Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#ifndef BTRFS_VOLUMES_H
7#define BTRFS_VOLUMES_H
8
9#include <linux/blk_types.h>
10#include <linux/blkdev.h>
11#include <linux/sizes.h>
12#include <linux/atomic.h>
13#include <linux/sort.h>
14#include <linux/list.h>
15#include <linux/mutex.h>
16#include <linux/log2.h>
17#include <linux/kobject.h>
18#include <linux/refcount.h>
19#include <linux/completion.h>
20#include <linux/rbtree.h>
21#include <uapi/linux/btrfs.h>
22#include <uapi/linux/btrfs_tree.h>
23#include "messages.h"
24#include "extent-io-tree.h"
25
26struct block_device;
27struct bdev_handle;
28struct btrfs_fs_info;
29struct btrfs_block_group;
30struct btrfs_trans_handle;
31struct btrfs_transaction;
32struct btrfs_zoned_device_info;
33
34#define BTRFS_MAX_DATA_CHUNK_SIZE (10ULL * SZ_1G)
35
36/*
37 * Arbitrary maximum size of one discard request to limit potentially long time
38 * spent in blkdev_issue_discard().
39 */
40#define BTRFS_MAX_DISCARD_CHUNK_SIZE (SZ_1G)
41
42extern struct mutex uuid_mutex;
43
44#define BTRFS_STRIPE_LEN SZ_64K
45#define BTRFS_STRIPE_LEN_SHIFT (16)
46#define BTRFS_STRIPE_LEN_MASK (BTRFS_STRIPE_LEN - 1)
47
48static_assert(ilog2(BTRFS_STRIPE_LEN) == BTRFS_STRIPE_LEN_SHIFT);
49
50/* Used by sanity check for btrfs_raid_types. */
51#define const_ffs(n) (__builtin_ctzll(n) + 1)
52
53/*
54 * The conversion from BTRFS_BLOCK_GROUP_* bits to btrfs_raid_type requires
55 * RAID0 always to be the lowest profile bit.
56 * Although it's part of on-disk format and should never change, do extra
57 * compile-time sanity checks.
58 */
59static_assert(const_ffs(BTRFS_BLOCK_GROUP_RAID0) <
60 const_ffs(BTRFS_BLOCK_GROUP_PROFILE_MASK & ~BTRFS_BLOCK_GROUP_RAID0));
61static_assert(ilog2(BTRFS_BLOCK_GROUP_RAID0) > ilog2(BTRFS_BLOCK_GROUP_TYPE_MASK));
62
63/* ilog2() can handle both constants and variables */
64#define BTRFS_BG_FLAG_TO_INDEX(profile) \
65 ilog2((profile) >> (ilog2(BTRFS_BLOCK_GROUP_RAID0) - 1))
66
67enum btrfs_raid_types {
68 /* SINGLE is the special one as it doesn't have on-disk bit. */
69 BTRFS_RAID_SINGLE = 0,
70
71 BTRFS_RAID_RAID0 = BTRFS_BG_FLAG_TO_INDEX(BTRFS_BLOCK_GROUP_RAID0),
72 BTRFS_RAID_RAID1 = BTRFS_BG_FLAG_TO_INDEX(BTRFS_BLOCK_GROUP_RAID1),
73 BTRFS_RAID_DUP = BTRFS_BG_FLAG_TO_INDEX(BTRFS_BLOCK_GROUP_DUP),
74 BTRFS_RAID_RAID10 = BTRFS_BG_FLAG_TO_INDEX(BTRFS_BLOCK_GROUP_RAID10),
75 BTRFS_RAID_RAID5 = BTRFS_BG_FLAG_TO_INDEX(BTRFS_BLOCK_GROUP_RAID5),
76 BTRFS_RAID_RAID6 = BTRFS_BG_FLAG_TO_INDEX(BTRFS_BLOCK_GROUP_RAID6),
77 BTRFS_RAID_RAID1C3 = BTRFS_BG_FLAG_TO_INDEX(BTRFS_BLOCK_GROUP_RAID1C3),
78 BTRFS_RAID_RAID1C4 = BTRFS_BG_FLAG_TO_INDEX(BTRFS_BLOCK_GROUP_RAID1C4),
79
80 BTRFS_NR_RAID_TYPES
81};
82
83/*
84 * Use sequence counter to get consistent device stat data on
85 * 32-bit processors.
86 */
87#if BITS_PER_LONG==32 && defined(CONFIG_SMP)
88#include <linux/seqlock.h>
89#define __BTRFS_NEED_DEVICE_DATA_ORDERED
90#define btrfs_device_data_ordered_init(device) \
91 seqcount_init(&device->data_seqcount)
92#else
93#define btrfs_device_data_ordered_init(device) do { } while (0)
94#endif
95
96#define BTRFS_DEV_STATE_WRITEABLE (0)
97#define BTRFS_DEV_STATE_IN_FS_METADATA (1)
98#define BTRFS_DEV_STATE_MISSING (2)
99#define BTRFS_DEV_STATE_REPLACE_TGT (3)
100#define BTRFS_DEV_STATE_FLUSH_SENT (4)
101#define BTRFS_DEV_STATE_NO_READA (5)
102
103/* Special value encoding failure to write primary super block. */
104#define BTRFS_SUPER_PRIMARY_WRITE_ERROR (INT_MAX / 2)
105
106struct btrfs_fs_devices;
107
108struct btrfs_device {
109 struct list_head dev_list; /* device_list_mutex */
110 struct list_head dev_alloc_list; /* chunk mutex */
111 struct list_head post_commit_list; /* chunk mutex */
112 struct btrfs_fs_devices *fs_devices;
113 struct btrfs_fs_info *fs_info;
114
115 /* Device path or NULL if missing. */
116 const char __rcu *name;
117
118 u64 generation;
119
120 struct file *bdev_file;
121 struct block_device *bdev;
122
123 struct btrfs_zoned_device_info *zone_info;
124
125 /*
126 * Device's major-minor number. Must be set even if the device is not
127 * opened (bdev == NULL), unless the device is missing.
128 */
129 dev_t devt;
130 unsigned long dev_state;
131 blk_status_t last_flush_error;
132
133#ifdef __BTRFS_NEED_DEVICE_DATA_ORDERED
134 seqcount_t data_seqcount;
135#endif
136
137 /* the internal btrfs device id */
138 u64 devid;
139
140 /* size of the device in memory */
141 u64 total_bytes;
142
143 /* size of the device on disk */
144 u64 disk_total_bytes;
145
146 /* bytes used */
147 u64 bytes_used;
148
149 /* optimal io alignment for this device */
150 u32 io_align;
151
152 /* optimal io width for this device */
153 u32 io_width;
154 /* type and info about this device */
155 u64 type;
156
157 /*
158 * Counter of super block write errors, values larger than
159 * BTRFS_SUPER_PRIMARY_WRITE_ERROR encode primary super block write failure.
160 */
161 atomic_t sb_write_errors;
162
163 /* minimal io size for this device */
164 u32 sector_size;
165
166 /* physical drive uuid (or lvm uuid) */
167 u8 uuid[BTRFS_UUID_SIZE];
168
169 /*
170 * size of the device on the current transaction
171 *
172 * This variant is update when committing the transaction,
173 * and protected by chunk mutex
174 */
175 u64 commit_total_bytes;
176
177 /* bytes used on the current transaction */
178 u64 commit_bytes_used;
179
180 /* Bio used for flushing device barriers */
181 struct bio flush_bio;
182 struct completion flush_wait;
183
184 /* per-device scrub information */
185 struct scrub_ctx *scrub_ctx;
186
187 /* disk I/O failure stats. For detailed description refer to
188 * enum btrfs_dev_stat_values in ioctl.h */
189 int dev_stats_valid;
190
191 /* Counter to record the change of device stats */
192 atomic_t dev_stats_ccnt;
193 atomic_t dev_stat_values[BTRFS_DEV_STAT_VALUES_MAX];
194
195 struct extent_io_tree alloc_state;
196
197 struct completion kobj_unregister;
198 /* For sysfs/FSID/devinfo/devid/ */
199 struct kobject devid_kobj;
200
201 /* Bandwidth limit for scrub, in bytes */
202 u64 scrub_speed_max;
203};
204
205/*
206 * Block group or device which contains an active swapfile. Used for preventing
207 * unsafe operations while a swapfile is active.
208 *
209 * These are sorted on (ptr, inode) (note that a block group or device can
210 * contain more than one swapfile). We compare the pointer values because we
211 * don't actually care what the object is, we just need a quick check whether
212 * the object exists in the rbtree.
213 */
214struct btrfs_swapfile_pin {
215 struct rb_node node;
216 void *ptr;
217 struct inode *inode;
218 /*
219 * If true, ptr points to a struct btrfs_block_group. Otherwise, ptr
220 * points to a struct btrfs_device.
221 */
222 bool is_block_group;
223 /*
224 * Only used when 'is_block_group' is true and it is the number of
225 * extents used by a swapfile for this block group ('ptr' field).
226 */
227 int bg_extent_count;
228};
229
230/*
231 * If we read those variants at the context of their own lock, we needn't
232 * use the following helpers, reading them directly is safe.
233 */
234#if BITS_PER_LONG==32 && defined(CONFIG_SMP)
235#define BTRFS_DEVICE_GETSET_FUNCS(name) \
236static inline u64 \
237btrfs_device_get_##name(const struct btrfs_device *dev) \
238{ \
239 u64 size; \
240 unsigned int seq; \
241 \
242 do { \
243 seq = read_seqcount_begin(&dev->data_seqcount); \
244 size = dev->name; \
245 } while (read_seqcount_retry(&dev->data_seqcount, seq)); \
246 return size; \
247} \
248 \
249static inline void \
250btrfs_device_set_##name(struct btrfs_device *dev, u64 size) \
251{ \
252 preempt_disable(); \
253 write_seqcount_begin(&dev->data_seqcount); \
254 dev->name = size; \
255 write_seqcount_end(&dev->data_seqcount); \
256 preempt_enable(); \
257}
258#elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPTION)
259#define BTRFS_DEVICE_GETSET_FUNCS(name) \
260static inline u64 \
261btrfs_device_get_##name(const struct btrfs_device *dev) \
262{ \
263 u64 size; \
264 \
265 preempt_disable(); \
266 size = dev->name; \
267 preempt_enable(); \
268 return size; \
269} \
270 \
271static inline void \
272btrfs_device_set_##name(struct btrfs_device *dev, u64 size) \
273{ \
274 preempt_disable(); \
275 dev->name = size; \
276 preempt_enable(); \
277}
278#else
279#define BTRFS_DEVICE_GETSET_FUNCS(name) \
280static inline u64 \
281btrfs_device_get_##name(const struct btrfs_device *dev) \
282{ \
283 return dev->name; \
284} \
285 \
286static inline void \
287btrfs_device_set_##name(struct btrfs_device *dev, u64 size) \
288{ \
289 dev->name = size; \
290}
291#endif
292
293BTRFS_DEVICE_GETSET_FUNCS(total_bytes);
294BTRFS_DEVICE_GETSET_FUNCS(disk_total_bytes);
295BTRFS_DEVICE_GETSET_FUNCS(bytes_used);
296
297enum btrfs_chunk_allocation_policy {
298 BTRFS_CHUNK_ALLOC_REGULAR,
299 BTRFS_CHUNK_ALLOC_ZONED,
300};
301
302#define BTRFS_DEFAULT_RR_MIN_CONTIG_READ (SZ_256K)
303/* Keep in sync with raid_attr table, current maximum is RAID1C4. */
304#define BTRFS_RAID1_MAX_MIRRORS (4)
305/*
306 * Read policies for mirrored block group profiles, read picks the stripe based
307 * on these policies.
308 */
309enum btrfs_read_policy {
310 /* Use process PID to choose the stripe */
311 BTRFS_READ_POLICY_PID,
312#ifdef CONFIG_BTRFS_EXPERIMENTAL
313 /* Balancing RAID1 reads across all striped devices (round-robin). */
314 BTRFS_READ_POLICY_RR,
315 /* Read from a specific device. */
316 BTRFS_READ_POLICY_DEVID,
317#endif
318 BTRFS_NR_READ_POLICY,
319};
320
321#ifdef CONFIG_BTRFS_EXPERIMENTAL
322/*
323 * Checksum mode - offload it to workqueues or do it synchronously in
324 * btrfs_submit_chunk().
325 */
326enum btrfs_offload_csum_mode {
327 /*
328 * Choose offloading checksum or do it synchronously automatically.
329 * Do it synchronously if the checksum is fast, or offload to workqueues
330 * otherwise.
331 */
332 BTRFS_OFFLOAD_CSUM_AUTO,
333 /* Always offload checksum to workqueues. */
334 BTRFS_OFFLOAD_CSUM_FORCE_ON,
335 /* Never offload checksum to workqueues. */
336 BTRFS_OFFLOAD_CSUM_FORCE_OFF,
337};
338#endif
339
340struct btrfs_fs_devices {
341 u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */
342
343 /*
344 * UUID written into the btree blocks:
345 *
346 * - If metadata_uuid != fsid then super block must have
347 * BTRFS_FEATURE_INCOMPAT_METADATA_UUID flag set.
348 *
349 * - Following shall be true at all times:
350 * - metadata_uuid == btrfs_header::fsid
351 * - metadata_uuid == btrfs_dev_item::fsid
352 *
353 * - Relations between fsid and metadata_uuid in sb and fs_devices:
354 * - Normal:
355 * fs_devices->fsid == fs_devices->metadata_uuid == sb->fsid
356 * sb->metadata_uuid == 0
357 *
358 * - When the BTRFS_FEATURE_INCOMPAT_METADATA_UUID flag is set:
359 * fs_devices->fsid == sb->fsid
360 * fs_devices->metadata_uuid == sb->metadata_uuid
361 *
362 * - When in-memory fs_devices->temp_fsid is true
363 * fs_devices->fsid = random
364 * fs_devices->metadata_uuid == sb->fsid
365 */
366 u8 metadata_uuid[BTRFS_FSID_SIZE];
367
368 struct list_head fs_list;
369
370 /*
371 * Number of devices under this fsid including missing and
372 * replace-target device and excludes seed devices.
373 */
374 u64 num_devices;
375
376 /*
377 * The number of devices that successfully opened, including
378 * replace-target, excludes seed devices.
379 */
380 u64 open_devices;
381
382 /* The number of devices that are under the chunk allocation list. */
383 u64 rw_devices;
384
385 /* Count of missing devices under this fsid excluding seed device. */
386 u64 missing_devices;
387 u64 total_rw_bytes;
388
389 /*
390 * Count of devices from btrfs_super_block::num_devices for this fsid,
391 * which includes the seed device, excludes the transient replace-target
392 * device.
393 */
394 u64 total_devices;
395
396 /* Highest generation number of seen devices */
397 u64 latest_generation;
398
399 /*
400 * The mount device or a device with highest generation after removal
401 * or replace.
402 */
403 struct btrfs_device *latest_dev;
404
405 /*
406 * All of the devices in the filesystem, protected by a mutex so we can
407 * safely walk it to write out the super blocks without worrying about
408 * adding/removing by the multi-device code. Scrubbing super block can
409 * kick off supers writing by holding this mutex lock.
410 */
411 struct mutex device_list_mutex;
412
413 /* List of all devices, protected by device_list_mutex */
414 struct list_head devices;
415
416 /* Devices which can satisfy space allocation. Protected by * chunk_mutex. */
417 struct list_head alloc_list;
418
419 struct list_head seed_list;
420
421 /* Count fs-devices opened. */
422 int opened;
423
424 /*
425 * Counter of the processes that are holding this fs_devices but not
426 * yet opened.
427 * This is for mounting handling, as we can only open the fs_devices
428 * after a super block is created. But we cannot take uuid_mutex
429 * during sget_fc(), thus we have to hold the fs_devices (meaning it
430 * cannot be released) until a super block is returned.
431 */
432 int holding;
433
434 /* Set when we find or add a device that doesn't have the nonrot flag set. */
435 bool rotating;
436 /* Devices support TRIM/discard commands. */
437 bool discardable;
438 /* The filesystem is a seed filesystem. */
439 bool seeding;
440 /* The mount needs to use a randomly generated fsid. */
441 bool temp_fsid;
442 /* Enable/disable the filesystem stats tracking. */
443 bool collect_fs_stats;
444
445 struct btrfs_fs_info *fs_info;
446 /* sysfs kobjects */
447 struct kobject fsid_kobj;
448 struct kobject *devices_kobj;
449 struct kobject *devinfo_kobj;
450 struct completion kobj_unregister;
451
452 enum btrfs_chunk_allocation_policy chunk_alloc_policy;
453
454 /* Policy used to read the mirrored stripes. */
455 enum btrfs_read_policy read_policy;
456
457#ifdef CONFIG_BTRFS_EXPERIMENTAL
458 /*
459 * Minimum contiguous reads before switching to next device, the unit
460 * is one block/sectorsize.
461 */
462 u32 rr_min_contig_read;
463
464 /* Device to be used for reading in case of RAID1. */
465 u64 read_devid;
466
467 /* Checksum mode - offload it or do it synchronously. */
468 enum btrfs_offload_csum_mode offload_csum_mode;
469#endif
470};
471
472#define BTRFS_MAX_DEVS(info) ((BTRFS_MAX_ITEM_SIZE(info) \
473 - sizeof(struct btrfs_chunk)) \
474 / sizeof(struct btrfs_stripe) + 1)
475
476#define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \
477 - 2 * sizeof(struct btrfs_disk_key) \
478 - 2 * sizeof(struct btrfs_chunk)) \
479 / sizeof(struct btrfs_stripe) + 1)
480
481struct btrfs_io_stripe {
482 struct btrfs_device *dev;
483 /* Block mapping. */
484 u64 physical;
485 bool rst_search_commit_root;
486 /* For the endio handler. */
487 struct btrfs_io_context *bioc;
488};
489
490struct btrfs_discard_stripe {
491 struct btrfs_device *dev;
492 u64 physical;
493 u64 length;
494};
495
496/*
497 * Context for IO submission for device stripe.
498 *
499 * - Track the unfinished mirrors for mirror based profiles
500 * Mirror based profiles are SINGLE/DUP/RAID1/RAID10.
501 *
502 * - Contain the logical -> physical mapping info
503 * Used by submit_stripe_bio() for mapping logical bio
504 * into physical device address.
505 *
506 * - Contain device replace info
507 * Used by handle_ops_on_dev_replace() to copy logical bios
508 * into the new device.
509 *
510 * - Contain RAID56 full stripe logical bytenrs
511 */
512struct btrfs_io_context {
513 refcount_t refs;
514 struct btrfs_fs_info *fs_info;
515 /* Taken from struct btrfs_chunk_map::type. */
516 u64 map_type;
517 struct bio *orig_bio;
518 atomic_t error;
519 u16 max_errors;
520 bool use_rst;
521
522 u64 logical;
523 u64 size;
524 /* Raid stripe tree ordered entry. */
525 struct list_head rst_ordered_entry;
526
527 /*
528 * The total number of stripes, including the extra duplicated
529 * stripe for replace.
530 */
531 u16 num_stripes;
532
533 /*
534 * The mirror_num of this bioc.
535 *
536 * This is for reads which use 0 as mirror_num, thus we should return a
537 * valid mirror_num (>0) for the reader.
538 */
539 u16 mirror_num;
540
541 /*
542 * The following two members are for dev-replace case only.
543 *
544 * @replace_nr_stripes: Number of duplicated stripes which need to be
545 * written to replace target.
546 * Should be <= 2 (2 for DUP, otherwise <= 1).
547 * @replace_stripe_src: The array indicates where the duplicated stripes
548 * are from.
549 *
550 * The @replace_stripe_src[] array is mostly for RAID56 cases.
551 * As non-RAID56 stripes share the same contents of the mapped range,
552 * thus no need to bother where the duplicated ones are from.
553 *
554 * But for RAID56 case, all stripes contain different contents, thus
555 * we need a way to know the mapping.
556 *
557 * There is an example for the two members, using a RAID5 write:
558 *
559 * num_stripes: 4 (3 + 1 duplicated write)
560 * stripes[0]: dev = devid 1, physical = X
561 * stripes[1]: dev = devid 2, physical = Y
562 * stripes[2]: dev = devid 3, physical = Z
563 * stripes[3]: dev = devid 0, physical = Y
564 *
565 * replace_nr_stripes = 1
566 * replace_stripe_src = 1 <- Means stripes[1] is involved in replace.
567 * The duplicated stripe index would be
568 * (@num_stripes - 1).
569 *
570 * Note, that we can still have cases replace_nr_stripes = 2 for DUP.
571 * In that case, all stripes share the same content, thus we don't
572 * need to bother @replace_stripe_src value at all.
573 */
574 u16 replace_nr_stripes;
575 s16 replace_stripe_src;
576 /*
577 * Logical bytenr of the full stripe start, only for RAID56 cases.
578 *
579 * When this value is set to other than (u64)-1, the stripes[] should
580 * follow this pattern:
581 *
582 * (real_stripes = num_stripes - replace_nr_stripes)
583 * (data_stripes = (is_raid6) ? (real_stripes - 2) : (real_stripes - 1))
584 *
585 * stripes[0]: The first data stripe
586 * stripes[1]: The second data stripe
587 * ...
588 * stripes[data_stripes - 1]: The last data stripe
589 * stripes[data_stripes]: The P stripe
590 * stripes[data_stripes + 1]: The Q stripe (only for RAID6).
591 */
592 u64 full_stripe_logical;
593 struct btrfs_io_stripe stripes[];
594};
595
596struct btrfs_device_info {
597 struct btrfs_device *dev;
598 u64 dev_offset;
599 u64 max_avail;
600 u64 total_avail;
601};
602
603struct btrfs_raid_attr {
604 u8 sub_stripes; /* sub_stripes info for map */
605 u8 dev_stripes; /* stripes per dev */
606 u8 devs_max; /* max devs to use */
607 u8 devs_min; /* min devs needed */
608 u8 tolerated_failures; /* max tolerated fail devs */
609 u8 devs_increment; /* ndevs has to be a multiple of this */
610 u8 ncopies; /* how many copies to data has */
611 u8 nparity; /* number of stripes worth of bytes to store
612 * parity information */
613 u8 mindev_error; /* error code if min devs requisite is unmet */
614 const char raid_name[8]; /* name of the raid */
615 u64 bg_flag; /* block group flag of the raid */
616};
617
618extern const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES];
619
620struct btrfs_chunk_map {
621 struct rb_node rb_node;
622 /* For mount time dev extent verification. */
623 int verified_stripes;
624 refcount_t refs;
625 u64 start;
626 u64 chunk_len;
627 u64 stripe_size;
628 u64 type;
629 int io_align;
630 int io_width;
631 int num_stripes;
632 int sub_stripes;
633 struct btrfs_io_stripe stripes[];
634};
635
636#define btrfs_chunk_map_size(n) (sizeof(struct btrfs_chunk_map) + \
637 (sizeof(struct btrfs_io_stripe) * (n)))
638
639static inline void btrfs_free_chunk_map(struct btrfs_chunk_map *map)
640{
641 if (map && refcount_dec_and_test(&map->refs)) {
642 ASSERT(RB_EMPTY_NODE(&map->rb_node));
643 kfree(map);
644 }
645}
646
647struct btrfs_balance_control {
648 struct btrfs_balance_args data;
649 struct btrfs_balance_args meta;
650 struct btrfs_balance_args sys;
651
652 u64 flags;
653
654 struct btrfs_balance_progress stat;
655};
656
657/*
658 * Search for a given device by the set parameters
659 */
660struct btrfs_dev_lookup_args {
661 u64 devid;
662 u8 *uuid;
663 u8 *fsid;
664 /*
665 * If devt is specified, all other members will be ignored as it is
666 * enough to uniquely locate a device.
667 */
668 dev_t devt;
669 bool missing;
670};
671
672/* We have to initialize to -1 because BTRFS_DEV_REPLACE_DEVID is 0 */
673#define BTRFS_DEV_LOOKUP_ARGS_INIT { .devid = (u64)-1 }
674
675#define BTRFS_DEV_LOOKUP_ARGS(name) \
676 struct btrfs_dev_lookup_args name = BTRFS_DEV_LOOKUP_ARGS_INIT
677
678enum btrfs_map_op {
679 BTRFS_MAP_READ,
680 BTRFS_MAP_WRITE,
681 BTRFS_MAP_GET_READ_MIRRORS,
682};
683
684static inline enum btrfs_map_op btrfs_op(const struct bio *bio)
685{
686 switch (bio_op(bio)) {
687 case REQ_OP_WRITE:
688 case REQ_OP_ZONE_APPEND:
689 return BTRFS_MAP_WRITE;
690 default:
691 WARN_ON_ONCE(1);
692 fallthrough;
693 case REQ_OP_READ:
694 return BTRFS_MAP_READ;
695 }
696}
697
698static inline unsigned long btrfs_chunk_item_size(int num_stripes)
699{
700 ASSERT(num_stripes);
701 return sizeof(struct btrfs_chunk) +
702 sizeof(struct btrfs_stripe) * (num_stripes - 1);
703}
704
705/*
706 * Do the type safe conversion from stripe_nr to offset inside the chunk.
707 *
708 * @stripe_nr is u32, with left shift it can overflow u32 for chunks larger
709 * than 4G. This does the proper type cast to avoid overflow.
710 */
711static inline u64 btrfs_stripe_nr_to_offset(u32 stripe_nr)
712{
713 return (u64)stripe_nr << BTRFS_STRIPE_LEN_SHIFT;
714}
715
716void btrfs_get_bioc(struct btrfs_io_context *bioc);
717void btrfs_put_bioc(struct btrfs_io_context *bioc);
718int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
719 u64 logical, u64 *length,
720 struct btrfs_io_context **bioc_ret,
721 struct btrfs_io_stripe *smap, int *mirror_num_ret);
722int btrfs_map_repair_block(struct btrfs_fs_info *fs_info,
723 struct btrfs_io_stripe *smap, u64 logical,
724 u32 length, int mirror_num);
725struct btrfs_discard_stripe *btrfs_map_discard(struct btrfs_fs_info *fs_info,
726 u64 logical, u64 *length_ret,
727 u32 *num_stripes);
728int btrfs_read_sys_array(struct btrfs_fs_info *fs_info);
729int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info);
730struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans,
731 struct btrfs_space_info *space_info,
732 u64 type);
733void btrfs_mapping_tree_free(struct btrfs_fs_info *fs_info);
734int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
735 blk_mode_t flags, void *holder);
736struct btrfs_device *btrfs_scan_one_device(const char *path, bool mount_arg_dev);
737int btrfs_forget_devices(dev_t devt);
738void btrfs_close_devices(struct btrfs_fs_devices *fs_devices);
739void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices);
740void btrfs_assign_next_active_device(struct btrfs_device *device,
741 struct btrfs_device *this_dev);
742struct btrfs_device *btrfs_find_device_by_devspec(struct btrfs_fs_info *fs_info,
743 u64 devid,
744 const char *devpath);
745int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info,
746 struct btrfs_dev_lookup_args *args,
747 const char *path);
748struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
749 const u64 *devid, const u8 *uuid,
750 const char *path);
751void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args);
752int btrfs_rm_device(struct btrfs_fs_info *fs_info,
753 struct btrfs_dev_lookup_args *args,
754 struct file **bdev_file);
755void __exit btrfs_cleanup_fs_uuids(void);
756int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len);
757int btrfs_grow_device(struct btrfs_trans_handle *trans,
758 struct btrfs_device *device, u64 new_size);
759struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices,
760 const struct btrfs_dev_lookup_args *args);
761int btrfs_shrink_device(struct btrfs_device *device, u64 new_size);
762int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *path);
763int btrfs_balance(struct btrfs_fs_info *fs_info,
764 struct btrfs_balance_control *bctl,
765 struct btrfs_ioctl_balance_args *bargs);
766void btrfs_describe_block_groups(u64 flags, char *buf, u32 size_buf);
767int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info);
768int btrfs_recover_balance(struct btrfs_fs_info *fs_info);
769int btrfs_pause_balance(struct btrfs_fs_info *fs_info);
770int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset,
771 bool verbose);
772int btrfs_cancel_balance(struct btrfs_fs_info *fs_info);
773bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset);
774void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index);
775int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
776 struct btrfs_ioctl_get_dev_stats *stats);
777int btrfs_init_devices_late(struct btrfs_fs_info *fs_info);
778int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info);
779int btrfs_run_dev_stats(struct btrfs_trans_handle *trans);
780void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev);
781void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev);
782void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev);
783unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
784 u64 logical);
785u64 btrfs_calc_stripe_length(const struct btrfs_chunk_map *map);
786int btrfs_nr_parity_stripes(u64 type);
787int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans,
788 struct btrfs_block_group *bg);
789int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset);
790
791#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
792struct btrfs_chunk_map *btrfs_alloc_chunk_map(int num_stripes, gfp_t gfp);
793int btrfs_add_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map);
794#endif
795
796struct btrfs_chunk_map *btrfs_find_chunk_map(struct btrfs_fs_info *fs_info,
797 u64 logical, u64 length);
798struct btrfs_chunk_map *btrfs_find_chunk_map_nolock(struct btrfs_fs_info *fs_info,
799 u64 logical, u64 length);
800struct btrfs_chunk_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
801 u64 logical, u64 length);
802void btrfs_remove_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map);
803struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
804 int copy_num, bool drop_cache);
805void btrfs_release_disk_super(struct btrfs_super_block *super);
806
807static inline void btrfs_dev_stat_inc(struct btrfs_device *dev,
808 int index)
809{
810 atomic_inc(dev->dev_stat_values + index);
811 /*
812 * This memory barrier orders stores updating statistics before stores
813 * updating dev_stats_ccnt.
814 *
815 * It pairs with smp_rmb() in btrfs_run_dev_stats().
816 */
817 smp_mb__before_atomic();
818 atomic_inc(&dev->dev_stats_ccnt);
819}
820
821static inline int btrfs_dev_stat_read(struct btrfs_device *dev,
822 int index)
823{
824 return atomic_read(dev->dev_stat_values + index);
825}
826
827static inline int btrfs_dev_stat_read_and_reset(struct btrfs_device *dev,
828 int index)
829{
830 int ret;
831
832 ret = atomic_xchg(dev->dev_stat_values + index, 0);
833 /*
834 * atomic_xchg implies a full memory barriers as per atomic_t.txt:
835 * - RMW operations that have a return value are fully ordered;
836 *
837 * This implicit memory barriers is paired with the smp_rmb in
838 * btrfs_run_dev_stats
839 */
840 atomic_inc(&dev->dev_stats_ccnt);
841 return ret;
842}
843
844static inline void btrfs_dev_stat_set(struct btrfs_device *dev,
845 int index, unsigned long val)
846{
847 atomic_set(dev->dev_stat_values + index, val);
848 /*
849 * This memory barrier orders stores updating statistics before stores
850 * updating dev_stats_ccnt.
851 *
852 * It pairs with smp_rmb() in btrfs_run_dev_stats().
853 */
854 smp_mb__before_atomic();
855 atomic_inc(&dev->dev_stats_ccnt);
856}
857
858static inline const char *btrfs_dev_name(const struct btrfs_device *device)
859{
860 if (!device || test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
861 return "<missing disk>";
862 else
863 return rcu_dereference(device->name);
864}
865
866static inline void btrfs_warn_unknown_chunk_allocation(enum btrfs_chunk_allocation_policy pol)
867{
868 WARN_ONCE(1, "unknown allocation policy %d, fallback to regular", pol);
869}
870
871static inline void btrfs_fs_devices_inc_holding(struct btrfs_fs_devices *fs_devices)
872{
873 lockdep_assert_held(&uuid_mutex);
874 ASSERT(fs_devices->holding >= 0);
875 fs_devices->holding++;
876}
877
878static inline void btrfs_fs_devices_dec_holding(struct btrfs_fs_devices *fs_devices)
879{
880 lockdep_assert_held(&uuid_mutex);
881 ASSERT(fs_devices->holding > 0);
882 fs_devices->holding--;
883}
884
885void btrfs_commit_device_sizes(struct btrfs_transaction *trans);
886
887struct list_head * __attribute_const__ btrfs_get_fs_uuids(void);
888bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
889 struct btrfs_device *failing_dev);
890void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info, struct btrfs_device *device);
891
892enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags);
893int btrfs_bg_type_to_factor(u64 flags);
894const char *btrfs_bg_type_to_raid_name(u64 flags);
895int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info);
896bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical);
897
898bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr);
899const u8 *btrfs_sb_fsid_ptr(const struct btrfs_super_block *sb);
900
901#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
902struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info,
903 u64 logical, u16 total_stripes);
904#endif
905
906#endif