336 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace); 1337 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) 1338 btrfs_dev_clear_zone_empty(dev_replace->tgtdev, info->physical); 1339 1340 /* 1341 * The group is mapped to a sequential zone. Get the zone write pointer 1342 * to determine the allocation offset within the zone. 1343 */ 1344 WARN_ON(!IS_ALIGNED(info->physical, fs_info->zone_size)); 1345 1346 if (new) { 1347 sector_t capacity; 1348 1349 capacity = bdev_zone_capacity(device->bdev, info->physical >> SECTOR_SHIFT); 1350 up_read(&dev_replace->rwsem); 1351 info->alloc_offset = 0; 1352 info->capacity = capacity << SECTOR_SHIFT; 1353 1354 return 0; 1355 } 1356 1357 nofs_flag = memalloc_nofs_save(); 1358 ret = btrfs_get_dev_zone(device, info->physical, &zone); 1359 memalloc_nofs_restore(nofs_flag); 1360 if (ret) { 1361 up_read(&dev_replace->rwsem); 1362 if (ret != -EIO && ret != -EOPNOTSUPP) 1363 return ret; 1364 info->alloc_offset = WP_MISSING_DEV; 1365 return 0; 1366 } 1367 1368 if (unlikely(zone.type == BLK_ZONE_TYPE_CONVENTIONAL)) { 1369 btrfs_err(fs_info, 1370 "zoned: unexpected conventional zone %llu on device %s (devid %llu)", 1371 zone.start << SECTOR_SHIFT, rcu_dereference(device->name), 1372 device->devid); 1373 up_read(&dev_replace->rwsem); 1374 return -EIO; 1375 } 1376 1377 info->capacity = (zone.capacity << SECTOR_SHIFT); 1378 1379 switch (zone.cond) { 1380 case BLK_ZONE_COND_OFFLINE: 1381 case BLK_ZONE_COND_READONLY: 1382 btrfs_err(fs_info, 1383 "zoned: offline/readonly zone %llu on device %s (devid %llu)", 1384 (info->physical >> device->zone_info->zone_size_shift), 1385 rcu_dereference(device->name), device->devid); 1386 info->alloc_offset = WP_MISSING_DEV; 1387 break; 1388 case BLK_ZONE_COND_EMPTY: 1389 info->alloc_offset = 0; 1390 break; 1391 case BLK_ZONE_COND_FULL: 1392 info->alloc_offset = info->capacity; 1393 break; 1394 default: 1395 /* Partially used zone. */ 1396 info->alloc_offset = ((zone.wp - zone.start) << SECTOR_SHIFT); 1397 __set_bit(zone_idx, active); 1398 break; 1399 } 1400 1401 up_read(&dev_replace->rwsem); 1402 1403 return 0; 1404} 1405 1406static int btrfs_load_block_group_single(struct btrfs_block_group *bg, 1407 struct zone_info *info, 1408 unsigned long *active) 1409{ 1410 if (unlikely(info->alloc_offset == WP_MISSING_DEV)) { 1411 btrfs_err(bg->fs_info, 1412 "zoned: cannot recover write pointer for zone %llu", 1413 info->physical); 1414 return -EIO; 1415 } 1416 1417 bg->alloc_offset = info->alloc_offset; 1418 bg->zone_capacity = info->capacity; 1419 if (test_bit(0, active)) 1420 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags); 1421 return 0; 1422} 1423 1424static int btrfs_load_block_group_dup(struct btrfs_block_group *bg, 1425 struct btrfs_chunk_map *map, 1426 struct zone_info *zone_info, 1427 unsigned long *active, 1428 u64 last_alloc) 1429{ 1430 struct btrfs_fs_info *fs_info = bg->fs_info; 1431 1432 if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) { 1433 btrfs_err(fs_info, "zoned: data DUP profile needs raid-stripe-tree"); 1434 return -EINVAL; 1435 } 1436 1437 bg->zone_capacity = min_not_zero(zone_info[0].capacity, zone_info[1].capacity); 1438 1439 if (unlikely(zone_info[0].alloc_offset == WP_MISSING_DEV)) { 1440 btrfs_err(bg->fs_info, 1441 "zoned: cannot recover write pointer for zone %llu", 1442 zone_info[0].physical); 1443 return -EIO; 1444 } 1445 if (unlikely(zone_info[1].alloc_offset == WP_MISSING_DEV)) { 1446 btrfs_err(bg->fs_info, 1447 "zoned: cannot recover write pointer for zone %llu", 1448 zone_info[1].physical); 1449 return -EIO; 1450 } 1451 1452 if (zone_info[0].alloc_offset == WP_CONVENTIONAL) 1453 zone_info[0].alloc_offset = last_alloc; 1454 1455 if (zone_info[1].alloc_offset == WP_CONVENTIONAL) 1456 zone_info[1].alloc_offset = last_alloc; 1457 1458 if (unlikely(zone_info[0].alloc_offset != zone_info[1].alloc_offset)) { 1459 btrfs_err(bg->fs_info, 1460 "zoned: write pointer offset mismatch of zones in DUP profile"); 1461 return -EIO; 1462 } 1463 1464 if (test_bit(0, active) != test_bit(1, active)) { 1465 if (unlikely(!btrfs_zone_activate(bg))) 1466 return -EIO; 1467 } else if (test_bit(0, active)) { 1468 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags); 1469 } 1470 1471 bg->alloc_offset = zone_info[0].alloc_offset; 1472 return 0; 1473} 1474 1475static int btrfs_load_block_group_raid1(struct btrfs_block_group *bg, 1476 struct btrfs_chunk_map *map, 1477 struct zone_info *zone_info, 1478 unsigned long *active, 1479 u64 last_alloc) 1480{ 1481 struct btrfs_fs_info *fs_info = bg->fs_info; 1482 int i; 1483 1484 if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) { 1485 btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree", 1486 btrfs_bg_type_to_raid_name(map->type)); 1487 return -EINVAL; 1488 } 1489 1490 /* In case a device is missing we have a cap of 0, so don't use it. */ 1491 bg->zone_capacity = min_not_zero(zone_info[0].capacity, zone_info[1].capacity); 1492 1493 for (i = 0; i < map->num_stripes; i++) { 1494 if (zone_info[i].alloc_offset == WP_MISSING_DEV) 1495 continue; 1496 1497 if (zone_info[i].alloc_offset == WP_CONVENTIONAL) 1498 zone_info[i].alloc_offset = last_alloc; 1499 1500 if (unlikely((zone_info[0].alloc_offset != zone_info[i].alloc_offset) && 1501 !btrfs_test_opt(fs_info, DEGRADED))) { 1502 btrfs_err(fs_info, 1503 "zoned: write pointer offset mismatch of zones in %s profile", 1504 btrfs_bg_type_to_raid_name(map->type)); 1505 return -EIO; 1506 } 1507 if (test_bit(0, active) != test_bit(i, active)) { 1508 if (unlikely(!btrfs_test_opt(fs_info, DEGRADED) && 1509 !btrfs_zone_activate(bg))) { 1510 return -EIO; 1511 } 1512 } else { 1513 if (test_bit(0, active)) 1514 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags); 1515 } 1516 } 1517 1518 if (zone_info[0].alloc_offset != WP_MISSING_DEV) 1519 bg->alloc_offset = zone_info[0].alloc_offset; 1520 else 1521 bg->alloc_offset = zone_info[i - 1].alloc_offset; 1522 1523 return 0; 1524} 1525 1526static int btrfs_load_block_group_raid0(struct btrfs_block_group *bg, 1527 struct btrfs_chunk_map *map, 1528 struct zone_info *zone_info, 1529 unsigned long *active, 1530 u64 last_alloc) 1531{ 1532 struct btrfs_fs_info *fs_info = bg->fs_info; 1533 u64 stripe_nr = 0, stripe_offset = 0; 1534 u32 stripe_index = 0; 1535 1536 if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) { 1537 btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree", 1538 btrfs_bg_type_to_raid_name(map->type)); 1539 return -EINVAL; 1540 } 1541 1542 if (last_alloc) { 1543 u32 factor = map->num_stripes; 1544 1545 stripe_nr = last_alloc >> BTRFS_STRIPE_LEN_SHIFT; 1546 stripe_offset = last_alloc & BTRFS_STRIPE_LEN_MASK; 1547 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index); 1548 } 1549 1550 for (int i = 0; i < map->num_stripes; i++) { 1551 if (zone_info[i].alloc_offset == WP_MISSING_DEV) 1552 continue; 1553 1554 if (zone_info[i].alloc_offset == WP_CONVENTIONAL) { 1555 1556 zone_info[i].alloc_offset = btrfs_stripe_nr_to_offset(stripe_nr); 1557 1558 if (stripe_index > i) 1559 zone_info[i].alloc_offset += BTRFS_STRIPE_LEN; 1560 else if (stripe_index == i) 1561 zone_info[i].alloc_offset += stripe_offset; 1562 } 1563 1564 if (test_bit(0, active) != test_bit(i, active)) { 1565 if (unlikely(!btrfs_zone_activate(bg))) 1566 return -EIO; 1567 } else { 1568 if (test_bit(0, active)) 1569 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags); 1570 } 1571 bg->zone_capacity += zone_info[i].capacity; 1572 bg->alloc_offset += zone_info[i].alloc_offset; 1573 } 1574 1575 return 0; 1576} 1577 1578static int btrfs_load_block_group_raid10(struct btrfs_block_group *bg, 1579 struct btrfs_chunk_map *map, 1580 struct zone_info *zone_info, 1581 unsigned long *active, 1582 u64 last_alloc) 1583{ 1584 struct btrfs_fs_info *fs_info = bg->fs_info; 1585 u64 stripe_nr = 0, stripe_offset = 0; 1586 u32 stripe_index = 0; 1587 1588 if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) { 1589 btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree", 1590 btrfs_bg_type_to_raid_name(map->type)); 1591 return -EINVAL; 1592 } 1593 1594 if (last_alloc) { 1595 u32 factor = map->num_stripes / map->sub_stripes; 1596 1597 stripe_nr = last_alloc >> BTRFS_STRIPE_LEN_SHIFT; 1598 stripe_offset = last_alloc & BTRFS_STRIPE_LEN_MASK; 1599 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index); 1600 } 1601 1602 for (int i = 0; i < map->num_stripes; i++) { 1603 if (zone_info[i].alloc_offset == WP_MISSING_DEV) 1604 continue; 1605 1606 if (test_bit(0, active) != test_bit(i, active)) { 1607 if (unlikely(!btrfs_zone_activate(bg))) 1608 return -EIO; 1609 } else { 1610 if (test_bit(0, active)) 1611 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags); 1612 } 1613 1614 if (zone_info[i].alloc_offset == WP_CONVENTIONAL) { 1615 zone_info[i].alloc_offset = btrfs_stripe_nr_to_offset(stripe_nr); 1616 1617 if (stripe_index > (i / map->sub_stripes)) 1618 zone_info[i].alloc_offset += BTRFS_STRIPE_LEN; 1619 else if (stripe_index == (i / map->sub_stripes)) 1620 zone_info[i].alloc_offset += stripe_offset; 1621 } 1622 1623 if ((i % map->sub_stripes) == 0) { 1624 bg->zone_capacity += zone_info[i].capacity; 1625 bg->alloc_offset += zone_info[i].alloc_offset; 1626 } 1627 } 1628 1629 return 0; 1630} 1631 1632int btrfs_load_block_group_zone_info(struct btrfs_block_group *cache, bool new) 1633{ 1634 struct btrfs_fs_info *fs_info = cache->fs_info; 1635 struct btrfs_chunk_map *map; 1636 u64 logical = cache->start; 1637 u64 length = cache->length; 1638 struct zone_info AUTO_KFREE(zone_info); 1639 int ret; 1640 int i; 1641 unsigned long *active = NULL; 1642 u64 last_alloc = 0; 1643 u32 num_sequential = 0, num_conventional = 0; 1644 u64 profile; 1645 1646 if (!btrfs_is_zoned(fs_info)) 1647 return 0; 1648 1649 /* Sanity check */ 1650 if (unlikely(!IS_ALIGNED(length, fs_info->zone_size))) { 1651 btrfs_err(fs_info, 1652 "zoned: block group %llu len %llu unaligned to zone size %llu", 1653 logical, length, fs_info->zone_size); 1654 return -EIO; 1655 } 1656 1657 map = btrfs_find_chunk_map(fs_info, logical, length); 1658 if (!map) 1659 return -EINVAL; 1660 1661 cache->physical_map = map; 1662 1663 zone_info = kcalloc(map->num_stripes, sizeof(*zone_info), GFP_NOFS); 1664 if (!zone_info) { 1665 ret = -ENOMEM; 1666 goto out; 1667 } 1668 1669 active = bitmap_zalloc(map->num_stripes, GFP_NOFS); 1670 if (!active) { 1671 ret = -ENOMEM; 1672 goto out; 1673 } 1674 1675 for (i = 0; i < map->num_stripes; i++) { 1676 ret = btrfs_load_zone_info(fs_info, i, &zone_info[i], active, map, new); 1677 if (ret) 1678 goto out; 1679 1680 if (zone_info[i].alloc_offset == WP_CONVENTIONAL) 1681 num_conventional++; 1682 else 1683 num_sequential++; 1684 } 1685 1686 if (num_sequential > 0) 1687 set_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &cache->runtime_flags); 1688 1689 if (num_conventional > 0) { 1690 ret = calculate_alloc_pointer(cache, &last_alloc, new); 1691 if (ret) { 1692 btrfs_err(fs_info, 1693 "zoned: failed to determine allocation offset of bg %llu", 1694 cache->start); 1695 goto out; 1696 } else if (map->num_stripes == num_conventional) { 1697 cache->alloc_offset = last_alloc; 1698 cache->zone_capacity = cache->length; 1699 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags); 1700 goto out; 1701 } 1702 } 1703 1704 profile = map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK; 1705 switch (profile) { 1706 case 0: /* single */ 1707 ret = btrfs_load_block_group_single(cache, &zone_info[0], active); 1708 break; 1709 case BTRFS_BLOCK_GROUP_DUP: 1710 ret = btrfs_load_block_group_dup(cache, map, zone_info, active, 1711 last_alloc); 1712 break; 1713 case BTRFS_BLOCK_GROUP_RAID1: 1714 case BTRFS_BLOCK_GROUP_RAID1C3: 1715 case BTRFS_BLOCK_GROUP_RAID1C4: 1716 ret = btrfs_load_block_group_raid1(cache, map, zone_info, 1717 active, last_alloc); 1718 break; 1719 case BTRFS_BLOCK_GROUP_RAID0: 1720 ret = btrfs_load_block_group_raid0(cache, map, zone_info, 1721 active, last_alloc); 1722 break; 1723 case BTRFS_BLOCK_GROUP_RAID10: 1724 ret = btrfs_load_block_group_raid10(cache, map, zone_info, 1725 active, last_alloc); 1726 break; 1727 case BTRFS_BLOCK_GROUP_RAID5: 1728 case BTRFS_BLOCK_GROUP_RAID6: 1729 default: 1730 btrfs_err(fs_info, "zoned: profile %s not yet supported", 1731 btrfs_bg_type_to_raid_name(map->type)); 1732 ret = -EINVAL; 1733 goto out; 1734 } 1735 1736 if (ret == -EIO && profile != 0 && profile != BTRFS_BLOCK_GROUP_RAID0 && 1737 profile != BTRFS_BLOCK_GROUP_RAID10) { 1738 /* 1739 * Detected broken write pointer. Make this block group 1740 * unallocatable by setting the allocation pointer at the end of 1741 * allocatable region. Relocating this block group will fix the 1742 * mismatch. 1743 * 1744 * Currently, we cannot handle RAID0 or RAID10 case like this 1745 * because we don't have a proper zone_capacity value. But, 1746 * reading from this block group won't work anyway by a missing 1747 * stripe. 1748 */ 1749 cache->alloc_offset = cache->zone_capacity; 1750 } 1751 1752out: 1753 /* Reject non SINGLE data profiles without RST */ 1754 if ((map->type & BTRFS_BLOCK_GROUP_DATA) && 1755 (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) && 1756 !fs_info->stripe_root) { 1757 btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree", 1758 btrfs_bg_type_to_raid_name(map->type)); 1759 ret = -EINVAL; 1760 } 1761 1762 if (unlikely(cache->alloc_offset > cache->zone_capacity)) { 1763 btrfs_err(fs_info, 1764"zoned: invalid write pointer %llu (larger than zone capacity %llu) in block group %llu", 1765 cache->alloc_offset, cache->zone_capacity, 1766 cache->start); 1767 ret = -EIO; 1768 } 1769 1770 /* An extent is allocated after the write pointer */ 1771 if (!ret && num_conventional && last_alloc > cache->alloc_offset) { 1772 btrfs_err(fs_info, 1773 "zoned: got wrong write pointer in BG %llu: %llu > %llu", 1774 logical, last_alloc, cache->alloc_offset); 1775 ret = -EIO; 1776 } 1777 1778 if (!ret) { 1779 cache->meta_write_pointer = cache->alloc_offset + cache->start; 1780 if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags)) { 1781 btrfs_get_block_group(cache); 1782 spin_lock(&fs_info->zone_active_bgs_lock); 1783 list_add_tail(&cache->active_bg_list, 1784 &fs_info->zone_active_bgs); 1785 spin_unlock(&fs_info->zone_active_bgs_lock); 1786 } 1787 } else { 1788 btrfs_free_chunk_map(cache->physical_map); 1789 cache->physical_map = NULL; 1790 } 1791 bitmap_free(active); 1792 1793 return ret; 1794} 1795 1796void btrfs_calc_zone_unusable(struct btrfs_block_group *cache) 1797{ 1798 u64 unusable, free; 1799 1800 if (!btrfs_is_zoned(cache->fs_info)) 1801 return; 1802 1803 WARN_ON(cache->bytes_super != 0); 1804 unusable = (cache->alloc_offset - cache->used) + 1805 (cache->length - cache->zone_capacity); 1806 free = cache->zone_capacity - cache->alloc_offset; 1807 1808 /* We only need ->free_space in ALLOC_SEQ block groups */ 1809 cache->cached = BTRFS_CACHE_FINISHED; 1810 cache->free_space_ctl->free_space = free; 1811 cache->zone_unusable = unusable; 1812} 1813 1814bool btrfs_use_zone_append(struct btrfs_bio *bbio) 1815{ 1816 u64 start = (bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT); 1817 struct btrfs_inode *inode = bbio->inode; 1818 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1819 struct btrfs_block_group *cache; 1820 bool ret = false; 1821 1822 if (!btrfs_is_zoned(fs_info)) 1823 return false; 1824 1825 if (!is_data_inode(inode)) 1826 return false; 1827 1828 if (btrfs_op(&bbio->bio) != BTRFS_MAP_WRITE) 1829 return false; 1830 1831 /* 1832 * Using REQ_OP_ZONE_APPEND for relocation can break assumptions on the 1833 * extent layout the relocation code has. 1834 * Furthermore we have set aside own block-group from which only the 1835 * relocation "process" can allocate and make sure only one process at a 1836 * time can add pages to an extent that gets relocated, so it's safe to 1837 * use regular REQ_OP_WRITE for this special case. 1838 */ 1839 if (btrfs_is_data_reloc_root(inode->root)) 1840 return false; 1841 1842 cache = btrfs_lookup_block_group(fs_info, start); 1843 ASSERT(cache); 1844 if (!cache) 1845 return false; 1846 1847 ret = !!test_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &cache->runtime_flags); 1848 btrfs_put_block_group(cache); 1849 1850 return ret; 1851} 1852 1853void btrfs_record_physical_zoned(struct btrfs_bio *bbio) 1854{ 1855 const u64 physical = bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT; 1856 struct btrfs_ordered_sum *sum = bbio->sums; 1857 1858 if (physical < bbio->orig_physical) 1859 sum->logical -= bbio->orig_physical - physical; 1860 else 1861 sum->logical += physical - bbio->orig_physical; 1862} 1863 1864static void btrfs_rewrite_logical_zoned(struct btrfs_ordered_extent *ordered, 1865 u64 logical) 1866{ 1867 struct extent_map_tree *em_tree = &ordered->inode->extent_tree; 1868 struct extent_map *em; 1869 1870 ordered->disk_bytenr = logical; 1871 1872 write_lock(&em_tree->lock); 1873 em = btrfs_search_extent_mapping(em_tree, ordered->file_offset, 1874 ordered->num_bytes); 1875 /* The em should be a new COW extent, thus it should not have an offset. */ 1876 ASSERT(em->offset == 0, "em->offset=%llu", em->offset); 1877 em->disk_bytenr = logical; 1878 btrfs_free_extent_map(em); 1879 write_unlock(&em_tree->lock); 1880} 1881 1882static bool btrfs_zoned_split_ordered(struct btrfs_ordered_extent *ordered, 1883 u64 logical, u64 len) 1884{ 1885 struct btrfs_ordered_extent *new; 1886 1887 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags) && 1888 btrfs_split_extent_map(ordered->inode, ordered->file_offset, 1889 ordered->num_bytes, len, logical)) 1890 return false; 1891 1892 new = btrfs_split_ordered_extent(ordered, len); 1893 if (IS_ERR(new)) 1894 return false; 1895 new->disk_bytenr = logical; 1896 btrfs_finish_one_ordered(new); 1897 return true; 1898} 1899 1900void btrfs_finish_ordered_zoned(struct btrfs_ordered_extent *ordered) 1901{ 1902 struct btrfs_inode *inode = ordered->inode; 1903 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1904 struct btrfs_ordered_sum *sum; 1905 u64 logical, len; 1906 1907 /* 1908 * Write to pre-allocated region is for the data relocation, and so 1909 * it should use WRITE operation. No split/rewrite are necessary. 1910 */ 1911 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) 1912 return; 1913 1914 ASSERT(!list_empty(&ordered->list)); 1915 /* The ordered->list can be empty in the above pre-alloc case. */ 1916 sum = list_first_entry(&ordered->list, struct btrfs_ordered_sum, list); 1917 logical = sum->logical; 1918 len = sum->len; 1919 1920 while (len < ordered->disk_num_bytes) { 1921 sum = list_next_entry(sum, list); 1922 if (sum->logical == logical + len) { 1923 len += sum->len; 1924 continue; 1925 } 1926 if (!btrfs_zoned_split_ordered(ordered, logical, len)) { 1927 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 1928 btrfs_err(fs_info, "failed to split ordered extent"); 1929 goto out; 1930 } 1931 logical = sum->logical; 1932 len = sum->len; 1933 } 1934 1935 if (ordered->disk_bytenr != logical) 1936 btrfs_rewrite_logical_zoned(ordered, logical); 1937 1938out: 1939 /* 1940 * If we end up here for nodatasum I/O, the btrfs_ordered_sum structures 1941 * were allocated by btrfs_alloc_dummy_sum only to record the logical 1942 * addresses and don't contain actual checksums. We thus must free them 1943 * here so that we don't attempt to log the csums later. 1944 */ 1945 if ((inode->flags & BTRFS_INODE_NODATASUM) || 1946 test_bit(BTRFS_FS_STATE_NO_DATA_CSUMS, &fs_info->fs_state)) { 1947 while ((sum = list_first_entry_or_null(&ordered->list, 1948 typeof(*sum), list))) { 1949 list_del(&sum->list); 1950 kfree(sum); 1951 } 1952 } 1953} 1954 1955static bool check_bg_is_active(struct btrfs_eb_write_context *ctx, 1956 struct btrfs_block_group **active_bg) 1957{ 1958 const struct writeback_control *wbc = ctx->wbc; 1959 struct btrfs_block_group *block_group = ctx->zoned_bg; 1960 struct btrfs_fs_info *fs_info = block_group->fs_info; 1961 1962 if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) 1963 return true; 1964 1965 if (fs_info->treelog_bg == block_group->start) { 1966 if (!btrfs_zone_activate(block_group)) { 1967 int ret_fin = btrfs_zone_finish_one_bg(fs_info); 1968 1969 if (ret_fin != 1 || !btrfs_zone_activate(block_group)) 1970 return false; 1971 } 1972 } else if (*active_bg != block_group) { 1973 struct btrfs_block_group *tgt = *active_bg; 1974 1975 /* zoned_meta_io_lock protects fs_info->active_{meta,system}_bg. */ 1976 lockdep_assert_held(&fs_info->zoned_meta_io_lock); 1977 1978 if (tgt) { 1979 /* 1980 * If there is an unsent IO left in the allocated area, 1981 * we cannot wait for them as it may cause a deadlock. 1982 */ 1983 if (tgt->meta_write_pointer < tgt->start + tgt->alloc_offset) { 1984 if (wbc->sync_mode == WB_SYNC_NONE || 1985 (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)) 1986 return false; 1987 } 1988 1989 /* Pivot active metadata/system block group. */ 1990 btrfs_zoned_meta_io_unlock(fs_info); 1991 wait_eb_writebacks(tgt); 1992 do_zone_finish(tgt, true); 1993 btrfs_zoned_meta_io_lock(fs_info); 1994 if (*active_bg == tgt) { 1995 btrfs_put_block_group(tgt); 1996 *active_bg = NULL; 1997 } 1998 } 1999 if (!btrfs_zone_activate(block_group)) 2000 return false; 2001 if (*active_bg != block_group) { 2002 ASSERT(*active_bg == NULL); 2003 *active_bg = block_group; 2004 btrfs_get_block_group(block_group); 2005 } 2006 } 2007 2008 return true; 2009} 2010 2011/* 2012 * Check if @ctx->eb is aligned to the write pointer. 2013 * 2014 * Return: 2015 * 0: @ctx->eb is at the write pointer. You can write it. 2016 * -EAGAIN: There is a hole. The caller should handle the case. 2017 * -EBUSY: There is a hole, but the caller can just bail out. 2018 */ 2019int btrfs_check_meta_write_pointer(struct btrfs_fs_info *fs_info, 2020 struct btrfs_eb_write_context *ctx) 2021{ 2022 const struct writeback_control *wbc = ctx->wbc; 2023 const struct extent_buffer *eb = ctx->eb; 2024 struct btrfs_block_group *block_group = ctx->zoned_bg; 2025 2026 if (!btrfs_is_zoned(fs_info)) 2027 return 0; 2028 2029 if (block_group) { 2030 if (block_group->start > eb->start || 2031 block_group->start + block_group->length <= eb->start) { 2032 btrfs_put_block_group(block_group); 2033 block_group = NULL; 2034 ctx->zoned_bg = NULL; 2035 } 2036 } 2037 2038 if (!block_group) { 2039 block_group = btrfs_lookup_block_group(fs_info, eb->start); 2040 if (!block_group) 2041 return 0; 2042 ctx->zoned_bg = block_group; 2043 } 2044 2045 if (block_group->meta_write_pointer == eb->start) { 2046 struct btrfs_block_group **tgt; 2047 2048 if (!test_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags)) 2049 return 0; 2050 2051 if (block_group->flags & BTRFS_BLOCK_GROUP_SYSTEM) 2052 tgt = &fs_info->active_system_bg; 2053 else 2054 tgt = &fs_info->active_meta_bg; 2055 if (check_bg_is_active(ctx, tgt)) 2056 return 0; 2057 } 2058 2059 /* 2060 * Since we may release fs_info->zoned_meta_io_lock, someone can already 2061 * start writing this eb. In that case, we can just bail out. 2062 */ 2063 if (block_group->meta_write_pointer > eb->start) 2064 return -EBUSY; 2065 2066 /* If for_sync, this hole will be filled with transaction commit. */ 2067 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) 2068 return -EAGAIN; 2069 return -EBUSY; 2070} 2071 2072int btrfs_zoned_issue_zeroout(struct btrfs_device *device, u64 physical, u64 length) 2073{ 2074 if (!btrfs_dev_is_sequential(device, physical)) 2075 return -EOPNOTSUPP; 2076 2077 return blkdev_issue_zeroout(device->bdev, physical >> SECTOR_SHIFT, 2078 length >> SECTOR_SHIFT, GFP_NOFS, 0); 2079} 2080 2081static int read_zone_info(struct btrfs_fs_info *fs_info, u64 logical, 2082 struct blk_zone *zone) 2083{ 2084 struct btrfs_io_context *bioc = NULL; 2085 u64 mapped_length = PAGE_SIZE; 2086 unsigned int nofs_flag; 2087 int nmirrors; 2088 int i, ret; 2089 2090 ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical, 2091 &mapped_length, &bioc, NULL, NULL); 2092 if (unlikely(ret || !bioc || mapped_length < PAGE_SIZE)) { 2093 ret = -EIO; 2094 goto out_put_bioc; 2095 } 2096 2097 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 2098 ret = -EINVAL; 2099 goto out_put_bioc; 2100 } 2101 2102 nofs_flag = memalloc_nofs_save(); 2103 nmirrors = (int)bioc->num_stripes; 2104 for (i = 0; i < nmirrors; i++) { 2105 u64 physical = bioc->stripes[i].physical; 2106 struct btrfs_device *dev = bioc->stripes[i].dev; 2107 2108 /* Missing device */ 2109 if (!dev->bdev) 2110 continue; 2111 2112 ret = btrfs_get_dev_zone(dev, physical, zone); 2113 /* Failing device */ 2114 if (ret == -EIO || ret == -EOPNOTSUPP) 2115 continue; 2116 break; 2117 } 2118 memalloc_nofs_restore(nofs_flag); 2119out_put_bioc: 2120 btrfs_put_bioc(bioc); 2121 return ret; 2122} 2123 2124/* 2125 * Synchronize write pointer in a zone at @physical_start on @tgt_dev, by 2126 * filling zeros between @physical_pos to a write pointer of dev-replace 2127 * source device. 2128 */ 2129int btrfs_sync_zone_write_pointer(struct btrfs_device *tgt_dev, u64 logical, 2130 u64 physical_start, u64 physical_pos) 2131{ 2132 struct btrfs_fs_info *fs_info = tgt_dev->fs_info; 2133 struct blk_zone zone; 2134 u64 length; 2135 u64 wp; 2136 int ret; 2137 2138 if (!btrfs_dev_is_sequential(tgt_dev, physical_pos)) 2139 return 0; 2140 2141 ret = read_zone_info(fs_info, logical, &zone); 2142 if (ret) 2143 return ret; 2144 2145 wp = physical_start + ((zone.wp - zone.start) << SECTOR_SHIFT); 2146 2147 if (physical_pos == wp) 2148 return 0; 2149 2150 if (unlikely(physical_pos > wp)) 2151 return -EUCLEAN; 2152 2153 length = wp - physical_pos; 2154 return btrfs_zoned_issue_zeroout(tgt_dev, physical_pos, length); 2155} 2156 2157/* 2158 * Activate block group and underlying device zones 2159 * 2160 * @block_group: the block group to activate 2161 * 2162 * Return: true on success, false otherwise 2163 */ 2164bool btrfs_zone_activate(struct btrfs_block_group *block_group) 2165{ 2166 struct btrfs_fs_info *fs_info = block_group->fs_info; 2167 struct btrfs_chunk_map *map; 2168 struct btrfs_device *device; 2169 u64 physical; 2170 const bool is_data = (block_group->flags & BTRFS_BLOCK_GROUP_DATA); 2171 bool ret; 2172 int i; 2173 2174 if (!btrfs_is_zoned(block_group->fs_info)) 2175 return true; 2176 2177 map = block_group->physical_map; 2178 2179 spin_lock(&fs_info->zone_active_bgs_lock); 2180 spin_lock(&block_group->lock); 2181 if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) { 2182 ret = true; 2183 goto out_unlock; 2184 } 2185 2186 if (block_group->flags & BTRFS_BLOCK_GROUP_DATA) { 2187 /* The caller should check if the block group is full. */ 2188 if (WARN_ON_ONCE(btrfs_zoned_bg_is_full(block_group))) { 2189 ret = false; 2190 goto out_unlock; 2191 } 2192 } else { 2193 /* Since it is already written, it should have been active. */ 2194 WARN_ON_ONCE(block_group->meta_write_pointer != block_group->start); 2195 } 2196 2197 for (i = 0; i < map->num_stripes; i++) { 2198 struct btrfs_zoned_device_info *zinfo; 2199 int reserved = 0; 2200 2201 device = map->stripes[i].dev; 2202 physical = map->stripes[i].physical; 2203 zinfo = device->zone_info; 2204 2205 if (!device->bdev) 2206 continue; 2207 2208 if (zinfo->max_active_zones == 0) 2209 continue; 2210 2211 if (is_data) 2212 reserved = zinfo->reserved_active_zones; 2213 /* 2214 * For the data block group, leave active zones for one 2215 * metadata block group and one system block group. 2216 */ 2217 if (atomic_read(&zinfo->active_zones_left) <= reserved) { 2218 ret = false; 2219 goto out_unlock; 2220 } 2221 2222 if (!btrfs_dev_set_active_zone(device, physical)) { 2223 /* Cannot activate the zone */ 2224 ret = false; 2225 goto out_unlock; 2226 } 2227 if (!is_data) 2228 zinfo->reserved_active_zones--; 2229 } 2230 2231 /* Successfully activated all the zones */ 2232 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags); 2233 spin_unlock(&block_group->lock); 2234 2235 /* For the active block group list */ 2236 btrfs_get_block_group(block_group); 2237 list_add_tail(&block_group->active_bg_list, &fs_info->zone_active_bgs); 2238 spin_unlock(&fs_info->zone_active_bgs_lock); 2239 2240 return true; 2241 2242out_unlock: 2243 spin_unlock(&block_group->lock); 2244 spin_unlock(&fs_info->zone_active_bgs_lock); 2245 return ret; 2246} 2247 2248static void wait_eb_writebacks(struct btrfs_block_group *block_group) 2249{ 2250 struct btrfs_fs_info *fs_info = block_group->fs_info; 2251 const u64 end = block_group->start + block_group->length; 2252 struct extent_buffer *eb; 2253 unsigned long index, start = (block_group->start >> fs_info->nodesize_bits); 2254 2255 rcu_read_lock(); 2256 xa_for_each_start(&fs_info->buffer_tree, index, eb, start) { 2257 if (eb->start < block_group->start) 2258 continue; 2259 if (eb->start >= end) 2260 break; 2261 rcu_read_unlock(); 2262 wait_on_extent_buffer_writeback(eb); 2263 rcu_read_lock(); 2264 } 2265 rcu_read_unlock(); 2266} 2267 2268static int call_zone_finish(struct btrfs_block_group *block_group, 2269 struct btrfs_io_stripe *stripe) 2270{ 2271 struct btrfs_device *device = stripe->dev; 2272 const u64 physical = stripe->physical; 2273 struct btrfs_zoned_device_info *zinfo = device->zone_info; 2274 int ret; 2275 2276 if (!device->bdev) 2277 return 0; 2278 2279 if (zinfo->max_active_zones == 0) 2280 return 0; 2281 2282 if (btrfs_dev_is_sequential(device, physical)) { 2283 unsigned int nofs_flags; 2284 2285 nofs_flags = memalloc_nofs_save(); 2286 ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_FINISH, 2287 physical >> SECTOR_SHIFT, 2288 zinfo->zone_size >> SECTOR_SHIFT); 2289 memalloc_nofs_restore(nofs_flags); 2290 2291 if (ret) 2292 return ret; 2293 } 2294 2295 if (!(block_group->flags & BTRFS_BLOCK_GROUP_DATA)) 2296 zinfo->reserved_active_zones++; 2297 btrfs_dev_clear_active_zone(device, physical); 2298 2299 return 0; 2300} 2301 2302static int do_zone_finish(struct btrfs_block_group *block_group, bool fully_written) 2303{ 2304 struct btrfs_fs_info *fs_info = block_group->fs_info; 2305 struct btrfs_chunk_map *map; 2306 const bool is_metadata = (block_group->flags & 2307 (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM)); 2308 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 2309 int ret = 0; 2310 int i; 2311 2312 spin_lock(&block_group->lock); 2313 if (!test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) { 2314 spin_unlock(&block_group->lock); 2315 return 0; 2316 } 2317 2318 /* Check if we have unwritten allocated space */ 2319 if (is_metadata && 2320 block_group->start + block_group->alloc_offset > block_group->meta_write_pointer) { 2321 spin_unlock(&block_group->lock); 2322 return -EAGAIN; 2323 } 2324 2325 /* 2326 * If we are sure that the block group is full (= no more room left for 2327 * new allocation) and the IO for the last usable block is completed, we 2328 * don't need to wait for the other IOs. This holds because we ensure 2329 * the sequential IO submissions using the ZONE_APPEND command for data 2330 * and block_group->meta_write_pointer for metadata. 2331 */ 2332 if (!fully_written) { 2333 if (test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags)) { 2334 spin_unlock(&block_group->lock); 2335 return -EAGAIN; 2336 } 2337 spin_unlock(&block_group->lock); 2338 2339 ret = btrfs_inc_block_group_ro(block_group, false); 2340 if (ret) 2341 return ret; 2342 2343 /* Ensure all writes in this block group finish */ 2344 btrfs_wait_block_group_reservations(block_group); 2345 /* No need to wait for NOCOW writers. Zoned mode does not allow that */ 2346 btrfs_wait_ordered_roots(fs_info, U64_MAX, block_group); 2347 /* Wait for extent buffers to be written. */ 2348 if (is_metadata) 2349 wait_eb_writebacks(block_group); 2350 2351 spin_lock(&block_group->lock); 2352 2353 /* 2354 * Bail out if someone already deactivated the block group, or 2355 * allocated space is left in the block group. 2356 */ 2357 if (!test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, 2358 &block_group->runtime_flags)) { 2359 spin_unlock(&block_group->lock); 2360 btrfs_dec_block_group_ro(block_group); 2361 return 0; 2362 } 2363 2364 if (block_group->reserved || 2365 test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, 2366 &block_group->runtime_flags)) { 2367 spin_unlock(&block_group->lock); 2368 btrfs_dec_block_group_ro(block_group); 2369 return -EAGAIN; 2370 } 2371 } 2372 2373 clear_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags); 2374 block_group->alloc_offset = block_group->zone_capacity; 2375 if (block_group->flags & (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM)) 2376 block_group->meta_write_pointer = block_group->start + 2377 block_group->zone_capacity; 2378 block_group->free_space_ctl->free_space = 0; 2379 btrfs_clear_treelog_bg(block_group); 2380 btrfs_clear_data_reloc_bg(block_group); 2381 spin_unlock(&block_group->lock); 2382 2383 down_read(&dev_replace->rwsem); 2384 map = block_group->physical_map; 2385 for (i = 0; i < map->num_stripes; i++) { 2386 2387 ret = call_zone_finish(block_group, &map->stripes[i]); 2388 if (ret) { 2389 up_read(&dev_replace->rwsem); 2390 return ret; 2391 } 2392 } 2393 up_read(&dev_replace->rwsem); 2394 2395 if (!fully_written) 2396 btrfs_dec_block_group_ro(block_group); 2397 2398 spin_lock(&fs_info->zone_active_bgs_lock); 2399 ASSERT(!list_empty(&block_group->active_bg_list)); 2400 list_del_init(&block_group->active_bg_list); 2401 spin_unlock(&fs_info->zone_active_bgs_lock); 2402 2403 /* For active_bg_list */ 2404 btrfs_put_block_group(block_group); 2405 2406 clear_and_wake_up_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags); 2407 2408 return 0; 2409} 2410 2411int btrfs_zone_finish(struct btrfs_block_group *block_group) 2412{ 2413 if (!btrfs_is_zoned(block_group->fs_info)) 2414 return 0; 2415 2416 return do_zone_finish(block_group, false); 2417} 2418 2419bool btrfs_can_activate_zone(struct btrfs_fs_devices *fs_devices, u64 flags) 2420{ 2421 struct btrfs_fs_info *fs_info = fs_devices->fs_info; 2422 struct btrfs_device *device; 2423 bool ret = false; 2424 2425 if (!btrfs_is_zoned(fs_info)) 2426 return true; 2427 2428 if (test_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags)) 2429 return false; 2430 2431 /* Check if there is a device with active zones left */ 2432 mutex_lock(&fs_info->chunk_mutex); 2433 spin_lock(&fs_info->zone_active_bgs_lock); 2434 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 2435 struct btrfs_zoned_device_info *zinfo = device->zone_info; 2436 int reserved = 0; 2437 2438 if (!device->bdev) 2439 continue; 2440 2441 if (!zinfo->max_active_zones) { 2442 ret = true; 2443 break; 2444 } 2445 2446 if (flags & BTRFS_BLOCK_GROUP_DATA) 2447 reserved = zinfo->reserved_active_zones; 2448 2449 switch (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 2450 case 0: /* single */ 2451 ret = (atomic_read(&zinfo->active_zones_left) >= (1 + reserved)); 2452 break; 2453 case BTRFS_BLOCK_GROUP_DUP: 2454 ret = (atomic_read(&zinfo->active_zones_left) >= (2 + reserved)); 2455 break; 2456 } 2457 if (ret) 2458 break; 2459 } 2460 spin_unlock(&fs_info->zone_active_bgs_lock); 2461 mutex_unlock(&fs_info->chunk_mutex); 2462 2463 if (!ret) 2464 set_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags); 2465 2466 return ret; 2467} 2468 2469int btrfs_zone_finish_endio(struct btrfs_fs_info *fs_info, u64 logical, u64 length) 2470{ 2471 struct btrfs_block_group *block_group; 2472 u64 min_alloc_bytes; 2473 2474 if (!btrfs_is_zoned(fs_info)) 2475 return 0; 2476 2477 block_group = btrfs_lookup_block_group(fs_info, logical); 2478 if (WARN_ON_ONCE(!block_group)) 2479 return -ENOENT; 2480 2481 /* No MIXED_BG on zoned btrfs. */ 2482 if (block_group->flags & BTRFS_BLOCK_GROUP_DATA) 2483 min_alloc_bytes = fs_info->sectorsize; 2484 else 2485 min_alloc_bytes = fs_info->nodesize; 2486 2487 /* Bail out if we can allocate more data from this block group. */ 2488 if (logical + length + min_alloc_bytes <= 2489 block_group->start + block_group->zone_capacity) 2490 goto out; 2491 2492 do_zone_finish(block_group, true); 2493 2494out: 2495 btrfs_put_block_group(block_group); 2496 return 0; 2497} 2498 2499static void btrfs_zone_finish_endio_workfn(struct work_struct *work) 2500{ 2501 int ret; 2502 struct btrfs_block_group *bg = 2503 container_of(work, struct btrfs_block_group, zone_finish_work); 2504 2505 wait_on_extent_buffer_writeback(bg->last_eb); 2506 free_extent_buffer(bg->last_eb); 2507 ret = do_zone_finish(bg, true); 2508 if (ret) 2509 btrfs_handle_fs_error(bg->fs_info, ret, 2510 "Failed to finish block-group's zone"); 2511 btrfs_put_block_group(bg); 2512} 2513 2514void btrfs_schedule_zone_finish_bg(struct btrfs_block_group *bg, 2515 struct extent_buffer *eb) 2516{ 2517 if (!test_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &bg->runtime_flags) || 2518 eb->start + eb->len * 2 <= bg->start + bg->zone_capacity) 2519 return; 2520 2521 if (WARN_ON(bg->zone_finish_work.func == btrfs_zone_finish_endio_workfn)) { 2522 btrfs_err(bg->fs_info, "double scheduling of bg %llu zone finishing", 2523 bg->start); 2524 return; 2525 } 2526 2527 /* For the work */ 2528 btrfs_get_block_group(bg); 2529 refcount_inc(&eb->refs); 2530 bg->last_eb = eb; 2531 INIT_WORK(&bg->zone_finish_work, btrfs_zone_finish_endio_workfn); 2532 queue_work(system_dfl_wq, &bg->zone_finish_work); 2533} 2534 2535void btrfs_clear_data_reloc_bg(struct btrfs_block_group *bg) 2536{ 2537 struct btrfs_fs_info *fs_info = bg->fs_info; 2538 2539 spin_lock(&fs_info->relocation_bg_lock); 2540 if (fs_info->data_reloc_bg == bg->start) 2541 fs_info->data_reloc_bg = 0; 2542 spin_unlock(&fs_info->relocation_bg_lock); 2543} 2544 2545void btrfs_zoned_reserve_data_reloc_bg(struct btrfs_fs_info *fs_info) 2546{ 2547 struct btrfs_space_info *data_sinfo = fs_info->data_sinfo; 2548 struct btrfs_space_info *space_info = data_sinfo; 2549 struct btrfs_trans_handle *trans; 2550 struct btrfs_block_group *bg; 2551 struct list_head *bg_list; 2552 u64 alloc_flags; 2553 bool first = true; 2554 bool did_chunk_alloc = false; 2555 int index; 2556 int ret; 2557 2558 if (!btrfs_is_zoned(fs_info)) 2559 return; 2560 2561 if (fs_info->data_reloc_bg) 2562 return; 2563 2564 if (sb_rdonly(fs_info->sb)) 2565 return; 2566 2567 alloc_flags = btrfs_get_alloc_profile(fs_info, space_info->flags); 2568 index = btrfs_bg_flags_to_raid_index(alloc_flags); 2569 2570 /* Scan the data space_info to find empty block groups. Take the second one. */ 2571again: 2572 bg_list = &space_info->block_groups[index]; 2573 list_for_each_entry(bg, bg_list, list) { 2574 if (bg->alloc_offset != 0) 2575 continue; 2576 2577 if (first) { 2578 first = false; 2579 continue; 2580 } 2581 2582 if (space_info == data_sinfo) { 2583 /* Migrate the block group to the data relocation space_info. */ 2584 struct btrfs_space_info *reloc_sinfo = data_sinfo->sub_group[0]; 2585 int factor; 2586 2587 ASSERT(reloc_sinfo->subgroup_id == BTRFS_SUB_GROUP_DATA_RELOC, 2588 "reloc_sinfo->subgroup_id=%d", reloc_sinfo->subgroup_id); 2589 factor = btrfs_bg_type_to_factor(bg->flags); 2590 2591 down_write(&space_info->groups_sem); 2592 list_del_init(&bg->list); 2593 /* We can assume this as we choose the second empty one. */ 2594 ASSERT(!list_empty(&space_info->block_groups[index])); 2595 up_write(&space_info->groups_sem); 2596 2597 spin_lock(&space_info->lock); 2598 space_info->total_bytes -= bg->length; 2599 space_info->disk_total -= bg->length * factor; 2600 space_info->disk_total -= bg->zone_unusable; 2601 /* There is no allocation ever happened. */ 2602 ASSERT(bg->used == 0, "bg->used=%llu", bg->used); 2603 /* No super block in a block group on the zoned setup. */ 2604 ASSERT(bg->bytes_super == 0, "bg->bytes_super=%llu", bg->bytes_super); 2605 spin_unlock(&space_info->lock); 2606 2607 bg->space_info = reloc_sinfo; 2608 if (reloc_sinfo->block_group_kobjs[index] == NULL) 2609 btrfs_sysfs_add_block_group_type(bg); 2610 2611 btrfs_add_bg_to_space_info(fs_info, bg); 2612 } 2613 2614 fs_info->data_reloc_bg = bg->start; 2615 set_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &bg->runtime_flags); 2616 btrfs_zone_activate(bg); 2617 2618 return; 2619 } 2620 2621 if (did_chunk_alloc) 2622 return; 2623 2624 trans = btrfs_join_transaction(fs_info->tree_root); 2625 if (IS_ERR(trans)) 2626 return; 2627 2628 /* Allocate new BG in the data relocation space_info. */ 2629 space_info = data_sinfo->sub_group[0]; 2630 ASSERT(space_info->subgroup_id == BTRFS_SUB_GROUP_DATA_RELOC, 2631 "space_info->subgroup_id=%d", space_info->subgroup_id); 2632 ret = btrfs_chunk_alloc(trans, space_info, alloc_flags, CHUNK_ALLOC_FORCE); 2633 btrfs_end_transaction(trans); 2634 if (ret == 1) { 2635 /* 2636 * We allocated a new block group in the data relocation space_info. We 2637 * can take that one. 2638 */ 2639 first = false; 2640 did_chunk_alloc = true; 2641 goto again; 2642 } 2643} 2644 2645void btrfs_free_zone_cache(struct btrfs_fs_info *fs_info) 2646{ 2647 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2648 struct btrfs_device *device; 2649 2650 if (!btrfs_is_zoned(fs_info)) 2651 return; 2652 2653 mutex_lock(&fs_devices->device_list_mutex); 2654 list_for_each_entry(device, &fs_devices->devices, dev_list) { 2655 if (device->zone_info) { 2656 vfree(device->zone_info->zone_cache); 2657 device->zone_info->zone_cache = NULL; 2658 } 2659 } 2660 mutex_unlock(&fs_devices->device_list_mutex); 2661} 2662 2663bool btrfs_zoned_should_reclaim(const struct btrfs_fs_info *fs_info) 2664{ 2665 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2666 struct btrfs_device *device; 2667 u64 total = btrfs_super_total_bytes(fs_info->super_copy); 2668 u64 used = 0; 2669 u64 factor; 2670 2671 ASSERT(btrfs_is_zoned(fs_info)); 2672 2673 if (fs_info->bg_reclaim_threshold == 0) 2674 return false; 2675 2676 mutex_lock(&fs_devices->device_list_mutex); 2677 list_for_each_entry(device, &fs_devices->devices, dev_list) { 2678 if (!device->bdev) 2679 continue; 2680 2681 used += device->bytes_used; 2682 } 2683 mutex_unlock(&fs_devices->device_list_mutex); 2684 2685 factor = div64_u64(used * 100, total); 2686 return factor >= fs_info->bg_reclaim_threshold; 2687} 2688 2689void btrfs_zoned_release_data_reloc_bg(struct btrfs_fs_info *fs_info, u64 logical, 2690 u64 length) 2691{ 2692 struct btrfs_block_group *block_group; 2693 2694 if (!btrfs_is_zoned(fs_info)) 2695 return; 2696 2697 block_group = btrfs_lookup_block_group(fs_info, logical); 2698 /* It should be called on a previous data relocation block group. */ 2699 ASSERT(block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)); 2700 2701 spin_lock(&block_group->lock); 2702 if (!test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags)) 2703 goto out; 2704 2705 /* All relocation extents are written. */ 2706 if (block_group->start + block_group->alloc_offset == logical + length) { 2707 /* 2708 * Now, release this block group for further allocations and 2709 * zone finish. 2710 */ 2711 clear_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, 2712 &block_group->runtime_flags); 2713 } 2714 2715out: 2716 spin_unlock(&block_group->lock); 2717 btrfs_put_block_group(block_group); 2718} 2719 2720int btrfs_zone_finish_one_bg(struct btrfs_fs_info *fs_info) 2721{ 2722 struct btrfs_block_group *block_group; 2723 struct btrfs_block_group *min_bg = NULL; 2724 u64 min_avail = U64_MAX; 2725 int ret; 2726 2727 spin_lock(&fs_info->zone_active_bgs_lock); 2728 list_for_each_entry(block_group, &fs_info->zone_active_bgs, 2729 active_bg_list) { 2730 u64 avail; 2731 2732 spin_lock(&block_group->lock); 2733 if (block_group->reserved || block_group->alloc_offset == 0 || 2734 !(block_group->flags & BTRFS_BLOCK_GROUP_DATA) || 2735 test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags)) { 2736 spin_unlock(&block_group->lock); 2737 continue; 2738 } 2739 2740 avail = block_group->zone_capacity - block_group->alloc_offset; 2741 if (min_avail > avail) { 2742 if (min_bg) 2743 btrfs_put_block_group(min_bg); 2744 min_bg = block_group; 2745 min_avail = avail; 2746 btrfs_get_block_group(min_bg); 2747 } 2748 spin_unlock(&block_group->lock); 2749 } 2750 spin_unlock(&fs_info->zone_active_bgs_lock); 2751 2752 if (!min_bg) 2753 return 0; 2754 2755 ret = btrfs_zone_finish(min_bg); 2756 btrfs_put_block_group(min_bg); 2757 2758 return ret < 0 ? ret : 1; 2759} 2760 2761int btrfs_zoned_activate_one_bg(struct btrfs_space_info *space_info, bool do_finish) 2762{ 2763 struct btrfs_fs_info *fs_info = space_info->fs_info; 2764 struct btrfs_block_group *bg; 2765 int index; 2766 2767 if (!btrfs_is_zoned(fs_info) || (space_info->flags & BTRFS_BLOCK_GROUP_DATA)) 2768 return 0; 2769 2770 for (;;) { 2771 int ret; 2772 bool need_finish = false; 2773 2774 down_read(&space_info->groups_sem); 2775 for (index = 0; index < BTRFS_NR_RAID_TYPES; index++) { 2776 list_for_each_entry(bg, &space_info->block_groups[index], 2777 list) { 2778 if (!spin_trylock(&bg->lock)) 2779 continue; 2780 if (btrfs_zoned_bg_is_full(bg) || 2781 test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, 2782 &bg->runtime_flags)) { 2783 spin_unlock(&bg->lock); 2784 continue; 2785 } 2786 spin_unlock(&bg->lock); 2787 2788 if (btrfs_zone_activate(bg)) { 2789 up_read(&space_info->groups_sem); 2790 return 1; 2791 } 2792 2793 need_finish = true; 2794 } 2795 } 2796 up_read(&space_info->groups_sem); 2797 2798 if (!do_finish || !need_finish) 2799 break; 2800 2801 ret = btrfs_zone_finish_one_bg(fs_info); 2802 if (ret == 0) 2803 break; 2804 if (ret < 0) 2805 return ret; 2806 } 2807 2808 return 0; 2809} 2810 2811/* 2812 * Reserve zones for one metadata block group, one tree-log block group, and one 2813 * system block group. 2814 */ 2815void btrfs_check_active_zone_reservation(struct btrfs_fs_info *fs_info) 2816{ 2817 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2818 struct btrfs_block_group *block_group; 2819 struct btrfs_device *device; 2820 /* Reserve zones for normal SINGLE metadata and tree-log block group. */ 2821 unsigned int metadata_reserve = 2; 2822 /* Reserve a zone for SINGLE system block group. */ 2823 unsigned int system_reserve = 1; 2824 2825 if (!test_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags)) 2826 return; 2827 2828 /* 2829 * This function is called from the mount context. So, there is no 2830 * parallel process touching the bits. No need for read_seqretry(). 2831 */ 2832 if (fs_info->avail_metadata_alloc_bits & BTRFS_BLOCK_GROUP_DUP) 2833 metadata_reserve = 4; 2834 if (fs_info->avail_system_alloc_bits & BTRFS_BLOCK_GROUP_DUP) 2835 system_reserve = 2; 2836 2837 /* Apply the reservation on all the devices. */ 2838 mutex_lock(&fs_devices->device_list_mutex); 2839 list_for_each_entry(device, &fs_devices->devices, dev_list) { 2840 if (!device->bdev) 2841 continue; 2842 2843 device->zone_info->reserved_active_zones = 2844 metadata_reserve + system_reserve; 2845 } 2846 mutex_unlock(&fs_devices->device_list_mutex); 2847 2848 /* Release reservation for currently active block groups. */ 2849 spin_lock(&fs_info->zone_active_bgs_lock); 2850 list_for_each_entry(block_group, &fs_info->zone_active_bgs, active_bg_list) { 2851 struct btrfs_chunk_map *map = block_group->physical_map; 2852 2853 if (!(block_group->flags & 2854 (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM))) 2855 continue; 2856 2857 for (int i = 0; i < map->num_stripes; i++) 2858 map->stripes[i].dev->zone_info->reserved_active_zones--; 2859 } 2860 spin_unlock(&fs_info->zone_active_bgs_lock); 2861} 2862 2863/* 2864 * Reset the zones of unused block groups from @space_info->bytes_zone_unusable. 2865 * 2866 * @space_info: the space to work on 2867 * @num_bytes: targeting reclaim bytes 2868 * 2869 * This one resets the zones of a block group, so we can reuse the region 2870 * without removing the block group. On the other hand, btrfs_delete_unused_bgs() 2871 * just removes a block group and frees up the underlying zones. So, we still 2872 * need to allocate a new block group to reuse the zones. 2873 * 2874 * Resetting is faster than deleting/recreating a block group. It is similar 2875 * to freeing the logical space on the regular mode. However, we cannot change 2876 * the block group's profile with this operation. 2877 */ 2878int btrfs_reset_unused_block_groups(struct btrfs_space_info *space_info, u64 num_bytes) 2879{ 2880 struct btrfs_fs_info *fs_info = space_info->fs_info; 2881 const sector_t zone_size_sectors = fs_info->zone_size >> SECTOR_SHIFT; 2882 2883 if (!btrfs_is_zoned(fs_info)) 2884 return 0; 2885 2886 while (num_bytes > 0) { 2887 struct btrfs_chunk_map *map; 2888 struct btrfs_block_group *bg = NULL; 2889 bool found = false; 2890 u64 reclaimed = 0; 2891 2892 /* 2893 * Here, we choose a fully zone_unusable block group. It's 2894 * technically possible to reset a partly zone_unusable block 2895 * group, which still has some free space left. However, 2896 * handling that needs to cope with the allocation side, which 2897 * makes the logic more complex. So, let's handle the easy case 2898 * for now. 2899 */ 2900 spin_lock(&fs_info->unused_bgs_lock); 2901 list_for_each_entry(bg, &fs_info->unused_bgs, bg_list) { 2902 if ((bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) != space_info->flags) 2903 continue; 2904 2905 /* 2906 * Use trylock to avoid locking order violation. In 2907 * btrfs_reclaim_bgs_work(), the lock order is 2908 * &bg->lock -> &fs_info->unused_bgs_lock. We skip a 2909 * block group if we cannot take its lock. 2910 */ 2911 if (!spin_trylock(&bg->lock)) 2912 continue; 2913 if (btrfs_is_block_group_used(bg) || bg->zone_unusable < bg->length) { 2914 spin_unlock(&bg->lock); 2915 continue; 2916 } 2917 spin_unlock(&bg->lock); 2918 found = true; 2919 break; 2920 } 2921 if (!found) { 2922 spin_unlock(&fs_info->unused_bgs_lock); 2923 return 0; 2924 } 2925 2926 list_del_init(&bg->bg_list); 2927 btrfs_put_block_group(bg); 2928 spin_unlock(&fs_info->unused_bgs_lock); 2929 2930 /* 2931 * Since the block group is fully zone_unusable and we cannot 2932 * allocate from this block group anymore, we don't need to set 2933 * this block group read-only. 2934 */ 2935 2936 down_read(&fs_info->dev_replace.rwsem); 2937 map = bg->physical_map; 2938 for (int i = 0; i < map->num_stripes; i++) { 2939 struct btrfs_io_stripe *stripe = &map->stripes[i]; 2940 unsigned int nofs_flags; 2941 int ret; 2942 2943 nofs_flags = memalloc_nofs_save(); 2944 ret = blkdev_zone_mgmt(stripe->dev->bdev, REQ_OP_ZONE_RESET, 2945 stripe->physical >> SECTOR_SHIFT, 2946 zone_size_sectors); 2947 memalloc_nofs_restore(nofs_flags); 2948 2949 if (ret) { 2950 up_read(&fs_info->dev_replace.rwsem); 2951 return ret; 2952 } 2953 } 2954 up_read(&fs_info->dev_replace.rwsem); 2955 2956 spin_lock(&space_info->lock); 2957 spin_lock(&bg->lock); 2958 ASSERT(!btrfs_is_block_group_used(bg)); 2959 if (bg->ro) { 2960 spin_unlock(&bg->lock); 2961 spin_unlock(&space_info->lock); 2962 continue; 2963 } 2964 2965 reclaimed = bg->alloc_offset; 2966 bg->zone_unusable = bg->length - bg->zone_capacity; 2967 bg->alloc_offset = 0; 2968 /* 2969 * This holds because we currently reset fully used then freed 2970 * block group. 2971 */ 2972 ASSERT(reclaimed == bg->zone_capacity, 2973 "reclaimed=%llu bg->zone_capacity=%llu", reclaimed, bg->zone_capacity); 2974 bg->free_space_ctl->free_space += reclaimed; 2975 space_info->bytes_zone_unusable -= reclaimed; 2976 spin_unlock(&bg->lock); 2977 btrfs_return_free_space(space_info, reclaimed); 2978 spin_unlock(&space_info->lock); 2979 2980 if (num_bytes <= reclaimed) 2981 break; 2982 num_bytes -= reclaimed; 2983 } 2984 2985 return 0; 2986}