Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#include <linux/slab.h>
7#include <linux/blkdev.h>
8#include <linux/writeback.h>
9#include <linux/sched/mm.h>
10#include "messages.h"
11#include "misc.h"
12#include "ctree.h"
13#include "transaction.h"
14#include "btrfs_inode.h"
15#include "extent_io.h"
16#include "disk-io.h"
17#include "compression.h"
18#include "delalloc-space.h"
19#include "qgroup.h"
20#include "subpage.h"
21#include "file.h"
22#include "block-group.h"
23
24static struct kmem_cache *btrfs_ordered_extent_cache;
25
26static u64 entry_end(struct btrfs_ordered_extent *entry)
27{
28 if (entry->file_offset + entry->num_bytes < entry->file_offset)
29 return (u64)-1;
30 return entry->file_offset + entry->num_bytes;
31}
32
33/* returns NULL if the insertion worked, or it returns the node it did find
34 * in the tree
35 */
36static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
37 struct rb_node *node)
38{
39 struct rb_node **p = &root->rb_node;
40 struct rb_node *parent = NULL;
41 struct btrfs_ordered_extent *entry;
42
43 while (*p) {
44 parent = *p;
45 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
46
47 if (file_offset < entry->file_offset)
48 p = &(*p)->rb_left;
49 else if (file_offset >= entry_end(entry))
50 p = &(*p)->rb_right;
51 else
52 return parent;
53 }
54
55 rb_link_node(node, parent, p);
56 rb_insert_color(node, root);
57 return NULL;
58}
59
60/*
61 * look for a given offset in the tree, and if it can't be found return the
62 * first lesser offset
63 */
64static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
65 struct rb_node **prev_ret)
66{
67 struct rb_node *n = root->rb_node;
68 struct rb_node *prev = NULL;
69 struct rb_node *test;
70 struct btrfs_ordered_extent *entry;
71 struct btrfs_ordered_extent *prev_entry = NULL;
72
73 while (n) {
74 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
75 prev = n;
76 prev_entry = entry;
77
78 if (file_offset < entry->file_offset)
79 n = n->rb_left;
80 else if (file_offset >= entry_end(entry))
81 n = n->rb_right;
82 else
83 return n;
84 }
85 if (!prev_ret)
86 return NULL;
87
88 while (prev && file_offset >= entry_end(prev_entry)) {
89 test = rb_next(prev);
90 if (!test)
91 break;
92 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
93 rb_node);
94 if (file_offset < entry_end(prev_entry))
95 break;
96
97 prev = test;
98 }
99 if (prev)
100 prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
101 rb_node);
102 while (prev && file_offset < entry_end(prev_entry)) {
103 test = rb_prev(prev);
104 if (!test)
105 break;
106 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
107 rb_node);
108 prev = test;
109 }
110 *prev_ret = prev;
111 return NULL;
112}
113
114static int btrfs_range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
115 u64 len)
116{
117 if (file_offset + len <= entry->file_offset ||
118 entry->file_offset + entry->num_bytes <= file_offset)
119 return 0;
120 return 1;
121}
122
123/*
124 * look find the first ordered struct that has this offset, otherwise
125 * the first one less than this offset
126 */
127static inline struct rb_node *ordered_tree_search(struct btrfs_inode *inode,
128 u64 file_offset)
129{
130 struct rb_node *prev = NULL;
131 struct rb_node *ret;
132 struct btrfs_ordered_extent *entry;
133
134 if (inode->ordered_tree_last) {
135 entry = rb_entry(inode->ordered_tree_last, struct btrfs_ordered_extent,
136 rb_node);
137 if (in_range(file_offset, entry->file_offset, entry->num_bytes))
138 return inode->ordered_tree_last;
139 }
140 ret = __tree_search(&inode->ordered_tree, file_offset, &prev);
141 if (!ret)
142 ret = prev;
143 if (ret)
144 inode->ordered_tree_last = ret;
145 return ret;
146}
147
148static struct btrfs_ordered_extent *alloc_ordered_extent(
149 struct btrfs_inode *inode, u64 file_offset, u64 num_bytes,
150 u64 ram_bytes, u64 disk_bytenr, u64 disk_num_bytes,
151 u64 offset, unsigned long flags, int compress_type)
152{
153 struct btrfs_ordered_extent *entry;
154 int ret;
155 u64 qgroup_rsv = 0;
156 const bool is_nocow = (flags &
157 ((1U << BTRFS_ORDERED_NOCOW) | (1U << BTRFS_ORDERED_PREALLOC)));
158
159 /*
160 * For a NOCOW write we can free the qgroup reserve right now. For a COW
161 * one we transfer the reserved space from the inode's iotree into the
162 * ordered extent by calling btrfs_qgroup_release_data() and tracking
163 * the qgroup reserved amount in the ordered extent, so that later after
164 * completing the ordered extent, when running the data delayed ref it
165 * creates, we free the reserved data with btrfs_qgroup_free_refroot().
166 */
167 if (is_nocow)
168 ret = btrfs_qgroup_free_data(inode, NULL, file_offset, num_bytes, &qgroup_rsv);
169 else
170 ret = btrfs_qgroup_release_data(inode, file_offset, num_bytes, &qgroup_rsv);
171
172 if (ret < 0)
173 return ERR_PTR(ret);
174
175 entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
176 if (!entry) {
177 entry = ERR_PTR(-ENOMEM);
178 goto out;
179 }
180
181 entry->file_offset = file_offset;
182 entry->num_bytes = num_bytes;
183 entry->ram_bytes = ram_bytes;
184 entry->disk_bytenr = disk_bytenr;
185 entry->disk_num_bytes = disk_num_bytes;
186 entry->offset = offset;
187 entry->bytes_left = num_bytes;
188 if (WARN_ON_ONCE(!igrab(&inode->vfs_inode))) {
189 kmem_cache_free(btrfs_ordered_extent_cache, entry);
190 entry = ERR_PTR(-ESTALE);
191 goto out;
192 }
193 entry->inode = inode;
194 entry->compress_type = compress_type;
195 entry->truncated_len = (u64)-1;
196 entry->qgroup_rsv = qgroup_rsv;
197 entry->flags = flags;
198 refcount_set(&entry->refs, 1);
199 init_waitqueue_head(&entry->wait);
200 INIT_LIST_HEAD(&entry->list);
201 INIT_LIST_HEAD(&entry->log_list);
202 INIT_LIST_HEAD(&entry->root_extent_list);
203 INIT_LIST_HEAD(&entry->work_list);
204 INIT_LIST_HEAD(&entry->bioc_list);
205 init_completion(&entry->completion);
206
207 /*
208 * We don't need the count_max_extents here, we can assume that all of
209 * that work has been done at higher layers, so this is truly the
210 * smallest the extent is going to get.
211 */
212 spin_lock(&inode->lock);
213 btrfs_mod_outstanding_extents(inode, 1);
214 spin_unlock(&inode->lock);
215
216out:
217 if (IS_ERR(entry) && !is_nocow)
218 btrfs_qgroup_free_refroot(inode->root->fs_info,
219 btrfs_root_id(inode->root),
220 qgroup_rsv, BTRFS_QGROUP_RSV_DATA);
221
222 return entry;
223}
224
225static void insert_ordered_extent(struct btrfs_ordered_extent *entry)
226{
227 struct btrfs_inode *inode = entry->inode;
228 struct btrfs_root *root = inode->root;
229 struct btrfs_fs_info *fs_info = root->fs_info;
230 struct rb_node *node;
231
232 trace_btrfs_ordered_extent_add(inode, entry);
233
234 percpu_counter_add_batch(&fs_info->ordered_bytes, entry->num_bytes,
235 fs_info->delalloc_batch);
236
237 /* One ref for the tree. */
238 refcount_inc(&entry->refs);
239
240 spin_lock(&inode->ordered_tree_lock);
241 node = tree_insert(&inode->ordered_tree, entry->file_offset,
242 &entry->rb_node);
243 if (unlikely(node))
244 btrfs_panic(fs_info, -EEXIST,
245 "inconsistency in ordered tree at offset %llu",
246 entry->file_offset);
247 spin_unlock(&inode->ordered_tree_lock);
248
249 spin_lock(&root->ordered_extent_lock);
250 list_add_tail(&entry->root_extent_list,
251 &root->ordered_extents);
252 root->nr_ordered_extents++;
253 if (root->nr_ordered_extents == 1) {
254 spin_lock(&fs_info->ordered_root_lock);
255 BUG_ON(!list_empty(&root->ordered_root));
256 list_add_tail(&root->ordered_root, &fs_info->ordered_roots);
257 spin_unlock(&fs_info->ordered_root_lock);
258 }
259 spin_unlock(&root->ordered_extent_lock);
260}
261
262/*
263 * Add an ordered extent to the per-inode tree.
264 *
265 * @inode: Inode that this extent is for.
266 * @file_offset: Logical offset in file where the extent starts.
267 * @num_bytes: Logical length of extent in file.
268 * @ram_bytes: Full length of unencoded data.
269 * @disk_bytenr: Offset of extent on disk.
270 * @disk_num_bytes: Size of extent on disk.
271 * @offset: Offset into unencoded data where file data starts.
272 * @flags: Flags specifying type of extent (1U << BTRFS_ORDERED_*).
273 * @compress_type: Compression algorithm used for data.
274 *
275 * Most of these parameters correspond to &struct btrfs_file_extent_item. The
276 * tree is given a single reference on the ordered extent that was inserted, and
277 * the returned pointer is given a second reference.
278 *
279 * Return: the new ordered extent or error pointer.
280 */
281struct btrfs_ordered_extent *btrfs_alloc_ordered_extent(
282 struct btrfs_inode *inode, u64 file_offset,
283 const struct btrfs_file_extent *file_extent, unsigned long flags)
284{
285 struct btrfs_ordered_extent *entry;
286
287 ASSERT((flags & ~BTRFS_ORDERED_TYPE_FLAGS) == 0);
288
289 /*
290 * For regular writes, we just use the members in @file_extent.
291 *
292 * For NOCOW, we don't really care about the numbers except @start and
293 * file_extent->num_bytes, as we won't insert a file extent item at all.
294 *
295 * For PREALLOC, we do not use ordered extent members, but
296 * btrfs_mark_extent_written() handles everything.
297 *
298 * So here we always pass 0 as offset for NOCOW/PREALLOC ordered extents,
299 * or btrfs_split_ordered_extent() cannot handle it correctly.
300 */
301 if (flags & ((1U << BTRFS_ORDERED_NOCOW) | (1U << BTRFS_ORDERED_PREALLOC)))
302 entry = alloc_ordered_extent(inode, file_offset,
303 file_extent->num_bytes,
304 file_extent->num_bytes,
305 file_extent->disk_bytenr + file_extent->offset,
306 file_extent->num_bytes, 0, flags,
307 file_extent->compression);
308 else
309 entry = alloc_ordered_extent(inode, file_offset,
310 file_extent->num_bytes,
311 file_extent->ram_bytes,
312 file_extent->disk_bytenr,
313 file_extent->disk_num_bytes,
314 file_extent->offset, flags,
315 file_extent->compression);
316 if (!IS_ERR(entry))
317 insert_ordered_extent(entry);
318 return entry;
319}
320
321/*
322 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
323 * when an ordered extent is finished. If the list covers more than one
324 * ordered extent, it is split across multiples.
325 */
326void btrfs_add_ordered_sum(struct btrfs_ordered_extent *entry,
327 struct btrfs_ordered_sum *sum)
328{
329 struct btrfs_inode *inode = entry->inode;
330
331 spin_lock(&inode->ordered_tree_lock);
332 list_add_tail(&sum->list, &entry->list);
333 spin_unlock(&inode->ordered_tree_lock);
334}
335
336void btrfs_mark_ordered_extent_error(struct btrfs_ordered_extent *ordered)
337{
338 if (!test_and_set_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
339 mapping_set_error(ordered->inode->vfs_inode.i_mapping, -EIO);
340}
341
342static void finish_ordered_fn(struct btrfs_work *work)
343{
344 struct btrfs_ordered_extent *ordered_extent;
345
346 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
347 btrfs_finish_ordered_io(ordered_extent);
348}
349
350static bool can_finish_ordered_extent(struct btrfs_ordered_extent *ordered,
351 struct folio *folio, u64 file_offset,
352 u64 len, bool uptodate)
353{
354 struct btrfs_inode *inode = ordered->inode;
355 struct btrfs_fs_info *fs_info = inode->root->fs_info;
356
357 lockdep_assert_held(&inode->ordered_tree_lock);
358
359 if (folio) {
360 ASSERT(folio->mapping);
361 ASSERT(folio_pos(folio) <= file_offset);
362 ASSERT(file_offset + len <= folio_next_pos(folio));
363
364 /*
365 * Ordered flag indicates whether we still have
366 * pending io unfinished for the ordered extent.
367 *
368 * If it's not set, we need to skip to next range.
369 */
370 if (!btrfs_folio_test_ordered(fs_info, folio, file_offset, len))
371 return false;
372 btrfs_folio_clear_ordered(fs_info, folio, file_offset, len);
373 }
374
375 /* Now we're fine to update the accounting. */
376 if (WARN_ON_ONCE(len > ordered->bytes_left)) {
377 btrfs_crit(fs_info,
378"bad ordered extent accounting, root=%llu ino=%llu OE offset=%llu OE len=%llu to_dec=%llu left=%llu",
379 btrfs_root_id(inode->root), btrfs_ino(inode),
380 ordered->file_offset, ordered->num_bytes,
381 len, ordered->bytes_left);
382 ordered->bytes_left = 0;
383 } else {
384 ordered->bytes_left -= len;
385 }
386
387 if (!uptodate)
388 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
389
390 if (ordered->bytes_left)
391 return false;
392
393 /*
394 * All the IO of the ordered extent is finished, we need to queue
395 * the finish_func to be executed.
396 */
397 set_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags);
398 cond_wake_up(&ordered->wait);
399 refcount_inc(&ordered->refs);
400 trace_btrfs_ordered_extent_mark_finished(inode, ordered);
401 return true;
402}
403
404static void btrfs_queue_ordered_fn(struct btrfs_ordered_extent *ordered)
405{
406 struct btrfs_inode *inode = ordered->inode;
407 struct btrfs_fs_info *fs_info = inode->root->fs_info;
408 struct btrfs_workqueue *wq = btrfs_is_free_space_inode(inode) ?
409 fs_info->endio_freespace_worker : fs_info->endio_write_workers;
410
411 btrfs_init_work(&ordered->work, finish_ordered_fn, NULL);
412 btrfs_queue_work(wq, &ordered->work);
413}
414
415void btrfs_finish_ordered_extent(struct btrfs_ordered_extent *ordered,
416 struct folio *folio, u64 file_offset, u64 len,
417 bool uptodate)
418{
419 struct btrfs_inode *inode = ordered->inode;
420 bool ret;
421
422 trace_btrfs_finish_ordered_extent(inode, file_offset, len, uptodate);
423
424 spin_lock(&inode->ordered_tree_lock);
425 ret = can_finish_ordered_extent(ordered, folio, file_offset, len,
426 uptodate);
427 spin_unlock(&inode->ordered_tree_lock);
428
429 /*
430 * If this is a COW write it means we created new extent maps for the
431 * range and they point to unwritten locations if we got an error either
432 * before submitting a bio or during IO.
433 *
434 * We have marked the ordered extent with BTRFS_ORDERED_IOERR, and we
435 * are queuing its completion below. During completion, at
436 * btrfs_finish_one_ordered(), we will drop the extent maps for the
437 * unwritten extents.
438 *
439 * However because completion runs in a work queue we can end up having
440 * a fast fsync running before that. In the case of direct IO, once we
441 * unlock the inode the fsync might start, and we queue the completion
442 * before unlocking the inode. In the case of buffered IO when writeback
443 * finishes (end_bbio_data_write()) we queue the completion, so if the
444 * writeback was triggered by a fast fsync, the fsync might start
445 * logging before ordered extent completion runs in the work queue.
446 *
447 * The fast fsync will log file extent items based on the extent maps it
448 * finds, so if by the time it collects extent maps the ordered extent
449 * completion didn't happen yet, it will log file extent items that
450 * point to unwritten extents, resulting in a corruption if a crash
451 * happens and the log tree is replayed. Note that a fast fsync does not
452 * wait for completion of ordered extents in order to reduce latency.
453 *
454 * Set a flag in the inode so that the next fast fsync will wait for
455 * ordered extents to complete before starting to log.
456 */
457 if (!uptodate && !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
458 set_bit(BTRFS_INODE_COW_WRITE_ERROR, &inode->runtime_flags);
459
460 if (ret)
461 btrfs_queue_ordered_fn(ordered);
462}
463
464/*
465 * Mark all ordered extents io inside the specified range finished.
466 *
467 * @folio: The involved folio for the operation.
468 * For uncompressed buffered IO, the folio status also needs to be
469 * updated to indicate whether the pending ordered io is finished.
470 * Can be NULL for direct IO and compressed write.
471 * For these cases, callers are ensured they won't execute the
472 * endio function twice.
473 *
474 * This function is called for endio, thus the range must have ordered
475 * extent(s) covering it.
476 */
477void btrfs_mark_ordered_io_finished(struct btrfs_inode *inode,
478 struct folio *folio, u64 file_offset,
479 u64 num_bytes, bool uptodate)
480{
481 struct rb_node *node;
482 struct btrfs_ordered_extent *entry = NULL;
483 u64 cur = file_offset;
484 const u64 end = file_offset + num_bytes;
485
486 trace_btrfs_writepage_end_io_hook(inode, file_offset, end - 1, uptodate);
487
488 spin_lock(&inode->ordered_tree_lock);
489 while (cur < end) {
490 u64 entry_end;
491 u64 this_end;
492 u64 len;
493
494 node = ordered_tree_search(inode, cur);
495 /* No ordered extents at all */
496 if (!node)
497 break;
498
499 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
500 entry_end = entry->file_offset + entry->num_bytes;
501 /*
502 * |<-- OE --->| |
503 * cur
504 * Go to next OE.
505 */
506 if (cur >= entry_end) {
507 node = rb_next(node);
508 /* No more ordered extents, exit */
509 if (!node)
510 break;
511 entry = rb_entry(node, struct btrfs_ordered_extent,
512 rb_node);
513
514 /* Go to next ordered extent and continue */
515 cur = entry->file_offset;
516 continue;
517 }
518 /*
519 * | |<--- OE --->|
520 * cur
521 * Go to the start of OE.
522 */
523 if (cur < entry->file_offset) {
524 cur = entry->file_offset;
525 continue;
526 }
527
528 /*
529 * Now we are definitely inside one ordered extent.
530 *
531 * |<--- OE --->|
532 * |
533 * cur
534 */
535 this_end = min(entry_end, end);
536 len = this_end - cur;
537 ASSERT(len < U32_MAX);
538
539 if (can_finish_ordered_extent(entry, folio, cur, len, uptodate)) {
540 spin_unlock(&inode->ordered_tree_lock);
541 btrfs_queue_ordered_fn(entry);
542 spin_lock(&inode->ordered_tree_lock);
543 }
544 cur += len;
545 }
546 spin_unlock(&inode->ordered_tree_lock);
547}
548
549/*
550 * Finish IO for one ordered extent across a given range. The range can only
551 * contain one ordered extent.
552 *
553 * @cached: The cached ordered extent. If not NULL, we can skip the tree
554 * search and use the ordered extent directly.
555 * Will be also used to store the finished ordered extent.
556 * @file_offset: File offset for the finished IO
557 * @io_size: Length of the finish IO range
558 *
559 * Return true if the ordered extent is finished in the range, and update
560 * @cached.
561 * Return false otherwise.
562 *
563 * NOTE: The range can NOT cross multiple ordered extents.
564 * Thus caller should ensure the range doesn't cross ordered extents.
565 */
566bool btrfs_dec_test_ordered_pending(struct btrfs_inode *inode,
567 struct btrfs_ordered_extent **cached,
568 u64 file_offset, u64 io_size)
569{
570 struct rb_node *node;
571 struct btrfs_ordered_extent *entry = NULL;
572 bool finished = false;
573
574 spin_lock(&inode->ordered_tree_lock);
575 if (cached && *cached) {
576 entry = *cached;
577 goto have_entry;
578 }
579
580 node = ordered_tree_search(inode, file_offset);
581 if (!node)
582 goto out;
583
584 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
585have_entry:
586 if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
587 goto out;
588
589 if (io_size > entry->bytes_left)
590 btrfs_crit(inode->root->fs_info,
591 "bad ordered accounting left %llu size %llu",
592 entry->bytes_left, io_size);
593
594 entry->bytes_left -= io_size;
595
596 if (entry->bytes_left == 0) {
597 /*
598 * Ensure only one caller can set the flag and finished_ret
599 * accordingly
600 */
601 finished = !test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
602 /* test_and_set_bit implies a barrier */
603 cond_wake_up_nomb(&entry->wait);
604 }
605out:
606 if (finished && cached && entry) {
607 *cached = entry;
608 refcount_inc(&entry->refs);
609 trace_btrfs_ordered_extent_dec_test_pending(inode, entry);
610 }
611 spin_unlock(&inode->ordered_tree_lock);
612 return finished;
613}
614
615/*
616 * used to drop a reference on an ordered extent. This will free
617 * the extent if the last reference is dropped
618 */
619void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
620{
621 trace_btrfs_ordered_extent_put(entry->inode, entry);
622
623 if (refcount_dec_and_test(&entry->refs)) {
624 struct btrfs_ordered_sum *sum;
625 struct btrfs_ordered_sum *tmp;
626
627 ASSERT(list_empty(&entry->root_extent_list));
628 ASSERT(list_empty(&entry->log_list));
629 ASSERT(RB_EMPTY_NODE(&entry->rb_node));
630 btrfs_add_delayed_iput(entry->inode);
631 list_for_each_entry_safe(sum, tmp, &entry->list, list)
632 kvfree(sum);
633 kmem_cache_free(btrfs_ordered_extent_cache, entry);
634 }
635}
636
637/*
638 * remove an ordered extent from the tree. No references are dropped
639 * and waiters are woken up.
640 */
641void btrfs_remove_ordered_extent(struct btrfs_inode *btrfs_inode,
642 struct btrfs_ordered_extent *entry)
643{
644 struct btrfs_root *root = btrfs_inode->root;
645 struct btrfs_fs_info *fs_info = root->fs_info;
646 struct rb_node *node;
647 bool pending;
648 bool freespace_inode;
649
650 /*
651 * If this is a free space inode the thread has not acquired the ordered
652 * extents lockdep map.
653 */
654 freespace_inode = btrfs_is_free_space_inode(btrfs_inode);
655
656 btrfs_lockdep_acquire(fs_info, btrfs_trans_pending_ordered);
657 /* This is paired with alloc_ordered_extent(). */
658 spin_lock(&btrfs_inode->lock);
659 btrfs_mod_outstanding_extents(btrfs_inode, -1);
660 spin_unlock(&btrfs_inode->lock);
661 if (root != fs_info->tree_root) {
662 u64 release;
663
664 if (test_bit(BTRFS_ORDERED_ENCODED, &entry->flags))
665 release = entry->disk_num_bytes;
666 else
667 release = entry->num_bytes;
668 btrfs_delalloc_release_metadata(btrfs_inode, release,
669 test_bit(BTRFS_ORDERED_IOERR,
670 &entry->flags));
671 }
672
673 percpu_counter_add_batch(&fs_info->ordered_bytes, -entry->num_bytes,
674 fs_info->delalloc_batch);
675
676 spin_lock(&btrfs_inode->ordered_tree_lock);
677 node = &entry->rb_node;
678 rb_erase(node, &btrfs_inode->ordered_tree);
679 RB_CLEAR_NODE(node);
680 if (btrfs_inode->ordered_tree_last == node)
681 btrfs_inode->ordered_tree_last = NULL;
682 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
683 pending = test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags);
684 spin_unlock(&btrfs_inode->ordered_tree_lock);
685
686 /*
687 * The current running transaction is waiting on us, we need to let it
688 * know that we're complete and wake it up.
689 */
690 if (pending) {
691 struct btrfs_transaction *trans;
692
693 /*
694 * The checks for trans are just a formality, it should be set,
695 * but if it isn't we don't want to deref/assert under the spin
696 * lock, so be nice and check if trans is set, but ASSERT() so
697 * if it isn't set a developer will notice.
698 */
699 spin_lock(&fs_info->trans_lock);
700 trans = fs_info->running_transaction;
701 if (trans)
702 refcount_inc(&trans->use_count);
703 spin_unlock(&fs_info->trans_lock);
704
705 ASSERT(trans || BTRFS_FS_ERROR(fs_info));
706 if (trans) {
707 if (atomic_dec_and_test(&trans->pending_ordered))
708 wake_up(&trans->pending_wait);
709 btrfs_put_transaction(trans);
710 }
711 }
712
713 btrfs_lockdep_release(fs_info, btrfs_trans_pending_ordered);
714
715 spin_lock(&root->ordered_extent_lock);
716 list_del_init(&entry->root_extent_list);
717 root->nr_ordered_extents--;
718
719 trace_btrfs_ordered_extent_remove(btrfs_inode, entry);
720
721 if (!root->nr_ordered_extents) {
722 spin_lock(&fs_info->ordered_root_lock);
723 BUG_ON(list_empty(&root->ordered_root));
724 list_del_init(&root->ordered_root);
725 spin_unlock(&fs_info->ordered_root_lock);
726 }
727 spin_unlock(&root->ordered_extent_lock);
728 wake_up(&entry->wait);
729 if (!freespace_inode)
730 btrfs_lockdep_release(fs_info, btrfs_ordered_extent);
731}
732
733static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
734{
735 struct btrfs_ordered_extent *ordered;
736
737 ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
738 btrfs_start_ordered_extent(ordered);
739 complete(&ordered->completion);
740}
741
742/*
743 * Wait for all the ordered extents in a root. Use @bg as range or do whole
744 * range if it's NULL.
745 */
746u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr,
747 const struct btrfs_block_group *bg)
748{
749 struct btrfs_fs_info *fs_info = root->fs_info;
750 LIST_HEAD(splice);
751 LIST_HEAD(skipped);
752 LIST_HEAD(works);
753 struct btrfs_ordered_extent *ordered, *next;
754 u64 count = 0;
755 u64 range_start, range_len;
756 u64 range_end;
757
758 if (bg) {
759 range_start = bg->start;
760 range_len = bg->length;
761 } else {
762 range_start = 0;
763 range_len = U64_MAX;
764 }
765 range_end = range_start + range_len;
766
767 mutex_lock(&root->ordered_extent_mutex);
768 spin_lock(&root->ordered_extent_lock);
769 list_splice_init(&root->ordered_extents, &splice);
770 while (!list_empty(&splice) && nr) {
771 ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
772 root_extent_list);
773
774 if (range_end <= ordered->disk_bytenr ||
775 ordered->disk_bytenr + ordered->disk_num_bytes <= range_start) {
776 list_move_tail(&ordered->root_extent_list, &skipped);
777 cond_resched_lock(&root->ordered_extent_lock);
778 continue;
779 }
780
781 list_move_tail(&ordered->root_extent_list,
782 &root->ordered_extents);
783 refcount_inc(&ordered->refs);
784 spin_unlock(&root->ordered_extent_lock);
785
786 btrfs_init_work(&ordered->flush_work,
787 btrfs_run_ordered_extent_work, NULL);
788 list_add_tail(&ordered->work_list, &works);
789 btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work);
790
791 cond_resched();
792 if (nr != U64_MAX)
793 nr--;
794 count++;
795 spin_lock(&root->ordered_extent_lock);
796 }
797 list_splice_tail(&skipped, &root->ordered_extents);
798 list_splice_tail(&splice, &root->ordered_extents);
799 spin_unlock(&root->ordered_extent_lock);
800
801 list_for_each_entry_safe(ordered, next, &works, work_list) {
802 list_del_init(&ordered->work_list);
803 wait_for_completion(&ordered->completion);
804 btrfs_put_ordered_extent(ordered);
805 cond_resched();
806 }
807 mutex_unlock(&root->ordered_extent_mutex);
808
809 return count;
810}
811
812/*
813 * Wait for @nr ordered extents that intersect the @bg, or the whole range of
814 * the filesystem if @bg is NULL.
815 */
816void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr,
817 const struct btrfs_block_group *bg)
818{
819 struct btrfs_root *root;
820 LIST_HEAD(splice);
821 u64 done;
822
823 mutex_lock(&fs_info->ordered_operations_mutex);
824 spin_lock(&fs_info->ordered_root_lock);
825 list_splice_init(&fs_info->ordered_roots, &splice);
826 while (!list_empty(&splice) && nr) {
827 root = list_first_entry(&splice, struct btrfs_root,
828 ordered_root);
829 root = btrfs_grab_root(root);
830 BUG_ON(!root);
831 list_move_tail(&root->ordered_root,
832 &fs_info->ordered_roots);
833 spin_unlock(&fs_info->ordered_root_lock);
834
835 done = btrfs_wait_ordered_extents(root, nr, bg);
836 btrfs_put_root(root);
837
838 if (nr != U64_MAX)
839 nr -= done;
840
841 spin_lock(&fs_info->ordered_root_lock);
842 }
843 list_splice_tail(&splice, &fs_info->ordered_roots);
844 spin_unlock(&fs_info->ordered_root_lock);
845 mutex_unlock(&fs_info->ordered_operations_mutex);
846}
847
848/*
849 * Start IO and wait for a given ordered extent to finish.
850 *
851 * Wait on page writeback for all the pages in the extent but not in
852 * [@nowriteback_start, @nowriteback_start + @nowriteback_len) and the
853 * IO completion code to insert metadata into the btree corresponding to the extent.
854 */
855void btrfs_start_ordered_extent_nowriteback(struct btrfs_ordered_extent *entry,
856 u64 nowriteback_start, u32 nowriteback_len)
857{
858 u64 start = entry->file_offset;
859 u64 end = start + entry->num_bytes - 1;
860 struct btrfs_inode *inode = entry->inode;
861 bool freespace_inode;
862
863 trace_btrfs_ordered_extent_start(inode, entry);
864
865 /*
866 * If this is a free space inode do not take the ordered extents lockdep
867 * map.
868 */
869 freespace_inode = btrfs_is_free_space_inode(inode);
870
871 /*
872 * pages in the range can be dirty, clean or writeback. We
873 * start IO on any dirty ones so the wait doesn't stall waiting
874 * for the flusher thread to find them
875 */
876 if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags)) {
877 if (!nowriteback_len) {
878 filemap_fdatawrite_range(inode->vfs_inode.i_mapping, start, end);
879 } else {
880 if (start < nowriteback_start)
881 filemap_fdatawrite_range(inode->vfs_inode.i_mapping, start,
882 nowriteback_start - 1);
883 if (nowriteback_start + nowriteback_len < end)
884 filemap_fdatawrite_range(inode->vfs_inode.i_mapping,
885 nowriteback_start + nowriteback_len,
886 end);
887 }
888 }
889
890 if (!freespace_inode)
891 btrfs_might_wait_for_event(inode->root->fs_info, btrfs_ordered_extent);
892 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE, &entry->flags));
893}
894
895/*
896 * Used to wait on ordered extents across a large range of bytes.
897 */
898int btrfs_wait_ordered_range(struct btrfs_inode *inode, u64 start, u64 len)
899{
900 int ret = 0;
901 int ret_wb = 0;
902 u64 end;
903 u64 orig_end;
904 struct btrfs_ordered_extent *ordered;
905
906 if (start + len < start) {
907 orig_end = OFFSET_MAX;
908 } else {
909 orig_end = start + len - 1;
910 if (orig_end > OFFSET_MAX)
911 orig_end = OFFSET_MAX;
912 }
913
914 /* start IO across the range first to instantiate any delalloc
915 * extents
916 */
917 ret = btrfs_fdatawrite_range(inode, start, orig_end);
918 if (ret)
919 return ret;
920
921 /*
922 * If we have a writeback error don't return immediately. Wait first
923 * for any ordered extents that haven't completed yet. This is to make
924 * sure no one can dirty the same page ranges and call writepages()
925 * before the ordered extents complete - to avoid failures (-EEXIST)
926 * when adding the new ordered extents to the ordered tree.
927 */
928 ret_wb = filemap_fdatawait_range(inode->vfs_inode.i_mapping, start, orig_end);
929
930 end = orig_end;
931 while (1) {
932 ordered = btrfs_lookup_first_ordered_extent(inode, end);
933 if (!ordered)
934 break;
935 if (ordered->file_offset > orig_end) {
936 btrfs_put_ordered_extent(ordered);
937 break;
938 }
939 if (ordered->file_offset + ordered->num_bytes <= start) {
940 btrfs_put_ordered_extent(ordered);
941 break;
942 }
943 btrfs_start_ordered_extent(ordered);
944 end = ordered->file_offset;
945 /*
946 * If the ordered extent had an error save the error but don't
947 * exit without waiting first for all other ordered extents in
948 * the range to complete.
949 */
950 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
951 ret = -EIO;
952 btrfs_put_ordered_extent(ordered);
953 if (end == 0 || end == start)
954 break;
955 end--;
956 }
957 return ret_wb ? ret_wb : ret;
958}
959
960/*
961 * find an ordered extent corresponding to file_offset. return NULL if
962 * nothing is found, otherwise take a reference on the extent and return it
963 */
964struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct btrfs_inode *inode,
965 u64 file_offset)
966{
967 struct rb_node *node;
968 struct btrfs_ordered_extent *entry = NULL;
969
970 spin_lock(&inode->ordered_tree_lock);
971 node = ordered_tree_search(inode, file_offset);
972 if (!node)
973 goto out;
974
975 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
976 if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
977 entry = NULL;
978 if (entry) {
979 refcount_inc(&entry->refs);
980 trace_btrfs_ordered_extent_lookup(inode, entry);
981 }
982out:
983 spin_unlock(&inode->ordered_tree_lock);
984 return entry;
985}
986
987/* Since the DIO code tries to lock a wide area we need to look for any ordered
988 * extents that exist in the range, rather than just the start of the range.
989 */
990struct btrfs_ordered_extent *btrfs_lookup_ordered_range(
991 struct btrfs_inode *inode, u64 file_offset, u64 len)
992{
993 struct rb_node *node;
994 struct btrfs_ordered_extent *entry = NULL;
995
996 spin_lock(&inode->ordered_tree_lock);
997 node = ordered_tree_search(inode, file_offset);
998 if (!node) {
999 node = ordered_tree_search(inode, file_offset + len);
1000 if (!node)
1001 goto out;
1002 }
1003
1004 while (1) {
1005 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
1006 if (btrfs_range_overlaps(entry, file_offset, len))
1007 break;
1008
1009 if (entry->file_offset >= file_offset + len) {
1010 entry = NULL;
1011 break;
1012 }
1013 entry = NULL;
1014 node = rb_next(node);
1015 if (!node)
1016 break;
1017 }
1018out:
1019 if (entry) {
1020 refcount_inc(&entry->refs);
1021 trace_btrfs_ordered_extent_lookup_range(inode, entry);
1022 }
1023 spin_unlock(&inode->ordered_tree_lock);
1024 return entry;
1025}
1026
1027/*
1028 * Adds all ordered extents to the given list. The list ends up sorted by the
1029 * file_offset of the ordered extents.
1030 */
1031void btrfs_get_ordered_extents_for_logging(struct btrfs_inode *inode,
1032 struct list_head *list)
1033{
1034 struct rb_node *n;
1035
1036 btrfs_assert_inode_locked(inode);
1037
1038 spin_lock(&inode->ordered_tree_lock);
1039 for (n = rb_first(&inode->ordered_tree); n; n = rb_next(n)) {
1040 struct btrfs_ordered_extent *ordered;
1041
1042 ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
1043
1044 if (test_bit(BTRFS_ORDERED_LOGGED, &ordered->flags))
1045 continue;
1046
1047 ASSERT(list_empty(&ordered->log_list));
1048 list_add_tail(&ordered->log_list, list);
1049 refcount_inc(&ordered->refs);
1050 trace_btrfs_ordered_extent_lookup_for_logging(inode, ordered);
1051 }
1052 spin_unlock(&inode->ordered_tree_lock);
1053}
1054
1055/*
1056 * lookup and return any extent before 'file_offset'. NULL is returned
1057 * if none is found
1058 */
1059struct btrfs_ordered_extent *
1060btrfs_lookup_first_ordered_extent(struct btrfs_inode *inode, u64 file_offset)
1061{
1062 struct rb_node *node;
1063 struct btrfs_ordered_extent *entry = NULL;
1064
1065 spin_lock(&inode->ordered_tree_lock);
1066 node = ordered_tree_search(inode, file_offset);
1067 if (!node)
1068 goto out;
1069
1070 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
1071 refcount_inc(&entry->refs);
1072 trace_btrfs_ordered_extent_lookup_first(inode, entry);
1073out:
1074 spin_unlock(&inode->ordered_tree_lock);
1075 return entry;
1076}
1077
1078/*
1079 * Lookup the first ordered extent that overlaps the range
1080 * [@file_offset, @file_offset + @len).
1081 *
1082 * The difference between this and btrfs_lookup_first_ordered_extent() is
1083 * that this one won't return any ordered extent that does not overlap the range.
1084 * And the difference against btrfs_lookup_ordered_extent() is, this function
1085 * ensures the first ordered extent gets returned.
1086 */
1087struct btrfs_ordered_extent *btrfs_lookup_first_ordered_range(
1088 struct btrfs_inode *inode, u64 file_offset, u64 len)
1089{
1090 struct rb_node *node;
1091 struct rb_node *cur;
1092 struct rb_node *prev;
1093 struct rb_node *next;
1094 struct btrfs_ordered_extent *entry = NULL;
1095
1096 spin_lock(&inode->ordered_tree_lock);
1097 node = inode->ordered_tree.rb_node;
1098 /*
1099 * Here we don't want to use tree_search() which will use tree->last
1100 * and screw up the search order.
1101 * And __tree_search() can't return the adjacent ordered extents
1102 * either, thus here we do our own search.
1103 */
1104 while (node) {
1105 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
1106
1107 if (file_offset < entry->file_offset) {
1108 node = node->rb_left;
1109 } else if (file_offset >= entry_end(entry)) {
1110 node = node->rb_right;
1111 } else {
1112 /*
1113 * Direct hit, got an ordered extent that starts at
1114 * @file_offset
1115 */
1116 goto out;
1117 }
1118 }
1119 if (!entry) {
1120 /* Empty tree */
1121 goto out;
1122 }
1123
1124 cur = &entry->rb_node;
1125 /* We got an entry around @file_offset, check adjacent entries */
1126 if (entry->file_offset < file_offset) {
1127 prev = cur;
1128 next = rb_next(cur);
1129 } else {
1130 prev = rb_prev(cur);
1131 next = cur;
1132 }
1133 if (prev) {
1134 entry = rb_entry(prev, struct btrfs_ordered_extent, rb_node);
1135 if (btrfs_range_overlaps(entry, file_offset, len))
1136 goto out;
1137 }
1138 if (next) {
1139 entry = rb_entry(next, struct btrfs_ordered_extent, rb_node);
1140 if (btrfs_range_overlaps(entry, file_offset, len))
1141 goto out;
1142 }
1143 /* No ordered extent in the range */
1144 entry = NULL;
1145out:
1146 if (entry) {
1147 refcount_inc(&entry->refs);
1148 trace_btrfs_ordered_extent_lookup_first_range(inode, entry);
1149 }
1150
1151 spin_unlock(&inode->ordered_tree_lock);
1152 return entry;
1153}
1154
1155/*
1156 * Lock the passed range and ensures all pending ordered extents in it are run
1157 * to completion.
1158 *
1159 * @inode: Inode whose ordered tree is to be searched
1160 * @start: Beginning of range to flush
1161 * @end: Last byte of range to lock
1162 * @cached_state: If passed, will return the extent state responsible for the
1163 * locked range. It's the caller's responsibility to free the
1164 * cached state.
1165 *
1166 * Always return with the given range locked, ensuring after it's called no
1167 * order extent can be pending.
1168 */
1169void btrfs_lock_and_flush_ordered_range(struct btrfs_inode *inode, u64 start,
1170 u64 end,
1171 struct extent_state **cached_state)
1172{
1173 struct btrfs_ordered_extent *ordered;
1174 struct extent_state *cache = NULL;
1175 struct extent_state **cachedp = &cache;
1176
1177 if (cached_state)
1178 cachedp = cached_state;
1179
1180 while (1) {
1181 btrfs_lock_extent(&inode->io_tree, start, end, cachedp);
1182 ordered = btrfs_lookup_ordered_range(inode, start,
1183 end - start + 1);
1184 if (!ordered) {
1185 /*
1186 * If no external cached_state has been passed then
1187 * decrement the extra ref taken for cachedp since we
1188 * aren't exposing it outside of this function
1189 */
1190 if (!cached_state)
1191 refcount_dec(&cache->refs);
1192 break;
1193 }
1194 btrfs_unlock_extent(&inode->io_tree, start, end, cachedp);
1195 btrfs_start_ordered_extent(ordered);
1196 btrfs_put_ordered_extent(ordered);
1197 }
1198}
1199
1200/*
1201 * Lock the passed range and ensure all pending ordered extents in it are run
1202 * to completion in nowait mode.
1203 *
1204 * Return true if btrfs_lock_ordered_range does not return any extents,
1205 * otherwise false.
1206 */
1207bool btrfs_try_lock_ordered_range(struct btrfs_inode *inode, u64 start, u64 end,
1208 struct extent_state **cached_state)
1209{
1210 struct btrfs_ordered_extent *ordered;
1211
1212 if (!btrfs_try_lock_extent(&inode->io_tree, start, end, cached_state))
1213 return false;
1214
1215 ordered = btrfs_lookup_ordered_range(inode, start, end - start + 1);
1216 if (!ordered)
1217 return true;
1218
1219 btrfs_put_ordered_extent(ordered);
1220 btrfs_unlock_extent(&inode->io_tree, start, end, cached_state);
1221
1222 return false;
1223}
1224
1225/* Split out a new ordered extent for this first @len bytes of @ordered. */
1226struct btrfs_ordered_extent *btrfs_split_ordered_extent(
1227 struct btrfs_ordered_extent *ordered, u64 len)
1228{
1229 struct btrfs_inode *inode = ordered->inode;
1230 struct btrfs_root *root = inode->root;
1231 struct btrfs_fs_info *fs_info = root->fs_info;
1232 u64 file_offset = ordered->file_offset;
1233 u64 disk_bytenr = ordered->disk_bytenr;
1234 unsigned long flags = ordered->flags;
1235 struct btrfs_ordered_sum *sum, *tmpsum;
1236 struct btrfs_ordered_extent *new;
1237 struct rb_node *node;
1238 u64 offset = 0;
1239
1240 trace_btrfs_ordered_extent_split(inode, ordered);
1241
1242 ASSERT(!(flags & (1U << BTRFS_ORDERED_COMPRESSED)));
1243
1244 /*
1245 * The entire bio must be covered by the ordered extent, but we can't
1246 * reduce the original extent to a zero length either.
1247 */
1248 if (WARN_ON_ONCE(len >= ordered->num_bytes))
1249 return ERR_PTR(-EINVAL);
1250 /*
1251 * If our ordered extent had an error there's no point in continuing.
1252 * The error may have come from a transaction abort done either by this
1253 * task or some other concurrent task, and the transaction abort path
1254 * iterates over all existing ordered extents and sets the flag
1255 * BTRFS_ORDERED_IOERR on them.
1256 */
1257 if (unlikely(flags & (1U << BTRFS_ORDERED_IOERR))) {
1258 const int fs_error = BTRFS_FS_ERROR(fs_info);
1259
1260 return fs_error ? ERR_PTR(fs_error) : ERR_PTR(-EIO);
1261 }
1262 /* We cannot split partially completed ordered extents. */
1263 if (ordered->bytes_left) {
1264 ASSERT(!(flags & ~BTRFS_ORDERED_TYPE_FLAGS));
1265 if (WARN_ON_ONCE(ordered->bytes_left != ordered->disk_num_bytes))
1266 return ERR_PTR(-EINVAL);
1267 }
1268 /* We cannot split a compressed ordered extent. */
1269 if (WARN_ON_ONCE(ordered->disk_num_bytes != ordered->num_bytes))
1270 return ERR_PTR(-EINVAL);
1271
1272 new = alloc_ordered_extent(inode, file_offset, len, len, disk_bytenr,
1273 len, 0, flags, ordered->compress_type);
1274 if (IS_ERR(new))
1275 return new;
1276
1277 /* One ref for the tree. */
1278 refcount_inc(&new->refs);
1279
1280 /*
1281 * Take the root's ordered_extent_lock to avoid a race with
1282 * btrfs_wait_ordered_extents() when updating the disk_bytenr and
1283 * disk_num_bytes fields of the ordered extent below.
1284 *
1285 * There's no concern about a previous caller of
1286 * btrfs_wait_ordered_extents() getting the trimmed ordered extent
1287 * before we insert the new one, because even if it gets the ordered
1288 * extent before it's trimmed and the new one inserted, right before it
1289 * uses it or during its use, the ordered extent might have been
1290 * trimmed in the meanwhile, and it missed the new ordered extent.
1291 * There's no way around this and it's harmless for current use cases,
1292 * so we take the root's ordered_extent_lock to fix that race during
1293 * trimming and silence tools like KCSAN.
1294 */
1295 spin_lock_irq(&root->ordered_extent_lock);
1296 spin_lock(&inode->ordered_tree_lock);
1297
1298 /*
1299 * We don't have overlapping ordered extents (that would imply double
1300 * allocation of extents) and we checked above that the split length
1301 * does not cross the ordered extent's num_bytes field, so there's
1302 * no need to remove it and re-insert it in the tree.
1303 */
1304 ordered->file_offset += len;
1305 ordered->disk_bytenr += len;
1306 ordered->num_bytes -= len;
1307 ordered->disk_num_bytes -= len;
1308 ordered->ram_bytes -= len;
1309
1310 if (test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags)) {
1311 ASSERT(ordered->bytes_left == 0);
1312 new->bytes_left = 0;
1313 } else {
1314 ordered->bytes_left -= len;
1315 }
1316
1317 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags)) {
1318 if (ordered->truncated_len > len) {
1319 ordered->truncated_len -= len;
1320 } else {
1321 new->truncated_len = ordered->truncated_len;
1322 ordered->truncated_len = 0;
1323 }
1324 }
1325
1326 list_for_each_entry_safe(sum, tmpsum, &ordered->list, list) {
1327 if (offset == len)
1328 break;
1329 list_move_tail(&sum->list, &new->list);
1330 offset += sum->len;
1331 }
1332
1333 node = tree_insert(&inode->ordered_tree, new->file_offset, &new->rb_node);
1334 if (unlikely(node))
1335 btrfs_panic(fs_info, -EEXIST,
1336 "inconsistency in ordered tree at offset %llu after split",
1337 new->file_offset);
1338 spin_unlock(&inode->ordered_tree_lock);
1339
1340 list_add_tail(&new->root_extent_list, &root->ordered_extents);
1341 root->nr_ordered_extents++;
1342 spin_unlock_irq(&root->ordered_extent_lock);
1343 return new;
1344}
1345
1346int __init ordered_data_init(void)
1347{
1348 btrfs_ordered_extent_cache = KMEM_CACHE(btrfs_ordered_extent, 0);
1349 if (!btrfs_ordered_extent_cache)
1350 return -ENOMEM;
1351
1352 return 0;
1353}
1354
1355void __cold ordered_data_exit(void)
1356{
1357 kmem_cache_destroy(btrfs_ordered_extent_cache);
1358}