Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#include <crypto/hash.h>
7#include <linux/kernel.h>
8#include <linux/bio.h>
9#include <linux/blk-cgroup.h>
10#include <linux/file.h>
11#include <linux/fs.h>
12#include <linux/fs_struct.h>
13#include <linux/pagemap.h>
14#include <linux/highmem.h>
15#include <linux/time.h>
16#include <linux/init.h>
17#include <linux/string.h>
18#include <linux/backing-dev.h>
19#include <linux/writeback.h>
20#include <linux/compat.h>
21#include <linux/xattr.h>
22#include <linux/posix_acl.h>
23#include <linux/falloc.h>
24#include <linux/slab.h>
25#include <linux/ratelimit.h>
26#include <linux/btrfs.h>
27#include <linux/blkdev.h>
28#include <linux/posix_acl_xattr.h>
29#include <linux/uio.h>
30#include <linux/magic.h>
31#include <linux/iversion.h>
32#include <linux/swap.h>
33#include <linux/migrate.h>
34#include <linux/sched/mm.h>
35#include <linux/iomap.h>
36#include <linux/unaligned.h>
37#include <linux/fsverity.h>
38#include "misc.h"
39#include "ctree.h"
40#include "disk-io.h"
41#include "transaction.h"
42#include "btrfs_inode.h"
43#include "ordered-data.h"
44#include "xattr.h"
45#include "tree-log.h"
46#include "bio.h"
47#include "compression.h"
48#include "locking.h"
49#include "props.h"
50#include "qgroup.h"
51#include "delalloc-space.h"
52#include "block-group.h"
53#include "space-info.h"
54#include "zoned.h"
55#include "subpage.h"
56#include "inode-item.h"
57#include "fs.h"
58#include "accessors.h"
59#include "extent-tree.h"
60#include "root-tree.h"
61#include "defrag.h"
62#include "dir-item.h"
63#include "file-item.h"
64#include "uuid-tree.h"
65#include "ioctl.h"
66#include "file.h"
67#include "acl.h"
68#include "relocation.h"
69#include "verity.h"
70#include "super.h"
71#include "orphan.h"
72#include "backref.h"
73#include "raid-stripe-tree.h"
74#include "fiemap.h"
75#include "delayed-inode.h"
76
77#define COW_FILE_RANGE_KEEP_LOCKED (1UL << 0)
78#define COW_FILE_RANGE_NO_INLINE (1UL << 1)
79
80struct btrfs_iget_args {
81 u64 ino;
82 struct btrfs_root *root;
83};
84
85struct btrfs_rename_ctx {
86 /* Output field. Stores the index number of the old directory entry. */
87 u64 index;
88};
89
90/*
91 * Used by data_reloc_print_warning_inode() to pass needed info for filename
92 * resolution and output of error message.
93 */
94struct data_reloc_warn {
95 struct btrfs_path path;
96 struct btrfs_fs_info *fs_info;
97 u64 extent_item_size;
98 u64 logical;
99 int mirror_num;
100};
101
102/*
103 * For the file_extent_tree, we want to hold the inode lock when we lookup and
104 * update the disk_i_size, but lockdep will complain because our io_tree we hold
105 * the tree lock and get the inode lock when setting delalloc. These two things
106 * are unrelated, so make a class for the file_extent_tree so we don't get the
107 * two locking patterns mixed up.
108 */
109static struct lock_class_key file_extent_tree_class;
110
111static const struct inode_operations btrfs_dir_inode_operations;
112static const struct inode_operations btrfs_symlink_inode_operations;
113static const struct inode_operations btrfs_special_inode_operations;
114static const struct inode_operations btrfs_file_inode_operations;
115static const struct address_space_operations btrfs_aops;
116static const struct file_operations btrfs_dir_file_operations;
117
118static struct kmem_cache *btrfs_inode_cachep;
119
120static int btrfs_setsize(struct inode *inode, struct iattr *attr);
121static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback);
122
123static noinline int run_delalloc_cow(struct btrfs_inode *inode,
124 struct folio *locked_folio, u64 start,
125 u64 end, struct writeback_control *wbc,
126 bool pages_dirty);
127
128static int data_reloc_print_warning_inode(u64 inum, u64 offset, u64 num_bytes,
129 u64 root, void *warn_ctx)
130{
131 struct data_reloc_warn *warn = warn_ctx;
132 struct btrfs_fs_info *fs_info = warn->fs_info;
133 struct extent_buffer *eb;
134 struct btrfs_inode_item *inode_item;
135 struct inode_fs_paths *ipath __free(inode_fs_paths) = NULL;
136 struct btrfs_root *local_root;
137 struct btrfs_key key;
138 unsigned int nofs_flag;
139 u32 nlink;
140 int ret;
141
142 local_root = btrfs_get_fs_root(fs_info, root, true);
143 if (IS_ERR(local_root)) {
144 ret = PTR_ERR(local_root);
145 goto err;
146 }
147
148 /* This makes the path point to (inum INODE_ITEM ioff). */
149 key.objectid = inum;
150 key.type = BTRFS_INODE_ITEM_KEY;
151 key.offset = 0;
152
153 ret = btrfs_search_slot(NULL, local_root, &key, &warn->path, 0, 0);
154 if (ret) {
155 btrfs_put_root(local_root);
156 btrfs_release_path(&warn->path);
157 goto err;
158 }
159
160 eb = warn->path.nodes[0];
161 inode_item = btrfs_item_ptr(eb, warn->path.slots[0], struct btrfs_inode_item);
162 nlink = btrfs_inode_nlink(eb, inode_item);
163 btrfs_release_path(&warn->path);
164
165 nofs_flag = memalloc_nofs_save();
166 ipath = init_ipath(4096, local_root, &warn->path);
167 memalloc_nofs_restore(nofs_flag);
168 if (IS_ERR(ipath)) {
169 btrfs_put_root(local_root);
170 ret = PTR_ERR(ipath);
171 ipath = NULL;
172 /*
173 * -ENOMEM, not a critical error, just output an generic error
174 * without filename.
175 */
176 btrfs_warn(fs_info,
177"checksum error at logical %llu mirror %u root %llu, inode %llu offset %llu",
178 warn->logical, warn->mirror_num, root, inum, offset);
179 return ret;
180 }
181 ret = paths_from_inode(inum, ipath);
182 if (ret < 0) {
183 btrfs_put_root(local_root);
184 goto err;
185 }
186
187 /*
188 * We deliberately ignore the bit ipath might have been too small to
189 * hold all of the paths here
190 */
191 for (int i = 0; i < ipath->fspath->elem_cnt; i++) {
192 btrfs_warn(fs_info,
193"checksum error at logical %llu mirror %u root %llu inode %llu offset %llu length %u links %u (path: %s)",
194 warn->logical, warn->mirror_num, root, inum, offset,
195 fs_info->sectorsize, nlink,
196 (char *)(unsigned long)ipath->fspath->val[i]);
197 }
198
199 btrfs_put_root(local_root);
200 return 0;
201
202err:
203 btrfs_warn(fs_info,
204"checksum error at logical %llu mirror %u root %llu inode %llu offset %llu, path resolving failed with ret=%d",
205 warn->logical, warn->mirror_num, root, inum, offset, ret);
206
207 return ret;
208}
209
210/*
211 * Do extra user-friendly error output (e.g. lookup all the affected files).
212 *
213 * Return true if we succeeded doing the backref lookup.
214 * Return false if such lookup failed, and has to fallback to the old error message.
215 */
216static void print_data_reloc_error(const struct btrfs_inode *inode, u64 file_off,
217 const u8 *csum, const u8 *csum_expected,
218 int mirror_num)
219{
220 struct btrfs_fs_info *fs_info = inode->root->fs_info;
221 struct btrfs_path path = { 0 };
222 struct btrfs_key found_key = { 0 };
223 struct extent_buffer *eb;
224 struct btrfs_extent_item *ei;
225 const u32 csum_size = fs_info->csum_size;
226 u64 logical;
227 u64 flags;
228 u32 item_size;
229 int ret;
230
231 mutex_lock(&fs_info->reloc_mutex);
232 logical = btrfs_get_reloc_bg_bytenr(fs_info);
233 mutex_unlock(&fs_info->reloc_mutex);
234
235 if (logical == U64_MAX) {
236 btrfs_warn_rl(fs_info, "has data reloc tree but no running relocation");
237 btrfs_warn_rl(fs_info,
238"csum failed root %lld ino %llu off %llu csum " BTRFS_CSUM_FMT " expected csum " BTRFS_CSUM_FMT " mirror %d",
239 btrfs_root_id(inode->root), btrfs_ino(inode), file_off,
240 BTRFS_CSUM_FMT_VALUE(csum_size, csum),
241 BTRFS_CSUM_FMT_VALUE(csum_size, csum_expected),
242 mirror_num);
243 return;
244 }
245
246 logical += file_off;
247 btrfs_warn_rl(fs_info,
248"csum failed root %lld ino %llu off %llu logical %llu csum " BTRFS_CSUM_FMT " expected csum " BTRFS_CSUM_FMT " mirror %d",
249 btrfs_root_id(inode->root),
250 btrfs_ino(inode), file_off, logical,
251 BTRFS_CSUM_FMT_VALUE(csum_size, csum),
252 BTRFS_CSUM_FMT_VALUE(csum_size, csum_expected),
253 mirror_num);
254
255 ret = extent_from_logical(fs_info, logical, &path, &found_key, &flags);
256 if (ret < 0) {
257 btrfs_err_rl(fs_info, "failed to lookup extent item for logical %llu: %d",
258 logical, ret);
259 btrfs_release_path(&path);
260 return;
261 }
262 eb = path.nodes[0];
263 ei = btrfs_item_ptr(eb, path.slots[0], struct btrfs_extent_item);
264 item_size = btrfs_item_size(eb, path.slots[0]);
265 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
266 unsigned long ptr = 0;
267 u64 ref_root;
268 u8 ref_level;
269
270 while (true) {
271 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
272 item_size, &ref_root,
273 &ref_level);
274 if (ret < 0) {
275 btrfs_warn_rl(fs_info,
276 "failed to resolve tree backref for logical %llu: %d",
277 logical, ret);
278 break;
279 }
280 if (ret > 0)
281 break;
282
283 btrfs_warn_rl(fs_info,
284"csum error at logical %llu mirror %u: metadata %s (level %d) in tree %llu",
285 logical, mirror_num,
286 (ref_level ? "node" : "leaf"),
287 ref_level, ref_root);
288 }
289 btrfs_release_path(&path);
290 } else {
291 struct btrfs_backref_walk_ctx ctx = { 0 };
292 struct data_reloc_warn reloc_warn = { 0 };
293
294 btrfs_release_path(&path);
295
296 ctx.bytenr = found_key.objectid;
297 ctx.extent_item_pos = logical - found_key.objectid;
298 ctx.fs_info = fs_info;
299
300 reloc_warn.logical = logical;
301 reloc_warn.extent_item_size = found_key.offset;
302 reloc_warn.mirror_num = mirror_num;
303 reloc_warn.fs_info = fs_info;
304
305 iterate_extent_inodes(&ctx, true,
306 data_reloc_print_warning_inode, &reloc_warn);
307 }
308}
309
310static void __cold btrfs_print_data_csum_error(struct btrfs_inode *inode,
311 u64 logical_start, u8 *csum, u8 *csum_expected, int mirror_num)
312{
313 struct btrfs_root *root = inode->root;
314 const u32 csum_size = root->fs_info->csum_size;
315
316 /* For data reloc tree, it's better to do a backref lookup instead. */
317 if (btrfs_is_data_reloc_root(root))
318 return print_data_reloc_error(inode, logical_start, csum,
319 csum_expected, mirror_num);
320
321 /* Output without objectid, which is more meaningful */
322 if (btrfs_root_id(root) >= BTRFS_LAST_FREE_OBJECTID) {
323 btrfs_warn_rl(root->fs_info,
324"csum failed root %lld ino %lld off %llu csum " BTRFS_CSUM_FMT " expected csum " BTRFS_CSUM_FMT " mirror %d",
325 btrfs_root_id(root), btrfs_ino(inode),
326 logical_start,
327 BTRFS_CSUM_FMT_VALUE(csum_size, csum),
328 BTRFS_CSUM_FMT_VALUE(csum_size, csum_expected),
329 mirror_num);
330 } else {
331 btrfs_warn_rl(root->fs_info,
332"csum failed root %llu ino %llu off %llu csum " BTRFS_CSUM_FMT " expected csum " BTRFS_CSUM_FMT " mirror %d",
333 btrfs_root_id(root), btrfs_ino(inode),
334 logical_start,
335 BTRFS_CSUM_FMT_VALUE(csum_size, csum),
336 BTRFS_CSUM_FMT_VALUE(csum_size, csum_expected),
337 mirror_num);
338 }
339}
340
341/*
342 * Lock inode i_rwsem based on arguments passed.
343 *
344 * ilock_flags can have the following bit set:
345 *
346 * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode
347 * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt
348 * return -EAGAIN
349 * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock
350 */
351int btrfs_inode_lock(struct btrfs_inode *inode, unsigned int ilock_flags)
352{
353 if (ilock_flags & BTRFS_ILOCK_SHARED) {
354 if (ilock_flags & BTRFS_ILOCK_TRY) {
355 if (!inode_trylock_shared(&inode->vfs_inode))
356 return -EAGAIN;
357 else
358 return 0;
359 }
360 inode_lock_shared(&inode->vfs_inode);
361 } else {
362 if (ilock_flags & BTRFS_ILOCK_TRY) {
363 if (!inode_trylock(&inode->vfs_inode))
364 return -EAGAIN;
365 else
366 return 0;
367 }
368 inode_lock(&inode->vfs_inode);
369 }
370 if (ilock_flags & BTRFS_ILOCK_MMAP)
371 down_write(&inode->i_mmap_lock);
372 return 0;
373}
374
375/*
376 * Unlock inode i_rwsem.
377 *
378 * ilock_flags should contain the same bits set as passed to btrfs_inode_lock()
379 * to decide whether the lock acquired is shared or exclusive.
380 */
381void btrfs_inode_unlock(struct btrfs_inode *inode, unsigned int ilock_flags)
382{
383 if (ilock_flags & BTRFS_ILOCK_MMAP)
384 up_write(&inode->i_mmap_lock);
385 if (ilock_flags & BTRFS_ILOCK_SHARED)
386 inode_unlock_shared(&inode->vfs_inode);
387 else
388 inode_unlock(&inode->vfs_inode);
389}
390
391/*
392 * Cleanup all submitted ordered extents in specified range to handle errors
393 * from the btrfs_run_delalloc_range() callback.
394 *
395 * NOTE: caller must ensure that when an error happens, it can not call
396 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
397 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
398 * to be released, which we want to happen only when finishing the ordered
399 * extent (btrfs_finish_ordered_io()).
400 */
401static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode,
402 u64 offset, u64 bytes)
403{
404 pgoff_t index = offset >> PAGE_SHIFT;
405 const pgoff_t end_index = (offset + bytes - 1) >> PAGE_SHIFT;
406 struct folio *folio;
407
408 while (index <= end_index) {
409 folio = filemap_get_folio(inode->vfs_inode.i_mapping, index);
410 if (IS_ERR(folio)) {
411 index++;
412 continue;
413 }
414
415 index = folio_next_index(folio);
416 /*
417 * Here we just clear all Ordered bits for every page in the
418 * range, then btrfs_mark_ordered_io_finished() will handle
419 * the ordered extent accounting for the range.
420 */
421 btrfs_folio_clamp_clear_ordered(inode->root->fs_info, folio,
422 offset, bytes);
423 folio_put(folio);
424 }
425
426 return btrfs_mark_ordered_io_finished(inode, NULL, offset, bytes, false);
427}
428
429static int btrfs_dirty_inode(struct btrfs_inode *inode);
430
431static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
432 struct btrfs_new_inode_args *args)
433{
434 int ret;
435
436 if (args->default_acl) {
437 ret = __btrfs_set_acl(trans, args->inode, args->default_acl,
438 ACL_TYPE_DEFAULT);
439 if (ret)
440 return ret;
441 }
442 if (args->acl) {
443 ret = __btrfs_set_acl(trans, args->inode, args->acl, ACL_TYPE_ACCESS);
444 if (ret)
445 return ret;
446 }
447 if (!args->default_acl && !args->acl)
448 cache_no_acl(args->inode);
449 return btrfs_xattr_security_init(trans, args->inode, args->dir,
450 &args->dentry->d_name);
451}
452
453/*
454 * this does all the hard work for inserting an inline extent into
455 * the btree. The caller should have done a btrfs_drop_extents so that
456 * no overlapping inline items exist in the btree
457 */
458static int insert_inline_extent(struct btrfs_trans_handle *trans,
459 struct btrfs_path *path,
460 struct btrfs_inode *inode, bool extent_inserted,
461 size_t size, size_t compressed_size,
462 int compress_type,
463 struct folio *compressed_folio,
464 bool update_i_size)
465{
466 struct btrfs_root *root = inode->root;
467 struct extent_buffer *leaf;
468 const u32 sectorsize = trans->fs_info->sectorsize;
469 char *kaddr;
470 unsigned long ptr;
471 struct btrfs_file_extent_item *ei;
472 int ret;
473 size_t cur_size = size;
474 u64 i_size;
475
476 /*
477 * The decompressed size must still be no larger than a sector. Under
478 * heavy race, we can have size == 0 passed in, but that shouldn't be a
479 * big deal and we can continue the insertion.
480 */
481 ASSERT(size <= sectorsize);
482
483 /*
484 * The compressed size also needs to be no larger than a page.
485 * That's also why we only need one folio as the parameter.
486 */
487 if (compressed_folio) {
488 ASSERT(compressed_size <= sectorsize);
489 ASSERT(compressed_size <= PAGE_SIZE);
490 } else {
491 ASSERT(compressed_size == 0);
492 }
493
494 if (compressed_size && compressed_folio)
495 cur_size = compressed_size;
496
497 if (!extent_inserted) {
498 struct btrfs_key key;
499 size_t datasize;
500
501 key.objectid = btrfs_ino(inode);
502 key.type = BTRFS_EXTENT_DATA_KEY;
503 key.offset = 0;
504
505 datasize = btrfs_file_extent_calc_inline_size(cur_size);
506 ret = btrfs_insert_empty_item(trans, root, path, &key,
507 datasize);
508 if (ret)
509 goto fail;
510 }
511 leaf = path->nodes[0];
512 ei = btrfs_item_ptr(leaf, path->slots[0],
513 struct btrfs_file_extent_item);
514 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
515 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
516 btrfs_set_file_extent_encryption(leaf, ei, 0);
517 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
518 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
519 ptr = btrfs_file_extent_inline_start(ei);
520
521 if (compress_type != BTRFS_COMPRESS_NONE) {
522 kaddr = kmap_local_folio(compressed_folio, 0);
523 write_extent_buffer(leaf, kaddr, ptr, compressed_size);
524 kunmap_local(kaddr);
525
526 btrfs_set_file_extent_compression(leaf, ei,
527 compress_type);
528 } else {
529 struct folio *folio;
530
531 folio = filemap_get_folio(inode->vfs_inode.i_mapping, 0);
532 ASSERT(!IS_ERR(folio));
533 btrfs_set_file_extent_compression(leaf, ei, 0);
534 kaddr = kmap_local_folio(folio, 0);
535 write_extent_buffer(leaf, kaddr, ptr, size);
536 kunmap_local(kaddr);
537 folio_put(folio);
538 }
539 btrfs_release_path(path);
540
541 /*
542 * We align size to sectorsize for inline extents just for simplicity
543 * sake.
544 */
545 ret = btrfs_inode_set_file_extent_range(inode, 0,
546 ALIGN(size, root->fs_info->sectorsize));
547 if (ret)
548 goto fail;
549
550 /*
551 * We're an inline extent, so nobody can extend the file past i_size
552 * without locking a page we already have locked.
553 *
554 * We must do any i_size and inode updates before we unlock the pages.
555 * Otherwise we could end up racing with unlink.
556 */
557 i_size = i_size_read(&inode->vfs_inode);
558 if (update_i_size && size > i_size) {
559 i_size_write(&inode->vfs_inode, size);
560 i_size = size;
561 }
562 inode->disk_i_size = i_size;
563
564fail:
565 return ret;
566}
567
568static bool can_cow_file_range_inline(struct btrfs_inode *inode,
569 u64 offset, u64 size,
570 size_t compressed_size)
571{
572 struct btrfs_fs_info *fs_info = inode->root->fs_info;
573 u64 data_len = (compressed_size ?: size);
574
575 /* Inline extents must start at offset 0. */
576 if (offset != 0)
577 return false;
578
579 /*
580 * Even for bs > ps cases, cow_file_range_inline() can only accept a
581 * single folio.
582 *
583 * This can be problematic and cause access beyond page boundary if a
584 * page sized folio is passed into that function.
585 * And encoded write is doing exactly that.
586 * So here limits the inlined extent size to PAGE_SIZE.
587 */
588 if (size > PAGE_SIZE || compressed_size > PAGE_SIZE)
589 return false;
590
591 /* Inline extents are limited to sectorsize. */
592 if (size > fs_info->sectorsize)
593 return false;
594
595 /* We do not allow a non-compressed extent to be as large as block size. */
596 if (data_len >= fs_info->sectorsize)
597 return false;
598
599 /* We cannot exceed the maximum inline data size. */
600 if (data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
601 return false;
602
603 /* We cannot exceed the user specified max_inline size. */
604 if (data_len > fs_info->max_inline)
605 return false;
606
607 /* Inline extents must be the entirety of the file. */
608 if (size < i_size_read(&inode->vfs_inode))
609 return false;
610
611 /* Encrypted file cannot be inlined. */
612 if (IS_ENCRYPTED(&inode->vfs_inode))
613 return false;
614
615 return true;
616}
617
618/*
619 * conditionally insert an inline extent into the file. This
620 * does the checks required to make sure the data is small enough
621 * to fit as an inline extent.
622 *
623 * If being used directly, you must have already checked we're allowed to cow
624 * the range by getting true from can_cow_file_range_inline().
625 */
626static noinline int __cow_file_range_inline(struct btrfs_inode *inode,
627 u64 size, size_t compressed_size,
628 int compress_type,
629 struct folio *compressed_folio,
630 bool update_i_size)
631{
632 struct btrfs_drop_extents_args drop_args = { 0 };
633 struct btrfs_root *root = inode->root;
634 struct btrfs_fs_info *fs_info = root->fs_info;
635 struct btrfs_trans_handle *trans = NULL;
636 u64 data_len = (compressed_size ?: size);
637 int ret;
638 struct btrfs_path *path;
639
640 path = btrfs_alloc_path();
641 if (!path) {
642 ret = -ENOMEM;
643 goto out;
644 }
645
646 trans = btrfs_join_transaction(root);
647 if (IS_ERR(trans)) {
648 ret = PTR_ERR(trans);
649 trans = NULL;
650 goto out;
651 }
652 trans->block_rsv = &inode->block_rsv;
653
654 drop_args.path = path;
655 drop_args.start = 0;
656 drop_args.end = fs_info->sectorsize;
657 drop_args.drop_cache = true;
658 drop_args.replace_extent = true;
659 drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(data_len);
660 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
661 if (unlikely(ret)) {
662 btrfs_abort_transaction(trans, ret);
663 goto out;
664 }
665
666 ret = insert_inline_extent(trans, path, inode, drop_args.extent_inserted,
667 size, compressed_size, compress_type,
668 compressed_folio, update_i_size);
669 if (unlikely(ret && ret != -ENOSPC)) {
670 btrfs_abort_transaction(trans, ret);
671 goto out;
672 } else if (ret == -ENOSPC) {
673 ret = 1;
674 goto out;
675 }
676
677 btrfs_update_inode_bytes(inode, size, drop_args.bytes_found);
678 ret = btrfs_update_inode(trans, inode);
679 if (unlikely(ret && ret != -ENOSPC)) {
680 btrfs_abort_transaction(trans, ret);
681 goto out;
682 } else if (ret == -ENOSPC) {
683 ret = 1;
684 goto out;
685 }
686
687 btrfs_set_inode_full_sync(inode);
688out:
689 /*
690 * Don't forget to free the reserved space, as for inlined extent
691 * it won't count as data extent, free them directly here.
692 * And at reserve time, it's always aligned to page size, so
693 * just free one page here.
694 *
695 * If we fallback to non-inline (ret == 1) due to -ENOSPC, then we need
696 * to keep the data reservation.
697 */
698 if (ret <= 0)
699 btrfs_qgroup_free_data(inode, NULL, 0, fs_info->sectorsize, NULL);
700 btrfs_free_path(path);
701 if (trans)
702 btrfs_end_transaction(trans);
703 return ret;
704}
705
706static noinline int cow_file_range_inline(struct btrfs_inode *inode,
707 struct folio *locked_folio,
708 u64 offset, u64 end,
709 size_t compressed_size,
710 int compress_type,
711 struct folio *compressed_folio,
712 bool update_i_size)
713{
714 struct extent_state *cached = NULL;
715 unsigned long clear_flags = EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
716 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING | EXTENT_LOCKED;
717 u64 size = min_t(u64, i_size_read(&inode->vfs_inode), end + 1);
718 int ret;
719
720 if (!can_cow_file_range_inline(inode, offset, size, compressed_size))
721 return 1;
722
723 btrfs_lock_extent(&inode->io_tree, offset, end, &cached);
724 ret = __cow_file_range_inline(inode, size, compressed_size,
725 compress_type, compressed_folio,
726 update_i_size);
727 if (ret > 0) {
728 btrfs_unlock_extent(&inode->io_tree, offset, end, &cached);
729 return ret;
730 }
731
732 /*
733 * In the successful case (ret == 0 here), cow_file_range will return 1.
734 *
735 * Quite a bit further up the callstack in extent_writepage(), ret == 1
736 * is treated as a short circuited success and does not unlock the folio,
737 * so we must do it here.
738 *
739 * In the failure case, the locked_folio does get unlocked by
740 * btrfs_folio_end_all_writers, which asserts that it is still locked
741 * at that point, so we must *not* unlock it here.
742 *
743 * The other two callsites in compress_file_range do not have a
744 * locked_folio, so they are not relevant to this logic.
745 */
746 if (ret == 0)
747 locked_folio = NULL;
748
749 extent_clear_unlock_delalloc(inode, offset, end, locked_folio, &cached,
750 clear_flags, PAGE_UNLOCK |
751 PAGE_START_WRITEBACK | PAGE_END_WRITEBACK);
752 return ret;
753}
754
755struct async_extent {
756 u64 start;
757 u64 ram_size;
758 u64 compressed_size;
759 struct folio **folios;
760 unsigned long nr_folios;
761 int compress_type;
762 struct list_head list;
763};
764
765struct async_chunk {
766 struct btrfs_inode *inode;
767 struct folio *locked_folio;
768 u64 start;
769 u64 end;
770 blk_opf_t write_flags;
771 struct list_head extents;
772 struct cgroup_subsys_state *blkcg_css;
773 struct btrfs_work work;
774 struct async_cow *async_cow;
775};
776
777struct async_cow {
778 atomic_t num_chunks;
779 struct async_chunk chunks[];
780};
781
782static noinline int add_async_extent(struct async_chunk *cow,
783 u64 start, u64 ram_size,
784 u64 compressed_size,
785 struct folio **folios,
786 unsigned long nr_folios,
787 int compress_type)
788{
789 struct async_extent *async_extent;
790
791 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
792 if (!async_extent)
793 return -ENOMEM;
794 async_extent->start = start;
795 async_extent->ram_size = ram_size;
796 async_extent->compressed_size = compressed_size;
797 async_extent->folios = folios;
798 async_extent->nr_folios = nr_folios;
799 async_extent->compress_type = compress_type;
800 list_add_tail(&async_extent->list, &cow->extents);
801 return 0;
802}
803
804/*
805 * Check if the inode needs to be submitted to compression, based on mount
806 * options, defragmentation, properties or heuristics.
807 */
808static inline int inode_need_compress(struct btrfs_inode *inode, u64 start,
809 u64 end)
810{
811 struct btrfs_fs_info *fs_info = inode->root->fs_info;
812
813 if (!btrfs_inode_can_compress(inode)) {
814 DEBUG_WARN("BTRFS: unexpected compression for ino %llu", btrfs_ino(inode));
815 return 0;
816 }
817
818 /* Defrag ioctl takes precedence over mount options and properties. */
819 if (inode->defrag_compress == BTRFS_DEFRAG_DONT_COMPRESS)
820 return 0;
821 if (BTRFS_COMPRESS_NONE < inode->defrag_compress &&
822 inode->defrag_compress < BTRFS_NR_COMPRESS_TYPES)
823 return 1;
824 /* force compress */
825 if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
826 return 1;
827 /* bad compression ratios */
828 if (inode->flags & BTRFS_INODE_NOCOMPRESS)
829 return 0;
830 if (btrfs_test_opt(fs_info, COMPRESS) ||
831 inode->flags & BTRFS_INODE_COMPRESS ||
832 inode->prop_compress)
833 return btrfs_compress_heuristic(inode, start, end);
834 return 0;
835}
836
837static inline void inode_should_defrag(struct btrfs_inode *inode,
838 u64 start, u64 end, u64 num_bytes, u32 small_write)
839{
840 /* If this is a small write inside eof, kick off a defrag */
841 if (num_bytes < small_write &&
842 (start > 0 || end + 1 < inode->disk_i_size))
843 btrfs_add_inode_defrag(inode, small_write);
844}
845
846static int extent_range_clear_dirty_for_io(struct btrfs_inode *inode, u64 start, u64 end)
847{
848 const pgoff_t end_index = end >> PAGE_SHIFT;
849 struct folio *folio;
850 int ret = 0;
851
852 for (pgoff_t index = start >> PAGE_SHIFT; index <= end_index; index++) {
853 folio = filemap_get_folio(inode->vfs_inode.i_mapping, index);
854 if (IS_ERR(folio)) {
855 if (!ret)
856 ret = PTR_ERR(folio);
857 continue;
858 }
859 btrfs_folio_clamp_clear_dirty(inode->root->fs_info, folio, start,
860 end + 1 - start);
861 folio_put(folio);
862 }
863 return ret;
864}
865
866/*
867 * Work queue call back to started compression on a file and pages.
868 *
869 * This is done inside an ordered work queue, and the compression is spread
870 * across many cpus. The actual IO submission is step two, and the ordered work
871 * queue takes care of making sure that happens in the same order things were
872 * put onto the queue by writepages and friends.
873 *
874 * If this code finds it can't get good compression, it puts an entry onto the
875 * work queue to write the uncompressed bytes. This makes sure that both
876 * compressed inodes and uncompressed inodes are written in the same order that
877 * the flusher thread sent them down.
878 */
879static void compress_file_range(struct btrfs_work *work)
880{
881 struct async_chunk *async_chunk =
882 container_of(work, struct async_chunk, work);
883 struct btrfs_inode *inode = async_chunk->inode;
884 struct btrfs_fs_info *fs_info = inode->root->fs_info;
885 struct address_space *mapping = inode->vfs_inode.i_mapping;
886 const u32 min_folio_shift = PAGE_SHIFT + fs_info->block_min_order;
887 const u32 min_folio_size = btrfs_min_folio_size(fs_info);
888 u64 blocksize = fs_info->sectorsize;
889 u64 start = async_chunk->start;
890 u64 end = async_chunk->end;
891 u64 actual_end;
892 u64 i_size;
893 int ret = 0;
894 struct folio **folios = NULL;
895 unsigned long nr_folios;
896 unsigned long total_compressed = 0;
897 unsigned long total_in = 0;
898 unsigned int loff;
899 int i;
900 int compress_type = fs_info->compress_type;
901 int compress_level = fs_info->compress_level;
902
903 if (unlikely(btrfs_is_shutdown(fs_info)))
904 goto cleanup_and_bail_uncompressed;
905
906 inode_should_defrag(inode, start, end, end - start + 1, SZ_16K);
907
908 /*
909 * We need to call clear_page_dirty_for_io on each page in the range.
910 * Otherwise applications with the file mmap'd can wander in and change
911 * the page contents while we are compressing them.
912 */
913 ret = extent_range_clear_dirty_for_io(inode, start, end);
914
915 /*
916 * All the folios should have been locked thus no failure.
917 *
918 * And even if some folios are missing, btrfs_compress_folios()
919 * would handle them correctly, so here just do an ASSERT() check for
920 * early logic errors.
921 */
922 ASSERT(ret == 0);
923
924 /*
925 * We need to save i_size before now because it could change in between
926 * us evaluating the size and assigning it. This is because we lock and
927 * unlock the page in truncate and fallocate, and then modify the i_size
928 * later on.
929 *
930 * The barriers are to emulate READ_ONCE, remove that once i_size_read
931 * does that for us.
932 */
933 barrier();
934 i_size = i_size_read(&inode->vfs_inode);
935 barrier();
936 actual_end = min_t(u64, i_size, end + 1);
937again:
938 folios = NULL;
939 nr_folios = (end >> min_folio_shift) - (start >> min_folio_shift) + 1;
940 nr_folios = min_t(unsigned long, nr_folios, BTRFS_MAX_COMPRESSED >> min_folio_shift);
941
942 /*
943 * we don't want to send crud past the end of i_size through
944 * compression, that's just a waste of CPU time. So, if the
945 * end of the file is before the start of our current
946 * requested range of bytes, we bail out to the uncompressed
947 * cleanup code that can deal with all of this.
948 *
949 * It isn't really the fastest way to fix things, but this is a
950 * very uncommon corner.
951 */
952 if (actual_end <= start)
953 goto cleanup_and_bail_uncompressed;
954
955 total_compressed = actual_end - start;
956
957 /*
958 * Skip compression for a small file range(<=blocksize) that
959 * isn't an inline extent, since it doesn't save disk space at all.
960 */
961 if (total_compressed <= blocksize &&
962 (start > 0 || end + 1 < inode->disk_i_size))
963 goto cleanup_and_bail_uncompressed;
964
965 total_compressed = min_t(unsigned long, total_compressed,
966 BTRFS_MAX_UNCOMPRESSED);
967 total_in = 0;
968 ret = 0;
969
970 /*
971 * We do compression for mount -o compress and when the inode has not
972 * been flagged as NOCOMPRESS. This flag can change at any time if we
973 * discover bad compression ratios.
974 */
975 if (!inode_need_compress(inode, start, end))
976 goto cleanup_and_bail_uncompressed;
977
978 folios = kcalloc(nr_folios, sizeof(struct folio *), GFP_NOFS);
979 if (!folios) {
980 /*
981 * Memory allocation failure is not a fatal error, we can fall
982 * back to uncompressed code.
983 */
984 goto cleanup_and_bail_uncompressed;
985 }
986
987 if (0 < inode->defrag_compress && inode->defrag_compress < BTRFS_NR_COMPRESS_TYPES) {
988 compress_type = inode->defrag_compress;
989 compress_level = inode->defrag_compress_level;
990 } else if (inode->prop_compress) {
991 compress_type = inode->prop_compress;
992 }
993
994 /* Compression level is applied here. */
995 ret = btrfs_compress_folios(compress_type, compress_level,
996 inode, start, folios, &nr_folios, &total_in,
997 &total_compressed);
998 if (ret)
999 goto mark_incompressible;
1000
1001 /*
1002 * Zero the tail end of the last folio, as we might be sending it down
1003 * to disk.
1004 */
1005 loff = (total_compressed & (min_folio_size - 1));
1006 if (loff)
1007 folio_zero_range(folios[nr_folios - 1], loff, min_folio_size - loff);
1008
1009 /*
1010 * Try to create an inline extent.
1011 *
1012 * If we didn't compress the entire range, try to create an uncompressed
1013 * inline extent, else a compressed one.
1014 *
1015 * Check cow_file_range() for why we don't even try to create inline
1016 * extent for the subpage case.
1017 */
1018 if (total_in < actual_end)
1019 ret = cow_file_range_inline(inode, NULL, start, end, 0,
1020 BTRFS_COMPRESS_NONE, NULL, false);
1021 else
1022 ret = cow_file_range_inline(inode, NULL, start, end, total_compressed,
1023 compress_type, folios[0], false);
1024 if (ret <= 0) {
1025 if (ret < 0)
1026 mapping_set_error(mapping, -EIO);
1027 goto free_pages;
1028 }
1029
1030 /*
1031 * We aren't doing an inline extent. Round the compressed size up to a
1032 * block size boundary so the allocator does sane things.
1033 */
1034 total_compressed = ALIGN(total_compressed, blocksize);
1035
1036 /*
1037 * One last check to make sure the compression is really a win, compare
1038 * the page count read with the blocks on disk, compression must free at
1039 * least one sector.
1040 */
1041 total_in = round_up(total_in, fs_info->sectorsize);
1042 if (total_compressed + blocksize > total_in)
1043 goto mark_incompressible;
1044
1045 /*
1046 * The async work queues will take care of doing actual allocation on
1047 * disk for these compressed pages, and will submit the bios.
1048 */
1049 ret = add_async_extent(async_chunk, start, total_in, total_compressed, folios,
1050 nr_folios, compress_type);
1051 BUG_ON(ret);
1052 if (start + total_in < end) {
1053 start += total_in;
1054 cond_resched();
1055 goto again;
1056 }
1057 return;
1058
1059mark_incompressible:
1060 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && !inode->prop_compress)
1061 inode->flags |= BTRFS_INODE_NOCOMPRESS;
1062cleanup_and_bail_uncompressed:
1063 ret = add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0,
1064 BTRFS_COMPRESS_NONE);
1065 BUG_ON(ret);
1066free_pages:
1067 if (folios) {
1068 for (i = 0; i < nr_folios; i++) {
1069 WARN_ON(folios[i]->mapping);
1070 btrfs_free_compr_folio(folios[i]);
1071 }
1072 kfree(folios);
1073 }
1074}
1075
1076static void free_async_extent_pages(struct async_extent *async_extent)
1077{
1078 int i;
1079
1080 if (!async_extent->folios)
1081 return;
1082
1083 for (i = 0; i < async_extent->nr_folios; i++) {
1084 WARN_ON(async_extent->folios[i]->mapping);
1085 btrfs_free_compr_folio(async_extent->folios[i]);
1086 }
1087 kfree(async_extent->folios);
1088 async_extent->nr_folios = 0;
1089 async_extent->folios = NULL;
1090}
1091
1092static void submit_uncompressed_range(struct btrfs_inode *inode,
1093 struct async_extent *async_extent,
1094 struct folio *locked_folio)
1095{
1096 u64 start = async_extent->start;
1097 u64 end = async_extent->start + async_extent->ram_size - 1;
1098 int ret;
1099 struct writeback_control wbc = {
1100 .sync_mode = WB_SYNC_ALL,
1101 .range_start = start,
1102 .range_end = end,
1103 .no_cgroup_owner = 1,
1104 };
1105
1106 wbc_attach_fdatawrite_inode(&wbc, &inode->vfs_inode);
1107 ret = run_delalloc_cow(inode, locked_folio, start, end,
1108 &wbc, false);
1109 wbc_detach_inode(&wbc);
1110 if (ret < 0) {
1111 if (locked_folio)
1112 btrfs_folio_end_lock(inode->root->fs_info, locked_folio,
1113 start, async_extent->ram_size);
1114 btrfs_err_rl(inode->root->fs_info,
1115 "%s failed, root=%llu inode=%llu start=%llu len=%llu: %d",
1116 __func__, btrfs_root_id(inode->root),
1117 btrfs_ino(inode), start, async_extent->ram_size, ret);
1118 }
1119}
1120
1121static void submit_one_async_extent(struct async_chunk *async_chunk,
1122 struct async_extent *async_extent,
1123 u64 *alloc_hint)
1124{
1125 struct btrfs_inode *inode = async_chunk->inode;
1126 struct extent_io_tree *io_tree = &inode->io_tree;
1127 struct btrfs_root *root = inode->root;
1128 struct btrfs_fs_info *fs_info = root->fs_info;
1129 struct btrfs_ordered_extent *ordered;
1130 struct btrfs_file_extent file_extent;
1131 struct btrfs_key ins;
1132 struct folio *locked_folio = NULL;
1133 struct extent_state *cached = NULL;
1134 struct extent_map *em;
1135 int ret = 0;
1136 bool free_pages = false;
1137 u64 start = async_extent->start;
1138 u64 end = async_extent->start + async_extent->ram_size - 1;
1139
1140 if (async_chunk->blkcg_css)
1141 kthread_associate_blkcg(async_chunk->blkcg_css);
1142
1143 /*
1144 * If async_chunk->locked_folio is in the async_extent range, we need to
1145 * handle it.
1146 */
1147 if (async_chunk->locked_folio) {
1148 u64 locked_folio_start = folio_pos(async_chunk->locked_folio);
1149 u64 locked_folio_end = locked_folio_start +
1150 folio_size(async_chunk->locked_folio) - 1;
1151
1152 if (!(start >= locked_folio_end || end <= locked_folio_start))
1153 locked_folio = async_chunk->locked_folio;
1154 }
1155
1156 if (async_extent->compress_type == BTRFS_COMPRESS_NONE) {
1157 ASSERT(!async_extent->folios);
1158 ASSERT(async_extent->nr_folios == 0);
1159 submit_uncompressed_range(inode, async_extent, locked_folio);
1160 free_pages = true;
1161 goto done;
1162 }
1163
1164 ret = btrfs_reserve_extent(root, async_extent->ram_size,
1165 async_extent->compressed_size,
1166 async_extent->compressed_size,
1167 0, *alloc_hint, &ins, true, true);
1168 if (ret) {
1169 /*
1170 * We can't reserve contiguous space for the compressed size.
1171 * Unlikely, but it's possible that we could have enough
1172 * non-contiguous space for the uncompressed size instead. So
1173 * fall back to uncompressed.
1174 */
1175 submit_uncompressed_range(inode, async_extent, locked_folio);
1176 free_pages = true;
1177 goto done;
1178 }
1179
1180 btrfs_lock_extent(io_tree, start, end, &cached);
1181
1182 /* Here we're doing allocation and writeback of the compressed pages */
1183 file_extent.disk_bytenr = ins.objectid;
1184 file_extent.disk_num_bytes = ins.offset;
1185 file_extent.ram_bytes = async_extent->ram_size;
1186 file_extent.num_bytes = async_extent->ram_size;
1187 file_extent.offset = 0;
1188 file_extent.compression = async_extent->compress_type;
1189
1190 em = btrfs_create_io_em(inode, start, &file_extent, BTRFS_ORDERED_COMPRESSED);
1191 if (IS_ERR(em)) {
1192 ret = PTR_ERR(em);
1193 goto out_free_reserve;
1194 }
1195 btrfs_free_extent_map(em);
1196
1197 ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent,
1198 1U << BTRFS_ORDERED_COMPRESSED);
1199 if (IS_ERR(ordered)) {
1200 btrfs_drop_extent_map_range(inode, start, end, false);
1201 ret = PTR_ERR(ordered);
1202 goto out_free_reserve;
1203 }
1204 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1205
1206 /* Clear dirty, set writeback and unlock the pages. */
1207 extent_clear_unlock_delalloc(inode, start, end,
1208 NULL, &cached, EXTENT_LOCKED | EXTENT_DELALLOC,
1209 PAGE_UNLOCK | PAGE_START_WRITEBACK);
1210 btrfs_submit_compressed_write(ordered,
1211 async_extent->folios, /* compressed_folios */
1212 async_extent->nr_folios,
1213 async_chunk->write_flags, true);
1214 *alloc_hint = ins.objectid + ins.offset;
1215done:
1216 if (async_chunk->blkcg_css)
1217 kthread_associate_blkcg(NULL);
1218 if (free_pages)
1219 free_async_extent_pages(async_extent);
1220 kfree(async_extent);
1221 return;
1222
1223out_free_reserve:
1224 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1225 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, true);
1226 mapping_set_error(inode->vfs_inode.i_mapping, -EIO);
1227 extent_clear_unlock_delalloc(inode, start, end,
1228 NULL, &cached,
1229 EXTENT_LOCKED | EXTENT_DELALLOC |
1230 EXTENT_DELALLOC_NEW |
1231 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
1232 PAGE_UNLOCK | PAGE_START_WRITEBACK |
1233 PAGE_END_WRITEBACK);
1234 free_async_extent_pages(async_extent);
1235 if (async_chunk->blkcg_css)
1236 kthread_associate_blkcg(NULL);
1237 btrfs_debug(fs_info,
1238"async extent submission failed root=%lld inode=%llu start=%llu len=%llu ret=%d",
1239 btrfs_root_id(root), btrfs_ino(inode), start,
1240 async_extent->ram_size, ret);
1241 kfree(async_extent);
1242}
1243
1244u64 btrfs_get_extent_allocation_hint(struct btrfs_inode *inode, u64 start,
1245 u64 num_bytes)
1246{
1247 struct extent_map_tree *em_tree = &inode->extent_tree;
1248 struct extent_map *em;
1249 u64 alloc_hint = 0;
1250
1251 read_lock(&em_tree->lock);
1252 em = btrfs_search_extent_mapping(em_tree, start, num_bytes);
1253 if (em) {
1254 /*
1255 * if block start isn't an actual block number then find the
1256 * first block in this inode and use that as a hint. If that
1257 * block is also bogus then just don't worry about it.
1258 */
1259 if (em->disk_bytenr >= EXTENT_MAP_LAST_BYTE) {
1260 btrfs_free_extent_map(em);
1261 em = btrfs_search_extent_mapping(em_tree, 0, 0);
1262 if (em && em->disk_bytenr < EXTENT_MAP_LAST_BYTE)
1263 alloc_hint = btrfs_extent_map_block_start(em);
1264 if (em)
1265 btrfs_free_extent_map(em);
1266 } else {
1267 alloc_hint = btrfs_extent_map_block_start(em);
1268 btrfs_free_extent_map(em);
1269 }
1270 }
1271 read_unlock(&em_tree->lock);
1272
1273 return alloc_hint;
1274}
1275
1276/*
1277 * when extent_io.c finds a delayed allocation range in the file,
1278 * the call backs end up in this code. The basic idea is to
1279 * allocate extents on disk for the range, and create ordered data structs
1280 * in ram to track those extents.
1281 *
1282 * locked_folio is the folio that writepage had locked already. We use
1283 * it to make sure we don't do extra locks or unlocks.
1284 *
1285 * When this function fails, it unlocks all folios except @locked_folio.
1286 *
1287 * When this function successfully creates an inline extent, it returns 1 and
1288 * unlocks all folios including locked_folio and starts I/O on them.
1289 * (In reality inline extents are limited to a single block, so locked_folio is
1290 * the only folio handled anyway).
1291 *
1292 * When this function succeed and creates a normal extent, the folio locking
1293 * status depends on the passed in flags:
1294 *
1295 * - If COW_FILE_RANGE_KEEP_LOCKED flag is set, all folios are kept locked.
1296 * - Else all folios except for @locked_folio are unlocked.
1297 *
1298 * When a failure happens in the second or later iteration of the
1299 * while-loop, the ordered extents created in previous iterations are cleaned up.
1300 */
1301static noinline int cow_file_range(struct btrfs_inode *inode,
1302 struct folio *locked_folio, u64 start,
1303 u64 end, u64 *done_offset,
1304 unsigned long flags)
1305{
1306 struct btrfs_root *root = inode->root;
1307 struct btrfs_fs_info *fs_info = root->fs_info;
1308 struct extent_state *cached = NULL;
1309 u64 alloc_hint = 0;
1310 u64 orig_start = start;
1311 u64 num_bytes;
1312 u64 cur_alloc_size = 0;
1313 u64 min_alloc_size;
1314 u64 blocksize = fs_info->sectorsize;
1315 struct btrfs_key ins;
1316 struct extent_map *em;
1317 unsigned clear_bits;
1318 unsigned long page_ops;
1319 int ret = 0;
1320
1321 if (unlikely(btrfs_is_shutdown(fs_info))) {
1322 ret = -EIO;
1323 goto out_unlock;
1324 }
1325
1326 if (btrfs_is_free_space_inode(inode)) {
1327 ret = -EINVAL;
1328 goto out_unlock;
1329 }
1330
1331 num_bytes = ALIGN(end - start + 1, blocksize);
1332 num_bytes = max(blocksize, num_bytes);
1333 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
1334
1335 inode_should_defrag(inode, start, end, num_bytes, SZ_64K);
1336
1337 if (!(flags & COW_FILE_RANGE_NO_INLINE)) {
1338 /* lets try to make an inline extent */
1339 ret = cow_file_range_inline(inode, locked_folio, start, end, 0,
1340 BTRFS_COMPRESS_NONE, NULL, false);
1341 if (ret <= 0) {
1342 /*
1343 * We succeeded, return 1 so the caller knows we're done
1344 * with this page and already handled the IO.
1345 *
1346 * If there was an error then cow_file_range_inline() has
1347 * already done the cleanup.
1348 */
1349 if (ret == 0)
1350 ret = 1;
1351 goto done;
1352 }
1353 }
1354
1355 alloc_hint = btrfs_get_extent_allocation_hint(inode, start, num_bytes);
1356
1357 /*
1358 * We're not doing compressed IO, don't unlock the first page (which
1359 * the caller expects to stay locked), don't clear any dirty bits and
1360 * don't set any writeback bits.
1361 *
1362 * Do set the Ordered (Private2) bit so we know this page was properly
1363 * setup for writepage.
1364 */
1365 page_ops = ((flags & COW_FILE_RANGE_KEEP_LOCKED) ? 0 : PAGE_UNLOCK);
1366 page_ops |= PAGE_SET_ORDERED;
1367
1368 /*
1369 * Relocation relies on the relocated extents to have exactly the same
1370 * size as the original extents. Normally writeback for relocation data
1371 * extents follows a NOCOW path because relocation preallocates the
1372 * extents. However, due to an operation such as scrub turning a block
1373 * group to RO mode, it may fallback to COW mode, so we must make sure
1374 * an extent allocated during COW has exactly the requested size and can
1375 * not be split into smaller extents, otherwise relocation breaks and
1376 * fails during the stage where it updates the bytenr of file extent
1377 * items.
1378 */
1379 if (btrfs_is_data_reloc_root(root))
1380 min_alloc_size = num_bytes;
1381 else
1382 min_alloc_size = fs_info->sectorsize;
1383
1384 while (num_bytes > 0) {
1385 struct btrfs_ordered_extent *ordered;
1386 struct btrfs_file_extent file_extent;
1387
1388 ret = btrfs_reserve_extent(root, num_bytes, num_bytes,
1389 min_alloc_size, 0, alloc_hint,
1390 &ins, true, true);
1391 if (ret == -EAGAIN) {
1392 /*
1393 * btrfs_reserve_extent only returns -EAGAIN for zoned
1394 * file systems, which is an indication that there are
1395 * no active zones to allocate from at the moment.
1396 *
1397 * If this is the first loop iteration, wait for at
1398 * least one zone to finish before retrying the
1399 * allocation. Otherwise ask the caller to write out
1400 * the already allocated blocks before coming back to
1401 * us, or return -ENOSPC if it can't handle retries.
1402 */
1403 ASSERT(btrfs_is_zoned(fs_info));
1404 if (start == orig_start) {
1405 wait_on_bit_io(&inode->root->fs_info->flags,
1406 BTRFS_FS_NEED_ZONE_FINISH,
1407 TASK_UNINTERRUPTIBLE);
1408 continue;
1409 }
1410 if (done_offset) {
1411 /*
1412 * Move @end to the end of the processed range,
1413 * and exit the loop to unlock the processed extents.
1414 */
1415 end = start - 1;
1416 ret = 0;
1417 break;
1418 }
1419 ret = -ENOSPC;
1420 }
1421 if (ret < 0)
1422 goto out_unlock;
1423 cur_alloc_size = ins.offset;
1424
1425 file_extent.disk_bytenr = ins.objectid;
1426 file_extent.disk_num_bytes = ins.offset;
1427 file_extent.num_bytes = ins.offset;
1428 file_extent.ram_bytes = ins.offset;
1429 file_extent.offset = 0;
1430 file_extent.compression = BTRFS_COMPRESS_NONE;
1431
1432 /*
1433 * Locked range will be released either during error clean up or
1434 * after the whole range is finished.
1435 */
1436 btrfs_lock_extent(&inode->io_tree, start, start + cur_alloc_size - 1,
1437 &cached);
1438
1439 em = btrfs_create_io_em(inode, start, &file_extent,
1440 BTRFS_ORDERED_REGULAR);
1441 if (IS_ERR(em)) {
1442 btrfs_unlock_extent(&inode->io_tree, start,
1443 start + cur_alloc_size - 1, &cached);
1444 ret = PTR_ERR(em);
1445 goto out_reserve;
1446 }
1447 btrfs_free_extent_map(em);
1448
1449 ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent,
1450 1U << BTRFS_ORDERED_REGULAR);
1451 if (IS_ERR(ordered)) {
1452 btrfs_unlock_extent(&inode->io_tree, start,
1453 start + cur_alloc_size - 1, &cached);
1454 ret = PTR_ERR(ordered);
1455 goto out_drop_extent_cache;
1456 }
1457
1458 if (btrfs_is_data_reloc_root(root)) {
1459 ret = btrfs_reloc_clone_csums(ordered);
1460
1461 /*
1462 * Only drop cache here, and process as normal.
1463 *
1464 * We must not allow extent_clear_unlock_delalloc()
1465 * at out_unlock label to free meta of this ordered
1466 * extent, as its meta should be freed by
1467 * btrfs_finish_ordered_io().
1468 *
1469 * So we must continue until @start is increased to
1470 * skip current ordered extent.
1471 */
1472 if (ret)
1473 btrfs_drop_extent_map_range(inode, start,
1474 start + cur_alloc_size - 1,
1475 false);
1476 }
1477 btrfs_put_ordered_extent(ordered);
1478
1479 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1480
1481 if (num_bytes < cur_alloc_size)
1482 num_bytes = 0;
1483 else
1484 num_bytes -= cur_alloc_size;
1485 alloc_hint = ins.objectid + ins.offset;
1486 start += cur_alloc_size;
1487 cur_alloc_size = 0;
1488
1489 /*
1490 * btrfs_reloc_clone_csums() error, since start is increased
1491 * extent_clear_unlock_delalloc() at out_unlock label won't
1492 * free metadata of current ordered extent, we're OK to exit.
1493 */
1494 if (ret)
1495 goto out_unlock;
1496 }
1497 extent_clear_unlock_delalloc(inode, orig_start, end, locked_folio, &cached,
1498 EXTENT_LOCKED | EXTENT_DELALLOC, page_ops);
1499done:
1500 if (done_offset)
1501 *done_offset = end;
1502 return ret;
1503
1504out_drop_extent_cache:
1505 btrfs_drop_extent_map_range(inode, start, start + cur_alloc_size - 1, false);
1506out_reserve:
1507 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1508 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, true);
1509out_unlock:
1510 /*
1511 * Now, we have three regions to clean up:
1512 *
1513 * |-------(1)----|---(2)---|-------------(3)----------|
1514 * `- orig_start `- start `- start + cur_alloc_size `- end
1515 *
1516 * We process each region below.
1517 */
1518
1519 /*
1520 * For the range (1). We have already instantiated the ordered extents
1521 * for this region, thus we need to cleanup those ordered extents.
1522 * EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV
1523 * are also handled by the ordered extents cleanup.
1524 *
1525 * So here we only clear EXTENT_LOCKED and EXTENT_DELALLOC flag, and
1526 * finish the writeback of the involved folios, which will be never submitted.
1527 */
1528 if (orig_start < start) {
1529 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC;
1530 page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK;
1531
1532 if (!locked_folio)
1533 mapping_set_error(inode->vfs_inode.i_mapping, ret);
1534
1535 btrfs_cleanup_ordered_extents(inode, orig_start, start - orig_start);
1536 extent_clear_unlock_delalloc(inode, orig_start, start - 1,
1537 locked_folio, NULL, clear_bits, page_ops);
1538 }
1539
1540 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1541 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1542 page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK;
1543
1544 /*
1545 * For the range (2). If we reserved an extent for our delalloc range
1546 * (or a subrange) and failed to create the respective ordered extent,
1547 * then it means that when we reserved the extent we decremented the
1548 * extent's size from the data space_info's bytes_may_use counter and
1549 * incremented the space_info's bytes_reserved counter by the same
1550 * amount. We must make sure extent_clear_unlock_delalloc() does not try
1551 * to decrement again the data space_info's bytes_may_use counter,
1552 * therefore we do not pass it the flag EXTENT_CLEAR_DATA_RESV.
1553 */
1554 if (cur_alloc_size) {
1555 extent_clear_unlock_delalloc(inode, start,
1556 start + cur_alloc_size - 1,
1557 locked_folio, &cached, clear_bits,
1558 page_ops);
1559 btrfs_qgroup_free_data(inode, NULL, start, cur_alloc_size, NULL);
1560 }
1561
1562 /*
1563 * For the range (3). We never touched the region. In addition to the
1564 * clear_bits above, we add EXTENT_CLEAR_DATA_RESV to release the data
1565 * space_info's bytes_may_use counter, reserved in
1566 * btrfs_check_data_free_space().
1567 */
1568 if (start + cur_alloc_size < end) {
1569 clear_bits |= EXTENT_CLEAR_DATA_RESV;
1570 extent_clear_unlock_delalloc(inode, start + cur_alloc_size,
1571 end, locked_folio,
1572 &cached, clear_bits, page_ops);
1573 btrfs_qgroup_free_data(inode, NULL, start + cur_alloc_size,
1574 end - start - cur_alloc_size + 1, NULL);
1575 }
1576 btrfs_err(fs_info,
1577"%s failed, root=%llu inode=%llu start=%llu len=%llu cur_offset=%llu cur_alloc_size=%llu: %d",
1578 __func__, btrfs_root_id(inode->root),
1579 btrfs_ino(inode), orig_start, end + 1 - orig_start,
1580 start, cur_alloc_size, ret);
1581 return ret;
1582}
1583
1584/*
1585 * Phase two of compressed writeback. This is the ordered portion of the code,
1586 * which only gets called in the order the work was queued. We walk all the
1587 * async extents created by compress_file_range and send them down to the disk.
1588 *
1589 * If called with @do_free == true then it'll try to finish the work and free
1590 * the work struct eventually.
1591 */
1592static noinline void submit_compressed_extents(struct btrfs_work *work, bool do_free)
1593{
1594 struct async_chunk *async_chunk = container_of(work, struct async_chunk,
1595 work);
1596 struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
1597 struct async_extent *async_extent;
1598 unsigned long nr_pages;
1599 u64 alloc_hint = 0;
1600
1601 if (do_free) {
1602 struct async_cow *async_cow;
1603
1604 btrfs_add_delayed_iput(async_chunk->inode);
1605 if (async_chunk->blkcg_css)
1606 css_put(async_chunk->blkcg_css);
1607
1608 async_cow = async_chunk->async_cow;
1609 if (atomic_dec_and_test(&async_cow->num_chunks))
1610 kvfree(async_cow);
1611 return;
1612 }
1613
1614 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
1615 PAGE_SHIFT;
1616
1617 while (!list_empty(&async_chunk->extents)) {
1618 async_extent = list_first_entry(&async_chunk->extents,
1619 struct async_extent, list);
1620 list_del(&async_extent->list);
1621 submit_one_async_extent(async_chunk, async_extent, &alloc_hint);
1622 }
1623
1624 /* atomic_sub_return implies a barrier */
1625 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1626 5 * SZ_1M)
1627 cond_wake_up_nomb(&fs_info->async_submit_wait);
1628}
1629
1630static bool run_delalloc_compressed(struct btrfs_inode *inode,
1631 struct folio *locked_folio, u64 start,
1632 u64 end, struct writeback_control *wbc)
1633{
1634 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1635 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc);
1636 struct async_cow *ctx;
1637 struct async_chunk *async_chunk;
1638 unsigned long nr_pages;
1639 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
1640 int i;
1641 unsigned nofs_flag;
1642 const blk_opf_t write_flags = wbc_to_write_flags(wbc);
1643
1644 nofs_flag = memalloc_nofs_save();
1645 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
1646 memalloc_nofs_restore(nofs_flag);
1647 if (!ctx)
1648 return false;
1649
1650 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags);
1651
1652 async_chunk = ctx->chunks;
1653 atomic_set(&ctx->num_chunks, num_chunks);
1654
1655 for (i = 0; i < num_chunks; i++) {
1656 u64 cur_end = min(end, start + SZ_512K - 1);
1657
1658 /*
1659 * igrab is called higher up in the call chain, take only the
1660 * lightweight reference for the callback lifetime
1661 */
1662 ihold(&inode->vfs_inode);
1663 async_chunk[i].async_cow = ctx;
1664 async_chunk[i].inode = inode;
1665 async_chunk[i].start = start;
1666 async_chunk[i].end = cur_end;
1667 async_chunk[i].write_flags = write_flags;
1668 INIT_LIST_HEAD(&async_chunk[i].extents);
1669
1670 /*
1671 * The locked_folio comes all the way from writepage and its
1672 * the original folio we were actually given. As we spread
1673 * this large delalloc region across multiple async_chunk
1674 * structs, only the first struct needs a pointer to
1675 * locked_folio.
1676 *
1677 * This way we don't need racey decisions about who is supposed
1678 * to unlock it.
1679 */
1680 if (locked_folio) {
1681 /*
1682 * Depending on the compressibility, the pages might or
1683 * might not go through async. We want all of them to
1684 * be accounted against wbc once. Let's do it here
1685 * before the paths diverge. wbc accounting is used
1686 * only for foreign writeback detection and doesn't
1687 * need full accuracy. Just account the whole thing
1688 * against the first page.
1689 */
1690 wbc_account_cgroup_owner(wbc, locked_folio,
1691 cur_end - start);
1692 async_chunk[i].locked_folio = locked_folio;
1693 locked_folio = NULL;
1694 } else {
1695 async_chunk[i].locked_folio = NULL;
1696 }
1697
1698 if (blkcg_css != blkcg_root_css) {
1699 css_get(blkcg_css);
1700 async_chunk[i].blkcg_css = blkcg_css;
1701 async_chunk[i].write_flags |= REQ_BTRFS_CGROUP_PUNT;
1702 } else {
1703 async_chunk[i].blkcg_css = NULL;
1704 }
1705
1706 btrfs_init_work(&async_chunk[i].work, compress_file_range,
1707 submit_compressed_extents);
1708
1709 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
1710 atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1711
1712 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work);
1713
1714 start = cur_end + 1;
1715 }
1716 return true;
1717}
1718
1719/*
1720 * Run the delalloc range from start to end, and write back any dirty pages
1721 * covered by the range.
1722 */
1723static noinline int run_delalloc_cow(struct btrfs_inode *inode,
1724 struct folio *locked_folio, u64 start,
1725 u64 end, struct writeback_control *wbc,
1726 bool pages_dirty)
1727{
1728 u64 done_offset = end;
1729 int ret;
1730
1731 while (start <= end) {
1732 ret = cow_file_range(inode, locked_folio, start, end,
1733 &done_offset, COW_FILE_RANGE_KEEP_LOCKED);
1734 if (ret)
1735 return ret;
1736 extent_write_locked_range(&inode->vfs_inode, locked_folio,
1737 start, done_offset, wbc, pages_dirty);
1738 start = done_offset + 1;
1739 }
1740
1741 return 1;
1742}
1743
1744static int fallback_to_cow(struct btrfs_inode *inode,
1745 struct folio *locked_folio, const u64 start,
1746 const u64 end)
1747{
1748 const bool is_space_ino = btrfs_is_free_space_inode(inode);
1749 const bool is_reloc_ino = btrfs_is_data_reloc_root(inode->root);
1750 const u64 range_bytes = end + 1 - start;
1751 struct extent_io_tree *io_tree = &inode->io_tree;
1752 struct extent_state *cached_state = NULL;
1753 u64 range_start = start;
1754 u64 count;
1755 int ret;
1756
1757 /*
1758 * If EXTENT_NORESERVE is set it means that when the buffered write was
1759 * made we had not enough available data space and therefore we did not
1760 * reserve data space for it, since we though we could do NOCOW for the
1761 * respective file range (either there is prealloc extent or the inode
1762 * has the NOCOW bit set).
1763 *
1764 * However when we need to fallback to COW mode (because for example the
1765 * block group for the corresponding extent was turned to RO mode by a
1766 * scrub or relocation) we need to do the following:
1767 *
1768 * 1) We increment the bytes_may_use counter of the data space info.
1769 * If COW succeeds, it allocates a new data extent and after doing
1770 * that it decrements the space info's bytes_may_use counter and
1771 * increments its bytes_reserved counter by the same amount (we do
1772 * this at btrfs_add_reserved_bytes()). So we need to increment the
1773 * bytes_may_use counter to compensate (when space is reserved at
1774 * buffered write time, the bytes_may_use counter is incremented);
1775 *
1776 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so
1777 * that if the COW path fails for any reason, it decrements (through
1778 * extent_clear_unlock_delalloc()) the bytes_may_use counter of the
1779 * data space info, which we incremented in the step above.
1780 *
1781 * If we need to fallback to cow and the inode corresponds to a free
1782 * space cache inode or an inode of the data relocation tree, we must
1783 * also increment bytes_may_use of the data space_info for the same
1784 * reason. Space caches and relocated data extents always get a prealloc
1785 * extent for them, however scrub or balance may have set the block
1786 * group that contains that extent to RO mode and therefore force COW
1787 * when starting writeback.
1788 */
1789 btrfs_lock_extent(io_tree, start, end, &cached_state);
1790 count = btrfs_count_range_bits(io_tree, &range_start, end, range_bytes,
1791 EXTENT_NORESERVE, 0, NULL);
1792 if (count > 0 || is_space_ino || is_reloc_ino) {
1793 u64 bytes = count;
1794 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1795 struct btrfs_space_info *sinfo = fs_info->data_sinfo;
1796
1797 if (is_space_ino || is_reloc_ino)
1798 bytes = range_bytes;
1799
1800 spin_lock(&sinfo->lock);
1801 btrfs_space_info_update_bytes_may_use(sinfo, bytes);
1802 spin_unlock(&sinfo->lock);
1803
1804 if (count > 0)
1805 btrfs_clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE,
1806 &cached_state);
1807 }
1808 btrfs_unlock_extent(io_tree, start, end, &cached_state);
1809
1810 /*
1811 * Don't try to create inline extents, as a mix of inline extent that
1812 * is written out and unlocked directly and a normal NOCOW extent
1813 * doesn't work.
1814 *
1815 * And here we do not unlock the folio after a successful run.
1816 * The folios will be unlocked after everything is finished, or by error handling.
1817 *
1818 * This is to ensure error handling won't need to clear dirty/ordered flags without
1819 * a locked folio, which can race with writeback.
1820 */
1821 ret = cow_file_range(inode, locked_folio, start, end, NULL,
1822 COW_FILE_RANGE_NO_INLINE | COW_FILE_RANGE_KEEP_LOCKED);
1823 ASSERT(ret != 1);
1824 return ret;
1825}
1826
1827struct can_nocow_file_extent_args {
1828 /* Input fields. */
1829
1830 /* Start file offset of the range we want to NOCOW. */
1831 u64 start;
1832 /* End file offset (inclusive) of the range we want to NOCOW. */
1833 u64 end;
1834 bool writeback_path;
1835 /*
1836 * Free the path passed to can_nocow_file_extent() once it's not needed
1837 * anymore.
1838 */
1839 bool free_path;
1840
1841 /*
1842 * Output fields. Only set when can_nocow_file_extent() returns 1.
1843 * The expected file extent for the NOCOW write.
1844 */
1845 struct btrfs_file_extent file_extent;
1846};
1847
1848/*
1849 * Check if we can NOCOW the file extent that the path points to.
1850 * This function may return with the path released, so the caller should check
1851 * if path->nodes[0] is NULL or not if it needs to use the path afterwards.
1852 *
1853 * Returns: < 0 on error
1854 * 0 if we can not NOCOW
1855 * 1 if we can NOCOW
1856 */
1857static int can_nocow_file_extent(struct btrfs_path *path,
1858 struct btrfs_key *key,
1859 struct btrfs_inode *inode,
1860 struct can_nocow_file_extent_args *args)
1861{
1862 const bool is_freespace_inode = btrfs_is_free_space_inode(inode);
1863 struct extent_buffer *leaf = path->nodes[0];
1864 struct btrfs_root *root = inode->root;
1865 struct btrfs_file_extent_item *fi;
1866 struct btrfs_root *csum_root;
1867 u64 io_start;
1868 u64 extent_end;
1869 u8 extent_type;
1870 int can_nocow = 0;
1871 int ret = 0;
1872 bool nowait = path->nowait;
1873
1874 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
1875 extent_type = btrfs_file_extent_type(leaf, fi);
1876
1877 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
1878 goto out;
1879
1880 if (!(inode->flags & BTRFS_INODE_NODATACOW) &&
1881 extent_type == BTRFS_FILE_EXTENT_REG)
1882 goto out;
1883
1884 /*
1885 * If the extent was created before the generation where the last snapshot
1886 * for its subvolume was created, then this implies the extent is shared,
1887 * hence we must COW.
1888 */
1889 if (btrfs_file_extent_generation(leaf, fi) <=
1890 btrfs_root_last_snapshot(&root->root_item))
1891 goto out;
1892
1893 /* An explicit hole, must COW. */
1894 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0)
1895 goto out;
1896
1897 /* Compressed/encrypted/encoded extents must be COWed. */
1898 if (btrfs_file_extent_compression(leaf, fi) ||
1899 btrfs_file_extent_encryption(leaf, fi) ||
1900 btrfs_file_extent_other_encoding(leaf, fi))
1901 goto out;
1902
1903 extent_end = btrfs_file_extent_end(path);
1904
1905 args->file_extent.disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1906 args->file_extent.disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1907 args->file_extent.ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1908 args->file_extent.offset = btrfs_file_extent_offset(leaf, fi);
1909 args->file_extent.compression = btrfs_file_extent_compression(leaf, fi);
1910
1911 /*
1912 * The following checks can be expensive, as they need to take other
1913 * locks and do btree or rbtree searches, so release the path to avoid
1914 * blocking other tasks for too long.
1915 */
1916 btrfs_release_path(path);
1917
1918 ret = btrfs_cross_ref_exist(inode, key->offset - args->file_extent.offset,
1919 args->file_extent.disk_bytenr, path);
1920 WARN_ON_ONCE(ret > 0 && is_freespace_inode);
1921 if (ret != 0)
1922 goto out;
1923
1924 if (args->free_path) {
1925 /*
1926 * We don't need the path anymore, plus through the
1927 * btrfs_lookup_csums_list() call below we will end up allocating
1928 * another path. So free the path to avoid unnecessary extra
1929 * memory usage.
1930 */
1931 btrfs_free_path(path);
1932 path = NULL;
1933 }
1934
1935 /* If there are pending snapshots for this root, we must COW. */
1936 if (args->writeback_path && !is_freespace_inode &&
1937 atomic_read(&root->snapshot_force_cow))
1938 goto out;
1939
1940 args->file_extent.num_bytes = min(args->end + 1, extent_end) - args->start;
1941 args->file_extent.offset += args->start - key->offset;
1942 io_start = args->file_extent.disk_bytenr + args->file_extent.offset;
1943
1944 /*
1945 * Force COW if csums exist in the range. This ensures that csums for a
1946 * given extent are either valid or do not exist.
1947 */
1948
1949 csum_root = btrfs_csum_root(root->fs_info, io_start);
1950 ret = btrfs_lookup_csums_list(csum_root, io_start,
1951 io_start + args->file_extent.num_bytes - 1,
1952 NULL, nowait);
1953 WARN_ON_ONCE(ret > 0 && is_freespace_inode);
1954 if (ret != 0)
1955 goto out;
1956
1957 can_nocow = 1;
1958 out:
1959 if (args->free_path && path)
1960 btrfs_free_path(path);
1961
1962 return ret < 0 ? ret : can_nocow;
1963}
1964
1965static int nocow_one_range(struct btrfs_inode *inode, struct folio *locked_folio,
1966 struct extent_state **cached,
1967 struct can_nocow_file_extent_args *nocow_args,
1968 u64 file_pos, bool is_prealloc)
1969{
1970 struct btrfs_ordered_extent *ordered;
1971 const u64 len = nocow_args->file_extent.num_bytes;
1972 const u64 end = file_pos + len - 1;
1973 int ret = 0;
1974
1975 btrfs_lock_extent(&inode->io_tree, file_pos, end, cached);
1976
1977 if (is_prealloc) {
1978 struct extent_map *em;
1979
1980 em = btrfs_create_io_em(inode, file_pos, &nocow_args->file_extent,
1981 BTRFS_ORDERED_PREALLOC);
1982 if (IS_ERR(em)) {
1983 ret = PTR_ERR(em);
1984 goto error;
1985 }
1986 btrfs_free_extent_map(em);
1987 }
1988
1989 ordered = btrfs_alloc_ordered_extent(inode, file_pos, &nocow_args->file_extent,
1990 is_prealloc
1991 ? (1U << BTRFS_ORDERED_PREALLOC)
1992 : (1U << BTRFS_ORDERED_NOCOW));
1993 if (IS_ERR(ordered)) {
1994 if (is_prealloc)
1995 btrfs_drop_extent_map_range(inode, file_pos, end, false);
1996 ret = PTR_ERR(ordered);
1997 goto error;
1998 }
1999
2000 if (btrfs_is_data_reloc_root(inode->root))
2001 /*
2002 * Errors are handled later, as we must prevent
2003 * extent_clear_unlock_delalloc() in error handler from freeing
2004 * metadata of the created ordered extent.
2005 */
2006 ret = btrfs_reloc_clone_csums(ordered);
2007 btrfs_put_ordered_extent(ordered);
2008
2009 if (ret < 0)
2010 goto error;
2011 extent_clear_unlock_delalloc(inode, file_pos, end, locked_folio, cached,
2012 EXTENT_LOCKED | EXTENT_DELALLOC |
2013 EXTENT_CLEAR_DATA_RESV,
2014 PAGE_SET_ORDERED);
2015 return ret;
2016
2017error:
2018 btrfs_cleanup_ordered_extents(inode, file_pos, len);
2019 extent_clear_unlock_delalloc(inode, file_pos, end, locked_folio, cached,
2020 EXTENT_LOCKED | EXTENT_DELALLOC |
2021 EXTENT_CLEAR_DATA_RESV,
2022 PAGE_UNLOCK | PAGE_START_WRITEBACK |
2023 PAGE_END_WRITEBACK);
2024 btrfs_err(inode->root->fs_info,
2025 "%s failed, root=%lld inode=%llu start=%llu len=%llu: %d",
2026 __func__, btrfs_root_id(inode->root), btrfs_ino(inode),
2027 file_pos, len, ret);
2028 return ret;
2029}
2030
2031/*
2032 * When nocow writeback calls back. This checks for snapshots or COW copies
2033 * of the extents that exist in the file, and COWs the file as required.
2034 *
2035 * If no cow copies or snapshots exist, we write directly to the existing
2036 * blocks on disk
2037 */
2038static noinline int run_delalloc_nocow(struct btrfs_inode *inode,
2039 struct folio *locked_folio,
2040 const u64 start, const u64 end)
2041{
2042 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2043 struct btrfs_root *root = inode->root;
2044 struct btrfs_path *path = NULL;
2045 u64 cow_start = (u64)-1;
2046 /*
2047 * If not 0, represents the inclusive end of the last fallback_to_cow()
2048 * range. Only for error handling.
2049 *
2050 * The same for nocow_end, it's to avoid double cleaning up the range
2051 * already cleaned by nocow_one_range().
2052 */
2053 u64 cow_end = 0;
2054 u64 nocow_end = 0;
2055 u64 cur_offset = start;
2056 int ret;
2057 bool check_prev = true;
2058 u64 ino = btrfs_ino(inode);
2059 struct can_nocow_file_extent_args nocow_args = { 0 };
2060 /* The range that has ordered extent(s). */
2061 u64 oe_cleanup_start;
2062 u64 oe_cleanup_len = 0;
2063 /* The range that is untouched. */
2064 u64 untouched_start;
2065 u64 untouched_len = 0;
2066
2067 /*
2068 * Normally on a zoned device we're only doing COW writes, but in case
2069 * of relocation on a zoned filesystem serializes I/O so that we're only
2070 * writing sequentially and can end up here as well.
2071 */
2072 ASSERT(!btrfs_is_zoned(fs_info) || btrfs_is_data_reloc_root(root));
2073
2074 if (unlikely(btrfs_is_shutdown(fs_info))) {
2075 ret = -EIO;
2076 goto error;
2077 }
2078 path = btrfs_alloc_path();
2079 if (!path) {
2080 ret = -ENOMEM;
2081 goto error;
2082 }
2083
2084 nocow_args.end = end;
2085 nocow_args.writeback_path = true;
2086
2087 while (cur_offset <= end) {
2088 struct btrfs_block_group *nocow_bg = NULL;
2089 struct btrfs_key found_key;
2090 struct btrfs_file_extent_item *fi;
2091 struct extent_buffer *leaf;
2092 struct extent_state *cached_state = NULL;
2093 u64 extent_end;
2094 int extent_type;
2095
2096 ret = btrfs_lookup_file_extent(NULL, root, path, ino,
2097 cur_offset, 0);
2098 if (ret < 0)
2099 goto error;
2100
2101 /*
2102 * If there is no extent for our range when doing the initial
2103 * search, then go back to the previous slot as it will be the
2104 * one containing the search offset
2105 */
2106 if (ret > 0 && path->slots[0] > 0 && check_prev) {
2107 leaf = path->nodes[0];
2108 btrfs_item_key_to_cpu(leaf, &found_key,
2109 path->slots[0] - 1);
2110 if (found_key.objectid == ino &&
2111 found_key.type == BTRFS_EXTENT_DATA_KEY)
2112 path->slots[0]--;
2113 }
2114 check_prev = false;
2115next_slot:
2116 /* Go to next leaf if we have exhausted the current one */
2117 leaf = path->nodes[0];
2118 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2119 ret = btrfs_next_leaf(root, path);
2120 if (ret < 0)
2121 goto error;
2122 if (ret > 0)
2123 break;
2124 leaf = path->nodes[0];
2125 }
2126
2127 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2128
2129 /* Didn't find anything for our INO */
2130 if (found_key.objectid > ino)
2131 break;
2132 /*
2133 * Keep searching until we find an EXTENT_ITEM or there are no
2134 * more extents for this inode
2135 */
2136 if (WARN_ON_ONCE(found_key.objectid < ino) ||
2137 found_key.type < BTRFS_EXTENT_DATA_KEY) {
2138 path->slots[0]++;
2139 goto next_slot;
2140 }
2141
2142 /* Found key is not EXTENT_DATA_KEY or starts after req range */
2143 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
2144 found_key.offset > end)
2145 break;
2146
2147 /*
2148 * If the found extent starts after requested offset, then
2149 * adjust cur_offset to be right before this extent begins.
2150 */
2151 if (found_key.offset > cur_offset) {
2152 if (cow_start == (u64)-1)
2153 cow_start = cur_offset;
2154 cur_offset = found_key.offset;
2155 goto next_slot;
2156 }
2157
2158 /*
2159 * Found extent which begins before our range and potentially
2160 * intersect it
2161 */
2162 fi = btrfs_item_ptr(leaf, path->slots[0],
2163 struct btrfs_file_extent_item);
2164 extent_type = btrfs_file_extent_type(leaf, fi);
2165 /* If this is triggered then we have a memory corruption. */
2166 ASSERT(extent_type < BTRFS_NR_FILE_EXTENT_TYPES);
2167 if (WARN_ON(extent_type >= BTRFS_NR_FILE_EXTENT_TYPES)) {
2168 ret = -EUCLEAN;
2169 goto error;
2170 }
2171 extent_end = btrfs_file_extent_end(path);
2172
2173 /*
2174 * If the extent we got ends before our current offset, skip to
2175 * the next extent.
2176 */
2177 if (extent_end <= cur_offset) {
2178 path->slots[0]++;
2179 goto next_slot;
2180 }
2181
2182 nocow_args.start = cur_offset;
2183 ret = can_nocow_file_extent(path, &found_key, inode, &nocow_args);
2184 if (ret < 0)
2185 goto error;
2186 if (ret == 0)
2187 goto must_cow;
2188
2189 ret = 0;
2190 nocow_bg = btrfs_inc_nocow_writers(fs_info,
2191 nocow_args.file_extent.disk_bytenr +
2192 nocow_args.file_extent.offset);
2193 if (!nocow_bg) {
2194must_cow:
2195 /*
2196 * If we can't perform NOCOW writeback for the range,
2197 * then record the beginning of the range that needs to
2198 * be COWed. It will be written out before the next
2199 * NOCOW range if we find one, or when exiting this
2200 * loop.
2201 */
2202 if (cow_start == (u64)-1)
2203 cow_start = cur_offset;
2204 cur_offset = extent_end;
2205 if (cur_offset > end)
2206 break;
2207 if (!path->nodes[0])
2208 continue;
2209 path->slots[0]++;
2210 goto next_slot;
2211 }
2212
2213 /*
2214 * COW range from cow_start to found_key.offset - 1. As the key
2215 * will contain the beginning of the first extent that can be
2216 * NOCOW, following one which needs to be COW'ed
2217 */
2218 if (cow_start != (u64)-1) {
2219 ret = fallback_to_cow(inode, locked_folio, cow_start,
2220 found_key.offset - 1);
2221 if (ret) {
2222 cow_end = found_key.offset - 1;
2223 btrfs_dec_nocow_writers(nocow_bg);
2224 goto error;
2225 }
2226 cow_start = (u64)-1;
2227 }
2228
2229 ret = nocow_one_range(inode, locked_folio, &cached_state,
2230 &nocow_args, cur_offset,
2231 extent_type == BTRFS_FILE_EXTENT_PREALLOC);
2232 btrfs_dec_nocow_writers(nocow_bg);
2233 if (ret < 0) {
2234 nocow_end = cur_offset + nocow_args.file_extent.num_bytes - 1;
2235 goto error;
2236 }
2237 cur_offset = extent_end;
2238 }
2239 btrfs_release_path(path);
2240
2241 if (cur_offset <= end && cow_start == (u64)-1)
2242 cow_start = cur_offset;
2243
2244 if (cow_start != (u64)-1) {
2245 ret = fallback_to_cow(inode, locked_folio, cow_start, end);
2246 if (ret) {
2247 cow_end = end;
2248 goto error;
2249 }
2250 cow_start = (u64)-1;
2251 }
2252
2253 /*
2254 * Everything is finished without an error, can unlock the folios now.
2255 *
2256 * No need to touch the io tree range nor set folio ordered flag, as
2257 * fallback_to_cow() and nocow_one_range() have already handled them.
2258 */
2259 extent_clear_unlock_delalloc(inode, start, end, locked_folio, NULL, 0, PAGE_UNLOCK);
2260
2261 btrfs_free_path(path);
2262 return 0;
2263
2264error:
2265 if (cow_start == (u64)-1) {
2266 /*
2267 * case a)
2268 * start cur_offset end
2269 * | OE cleanup | Untouched |
2270 *
2271 * We finished a fallback_to_cow() or nocow_one_range() call,
2272 * but failed to check the next range.
2273 *
2274 * or
2275 * start cur_offset nocow_end end
2276 * | OE cleanup | Skip | Untouched |
2277 *
2278 * nocow_one_range() failed, the range [cur_offset, nocow_end] is
2279 * already cleaned up.
2280 */
2281 oe_cleanup_start = start;
2282 oe_cleanup_len = cur_offset - start;
2283 if (nocow_end)
2284 untouched_start = nocow_end + 1;
2285 else
2286 untouched_start = cur_offset;
2287 untouched_len = end + 1 - untouched_start;
2288 } else if (cow_start != (u64)-1 && cow_end == 0) {
2289 /*
2290 * case b)
2291 * start cow_start cur_offset end
2292 * | OE cleanup | Untouched |
2293 *
2294 * We got a range that needs COW, but before we hit the next NOCOW range,
2295 * thus [cow_start, cur_offset) doesn't yet have any OE.
2296 */
2297 oe_cleanup_start = start;
2298 oe_cleanup_len = cow_start - start;
2299 untouched_start = cow_start;
2300 untouched_len = end + 1 - untouched_start;
2301 } else {
2302 /*
2303 * case c)
2304 * start cow_start cow_end end
2305 * | OE cleanup | Skip | Untouched |
2306 *
2307 * fallback_to_cow() failed, and fallback_to_cow() will do the
2308 * cleanup for its range, we shouldn't touch the range
2309 * [cow_start, cow_end].
2310 */
2311 ASSERT(cow_start != (u64)-1 && cow_end != 0);
2312 oe_cleanup_start = start;
2313 oe_cleanup_len = cow_start - start;
2314 untouched_start = cow_end + 1;
2315 untouched_len = end + 1 - untouched_start;
2316 }
2317
2318 if (oe_cleanup_len) {
2319 const u64 oe_cleanup_end = oe_cleanup_start + oe_cleanup_len - 1;
2320 btrfs_cleanup_ordered_extents(inode, oe_cleanup_start, oe_cleanup_len);
2321 extent_clear_unlock_delalloc(inode, oe_cleanup_start, oe_cleanup_end,
2322 locked_folio, NULL,
2323 EXTENT_LOCKED | EXTENT_DELALLOC,
2324 PAGE_UNLOCK | PAGE_START_WRITEBACK |
2325 PAGE_END_WRITEBACK);
2326 }
2327
2328 if (untouched_len) {
2329 struct extent_state *cached = NULL;
2330 const u64 untouched_end = untouched_start + untouched_len - 1;
2331
2332 /*
2333 * We need to lock the extent here because we're clearing DELALLOC and
2334 * we're not locked at this point.
2335 */
2336 btrfs_lock_extent(&inode->io_tree, untouched_start, untouched_end, &cached);
2337 extent_clear_unlock_delalloc(inode, untouched_start, untouched_end,
2338 locked_folio, &cached,
2339 EXTENT_LOCKED | EXTENT_DELALLOC |
2340 EXTENT_DEFRAG |
2341 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
2342 PAGE_START_WRITEBACK |
2343 PAGE_END_WRITEBACK);
2344 btrfs_qgroup_free_data(inode, NULL, untouched_start, untouched_len, NULL);
2345 }
2346 btrfs_free_path(path);
2347 btrfs_err(fs_info,
2348"%s failed, root=%llu inode=%llu start=%llu len=%llu cur_offset=%llu oe_cleanup=%llu oe_cleanup_len=%llu untouched_start=%llu untouched_len=%llu: %d",
2349 __func__, btrfs_root_id(inode->root), btrfs_ino(inode),
2350 start, end + 1 - start, cur_offset, oe_cleanup_start, oe_cleanup_len,
2351 untouched_start, untouched_len, ret);
2352 return ret;
2353}
2354
2355static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end)
2356{
2357 if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) {
2358 if (inode->defrag_bytes &&
2359 btrfs_test_range_bit_exists(&inode->io_tree, start, end, EXTENT_DEFRAG))
2360 return false;
2361 return true;
2362 }
2363 return false;
2364}
2365
2366/*
2367 * Function to process delayed allocation (create CoW) for ranges which are
2368 * being touched for the first time.
2369 */
2370int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct folio *locked_folio,
2371 u64 start, u64 end, struct writeback_control *wbc)
2372{
2373 const bool zoned = btrfs_is_zoned(inode->root->fs_info);
2374 int ret;
2375
2376 /*
2377 * The range must cover part of the @locked_folio, or a return of 1
2378 * can confuse the caller.
2379 */
2380 ASSERT(!(end <= folio_pos(locked_folio) ||
2381 start >= folio_next_pos(locked_folio)));
2382
2383 if (should_nocow(inode, start, end)) {
2384 ret = run_delalloc_nocow(inode, locked_folio, start, end);
2385 return ret;
2386 }
2387
2388 if (btrfs_inode_can_compress(inode) &&
2389 inode_need_compress(inode, start, end) &&
2390 run_delalloc_compressed(inode, locked_folio, start, end, wbc))
2391 return 1;
2392
2393 if (zoned)
2394 ret = run_delalloc_cow(inode, locked_folio, start, end, wbc,
2395 true);
2396 else
2397 ret = cow_file_range(inode, locked_folio, start, end, NULL, 0);
2398 return ret;
2399}
2400
2401void btrfs_split_delalloc_extent(struct btrfs_inode *inode,
2402 struct extent_state *orig, u64 split)
2403{
2404 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2405 u64 size;
2406
2407 lockdep_assert_held(&inode->io_tree.lock);
2408
2409 /* not delalloc, ignore it */
2410 if (!(orig->state & EXTENT_DELALLOC))
2411 return;
2412
2413 size = orig->end - orig->start + 1;
2414 if (size > fs_info->max_extent_size) {
2415 u32 num_extents;
2416 u64 new_size;
2417
2418 /*
2419 * See the explanation in btrfs_merge_delalloc_extent, the same
2420 * applies here, just in reverse.
2421 */
2422 new_size = orig->end - split + 1;
2423 num_extents = count_max_extents(fs_info, new_size);
2424 new_size = split - orig->start;
2425 num_extents += count_max_extents(fs_info, new_size);
2426 if (count_max_extents(fs_info, size) >= num_extents)
2427 return;
2428 }
2429
2430 spin_lock(&inode->lock);
2431 btrfs_mod_outstanding_extents(inode, 1);
2432 spin_unlock(&inode->lock);
2433}
2434
2435/*
2436 * Handle merged delayed allocation extents so we can keep track of new extents
2437 * that are just merged onto old extents, such as when we are doing sequential
2438 * writes, so we can properly account for the metadata space we'll need.
2439 */
2440void btrfs_merge_delalloc_extent(struct btrfs_inode *inode, struct extent_state *new,
2441 struct extent_state *other)
2442{
2443 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2444 u64 new_size, old_size;
2445 u32 num_extents;
2446
2447 lockdep_assert_held(&inode->io_tree.lock);
2448
2449 /* not delalloc, ignore it */
2450 if (!(other->state & EXTENT_DELALLOC))
2451 return;
2452
2453 if (new->start > other->start)
2454 new_size = new->end - other->start + 1;
2455 else
2456 new_size = other->end - new->start + 1;
2457
2458 /* we're not bigger than the max, unreserve the space and go */
2459 if (new_size <= fs_info->max_extent_size) {
2460 spin_lock(&inode->lock);
2461 btrfs_mod_outstanding_extents(inode, -1);
2462 spin_unlock(&inode->lock);
2463 return;
2464 }
2465
2466 /*
2467 * We have to add up either side to figure out how many extents were
2468 * accounted for before we merged into one big extent. If the number of
2469 * extents we accounted for is <= the amount we need for the new range
2470 * then we can return, otherwise drop. Think of it like this
2471 *
2472 * [ 4k][MAX_SIZE]
2473 *
2474 * So we've grown the extent by a MAX_SIZE extent, this would mean we
2475 * need 2 outstanding extents, on one side we have 1 and the other side
2476 * we have 1 so they are == and we can return. But in this case
2477 *
2478 * [MAX_SIZE+4k][MAX_SIZE+4k]
2479 *
2480 * Each range on their own accounts for 2 extents, but merged together
2481 * they are only 3 extents worth of accounting, so we need to drop in
2482 * this case.
2483 */
2484 old_size = other->end - other->start + 1;
2485 num_extents = count_max_extents(fs_info, old_size);
2486 old_size = new->end - new->start + 1;
2487 num_extents += count_max_extents(fs_info, old_size);
2488 if (count_max_extents(fs_info, new_size) >= num_extents)
2489 return;
2490
2491 spin_lock(&inode->lock);
2492 btrfs_mod_outstanding_extents(inode, -1);
2493 spin_unlock(&inode->lock);
2494}
2495
2496static void btrfs_add_delalloc_inode(struct btrfs_inode *inode)
2497{
2498 struct btrfs_root *root = inode->root;
2499 struct btrfs_fs_info *fs_info = root->fs_info;
2500
2501 spin_lock(&root->delalloc_lock);
2502 ASSERT(list_empty(&inode->delalloc_inodes));
2503 list_add_tail(&inode->delalloc_inodes, &root->delalloc_inodes);
2504 root->nr_delalloc_inodes++;
2505 if (root->nr_delalloc_inodes == 1) {
2506 spin_lock(&fs_info->delalloc_root_lock);
2507 ASSERT(list_empty(&root->delalloc_root));
2508 list_add_tail(&root->delalloc_root, &fs_info->delalloc_roots);
2509 spin_unlock(&fs_info->delalloc_root_lock);
2510 }
2511 spin_unlock(&root->delalloc_lock);
2512}
2513
2514void btrfs_del_delalloc_inode(struct btrfs_inode *inode)
2515{
2516 struct btrfs_root *root = inode->root;
2517 struct btrfs_fs_info *fs_info = root->fs_info;
2518
2519 lockdep_assert_held(&root->delalloc_lock);
2520
2521 /*
2522 * We may be called after the inode was already deleted from the list,
2523 * namely in the transaction abort path btrfs_destroy_delalloc_inodes(),
2524 * and then later through btrfs_clear_delalloc_extent() while the inode
2525 * still has ->delalloc_bytes > 0.
2526 */
2527 if (!list_empty(&inode->delalloc_inodes)) {
2528 list_del_init(&inode->delalloc_inodes);
2529 root->nr_delalloc_inodes--;
2530 if (!root->nr_delalloc_inodes) {
2531 ASSERT(list_empty(&root->delalloc_inodes));
2532 spin_lock(&fs_info->delalloc_root_lock);
2533 ASSERT(!list_empty(&root->delalloc_root));
2534 list_del_init(&root->delalloc_root);
2535 spin_unlock(&fs_info->delalloc_root_lock);
2536 }
2537 }
2538}
2539
2540/*
2541 * Properly track delayed allocation bytes in the inode and to maintain the
2542 * list of inodes that have pending delalloc work to be done.
2543 */
2544void btrfs_set_delalloc_extent(struct btrfs_inode *inode, struct extent_state *state,
2545 u32 bits)
2546{
2547 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2548
2549 lockdep_assert_held(&inode->io_tree.lock);
2550
2551 if ((bits & EXTENT_DEFRAG) && !(bits & EXTENT_DELALLOC))
2552 WARN_ON(1);
2553 /*
2554 * set_bit and clear bit hooks normally require _irqsave/restore
2555 * but in this case, we are only testing for the DELALLOC
2556 * bit, which is only set or cleared with irqs on
2557 */
2558 if (!(state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
2559 u64 len = state->end + 1 - state->start;
2560 u64 prev_delalloc_bytes;
2561 u32 num_extents = count_max_extents(fs_info, len);
2562
2563 spin_lock(&inode->lock);
2564 btrfs_mod_outstanding_extents(inode, num_extents);
2565 spin_unlock(&inode->lock);
2566
2567 /* For sanity tests */
2568 if (btrfs_is_testing(fs_info))
2569 return;
2570
2571 percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
2572 fs_info->delalloc_batch);
2573 spin_lock(&inode->lock);
2574 prev_delalloc_bytes = inode->delalloc_bytes;
2575 inode->delalloc_bytes += len;
2576 if (bits & EXTENT_DEFRAG)
2577 inode->defrag_bytes += len;
2578 spin_unlock(&inode->lock);
2579
2580 /*
2581 * We don't need to be under the protection of the inode's lock,
2582 * because we are called while holding the inode's io_tree lock
2583 * and are therefore protected against concurrent calls of this
2584 * function and btrfs_clear_delalloc_extent().
2585 */
2586 if (!btrfs_is_free_space_inode(inode) && prev_delalloc_bytes == 0)
2587 btrfs_add_delalloc_inode(inode);
2588 }
2589
2590 if (!(state->state & EXTENT_DELALLOC_NEW) &&
2591 (bits & EXTENT_DELALLOC_NEW)) {
2592 spin_lock(&inode->lock);
2593 inode->new_delalloc_bytes += state->end + 1 - state->start;
2594 spin_unlock(&inode->lock);
2595 }
2596}
2597
2598/*
2599 * Once a range is no longer delalloc this function ensures that proper
2600 * accounting happens.
2601 */
2602void btrfs_clear_delalloc_extent(struct btrfs_inode *inode,
2603 struct extent_state *state, u32 bits)
2604{
2605 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2606 u64 len = state->end + 1 - state->start;
2607 u32 num_extents = count_max_extents(fs_info, len);
2608
2609 lockdep_assert_held(&inode->io_tree.lock);
2610
2611 if ((state->state & EXTENT_DEFRAG) && (bits & EXTENT_DEFRAG)) {
2612 spin_lock(&inode->lock);
2613 inode->defrag_bytes -= len;
2614 spin_unlock(&inode->lock);
2615 }
2616
2617 /*
2618 * set_bit and clear bit hooks normally require _irqsave/restore
2619 * but in this case, we are only testing for the DELALLOC
2620 * bit, which is only set or cleared with irqs on
2621 */
2622 if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
2623 struct btrfs_root *root = inode->root;
2624 u64 new_delalloc_bytes;
2625
2626 spin_lock(&inode->lock);
2627 btrfs_mod_outstanding_extents(inode, -num_extents);
2628 spin_unlock(&inode->lock);
2629
2630 /*
2631 * We don't reserve metadata space for space cache inodes so we
2632 * don't need to call delalloc_release_metadata if there is an
2633 * error.
2634 */
2635 if (bits & EXTENT_CLEAR_META_RESV &&
2636 root != fs_info->tree_root)
2637 btrfs_delalloc_release_metadata(inode, len, true);
2638
2639 /* For sanity tests. */
2640 if (btrfs_is_testing(fs_info))
2641 return;
2642
2643 if (!btrfs_is_data_reloc_root(root) &&
2644 !btrfs_is_free_space_inode(inode) &&
2645 !(state->state & EXTENT_NORESERVE) &&
2646 (bits & EXTENT_CLEAR_DATA_RESV))
2647 btrfs_free_reserved_data_space_noquota(inode, len);
2648
2649 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
2650 fs_info->delalloc_batch);
2651 spin_lock(&inode->lock);
2652 inode->delalloc_bytes -= len;
2653 new_delalloc_bytes = inode->delalloc_bytes;
2654 spin_unlock(&inode->lock);
2655
2656 /*
2657 * We don't need to be under the protection of the inode's lock,
2658 * because we are called while holding the inode's io_tree lock
2659 * and are therefore protected against concurrent calls of this
2660 * function and btrfs_set_delalloc_extent().
2661 */
2662 if (!btrfs_is_free_space_inode(inode) && new_delalloc_bytes == 0) {
2663 spin_lock(&root->delalloc_lock);
2664 btrfs_del_delalloc_inode(inode);
2665 spin_unlock(&root->delalloc_lock);
2666 }
2667 }
2668
2669 if ((state->state & EXTENT_DELALLOC_NEW) &&
2670 (bits & EXTENT_DELALLOC_NEW)) {
2671 spin_lock(&inode->lock);
2672 ASSERT(inode->new_delalloc_bytes >= len);
2673 inode->new_delalloc_bytes -= len;
2674 if (bits & EXTENT_ADD_INODE_BYTES)
2675 inode_add_bytes(&inode->vfs_inode, len);
2676 spin_unlock(&inode->lock);
2677 }
2678}
2679
2680/*
2681 * given a list of ordered sums record them in the inode. This happens
2682 * at IO completion time based on sums calculated at bio submission time.
2683 */
2684static int add_pending_csums(struct btrfs_trans_handle *trans,
2685 struct list_head *list)
2686{
2687 struct btrfs_ordered_sum *sum;
2688 struct btrfs_root *csum_root = NULL;
2689 int ret;
2690
2691 list_for_each_entry(sum, list, list) {
2692 trans->adding_csums = true;
2693 if (!csum_root)
2694 csum_root = btrfs_csum_root(trans->fs_info,
2695 sum->logical);
2696 ret = btrfs_csum_file_blocks(trans, csum_root, sum);
2697 trans->adding_csums = false;
2698 if (ret)
2699 return ret;
2700 }
2701 return 0;
2702}
2703
2704static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
2705 const u64 start,
2706 const u64 len,
2707 struct extent_state **cached_state)
2708{
2709 u64 search_start = start;
2710 const u64 end = start + len - 1;
2711
2712 while (search_start < end) {
2713 const u64 search_len = end - search_start + 1;
2714 struct extent_map *em;
2715 u64 em_len;
2716 int ret = 0;
2717
2718 em = btrfs_get_extent(inode, NULL, search_start, search_len);
2719 if (IS_ERR(em))
2720 return PTR_ERR(em);
2721
2722 if (em->disk_bytenr != EXTENT_MAP_HOLE)
2723 goto next;
2724
2725 em_len = em->len;
2726 if (em->start < search_start)
2727 em_len -= search_start - em->start;
2728 if (em_len > search_len)
2729 em_len = search_len;
2730
2731 ret = btrfs_set_extent_bit(&inode->io_tree, search_start,
2732 search_start + em_len - 1,
2733 EXTENT_DELALLOC_NEW, cached_state);
2734next:
2735 search_start = btrfs_extent_map_end(em);
2736 btrfs_free_extent_map(em);
2737 if (ret)
2738 return ret;
2739 }
2740 return 0;
2741}
2742
2743int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2744 unsigned int extra_bits,
2745 struct extent_state **cached_state)
2746{
2747 WARN_ON(PAGE_ALIGNED(end));
2748
2749 if (start >= i_size_read(&inode->vfs_inode) &&
2750 !(inode->flags & BTRFS_INODE_PREALLOC)) {
2751 /*
2752 * There can't be any extents following eof in this case so just
2753 * set the delalloc new bit for the range directly.
2754 */
2755 extra_bits |= EXTENT_DELALLOC_NEW;
2756 } else {
2757 int ret;
2758
2759 ret = btrfs_find_new_delalloc_bytes(inode, start,
2760 end + 1 - start,
2761 cached_state);
2762 if (ret)
2763 return ret;
2764 }
2765
2766 return btrfs_set_extent_bit(&inode->io_tree, start, end,
2767 EXTENT_DELALLOC | extra_bits, cached_state);
2768}
2769
2770/* see btrfs_writepage_start_hook for details on why this is required */
2771struct btrfs_writepage_fixup {
2772 struct folio *folio;
2773 struct btrfs_inode *inode;
2774 struct btrfs_work work;
2775};
2776
2777static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2778{
2779 struct btrfs_writepage_fixup *fixup =
2780 container_of(work, struct btrfs_writepage_fixup, work);
2781 struct btrfs_ordered_extent *ordered;
2782 struct extent_state *cached_state = NULL;
2783 struct extent_changeset *data_reserved = NULL;
2784 struct folio *folio = fixup->folio;
2785 struct btrfs_inode *inode = fixup->inode;
2786 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2787 u64 page_start = folio_pos(folio);
2788 u64 page_end = folio_next_pos(folio) - 1;
2789 int ret = 0;
2790 bool free_delalloc_space = true;
2791
2792 /*
2793 * This is similar to page_mkwrite, we need to reserve the space before
2794 * we take the folio lock.
2795 */
2796 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2797 folio_size(folio));
2798again:
2799 folio_lock(folio);
2800
2801 /*
2802 * Before we queued this fixup, we took a reference on the folio.
2803 * folio->mapping may go NULL, but it shouldn't be moved to a different
2804 * address space.
2805 */
2806 if (!folio->mapping || !folio_test_dirty(folio) ||
2807 !folio_test_checked(folio)) {
2808 /*
2809 * Unfortunately this is a little tricky, either
2810 *
2811 * 1) We got here and our folio had already been dealt with and
2812 * we reserved our space, thus ret == 0, so we need to just
2813 * drop our space reservation and bail. This can happen the
2814 * first time we come into the fixup worker, or could happen
2815 * while waiting for the ordered extent.
2816 * 2) Our folio was already dealt with, but we happened to get an
2817 * ENOSPC above from the btrfs_delalloc_reserve_space. In
2818 * this case we obviously don't have anything to release, but
2819 * because the folio was already dealt with we don't want to
2820 * mark the folio with an error, so make sure we're resetting
2821 * ret to 0. This is why we have this check _before_ the ret
2822 * check, because we do not want to have a surprise ENOSPC
2823 * when the folio was already properly dealt with.
2824 */
2825 if (!ret) {
2826 btrfs_delalloc_release_extents(inode, folio_size(folio));
2827 btrfs_delalloc_release_space(inode, data_reserved,
2828 page_start, folio_size(folio),
2829 true);
2830 }
2831 ret = 0;
2832 goto out_page;
2833 }
2834
2835 /*
2836 * We can't mess with the folio state unless it is locked, so now that
2837 * it is locked bail if we failed to make our space reservation.
2838 */
2839 if (ret)
2840 goto out_page;
2841
2842 btrfs_lock_extent(&inode->io_tree, page_start, page_end, &cached_state);
2843
2844 /* already ordered? We're done */
2845 if (folio_test_ordered(folio))
2846 goto out_reserved;
2847
2848 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
2849 if (ordered) {
2850 btrfs_unlock_extent(&inode->io_tree, page_start, page_end,
2851 &cached_state);
2852 folio_unlock(folio);
2853 btrfs_start_ordered_extent(ordered);
2854 btrfs_put_ordered_extent(ordered);
2855 goto again;
2856 }
2857
2858 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2859 &cached_state);
2860 if (ret)
2861 goto out_reserved;
2862
2863 /*
2864 * Everything went as planned, we're now the owner of a dirty page with
2865 * delayed allocation bits set and space reserved for our COW
2866 * destination.
2867 *
2868 * The page was dirty when we started, nothing should have cleaned it.
2869 */
2870 BUG_ON(!folio_test_dirty(folio));
2871 free_delalloc_space = false;
2872out_reserved:
2873 btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2874 if (free_delalloc_space)
2875 btrfs_delalloc_release_space(inode, data_reserved, page_start,
2876 PAGE_SIZE, true);
2877 btrfs_unlock_extent(&inode->io_tree, page_start, page_end, &cached_state);
2878out_page:
2879 if (ret) {
2880 /*
2881 * We hit ENOSPC or other errors. Update the mapping and page
2882 * to reflect the errors and clean the page.
2883 */
2884 mapping_set_error(folio->mapping, ret);
2885 btrfs_mark_ordered_io_finished(inode, folio, page_start,
2886 folio_size(folio), !ret);
2887 folio_clear_dirty_for_io(folio);
2888 }
2889 btrfs_folio_clear_checked(fs_info, folio, page_start, PAGE_SIZE);
2890 folio_unlock(folio);
2891 folio_put(folio);
2892 kfree(fixup);
2893 extent_changeset_free(data_reserved);
2894 /*
2895 * As a precaution, do a delayed iput in case it would be the last iput
2896 * that could need flushing space. Recursing back to fixup worker would
2897 * deadlock.
2898 */
2899 btrfs_add_delayed_iput(inode);
2900}
2901
2902/*
2903 * There are a few paths in the higher layers of the kernel that directly
2904 * set the folio dirty bit without asking the filesystem if it is a
2905 * good idea. This causes problems because we want to make sure COW
2906 * properly happens and the data=ordered rules are followed.
2907 *
2908 * In our case any range that doesn't have the ORDERED bit set
2909 * hasn't been properly setup for IO. We kick off an async process
2910 * to fix it up. The async helper will wait for ordered extents, set
2911 * the delalloc bit and make it safe to write the folio.
2912 */
2913int btrfs_writepage_cow_fixup(struct folio *folio)
2914{
2915 struct inode *inode = folio->mapping->host;
2916 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2917 struct btrfs_writepage_fixup *fixup;
2918
2919 /* This folio has ordered extent covering it already */
2920 if (folio_test_ordered(folio))
2921 return 0;
2922
2923 /*
2924 * For experimental build, we error out instead of EAGAIN.
2925 *
2926 * We should not hit such out-of-band dirty folios anymore.
2927 */
2928 if (IS_ENABLED(CONFIG_BTRFS_EXPERIMENTAL)) {
2929 DEBUG_WARN();
2930 btrfs_err_rl(fs_info,
2931 "root %lld ino %llu folio %llu is marked dirty without notifying the fs",
2932 btrfs_root_id(BTRFS_I(inode)->root),
2933 btrfs_ino(BTRFS_I(inode)),
2934 folio_pos(folio));
2935 return -EUCLEAN;
2936 }
2937
2938 /*
2939 * folio_checked is set below when we create a fixup worker for this
2940 * folio, don't try to create another one if we're already
2941 * folio_test_checked.
2942 *
2943 * The extent_io writepage code will redirty the foio if we send back
2944 * EAGAIN.
2945 */
2946 if (folio_test_checked(folio))
2947 return -EAGAIN;
2948
2949 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2950 if (!fixup)
2951 return -EAGAIN;
2952
2953 /*
2954 * We are already holding a reference to this inode from
2955 * write_cache_pages. We need to hold it because the space reservation
2956 * takes place outside of the folio lock, and we can't trust
2957 * folio->mapping outside of the folio lock.
2958 */
2959 ihold(inode);
2960 btrfs_folio_set_checked(fs_info, folio, folio_pos(folio), folio_size(folio));
2961 folio_get(folio);
2962 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL);
2963 fixup->folio = folio;
2964 fixup->inode = BTRFS_I(inode);
2965 btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2966
2967 return -EAGAIN;
2968}
2969
2970static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2971 struct btrfs_inode *inode, u64 file_pos,
2972 struct btrfs_file_extent_item *stack_fi,
2973 const bool update_inode_bytes,
2974 u64 qgroup_reserved)
2975{
2976 struct btrfs_root *root = inode->root;
2977 const u64 sectorsize = root->fs_info->sectorsize;
2978 BTRFS_PATH_AUTO_FREE(path);
2979 struct extent_buffer *leaf;
2980 struct btrfs_key ins;
2981 u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi);
2982 u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi);
2983 u64 offset = btrfs_stack_file_extent_offset(stack_fi);
2984 u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi);
2985 u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi);
2986 struct btrfs_drop_extents_args drop_args = { 0 };
2987 int ret;
2988
2989 path = btrfs_alloc_path();
2990 if (!path)
2991 return -ENOMEM;
2992
2993 /*
2994 * we may be replacing one extent in the tree with another.
2995 * The new extent is pinned in the extent map, and we don't want
2996 * to drop it from the cache until it is completely in the btree.
2997 *
2998 * So, tell btrfs_drop_extents to leave this extent in the cache.
2999 * the caller is expected to unpin it and allow it to be merged
3000 * with the others.
3001 */
3002 drop_args.path = path;
3003 drop_args.start = file_pos;
3004 drop_args.end = file_pos + num_bytes;
3005 drop_args.replace_extent = true;
3006 drop_args.extent_item_size = sizeof(*stack_fi);
3007 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
3008 if (ret)
3009 goto out;
3010
3011 if (!drop_args.extent_inserted) {
3012 ins.objectid = btrfs_ino(inode);
3013 ins.type = BTRFS_EXTENT_DATA_KEY;
3014 ins.offset = file_pos;
3015
3016 ret = btrfs_insert_empty_item(trans, root, path, &ins,
3017 sizeof(*stack_fi));
3018 if (ret)
3019 goto out;
3020 }
3021 leaf = path->nodes[0];
3022 btrfs_set_stack_file_extent_generation(stack_fi, trans->transid);
3023 write_extent_buffer(leaf, stack_fi,
3024 btrfs_item_ptr_offset(leaf, path->slots[0]),
3025 sizeof(struct btrfs_file_extent_item));
3026
3027 btrfs_release_path(path);
3028
3029 /*
3030 * If we dropped an inline extent here, we know the range where it is
3031 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the
3032 * number of bytes only for that range containing the inline extent.
3033 * The remaining of the range will be processed when clearing the
3034 * EXTENT_DELALLOC_BIT bit through the ordered extent completion.
3035 */
3036 if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) {
3037 u64 inline_size = round_down(drop_args.bytes_found, sectorsize);
3038
3039 inline_size = drop_args.bytes_found - inline_size;
3040 btrfs_update_inode_bytes(inode, sectorsize, inline_size);
3041 drop_args.bytes_found -= inline_size;
3042 num_bytes -= sectorsize;
3043 }
3044
3045 if (update_inode_bytes)
3046 btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found);
3047
3048 ins.objectid = disk_bytenr;
3049 ins.type = BTRFS_EXTENT_ITEM_KEY;
3050 ins.offset = disk_num_bytes;
3051
3052 ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes);
3053 if (ret)
3054 goto out;
3055
3056 ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode),
3057 file_pos - offset,
3058 qgroup_reserved, &ins);
3059out:
3060 return ret;
3061}
3062
3063static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
3064 u64 start, u64 len)
3065{
3066 struct btrfs_block_group *cache;
3067
3068 cache = btrfs_lookup_block_group(fs_info, start);
3069 ASSERT(cache);
3070
3071 spin_lock(&cache->lock);
3072 cache->delalloc_bytes -= len;
3073 spin_unlock(&cache->lock);
3074
3075 btrfs_put_block_group(cache);
3076}
3077
3078static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans,
3079 struct btrfs_ordered_extent *oe)
3080{
3081 struct btrfs_file_extent_item stack_fi;
3082 bool update_inode_bytes;
3083 u64 num_bytes = oe->num_bytes;
3084 u64 ram_bytes = oe->ram_bytes;
3085
3086 memset(&stack_fi, 0, sizeof(stack_fi));
3087 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG);
3088 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr);
3089 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi,
3090 oe->disk_num_bytes);
3091 btrfs_set_stack_file_extent_offset(&stack_fi, oe->offset);
3092 if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags))
3093 num_bytes = oe->truncated_len;
3094 btrfs_set_stack_file_extent_num_bytes(&stack_fi, num_bytes);
3095 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, ram_bytes);
3096 btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type);
3097 /* Encryption and other encoding is reserved and all 0 */
3098
3099 /*
3100 * For delalloc, when completing an ordered extent we update the inode's
3101 * bytes when clearing the range in the inode's io tree, so pass false
3102 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(),
3103 * except if the ordered extent was truncated.
3104 */
3105 update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) ||
3106 test_bit(BTRFS_ORDERED_ENCODED, &oe->flags) ||
3107 test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags);
3108
3109 return insert_reserved_file_extent(trans, oe->inode,
3110 oe->file_offset, &stack_fi,
3111 update_inode_bytes, oe->qgroup_rsv);
3112}
3113
3114/*
3115 * As ordered data IO finishes, this gets called so we can finish
3116 * an ordered extent if the range of bytes in the file it covers are
3117 * fully written.
3118 */
3119int btrfs_finish_one_ordered(struct btrfs_ordered_extent *ordered_extent)
3120{
3121 struct btrfs_inode *inode = ordered_extent->inode;
3122 struct btrfs_root *root = inode->root;
3123 struct btrfs_fs_info *fs_info = root->fs_info;
3124 struct btrfs_trans_handle *trans = NULL;
3125 struct extent_io_tree *io_tree = &inode->io_tree;
3126 struct extent_state *cached_state = NULL;
3127 u64 start, end;
3128 int compress_type = 0;
3129 int ret = 0;
3130 u64 logical_len = ordered_extent->num_bytes;
3131 bool freespace_inode;
3132 bool truncated = false;
3133 bool clear_reserved_extent = true;
3134 unsigned int clear_bits = EXTENT_DEFRAG;
3135
3136 start = ordered_extent->file_offset;
3137 end = start + ordered_extent->num_bytes - 1;
3138
3139 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3140 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
3141 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags) &&
3142 !test_bit(BTRFS_ORDERED_ENCODED, &ordered_extent->flags))
3143 clear_bits |= EXTENT_DELALLOC_NEW;
3144
3145 freespace_inode = btrfs_is_free_space_inode(inode);
3146 if (!freespace_inode)
3147 btrfs_lockdep_acquire(fs_info, btrfs_ordered_extent);
3148
3149 if (unlikely(test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags))) {
3150 ret = -EIO;
3151 goto out;
3152 }
3153
3154 ret = btrfs_zone_finish_endio(fs_info, ordered_extent->disk_bytenr,
3155 ordered_extent->disk_num_bytes);
3156 if (ret)
3157 goto out;
3158
3159 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
3160 truncated = true;
3161 logical_len = ordered_extent->truncated_len;
3162 /* Truncated the entire extent, don't bother adding */
3163 if (!logical_len)
3164 goto out;
3165 }
3166
3167 /*
3168 * If it's a COW write we need to lock the extent range as we will be
3169 * inserting/replacing file extent items and unpinning an extent map.
3170 * This must be taken before joining a transaction, as it's a higher
3171 * level lock (like the inode's VFS lock), otherwise we can run into an
3172 * ABBA deadlock with other tasks (transactions work like a lock,
3173 * depending on their current state).
3174 */
3175 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
3176 clear_bits |= EXTENT_LOCKED | EXTENT_FINISHING_ORDERED;
3177 btrfs_lock_extent_bits(io_tree, start, end,
3178 EXTENT_LOCKED | EXTENT_FINISHING_ORDERED,
3179 &cached_state);
3180 }
3181
3182 if (freespace_inode)
3183 trans = btrfs_join_transaction_spacecache(root);
3184 else
3185 trans = btrfs_join_transaction(root);
3186 if (IS_ERR(trans)) {
3187 ret = PTR_ERR(trans);
3188 trans = NULL;
3189 goto out;
3190 }
3191
3192 trans->block_rsv = &inode->block_rsv;
3193
3194 ret = btrfs_insert_raid_extent(trans, ordered_extent);
3195 if (unlikely(ret)) {
3196 btrfs_abort_transaction(trans, ret);
3197 goto out;
3198 }
3199
3200 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
3201 /* Logic error */
3202 ASSERT(list_empty(&ordered_extent->list));
3203 if (unlikely(!list_empty(&ordered_extent->list))) {
3204 ret = -EINVAL;
3205 btrfs_abort_transaction(trans, ret);
3206 goto out;
3207 }
3208
3209 btrfs_inode_safe_disk_i_size_write(inode, 0);
3210 ret = btrfs_update_inode_fallback(trans, inode);
3211 if (unlikely(ret)) {
3212 /* -ENOMEM or corruption */
3213 btrfs_abort_transaction(trans, ret);
3214 }
3215 goto out;
3216 }
3217
3218 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
3219 compress_type = ordered_extent->compress_type;
3220 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3221 BUG_ON(compress_type);
3222 ret = btrfs_mark_extent_written(trans, inode,
3223 ordered_extent->file_offset,
3224 ordered_extent->file_offset +
3225 logical_len);
3226 btrfs_zoned_release_data_reloc_bg(fs_info, ordered_extent->disk_bytenr,
3227 ordered_extent->disk_num_bytes);
3228 } else {
3229 BUG_ON(root == fs_info->tree_root);
3230 ret = insert_ordered_extent_file_extent(trans, ordered_extent);
3231 if (!ret) {
3232 clear_reserved_extent = false;
3233 btrfs_release_delalloc_bytes(fs_info,
3234 ordered_extent->disk_bytenr,
3235 ordered_extent->disk_num_bytes);
3236 }
3237 }
3238 if (unlikely(ret < 0)) {
3239 btrfs_abort_transaction(trans, ret);
3240 goto out;
3241 }
3242
3243 ret = btrfs_unpin_extent_cache(inode, ordered_extent->file_offset,
3244 ordered_extent->num_bytes, trans->transid);
3245 if (unlikely(ret < 0)) {
3246 btrfs_abort_transaction(trans, ret);
3247 goto out;
3248 }
3249
3250 ret = add_pending_csums(trans, &ordered_extent->list);
3251 if (unlikely(ret)) {
3252 btrfs_abort_transaction(trans, ret);
3253 goto out;
3254 }
3255
3256 /*
3257 * If this is a new delalloc range, clear its new delalloc flag to
3258 * update the inode's number of bytes. This needs to be done first
3259 * before updating the inode item.
3260 */
3261 if ((clear_bits & EXTENT_DELALLOC_NEW) &&
3262 !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags))
3263 btrfs_clear_extent_bit(&inode->io_tree, start, end,
3264 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES,
3265 &cached_state);
3266
3267 btrfs_inode_safe_disk_i_size_write(inode, 0);
3268 ret = btrfs_update_inode_fallback(trans, inode);
3269 if (unlikely(ret)) { /* -ENOMEM or corruption */
3270 btrfs_abort_transaction(trans, ret);
3271 goto out;
3272 }
3273out:
3274 btrfs_clear_extent_bit(&inode->io_tree, start, end, clear_bits,
3275 &cached_state);
3276
3277 if (trans)
3278 btrfs_end_transaction(trans);
3279
3280 if (ret || truncated) {
3281 /*
3282 * If we failed to finish this ordered extent for any reason we
3283 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered
3284 * extent, and mark the inode with the error if it wasn't
3285 * already set. Any error during writeback would have already
3286 * set the mapping error, so we need to set it if we're the ones
3287 * marking this ordered extent as failed.
3288 */
3289 if (ret)
3290 btrfs_mark_ordered_extent_error(ordered_extent);
3291
3292 /*
3293 * Drop extent maps for the part of the extent we didn't write.
3294 *
3295 * We have an exception here for the free_space_inode, this is
3296 * because when we do btrfs_get_extent() on the free space inode
3297 * we will search the commit root. If this is a new block group
3298 * we won't find anything, and we will trip over the assert in
3299 * writepage where we do ASSERT(em->block_start !=
3300 * EXTENT_MAP_HOLE).
3301 *
3302 * Theoretically we could also skip this for any NOCOW extent as
3303 * we don't mess with the extent map tree in the NOCOW case, but
3304 * for now simply skip this if we are the free space inode.
3305 */
3306 if (!btrfs_is_free_space_inode(inode)) {
3307 u64 unwritten_start = start;
3308
3309 if (truncated)
3310 unwritten_start += logical_len;
3311
3312 btrfs_drop_extent_map_range(inode, unwritten_start,
3313 end, false);
3314 }
3315
3316 /*
3317 * If the ordered extent had an IOERR or something else went
3318 * wrong we need to return the space for this ordered extent
3319 * back to the allocator. We only free the extent in the
3320 * truncated case if we didn't write out the extent at all.
3321 *
3322 * If we made it past insert_reserved_file_extent before we
3323 * errored out then we don't need to do this as the accounting
3324 * has already been done.
3325 */
3326 if ((ret || !logical_len) &&
3327 clear_reserved_extent &&
3328 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3329 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3330 /*
3331 * Discard the range before returning it back to the
3332 * free space pool
3333 */
3334 if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC))
3335 btrfs_discard_extent(fs_info,
3336 ordered_extent->disk_bytenr,
3337 ordered_extent->disk_num_bytes,
3338 NULL);
3339 btrfs_free_reserved_extent(fs_info,
3340 ordered_extent->disk_bytenr,
3341 ordered_extent->disk_num_bytes, true);
3342 /*
3343 * Actually free the qgroup rsv which was released when
3344 * the ordered extent was created.
3345 */
3346 btrfs_qgroup_free_refroot(fs_info, btrfs_root_id(inode->root),
3347 ordered_extent->qgroup_rsv,
3348 BTRFS_QGROUP_RSV_DATA);
3349 }
3350 }
3351
3352 /*
3353 * This needs to be done to make sure anybody waiting knows we are done
3354 * updating everything for this ordered extent.
3355 */
3356 btrfs_remove_ordered_extent(inode, ordered_extent);
3357
3358 /* once for us */
3359 btrfs_put_ordered_extent(ordered_extent);
3360 /* once for the tree */
3361 btrfs_put_ordered_extent(ordered_extent);
3362
3363 return ret;
3364}
3365
3366int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered)
3367{
3368 if (btrfs_is_zoned(ordered->inode->root->fs_info) &&
3369 !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) &&
3370 list_empty(&ordered->bioc_list))
3371 btrfs_finish_ordered_zoned(ordered);
3372 return btrfs_finish_one_ordered(ordered);
3373}
3374
3375/*
3376 * Calculate the checksum of an fs block at physical memory address @paddr,
3377 * and save the result to @dest.
3378 *
3379 * The folio containing @paddr must be large enough to contain a full fs block.
3380 */
3381void btrfs_calculate_block_csum_folio(struct btrfs_fs_info *fs_info,
3382 const phys_addr_t paddr, u8 *dest)
3383{
3384 struct folio *folio = page_folio(phys_to_page(paddr));
3385 const u32 blocksize = fs_info->sectorsize;
3386 const u32 step = min(blocksize, PAGE_SIZE);
3387 const u32 nr_steps = blocksize / step;
3388 phys_addr_t paddrs[BTRFS_MAX_BLOCKSIZE / PAGE_SIZE];
3389
3390 /* The full block must be inside the folio. */
3391 ASSERT(offset_in_folio(folio, paddr) + blocksize <= folio_size(folio));
3392
3393 for (int i = 0; i < nr_steps; i++) {
3394 u32 pindex = offset_in_folio(folio, paddr + i * step) >> PAGE_SHIFT;
3395
3396 /*
3397 * For bs <= ps cases, we will only run the loop once, so the offset
3398 * inside the page will only added to paddrs[0].
3399 *
3400 * For bs > ps cases, the block must be page aligned, thus offset
3401 * inside the page will always be 0.
3402 */
3403 paddrs[i] = page_to_phys(folio_page(folio, pindex)) + offset_in_page(paddr);
3404 }
3405 return btrfs_calculate_block_csum_pages(fs_info, paddrs, dest);
3406}
3407
3408/*
3409 * Calculate the checksum of a fs block backed by multiple noncontiguous pages
3410 * at @paddrs[] and save the result to @dest.
3411 *
3412 * The folio containing @paddr must be large enough to contain a full fs block.
3413 */
3414void btrfs_calculate_block_csum_pages(struct btrfs_fs_info *fs_info,
3415 const phys_addr_t paddrs[], u8 *dest)
3416{
3417 const u32 blocksize = fs_info->sectorsize;
3418 const u32 step = min(blocksize, PAGE_SIZE);
3419 const u32 nr_steps = blocksize / step;
3420 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3421
3422 shash->tfm = fs_info->csum_shash;
3423 crypto_shash_init(shash);
3424 for (int i = 0; i < nr_steps; i++) {
3425 const phys_addr_t paddr = paddrs[i];
3426 void *kaddr;
3427
3428 ASSERT(offset_in_page(paddr) + step <= PAGE_SIZE);
3429 kaddr = kmap_local_page(phys_to_page(paddr)) + offset_in_page(paddr);
3430 crypto_shash_update(shash, kaddr, step);
3431 kunmap_local(kaddr);
3432 }
3433 crypto_shash_final(shash, dest);
3434}
3435
3436/*
3437 * Verify the checksum for a single sector without any extra action that depend
3438 * on the type of I/O.
3439 *
3440 * @kaddr must be a properly kmapped address.
3441 */
3442int btrfs_check_block_csum(struct btrfs_fs_info *fs_info, phys_addr_t paddr, u8 *csum,
3443 const u8 * const csum_expected)
3444{
3445 btrfs_calculate_block_csum_folio(fs_info, paddr, csum);
3446 if (unlikely(memcmp(csum, csum_expected, fs_info->csum_size) != 0))
3447 return -EIO;
3448 return 0;
3449}
3450
3451/*
3452 * Verify the checksum of a single data sector, which can be scattered at
3453 * different noncontiguous pages.
3454 *
3455 * @bbio: btrfs_io_bio which contains the csum
3456 * @dev: device the sector is on
3457 * @bio_offset: offset to the beginning of the bio (in bytes)
3458 * @paddrs: physical addresses which back the fs block
3459 *
3460 * Check if the checksum on a data block is valid. When a checksum mismatch is
3461 * detected, report the error and fill the corrupted range with zero.
3462 *
3463 * Return %true if the sector is ok or had no checksum to start with, else %false.
3464 */
3465bool btrfs_data_csum_ok(struct btrfs_bio *bbio, struct btrfs_device *dev,
3466 u32 bio_offset, const phys_addr_t paddrs[])
3467{
3468 struct btrfs_inode *inode = bbio->inode;
3469 struct btrfs_fs_info *fs_info = inode->root->fs_info;
3470 const u32 blocksize = fs_info->sectorsize;
3471 const u32 step = min(blocksize, PAGE_SIZE);
3472 const u32 nr_steps = blocksize / step;
3473 u64 file_offset = bbio->file_offset + bio_offset;
3474 u64 end = file_offset + blocksize - 1;
3475 u8 *csum_expected;
3476 u8 csum[BTRFS_CSUM_SIZE];
3477
3478 if (!bbio->csum)
3479 return true;
3480
3481 if (btrfs_is_data_reloc_root(inode->root) &&
3482 btrfs_test_range_bit(&inode->io_tree, file_offset, end, EXTENT_NODATASUM,
3483 NULL)) {
3484 /* Skip the range without csum for data reloc inode */
3485 btrfs_clear_extent_bit(&inode->io_tree, file_offset, end,
3486 EXTENT_NODATASUM, NULL);
3487 return true;
3488 }
3489
3490 csum_expected = bbio->csum + (bio_offset >> fs_info->sectorsize_bits) *
3491 fs_info->csum_size;
3492 btrfs_calculate_block_csum_pages(fs_info, paddrs, csum);
3493 if (unlikely(memcmp(csum, csum_expected, fs_info->csum_size) != 0))
3494 goto zeroit;
3495 return true;
3496
3497zeroit:
3498 btrfs_print_data_csum_error(inode, file_offset, csum, csum_expected,
3499 bbio->mirror_num);
3500 if (dev)
3501 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS);
3502 for (int i = 0; i < nr_steps; i++)
3503 memzero_page(phys_to_page(paddrs[i]), offset_in_page(paddrs[i]), step);
3504 return false;
3505}
3506
3507/*
3508 * Perform a delayed iput on @inode.
3509 *
3510 * @inode: The inode we want to perform iput on
3511 *
3512 * This function uses the generic vfs_inode::i_count to track whether we should
3513 * just decrement it (in case it's > 1) or if this is the last iput then link
3514 * the inode to the delayed iput machinery. Delayed iputs are processed at
3515 * transaction commit time/superblock commit/cleaner kthread.
3516 */
3517void btrfs_add_delayed_iput(struct btrfs_inode *inode)
3518{
3519 struct btrfs_fs_info *fs_info = inode->root->fs_info;
3520 unsigned long flags;
3521
3522 if (atomic_add_unless(&inode->vfs_inode.i_count, -1, 1))
3523 return;
3524
3525 WARN_ON_ONCE(test_bit(BTRFS_FS_STATE_NO_DELAYED_IPUT, &fs_info->fs_state));
3526 atomic_inc(&fs_info->nr_delayed_iputs);
3527 /*
3528 * Need to be irq safe here because we can be called from either an irq
3529 * context (see bio.c and btrfs_put_ordered_extent()) or a non-irq
3530 * context.
3531 */
3532 spin_lock_irqsave(&fs_info->delayed_iput_lock, flags);
3533 ASSERT(list_empty(&inode->delayed_iput));
3534 list_add_tail(&inode->delayed_iput, &fs_info->delayed_iputs);
3535 spin_unlock_irqrestore(&fs_info->delayed_iput_lock, flags);
3536 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
3537 wake_up_process(fs_info->cleaner_kthread);
3538}
3539
3540static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info,
3541 struct btrfs_inode *inode)
3542{
3543 list_del_init(&inode->delayed_iput);
3544 spin_unlock_irq(&fs_info->delayed_iput_lock);
3545 iput(&inode->vfs_inode);
3546 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
3547 wake_up(&fs_info->delayed_iputs_wait);
3548 spin_lock_irq(&fs_info->delayed_iput_lock);
3549}
3550
3551static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info,
3552 struct btrfs_inode *inode)
3553{
3554 if (!list_empty(&inode->delayed_iput)) {
3555 spin_lock_irq(&fs_info->delayed_iput_lock);
3556 if (!list_empty(&inode->delayed_iput))
3557 run_delayed_iput_locked(fs_info, inode);
3558 spin_unlock_irq(&fs_info->delayed_iput_lock);
3559 }
3560}
3561
3562void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3563{
3564 /*
3565 * btrfs_put_ordered_extent() can run in irq context (see bio.c), which
3566 * calls btrfs_add_delayed_iput() and that needs to lock
3567 * fs_info->delayed_iput_lock. So we need to disable irqs here to
3568 * prevent a deadlock.
3569 */
3570 spin_lock_irq(&fs_info->delayed_iput_lock);
3571 while (!list_empty(&fs_info->delayed_iputs)) {
3572 struct btrfs_inode *inode;
3573
3574 inode = list_first_entry(&fs_info->delayed_iputs,
3575 struct btrfs_inode, delayed_iput);
3576 run_delayed_iput_locked(fs_info, inode);
3577 if (need_resched()) {
3578 spin_unlock_irq(&fs_info->delayed_iput_lock);
3579 cond_resched();
3580 spin_lock_irq(&fs_info->delayed_iput_lock);
3581 }
3582 }
3583 spin_unlock_irq(&fs_info->delayed_iput_lock);
3584}
3585
3586/*
3587 * Wait for flushing all delayed iputs
3588 *
3589 * @fs_info: the filesystem
3590 *
3591 * This will wait on any delayed iputs that are currently running with KILLABLE
3592 * set. Once they are all done running we will return, unless we are killed in
3593 * which case we return EINTR. This helps in user operations like fallocate etc
3594 * that might get blocked on the iputs.
3595 *
3596 * Return EINTR if we were killed, 0 if nothing's pending
3597 */
3598int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
3599{
3600 int ret = wait_event_killable(fs_info->delayed_iputs_wait,
3601 atomic_read(&fs_info->nr_delayed_iputs) == 0);
3602 if (ret)
3603 return -EINTR;
3604 return 0;
3605}
3606
3607/*
3608 * This creates an orphan entry for the given inode in case something goes wrong
3609 * in the middle of an unlink.
3610 */
3611int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3612 struct btrfs_inode *inode)
3613{
3614 int ret;
3615
3616 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3617 if (unlikely(ret && ret != -EEXIST)) {
3618 btrfs_abort_transaction(trans, ret);
3619 return ret;
3620 }
3621
3622 return 0;
3623}
3624
3625/*
3626 * We have done the delete so we can go ahead and remove the orphan item for
3627 * this particular inode.
3628 */
3629static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3630 struct btrfs_inode *inode)
3631{
3632 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
3633}
3634
3635/*
3636 * this cleans up any orphans that may be left on the list from the last use
3637 * of this root.
3638 */
3639int btrfs_orphan_cleanup(struct btrfs_root *root)
3640{
3641 struct btrfs_fs_info *fs_info = root->fs_info;
3642 BTRFS_PATH_AUTO_FREE(path);
3643 struct extent_buffer *leaf;
3644 struct btrfs_key key, found_key;
3645 struct btrfs_trans_handle *trans;
3646 u64 last_objectid = 0;
3647 int ret = 0, nr_unlink = 0;
3648
3649 if (test_and_set_bit(BTRFS_ROOT_ORPHAN_CLEANUP, &root->state))
3650 return 0;
3651
3652 path = btrfs_alloc_path();
3653 if (!path) {
3654 ret = -ENOMEM;
3655 goto out;
3656 }
3657 path->reada = READA_BACK;
3658
3659 key.objectid = BTRFS_ORPHAN_OBJECTID;
3660 key.type = BTRFS_ORPHAN_ITEM_KEY;
3661 key.offset = (u64)-1;
3662
3663 while (1) {
3664 struct btrfs_inode *inode;
3665
3666 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3667 if (ret < 0)
3668 goto out;
3669
3670 /*
3671 * if ret == 0 means we found what we were searching for, which
3672 * is weird, but possible, so only screw with path if we didn't
3673 * find the key and see if we have stuff that matches
3674 */
3675 if (ret > 0) {
3676 ret = 0;
3677 if (path->slots[0] == 0)
3678 break;
3679 path->slots[0]--;
3680 }
3681
3682 /* pull out the item */
3683 leaf = path->nodes[0];
3684 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3685
3686 /* make sure the item matches what we want */
3687 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3688 break;
3689 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3690 break;
3691
3692 /* release the path since we're done with it */
3693 btrfs_release_path(path);
3694
3695 /*
3696 * this is where we are basically btrfs_lookup, without the
3697 * crossing root thing. we store the inode number in the
3698 * offset of the orphan item.
3699 */
3700
3701 if (found_key.offset == last_objectid) {
3702 /*
3703 * We found the same inode as before. This means we were
3704 * not able to remove its items via eviction triggered
3705 * by an iput(). A transaction abort may have happened,
3706 * due to -ENOSPC for example, so try to grab the error
3707 * that lead to a transaction abort, if any.
3708 */
3709 btrfs_err(fs_info,
3710 "Error removing orphan entry, stopping orphan cleanup");
3711 ret = BTRFS_FS_ERROR(fs_info) ?: -EINVAL;
3712 goto out;
3713 }
3714
3715 last_objectid = found_key.offset;
3716
3717 found_key.objectid = found_key.offset;
3718 found_key.type = BTRFS_INODE_ITEM_KEY;
3719 found_key.offset = 0;
3720 inode = btrfs_iget(last_objectid, root);
3721 if (IS_ERR(inode)) {
3722 ret = PTR_ERR(inode);
3723 inode = NULL;
3724 if (ret != -ENOENT)
3725 goto out;
3726 }
3727
3728 if (!inode && root == fs_info->tree_root) {
3729 struct btrfs_root *dead_root;
3730 int is_dead_root = 0;
3731
3732 /*
3733 * This is an orphan in the tree root. Currently these
3734 * could come from 2 sources:
3735 * a) a root (snapshot/subvolume) deletion in progress
3736 * b) a free space cache inode
3737 * We need to distinguish those two, as the orphan item
3738 * for a root must not get deleted before the deletion
3739 * of the snapshot/subvolume's tree completes.
3740 *
3741 * btrfs_find_orphan_roots() ran before us, which has
3742 * found all deleted roots and loaded them into
3743 * fs_info->fs_roots_radix. So here we can find if an
3744 * orphan item corresponds to a deleted root by looking
3745 * up the root from that radix tree.
3746 */
3747
3748 spin_lock(&fs_info->fs_roots_radix_lock);
3749 dead_root = radix_tree_lookup(&fs_info->fs_roots_radix,
3750 (unsigned long)found_key.objectid);
3751 if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0)
3752 is_dead_root = 1;
3753 spin_unlock(&fs_info->fs_roots_radix_lock);
3754
3755 if (is_dead_root) {
3756 /* prevent this orphan from being found again */
3757 key.offset = found_key.objectid - 1;
3758 continue;
3759 }
3760
3761 }
3762
3763 /*
3764 * If we have an inode with links, there are a couple of
3765 * possibilities:
3766 *
3767 * 1. We were halfway through creating fsverity metadata for the
3768 * file. In that case, the orphan item represents incomplete
3769 * fsverity metadata which must be cleaned up with
3770 * btrfs_drop_verity_items and deleting the orphan item.
3771
3772 * 2. Old kernels (before v3.12) used to create an
3773 * orphan item for truncate indicating that there were possibly
3774 * extent items past i_size that needed to be deleted. In v3.12,
3775 * truncate was changed to update i_size in sync with the extent
3776 * items, but the (useless) orphan item was still created. Since
3777 * v4.18, we don't create the orphan item for truncate at all.
3778 *
3779 * So, this item could mean that we need to do a truncate, but
3780 * only if this filesystem was last used on a pre-v3.12 kernel
3781 * and was not cleanly unmounted. The odds of that are quite
3782 * slim, and it's a pain to do the truncate now, so just delete
3783 * the orphan item.
3784 *
3785 * It's also possible that this orphan item was supposed to be
3786 * deleted but wasn't. The inode number may have been reused,
3787 * but either way, we can delete the orphan item.
3788 */
3789 if (!inode || inode->vfs_inode.i_nlink) {
3790 if (inode) {
3791 ret = btrfs_drop_verity_items(inode);
3792 iput(&inode->vfs_inode);
3793 inode = NULL;
3794 if (ret)
3795 goto out;
3796 }
3797 trans = btrfs_start_transaction(root, 1);
3798 if (IS_ERR(trans)) {
3799 ret = PTR_ERR(trans);
3800 goto out;
3801 }
3802 btrfs_debug(fs_info, "auto deleting %Lu",
3803 found_key.objectid);
3804 ret = btrfs_del_orphan_item(trans, root,
3805 found_key.objectid);
3806 btrfs_end_transaction(trans);
3807 if (ret)
3808 goto out;
3809 continue;
3810 }
3811
3812 nr_unlink++;
3813
3814 /* this will do delete_inode and everything for us */
3815 iput(&inode->vfs_inode);
3816 }
3817 /* release the path since we're done with it */
3818 btrfs_release_path(path);
3819
3820 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3821 trans = btrfs_join_transaction(root);
3822 if (!IS_ERR(trans))
3823 btrfs_end_transaction(trans);
3824 }
3825
3826 if (nr_unlink)
3827 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3828
3829out:
3830 if (ret)
3831 btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3832 return ret;
3833}
3834
3835/*
3836 * Look ahead in the leaf for xattrs. If we don't find any then we know there
3837 * can't be any ACLs.
3838 *
3839 * @leaf: the eb leaf where to search
3840 * @slot: the slot the inode is in
3841 * @objectid: the objectid of the inode
3842 *
3843 * Return true if there is xattr/ACL, false otherwise.
3844 */
3845static noinline bool acls_after_inode_item(struct extent_buffer *leaf,
3846 int slot, u64 objectid,
3847 int *first_xattr_slot)
3848{
3849 u32 nritems = btrfs_header_nritems(leaf);
3850 struct btrfs_key found_key;
3851 static u64 xattr_access = 0;
3852 static u64 xattr_default = 0;
3853 int scanned = 0;
3854
3855 if (!xattr_access) {
3856 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3857 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3858 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3859 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3860 }
3861
3862 slot++;
3863 *first_xattr_slot = -1;
3864 while (slot < nritems) {
3865 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3866
3867 /* We found a different objectid, there must be no ACLs. */
3868 if (found_key.objectid != objectid)
3869 return false;
3870
3871 /* We found an xattr, assume we've got an ACL. */
3872 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3873 if (*first_xattr_slot == -1)
3874 *first_xattr_slot = slot;
3875 if (found_key.offset == xattr_access ||
3876 found_key.offset == xattr_default)
3877 return true;
3878 }
3879
3880 /*
3881 * We found a key greater than an xattr key, there can't be any
3882 * ACLs later on.
3883 */
3884 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3885 return false;
3886
3887 slot++;
3888 scanned++;
3889
3890 /*
3891 * The item order goes like:
3892 * - inode
3893 * - inode backrefs
3894 * - xattrs
3895 * - extents,
3896 *
3897 * so if there are lots of hard links to an inode there can be
3898 * a lot of backrefs. Don't waste time searching too hard,
3899 * this is just an optimization.
3900 */
3901 if (scanned >= 8)
3902 break;
3903 }
3904 /*
3905 * We hit the end of the leaf before we found an xattr or something
3906 * larger than an xattr. We have to assume the inode has ACLs.
3907 */
3908 if (*first_xattr_slot == -1)
3909 *first_xattr_slot = slot;
3910 return true;
3911}
3912
3913static int btrfs_init_file_extent_tree(struct btrfs_inode *inode)
3914{
3915 struct btrfs_fs_info *fs_info = inode->root->fs_info;
3916
3917 if (WARN_ON_ONCE(inode->file_extent_tree))
3918 return 0;
3919 if (btrfs_fs_incompat(fs_info, NO_HOLES))
3920 return 0;
3921 if (!S_ISREG(inode->vfs_inode.i_mode))
3922 return 0;
3923 if (btrfs_is_free_space_inode(inode))
3924 return 0;
3925
3926 inode->file_extent_tree = kmalloc(sizeof(struct extent_io_tree), GFP_KERNEL);
3927 if (!inode->file_extent_tree)
3928 return -ENOMEM;
3929
3930 btrfs_extent_io_tree_init(fs_info, inode->file_extent_tree,
3931 IO_TREE_INODE_FILE_EXTENT);
3932 /* Lockdep class is set only for the file extent tree. */
3933 lockdep_set_class(&inode->file_extent_tree->lock, &file_extent_tree_class);
3934
3935 return 0;
3936}
3937
3938static int btrfs_add_inode_to_root(struct btrfs_inode *inode, bool prealloc)
3939{
3940 struct btrfs_root *root = inode->root;
3941 struct btrfs_inode *existing;
3942 const u64 ino = btrfs_ino(inode);
3943 int ret;
3944
3945 if (inode_unhashed(&inode->vfs_inode))
3946 return 0;
3947
3948 if (prealloc) {
3949 ret = xa_reserve(&root->inodes, ino, GFP_NOFS);
3950 if (ret)
3951 return ret;
3952 }
3953
3954 existing = xa_store(&root->inodes, ino, inode, GFP_ATOMIC);
3955
3956 if (xa_is_err(existing)) {
3957 ret = xa_err(existing);
3958 ASSERT(ret != -EINVAL);
3959 ASSERT(ret != -ENOMEM);
3960 return ret;
3961 } else if (existing) {
3962 WARN_ON(!(inode_state_read_once(&existing->vfs_inode) & (I_WILL_FREE | I_FREEING)));
3963 }
3964
3965 return 0;
3966}
3967
3968/*
3969 * Read a locked inode from the btree into the in-memory inode and add it to
3970 * its root list/tree.
3971 *
3972 * On failure clean up the inode.
3973 */
3974static int btrfs_read_locked_inode(struct btrfs_inode *inode, struct btrfs_path *path)
3975{
3976 struct btrfs_root *root = inode->root;
3977 struct btrfs_fs_info *fs_info = root->fs_info;
3978 struct extent_buffer *leaf;
3979 struct btrfs_inode_item *inode_item;
3980 struct inode *vfs_inode = &inode->vfs_inode;
3981 struct btrfs_key location;
3982 unsigned long ptr;
3983 int maybe_acls;
3984 u32 rdev;
3985 int ret;
3986 bool filled = false;
3987 int first_xattr_slot;
3988
3989 ret = btrfs_fill_inode(inode, &rdev);
3990 if (!ret)
3991 filled = true;
3992
3993 ASSERT(path);
3994
3995 btrfs_get_inode_key(inode, &location);
3996
3997 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3998 if (ret) {
3999 /*
4000 * ret > 0 can come from btrfs_search_slot called by
4001 * btrfs_lookup_inode(), this means the inode was not found.
4002 */
4003 if (ret > 0)
4004 ret = -ENOENT;
4005 goto out;
4006 }
4007
4008 leaf = path->nodes[0];
4009
4010 if (filled)
4011 goto cache_index;
4012
4013 inode_item = btrfs_item_ptr(leaf, path->slots[0],
4014 struct btrfs_inode_item);
4015 vfs_inode->i_mode = btrfs_inode_mode(leaf, inode_item);
4016 set_nlink(vfs_inode, btrfs_inode_nlink(leaf, inode_item));
4017 i_uid_write(vfs_inode, btrfs_inode_uid(leaf, inode_item));
4018 i_gid_write(vfs_inode, btrfs_inode_gid(leaf, inode_item));
4019 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
4020
4021 inode_set_atime(vfs_inode, btrfs_timespec_sec(leaf, &inode_item->atime),
4022 btrfs_timespec_nsec(leaf, &inode_item->atime));
4023
4024 inode_set_mtime(vfs_inode, btrfs_timespec_sec(leaf, &inode_item->mtime),
4025 btrfs_timespec_nsec(leaf, &inode_item->mtime));
4026
4027 inode_set_ctime(vfs_inode, btrfs_timespec_sec(leaf, &inode_item->ctime),
4028 btrfs_timespec_nsec(leaf, &inode_item->ctime));
4029
4030 inode->i_otime_sec = btrfs_timespec_sec(leaf, &inode_item->otime);
4031 inode->i_otime_nsec = btrfs_timespec_nsec(leaf, &inode_item->otime);
4032
4033 inode_set_bytes(vfs_inode, btrfs_inode_nbytes(leaf, inode_item));
4034 inode->generation = btrfs_inode_generation(leaf, inode_item);
4035 inode->last_trans = btrfs_inode_transid(leaf, inode_item);
4036
4037 inode_set_iversion_queried(vfs_inode, btrfs_inode_sequence(leaf, inode_item));
4038 vfs_inode->i_generation = inode->generation;
4039 vfs_inode->i_rdev = 0;
4040 rdev = btrfs_inode_rdev(leaf, inode_item);
4041
4042 if (S_ISDIR(vfs_inode->i_mode))
4043 inode->index_cnt = (u64)-1;
4044
4045 btrfs_inode_split_flags(btrfs_inode_flags(leaf, inode_item),
4046 &inode->flags, &inode->ro_flags);
4047 btrfs_update_inode_mapping_flags(inode);
4048 btrfs_set_inode_mapping_order(inode);
4049
4050cache_index:
4051 /*
4052 * If we were modified in the current generation and evicted from memory
4053 * and then re-read we need to do a full sync since we don't have any
4054 * idea about which extents were modified before we were evicted from
4055 * cache.
4056 *
4057 * This is required for both inode re-read from disk and delayed inode
4058 * in the delayed_nodes xarray.
4059 */
4060 if (inode->last_trans == btrfs_get_fs_generation(fs_info))
4061 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
4062
4063 /*
4064 * We don't persist the id of the transaction where an unlink operation
4065 * against the inode was last made. So here we assume the inode might
4066 * have been evicted, and therefore the exact value of last_unlink_trans
4067 * lost, and set it to last_trans to avoid metadata inconsistencies
4068 * between the inode and its parent if the inode is fsync'ed and the log
4069 * replayed. For example, in the scenario:
4070 *
4071 * touch mydir/foo
4072 * ln mydir/foo mydir/bar
4073 * sync
4074 * unlink mydir/bar
4075 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
4076 * xfs_io -c fsync mydir/foo
4077 * <power failure>
4078 * mount fs, triggers fsync log replay
4079 *
4080 * We must make sure that when we fsync our inode foo we also log its
4081 * parent inode, otherwise after log replay the parent still has the
4082 * dentry with the "bar" name but our inode foo has a link count of 1
4083 * and doesn't have an inode ref with the name "bar" anymore.
4084 *
4085 * Setting last_unlink_trans to last_trans is a pessimistic approach,
4086 * but it guarantees correctness at the expense of occasional full
4087 * transaction commits on fsync if our inode is a directory, or if our
4088 * inode is not a directory, logging its parent unnecessarily.
4089 */
4090 inode->last_unlink_trans = inode->last_trans;
4091
4092 /*
4093 * Same logic as for last_unlink_trans. We don't persist the generation
4094 * of the last transaction where this inode was used for a reflink
4095 * operation, so after eviction and reloading the inode we must be
4096 * pessimistic and assume the last transaction that modified the inode.
4097 */
4098 inode->last_reflink_trans = inode->last_trans;
4099
4100 path->slots[0]++;
4101 if (vfs_inode->i_nlink != 1 ||
4102 path->slots[0] >= btrfs_header_nritems(leaf))
4103 goto cache_acl;
4104
4105 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
4106 if (location.objectid != btrfs_ino(inode))
4107 goto cache_acl;
4108
4109 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4110 if (location.type == BTRFS_INODE_REF_KEY) {
4111 struct btrfs_inode_ref *ref;
4112
4113 ref = (struct btrfs_inode_ref *)ptr;
4114 inode->dir_index = btrfs_inode_ref_index(leaf, ref);
4115 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
4116 struct btrfs_inode_extref *extref;
4117
4118 extref = (struct btrfs_inode_extref *)ptr;
4119 inode->dir_index = btrfs_inode_extref_index(leaf, extref);
4120 }
4121cache_acl:
4122 /*
4123 * try to precache a NULL acl entry for files that don't have
4124 * any xattrs or acls
4125 */
4126 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
4127 btrfs_ino(inode), &first_xattr_slot);
4128 if (first_xattr_slot != -1) {
4129 path->slots[0] = first_xattr_slot;
4130 ret = btrfs_load_inode_props(inode, path);
4131 if (ret)
4132 btrfs_err(fs_info,
4133 "error loading props for ino %llu (root %llu): %d",
4134 btrfs_ino(inode), btrfs_root_id(root), ret);
4135 }
4136
4137 /*
4138 * We don't need the path anymore, so release it to avoid holding a read
4139 * lock on a leaf while calling btrfs_init_file_extent_tree(), which can
4140 * allocate memory that triggers reclaim (GFP_KERNEL) and cause a locking
4141 * dependency.
4142 */
4143 btrfs_release_path(path);
4144
4145 ret = btrfs_init_file_extent_tree(inode);
4146 if (ret)
4147 goto out;
4148 btrfs_inode_set_file_extent_range(inode, 0,
4149 round_up(i_size_read(vfs_inode), fs_info->sectorsize));
4150
4151 if (!maybe_acls)
4152 cache_no_acl(vfs_inode);
4153
4154 switch (vfs_inode->i_mode & S_IFMT) {
4155 case S_IFREG:
4156 vfs_inode->i_mapping->a_ops = &btrfs_aops;
4157 vfs_inode->i_fop = &btrfs_file_operations;
4158 vfs_inode->i_op = &btrfs_file_inode_operations;
4159 break;
4160 case S_IFDIR:
4161 vfs_inode->i_fop = &btrfs_dir_file_operations;
4162 vfs_inode->i_op = &btrfs_dir_inode_operations;
4163 break;
4164 case S_IFLNK:
4165 vfs_inode->i_op = &btrfs_symlink_inode_operations;
4166 inode_nohighmem(vfs_inode);
4167 vfs_inode->i_mapping->a_ops = &btrfs_aops;
4168 break;
4169 default:
4170 vfs_inode->i_op = &btrfs_special_inode_operations;
4171 init_special_inode(vfs_inode, vfs_inode->i_mode, rdev);
4172 break;
4173 }
4174
4175 btrfs_sync_inode_flags_to_i_flags(inode);
4176
4177 ret = btrfs_add_inode_to_root(inode, true);
4178 if (ret)
4179 goto out;
4180
4181 return 0;
4182out:
4183 iget_failed(vfs_inode);
4184 return ret;
4185}
4186
4187/*
4188 * given a leaf and an inode, copy the inode fields into the leaf
4189 */
4190static void fill_inode_item(struct btrfs_trans_handle *trans,
4191 struct extent_buffer *leaf,
4192 struct btrfs_inode_item *item,
4193 struct inode *inode)
4194{
4195 u64 flags;
4196
4197 btrfs_set_inode_uid(leaf, item, i_uid_read(inode));
4198 btrfs_set_inode_gid(leaf, item, i_gid_read(inode));
4199 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
4200 btrfs_set_inode_mode(leaf, item, inode->i_mode);
4201 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
4202
4203 btrfs_set_timespec_sec(leaf, &item->atime, inode_get_atime_sec(inode));
4204 btrfs_set_timespec_nsec(leaf, &item->atime, inode_get_atime_nsec(inode));
4205
4206 btrfs_set_timespec_sec(leaf, &item->mtime, inode_get_mtime_sec(inode));
4207 btrfs_set_timespec_nsec(leaf, &item->mtime, inode_get_mtime_nsec(inode));
4208
4209 btrfs_set_timespec_sec(leaf, &item->ctime, inode_get_ctime_sec(inode));
4210 btrfs_set_timespec_nsec(leaf, &item->ctime, inode_get_ctime_nsec(inode));
4211
4212 btrfs_set_timespec_sec(leaf, &item->otime, BTRFS_I(inode)->i_otime_sec);
4213 btrfs_set_timespec_nsec(leaf, &item->otime, BTRFS_I(inode)->i_otime_nsec);
4214
4215 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
4216 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
4217 btrfs_set_inode_sequence(leaf, item, inode_peek_iversion(inode));
4218 btrfs_set_inode_transid(leaf, item, trans->transid);
4219 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
4220 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
4221 BTRFS_I(inode)->ro_flags);
4222 btrfs_set_inode_flags(leaf, item, flags);
4223 btrfs_set_inode_block_group(leaf, item, 0);
4224}
4225
4226/*
4227 * copy everything in the in-memory inode into the btree.
4228 */
4229static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
4230 struct btrfs_inode *inode)
4231{
4232 struct btrfs_inode_item *inode_item;
4233 BTRFS_PATH_AUTO_FREE(path);
4234 struct extent_buffer *leaf;
4235 struct btrfs_key key;
4236 int ret;
4237
4238 path = btrfs_alloc_path();
4239 if (!path)
4240 return -ENOMEM;
4241
4242 btrfs_get_inode_key(inode, &key);
4243 ret = btrfs_lookup_inode(trans, inode->root, path, &key, 1);
4244 if (ret) {
4245 if (ret > 0)
4246 ret = -ENOENT;
4247 return ret;
4248 }
4249
4250 leaf = path->nodes[0];
4251 inode_item = btrfs_item_ptr(leaf, path->slots[0],
4252 struct btrfs_inode_item);
4253
4254 fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode);
4255 btrfs_set_inode_last_trans(trans, inode);
4256 return 0;
4257}
4258
4259/*
4260 * copy everything in the in-memory inode into the btree.
4261 */
4262int btrfs_update_inode(struct btrfs_trans_handle *trans,
4263 struct btrfs_inode *inode)
4264{
4265 struct btrfs_root *root = inode->root;
4266 struct btrfs_fs_info *fs_info = root->fs_info;
4267 int ret;
4268
4269 /*
4270 * If the inode is a free space inode, we can deadlock during commit
4271 * if we put it into the delayed code.
4272 *
4273 * The data relocation inode should also be directly updated
4274 * without delay
4275 */
4276 if (!btrfs_is_free_space_inode(inode)
4277 && !btrfs_is_data_reloc_root(root)
4278 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
4279 btrfs_update_root_times(trans, root);
4280
4281 ret = btrfs_delayed_update_inode(trans, inode);
4282 if (!ret)
4283 btrfs_set_inode_last_trans(trans, inode);
4284 return ret;
4285 }
4286
4287 return btrfs_update_inode_item(trans, inode);
4288}
4289
4290int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
4291 struct btrfs_inode *inode)
4292{
4293 int ret;
4294
4295 ret = btrfs_update_inode(trans, inode);
4296 if (ret == -ENOSPC)
4297 return btrfs_update_inode_item(trans, inode);
4298 return ret;
4299}
4300
4301static void update_time_after_link_or_unlink(struct btrfs_inode *dir)
4302{
4303 struct timespec64 now;
4304
4305 /*
4306 * If we are replaying a log tree, we do not want to update the mtime
4307 * and ctime of the parent directory with the current time, since the
4308 * log replay procedure is responsible for setting them to their correct
4309 * values (the ones it had when the fsync was done).
4310 */
4311 if (test_bit(BTRFS_FS_LOG_RECOVERING, &dir->root->fs_info->flags))
4312 return;
4313
4314 now = inode_set_ctime_current(&dir->vfs_inode);
4315 inode_set_mtime_to_ts(&dir->vfs_inode, now);
4316}
4317
4318/*
4319 * unlink helper that gets used here in inode.c and in the tree logging
4320 * recovery code. It remove a link in a directory with a given name, and
4321 * also drops the back refs in the inode to the directory
4322 */
4323static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4324 struct btrfs_inode *dir,
4325 struct btrfs_inode *inode,
4326 const struct fscrypt_str *name,
4327 struct btrfs_rename_ctx *rename_ctx)
4328{
4329 struct btrfs_root *root = dir->root;
4330 struct btrfs_fs_info *fs_info = root->fs_info;
4331 struct btrfs_path *path;
4332 int ret = 0;
4333 struct btrfs_dir_item *di;
4334 u64 index;
4335 u64 ino = btrfs_ino(inode);
4336 u64 dir_ino = btrfs_ino(dir);
4337
4338 path = btrfs_alloc_path();
4339 if (!path)
4340 return -ENOMEM;
4341
4342 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, name, -1);
4343 if (IS_ERR_OR_NULL(di)) {
4344 btrfs_free_path(path);
4345 return di ? PTR_ERR(di) : -ENOENT;
4346 }
4347 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4348 /*
4349 * Down the call chains below we'll also need to allocate a path, so no
4350 * need to hold on to this one for longer than necessary.
4351 */
4352 btrfs_free_path(path);
4353 if (ret)
4354 return ret;
4355
4356 /*
4357 * If we don't have dir index, we have to get it by looking up
4358 * the inode ref, since we get the inode ref, remove it directly,
4359 * it is unnecessary to do delayed deletion.
4360 *
4361 * But if we have dir index, needn't search inode ref to get it.
4362 * Since the inode ref is close to the inode item, it is better
4363 * that we delay to delete it, and just do this deletion when
4364 * we update the inode item.
4365 */
4366 if (inode->dir_index) {
4367 ret = btrfs_delayed_delete_inode_ref(inode);
4368 if (!ret) {
4369 index = inode->dir_index;
4370 goto skip_backref;
4371 }
4372 }
4373
4374 ret = btrfs_del_inode_ref(trans, root, name, ino, dir_ino, &index);
4375 if (unlikely(ret)) {
4376 btrfs_crit(fs_info,
4377 "failed to delete reference to %.*s, root %llu inode %llu parent %llu",
4378 name->len, name->name, btrfs_root_id(root), ino, dir_ino);
4379 btrfs_abort_transaction(trans, ret);
4380 return ret;
4381 }
4382skip_backref:
4383 if (rename_ctx)
4384 rename_ctx->index = index;
4385
4386 ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4387 if (unlikely(ret)) {
4388 btrfs_abort_transaction(trans, ret);
4389 return ret;
4390 }
4391
4392 /*
4393 * If we are in a rename context, we don't need to update anything in the
4394 * log. That will be done later during the rename by btrfs_log_new_name().
4395 * Besides that, doing it here would only cause extra unnecessary btree
4396 * operations on the log tree, increasing latency for applications.
4397 */
4398 if (!rename_ctx) {
4399 btrfs_del_inode_ref_in_log(trans, name, inode, dir);
4400 btrfs_del_dir_entries_in_log(trans, name, dir, index);
4401 }
4402
4403 /*
4404 * If we have a pending delayed iput we could end up with the final iput
4405 * being run in btrfs-cleaner context. If we have enough of these built
4406 * up we can end up burning a lot of time in btrfs-cleaner without any
4407 * way to throttle the unlinks. Since we're currently holding a ref on
4408 * the inode we can run the delayed iput here without any issues as the
4409 * final iput won't be done until after we drop the ref we're currently
4410 * holding.
4411 */
4412 btrfs_run_delayed_iput(fs_info, inode);
4413
4414 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name->len * 2);
4415 inode_inc_iversion(&inode->vfs_inode);
4416 inode_set_ctime_current(&inode->vfs_inode);
4417 inode_inc_iversion(&dir->vfs_inode);
4418 update_time_after_link_or_unlink(dir);
4419
4420 return btrfs_update_inode(trans, dir);
4421}
4422
4423int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4424 struct btrfs_inode *dir, struct btrfs_inode *inode,
4425 const struct fscrypt_str *name)
4426{
4427 int ret;
4428
4429 ret = __btrfs_unlink_inode(trans, dir, inode, name, NULL);
4430 if (!ret) {
4431 drop_nlink(&inode->vfs_inode);
4432 ret = btrfs_update_inode(trans, inode);
4433 }
4434 return ret;
4435}
4436
4437/*
4438 * helper to start transaction for unlink and rmdir.
4439 *
4440 * unlink and rmdir are special in btrfs, they do not always free space, so
4441 * if we cannot make our reservations the normal way try and see if there is
4442 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4443 * allow the unlink to occur.
4444 */
4445static struct btrfs_trans_handle *__unlink_start_trans(struct btrfs_inode *dir)
4446{
4447 struct btrfs_root *root = dir->root;
4448
4449 return btrfs_start_transaction_fallback_global_rsv(root,
4450 BTRFS_UNLINK_METADATA_UNITS);
4451}
4452
4453static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4454{
4455 struct btrfs_trans_handle *trans;
4456 struct inode *inode = d_inode(dentry);
4457 int ret;
4458 struct fscrypt_name fname;
4459
4460 ret = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname);
4461 if (ret)
4462 return ret;
4463
4464 /* This needs to handle no-key deletions later on */
4465
4466 trans = __unlink_start_trans(BTRFS_I(dir));
4467 if (IS_ERR(trans)) {
4468 ret = PTR_ERR(trans);
4469 goto fscrypt_free;
4470 }
4471
4472 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4473 false);
4474
4475 ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4476 &fname.disk_name);
4477 if (ret)
4478 goto end_trans;
4479
4480 if (inode->i_nlink == 0) {
4481 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4482 if (ret)
4483 goto end_trans;
4484 }
4485
4486end_trans:
4487 btrfs_end_transaction(trans);
4488 btrfs_btree_balance_dirty(BTRFS_I(dir)->root->fs_info);
4489fscrypt_free:
4490 fscrypt_free_filename(&fname);
4491 return ret;
4492}
4493
4494static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4495 struct btrfs_inode *dir, struct dentry *dentry)
4496{
4497 struct btrfs_root *root = dir->root;
4498 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
4499 BTRFS_PATH_AUTO_FREE(path);
4500 struct extent_buffer *leaf;
4501 struct btrfs_dir_item *di;
4502 struct btrfs_key key;
4503 u64 index;
4504 int ret;
4505 u64 objectid;
4506 u64 dir_ino = btrfs_ino(dir);
4507 struct fscrypt_name fname;
4508
4509 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname);
4510 if (ret)
4511 return ret;
4512
4513 /* This needs to handle no-key deletions later on */
4514
4515 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) {
4516 objectid = btrfs_root_id(inode->root);
4517 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4518 objectid = inode->ref_root_id;
4519 } else {
4520 WARN_ON(1);
4521 fscrypt_free_filename(&fname);
4522 return -EINVAL;
4523 }
4524
4525 path = btrfs_alloc_path();
4526 if (!path) {
4527 ret = -ENOMEM;
4528 goto out;
4529 }
4530
4531 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4532 &fname.disk_name, -1);
4533 if (IS_ERR_OR_NULL(di)) {
4534 ret = di ? PTR_ERR(di) : -ENOENT;
4535 goto out;
4536 }
4537
4538 leaf = path->nodes[0];
4539 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4540 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4541 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4542 if (unlikely(ret)) {
4543 btrfs_abort_transaction(trans, ret);
4544 goto out;
4545 }
4546 btrfs_release_path(path);
4547
4548 /*
4549 * This is a placeholder inode for a subvolume we didn't have a
4550 * reference to at the time of the snapshot creation. In the meantime
4551 * we could have renamed the real subvol link into our snapshot, so
4552 * depending on btrfs_del_root_ref to return -ENOENT here is incorrect.
4553 * Instead simply lookup the dir_index_item for this entry so we can
4554 * remove it. Otherwise we know we have a ref to the root and we can
4555 * call btrfs_del_root_ref, and it _shouldn't_ fail.
4556 */
4557 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4558 di = btrfs_search_dir_index_item(root, path, dir_ino, &fname.disk_name);
4559 if (IS_ERR(di)) {
4560 ret = PTR_ERR(di);
4561 btrfs_abort_transaction(trans, ret);
4562 goto out;
4563 }
4564
4565 leaf = path->nodes[0];
4566 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4567 index = key.offset;
4568 btrfs_release_path(path);
4569 } else {
4570 ret = btrfs_del_root_ref(trans, objectid,
4571 btrfs_root_id(root), dir_ino,
4572 &index, &fname.disk_name);
4573 if (unlikely(ret)) {
4574 btrfs_abort_transaction(trans, ret);
4575 goto out;
4576 }
4577 }
4578
4579 ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4580 if (unlikely(ret)) {
4581 btrfs_abort_transaction(trans, ret);
4582 goto out;
4583 }
4584
4585 btrfs_i_size_write(dir, dir->vfs_inode.i_size - fname.disk_name.len * 2);
4586 inode_inc_iversion(&dir->vfs_inode);
4587 inode_set_mtime_to_ts(&dir->vfs_inode, inode_set_ctime_current(&dir->vfs_inode));
4588 ret = btrfs_update_inode_fallback(trans, dir);
4589 if (ret)
4590 btrfs_abort_transaction(trans, ret);
4591out:
4592 fscrypt_free_filename(&fname);
4593 return ret;
4594}
4595
4596/*
4597 * Helper to check if the subvolume references other subvolumes or if it's
4598 * default.
4599 */
4600static noinline int may_destroy_subvol(struct btrfs_root *root)
4601{
4602 struct btrfs_fs_info *fs_info = root->fs_info;
4603 BTRFS_PATH_AUTO_FREE(path);
4604 struct btrfs_dir_item *di;
4605 struct btrfs_key key;
4606 struct fscrypt_str name = FSTR_INIT("default", 7);
4607 u64 dir_id;
4608 int ret;
4609
4610 path = btrfs_alloc_path();
4611 if (!path)
4612 return -ENOMEM;
4613
4614 /* Make sure this root isn't set as the default subvol */
4615 dir_id = btrfs_super_root_dir(fs_info->super_copy);
4616 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
4617 dir_id, &name, 0);
4618 if (di && !IS_ERR(di)) {
4619 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
4620 if (key.objectid == btrfs_root_id(root)) {
4621 ret = -EPERM;
4622 btrfs_err(fs_info,
4623 "deleting default subvolume %llu is not allowed",
4624 key.objectid);
4625 return ret;
4626 }
4627 btrfs_release_path(path);
4628 }
4629
4630 key.objectid = btrfs_root_id(root);
4631 key.type = BTRFS_ROOT_REF_KEY;
4632 key.offset = (u64)-1;
4633
4634 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4635 if (ret < 0)
4636 return ret;
4637 if (unlikely(ret == 0)) {
4638 /*
4639 * Key with offset -1 found, there would have to exist a root
4640 * with such id, but this is out of valid range.
4641 */
4642 return -EUCLEAN;
4643 }
4644
4645 ret = 0;
4646 if (path->slots[0] > 0) {
4647 path->slots[0]--;
4648 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4649 if (key.objectid == btrfs_root_id(root) && key.type == BTRFS_ROOT_REF_KEY)
4650 ret = -ENOTEMPTY;
4651 }
4652
4653 return ret;
4654}
4655
4656/* Delete all dentries for inodes belonging to the root */
4657static void btrfs_prune_dentries(struct btrfs_root *root)
4658{
4659 struct btrfs_fs_info *fs_info = root->fs_info;
4660 struct btrfs_inode *inode;
4661 u64 min_ino = 0;
4662
4663 if (!BTRFS_FS_ERROR(fs_info))
4664 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4665
4666 inode = btrfs_find_first_inode(root, min_ino);
4667 while (inode) {
4668 if (icount_read(&inode->vfs_inode) > 1)
4669 d_prune_aliases(&inode->vfs_inode);
4670
4671 min_ino = btrfs_ino(inode) + 1;
4672 /*
4673 * btrfs_drop_inode() will have it removed from the inode
4674 * cache when its usage count hits zero.
4675 */
4676 iput(&inode->vfs_inode);
4677 cond_resched();
4678 inode = btrfs_find_first_inode(root, min_ino);
4679 }
4680}
4681
4682int btrfs_delete_subvolume(struct btrfs_inode *dir, struct dentry *dentry)
4683{
4684 struct btrfs_root *root = dir->root;
4685 struct btrfs_fs_info *fs_info = root->fs_info;
4686 struct inode *inode = d_inode(dentry);
4687 struct btrfs_root *dest = BTRFS_I(inode)->root;
4688 struct btrfs_trans_handle *trans;
4689 struct btrfs_block_rsv block_rsv;
4690 u64 root_flags;
4691 u64 qgroup_reserved = 0;
4692 int ret;
4693
4694 down_write(&fs_info->subvol_sem);
4695
4696 /*
4697 * Don't allow to delete a subvolume with send in progress. This is
4698 * inside the inode lock so the error handling that has to drop the bit
4699 * again is not run concurrently.
4700 */
4701 spin_lock(&dest->root_item_lock);
4702 if (dest->send_in_progress) {
4703 spin_unlock(&dest->root_item_lock);
4704 btrfs_warn(fs_info,
4705 "attempt to delete subvolume %llu during send",
4706 btrfs_root_id(dest));
4707 ret = -EPERM;
4708 goto out_up_write;
4709 }
4710 if (atomic_read(&dest->nr_swapfiles)) {
4711 spin_unlock(&dest->root_item_lock);
4712 btrfs_warn(fs_info,
4713 "attempt to delete subvolume %llu with active swapfile",
4714 btrfs_root_id(root));
4715 ret = -EPERM;
4716 goto out_up_write;
4717 }
4718 root_flags = btrfs_root_flags(&dest->root_item);
4719 btrfs_set_root_flags(&dest->root_item,
4720 root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4721 spin_unlock(&dest->root_item_lock);
4722
4723 ret = may_destroy_subvol(dest);
4724 if (ret)
4725 goto out_undead;
4726
4727 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4728 /*
4729 * One for dir inode,
4730 * two for dir entries,
4731 * two for root ref/backref.
4732 */
4733 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
4734 if (ret)
4735 goto out_undead;
4736 qgroup_reserved = block_rsv.qgroup_rsv_reserved;
4737
4738 trans = btrfs_start_transaction(root, 0);
4739 if (IS_ERR(trans)) {
4740 ret = PTR_ERR(trans);
4741 goto out_release;
4742 }
4743 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
4744 qgroup_reserved = 0;
4745 trans->block_rsv = &block_rsv;
4746 trans->bytes_reserved = block_rsv.size;
4747
4748 btrfs_record_snapshot_destroy(trans, dir);
4749
4750 ret = btrfs_unlink_subvol(trans, dir, dentry);
4751 if (unlikely(ret)) {
4752 btrfs_abort_transaction(trans, ret);
4753 goto out_end_trans;
4754 }
4755
4756 ret = btrfs_record_root_in_trans(trans, dest);
4757 if (unlikely(ret)) {
4758 btrfs_abort_transaction(trans, ret);
4759 goto out_end_trans;
4760 }
4761
4762 memset(&dest->root_item.drop_progress, 0,
4763 sizeof(dest->root_item.drop_progress));
4764 btrfs_set_root_drop_level(&dest->root_item, 0);
4765 btrfs_set_root_refs(&dest->root_item, 0);
4766
4767 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4768 ret = btrfs_insert_orphan_item(trans,
4769 fs_info->tree_root,
4770 btrfs_root_id(dest));
4771 if (unlikely(ret)) {
4772 btrfs_abort_transaction(trans, ret);
4773 goto out_end_trans;
4774 }
4775 }
4776
4777 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
4778 BTRFS_UUID_KEY_SUBVOL, btrfs_root_id(dest));
4779 if (unlikely(ret && ret != -ENOENT)) {
4780 btrfs_abort_transaction(trans, ret);
4781 goto out_end_trans;
4782 }
4783 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
4784 ret = btrfs_uuid_tree_remove(trans,
4785 dest->root_item.received_uuid,
4786 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4787 btrfs_root_id(dest));
4788 if (unlikely(ret && ret != -ENOENT)) {
4789 btrfs_abort_transaction(trans, ret);
4790 goto out_end_trans;
4791 }
4792 }
4793
4794 free_anon_bdev(dest->anon_dev);
4795 dest->anon_dev = 0;
4796out_end_trans:
4797 trans->block_rsv = NULL;
4798 trans->bytes_reserved = 0;
4799 ret = btrfs_end_transaction(trans);
4800 inode->i_flags |= S_DEAD;
4801out_release:
4802 btrfs_block_rsv_release(fs_info, &block_rsv, (u64)-1, NULL);
4803 if (qgroup_reserved)
4804 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
4805out_undead:
4806 if (ret) {
4807 spin_lock(&dest->root_item_lock);
4808 root_flags = btrfs_root_flags(&dest->root_item);
4809 btrfs_set_root_flags(&dest->root_item,
4810 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4811 spin_unlock(&dest->root_item_lock);
4812 }
4813out_up_write:
4814 up_write(&fs_info->subvol_sem);
4815 if (!ret) {
4816 d_invalidate(dentry);
4817 btrfs_prune_dentries(dest);
4818 ASSERT(dest->send_in_progress == 0);
4819 }
4820
4821 return ret;
4822}
4823
4824static int btrfs_rmdir(struct inode *vfs_dir, struct dentry *dentry)
4825{
4826 struct btrfs_inode *dir = BTRFS_I(vfs_dir);
4827 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
4828 struct btrfs_fs_info *fs_info = inode->root->fs_info;
4829 int ret = 0;
4830 struct btrfs_trans_handle *trans;
4831 struct fscrypt_name fname;
4832
4833 if (inode->vfs_inode.i_size > BTRFS_EMPTY_DIR_SIZE)
4834 return -ENOTEMPTY;
4835 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) {
4836 if (unlikely(btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))) {
4837 btrfs_err(fs_info,
4838 "extent tree v2 doesn't support snapshot deletion yet");
4839 return -EOPNOTSUPP;
4840 }
4841 return btrfs_delete_subvolume(dir, dentry);
4842 }
4843
4844 ret = fscrypt_setup_filename(vfs_dir, &dentry->d_name, 1, &fname);
4845 if (ret)
4846 return ret;
4847
4848 /* This needs to handle no-key deletions later on */
4849
4850 trans = __unlink_start_trans(dir);
4851 if (IS_ERR(trans)) {
4852 ret = PTR_ERR(trans);
4853 goto out_notrans;
4854 }
4855
4856 /*
4857 * Propagate the last_unlink_trans value of the deleted dir to its
4858 * parent directory. This is to prevent an unrecoverable log tree in the
4859 * case we do something like this:
4860 * 1) create dir foo
4861 * 2) create snapshot under dir foo
4862 * 3) delete the snapshot
4863 * 4) rmdir foo
4864 * 5) mkdir foo
4865 * 6) fsync foo or some file inside foo
4866 *
4867 * This is because we can't unlink other roots when replaying the dir
4868 * deletes for directory foo.
4869 */
4870 if (inode->last_unlink_trans >= trans->transid)
4871 btrfs_record_snapshot_destroy(trans, dir);
4872
4873 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4874 ret = btrfs_unlink_subvol(trans, dir, dentry);
4875 goto out;
4876 }
4877
4878 ret = btrfs_orphan_add(trans, inode);
4879 if (ret)
4880 goto out;
4881
4882 /* now the directory is empty */
4883 ret = btrfs_unlink_inode(trans, dir, inode, &fname.disk_name);
4884 if (!ret)
4885 btrfs_i_size_write(inode, 0);
4886out:
4887 btrfs_end_transaction(trans);
4888out_notrans:
4889 btrfs_btree_balance_dirty(fs_info);
4890 fscrypt_free_filename(&fname);
4891
4892 return ret;
4893}
4894
4895static bool is_inside_block(u64 bytenr, u64 blockstart, u32 blocksize)
4896{
4897 ASSERT(IS_ALIGNED(blockstart, blocksize), "blockstart=%llu blocksize=%u",
4898 blockstart, blocksize);
4899
4900 if (blockstart <= bytenr && bytenr <= blockstart + blocksize - 1)
4901 return true;
4902 return false;
4903}
4904
4905static int truncate_block_zero_beyond_eof(struct btrfs_inode *inode, u64 start)
4906{
4907 const pgoff_t index = (start >> PAGE_SHIFT);
4908 struct address_space *mapping = inode->vfs_inode.i_mapping;
4909 struct folio *folio;
4910 u64 zero_start;
4911 u64 zero_end;
4912 int ret = 0;
4913
4914again:
4915 folio = filemap_lock_folio(mapping, index);
4916 /* No folio present. */
4917 if (IS_ERR(folio))
4918 return 0;
4919
4920 if (!folio_test_uptodate(folio)) {
4921 ret = btrfs_read_folio(NULL, folio);
4922 folio_lock(folio);
4923 if (folio->mapping != mapping) {
4924 folio_unlock(folio);
4925 folio_put(folio);
4926 goto again;
4927 }
4928 if (unlikely(!folio_test_uptodate(folio))) {
4929 ret = -EIO;
4930 goto out_unlock;
4931 }
4932 }
4933 folio_wait_writeback(folio);
4934
4935 /*
4936 * We do not need to lock extents nor wait for OE, as it's already
4937 * beyond EOF.
4938 */
4939
4940 zero_start = max_t(u64, folio_pos(folio), start);
4941 zero_end = folio_next_pos(folio);
4942 folio_zero_range(folio, zero_start - folio_pos(folio),
4943 zero_end - zero_start);
4944
4945out_unlock:
4946 folio_unlock(folio);
4947 folio_put(folio);
4948 return ret;
4949}
4950
4951/*
4952 * Handle the truncation of a fs block.
4953 *
4954 * @inode - inode that we're zeroing
4955 * @offset - the file offset of the block to truncate
4956 * The value must be inside [@start, @end], and the function will do
4957 * extra checks if the block that covers @offset needs to be zeroed.
4958 * @start - the start file offset of the range we want to zero
4959 * @end - the end (inclusive) file offset of the range we want to zero.
4960 *
4961 * If the range is not block aligned, read out the folio that covers @offset,
4962 * and if needed zero blocks that are inside the folio and covered by [@start, @end).
4963 * If @start or @end + 1 lands inside a block, that block will be marked dirty
4964 * for writeback.
4965 *
4966 * This is utilized by hole punch, zero range, file expansion.
4967 */
4968int btrfs_truncate_block(struct btrfs_inode *inode, u64 offset, u64 start, u64 end)
4969{
4970 struct btrfs_fs_info *fs_info = inode->root->fs_info;
4971 struct address_space *mapping = inode->vfs_inode.i_mapping;
4972 struct extent_io_tree *io_tree = &inode->io_tree;
4973 struct btrfs_ordered_extent *ordered;
4974 struct extent_state *cached_state = NULL;
4975 struct extent_changeset *data_reserved = NULL;
4976 bool only_release_metadata = false;
4977 u32 blocksize = fs_info->sectorsize;
4978 pgoff_t index = (offset >> PAGE_SHIFT);
4979 struct folio *folio;
4980 gfp_t mask = btrfs_alloc_write_mask(mapping);
4981 int ret = 0;
4982 const bool in_head_block = is_inside_block(offset, round_down(start, blocksize),
4983 blocksize);
4984 const bool in_tail_block = is_inside_block(offset, round_down(end, blocksize),
4985 blocksize);
4986 bool need_truncate_head = false;
4987 bool need_truncate_tail = false;
4988 u64 zero_start;
4989 u64 zero_end;
4990 u64 block_start;
4991 u64 block_end;
4992
4993 /* @offset should be inside the range. */
4994 ASSERT(start <= offset && offset <= end, "offset=%llu start=%llu end=%llu",
4995 offset, start, end);
4996
4997 /* The range is aligned at both ends. */
4998 if (IS_ALIGNED(start, blocksize) && IS_ALIGNED(end + 1, blocksize)) {
4999 /*
5000 * For block size < page size case, we may have polluted blocks
5001 * beyond EOF. So we also need to zero them out.
5002 */
5003 if (end == (u64)-1 && blocksize < PAGE_SIZE)
5004 ret = truncate_block_zero_beyond_eof(inode, start);
5005 goto out;
5006 }
5007
5008 /*
5009 * @offset may not be inside the head nor tail block. In that case we
5010 * don't need to do anything.
5011 */
5012 if (!in_head_block && !in_tail_block)
5013 goto out;
5014
5015 /*
5016 * Skip the truncation if the range in the target block is already aligned.
5017 * The seemingly complex check will also handle the same block case.
5018 */
5019 if (in_head_block && !IS_ALIGNED(start, blocksize))
5020 need_truncate_head = true;
5021 if (in_tail_block && !IS_ALIGNED(end + 1, blocksize))
5022 need_truncate_tail = true;
5023 if (!need_truncate_head && !need_truncate_tail)
5024 goto out;
5025
5026 block_start = round_down(offset, blocksize);
5027 block_end = block_start + blocksize - 1;
5028
5029 ret = btrfs_check_data_free_space(inode, &data_reserved, block_start,
5030 blocksize, false);
5031 if (ret < 0) {
5032 size_t write_bytes = blocksize;
5033
5034 if (btrfs_check_nocow_lock(inode, block_start, &write_bytes, false) > 0) {
5035 /* For nocow case, no need to reserve data space. */
5036 ASSERT(write_bytes == blocksize, "write_bytes=%zu blocksize=%u",
5037 write_bytes, blocksize);
5038 only_release_metadata = true;
5039 } else {
5040 goto out;
5041 }
5042 }
5043 ret = btrfs_delalloc_reserve_metadata(inode, blocksize, blocksize, false);
5044 if (ret < 0) {
5045 if (!only_release_metadata)
5046 btrfs_free_reserved_data_space(inode, data_reserved,
5047 block_start, blocksize);
5048 goto out;
5049 }
5050again:
5051 folio = __filemap_get_folio(mapping, index,
5052 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, mask);
5053 if (IS_ERR(folio)) {
5054 if (only_release_metadata)
5055 btrfs_delalloc_release_metadata(inode, blocksize, true);
5056 else
5057 btrfs_delalloc_release_space(inode, data_reserved,
5058 block_start, blocksize, true);
5059 btrfs_delalloc_release_extents(inode, blocksize);
5060 ret = PTR_ERR(folio);
5061 goto out;
5062 }
5063
5064 if (!folio_test_uptodate(folio)) {
5065 ret = btrfs_read_folio(NULL, folio);
5066 folio_lock(folio);
5067 if (folio->mapping != mapping) {
5068 folio_unlock(folio);
5069 folio_put(folio);
5070 goto again;
5071 }
5072 if (unlikely(!folio_test_uptodate(folio))) {
5073 ret = -EIO;
5074 goto out_unlock;
5075 }
5076 }
5077
5078 /*
5079 * We unlock the page after the io is completed and then re-lock it
5080 * above. release_folio() could have come in between that and cleared
5081 * folio private, but left the page in the mapping. Set the page mapped
5082 * here to make sure it's properly set for the subpage stuff.
5083 */
5084 ret = set_folio_extent_mapped(folio);
5085 if (ret < 0)
5086 goto out_unlock;
5087
5088 folio_wait_writeback(folio);
5089
5090 btrfs_lock_extent(io_tree, block_start, block_end, &cached_state);
5091
5092 ordered = btrfs_lookup_ordered_extent(inode, block_start);
5093 if (ordered) {
5094 btrfs_unlock_extent(io_tree, block_start, block_end, &cached_state);
5095 folio_unlock(folio);
5096 folio_put(folio);
5097 btrfs_start_ordered_extent(ordered);
5098 btrfs_put_ordered_extent(ordered);
5099 goto again;
5100 }
5101
5102 btrfs_clear_extent_bit(&inode->io_tree, block_start, block_end,
5103 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
5104 &cached_state);
5105
5106 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
5107 &cached_state);
5108 if (ret) {
5109 btrfs_unlock_extent(io_tree, block_start, block_end, &cached_state);
5110 goto out_unlock;
5111 }
5112
5113 if (end == (u64)-1) {
5114 /*
5115 * We're truncating beyond EOF, the remaining blocks normally are
5116 * already holes thus no need to zero again, but it's possible for
5117 * fs block size < page size cases to have memory mapped writes
5118 * to pollute ranges beyond EOF.
5119 *
5120 * In that case although such polluted blocks beyond EOF will
5121 * not reach disk, it still affects our page caches.
5122 */
5123 zero_start = max_t(u64, folio_pos(folio), start);
5124 zero_end = min_t(u64, folio_next_pos(folio) - 1, end);
5125 } else {
5126 zero_start = max_t(u64, block_start, start);
5127 zero_end = min_t(u64, block_end, end);
5128 }
5129 folio_zero_range(folio, zero_start - folio_pos(folio),
5130 zero_end - zero_start + 1);
5131
5132 btrfs_folio_clear_checked(fs_info, folio, block_start,
5133 block_end + 1 - block_start);
5134 btrfs_folio_set_dirty(fs_info, folio, block_start,
5135 block_end + 1 - block_start);
5136
5137 if (only_release_metadata)
5138 btrfs_set_extent_bit(&inode->io_tree, block_start, block_end,
5139 EXTENT_NORESERVE, &cached_state);
5140
5141 btrfs_unlock_extent(io_tree, block_start, block_end, &cached_state);
5142
5143out_unlock:
5144 if (ret) {
5145 if (only_release_metadata)
5146 btrfs_delalloc_release_metadata(inode, blocksize, true);
5147 else
5148 btrfs_delalloc_release_space(inode, data_reserved,
5149 block_start, blocksize, true);
5150 }
5151 btrfs_delalloc_release_extents(inode, blocksize);
5152 folio_unlock(folio);
5153 folio_put(folio);
5154out:
5155 if (only_release_metadata)
5156 btrfs_check_nocow_unlock(inode);
5157 extent_changeset_free(data_reserved);
5158 return ret;
5159}
5160
5161static int maybe_insert_hole(struct btrfs_inode *inode, u64 offset, u64 len)
5162{
5163 struct btrfs_root *root = inode->root;
5164 struct btrfs_fs_info *fs_info = root->fs_info;
5165 struct btrfs_trans_handle *trans;
5166 struct btrfs_drop_extents_args drop_args = { 0 };
5167 int ret;
5168
5169 /*
5170 * If NO_HOLES is enabled, we don't need to do anything.
5171 * Later, up in the call chain, either btrfs_set_inode_last_sub_trans()
5172 * or btrfs_update_inode() will be called, which guarantee that the next
5173 * fsync will know this inode was changed and needs to be logged.
5174 */
5175 if (btrfs_fs_incompat(fs_info, NO_HOLES))
5176 return 0;
5177
5178 /*
5179 * 1 - for the one we're dropping
5180 * 1 - for the one we're adding
5181 * 1 - for updating the inode.
5182 */
5183 trans = btrfs_start_transaction(root, 3);
5184 if (IS_ERR(trans))
5185 return PTR_ERR(trans);
5186
5187 drop_args.start = offset;
5188 drop_args.end = offset + len;
5189 drop_args.drop_cache = true;
5190
5191 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
5192 if (unlikely(ret)) {
5193 btrfs_abort_transaction(trans, ret);
5194 btrfs_end_transaction(trans);
5195 return ret;
5196 }
5197
5198 ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset, len);
5199 if (ret) {
5200 btrfs_abort_transaction(trans, ret);
5201 } else {
5202 btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found);
5203 btrfs_update_inode(trans, inode);
5204 }
5205 btrfs_end_transaction(trans);
5206 return ret;
5207}
5208
5209/*
5210 * This function puts in dummy file extents for the area we're creating a hole
5211 * for. So if we are truncating this file to a larger size we need to insert
5212 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
5213 * the range between oldsize and size
5214 */
5215int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size)
5216{
5217 struct btrfs_root *root = inode->root;
5218 struct btrfs_fs_info *fs_info = root->fs_info;
5219 struct extent_io_tree *io_tree = &inode->io_tree;
5220 struct extent_map *em = NULL;
5221 struct extent_state *cached_state = NULL;
5222 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
5223 u64 block_end = ALIGN(size, fs_info->sectorsize);
5224 u64 last_byte;
5225 u64 cur_offset;
5226 u64 hole_size;
5227 int ret = 0;
5228
5229 /*
5230 * If our size started in the middle of a block we need to zero out the
5231 * rest of the block before we expand the i_size, otherwise we could
5232 * expose stale data.
5233 */
5234 ret = btrfs_truncate_block(inode, oldsize, oldsize, -1);
5235 if (ret)
5236 return ret;
5237
5238 if (size <= hole_start)
5239 return 0;
5240
5241 btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1,
5242 &cached_state);
5243 cur_offset = hole_start;
5244 while (1) {
5245 em = btrfs_get_extent(inode, NULL, cur_offset, block_end - cur_offset);
5246 if (IS_ERR(em)) {
5247 ret = PTR_ERR(em);
5248 em = NULL;
5249 break;
5250 }
5251 last_byte = min(btrfs_extent_map_end(em), block_end);
5252 last_byte = ALIGN(last_byte, fs_info->sectorsize);
5253 hole_size = last_byte - cur_offset;
5254
5255 if (!(em->flags & EXTENT_FLAG_PREALLOC)) {
5256 struct extent_map *hole_em;
5257
5258 ret = maybe_insert_hole(inode, cur_offset, hole_size);
5259 if (ret)
5260 break;
5261
5262 ret = btrfs_inode_set_file_extent_range(inode,
5263 cur_offset, hole_size);
5264 if (ret)
5265 break;
5266
5267 hole_em = btrfs_alloc_extent_map();
5268 if (!hole_em) {
5269 btrfs_drop_extent_map_range(inode, cur_offset,
5270 cur_offset + hole_size - 1,
5271 false);
5272 btrfs_set_inode_full_sync(inode);
5273 goto next;
5274 }
5275 hole_em->start = cur_offset;
5276 hole_em->len = hole_size;
5277
5278 hole_em->disk_bytenr = EXTENT_MAP_HOLE;
5279 hole_em->disk_num_bytes = 0;
5280 hole_em->ram_bytes = hole_size;
5281 hole_em->generation = btrfs_get_fs_generation(fs_info);
5282
5283 ret = btrfs_replace_extent_map_range(inode, hole_em, true);
5284 btrfs_free_extent_map(hole_em);
5285 } else {
5286 ret = btrfs_inode_set_file_extent_range(inode,
5287 cur_offset, hole_size);
5288 if (ret)
5289 break;
5290 }
5291next:
5292 btrfs_free_extent_map(em);
5293 em = NULL;
5294 cur_offset = last_byte;
5295 if (cur_offset >= block_end)
5296 break;
5297 }
5298 btrfs_free_extent_map(em);
5299 btrfs_unlock_extent(io_tree, hole_start, block_end - 1, &cached_state);
5300 return ret;
5301}
5302
5303static int btrfs_setsize(struct inode *inode, struct iattr *attr)
5304{
5305 struct btrfs_root *root = BTRFS_I(inode)->root;
5306 struct btrfs_trans_handle *trans;
5307 loff_t oldsize = i_size_read(inode);
5308 loff_t newsize = attr->ia_size;
5309 int mask = attr->ia_valid;
5310 int ret;
5311
5312 /*
5313 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5314 * special case where we need to update the times despite not having
5315 * these flags set. For all other operations the VFS set these flags
5316 * explicitly if it wants a timestamp update.
5317 */
5318 if (newsize != oldsize) {
5319 inode_inc_iversion(inode);
5320 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) {
5321 inode_set_mtime_to_ts(inode,
5322 inode_set_ctime_current(inode));
5323 }
5324 }
5325
5326 if (newsize > oldsize) {
5327 /*
5328 * Don't do an expanding truncate while snapshotting is ongoing.
5329 * This is to ensure the snapshot captures a fully consistent
5330 * state of this file - if the snapshot captures this expanding
5331 * truncation, it must capture all writes that happened before
5332 * this truncation.
5333 */
5334 btrfs_drew_write_lock(&root->snapshot_lock);
5335 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize);
5336 if (ret) {
5337 btrfs_drew_write_unlock(&root->snapshot_lock);
5338 return ret;
5339 }
5340
5341 trans = btrfs_start_transaction(root, 1);
5342 if (IS_ERR(trans)) {
5343 btrfs_drew_write_unlock(&root->snapshot_lock);
5344 return PTR_ERR(trans);
5345 }
5346
5347 i_size_write(inode, newsize);
5348 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
5349 pagecache_isize_extended(inode, oldsize, newsize);
5350 ret = btrfs_update_inode(trans, BTRFS_I(inode));
5351 btrfs_drew_write_unlock(&root->snapshot_lock);
5352 btrfs_end_transaction(trans);
5353 } else {
5354 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
5355
5356 if (btrfs_is_zoned(fs_info)) {
5357 ret = btrfs_wait_ordered_range(BTRFS_I(inode),
5358 ALIGN(newsize, fs_info->sectorsize),
5359 (u64)-1);
5360 if (ret)
5361 return ret;
5362 }
5363
5364 /*
5365 * We're truncating a file that used to have good data down to
5366 * zero. Make sure any new writes to the file get on disk
5367 * on close.
5368 */
5369 if (newsize == 0)
5370 set_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
5371 &BTRFS_I(inode)->runtime_flags);
5372
5373 truncate_setsize(inode, newsize);
5374
5375 inode_dio_wait(inode);
5376
5377 ret = btrfs_truncate(BTRFS_I(inode), newsize == oldsize);
5378 if (ret && inode->i_nlink) {
5379 int ret2;
5380
5381 /*
5382 * Truncate failed, so fix up the in-memory size. We
5383 * adjusted disk_i_size down as we removed extents, so
5384 * wait for disk_i_size to be stable and then update the
5385 * in-memory size to match.
5386 */
5387 ret2 = btrfs_wait_ordered_range(BTRFS_I(inode), 0, (u64)-1);
5388 if (ret2)
5389 return ret2;
5390 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5391 }
5392 }
5393
5394 return ret;
5395}
5396
5397static int btrfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
5398 struct iattr *attr)
5399{
5400 struct inode *inode = d_inode(dentry);
5401 struct btrfs_root *root = BTRFS_I(inode)->root;
5402 int ret;
5403
5404 if (btrfs_root_readonly(root))
5405 return -EROFS;
5406
5407 ret = setattr_prepare(idmap, dentry, attr);
5408 if (ret)
5409 return ret;
5410
5411 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5412 ret = btrfs_setsize(inode, attr);
5413 if (ret)
5414 return ret;
5415 }
5416
5417 if (attr->ia_valid) {
5418 setattr_copy(idmap, inode, attr);
5419 inode_inc_iversion(inode);
5420 ret = btrfs_dirty_inode(BTRFS_I(inode));
5421
5422 if (!ret && attr->ia_valid & ATTR_MODE)
5423 ret = posix_acl_chmod(idmap, dentry, inode->i_mode);
5424 }
5425
5426 return ret;
5427}
5428
5429/*
5430 * While truncating the inode pages during eviction, we get the VFS
5431 * calling btrfs_invalidate_folio() against each folio of the inode. This
5432 * is slow because the calls to btrfs_invalidate_folio() result in a
5433 * huge amount of calls to lock_extent() and clear_extent_bit(),
5434 * which keep merging and splitting extent_state structures over and over,
5435 * wasting lots of time.
5436 *
5437 * Therefore if the inode is being evicted, let btrfs_invalidate_folio()
5438 * skip all those expensive operations on a per folio basis and do only
5439 * the ordered io finishing, while we release here the extent_map and
5440 * extent_state structures, without the excessive merging and splitting.
5441 */
5442static void evict_inode_truncate_pages(struct inode *inode)
5443{
5444 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5445 struct rb_node *node;
5446
5447 ASSERT(inode_state_read_once(inode) & I_FREEING);
5448 truncate_inode_pages_final(&inode->i_data);
5449
5450 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false);
5451
5452 /*
5453 * Keep looping until we have no more ranges in the io tree.
5454 * We can have ongoing bios started by readahead that have
5455 * their endio callback (extent_io.c:end_bio_extent_readpage)
5456 * still in progress (unlocked the pages in the bio but did not yet
5457 * unlocked the ranges in the io tree). Therefore this means some
5458 * ranges can still be locked and eviction started because before
5459 * submitting those bios, which are executed by a separate task (work
5460 * queue kthread), inode references (inode->i_count) were not taken
5461 * (which would be dropped in the end io callback of each bio).
5462 * Therefore here we effectively end up waiting for those bios and
5463 * anyone else holding locked ranges without having bumped the inode's
5464 * reference count - if we don't do it, when they access the inode's
5465 * io_tree to unlock a range it may be too late, leading to an
5466 * use-after-free issue.
5467 */
5468 spin_lock(&io_tree->lock);
5469 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5470 struct extent_state *state;
5471 struct extent_state *cached_state = NULL;
5472 u64 start;
5473 u64 end;
5474 unsigned state_flags;
5475
5476 node = rb_first(&io_tree->state);
5477 state = rb_entry(node, struct extent_state, rb_node);
5478 start = state->start;
5479 end = state->end;
5480 state_flags = state->state;
5481 spin_unlock(&io_tree->lock);
5482
5483 btrfs_lock_extent(io_tree, start, end, &cached_state);
5484
5485 /*
5486 * If still has DELALLOC flag, the extent didn't reach disk,
5487 * and its reserved space won't be freed by delayed_ref.
5488 * So we need to free its reserved space here.
5489 * (Refer to comment in btrfs_invalidate_folio, case 2)
5490 *
5491 * Note, end is the bytenr of last byte, so we need + 1 here.
5492 */
5493 if (state_flags & EXTENT_DELALLOC)
5494 btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start,
5495 end - start + 1, NULL);
5496
5497 btrfs_clear_extent_bit(io_tree, start, end,
5498 EXTENT_CLEAR_ALL_BITS | EXTENT_DO_ACCOUNTING,
5499 &cached_state);
5500
5501 cond_resched();
5502 spin_lock(&io_tree->lock);
5503 }
5504 spin_unlock(&io_tree->lock);
5505}
5506
5507static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
5508 struct btrfs_block_rsv *rsv)
5509{
5510 struct btrfs_fs_info *fs_info = root->fs_info;
5511 struct btrfs_trans_handle *trans;
5512 u64 delayed_refs_extra = btrfs_calc_delayed_ref_bytes(fs_info, 1);
5513 int ret;
5514
5515 /*
5516 * Eviction should be taking place at some place safe because of our
5517 * delayed iputs. However the normal flushing code will run delayed
5518 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
5519 *
5520 * We reserve the delayed_refs_extra here again because we can't use
5521 * btrfs_start_transaction(root, 0) for the same deadlocky reason as
5522 * above. We reserve our extra bit here because we generate a ton of
5523 * delayed refs activity by truncating.
5524 *
5525 * BTRFS_RESERVE_FLUSH_EVICT will steal from the global_rsv if it can,
5526 * if we fail to make this reservation we can re-try without the
5527 * delayed_refs_extra so we can make some forward progress.
5528 */
5529 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size + delayed_refs_extra,
5530 BTRFS_RESERVE_FLUSH_EVICT);
5531 if (ret) {
5532 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size,
5533 BTRFS_RESERVE_FLUSH_EVICT);
5534 if (ret) {
5535 btrfs_warn(fs_info,
5536 "could not allocate space for delete; will truncate on mount");
5537 return ERR_PTR(-ENOSPC);
5538 }
5539 delayed_refs_extra = 0;
5540 }
5541
5542 trans = btrfs_join_transaction(root);
5543 if (IS_ERR(trans))
5544 return trans;
5545
5546 if (delayed_refs_extra) {
5547 trans->block_rsv = &fs_info->trans_block_rsv;
5548 trans->bytes_reserved = delayed_refs_extra;
5549 btrfs_block_rsv_migrate(rsv, trans->block_rsv,
5550 delayed_refs_extra, true);
5551 }
5552 return trans;
5553}
5554
5555void btrfs_evict_inode(struct inode *inode)
5556{
5557 struct btrfs_fs_info *fs_info;
5558 struct btrfs_trans_handle *trans;
5559 struct btrfs_root *root = BTRFS_I(inode)->root;
5560 struct btrfs_block_rsv rsv;
5561 int ret;
5562
5563 trace_btrfs_inode_evict(inode);
5564
5565 if (!root) {
5566 fsverity_cleanup_inode(inode);
5567 clear_inode(inode);
5568 return;
5569 }
5570
5571 fs_info = inode_to_fs_info(inode);
5572 evict_inode_truncate_pages(inode);
5573
5574 if (inode->i_nlink &&
5575 ((btrfs_root_refs(&root->root_item) != 0 &&
5576 btrfs_root_id(root) != BTRFS_ROOT_TREE_OBJECTID) ||
5577 btrfs_is_free_space_inode(BTRFS_I(inode))))
5578 goto out;
5579
5580 if (is_bad_inode(inode))
5581 goto out;
5582
5583 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
5584 goto out;
5585
5586 if (inode->i_nlink > 0) {
5587 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5588 btrfs_root_id(root) != BTRFS_ROOT_TREE_OBJECTID);
5589 goto out;
5590 }
5591
5592 /*
5593 * This makes sure the inode item in tree is uptodate and the space for
5594 * the inode update is released.
5595 */
5596 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5597 if (ret)
5598 goto out;
5599
5600 /*
5601 * This drops any pending insert or delete operations we have for this
5602 * inode. We could have a delayed dir index deletion queued up, but
5603 * we're removing the inode completely so that'll be taken care of in
5604 * the truncate.
5605 */
5606 btrfs_kill_delayed_inode_items(BTRFS_I(inode));
5607
5608 btrfs_init_metadata_block_rsv(fs_info, &rsv, BTRFS_BLOCK_RSV_TEMP);
5609 rsv.size = btrfs_calc_metadata_size(fs_info, 1);
5610 rsv.failfast = true;
5611
5612 btrfs_i_size_write(BTRFS_I(inode), 0);
5613
5614 while (1) {
5615 struct btrfs_truncate_control control = {
5616 .inode = BTRFS_I(inode),
5617 .ino = btrfs_ino(BTRFS_I(inode)),
5618 .new_size = 0,
5619 .min_type = 0,
5620 };
5621
5622 trans = evict_refill_and_join(root, &rsv);
5623 if (IS_ERR(trans))
5624 goto out_release;
5625
5626 trans->block_rsv = &rsv;
5627
5628 ret = btrfs_truncate_inode_items(trans, root, &control);
5629 trans->block_rsv = &fs_info->trans_block_rsv;
5630 btrfs_end_transaction(trans);
5631 /*
5632 * We have not added new delayed items for our inode after we
5633 * have flushed its delayed items, so no need to throttle on
5634 * delayed items. However we have modified extent buffers.
5635 */
5636 btrfs_btree_balance_dirty_nodelay(fs_info);
5637 if (ret && ret != -ENOSPC && ret != -EAGAIN)
5638 goto out_release;
5639 else if (!ret)
5640 break;
5641 }
5642
5643 /*
5644 * Errors here aren't a big deal, it just means we leave orphan items in
5645 * the tree. They will be cleaned up on the next mount. If the inode
5646 * number gets reused, cleanup deletes the orphan item without doing
5647 * anything, and unlink reuses the existing orphan item.
5648 *
5649 * If it turns out that we are dropping too many of these, we might want
5650 * to add a mechanism for retrying these after a commit.
5651 */
5652 trans = evict_refill_and_join(root, &rsv);
5653 if (!IS_ERR(trans)) {
5654 trans->block_rsv = &rsv;
5655 btrfs_orphan_del(trans, BTRFS_I(inode));
5656 trans->block_rsv = &fs_info->trans_block_rsv;
5657 btrfs_end_transaction(trans);
5658 }
5659
5660out_release:
5661 btrfs_block_rsv_release(fs_info, &rsv, (u64)-1, NULL);
5662out:
5663 /*
5664 * If we didn't successfully delete, the orphan item will still be in
5665 * the tree and we'll retry on the next mount. Again, we might also want
5666 * to retry these periodically in the future.
5667 */
5668 btrfs_remove_delayed_node(BTRFS_I(inode));
5669 fsverity_cleanup_inode(inode);
5670 clear_inode(inode);
5671}
5672
5673/*
5674 * Return the key found in the dir entry in the location pointer, fill @type
5675 * with BTRFS_FT_*, and return 0.
5676 *
5677 * If no dir entries were found, returns -ENOENT.
5678 * If found a corrupted location in dir entry, returns -EUCLEAN.
5679 */
5680static int btrfs_inode_by_name(struct btrfs_inode *dir, struct dentry *dentry,
5681 struct btrfs_key *location, u8 *type)
5682{
5683 struct btrfs_dir_item *di;
5684 BTRFS_PATH_AUTO_FREE(path);
5685 struct btrfs_root *root = dir->root;
5686 int ret = 0;
5687 struct fscrypt_name fname;
5688
5689 path = btrfs_alloc_path();
5690 if (!path)
5691 return -ENOMEM;
5692
5693 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname);
5694 if (ret < 0)
5695 return ret;
5696 /*
5697 * fscrypt_setup_filename() should never return a positive value, but
5698 * gcc on sparc/parisc thinks it can, so assert that doesn't happen.
5699 */
5700 ASSERT(ret == 0);
5701
5702 /* This needs to handle no-key deletions later on */
5703
5704 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir),
5705 &fname.disk_name, 0);
5706 if (IS_ERR_OR_NULL(di)) {
5707 ret = di ? PTR_ERR(di) : -ENOENT;
5708 goto out;
5709 }
5710
5711 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5712 if (unlikely(location->type != BTRFS_INODE_ITEM_KEY &&
5713 location->type != BTRFS_ROOT_ITEM_KEY)) {
5714 ret = -EUCLEAN;
5715 btrfs_warn(root->fs_info,
5716"%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location " BTRFS_KEY_FMT ")",
5717 __func__, fname.disk_name.name, btrfs_ino(dir),
5718 BTRFS_KEY_FMT_VALUE(location));
5719 }
5720 if (!ret)
5721 *type = btrfs_dir_ftype(path->nodes[0], di);
5722out:
5723 fscrypt_free_filename(&fname);
5724 return ret;
5725}
5726
5727/*
5728 * when we hit a tree root in a directory, the btrfs part of the inode
5729 * needs to be changed to reflect the root directory of the tree root. This
5730 * is kind of like crossing a mount point.
5731 */
5732static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5733 struct btrfs_inode *dir,
5734 struct dentry *dentry,
5735 struct btrfs_key *location,
5736 struct btrfs_root **sub_root)
5737{
5738 BTRFS_PATH_AUTO_FREE(path);
5739 struct btrfs_root *new_root;
5740 struct btrfs_root_ref *ref;
5741 struct extent_buffer *leaf;
5742 struct btrfs_key key;
5743 int ret;
5744 int err = 0;
5745 struct fscrypt_name fname;
5746
5747 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 0, &fname);
5748 if (ret)
5749 return ret;
5750
5751 path = btrfs_alloc_path();
5752 if (!path) {
5753 err = -ENOMEM;
5754 goto out;
5755 }
5756
5757 err = -ENOENT;
5758 key.objectid = btrfs_root_id(dir->root);
5759 key.type = BTRFS_ROOT_REF_KEY;
5760 key.offset = location->objectid;
5761
5762 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5763 if (ret) {
5764 if (ret < 0)
5765 err = ret;
5766 goto out;
5767 }
5768
5769 leaf = path->nodes[0];
5770 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5771 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
5772 btrfs_root_ref_name_len(leaf, ref) != fname.disk_name.len)
5773 goto out;
5774
5775 ret = memcmp_extent_buffer(leaf, fname.disk_name.name,
5776 (unsigned long)(ref + 1), fname.disk_name.len);
5777 if (ret)
5778 goto out;
5779
5780 btrfs_release_path(path);
5781
5782 new_root = btrfs_get_fs_root(fs_info, location->objectid, true);
5783 if (IS_ERR(new_root)) {
5784 err = PTR_ERR(new_root);
5785 goto out;
5786 }
5787
5788 *sub_root = new_root;
5789 location->objectid = btrfs_root_dirid(&new_root->root_item);
5790 location->type = BTRFS_INODE_ITEM_KEY;
5791 location->offset = 0;
5792 err = 0;
5793out:
5794 fscrypt_free_filename(&fname);
5795 return err;
5796}
5797
5798
5799
5800static void btrfs_del_inode_from_root(struct btrfs_inode *inode)
5801{
5802 struct btrfs_root *root = inode->root;
5803 struct btrfs_inode *entry;
5804 bool empty = false;
5805
5806 xa_lock(&root->inodes);
5807 /*
5808 * This btrfs_inode is being freed and has already been unhashed at this
5809 * point. It's possible that another btrfs_inode has already been
5810 * allocated for the same inode and inserted itself into the root, so
5811 * don't delete it in that case.
5812 *
5813 * Note that this shouldn't need to allocate memory, so the gfp flags
5814 * don't really matter.
5815 */
5816 entry = __xa_cmpxchg(&root->inodes, btrfs_ino(inode), inode, NULL,
5817 GFP_ATOMIC);
5818 if (entry == inode)
5819 empty = xa_empty(&root->inodes);
5820 xa_unlock(&root->inodes);
5821
5822 if (empty && btrfs_root_refs(&root->root_item) == 0) {
5823 xa_lock(&root->inodes);
5824 empty = xa_empty(&root->inodes);
5825 xa_unlock(&root->inodes);
5826 if (empty)
5827 btrfs_add_dead_root(root);
5828 }
5829}
5830
5831
5832static int btrfs_init_locked_inode(struct inode *inode, void *p)
5833{
5834 struct btrfs_iget_args *args = p;
5835
5836 btrfs_set_inode_number(BTRFS_I(inode), args->ino);
5837 BTRFS_I(inode)->root = btrfs_grab_root(args->root);
5838
5839 if (args->root && args->root == args->root->fs_info->tree_root &&
5840 args->ino != BTRFS_BTREE_INODE_OBJECTID)
5841 set_bit(BTRFS_INODE_FREE_SPACE_INODE,
5842 &BTRFS_I(inode)->runtime_flags);
5843 return 0;
5844}
5845
5846static int btrfs_find_actor(struct inode *inode, void *opaque)
5847{
5848 struct btrfs_iget_args *args = opaque;
5849
5850 return args->ino == btrfs_ino(BTRFS_I(inode)) &&
5851 args->root == BTRFS_I(inode)->root;
5852}
5853
5854static struct btrfs_inode *btrfs_iget_locked(u64 ino, struct btrfs_root *root)
5855{
5856 struct inode *inode;
5857 struct btrfs_iget_args args;
5858 unsigned long hashval = btrfs_inode_hash(ino, root);
5859
5860 args.ino = ino;
5861 args.root = root;
5862
5863 inode = iget5_locked_rcu(root->fs_info->sb, hashval, btrfs_find_actor,
5864 btrfs_init_locked_inode,
5865 (void *)&args);
5866 if (!inode)
5867 return NULL;
5868 return BTRFS_I(inode);
5869}
5870
5871/*
5872 * Get an inode object given its inode number and corresponding root. Path is
5873 * preallocated to prevent recursing back to iget through allocator.
5874 */
5875struct btrfs_inode *btrfs_iget_path(u64 ino, struct btrfs_root *root,
5876 struct btrfs_path *path)
5877{
5878 struct btrfs_inode *inode;
5879 int ret;
5880
5881 inode = btrfs_iget_locked(ino, root);
5882 if (!inode)
5883 return ERR_PTR(-ENOMEM);
5884
5885 if (!(inode_state_read_once(&inode->vfs_inode) & I_NEW))
5886 return inode;
5887
5888 ret = btrfs_read_locked_inode(inode, path);
5889 if (ret)
5890 return ERR_PTR(ret);
5891
5892 unlock_new_inode(&inode->vfs_inode);
5893 return inode;
5894}
5895
5896/*
5897 * Get an inode object given its inode number and corresponding root.
5898 */
5899struct btrfs_inode *btrfs_iget(u64 ino, struct btrfs_root *root)
5900{
5901 struct btrfs_inode *inode;
5902 struct btrfs_path *path;
5903 int ret;
5904
5905 inode = btrfs_iget_locked(ino, root);
5906 if (!inode)
5907 return ERR_PTR(-ENOMEM);
5908
5909 if (!(inode_state_read_once(&inode->vfs_inode) & I_NEW))
5910 return inode;
5911
5912 path = btrfs_alloc_path();
5913 if (!path) {
5914 iget_failed(&inode->vfs_inode);
5915 return ERR_PTR(-ENOMEM);
5916 }
5917
5918 ret = btrfs_read_locked_inode(inode, path);
5919 btrfs_free_path(path);
5920 if (ret)
5921 return ERR_PTR(ret);
5922
5923 if (S_ISDIR(inode->vfs_inode.i_mode))
5924 inode->vfs_inode.i_opflags |= IOP_FASTPERM_MAY_EXEC;
5925 unlock_new_inode(&inode->vfs_inode);
5926 return inode;
5927}
5928
5929static struct btrfs_inode *new_simple_dir(struct inode *dir,
5930 struct btrfs_key *key,
5931 struct btrfs_root *root)
5932{
5933 struct timespec64 ts;
5934 struct inode *vfs_inode;
5935 struct btrfs_inode *inode;
5936
5937 vfs_inode = new_inode(dir->i_sb);
5938 if (!vfs_inode)
5939 return ERR_PTR(-ENOMEM);
5940
5941 inode = BTRFS_I(vfs_inode);
5942 inode->root = btrfs_grab_root(root);
5943 inode->ref_root_id = key->objectid;
5944 set_bit(BTRFS_INODE_ROOT_STUB, &inode->runtime_flags);
5945 set_bit(BTRFS_INODE_DUMMY, &inode->runtime_flags);
5946
5947 btrfs_set_inode_number(inode, BTRFS_EMPTY_SUBVOL_DIR_OBJECTID);
5948 /*
5949 * We only need lookup, the rest is read-only and there's no inode
5950 * associated with the dentry
5951 */
5952 vfs_inode->i_op = &simple_dir_inode_operations;
5953 vfs_inode->i_opflags &= ~IOP_XATTR;
5954 vfs_inode->i_fop = &simple_dir_operations;
5955 vfs_inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5956
5957 ts = inode_set_ctime_current(vfs_inode);
5958 inode_set_mtime_to_ts(vfs_inode, ts);
5959 inode_set_atime_to_ts(vfs_inode, inode_get_atime(dir));
5960 inode->i_otime_sec = ts.tv_sec;
5961 inode->i_otime_nsec = ts.tv_nsec;
5962
5963 vfs_inode->i_uid = dir->i_uid;
5964 vfs_inode->i_gid = dir->i_gid;
5965
5966 return inode;
5967}
5968
5969static_assert(BTRFS_FT_UNKNOWN == FT_UNKNOWN);
5970static_assert(BTRFS_FT_REG_FILE == FT_REG_FILE);
5971static_assert(BTRFS_FT_DIR == FT_DIR);
5972static_assert(BTRFS_FT_CHRDEV == FT_CHRDEV);
5973static_assert(BTRFS_FT_BLKDEV == FT_BLKDEV);
5974static_assert(BTRFS_FT_FIFO == FT_FIFO);
5975static_assert(BTRFS_FT_SOCK == FT_SOCK);
5976static_assert(BTRFS_FT_SYMLINK == FT_SYMLINK);
5977
5978static inline u8 btrfs_inode_type(const struct btrfs_inode *inode)
5979{
5980 return fs_umode_to_ftype(inode->vfs_inode.i_mode);
5981}
5982
5983struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5984{
5985 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
5986 struct btrfs_inode *inode;
5987 struct btrfs_root *root = BTRFS_I(dir)->root;
5988 struct btrfs_root *sub_root = root;
5989 struct btrfs_key location = { 0 };
5990 u8 di_type = 0;
5991 int ret = 0;
5992
5993 if (dentry->d_name.len > BTRFS_NAME_LEN)
5994 return ERR_PTR(-ENAMETOOLONG);
5995
5996 ret = btrfs_inode_by_name(BTRFS_I(dir), dentry, &location, &di_type);
5997 if (ret < 0)
5998 return ERR_PTR(ret);
5999
6000 if (location.type == BTRFS_INODE_ITEM_KEY) {
6001 inode = btrfs_iget(location.objectid, root);
6002 if (IS_ERR(inode))
6003 return ERR_CAST(inode);
6004
6005 /* Do extra check against inode mode with di_type */
6006 if (unlikely(btrfs_inode_type(inode) != di_type)) {
6007 btrfs_crit(fs_info,
6008"inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
6009 inode->vfs_inode.i_mode, btrfs_inode_type(inode),
6010 di_type);
6011 iput(&inode->vfs_inode);
6012 return ERR_PTR(-EUCLEAN);
6013 }
6014 return &inode->vfs_inode;
6015 }
6016
6017 ret = fixup_tree_root_location(fs_info, BTRFS_I(dir), dentry,
6018 &location, &sub_root);
6019 if (ret < 0) {
6020 if (ret != -ENOENT)
6021 inode = ERR_PTR(ret);
6022 else
6023 inode = new_simple_dir(dir, &location, root);
6024 } else {
6025 inode = btrfs_iget(location.objectid, sub_root);
6026 btrfs_put_root(sub_root);
6027
6028 if (IS_ERR(inode))
6029 return ERR_CAST(inode);
6030
6031 down_read(&fs_info->cleanup_work_sem);
6032 if (!sb_rdonly(inode->vfs_inode.i_sb))
6033 ret = btrfs_orphan_cleanup(sub_root);
6034 up_read(&fs_info->cleanup_work_sem);
6035 if (ret) {
6036 iput(&inode->vfs_inode);
6037 inode = ERR_PTR(ret);
6038 }
6039 }
6040
6041 if (IS_ERR(inode))
6042 return ERR_CAST(inode);
6043
6044 return &inode->vfs_inode;
6045}
6046
6047static int btrfs_dentry_delete(const struct dentry *dentry)
6048{
6049 struct btrfs_root *root;
6050 struct inode *inode = d_inode(dentry);
6051
6052 if (!inode && !IS_ROOT(dentry))
6053 inode = d_inode(dentry->d_parent);
6054
6055 if (inode) {
6056 root = BTRFS_I(inode)->root;
6057 if (btrfs_root_refs(&root->root_item) == 0)
6058 return 1;
6059
6060 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
6061 return 1;
6062 }
6063 return 0;
6064}
6065
6066static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
6067 unsigned int flags)
6068{
6069 struct inode *inode = btrfs_lookup_dentry(dir, dentry);
6070
6071 if (inode == ERR_PTR(-ENOENT))
6072 inode = NULL;
6073 return d_splice_alias(inode, dentry);
6074}
6075
6076/*
6077 * Find the highest existing sequence number in a directory and then set the
6078 * in-memory index_cnt variable to the first free sequence number.
6079 */
6080static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
6081{
6082 struct btrfs_root *root = inode->root;
6083 struct btrfs_key key, found_key;
6084 BTRFS_PATH_AUTO_FREE(path);
6085 struct extent_buffer *leaf;
6086 int ret;
6087
6088 key.objectid = btrfs_ino(inode);
6089 key.type = BTRFS_DIR_INDEX_KEY;
6090 key.offset = (u64)-1;
6091
6092 path = btrfs_alloc_path();
6093 if (!path)
6094 return -ENOMEM;
6095
6096 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6097 if (ret < 0)
6098 return ret;
6099 /* FIXME: we should be able to handle this */
6100 if (ret == 0)
6101 return ret;
6102
6103 if (path->slots[0] == 0) {
6104 inode->index_cnt = BTRFS_DIR_START_INDEX;
6105 return 0;
6106 }
6107
6108 path->slots[0]--;
6109
6110 leaf = path->nodes[0];
6111 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6112
6113 if (found_key.objectid != btrfs_ino(inode) ||
6114 found_key.type != BTRFS_DIR_INDEX_KEY) {
6115 inode->index_cnt = BTRFS_DIR_START_INDEX;
6116 return 0;
6117 }
6118
6119 inode->index_cnt = found_key.offset + 1;
6120
6121 return 0;
6122}
6123
6124static int btrfs_get_dir_last_index(struct btrfs_inode *dir, u64 *index)
6125{
6126 int ret = 0;
6127
6128 btrfs_inode_lock(dir, 0);
6129 if (dir->index_cnt == (u64)-1) {
6130 ret = btrfs_inode_delayed_dir_index_count(dir);
6131 if (ret) {
6132 ret = btrfs_set_inode_index_count(dir);
6133 if (ret)
6134 goto out;
6135 }
6136 }
6137
6138 /* index_cnt is the index number of next new entry, so decrement it. */
6139 *index = dir->index_cnt - 1;
6140out:
6141 btrfs_inode_unlock(dir, 0);
6142
6143 return ret;
6144}
6145
6146/*
6147 * All this infrastructure exists because dir_emit can fault, and we are holding
6148 * the tree lock when doing readdir. For now just allocate a buffer and copy
6149 * our information into that, and then dir_emit from the buffer. This is
6150 * similar to what NFS does, only we don't keep the buffer around in pagecache
6151 * because I'm afraid I'll mess that up. Long term we need to make filldir do
6152 * copy_to_user_inatomic so we don't have to worry about page faulting under the
6153 * tree lock.
6154 */
6155static int btrfs_opendir(struct inode *inode, struct file *file)
6156{
6157 struct btrfs_file_private *private;
6158 u64 last_index;
6159 int ret;
6160
6161 ret = btrfs_get_dir_last_index(BTRFS_I(inode), &last_index);
6162 if (ret)
6163 return ret;
6164
6165 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
6166 if (!private)
6167 return -ENOMEM;
6168 private->last_index = last_index;
6169 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
6170 if (!private->filldir_buf) {
6171 kfree(private);
6172 return -ENOMEM;
6173 }
6174 file->private_data = private;
6175 return 0;
6176}
6177
6178static loff_t btrfs_dir_llseek(struct file *file, loff_t offset, int whence)
6179{
6180 struct btrfs_file_private *private = file->private_data;
6181 int ret;
6182
6183 ret = btrfs_get_dir_last_index(BTRFS_I(file_inode(file)),
6184 &private->last_index);
6185 if (ret)
6186 return ret;
6187
6188 return generic_file_llseek(file, offset, whence);
6189}
6190
6191struct dir_entry {
6192 u64 ino;
6193 u64 offset;
6194 unsigned type;
6195 int name_len;
6196};
6197
6198static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
6199{
6200 while (entries--) {
6201 struct dir_entry *entry = addr;
6202 char *name = (char *)(entry + 1);
6203
6204 ctx->pos = get_unaligned(&entry->offset);
6205 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
6206 get_unaligned(&entry->ino),
6207 get_unaligned(&entry->type)))
6208 return 1;
6209 addr += sizeof(struct dir_entry) +
6210 get_unaligned(&entry->name_len);
6211 ctx->pos++;
6212 }
6213 return 0;
6214}
6215
6216static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
6217{
6218 struct inode *inode = file_inode(file);
6219 struct btrfs_root *root = BTRFS_I(inode)->root;
6220 struct btrfs_file_private *private = file->private_data;
6221 struct btrfs_dir_item *di;
6222 struct btrfs_key key;
6223 struct btrfs_key found_key;
6224 BTRFS_PATH_AUTO_FREE(path);
6225 void *addr;
6226 LIST_HEAD(ins_list);
6227 LIST_HEAD(del_list);
6228 int ret;
6229 char *name_ptr;
6230 int name_len;
6231 int entries = 0;
6232 int total_len = 0;
6233 bool put = false;
6234 struct btrfs_key location;
6235
6236 if (!dir_emit_dots(file, ctx))
6237 return 0;
6238
6239 path = btrfs_alloc_path();
6240 if (!path)
6241 return -ENOMEM;
6242
6243 addr = private->filldir_buf;
6244 path->reada = READA_FORWARD;
6245
6246 put = btrfs_readdir_get_delayed_items(BTRFS_I(inode), private->last_index,
6247 &ins_list, &del_list);
6248
6249again:
6250 key.type = BTRFS_DIR_INDEX_KEY;
6251 key.offset = ctx->pos;
6252 key.objectid = btrfs_ino(BTRFS_I(inode));
6253
6254 btrfs_for_each_slot(root, &key, &found_key, path, ret) {
6255 struct dir_entry *entry;
6256 struct extent_buffer *leaf = path->nodes[0];
6257 u8 ftype;
6258
6259 if (found_key.objectid != key.objectid)
6260 break;
6261 if (found_key.type != BTRFS_DIR_INDEX_KEY)
6262 break;
6263 if (found_key.offset < ctx->pos)
6264 continue;
6265 if (found_key.offset > private->last_index)
6266 break;
6267 if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
6268 continue;
6269 di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item);
6270 name_len = btrfs_dir_name_len(leaf, di);
6271 if ((total_len + sizeof(struct dir_entry) + name_len) >=
6272 PAGE_SIZE) {
6273 btrfs_release_path(path);
6274 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6275 if (ret)
6276 goto nopos;
6277 addr = private->filldir_buf;
6278 entries = 0;
6279 total_len = 0;
6280 goto again;
6281 }
6282
6283 ftype = btrfs_dir_flags_to_ftype(btrfs_dir_flags(leaf, di));
6284 entry = addr;
6285 name_ptr = (char *)(entry + 1);
6286 read_extent_buffer(leaf, name_ptr,
6287 (unsigned long)(di + 1), name_len);
6288 put_unaligned(name_len, &entry->name_len);
6289 put_unaligned(fs_ftype_to_dtype(ftype), &entry->type);
6290 btrfs_dir_item_key_to_cpu(leaf, di, &location);
6291 put_unaligned(location.objectid, &entry->ino);
6292 put_unaligned(found_key.offset, &entry->offset);
6293 entries++;
6294 addr += sizeof(struct dir_entry) + name_len;
6295 total_len += sizeof(struct dir_entry) + name_len;
6296 }
6297 /* Catch error encountered during iteration */
6298 if (ret < 0)
6299 goto err;
6300
6301 btrfs_release_path(path);
6302
6303 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6304 if (ret)
6305 goto nopos;
6306
6307 if (btrfs_readdir_delayed_dir_index(ctx, &ins_list))
6308 goto nopos;
6309
6310 /*
6311 * Stop new entries from being returned after we return the last
6312 * entry.
6313 *
6314 * New directory entries are assigned a strictly increasing
6315 * offset. This means that new entries created during readdir
6316 * are *guaranteed* to be seen in the future by that readdir.
6317 * This has broken buggy programs which operate on names as
6318 * they're returned by readdir. Until we reuse freed offsets
6319 * we have this hack to stop new entries from being returned
6320 * under the assumption that they'll never reach this huge
6321 * offset.
6322 *
6323 * This is being careful not to overflow 32bit loff_t unless the
6324 * last entry requires it because doing so has broken 32bit apps
6325 * in the past.
6326 */
6327 if (ctx->pos >= INT_MAX)
6328 ctx->pos = LLONG_MAX;
6329 else
6330 ctx->pos = INT_MAX;
6331nopos:
6332 ret = 0;
6333err:
6334 if (put)
6335 btrfs_readdir_put_delayed_items(BTRFS_I(inode), &ins_list, &del_list);
6336 return ret;
6337}
6338
6339/*
6340 * This is somewhat expensive, updating the tree every time the
6341 * inode changes. But, it is most likely to find the inode in cache.
6342 * FIXME, needs more benchmarking...there are no reasons other than performance
6343 * to keep or drop this code.
6344 */
6345static int btrfs_dirty_inode(struct btrfs_inode *inode)
6346{
6347 struct btrfs_root *root = inode->root;
6348 struct btrfs_fs_info *fs_info = root->fs_info;
6349 struct btrfs_trans_handle *trans;
6350 int ret;
6351
6352 if (test_bit(BTRFS_INODE_DUMMY, &inode->runtime_flags))
6353 return 0;
6354
6355 trans = btrfs_join_transaction(root);
6356 if (IS_ERR(trans))
6357 return PTR_ERR(trans);
6358
6359 ret = btrfs_update_inode(trans, inode);
6360 if (ret == -ENOSPC || ret == -EDQUOT) {
6361 /* whoops, lets try again with the full transaction */
6362 btrfs_end_transaction(trans);
6363 trans = btrfs_start_transaction(root, 1);
6364 if (IS_ERR(trans))
6365 return PTR_ERR(trans);
6366
6367 ret = btrfs_update_inode(trans, inode);
6368 }
6369 btrfs_end_transaction(trans);
6370 if (inode->delayed_node)
6371 btrfs_balance_delayed_items(fs_info);
6372
6373 return ret;
6374}
6375
6376/*
6377 * We need our own ->update_time so that we can return error on ENOSPC for
6378 * updating the inode in the case of file write and mmap writes.
6379 */
6380static int btrfs_update_time(struct inode *inode, int flags)
6381{
6382 struct btrfs_root *root = BTRFS_I(inode)->root;
6383 bool dirty;
6384
6385 if (btrfs_root_readonly(root))
6386 return -EROFS;
6387
6388 dirty = inode_update_timestamps(inode, flags);
6389 return dirty ? btrfs_dirty_inode(BTRFS_I(inode)) : 0;
6390}
6391
6392/*
6393 * helper to find a free sequence number in a given directory. This current
6394 * code is very simple, later versions will do smarter things in the btree
6395 */
6396int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6397{
6398 int ret = 0;
6399
6400 if (dir->index_cnt == (u64)-1) {
6401 ret = btrfs_inode_delayed_dir_index_count(dir);
6402 if (ret) {
6403 ret = btrfs_set_inode_index_count(dir);
6404 if (ret)
6405 return ret;
6406 }
6407 }
6408
6409 *index = dir->index_cnt;
6410 dir->index_cnt++;
6411
6412 return ret;
6413}
6414
6415static int btrfs_insert_inode_locked(struct inode *inode)
6416{
6417 struct btrfs_iget_args args;
6418
6419 args.ino = btrfs_ino(BTRFS_I(inode));
6420 args.root = BTRFS_I(inode)->root;
6421
6422 return insert_inode_locked4(inode,
6423 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6424 btrfs_find_actor, &args);
6425}
6426
6427int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args,
6428 unsigned int *trans_num_items)
6429{
6430 struct inode *dir = args->dir;
6431 struct inode *inode = args->inode;
6432 int ret;
6433
6434 if (!args->orphan) {
6435 ret = fscrypt_setup_filename(dir, &args->dentry->d_name, 0,
6436 &args->fname);
6437 if (ret)
6438 return ret;
6439 }
6440
6441 ret = posix_acl_create(dir, &inode->i_mode, &args->default_acl, &args->acl);
6442 if (ret) {
6443 fscrypt_free_filename(&args->fname);
6444 return ret;
6445 }
6446
6447 /* 1 to add inode item */
6448 *trans_num_items = 1;
6449 /* 1 to add compression property */
6450 if (BTRFS_I(dir)->prop_compress)
6451 (*trans_num_items)++;
6452 /* 1 to add default ACL xattr */
6453 if (args->default_acl)
6454 (*trans_num_items)++;
6455 /* 1 to add access ACL xattr */
6456 if (args->acl)
6457 (*trans_num_items)++;
6458#ifdef CONFIG_SECURITY
6459 /* 1 to add LSM xattr */
6460 if (dir->i_security)
6461 (*trans_num_items)++;
6462#endif
6463 if (args->orphan) {
6464 /* 1 to add orphan item */
6465 (*trans_num_items)++;
6466 } else {
6467 /*
6468 * 1 to add dir item
6469 * 1 to add dir index
6470 * 1 to update parent inode item
6471 *
6472 * No need for 1 unit for the inode ref item because it is
6473 * inserted in a batch together with the inode item at
6474 * btrfs_create_new_inode().
6475 */
6476 *trans_num_items += 3;
6477 }
6478 return 0;
6479}
6480
6481void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args)
6482{
6483 posix_acl_release(args->acl);
6484 posix_acl_release(args->default_acl);
6485 fscrypt_free_filename(&args->fname);
6486}
6487
6488/*
6489 * Inherit flags from the parent inode.
6490 *
6491 * Currently only the compression flags and the cow flags are inherited.
6492 */
6493static void btrfs_inherit_iflags(struct btrfs_inode *inode, struct btrfs_inode *dir)
6494{
6495 unsigned int flags;
6496
6497 flags = dir->flags;
6498
6499 if (flags & BTRFS_INODE_NOCOMPRESS) {
6500 inode->flags &= ~BTRFS_INODE_COMPRESS;
6501 inode->flags |= BTRFS_INODE_NOCOMPRESS;
6502 } else if (flags & BTRFS_INODE_COMPRESS) {
6503 inode->flags &= ~BTRFS_INODE_NOCOMPRESS;
6504 inode->flags |= BTRFS_INODE_COMPRESS;
6505 }
6506
6507 if (flags & BTRFS_INODE_NODATACOW) {
6508 inode->flags |= BTRFS_INODE_NODATACOW;
6509 if (S_ISREG(inode->vfs_inode.i_mode))
6510 inode->flags |= BTRFS_INODE_NODATASUM;
6511 }
6512
6513 btrfs_sync_inode_flags_to_i_flags(inode);
6514}
6515
6516int btrfs_create_new_inode(struct btrfs_trans_handle *trans,
6517 struct btrfs_new_inode_args *args)
6518{
6519 struct timespec64 ts;
6520 struct inode *dir = args->dir;
6521 struct inode *inode = args->inode;
6522 const struct fscrypt_str *name = args->orphan ? NULL : &args->fname.disk_name;
6523 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
6524 struct btrfs_root *root;
6525 struct btrfs_inode_item *inode_item;
6526 struct btrfs_path *path;
6527 u64 objectid;
6528 struct btrfs_inode_ref *ref;
6529 struct btrfs_key key[2];
6530 u32 sizes[2];
6531 struct btrfs_item_batch batch;
6532 unsigned long ptr;
6533 int ret;
6534 bool xa_reserved = false;
6535
6536 path = btrfs_alloc_path();
6537 if (!path)
6538 return -ENOMEM;
6539
6540 if (!args->subvol)
6541 BTRFS_I(inode)->root = btrfs_grab_root(BTRFS_I(dir)->root);
6542 root = BTRFS_I(inode)->root;
6543
6544 ret = btrfs_init_file_extent_tree(BTRFS_I(inode));
6545 if (ret)
6546 goto out;
6547
6548 ret = btrfs_get_free_objectid(root, &objectid);
6549 if (ret)
6550 goto out;
6551 btrfs_set_inode_number(BTRFS_I(inode), objectid);
6552
6553 ret = xa_reserve(&root->inodes, objectid, GFP_NOFS);
6554 if (ret)
6555 goto out;
6556 xa_reserved = true;
6557
6558 if (args->orphan) {
6559 /*
6560 * O_TMPFILE, set link count to 0, so that after this point, we
6561 * fill in an inode item with the correct link count.
6562 */
6563 set_nlink(inode, 0);
6564 } else {
6565 trace_btrfs_inode_request(dir);
6566
6567 ret = btrfs_set_inode_index(BTRFS_I(dir), &BTRFS_I(inode)->dir_index);
6568 if (ret)
6569 goto out;
6570 }
6571
6572 if (S_ISDIR(inode->i_mode))
6573 BTRFS_I(inode)->index_cnt = BTRFS_DIR_START_INDEX;
6574
6575 BTRFS_I(inode)->generation = trans->transid;
6576 inode->i_generation = BTRFS_I(inode)->generation;
6577
6578 /*
6579 * We don't have any capability xattrs set here yet, shortcut any
6580 * queries for the xattrs here. If we add them later via the inode
6581 * security init path or any other path this flag will be cleared.
6582 */
6583 set_bit(BTRFS_INODE_NO_CAP_XATTR, &BTRFS_I(inode)->runtime_flags);
6584
6585 /*
6586 * Subvolumes don't inherit flags from their parent directory.
6587 * Originally this was probably by accident, but we probably can't
6588 * change it now without compatibility issues.
6589 */
6590 if (!args->subvol)
6591 btrfs_inherit_iflags(BTRFS_I(inode), BTRFS_I(dir));
6592
6593 btrfs_set_inode_mapping_order(BTRFS_I(inode));
6594 if (S_ISREG(inode->i_mode)) {
6595 if (btrfs_test_opt(fs_info, NODATASUM))
6596 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6597 if (btrfs_test_opt(fs_info, NODATACOW))
6598 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6599 BTRFS_INODE_NODATASUM;
6600 btrfs_update_inode_mapping_flags(BTRFS_I(inode));
6601 }
6602
6603 ret = btrfs_insert_inode_locked(inode);
6604 if (ret < 0) {
6605 if (!args->orphan)
6606 BTRFS_I(dir)->index_cnt--;
6607 goto out;
6608 }
6609
6610 /*
6611 * We could have gotten an inode number from somebody who was fsynced
6612 * and then removed in this same transaction, so let's just set full
6613 * sync since it will be a full sync anyway and this will blow away the
6614 * old info in the log.
6615 */
6616 btrfs_set_inode_full_sync(BTRFS_I(inode));
6617
6618 key[0].objectid = objectid;
6619 key[0].type = BTRFS_INODE_ITEM_KEY;
6620 key[0].offset = 0;
6621
6622 sizes[0] = sizeof(struct btrfs_inode_item);
6623
6624 if (!args->orphan) {
6625 /*
6626 * Start new inodes with an inode_ref. This is slightly more
6627 * efficient for small numbers of hard links since they will
6628 * be packed into one item. Extended refs will kick in if we
6629 * add more hard links than can fit in the ref item.
6630 */
6631 key[1].objectid = objectid;
6632 key[1].type = BTRFS_INODE_REF_KEY;
6633 if (args->subvol) {
6634 key[1].offset = objectid;
6635 sizes[1] = 2 + sizeof(*ref);
6636 } else {
6637 key[1].offset = btrfs_ino(BTRFS_I(dir));
6638 sizes[1] = name->len + sizeof(*ref);
6639 }
6640 }
6641
6642 batch.keys = &key[0];
6643 batch.data_sizes = &sizes[0];
6644 batch.total_data_size = sizes[0] + (args->orphan ? 0 : sizes[1]);
6645 batch.nr = args->orphan ? 1 : 2;
6646 ret = btrfs_insert_empty_items(trans, root, path, &batch);
6647 if (unlikely(ret != 0)) {
6648 btrfs_abort_transaction(trans, ret);
6649 goto discard;
6650 }
6651
6652 ts = simple_inode_init_ts(inode);
6653 BTRFS_I(inode)->i_otime_sec = ts.tv_sec;
6654 BTRFS_I(inode)->i_otime_nsec = ts.tv_nsec;
6655
6656 /*
6657 * We're going to fill the inode item now, so at this point the inode
6658 * must be fully initialized.
6659 */
6660
6661 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6662 struct btrfs_inode_item);
6663 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6664 sizeof(*inode_item));
6665 fill_inode_item(trans, path->nodes[0], inode_item, inode);
6666
6667 if (!args->orphan) {
6668 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6669 struct btrfs_inode_ref);
6670 ptr = (unsigned long)(ref + 1);
6671 if (args->subvol) {
6672 btrfs_set_inode_ref_name_len(path->nodes[0], ref, 2);
6673 btrfs_set_inode_ref_index(path->nodes[0], ref, 0);
6674 write_extent_buffer(path->nodes[0], "..", ptr, 2);
6675 } else {
6676 btrfs_set_inode_ref_name_len(path->nodes[0], ref,
6677 name->len);
6678 btrfs_set_inode_ref_index(path->nodes[0], ref,
6679 BTRFS_I(inode)->dir_index);
6680 write_extent_buffer(path->nodes[0], name->name, ptr,
6681 name->len);
6682 }
6683 }
6684
6685 /*
6686 * We don't need the path anymore, plus inheriting properties, adding
6687 * ACLs, security xattrs, orphan item or adding the link, will result in
6688 * allocating yet another path. So just free our path.
6689 */
6690 btrfs_free_path(path);
6691 path = NULL;
6692
6693 if (args->subvol) {
6694 struct btrfs_inode *parent;
6695
6696 /*
6697 * Subvolumes inherit properties from their parent subvolume,
6698 * not the directory they were created in.
6699 */
6700 parent = btrfs_iget(BTRFS_FIRST_FREE_OBJECTID, BTRFS_I(dir)->root);
6701 if (IS_ERR(parent)) {
6702 ret = PTR_ERR(parent);
6703 } else {
6704 ret = btrfs_inode_inherit_props(trans, BTRFS_I(inode),
6705 parent);
6706 iput(&parent->vfs_inode);
6707 }
6708 } else {
6709 ret = btrfs_inode_inherit_props(trans, BTRFS_I(inode),
6710 BTRFS_I(dir));
6711 }
6712 if (ret) {
6713 btrfs_err(fs_info,
6714 "error inheriting props for ino %llu (root %llu): %d",
6715 btrfs_ino(BTRFS_I(inode)), btrfs_root_id(root), ret);
6716 }
6717
6718 /*
6719 * Subvolumes don't inherit ACLs or get passed to the LSM. This is
6720 * probably a bug.
6721 */
6722 if (!args->subvol) {
6723 ret = btrfs_init_inode_security(trans, args);
6724 if (unlikely(ret)) {
6725 btrfs_abort_transaction(trans, ret);
6726 goto discard;
6727 }
6728 }
6729
6730 ret = btrfs_add_inode_to_root(BTRFS_I(inode), false);
6731 if (WARN_ON(ret)) {
6732 /* Shouldn't happen, we used xa_reserve() before. */
6733 btrfs_abort_transaction(trans, ret);
6734 goto discard;
6735 }
6736
6737 trace_btrfs_inode_new(inode);
6738 btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
6739
6740 btrfs_update_root_times(trans, root);
6741
6742 if (args->orphan) {
6743 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
6744 if (unlikely(ret)) {
6745 btrfs_abort_transaction(trans, ret);
6746 goto discard;
6747 }
6748 } else {
6749 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
6750 0, BTRFS_I(inode)->dir_index);
6751 if (unlikely(ret)) {
6752 btrfs_abort_transaction(trans, ret);
6753 goto discard;
6754 }
6755 }
6756
6757 return 0;
6758
6759discard:
6760 /*
6761 * discard_new_inode() calls iput(), but the caller owns the reference
6762 * to the inode.
6763 */
6764 ihold(inode);
6765 discard_new_inode(inode);
6766out:
6767 if (xa_reserved)
6768 xa_release(&root->inodes, objectid);
6769
6770 btrfs_free_path(path);
6771 return ret;
6772}
6773
6774/*
6775 * utility function to add 'inode' into 'parent_inode' with
6776 * a give name and a given sequence number.
6777 * if 'add_backref' is true, also insert a backref from the
6778 * inode to the parent directory.
6779 */
6780int btrfs_add_link(struct btrfs_trans_handle *trans,
6781 struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6782 const struct fscrypt_str *name, bool add_backref, u64 index)
6783{
6784 int ret = 0;
6785 struct btrfs_key key;
6786 struct btrfs_root *root = parent_inode->root;
6787 u64 ino = btrfs_ino(inode);
6788 u64 parent_ino = btrfs_ino(parent_inode);
6789
6790 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6791 memcpy(&key, &inode->root->root_key, sizeof(key));
6792 } else {
6793 key.objectid = ino;
6794 key.type = BTRFS_INODE_ITEM_KEY;
6795 key.offset = 0;
6796 }
6797
6798 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6799 ret = btrfs_add_root_ref(trans, key.objectid,
6800 btrfs_root_id(root), parent_ino,
6801 index, name);
6802 } else if (add_backref) {
6803 ret = btrfs_insert_inode_ref(trans, root, name,
6804 ino, parent_ino, index);
6805 }
6806
6807 /* Nothing to clean up yet */
6808 if (ret)
6809 return ret;
6810
6811 ret = btrfs_insert_dir_item(trans, name, parent_inode, &key,
6812 btrfs_inode_type(inode), index);
6813 if (ret == -EEXIST || ret == -EOVERFLOW)
6814 goto fail_dir_item;
6815 else if (unlikely(ret)) {
6816 btrfs_abort_transaction(trans, ret);
6817 return ret;
6818 }
6819
6820 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6821 name->len * 2);
6822 inode_inc_iversion(&parent_inode->vfs_inode);
6823 update_time_after_link_or_unlink(parent_inode);
6824
6825 ret = btrfs_update_inode(trans, parent_inode);
6826 if (ret)
6827 btrfs_abort_transaction(trans, ret);
6828 return ret;
6829
6830fail_dir_item:
6831 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6832 u64 local_index;
6833 int ret2;
6834
6835 ret2 = btrfs_del_root_ref(trans, key.objectid, btrfs_root_id(root),
6836 parent_ino, &local_index, name);
6837 if (ret2)
6838 btrfs_abort_transaction(trans, ret2);
6839 } else if (add_backref) {
6840 int ret2;
6841
6842 ret2 = btrfs_del_inode_ref(trans, root, name, ino, parent_ino, NULL);
6843 if (ret2)
6844 btrfs_abort_transaction(trans, ret2);
6845 }
6846
6847 /* Return the original error code */
6848 return ret;
6849}
6850
6851static int btrfs_create_common(struct inode *dir, struct dentry *dentry,
6852 struct inode *inode)
6853{
6854 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
6855 struct btrfs_root *root = BTRFS_I(dir)->root;
6856 struct btrfs_new_inode_args new_inode_args = {
6857 .dir = dir,
6858 .dentry = dentry,
6859 .inode = inode,
6860 };
6861 unsigned int trans_num_items;
6862 struct btrfs_trans_handle *trans;
6863 int ret;
6864
6865 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
6866 if (ret)
6867 goto out_inode;
6868
6869 trans = btrfs_start_transaction(root, trans_num_items);
6870 if (IS_ERR(trans)) {
6871 ret = PTR_ERR(trans);
6872 goto out_new_inode_args;
6873 }
6874
6875 ret = btrfs_create_new_inode(trans, &new_inode_args);
6876 if (!ret) {
6877 if (S_ISDIR(inode->i_mode))
6878 inode->i_opflags |= IOP_FASTPERM_MAY_EXEC;
6879 d_instantiate_new(dentry, inode);
6880 }
6881
6882 btrfs_end_transaction(trans);
6883 btrfs_btree_balance_dirty(fs_info);
6884out_new_inode_args:
6885 btrfs_new_inode_args_destroy(&new_inode_args);
6886out_inode:
6887 if (ret)
6888 iput(inode);
6889 return ret;
6890}
6891
6892static int btrfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
6893 struct dentry *dentry, umode_t mode, dev_t rdev)
6894{
6895 struct inode *inode;
6896
6897 inode = new_inode(dir->i_sb);
6898 if (!inode)
6899 return -ENOMEM;
6900 inode_init_owner(idmap, inode, dir, mode);
6901 inode->i_op = &btrfs_special_inode_operations;
6902 init_special_inode(inode, inode->i_mode, rdev);
6903 return btrfs_create_common(dir, dentry, inode);
6904}
6905
6906static int btrfs_create(struct mnt_idmap *idmap, struct inode *dir,
6907 struct dentry *dentry, umode_t mode, bool excl)
6908{
6909 struct inode *inode;
6910
6911 inode = new_inode(dir->i_sb);
6912 if (!inode)
6913 return -ENOMEM;
6914 inode_init_owner(idmap, inode, dir, mode);
6915 inode->i_fop = &btrfs_file_operations;
6916 inode->i_op = &btrfs_file_inode_operations;
6917 inode->i_mapping->a_ops = &btrfs_aops;
6918 return btrfs_create_common(dir, dentry, inode);
6919}
6920
6921static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6922 struct dentry *dentry)
6923{
6924 struct btrfs_trans_handle *trans = NULL;
6925 struct btrfs_root *root = BTRFS_I(dir)->root;
6926 struct inode *inode = d_inode(old_dentry);
6927 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
6928 struct fscrypt_name fname;
6929 u64 index;
6930 int ret;
6931
6932 /* do not allow sys_link's with other subvols of the same device */
6933 if (btrfs_root_id(root) != btrfs_root_id(BTRFS_I(inode)->root))
6934 return -EXDEV;
6935
6936 if (inode->i_nlink >= BTRFS_LINK_MAX)
6937 return -EMLINK;
6938
6939 ret = fscrypt_setup_filename(dir, &dentry->d_name, 0, &fname);
6940 if (ret)
6941 goto fail;
6942
6943 ret = btrfs_set_inode_index(BTRFS_I(dir), &index);
6944 if (ret)
6945 goto fail;
6946
6947 /*
6948 * 2 items for inode and inode ref
6949 * 2 items for dir items
6950 * 1 item for parent inode
6951 * 1 item for orphan item deletion if O_TMPFILE
6952 */
6953 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
6954 if (IS_ERR(trans)) {
6955 ret = PTR_ERR(trans);
6956 trans = NULL;
6957 goto fail;
6958 }
6959
6960 /* There are several dir indexes for this inode, clear the cache. */
6961 BTRFS_I(inode)->dir_index = 0ULL;
6962 inode_inc_iversion(inode);
6963 inode_set_ctime_current(inode);
6964
6965 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6966 &fname.disk_name, 1, index);
6967 if (ret)
6968 goto fail;
6969
6970 /* Link added now we update the inode item with the new link count. */
6971 inc_nlink(inode);
6972 ret = btrfs_update_inode(trans, BTRFS_I(inode));
6973 if (unlikely(ret)) {
6974 btrfs_abort_transaction(trans, ret);
6975 goto fail;
6976 }
6977
6978 if (inode->i_nlink == 1) {
6979 /*
6980 * If the new hard link count is 1, it's a file created with the
6981 * open(2) O_TMPFILE flag.
6982 */
6983 ret = btrfs_orphan_del(trans, BTRFS_I(inode));
6984 if (unlikely(ret)) {
6985 btrfs_abort_transaction(trans, ret);
6986 goto fail;
6987 }
6988 }
6989
6990 /* Grab reference for the new dentry passed to d_instantiate(). */
6991 ihold(inode);
6992 d_instantiate(dentry, inode);
6993 btrfs_log_new_name(trans, old_dentry, NULL, 0, dentry->d_parent);
6994
6995fail:
6996 fscrypt_free_filename(&fname);
6997 if (trans)
6998 btrfs_end_transaction(trans);
6999 btrfs_btree_balance_dirty(fs_info);
7000 return ret;
7001}
7002
7003static struct dentry *btrfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
7004 struct dentry *dentry, umode_t mode)
7005{
7006 struct inode *inode;
7007
7008 inode = new_inode(dir->i_sb);
7009 if (!inode)
7010 return ERR_PTR(-ENOMEM);
7011 inode_init_owner(idmap, inode, dir, S_IFDIR | mode);
7012 inode->i_op = &btrfs_dir_inode_operations;
7013 inode->i_fop = &btrfs_dir_file_operations;
7014 return ERR_PTR(btrfs_create_common(dir, dentry, inode));
7015}
7016
7017static noinline int uncompress_inline(struct btrfs_path *path,
7018 struct folio *folio,
7019 struct btrfs_file_extent_item *item)
7020{
7021 int ret;
7022 struct extent_buffer *leaf = path->nodes[0];
7023 const u32 blocksize = leaf->fs_info->sectorsize;
7024 char *tmp;
7025 size_t max_size;
7026 unsigned long inline_size;
7027 unsigned long ptr;
7028 int compress_type;
7029
7030 compress_type = btrfs_file_extent_compression(leaf, item);
7031 max_size = btrfs_file_extent_ram_bytes(leaf, item);
7032 inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]);
7033 tmp = kmalloc(inline_size, GFP_NOFS);
7034 if (!tmp)
7035 return -ENOMEM;
7036 ptr = btrfs_file_extent_inline_start(item);
7037
7038 read_extent_buffer(leaf, tmp, ptr, inline_size);
7039
7040 max_size = min_t(unsigned long, blocksize, max_size);
7041 ret = btrfs_decompress(compress_type, tmp, folio, 0, inline_size,
7042 max_size);
7043
7044 /*
7045 * decompression code contains a memset to fill in any space between the end
7046 * of the uncompressed data and the end of max_size in case the decompressed
7047 * data ends up shorter than ram_bytes. That doesn't cover the hole between
7048 * the end of an inline extent and the beginning of the next block, so we
7049 * cover that region here.
7050 */
7051
7052 if (max_size < blocksize)
7053 folio_zero_range(folio, max_size, blocksize - max_size);
7054 kfree(tmp);
7055 return ret;
7056}
7057
7058static int read_inline_extent(struct btrfs_path *path, struct folio *folio)
7059{
7060 const u32 blocksize = path->nodes[0]->fs_info->sectorsize;
7061 struct btrfs_file_extent_item *fi;
7062 void *kaddr;
7063 size_t copy_size;
7064
7065 if (!folio || folio_test_uptodate(folio))
7066 return 0;
7067
7068 ASSERT(folio_pos(folio) == 0);
7069
7070 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
7071 struct btrfs_file_extent_item);
7072 if (btrfs_file_extent_compression(path->nodes[0], fi) != BTRFS_COMPRESS_NONE)
7073 return uncompress_inline(path, folio, fi);
7074
7075 copy_size = min_t(u64, blocksize,
7076 btrfs_file_extent_ram_bytes(path->nodes[0], fi));
7077 kaddr = kmap_local_folio(folio, 0);
7078 read_extent_buffer(path->nodes[0], kaddr,
7079 btrfs_file_extent_inline_start(fi), copy_size);
7080 kunmap_local(kaddr);
7081 if (copy_size < blocksize)
7082 folio_zero_range(folio, copy_size, blocksize - copy_size);
7083 return 0;
7084}
7085
7086/*
7087 * Lookup the first extent overlapping a range in a file.
7088 *
7089 * @inode: file to search in
7090 * @page: page to read extent data into if the extent is inline
7091 * @start: file offset
7092 * @len: length of range starting at @start
7093 *
7094 * Return the first &struct extent_map which overlaps the given range, reading
7095 * it from the B-tree and caching it if necessary. Note that there may be more
7096 * extents which overlap the given range after the returned extent_map.
7097 *
7098 * If @page is not NULL and the extent is inline, this also reads the extent
7099 * data directly into the page and marks the extent up to date in the io_tree.
7100 *
7101 * Return: ERR_PTR on error, non-NULL extent_map on success.
7102 */
7103struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
7104 struct folio *folio, u64 start, u64 len)
7105{
7106 struct btrfs_fs_info *fs_info = inode->root->fs_info;
7107 int ret = 0;
7108 u64 extent_start = 0;
7109 u64 extent_end = 0;
7110 u64 objectid = btrfs_ino(inode);
7111 int extent_type = -1;
7112 struct btrfs_path *path = NULL;
7113 struct btrfs_root *root = inode->root;
7114 struct btrfs_file_extent_item *item;
7115 struct extent_buffer *leaf;
7116 struct btrfs_key found_key;
7117 struct extent_map *em = NULL;
7118 struct extent_map_tree *em_tree = &inode->extent_tree;
7119
7120 read_lock(&em_tree->lock);
7121 em = btrfs_lookup_extent_mapping(em_tree, start, len);
7122 read_unlock(&em_tree->lock);
7123
7124 if (em) {
7125 if (em->start > start || em->start + em->len <= start)
7126 btrfs_free_extent_map(em);
7127 else if (em->disk_bytenr == EXTENT_MAP_INLINE && folio)
7128 btrfs_free_extent_map(em);
7129 else
7130 goto out;
7131 }
7132 em = btrfs_alloc_extent_map();
7133 if (!em) {
7134 ret = -ENOMEM;
7135 goto out;
7136 }
7137 em->start = EXTENT_MAP_HOLE;
7138 em->disk_bytenr = EXTENT_MAP_HOLE;
7139 em->len = (u64)-1;
7140
7141 path = btrfs_alloc_path();
7142 if (!path) {
7143 ret = -ENOMEM;
7144 goto out;
7145 }
7146
7147 /* Chances are we'll be called again, so go ahead and do readahead */
7148 path->reada = READA_FORWARD;
7149
7150 /*
7151 * The same explanation in load_free_space_cache applies here as well,
7152 * we only read when we're loading the free space cache, and at that
7153 * point the commit_root has everything we need.
7154 */
7155 if (btrfs_is_free_space_inode(inode)) {
7156 path->search_commit_root = true;
7157 path->skip_locking = true;
7158 }
7159
7160 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
7161 if (ret < 0) {
7162 goto out;
7163 } else if (ret > 0) {
7164 if (path->slots[0] == 0)
7165 goto not_found;
7166 path->slots[0]--;
7167 ret = 0;
7168 }
7169
7170 leaf = path->nodes[0];
7171 item = btrfs_item_ptr(leaf, path->slots[0],
7172 struct btrfs_file_extent_item);
7173 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7174 if (found_key.objectid != objectid ||
7175 found_key.type != BTRFS_EXTENT_DATA_KEY) {
7176 /*
7177 * If we backup past the first extent we want to move forward
7178 * and see if there is an extent in front of us, otherwise we'll
7179 * say there is a hole for our whole search range which can
7180 * cause problems.
7181 */
7182 extent_end = start;
7183 goto next;
7184 }
7185
7186 extent_type = btrfs_file_extent_type(leaf, item);
7187 extent_start = found_key.offset;
7188 extent_end = btrfs_file_extent_end(path);
7189 if (extent_type == BTRFS_FILE_EXTENT_REG ||
7190 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
7191 /* Only regular file could have regular/prealloc extent */
7192 if (unlikely(!S_ISREG(inode->vfs_inode.i_mode))) {
7193 ret = -EUCLEAN;
7194 btrfs_crit(fs_info,
7195 "regular/prealloc extent found for non-regular inode %llu",
7196 btrfs_ino(inode));
7197 goto out;
7198 }
7199 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
7200 extent_start);
7201 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
7202 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
7203 path->slots[0],
7204 extent_start);
7205 }
7206next:
7207 if (start >= extent_end) {
7208 path->slots[0]++;
7209 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
7210 ret = btrfs_next_leaf(root, path);
7211 if (ret < 0)
7212 goto out;
7213 else if (ret > 0)
7214 goto not_found;
7215
7216 leaf = path->nodes[0];
7217 }
7218 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7219 if (found_key.objectid != objectid ||
7220 found_key.type != BTRFS_EXTENT_DATA_KEY)
7221 goto not_found;
7222 if (start + len <= found_key.offset)
7223 goto not_found;
7224 if (start > found_key.offset)
7225 goto next;
7226
7227 /* New extent overlaps with existing one */
7228 em->start = start;
7229 em->len = found_key.offset - start;
7230 em->disk_bytenr = EXTENT_MAP_HOLE;
7231 goto insert;
7232 }
7233
7234 btrfs_extent_item_to_extent_map(inode, path, item, em);
7235
7236 if (extent_type == BTRFS_FILE_EXTENT_REG ||
7237 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
7238 goto insert;
7239 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
7240 /*
7241 * Inline extent can only exist at file offset 0. This is
7242 * ensured by tree-checker and inline extent creation path.
7243 * Thus all members representing file offsets should be zero.
7244 */
7245 ASSERT(extent_start == 0);
7246 ASSERT(em->start == 0);
7247
7248 /*
7249 * btrfs_extent_item_to_extent_map() should have properly
7250 * initialized em members already.
7251 *
7252 * Other members are not utilized for inline extents.
7253 */
7254 ASSERT(em->disk_bytenr == EXTENT_MAP_INLINE);
7255 ASSERT(em->len == fs_info->sectorsize);
7256
7257 ret = read_inline_extent(path, folio);
7258 if (ret < 0)
7259 goto out;
7260 goto insert;
7261 }
7262not_found:
7263 em->start = start;
7264 em->len = len;
7265 em->disk_bytenr = EXTENT_MAP_HOLE;
7266insert:
7267 ret = 0;
7268 btrfs_release_path(path);
7269 if (unlikely(em->start > start || btrfs_extent_map_end(em) <= start)) {
7270 btrfs_err(fs_info,
7271 "bad extent! em: [%llu %llu] passed [%llu %llu]",
7272 em->start, em->len, start, len);
7273 ret = -EIO;
7274 goto out;
7275 }
7276
7277 write_lock(&em_tree->lock);
7278 ret = btrfs_add_extent_mapping(inode, &em, start, len);
7279 write_unlock(&em_tree->lock);
7280out:
7281 btrfs_free_path(path);
7282
7283 trace_btrfs_get_extent(root, inode, em);
7284
7285 if (ret) {
7286 btrfs_free_extent_map(em);
7287 return ERR_PTR(ret);
7288 }
7289 return em;
7290}
7291
7292static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
7293{
7294 struct btrfs_block_group *block_group;
7295 bool readonly = false;
7296
7297 block_group = btrfs_lookup_block_group(fs_info, bytenr);
7298 if (!block_group || block_group->ro)
7299 readonly = true;
7300 if (block_group)
7301 btrfs_put_block_group(block_group);
7302 return readonly;
7303}
7304
7305/*
7306 * Check if we can do nocow write into the range [@offset, @offset + @len)
7307 *
7308 * @offset: File offset
7309 * @len: The length to write, will be updated to the nocow writeable
7310 * range
7311 * @orig_start: (optional) Return the original file offset of the file extent
7312 * @orig_len: (optional) Return the original on-disk length of the file extent
7313 * @ram_bytes: (optional) Return the ram_bytes of the file extent
7314 *
7315 * Return:
7316 * >0 and update @len if we can do nocow write
7317 * 0 if we can't do nocow write
7318 * <0 if error happened
7319 *
7320 * NOTE: This only checks the file extents, caller is responsible to wait for
7321 * any ordered extents.
7322 */
7323noinline int can_nocow_extent(struct btrfs_inode *inode, u64 offset, u64 *len,
7324 struct btrfs_file_extent *file_extent,
7325 bool nowait)
7326{
7327 struct btrfs_root *root = inode->root;
7328 struct btrfs_fs_info *fs_info = root->fs_info;
7329 struct can_nocow_file_extent_args nocow_args = { 0 };
7330 BTRFS_PATH_AUTO_FREE(path);
7331 int ret;
7332 struct extent_buffer *leaf;
7333 struct extent_io_tree *io_tree = &inode->io_tree;
7334 struct btrfs_file_extent_item *fi;
7335 struct btrfs_key key;
7336 int found_type;
7337
7338 path = btrfs_alloc_path();
7339 if (!path)
7340 return -ENOMEM;
7341 path->nowait = nowait;
7342
7343 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
7344 offset, 0);
7345 if (ret < 0)
7346 return ret;
7347
7348 if (ret == 1) {
7349 if (path->slots[0] == 0) {
7350 /* Can't find the item, must COW. */
7351 return 0;
7352 }
7353 path->slots[0]--;
7354 }
7355 ret = 0;
7356 leaf = path->nodes[0];
7357 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
7358 if (key.objectid != btrfs_ino(inode) ||
7359 key.type != BTRFS_EXTENT_DATA_KEY) {
7360 /* Not our file or wrong item type, must COW. */
7361 return 0;
7362 }
7363
7364 if (key.offset > offset) {
7365 /* Wrong offset, must COW. */
7366 return 0;
7367 }
7368
7369 if (btrfs_file_extent_end(path) <= offset)
7370 return 0;
7371
7372 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
7373 found_type = btrfs_file_extent_type(leaf, fi);
7374
7375 nocow_args.start = offset;
7376 nocow_args.end = offset + *len - 1;
7377 nocow_args.free_path = true;
7378
7379 ret = can_nocow_file_extent(path, &key, inode, &nocow_args);
7380 /* can_nocow_file_extent() has freed the path. */
7381 path = NULL;
7382
7383 if (ret != 1) {
7384 /* Treat errors as not being able to NOCOW. */
7385 return 0;
7386 }
7387
7388 if (btrfs_extent_readonly(fs_info,
7389 nocow_args.file_extent.disk_bytenr +
7390 nocow_args.file_extent.offset))
7391 return 0;
7392
7393 if (!(inode->flags & BTRFS_INODE_NODATACOW) &&
7394 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7395 u64 range_end;
7396
7397 range_end = round_up(offset + nocow_args.file_extent.num_bytes,
7398 root->fs_info->sectorsize) - 1;
7399 ret = btrfs_test_range_bit_exists(io_tree, offset, range_end,
7400 EXTENT_DELALLOC);
7401 if (ret)
7402 return -EAGAIN;
7403 }
7404
7405 if (file_extent)
7406 memcpy(file_extent, &nocow_args.file_extent, sizeof(*file_extent));
7407
7408 *len = nocow_args.file_extent.num_bytes;
7409
7410 return 1;
7411}
7412
7413/* The callers of this must take lock_extent() */
7414struct extent_map *btrfs_create_io_em(struct btrfs_inode *inode, u64 start,
7415 const struct btrfs_file_extent *file_extent,
7416 int type)
7417{
7418 struct extent_map *em;
7419 int ret;
7420
7421 /*
7422 * Note the missing NOCOW type.
7423 *
7424 * For pure NOCOW writes, we should not create an io extent map, but
7425 * just reusing the existing one.
7426 * Only PREALLOC writes (NOCOW write into preallocated range) can
7427 * create an io extent map.
7428 */
7429 ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7430 type == BTRFS_ORDERED_COMPRESSED ||
7431 type == BTRFS_ORDERED_REGULAR);
7432
7433 switch (type) {
7434 case BTRFS_ORDERED_PREALLOC:
7435 /* We're only referring part of a larger preallocated extent. */
7436 ASSERT(file_extent->num_bytes <= file_extent->ram_bytes);
7437 break;
7438 case BTRFS_ORDERED_REGULAR:
7439 /* COW results a new extent matching our file extent size. */
7440 ASSERT(file_extent->disk_num_bytes == file_extent->num_bytes);
7441 ASSERT(file_extent->ram_bytes == file_extent->num_bytes);
7442
7443 /* Since it's a new extent, we should not have any offset. */
7444 ASSERT(file_extent->offset == 0);
7445 break;
7446 case BTRFS_ORDERED_COMPRESSED:
7447 /* Must be compressed. */
7448 ASSERT(file_extent->compression != BTRFS_COMPRESS_NONE);
7449
7450 /*
7451 * Encoded write can make us to refer to part of the
7452 * uncompressed extent.
7453 */
7454 ASSERT(file_extent->num_bytes <= file_extent->ram_bytes);
7455 break;
7456 }
7457
7458 em = btrfs_alloc_extent_map();
7459 if (!em)
7460 return ERR_PTR(-ENOMEM);
7461
7462 em->start = start;
7463 em->len = file_extent->num_bytes;
7464 em->disk_bytenr = file_extent->disk_bytenr;
7465 em->disk_num_bytes = file_extent->disk_num_bytes;
7466 em->ram_bytes = file_extent->ram_bytes;
7467 em->generation = -1;
7468 em->offset = file_extent->offset;
7469 em->flags |= EXTENT_FLAG_PINNED;
7470 if (type == BTRFS_ORDERED_COMPRESSED)
7471 btrfs_extent_map_set_compression(em, file_extent->compression);
7472
7473 ret = btrfs_replace_extent_map_range(inode, em, true);
7474 if (ret) {
7475 btrfs_free_extent_map(em);
7476 return ERR_PTR(ret);
7477 }
7478
7479 /* em got 2 refs now, callers needs to do btrfs_free_extent_map once. */
7480 return em;
7481}
7482
7483/*
7484 * For release_folio() and invalidate_folio() we have a race window where
7485 * folio_end_writeback() is called but the subpage spinlock is not yet released.
7486 * If we continue to release/invalidate the page, we could cause use-after-free
7487 * for subpage spinlock. So this function is to spin and wait for subpage
7488 * spinlock.
7489 */
7490static void wait_subpage_spinlock(struct folio *folio)
7491{
7492 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
7493 struct btrfs_folio_state *bfs;
7494
7495 if (!btrfs_is_subpage(fs_info, folio))
7496 return;
7497
7498 ASSERT(folio_test_private(folio) && folio_get_private(folio));
7499 bfs = folio_get_private(folio);
7500
7501 /*
7502 * This may look insane as we just acquire the spinlock and release it,
7503 * without doing anything. But we just want to make sure no one is
7504 * still holding the subpage spinlock.
7505 * And since the page is not dirty nor writeback, and we have page
7506 * locked, the only possible way to hold a spinlock is from the endio
7507 * function to clear page writeback.
7508 *
7509 * Here we just acquire the spinlock so that all existing callers
7510 * should exit and we're safe to release/invalidate the page.
7511 */
7512 spin_lock_irq(&bfs->lock);
7513 spin_unlock_irq(&bfs->lock);
7514}
7515
7516static int btrfs_launder_folio(struct folio *folio)
7517{
7518 return btrfs_qgroup_free_data(folio_to_inode(folio), NULL, folio_pos(folio),
7519 folio_size(folio), NULL);
7520}
7521
7522static bool __btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
7523{
7524 if (try_release_extent_mapping(folio, gfp_flags)) {
7525 wait_subpage_spinlock(folio);
7526 clear_folio_extent_mapped(folio);
7527 return true;
7528 }
7529 return false;
7530}
7531
7532static bool btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
7533{
7534 if (folio_test_writeback(folio) || folio_test_dirty(folio))
7535 return false;
7536 return __btrfs_release_folio(folio, gfp_flags);
7537}
7538
7539#ifdef CONFIG_MIGRATION
7540static int btrfs_migrate_folio(struct address_space *mapping,
7541 struct folio *dst, struct folio *src,
7542 enum migrate_mode mode)
7543{
7544 int ret = filemap_migrate_folio(mapping, dst, src, mode);
7545
7546 if (ret)
7547 return ret;
7548
7549 if (folio_test_ordered(src)) {
7550 folio_clear_ordered(src);
7551 folio_set_ordered(dst);
7552 }
7553
7554 return 0;
7555}
7556#else
7557#define btrfs_migrate_folio NULL
7558#endif
7559
7560static void btrfs_invalidate_folio(struct folio *folio, size_t offset,
7561 size_t length)
7562{
7563 struct btrfs_inode *inode = folio_to_inode(folio);
7564 struct btrfs_fs_info *fs_info = inode->root->fs_info;
7565 struct extent_io_tree *tree = &inode->io_tree;
7566 struct extent_state *cached_state = NULL;
7567 u64 page_start = folio_pos(folio);
7568 u64 page_end = page_start + folio_size(folio) - 1;
7569 u64 cur;
7570 int inode_evicting = inode_state_read_once(&inode->vfs_inode) & I_FREEING;
7571
7572 /*
7573 * We have folio locked so no new ordered extent can be created on this
7574 * page, nor bio can be submitted for this folio.
7575 *
7576 * But already submitted bio can still be finished on this folio.
7577 * Furthermore, endio function won't skip folio which has Ordered
7578 * already cleared, so it's possible for endio and
7579 * invalidate_folio to do the same ordered extent accounting twice
7580 * on one folio.
7581 *
7582 * So here we wait for any submitted bios to finish, so that we won't
7583 * do double ordered extent accounting on the same folio.
7584 */
7585 folio_wait_writeback(folio);
7586 wait_subpage_spinlock(folio);
7587
7588 /*
7589 * For subpage case, we have call sites like
7590 * btrfs_punch_hole_lock_range() which passes range not aligned to
7591 * sectorsize.
7592 * If the range doesn't cover the full folio, we don't need to and
7593 * shouldn't clear page extent mapped, as folio->private can still
7594 * record subpage dirty bits for other part of the range.
7595 *
7596 * For cases that invalidate the full folio even the range doesn't
7597 * cover the full folio, like invalidating the last folio, we're
7598 * still safe to wait for ordered extent to finish.
7599 */
7600 if (!(offset == 0 && length == folio_size(folio))) {
7601 btrfs_release_folio(folio, GFP_NOFS);
7602 return;
7603 }
7604
7605 if (!inode_evicting)
7606 btrfs_lock_extent(tree, page_start, page_end, &cached_state);
7607
7608 cur = page_start;
7609 while (cur < page_end) {
7610 struct btrfs_ordered_extent *ordered;
7611 u64 range_end;
7612 u32 range_len;
7613 u32 extra_flags = 0;
7614
7615 ordered = btrfs_lookup_first_ordered_range(inode, cur,
7616 page_end + 1 - cur);
7617 if (!ordered) {
7618 range_end = page_end;
7619 /*
7620 * No ordered extent covering this range, we are safe
7621 * to delete all extent states in the range.
7622 */
7623 extra_flags = EXTENT_CLEAR_ALL_BITS;
7624 goto next;
7625 }
7626 if (ordered->file_offset > cur) {
7627 /*
7628 * There is a range between [cur, oe->file_offset) not
7629 * covered by any ordered extent.
7630 * We are safe to delete all extent states, and handle
7631 * the ordered extent in the next iteration.
7632 */
7633 range_end = ordered->file_offset - 1;
7634 extra_flags = EXTENT_CLEAR_ALL_BITS;
7635 goto next;
7636 }
7637
7638 range_end = min(ordered->file_offset + ordered->num_bytes - 1,
7639 page_end);
7640 ASSERT(range_end + 1 - cur < U32_MAX);
7641 range_len = range_end + 1 - cur;
7642 if (!btrfs_folio_test_ordered(fs_info, folio, cur, range_len)) {
7643 /*
7644 * If Ordered is cleared, it means endio has
7645 * already been executed for the range.
7646 * We can't delete the extent states as
7647 * btrfs_finish_ordered_io() may still use some of them.
7648 */
7649 goto next;
7650 }
7651 btrfs_folio_clear_ordered(fs_info, folio, cur, range_len);
7652
7653 /*
7654 * IO on this page will never be started, so we need to account
7655 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW
7656 * here, must leave that up for the ordered extent completion.
7657 *
7658 * This will also unlock the range for incoming
7659 * btrfs_finish_ordered_io().
7660 */
7661 if (!inode_evicting)
7662 btrfs_clear_extent_bit(tree, cur, range_end,
7663 EXTENT_DELALLOC |
7664 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
7665 EXTENT_DEFRAG, &cached_state);
7666
7667 spin_lock(&inode->ordered_tree_lock);
7668 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
7669 ordered->truncated_len = min(ordered->truncated_len,
7670 cur - ordered->file_offset);
7671 spin_unlock(&inode->ordered_tree_lock);
7672
7673 /*
7674 * If the ordered extent has finished, we're safe to delete all
7675 * the extent states of the range, otherwise
7676 * btrfs_finish_ordered_io() will get executed by endio for
7677 * other pages, so we can't delete extent states.
7678 */
7679 if (btrfs_dec_test_ordered_pending(inode, &ordered,
7680 cur, range_end + 1 - cur)) {
7681 btrfs_finish_ordered_io(ordered);
7682 /*
7683 * The ordered extent has finished, now we're again
7684 * safe to delete all extent states of the range.
7685 */
7686 extra_flags = EXTENT_CLEAR_ALL_BITS;
7687 }
7688next:
7689 if (ordered)
7690 btrfs_put_ordered_extent(ordered);
7691 /*
7692 * Qgroup reserved space handler
7693 * Sector(s) here will be either:
7694 *
7695 * 1) Already written to disk or bio already finished
7696 * Then its QGROUP_RESERVED bit in io_tree is already cleared.
7697 * Qgroup will be handled by its qgroup_record then.
7698 * btrfs_qgroup_free_data() call will do nothing here.
7699 *
7700 * 2) Not written to disk yet
7701 * Then btrfs_qgroup_free_data() call will clear the
7702 * QGROUP_RESERVED bit of its io_tree, and free the qgroup
7703 * reserved data space.
7704 * Since the IO will never happen for this page.
7705 */
7706 btrfs_qgroup_free_data(inode, NULL, cur, range_end + 1 - cur, NULL);
7707 if (!inode_evicting)
7708 btrfs_clear_extent_bit(tree, cur, range_end, EXTENT_LOCKED |
7709 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
7710 EXTENT_DEFRAG | extra_flags,
7711 &cached_state);
7712 cur = range_end + 1;
7713 }
7714 /*
7715 * We have iterated through all ordered extents of the page, the page
7716 * should not have Ordered anymore, or the above iteration
7717 * did something wrong.
7718 */
7719 ASSERT(!folio_test_ordered(folio));
7720 btrfs_folio_clear_checked(fs_info, folio, folio_pos(folio), folio_size(folio));
7721 if (!inode_evicting)
7722 __btrfs_release_folio(folio, GFP_NOFS);
7723 clear_folio_extent_mapped(folio);
7724}
7725
7726static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback)
7727{
7728 struct btrfs_truncate_control control = {
7729 .inode = inode,
7730 .ino = btrfs_ino(inode),
7731 .min_type = BTRFS_EXTENT_DATA_KEY,
7732 .clear_extent_range = true,
7733 .new_size = inode->vfs_inode.i_size,
7734 };
7735 struct btrfs_root *root = inode->root;
7736 struct btrfs_fs_info *fs_info = root->fs_info;
7737 struct btrfs_block_rsv rsv;
7738 int ret;
7739 struct btrfs_trans_handle *trans;
7740 const u64 min_size = btrfs_calc_metadata_size(fs_info, 1);
7741 const u64 lock_start = round_down(inode->vfs_inode.i_size, fs_info->sectorsize);
7742 const u64 i_size_up = round_up(inode->vfs_inode.i_size, fs_info->sectorsize);
7743
7744 /* Our inode is locked and the i_size can't be changed concurrently. */
7745 btrfs_assert_inode_locked(inode);
7746
7747 if (!skip_writeback) {
7748 ret = btrfs_wait_ordered_range(inode, lock_start, (u64)-1);
7749 if (ret)
7750 return ret;
7751 }
7752
7753 /*
7754 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of
7755 * things going on here:
7756 *
7757 * 1) We need to reserve space to update our inode.
7758 *
7759 * 2) We need to have something to cache all the space that is going to
7760 * be free'd up by the truncate operation, but also have some slack
7761 * space reserved in case it uses space during the truncate (thank you
7762 * very much snapshotting).
7763 *
7764 * And we need these to be separate. The fact is we can use a lot of
7765 * space doing the truncate, and we have no earthly idea how much space
7766 * we will use, so we need the truncate reservation to be separate so it
7767 * doesn't end up using space reserved for updating the inode. We also
7768 * need to be able to stop the transaction and start a new one, which
7769 * means we need to be able to update the inode several times, and we
7770 * have no idea of knowing how many times that will be, so we can't just
7771 * reserve 1 item for the entirety of the operation, so that has to be
7772 * done separately as well.
7773 *
7774 * So that leaves us with
7775 *
7776 * 1) rsv - for the truncate reservation, which we will steal from the
7777 * transaction reservation.
7778 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
7779 * updating the inode.
7780 */
7781 btrfs_init_metadata_block_rsv(fs_info, &rsv, BTRFS_BLOCK_RSV_TEMP);
7782 rsv.size = min_size;
7783 rsv.failfast = true;
7784
7785 /*
7786 * 1 for the truncate slack space
7787 * 1 for updating the inode.
7788 */
7789 trans = btrfs_start_transaction(root, 2);
7790 if (IS_ERR(trans)) {
7791 ret = PTR_ERR(trans);
7792 goto out;
7793 }
7794
7795 /* Migrate the slack space for the truncate to our reserve */
7796 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, &rsv,
7797 min_size, false);
7798 /*
7799 * We have reserved 2 metadata units when we started the transaction and
7800 * min_size matches 1 unit, so this should never fail, but if it does,
7801 * it's not critical we just fail truncation.
7802 */
7803 if (WARN_ON(ret)) {
7804 btrfs_end_transaction(trans);
7805 goto out;
7806 }
7807
7808 trans->block_rsv = &rsv;
7809
7810 while (1) {
7811 struct extent_state *cached_state = NULL;
7812
7813 btrfs_lock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state);
7814 /*
7815 * We want to drop from the next block forward in case this new
7816 * size is not block aligned since we will be keeping the last
7817 * block of the extent just the way it is.
7818 */
7819 btrfs_drop_extent_map_range(inode, i_size_up, (u64)-1, false);
7820
7821 ret = btrfs_truncate_inode_items(trans, root, &control);
7822
7823 inode_sub_bytes(&inode->vfs_inode, control.sub_bytes);
7824 btrfs_inode_safe_disk_i_size_write(inode, control.last_size);
7825
7826 btrfs_unlock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state);
7827
7828 trans->block_rsv = &fs_info->trans_block_rsv;
7829 if (ret != -ENOSPC && ret != -EAGAIN)
7830 break;
7831
7832 ret = btrfs_update_inode(trans, inode);
7833 if (ret)
7834 break;
7835
7836 btrfs_end_transaction(trans);
7837 btrfs_btree_balance_dirty(fs_info);
7838
7839 trans = btrfs_start_transaction(root, 2);
7840 if (IS_ERR(trans)) {
7841 ret = PTR_ERR(trans);
7842 trans = NULL;
7843 break;
7844 }
7845
7846 btrfs_block_rsv_release(fs_info, &rsv, -1, NULL);
7847 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
7848 &rsv, min_size, false);
7849 /*
7850 * We have reserved 2 metadata units when we started the
7851 * transaction and min_size matches 1 unit, so this should never
7852 * fail, but if it does, it's not critical we just fail truncation.
7853 */
7854 if (WARN_ON(ret))
7855 break;
7856
7857 trans->block_rsv = &rsv;
7858 }
7859
7860 /*
7861 * We can't call btrfs_truncate_block inside a trans handle as we could
7862 * deadlock with freeze, if we got BTRFS_NEED_TRUNCATE_BLOCK then we
7863 * know we've truncated everything except the last little bit, and can
7864 * do btrfs_truncate_block and then update the disk_i_size.
7865 */
7866 if (ret == BTRFS_NEED_TRUNCATE_BLOCK) {
7867 btrfs_end_transaction(trans);
7868 btrfs_btree_balance_dirty(fs_info);
7869
7870 ret = btrfs_truncate_block(inode, inode->vfs_inode.i_size,
7871 inode->vfs_inode.i_size, (u64)-1);
7872 if (ret)
7873 goto out;
7874 trans = btrfs_start_transaction(root, 1);
7875 if (IS_ERR(trans)) {
7876 ret = PTR_ERR(trans);
7877 goto out;
7878 }
7879 btrfs_inode_safe_disk_i_size_write(inode, 0);
7880 }
7881
7882 if (trans) {
7883 int ret2;
7884
7885 trans->block_rsv = &fs_info->trans_block_rsv;
7886 ret2 = btrfs_update_inode(trans, inode);
7887 if (ret2 && !ret)
7888 ret = ret2;
7889
7890 ret2 = btrfs_end_transaction(trans);
7891 if (ret2 && !ret)
7892 ret = ret2;
7893 btrfs_btree_balance_dirty(fs_info);
7894 }
7895out:
7896 btrfs_block_rsv_release(fs_info, &rsv, (u64)-1, NULL);
7897 /*
7898 * So if we truncate and then write and fsync we normally would just
7899 * write the extents that changed, which is a problem if we need to
7900 * first truncate that entire inode. So set this flag so we write out
7901 * all of the extents in the inode to the sync log so we're completely
7902 * safe.
7903 *
7904 * If no extents were dropped or trimmed we don't need to force the next
7905 * fsync to truncate all the inode's items from the log and re-log them
7906 * all. This means the truncate operation did not change the file size,
7907 * or changed it to a smaller size but there was only an implicit hole
7908 * between the old i_size and the new i_size, and there were no prealloc
7909 * extents beyond i_size to drop.
7910 */
7911 if (control.extents_found > 0)
7912 btrfs_set_inode_full_sync(inode);
7913
7914 return ret;
7915}
7916
7917struct inode *btrfs_new_subvol_inode(struct mnt_idmap *idmap,
7918 struct inode *dir)
7919{
7920 struct inode *inode;
7921
7922 inode = new_inode(dir->i_sb);
7923 if (inode) {
7924 /*
7925 * Subvolumes don't inherit the sgid bit or the parent's gid if
7926 * the parent's sgid bit is set. This is probably a bug.
7927 */
7928 inode_init_owner(idmap, inode, NULL,
7929 S_IFDIR | (~current_umask() & S_IRWXUGO));
7930 inode->i_op = &btrfs_dir_inode_operations;
7931 inode->i_fop = &btrfs_dir_file_operations;
7932 }
7933 return inode;
7934}
7935
7936struct inode *btrfs_alloc_inode(struct super_block *sb)
7937{
7938 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
7939 struct btrfs_inode *ei;
7940 struct inode *inode;
7941
7942 ei = alloc_inode_sb(sb, btrfs_inode_cachep, GFP_KERNEL);
7943 if (!ei)
7944 return NULL;
7945
7946 ei->root = NULL;
7947 ei->generation = 0;
7948 ei->last_trans = 0;
7949 ei->last_sub_trans = 0;
7950 ei->logged_trans = 0;
7951 ei->delalloc_bytes = 0;
7952 /* new_delalloc_bytes and last_dir_index_offset are in a union. */
7953 ei->new_delalloc_bytes = 0;
7954 ei->defrag_bytes = 0;
7955 ei->disk_i_size = 0;
7956 ei->flags = 0;
7957 ei->ro_flags = 0;
7958 /*
7959 * ->index_cnt will be properly initialized later when creating a new
7960 * inode (btrfs_create_new_inode()) or when reading an existing inode
7961 * from disk (btrfs_read_locked_inode()).
7962 */
7963 ei->csum_bytes = 0;
7964 ei->dir_index = 0;
7965 ei->last_unlink_trans = 0;
7966 ei->last_reflink_trans = 0;
7967 ei->last_log_commit = 0;
7968
7969 spin_lock_init(&ei->lock);
7970 ei->outstanding_extents = 0;
7971 if (sb->s_magic != BTRFS_TEST_MAGIC)
7972 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
7973 BTRFS_BLOCK_RSV_DELALLOC);
7974 ei->runtime_flags = 0;
7975 ei->prop_compress = BTRFS_COMPRESS_NONE;
7976 ei->defrag_compress = BTRFS_COMPRESS_NONE;
7977
7978 ei->delayed_node = NULL;
7979
7980 ei->i_otime_sec = 0;
7981 ei->i_otime_nsec = 0;
7982
7983 inode = &ei->vfs_inode;
7984 btrfs_extent_map_tree_init(&ei->extent_tree);
7985
7986 /* This io tree sets the valid inode. */
7987 btrfs_extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO);
7988 ei->io_tree.inode = ei;
7989
7990 ei->file_extent_tree = NULL;
7991
7992 mutex_init(&ei->log_mutex);
7993 spin_lock_init(&ei->ordered_tree_lock);
7994 ei->ordered_tree = RB_ROOT;
7995 ei->ordered_tree_last = NULL;
7996 INIT_LIST_HEAD(&ei->delalloc_inodes);
7997 INIT_LIST_HEAD(&ei->delayed_iput);
7998 init_rwsem(&ei->i_mmap_lock);
7999
8000 return inode;
8001}
8002
8003#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8004void btrfs_test_destroy_inode(struct inode *inode)
8005{
8006 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false);
8007 kfree(BTRFS_I(inode)->file_extent_tree);
8008 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8009}
8010#endif
8011
8012void btrfs_free_inode(struct inode *inode)
8013{
8014 kfree(BTRFS_I(inode)->file_extent_tree);
8015 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8016}
8017
8018void btrfs_destroy_inode(struct inode *vfs_inode)
8019{
8020 struct btrfs_ordered_extent *ordered;
8021 struct btrfs_inode *inode = BTRFS_I(vfs_inode);
8022 struct btrfs_root *root = inode->root;
8023 bool freespace_inode;
8024
8025 WARN_ON(!hlist_empty(&vfs_inode->i_dentry));
8026 WARN_ON(vfs_inode->i_data.nrpages);
8027 WARN_ON(inode->block_rsv.reserved);
8028 WARN_ON(inode->block_rsv.size);
8029 WARN_ON(inode->outstanding_extents);
8030 if (!S_ISDIR(vfs_inode->i_mode)) {
8031 WARN_ON(inode->delalloc_bytes);
8032 WARN_ON(inode->new_delalloc_bytes);
8033 WARN_ON(inode->csum_bytes);
8034 }
8035 if (!root || !btrfs_is_data_reloc_root(root))
8036 WARN_ON(inode->defrag_bytes);
8037
8038 /*
8039 * This can happen where we create an inode, but somebody else also
8040 * created the same inode and we need to destroy the one we already
8041 * created.
8042 */
8043 if (!root)
8044 return;
8045
8046 /*
8047 * If this is a free space inode do not take the ordered extents lockdep
8048 * map.
8049 */
8050 freespace_inode = btrfs_is_free_space_inode(inode);
8051
8052 while (1) {
8053 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
8054 if (!ordered)
8055 break;
8056 else {
8057 btrfs_err(root->fs_info,
8058 "found ordered extent %llu %llu on inode cleanup",
8059 ordered->file_offset, ordered->num_bytes);
8060
8061 if (!freespace_inode)
8062 btrfs_lockdep_acquire(root->fs_info, btrfs_ordered_extent);
8063
8064 btrfs_remove_ordered_extent(inode, ordered);
8065 btrfs_put_ordered_extent(ordered);
8066 btrfs_put_ordered_extent(ordered);
8067 }
8068 }
8069 btrfs_qgroup_check_reserved_leak(inode);
8070 btrfs_del_inode_from_root(inode);
8071 btrfs_drop_extent_map_range(inode, 0, (u64)-1, false);
8072 btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1);
8073 btrfs_put_root(inode->root);
8074}
8075
8076int btrfs_drop_inode(struct inode *inode)
8077{
8078 struct btrfs_root *root = BTRFS_I(inode)->root;
8079
8080 if (root == NULL)
8081 return 1;
8082
8083 /* the snap/subvol tree is on deleting */
8084 if (btrfs_root_refs(&root->root_item) == 0)
8085 return 1;
8086 else
8087 return inode_generic_drop(inode);
8088}
8089
8090static void init_once(void *foo)
8091{
8092 struct btrfs_inode *ei = foo;
8093
8094 inode_init_once(&ei->vfs_inode);
8095#ifdef CONFIG_FS_VERITY
8096 ei->i_verity_info = NULL;
8097#endif
8098}
8099
8100void __cold btrfs_destroy_cachep(void)
8101{
8102 /*
8103 * Make sure all delayed rcu free inodes are flushed before we
8104 * destroy cache.
8105 */
8106 rcu_barrier();
8107 kmem_cache_destroy(btrfs_inode_cachep);
8108}
8109
8110int __init btrfs_init_cachep(void)
8111{
8112 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
8113 sizeof(struct btrfs_inode), 0,
8114 SLAB_RECLAIM_ACCOUNT | SLAB_ACCOUNT,
8115 init_once);
8116 if (!btrfs_inode_cachep)
8117 return -ENOMEM;
8118
8119 return 0;
8120}
8121
8122static int btrfs_getattr(struct mnt_idmap *idmap,
8123 const struct path *path, struct kstat *stat,
8124 u32 request_mask, unsigned int flags)
8125{
8126 u64 delalloc_bytes;
8127 u64 inode_bytes;
8128 struct inode *inode = d_inode(path->dentry);
8129 u32 blocksize = btrfs_sb(inode->i_sb)->sectorsize;
8130 u32 bi_flags = BTRFS_I(inode)->flags;
8131 u32 bi_ro_flags = BTRFS_I(inode)->ro_flags;
8132
8133 stat->result_mask |= STATX_BTIME;
8134 stat->btime.tv_sec = BTRFS_I(inode)->i_otime_sec;
8135 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime_nsec;
8136 if (bi_flags & BTRFS_INODE_APPEND)
8137 stat->attributes |= STATX_ATTR_APPEND;
8138 if (bi_flags & BTRFS_INODE_COMPRESS)
8139 stat->attributes |= STATX_ATTR_COMPRESSED;
8140 if (bi_flags & BTRFS_INODE_IMMUTABLE)
8141 stat->attributes |= STATX_ATTR_IMMUTABLE;
8142 if (bi_flags & BTRFS_INODE_NODUMP)
8143 stat->attributes |= STATX_ATTR_NODUMP;
8144 if (bi_ro_flags & BTRFS_INODE_RO_VERITY)
8145 stat->attributes |= STATX_ATTR_VERITY;
8146
8147 stat->attributes_mask |= (STATX_ATTR_APPEND |
8148 STATX_ATTR_COMPRESSED |
8149 STATX_ATTR_IMMUTABLE |
8150 STATX_ATTR_NODUMP);
8151
8152 generic_fillattr(idmap, request_mask, inode, stat);
8153 stat->dev = BTRFS_I(inode)->root->anon_dev;
8154
8155 stat->subvol = btrfs_root_id(BTRFS_I(inode)->root);
8156 stat->result_mask |= STATX_SUBVOL;
8157
8158 spin_lock(&BTRFS_I(inode)->lock);
8159 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
8160 inode_bytes = inode_get_bytes(inode);
8161 spin_unlock(&BTRFS_I(inode)->lock);
8162 stat->blocks = (ALIGN(inode_bytes, blocksize) +
8163 ALIGN(delalloc_bytes, blocksize)) >> SECTOR_SHIFT;
8164 return 0;
8165}
8166
8167static int btrfs_rename_exchange(struct inode *old_dir,
8168 struct dentry *old_dentry,
8169 struct inode *new_dir,
8170 struct dentry *new_dentry)
8171{
8172 struct btrfs_fs_info *fs_info = inode_to_fs_info(old_dir);
8173 struct btrfs_trans_handle *trans;
8174 unsigned int trans_num_items;
8175 struct btrfs_root *root = BTRFS_I(old_dir)->root;
8176 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8177 struct inode *new_inode = new_dentry->d_inode;
8178 struct inode *old_inode = old_dentry->d_inode;
8179 struct btrfs_rename_ctx old_rename_ctx;
8180 struct btrfs_rename_ctx new_rename_ctx;
8181 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
8182 u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
8183 u64 old_idx = 0;
8184 u64 new_idx = 0;
8185 int ret;
8186 int ret2;
8187 bool need_abort = false;
8188 bool logs_pinned = false;
8189 struct fscrypt_name old_fname, new_fname;
8190 struct fscrypt_str *old_name, *new_name;
8191
8192 /*
8193 * For non-subvolumes allow exchange only within one subvolume, in the
8194 * same inode namespace. Two subvolumes (represented as directory) can
8195 * be exchanged as they're a logical link and have a fixed inode number.
8196 */
8197 if (root != dest &&
8198 (old_ino != BTRFS_FIRST_FREE_OBJECTID ||
8199 new_ino != BTRFS_FIRST_FREE_OBJECTID))
8200 return -EXDEV;
8201
8202 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname);
8203 if (ret)
8204 return ret;
8205
8206 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname);
8207 if (ret) {
8208 fscrypt_free_filename(&old_fname);
8209 return ret;
8210 }
8211
8212 old_name = &old_fname.disk_name;
8213 new_name = &new_fname.disk_name;
8214
8215 /* close the race window with snapshot create/destroy ioctl */
8216 if (old_ino == BTRFS_FIRST_FREE_OBJECTID ||
8217 new_ino == BTRFS_FIRST_FREE_OBJECTID)
8218 down_read(&fs_info->subvol_sem);
8219
8220 /*
8221 * For each inode:
8222 * 1 to remove old dir item
8223 * 1 to remove old dir index
8224 * 1 to add new dir item
8225 * 1 to add new dir index
8226 * 1 to update parent inode
8227 *
8228 * If the parents are the same, we only need to account for one
8229 */
8230 trans_num_items = (old_dir == new_dir ? 9 : 10);
8231 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8232 /*
8233 * 1 to remove old root ref
8234 * 1 to remove old root backref
8235 * 1 to add new root ref
8236 * 1 to add new root backref
8237 */
8238 trans_num_items += 4;
8239 } else {
8240 /*
8241 * 1 to update inode item
8242 * 1 to remove old inode ref
8243 * 1 to add new inode ref
8244 */
8245 trans_num_items += 3;
8246 }
8247 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
8248 trans_num_items += 4;
8249 else
8250 trans_num_items += 3;
8251 trans = btrfs_start_transaction(root, trans_num_items);
8252 if (IS_ERR(trans)) {
8253 ret = PTR_ERR(trans);
8254 goto out_notrans;
8255 }
8256
8257 if (dest != root) {
8258 ret = btrfs_record_root_in_trans(trans, dest);
8259 if (ret)
8260 goto out_fail;
8261 }
8262
8263 /*
8264 * We need to find a free sequence number both in the source and
8265 * in the destination directory for the exchange.
8266 */
8267 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
8268 if (ret)
8269 goto out_fail;
8270 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
8271 if (ret)
8272 goto out_fail;
8273
8274 BTRFS_I(old_inode)->dir_index = 0ULL;
8275 BTRFS_I(new_inode)->dir_index = 0ULL;
8276
8277 /* Reference for the source. */
8278 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8279 /* force full log commit if subvolume involved. */
8280 btrfs_set_log_full_commit(trans);
8281 } else {
8282 ret = btrfs_insert_inode_ref(trans, dest, new_name, old_ino,
8283 btrfs_ino(BTRFS_I(new_dir)),
8284 old_idx);
8285 if (ret)
8286 goto out_fail;
8287 need_abort = true;
8288 }
8289
8290 /* And now for the dest. */
8291 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8292 /* force full log commit if subvolume involved. */
8293 btrfs_set_log_full_commit(trans);
8294 } else {
8295 ret = btrfs_insert_inode_ref(trans, root, old_name, new_ino,
8296 btrfs_ino(BTRFS_I(old_dir)),
8297 new_idx);
8298 if (ret) {
8299 if (unlikely(need_abort))
8300 btrfs_abort_transaction(trans, ret);
8301 goto out_fail;
8302 }
8303 }
8304
8305 /* Update inode version and ctime/mtime. */
8306 inode_inc_iversion(old_dir);
8307 inode_inc_iversion(new_dir);
8308 inode_inc_iversion(old_inode);
8309 inode_inc_iversion(new_inode);
8310 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
8311
8312 if (old_ino != BTRFS_FIRST_FREE_OBJECTID &&
8313 new_ino != BTRFS_FIRST_FREE_OBJECTID) {
8314 /*
8315 * If we are renaming in the same directory (and it's not for
8316 * root entries) pin the log early to prevent any concurrent
8317 * task from logging the directory after we removed the old
8318 * entries and before we add the new entries, otherwise that
8319 * task can sync a log without any entry for the inodes we are
8320 * renaming and therefore replaying that log, if a power failure
8321 * happens after syncing the log, would result in deleting the
8322 * inodes.
8323 *
8324 * If the rename affects two different directories, we want to
8325 * make sure the that there's no log commit that contains
8326 * updates for only one of the directories but not for the
8327 * other.
8328 *
8329 * If we are renaming an entry for a root, we don't care about
8330 * log updates since we called btrfs_set_log_full_commit().
8331 */
8332 btrfs_pin_log_trans(root);
8333 btrfs_pin_log_trans(dest);
8334 logs_pinned = true;
8335 }
8336
8337 if (old_dentry->d_parent != new_dentry->d_parent) {
8338 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
8339 BTRFS_I(old_inode), true);
8340 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
8341 BTRFS_I(new_inode), true);
8342 }
8343
8344 /* src is a subvolume */
8345 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8346 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry);
8347 if (unlikely(ret)) {
8348 btrfs_abort_transaction(trans, ret);
8349 goto out_fail;
8350 }
8351 } else { /* src is an inode */
8352 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
8353 BTRFS_I(old_dentry->d_inode),
8354 old_name, &old_rename_ctx);
8355 if (unlikely(ret)) {
8356 btrfs_abort_transaction(trans, ret);
8357 goto out_fail;
8358 }
8359 ret = btrfs_update_inode(trans, BTRFS_I(old_inode));
8360 if (unlikely(ret)) {
8361 btrfs_abort_transaction(trans, ret);
8362 goto out_fail;
8363 }
8364 }
8365
8366 /* dest is a subvolume */
8367 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8368 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry);
8369 if (unlikely(ret)) {
8370 btrfs_abort_transaction(trans, ret);
8371 goto out_fail;
8372 }
8373 } else { /* dest is an inode */
8374 ret = __btrfs_unlink_inode(trans, BTRFS_I(new_dir),
8375 BTRFS_I(new_dentry->d_inode),
8376 new_name, &new_rename_ctx);
8377 if (unlikely(ret)) {
8378 btrfs_abort_transaction(trans, ret);
8379 goto out_fail;
8380 }
8381 ret = btrfs_update_inode(trans, BTRFS_I(new_inode));
8382 if (unlikely(ret)) {
8383 btrfs_abort_transaction(trans, ret);
8384 goto out_fail;
8385 }
8386 }
8387
8388 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
8389 new_name, 0, old_idx);
8390 if (unlikely(ret)) {
8391 btrfs_abort_transaction(trans, ret);
8392 goto out_fail;
8393 }
8394
8395 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
8396 old_name, 0, new_idx);
8397 if (unlikely(ret)) {
8398 btrfs_abort_transaction(trans, ret);
8399 goto out_fail;
8400 }
8401
8402 if (old_inode->i_nlink == 1)
8403 BTRFS_I(old_inode)->dir_index = old_idx;
8404 if (new_inode->i_nlink == 1)
8405 BTRFS_I(new_inode)->dir_index = new_idx;
8406
8407 /*
8408 * Do the log updates for all inodes.
8409 *
8410 * If either entry is for a root we don't need to update the logs since
8411 * we've called btrfs_set_log_full_commit() before.
8412 */
8413 if (logs_pinned) {
8414 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
8415 old_rename_ctx.index, new_dentry->d_parent);
8416 btrfs_log_new_name(trans, new_dentry, BTRFS_I(new_dir),
8417 new_rename_ctx.index, old_dentry->d_parent);
8418 }
8419
8420out_fail:
8421 if (logs_pinned) {
8422 btrfs_end_log_trans(root);
8423 btrfs_end_log_trans(dest);
8424 }
8425 ret2 = btrfs_end_transaction(trans);
8426 ret = ret ? ret : ret2;
8427out_notrans:
8428 if (new_ino == BTRFS_FIRST_FREE_OBJECTID ||
8429 old_ino == BTRFS_FIRST_FREE_OBJECTID)
8430 up_read(&fs_info->subvol_sem);
8431
8432 fscrypt_free_filename(&new_fname);
8433 fscrypt_free_filename(&old_fname);
8434 return ret;
8435}
8436
8437static struct inode *new_whiteout_inode(struct mnt_idmap *idmap,
8438 struct inode *dir)
8439{
8440 struct inode *inode;
8441
8442 inode = new_inode(dir->i_sb);
8443 if (inode) {
8444 inode_init_owner(idmap, inode, dir,
8445 S_IFCHR | WHITEOUT_MODE);
8446 inode->i_op = &btrfs_special_inode_operations;
8447 init_special_inode(inode, inode->i_mode, WHITEOUT_DEV);
8448 }
8449 return inode;
8450}
8451
8452static int btrfs_rename(struct mnt_idmap *idmap,
8453 struct inode *old_dir, struct dentry *old_dentry,
8454 struct inode *new_dir, struct dentry *new_dentry,
8455 unsigned int flags)
8456{
8457 struct btrfs_fs_info *fs_info = inode_to_fs_info(old_dir);
8458 struct btrfs_new_inode_args whiteout_args = {
8459 .dir = old_dir,
8460 .dentry = old_dentry,
8461 };
8462 struct btrfs_trans_handle *trans;
8463 unsigned int trans_num_items;
8464 struct btrfs_root *root = BTRFS_I(old_dir)->root;
8465 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8466 struct inode *new_inode = d_inode(new_dentry);
8467 struct inode *old_inode = d_inode(old_dentry);
8468 struct btrfs_rename_ctx rename_ctx;
8469 u64 index = 0;
8470 int ret;
8471 int ret2;
8472 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
8473 struct fscrypt_name old_fname, new_fname;
8474 bool logs_pinned = false;
8475
8476 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
8477 return -EPERM;
8478
8479 /* we only allow rename subvolume link between subvolumes */
8480 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
8481 return -EXDEV;
8482
8483 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
8484 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
8485 return -ENOTEMPTY;
8486
8487 if (S_ISDIR(old_inode->i_mode) && new_inode &&
8488 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
8489 return -ENOTEMPTY;
8490
8491 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname);
8492 if (ret)
8493 return ret;
8494
8495 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname);
8496 if (ret) {
8497 fscrypt_free_filename(&old_fname);
8498 return ret;
8499 }
8500
8501 /* check for collisions, even if the name isn't there */
8502 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, &new_fname.disk_name);
8503 if (ret) {
8504 if (ret == -EEXIST) {
8505 /* we shouldn't get
8506 * eexist without a new_inode */
8507 if (WARN_ON(!new_inode)) {
8508 goto out_fscrypt_names;
8509 }
8510 } else {
8511 /* maybe -EOVERFLOW */
8512 goto out_fscrypt_names;
8513 }
8514 }
8515 ret = 0;
8516
8517 /*
8518 * we're using rename to replace one file with another. Start IO on it
8519 * now so we don't add too much work to the end of the transaction
8520 */
8521 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
8522 filemap_flush(old_inode->i_mapping);
8523
8524 if (flags & RENAME_WHITEOUT) {
8525 whiteout_args.inode = new_whiteout_inode(idmap, old_dir);
8526 if (!whiteout_args.inode) {
8527 ret = -ENOMEM;
8528 goto out_fscrypt_names;
8529 }
8530 ret = btrfs_new_inode_prepare(&whiteout_args, &trans_num_items);
8531 if (ret)
8532 goto out_whiteout_inode;
8533 } else {
8534 /* 1 to update the old parent inode. */
8535 trans_num_items = 1;
8536 }
8537
8538 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8539 /* Close the race window with snapshot create/destroy ioctl */
8540 down_read(&fs_info->subvol_sem);
8541 /*
8542 * 1 to remove old root ref
8543 * 1 to remove old root backref
8544 * 1 to add new root ref
8545 * 1 to add new root backref
8546 */
8547 trans_num_items += 4;
8548 } else {
8549 /*
8550 * 1 to update inode
8551 * 1 to remove old inode ref
8552 * 1 to add new inode ref
8553 */
8554 trans_num_items += 3;
8555 }
8556 /*
8557 * 1 to remove old dir item
8558 * 1 to remove old dir index
8559 * 1 to add new dir item
8560 * 1 to add new dir index
8561 */
8562 trans_num_items += 4;
8563 /* 1 to update new parent inode if it's not the same as the old parent */
8564 if (new_dir != old_dir)
8565 trans_num_items++;
8566 if (new_inode) {
8567 /*
8568 * 1 to update inode
8569 * 1 to remove inode ref
8570 * 1 to remove dir item
8571 * 1 to remove dir index
8572 * 1 to possibly add orphan item
8573 */
8574 trans_num_items += 5;
8575 }
8576 trans = btrfs_start_transaction(root, trans_num_items);
8577 if (IS_ERR(trans)) {
8578 ret = PTR_ERR(trans);
8579 goto out_notrans;
8580 }
8581
8582 if (dest != root) {
8583 ret = btrfs_record_root_in_trans(trans, dest);
8584 if (ret)
8585 goto out_fail;
8586 }
8587
8588 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
8589 if (ret)
8590 goto out_fail;
8591
8592 BTRFS_I(old_inode)->dir_index = 0ULL;
8593 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
8594 /* force full log commit if subvolume involved. */
8595 btrfs_set_log_full_commit(trans);
8596 } else {
8597 ret = btrfs_insert_inode_ref(trans, dest, &new_fname.disk_name,
8598 old_ino, btrfs_ino(BTRFS_I(new_dir)),
8599 index);
8600 if (ret)
8601 goto out_fail;
8602 }
8603
8604 inode_inc_iversion(old_dir);
8605 inode_inc_iversion(new_dir);
8606 inode_inc_iversion(old_inode);
8607 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
8608
8609 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
8610 /*
8611 * If we are renaming in the same directory (and it's not a
8612 * root entry) pin the log to prevent any concurrent task from
8613 * logging the directory after we removed the old entry and
8614 * before we add the new entry, otherwise that task can sync
8615 * a log without any entry for the inode we are renaming and
8616 * therefore replaying that log, if a power failure happens
8617 * after syncing the log, would result in deleting the inode.
8618 *
8619 * If the rename affects two different directories, we want to
8620 * make sure the that there's no log commit that contains
8621 * updates for only one of the directories but not for the
8622 * other.
8623 *
8624 * If we are renaming an entry for a root, we don't care about
8625 * log updates since we called btrfs_set_log_full_commit().
8626 */
8627 btrfs_pin_log_trans(root);
8628 btrfs_pin_log_trans(dest);
8629 logs_pinned = true;
8630 }
8631
8632 if (old_dentry->d_parent != new_dentry->d_parent)
8633 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
8634 BTRFS_I(old_inode), true);
8635
8636 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
8637 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry);
8638 if (unlikely(ret)) {
8639 btrfs_abort_transaction(trans, ret);
8640 goto out_fail;
8641 }
8642 } else {
8643 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
8644 BTRFS_I(d_inode(old_dentry)),
8645 &old_fname.disk_name, &rename_ctx);
8646 if (unlikely(ret)) {
8647 btrfs_abort_transaction(trans, ret);
8648 goto out_fail;
8649 }
8650 ret = btrfs_update_inode(trans, BTRFS_I(old_inode));
8651 if (unlikely(ret)) {
8652 btrfs_abort_transaction(trans, ret);
8653 goto out_fail;
8654 }
8655 }
8656
8657 if (new_inode) {
8658 inode_inc_iversion(new_inode);
8659 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
8660 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
8661 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry);
8662 if (unlikely(ret)) {
8663 btrfs_abort_transaction(trans, ret);
8664 goto out_fail;
8665 }
8666 BUG_ON(new_inode->i_nlink == 0);
8667 } else {
8668 ret = btrfs_unlink_inode(trans, BTRFS_I(new_dir),
8669 BTRFS_I(d_inode(new_dentry)),
8670 &new_fname.disk_name);
8671 if (unlikely(ret)) {
8672 btrfs_abort_transaction(trans, ret);
8673 goto out_fail;
8674 }
8675 }
8676 if (new_inode->i_nlink == 0) {
8677 ret = btrfs_orphan_add(trans,
8678 BTRFS_I(d_inode(new_dentry)));
8679 if (unlikely(ret)) {
8680 btrfs_abort_transaction(trans, ret);
8681 goto out_fail;
8682 }
8683 }
8684 }
8685
8686 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
8687 &new_fname.disk_name, 0, index);
8688 if (unlikely(ret)) {
8689 btrfs_abort_transaction(trans, ret);
8690 goto out_fail;
8691 }
8692
8693 if (old_inode->i_nlink == 1)
8694 BTRFS_I(old_inode)->dir_index = index;
8695
8696 if (logs_pinned)
8697 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
8698 rename_ctx.index, new_dentry->d_parent);
8699
8700 if (flags & RENAME_WHITEOUT) {
8701 ret = btrfs_create_new_inode(trans, &whiteout_args);
8702 if (unlikely(ret)) {
8703 btrfs_abort_transaction(trans, ret);
8704 goto out_fail;
8705 } else {
8706 unlock_new_inode(whiteout_args.inode);
8707 iput(whiteout_args.inode);
8708 whiteout_args.inode = NULL;
8709 }
8710 }
8711out_fail:
8712 if (logs_pinned) {
8713 btrfs_end_log_trans(root);
8714 btrfs_end_log_trans(dest);
8715 }
8716 ret2 = btrfs_end_transaction(trans);
8717 ret = ret ? ret : ret2;
8718out_notrans:
8719 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
8720 up_read(&fs_info->subvol_sem);
8721 if (flags & RENAME_WHITEOUT)
8722 btrfs_new_inode_args_destroy(&whiteout_args);
8723out_whiteout_inode:
8724 if (flags & RENAME_WHITEOUT)
8725 iput(whiteout_args.inode);
8726out_fscrypt_names:
8727 fscrypt_free_filename(&old_fname);
8728 fscrypt_free_filename(&new_fname);
8729 return ret;
8730}
8731
8732static int btrfs_rename2(struct mnt_idmap *idmap, struct inode *old_dir,
8733 struct dentry *old_dentry, struct inode *new_dir,
8734 struct dentry *new_dentry, unsigned int flags)
8735{
8736 int ret;
8737
8738 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
8739 return -EINVAL;
8740
8741 if (flags & RENAME_EXCHANGE)
8742 ret = btrfs_rename_exchange(old_dir, old_dentry, new_dir,
8743 new_dentry);
8744 else
8745 ret = btrfs_rename(idmap, old_dir, old_dentry, new_dir,
8746 new_dentry, flags);
8747
8748 btrfs_btree_balance_dirty(BTRFS_I(new_dir)->root->fs_info);
8749
8750 return ret;
8751}
8752
8753struct btrfs_delalloc_work {
8754 struct inode *inode;
8755 struct completion completion;
8756 struct list_head list;
8757 struct btrfs_work work;
8758};
8759
8760static void btrfs_run_delalloc_work(struct btrfs_work *work)
8761{
8762 struct btrfs_delalloc_work *delalloc_work;
8763 struct inode *inode;
8764
8765 delalloc_work = container_of(work, struct btrfs_delalloc_work,
8766 work);
8767 inode = delalloc_work->inode;
8768 filemap_flush(inode->i_mapping);
8769 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8770 &BTRFS_I(inode)->runtime_flags))
8771 filemap_flush(inode->i_mapping);
8772
8773 iput(inode);
8774 complete(&delalloc_work->completion);
8775}
8776
8777static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
8778{
8779 struct btrfs_delalloc_work *work;
8780
8781 work = kmalloc(sizeof(*work), GFP_NOFS);
8782 if (!work)
8783 return NULL;
8784
8785 init_completion(&work->completion);
8786 INIT_LIST_HEAD(&work->list);
8787 work->inode = inode;
8788 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL);
8789
8790 return work;
8791}
8792
8793/*
8794 * some fairly slow code that needs optimization. This walks the list
8795 * of all the inodes with pending delalloc and forces them to disk.
8796 */
8797static int start_delalloc_inodes(struct btrfs_root *root, long *nr_to_write,
8798 bool snapshot, bool in_reclaim_context)
8799{
8800 struct btrfs_delalloc_work *work, *next;
8801 LIST_HEAD(works);
8802 LIST_HEAD(splice);
8803 int ret = 0;
8804
8805 mutex_lock(&root->delalloc_mutex);
8806 spin_lock(&root->delalloc_lock);
8807 list_splice_init(&root->delalloc_inodes, &splice);
8808 while (!list_empty(&splice)) {
8809 struct btrfs_inode *inode;
8810 struct inode *tmp_inode;
8811
8812 inode = list_first_entry(&splice, struct btrfs_inode, delalloc_inodes);
8813
8814 list_move_tail(&inode->delalloc_inodes, &root->delalloc_inodes);
8815
8816 if (in_reclaim_context &&
8817 test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &inode->runtime_flags))
8818 continue;
8819
8820 tmp_inode = igrab(&inode->vfs_inode);
8821 if (!tmp_inode) {
8822 cond_resched_lock(&root->delalloc_lock);
8823 continue;
8824 }
8825 spin_unlock(&root->delalloc_lock);
8826
8827 if (snapshot)
8828 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH, &inode->runtime_flags);
8829 if (nr_to_write == NULL) {
8830 work = btrfs_alloc_delalloc_work(tmp_inode);
8831 if (!work) {
8832 iput(tmp_inode);
8833 ret = -ENOMEM;
8834 goto out;
8835 }
8836 list_add_tail(&work->list, &works);
8837 btrfs_queue_work(root->fs_info->flush_workers,
8838 &work->work);
8839 } else {
8840 ret = filemap_flush_nr(tmp_inode->i_mapping,
8841 nr_to_write);
8842 btrfs_add_delayed_iput(inode);
8843
8844 if (ret || *nr_to_write <= 0)
8845 goto out;
8846 }
8847 cond_resched();
8848 spin_lock(&root->delalloc_lock);
8849 }
8850 spin_unlock(&root->delalloc_lock);
8851
8852out:
8853 list_for_each_entry_safe(work, next, &works, list) {
8854 list_del_init(&work->list);
8855 wait_for_completion(&work->completion);
8856 kfree(work);
8857 }
8858
8859 if (!list_empty(&splice)) {
8860 spin_lock(&root->delalloc_lock);
8861 list_splice_tail(&splice, &root->delalloc_inodes);
8862 spin_unlock(&root->delalloc_lock);
8863 }
8864 mutex_unlock(&root->delalloc_mutex);
8865 return ret;
8866}
8867
8868int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context)
8869{
8870 struct btrfs_fs_info *fs_info = root->fs_info;
8871
8872 if (BTRFS_FS_ERROR(fs_info))
8873 return -EROFS;
8874 return start_delalloc_inodes(root, NULL, true, in_reclaim_context);
8875}
8876
8877int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr,
8878 bool in_reclaim_context)
8879{
8880 long *nr_to_write = nr == LONG_MAX ? NULL : &nr;
8881 struct btrfs_root *root;
8882 LIST_HEAD(splice);
8883 int ret;
8884
8885 if (BTRFS_FS_ERROR(fs_info))
8886 return -EROFS;
8887
8888 mutex_lock(&fs_info->delalloc_root_mutex);
8889 spin_lock(&fs_info->delalloc_root_lock);
8890 list_splice_init(&fs_info->delalloc_roots, &splice);
8891 while (!list_empty(&splice)) {
8892 root = list_first_entry(&splice, struct btrfs_root,
8893 delalloc_root);
8894 root = btrfs_grab_root(root);
8895 BUG_ON(!root);
8896 list_move_tail(&root->delalloc_root,
8897 &fs_info->delalloc_roots);
8898 spin_unlock(&fs_info->delalloc_root_lock);
8899
8900 ret = start_delalloc_inodes(root, nr_to_write, false,
8901 in_reclaim_context);
8902 btrfs_put_root(root);
8903 if (ret < 0 || nr <= 0)
8904 goto out;
8905 spin_lock(&fs_info->delalloc_root_lock);
8906 }
8907 spin_unlock(&fs_info->delalloc_root_lock);
8908
8909 ret = 0;
8910out:
8911 if (!list_empty(&splice)) {
8912 spin_lock(&fs_info->delalloc_root_lock);
8913 list_splice_tail(&splice, &fs_info->delalloc_roots);
8914 spin_unlock(&fs_info->delalloc_root_lock);
8915 }
8916 mutex_unlock(&fs_info->delalloc_root_mutex);
8917 return ret;
8918}
8919
8920static int btrfs_symlink(struct mnt_idmap *idmap, struct inode *dir,
8921 struct dentry *dentry, const char *symname)
8922{
8923 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
8924 struct btrfs_trans_handle *trans;
8925 struct btrfs_root *root = BTRFS_I(dir)->root;
8926 struct btrfs_path *path;
8927 struct btrfs_key key;
8928 struct inode *inode;
8929 struct btrfs_new_inode_args new_inode_args = {
8930 .dir = dir,
8931 .dentry = dentry,
8932 };
8933 unsigned int trans_num_items;
8934 int ret;
8935 int name_len;
8936 int datasize;
8937 unsigned long ptr;
8938 struct btrfs_file_extent_item *ei;
8939 struct extent_buffer *leaf;
8940
8941 name_len = strlen(symname);
8942 /*
8943 * Symlinks utilize uncompressed inline extent data, which should not
8944 * reach block size.
8945 */
8946 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
8947 name_len >= fs_info->sectorsize)
8948 return -ENAMETOOLONG;
8949
8950 inode = new_inode(dir->i_sb);
8951 if (!inode)
8952 return -ENOMEM;
8953 inode_init_owner(idmap, inode, dir, S_IFLNK | S_IRWXUGO);
8954 inode->i_op = &btrfs_symlink_inode_operations;
8955 inode_nohighmem(inode);
8956 inode->i_mapping->a_ops = &btrfs_aops;
8957 btrfs_i_size_write(BTRFS_I(inode), name_len);
8958 inode_set_bytes(inode, name_len);
8959
8960 new_inode_args.inode = inode;
8961 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
8962 if (ret)
8963 goto out_inode;
8964 /* 1 additional item for the inline extent */
8965 trans_num_items++;
8966
8967 trans = btrfs_start_transaction(root, trans_num_items);
8968 if (IS_ERR(trans)) {
8969 ret = PTR_ERR(trans);
8970 goto out_new_inode_args;
8971 }
8972
8973 ret = btrfs_create_new_inode(trans, &new_inode_args);
8974 if (ret)
8975 goto out;
8976
8977 path = btrfs_alloc_path();
8978 if (unlikely(!path)) {
8979 ret = -ENOMEM;
8980 btrfs_abort_transaction(trans, ret);
8981 discard_new_inode(inode);
8982 inode = NULL;
8983 goto out;
8984 }
8985 key.objectid = btrfs_ino(BTRFS_I(inode));
8986 key.type = BTRFS_EXTENT_DATA_KEY;
8987 key.offset = 0;
8988 datasize = btrfs_file_extent_calc_inline_size(name_len);
8989 ret = btrfs_insert_empty_item(trans, root, path, &key, datasize);
8990 if (unlikely(ret)) {
8991 btrfs_abort_transaction(trans, ret);
8992 btrfs_free_path(path);
8993 discard_new_inode(inode);
8994 inode = NULL;
8995 goto out;
8996 }
8997 leaf = path->nodes[0];
8998 ei = btrfs_item_ptr(leaf, path->slots[0],
8999 struct btrfs_file_extent_item);
9000 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9001 btrfs_set_file_extent_type(leaf, ei,
9002 BTRFS_FILE_EXTENT_INLINE);
9003 btrfs_set_file_extent_encryption(leaf, ei, 0);
9004 btrfs_set_file_extent_compression(leaf, ei, 0);
9005 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9006 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9007
9008 ptr = btrfs_file_extent_inline_start(ei);
9009 write_extent_buffer(leaf, symname, ptr, name_len);
9010 btrfs_free_path(path);
9011
9012 d_instantiate_new(dentry, inode);
9013 ret = 0;
9014out:
9015 btrfs_end_transaction(trans);
9016 btrfs_btree_balance_dirty(fs_info);
9017out_new_inode_args:
9018 btrfs_new_inode_args_destroy(&new_inode_args);
9019out_inode:
9020 if (ret)
9021 iput(inode);
9022 return ret;
9023}
9024
9025static struct btrfs_trans_handle *insert_prealloc_file_extent(
9026 struct btrfs_trans_handle *trans_in,
9027 struct btrfs_inode *inode,
9028 struct btrfs_key *ins,
9029 u64 file_offset)
9030{
9031 struct btrfs_file_extent_item stack_fi;
9032 struct btrfs_replace_extent_info extent_info;
9033 struct btrfs_trans_handle *trans = trans_in;
9034 struct btrfs_path *path;
9035 u64 start = ins->objectid;
9036 u64 len = ins->offset;
9037 u64 qgroup_released = 0;
9038 int ret;
9039
9040 memset(&stack_fi, 0, sizeof(stack_fi));
9041
9042 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC);
9043 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start);
9044 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len);
9045 btrfs_set_stack_file_extent_num_bytes(&stack_fi, len);
9046 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len);
9047 btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE);
9048 /* Encryption and other encoding is reserved and all 0 */
9049
9050 ret = btrfs_qgroup_release_data(inode, file_offset, len, &qgroup_released);
9051 if (ret < 0)
9052 return ERR_PTR(ret);
9053
9054 if (trans) {
9055 ret = insert_reserved_file_extent(trans, inode,
9056 file_offset, &stack_fi,
9057 true, qgroup_released);
9058 if (ret)
9059 goto free_qgroup;
9060 return trans;
9061 }
9062
9063 extent_info.disk_offset = start;
9064 extent_info.disk_len = len;
9065 extent_info.data_offset = 0;
9066 extent_info.data_len = len;
9067 extent_info.file_offset = file_offset;
9068 extent_info.extent_buf = (char *)&stack_fi;
9069 extent_info.is_new_extent = true;
9070 extent_info.update_times = true;
9071 extent_info.qgroup_reserved = qgroup_released;
9072 extent_info.insertions = 0;
9073
9074 path = btrfs_alloc_path();
9075 if (!path) {
9076 ret = -ENOMEM;
9077 goto free_qgroup;
9078 }
9079
9080 ret = btrfs_replace_file_extents(inode, path, file_offset,
9081 file_offset + len - 1, &extent_info,
9082 &trans);
9083 btrfs_free_path(path);
9084 if (ret)
9085 goto free_qgroup;
9086 return trans;
9087
9088free_qgroup:
9089 /*
9090 * We have released qgroup data range at the beginning of the function,
9091 * and normally qgroup_released bytes will be freed when committing
9092 * transaction.
9093 * But if we error out early, we have to free what we have released
9094 * or we leak qgroup data reservation.
9095 */
9096 btrfs_qgroup_free_refroot(inode->root->fs_info,
9097 btrfs_root_id(inode->root), qgroup_released,
9098 BTRFS_QGROUP_RSV_DATA);
9099 return ERR_PTR(ret);
9100}
9101
9102static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9103 u64 start, u64 num_bytes, u64 min_size,
9104 loff_t actual_len, u64 *alloc_hint,
9105 struct btrfs_trans_handle *trans)
9106{
9107 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
9108 struct extent_map *em;
9109 struct btrfs_root *root = BTRFS_I(inode)->root;
9110 struct btrfs_key ins;
9111 u64 cur_offset = start;
9112 u64 clear_offset = start;
9113 u64 i_size;
9114 u64 cur_bytes;
9115 u64 last_alloc = (u64)-1;
9116 int ret = 0;
9117 bool own_trans = true;
9118 u64 end = start + num_bytes - 1;
9119
9120 if (trans)
9121 own_trans = false;
9122 while (num_bytes > 0) {
9123 cur_bytes = min_t(u64, num_bytes, SZ_256M);
9124 cur_bytes = max(cur_bytes, min_size);
9125 /*
9126 * If we are severely fragmented we could end up with really
9127 * small allocations, so if the allocator is returning small
9128 * chunks lets make its job easier by only searching for those
9129 * sized chunks.
9130 */
9131 cur_bytes = min(cur_bytes, last_alloc);
9132 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
9133 min_size, 0, *alloc_hint, &ins, true, false);
9134 if (ret)
9135 break;
9136
9137 /*
9138 * We've reserved this space, and thus converted it from
9139 * ->bytes_may_use to ->bytes_reserved. Any error that happens
9140 * from here on out we will only need to clear our reservation
9141 * for the remaining unreserved area, so advance our
9142 * clear_offset by our extent size.
9143 */
9144 clear_offset += ins.offset;
9145
9146 last_alloc = ins.offset;
9147 trans = insert_prealloc_file_extent(trans, BTRFS_I(inode),
9148 &ins, cur_offset);
9149 /*
9150 * Now that we inserted the prealloc extent we can finally
9151 * decrement the number of reservations in the block group.
9152 * If we did it before, we could race with relocation and have
9153 * relocation miss the reserved extent, making it fail later.
9154 */
9155 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9156 if (IS_ERR(trans)) {
9157 ret = PTR_ERR(trans);
9158 btrfs_free_reserved_extent(fs_info, ins.objectid,
9159 ins.offset, false);
9160 break;
9161 }
9162
9163 em = btrfs_alloc_extent_map();
9164 if (!em) {
9165 btrfs_drop_extent_map_range(BTRFS_I(inode), cur_offset,
9166 cur_offset + ins.offset - 1, false);
9167 btrfs_set_inode_full_sync(BTRFS_I(inode));
9168 goto next;
9169 }
9170
9171 em->start = cur_offset;
9172 em->len = ins.offset;
9173 em->disk_bytenr = ins.objectid;
9174 em->offset = 0;
9175 em->disk_num_bytes = ins.offset;
9176 em->ram_bytes = ins.offset;
9177 em->flags |= EXTENT_FLAG_PREALLOC;
9178 em->generation = trans->transid;
9179
9180 ret = btrfs_replace_extent_map_range(BTRFS_I(inode), em, true);
9181 btrfs_free_extent_map(em);
9182next:
9183 num_bytes -= ins.offset;
9184 cur_offset += ins.offset;
9185 *alloc_hint = ins.objectid + ins.offset;
9186
9187 inode_inc_iversion(inode);
9188 inode_set_ctime_current(inode);
9189 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
9190 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
9191 (actual_len > inode->i_size) &&
9192 (cur_offset > inode->i_size)) {
9193 if (cur_offset > actual_len)
9194 i_size = actual_len;
9195 else
9196 i_size = cur_offset;
9197 i_size_write(inode, i_size);
9198 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
9199 }
9200
9201 ret = btrfs_update_inode(trans, BTRFS_I(inode));
9202
9203 if (unlikely(ret)) {
9204 btrfs_abort_transaction(trans, ret);
9205 if (own_trans)
9206 btrfs_end_transaction(trans);
9207 break;
9208 }
9209
9210 if (own_trans) {
9211 btrfs_end_transaction(trans);
9212 trans = NULL;
9213 }
9214 }
9215 if (clear_offset < end)
9216 btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset,
9217 end - clear_offset + 1);
9218 return ret;
9219}
9220
9221int btrfs_prealloc_file_range(struct inode *inode, int mode,
9222 u64 start, u64 num_bytes, u64 min_size,
9223 loff_t actual_len, u64 *alloc_hint)
9224{
9225 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9226 min_size, actual_len, alloc_hint,
9227 NULL);
9228}
9229
9230int btrfs_prealloc_file_range_trans(struct inode *inode,
9231 struct btrfs_trans_handle *trans, int mode,
9232 u64 start, u64 num_bytes, u64 min_size,
9233 loff_t actual_len, u64 *alloc_hint)
9234{
9235 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9236 min_size, actual_len, alloc_hint, trans);
9237}
9238
9239/*
9240 * NOTE: in case you are adding MAY_EXEC check for directories:
9241 * we are marking them with IOP_FASTPERM_MAY_EXEC, allowing path lookup to
9242 * elide calls here.
9243 */
9244static int btrfs_permission(struct mnt_idmap *idmap,
9245 struct inode *inode, int mask)
9246{
9247 struct btrfs_root *root = BTRFS_I(inode)->root;
9248 umode_t mode = inode->i_mode;
9249
9250 if (mask & MAY_WRITE &&
9251 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
9252 if (btrfs_root_readonly(root))
9253 return -EROFS;
9254 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
9255 return -EACCES;
9256 }
9257 return generic_permission(idmap, inode, mask);
9258}
9259
9260static int btrfs_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
9261 struct file *file, umode_t mode)
9262{
9263 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
9264 struct btrfs_trans_handle *trans;
9265 struct btrfs_root *root = BTRFS_I(dir)->root;
9266 struct inode *inode;
9267 struct btrfs_new_inode_args new_inode_args = {
9268 .dir = dir,
9269 .dentry = file->f_path.dentry,
9270 .orphan = true,
9271 };
9272 unsigned int trans_num_items;
9273 int ret;
9274
9275 inode = new_inode(dir->i_sb);
9276 if (!inode)
9277 return -ENOMEM;
9278 inode_init_owner(idmap, inode, dir, mode);
9279 inode->i_fop = &btrfs_file_operations;
9280 inode->i_op = &btrfs_file_inode_operations;
9281 inode->i_mapping->a_ops = &btrfs_aops;
9282
9283 new_inode_args.inode = inode;
9284 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
9285 if (ret)
9286 goto out_inode;
9287
9288 trans = btrfs_start_transaction(root, trans_num_items);
9289 if (IS_ERR(trans)) {
9290 ret = PTR_ERR(trans);
9291 goto out_new_inode_args;
9292 }
9293
9294 ret = btrfs_create_new_inode(trans, &new_inode_args);
9295
9296 /*
9297 * We set number of links to 0 in btrfs_create_new_inode(), and here we
9298 * set it to 1 because d_tmpfile() will issue a warning if the count is
9299 * 0, through:
9300 *
9301 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
9302 */
9303 set_nlink(inode, 1);
9304
9305 if (!ret) {
9306 d_tmpfile(file, inode);
9307 unlock_new_inode(inode);
9308 mark_inode_dirty(inode);
9309 }
9310
9311 btrfs_end_transaction(trans);
9312 btrfs_btree_balance_dirty(fs_info);
9313out_new_inode_args:
9314 btrfs_new_inode_args_destroy(&new_inode_args);
9315out_inode:
9316 if (ret)
9317 iput(inode);
9318 return finish_open_simple(file, ret);
9319}
9320
9321int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info,
9322 int compress_type)
9323{
9324 switch (compress_type) {
9325 case BTRFS_COMPRESS_NONE:
9326 return BTRFS_ENCODED_IO_COMPRESSION_NONE;
9327 case BTRFS_COMPRESS_ZLIB:
9328 return BTRFS_ENCODED_IO_COMPRESSION_ZLIB;
9329 case BTRFS_COMPRESS_LZO:
9330 /*
9331 * The LZO format depends on the sector size. 64K is the maximum
9332 * sector size that we support.
9333 */
9334 if (fs_info->sectorsize < SZ_4K || fs_info->sectorsize > SZ_64K)
9335 return -EINVAL;
9336 return BTRFS_ENCODED_IO_COMPRESSION_LZO_4K +
9337 (fs_info->sectorsize_bits - 12);
9338 case BTRFS_COMPRESS_ZSTD:
9339 return BTRFS_ENCODED_IO_COMPRESSION_ZSTD;
9340 default:
9341 return -EUCLEAN;
9342 }
9343}
9344
9345static ssize_t btrfs_encoded_read_inline(
9346 struct kiocb *iocb,
9347 struct iov_iter *iter, u64 start,
9348 u64 lockend,
9349 struct extent_state **cached_state,
9350 u64 extent_start, size_t count,
9351 struct btrfs_ioctl_encoded_io_args *encoded,
9352 bool *unlocked)
9353{
9354 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
9355 struct btrfs_root *root = inode->root;
9356 struct btrfs_fs_info *fs_info = root->fs_info;
9357 struct extent_io_tree *io_tree = &inode->io_tree;
9358 BTRFS_PATH_AUTO_FREE(path);
9359 struct extent_buffer *leaf;
9360 struct btrfs_file_extent_item *item;
9361 u64 ram_bytes;
9362 unsigned long ptr;
9363 void *tmp;
9364 ssize_t ret;
9365 const bool nowait = (iocb->ki_flags & IOCB_NOWAIT);
9366
9367 path = btrfs_alloc_path();
9368 if (!path)
9369 return -ENOMEM;
9370
9371 path->nowait = nowait;
9372
9373 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
9374 extent_start, 0);
9375 if (ret) {
9376 if (unlikely(ret > 0)) {
9377 /* The extent item disappeared? */
9378 return -EIO;
9379 }
9380 return ret;
9381 }
9382 leaf = path->nodes[0];
9383 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
9384
9385 ram_bytes = btrfs_file_extent_ram_bytes(leaf, item);
9386 ptr = btrfs_file_extent_inline_start(item);
9387
9388 encoded->len = min_t(u64, extent_start + ram_bytes,
9389 inode->vfs_inode.i_size) - iocb->ki_pos;
9390 ret = btrfs_encoded_io_compression_from_extent(fs_info,
9391 btrfs_file_extent_compression(leaf, item));
9392 if (ret < 0)
9393 return ret;
9394 encoded->compression = ret;
9395 if (encoded->compression) {
9396 size_t inline_size;
9397
9398 inline_size = btrfs_file_extent_inline_item_len(leaf,
9399 path->slots[0]);
9400 if (inline_size > count)
9401 return -ENOBUFS;
9402
9403 count = inline_size;
9404 encoded->unencoded_len = ram_bytes;
9405 encoded->unencoded_offset = iocb->ki_pos - extent_start;
9406 } else {
9407 count = min_t(u64, count, encoded->len);
9408 encoded->len = count;
9409 encoded->unencoded_len = count;
9410 ptr += iocb->ki_pos - extent_start;
9411 }
9412
9413 tmp = kmalloc(count, GFP_NOFS);
9414 if (!tmp)
9415 return -ENOMEM;
9416
9417 read_extent_buffer(leaf, tmp, ptr, count);
9418 btrfs_release_path(path);
9419 btrfs_unlock_extent(io_tree, start, lockend, cached_state);
9420 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9421 *unlocked = true;
9422
9423 ret = copy_to_iter(tmp, count, iter);
9424 if (ret != count)
9425 ret = -EFAULT;
9426 kfree(tmp);
9427
9428 return ret;
9429}
9430
9431struct btrfs_encoded_read_private {
9432 struct completion *sync_reads;
9433 void *uring_ctx;
9434 refcount_t pending_refs;
9435 blk_status_t status;
9436};
9437
9438static void btrfs_encoded_read_endio(struct btrfs_bio *bbio)
9439{
9440 struct btrfs_encoded_read_private *priv = bbio->private;
9441
9442 if (bbio->bio.bi_status) {
9443 /*
9444 * The memory barrier implied by the refcount_dec_and_test() here
9445 * pairs with the memory barrier implied by the refcount_dec_and_test()
9446 * in btrfs_encoded_read_regular_fill_pages() to ensure that
9447 * this write is observed before the load of status in
9448 * btrfs_encoded_read_regular_fill_pages().
9449 */
9450 WRITE_ONCE(priv->status, bbio->bio.bi_status);
9451 }
9452 if (refcount_dec_and_test(&priv->pending_refs)) {
9453 int err = blk_status_to_errno(READ_ONCE(priv->status));
9454
9455 if (priv->uring_ctx) {
9456 btrfs_uring_read_extent_endio(priv->uring_ctx, err);
9457 kfree(priv);
9458 } else {
9459 complete(priv->sync_reads);
9460 }
9461 }
9462 bio_put(&bbio->bio);
9463}
9464
9465int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode,
9466 u64 disk_bytenr, u64 disk_io_size,
9467 struct page **pages, void *uring_ctx)
9468{
9469 struct btrfs_encoded_read_private *priv, sync_priv;
9470 struct completion sync_reads;
9471 unsigned long i = 0;
9472 struct btrfs_bio *bbio;
9473 int ret;
9474
9475 /*
9476 * Fast path for synchronous reads which completes in this call, io_uring
9477 * needs longer time span.
9478 */
9479 if (uring_ctx) {
9480 priv = kmalloc(sizeof(struct btrfs_encoded_read_private), GFP_NOFS);
9481 if (!priv)
9482 return -ENOMEM;
9483 } else {
9484 priv = &sync_priv;
9485 init_completion(&sync_reads);
9486 priv->sync_reads = &sync_reads;
9487 }
9488
9489 refcount_set(&priv->pending_refs, 1);
9490 priv->status = 0;
9491 priv->uring_ctx = uring_ctx;
9492
9493 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, inode, 0,
9494 btrfs_encoded_read_endio, priv);
9495 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
9496
9497 do {
9498 size_t bytes = min_t(u64, disk_io_size, PAGE_SIZE);
9499
9500 if (bio_add_page(&bbio->bio, pages[i], bytes, 0) < bytes) {
9501 refcount_inc(&priv->pending_refs);
9502 btrfs_submit_bbio(bbio, 0);
9503
9504 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, inode, 0,
9505 btrfs_encoded_read_endio, priv);
9506 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
9507 continue;
9508 }
9509
9510 i++;
9511 disk_bytenr += bytes;
9512 disk_io_size -= bytes;
9513 } while (disk_io_size);
9514
9515 refcount_inc(&priv->pending_refs);
9516 btrfs_submit_bbio(bbio, 0);
9517
9518 if (uring_ctx) {
9519 if (refcount_dec_and_test(&priv->pending_refs)) {
9520 ret = blk_status_to_errno(READ_ONCE(priv->status));
9521 btrfs_uring_read_extent_endio(uring_ctx, ret);
9522 kfree(priv);
9523 return ret;
9524 }
9525
9526 return -EIOCBQUEUED;
9527 } else {
9528 if (!refcount_dec_and_test(&priv->pending_refs))
9529 wait_for_completion_io(&sync_reads);
9530 /* See btrfs_encoded_read_endio() for ordering. */
9531 return blk_status_to_errno(READ_ONCE(priv->status));
9532 }
9533}
9534
9535ssize_t btrfs_encoded_read_regular(struct kiocb *iocb, struct iov_iter *iter,
9536 u64 start, u64 lockend,
9537 struct extent_state **cached_state,
9538 u64 disk_bytenr, u64 disk_io_size,
9539 size_t count, bool compressed, bool *unlocked)
9540{
9541 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
9542 struct extent_io_tree *io_tree = &inode->io_tree;
9543 struct page **pages;
9544 unsigned long nr_pages, i;
9545 u64 cur;
9546 size_t page_offset;
9547 ssize_t ret;
9548
9549 nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE);
9550 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
9551 if (!pages)
9552 return -ENOMEM;
9553 ret = btrfs_alloc_page_array(nr_pages, pages, false);
9554 if (ret) {
9555 ret = -ENOMEM;
9556 goto out;
9557 }
9558
9559 ret = btrfs_encoded_read_regular_fill_pages(inode, disk_bytenr,
9560 disk_io_size, pages, NULL);
9561 if (ret)
9562 goto out;
9563
9564 btrfs_unlock_extent(io_tree, start, lockend, cached_state);
9565 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9566 *unlocked = true;
9567
9568 if (compressed) {
9569 i = 0;
9570 page_offset = 0;
9571 } else {
9572 i = (iocb->ki_pos - start) >> PAGE_SHIFT;
9573 page_offset = (iocb->ki_pos - start) & (PAGE_SIZE - 1);
9574 }
9575 cur = 0;
9576 while (cur < count) {
9577 size_t bytes = min_t(size_t, count - cur,
9578 PAGE_SIZE - page_offset);
9579
9580 if (copy_page_to_iter(pages[i], page_offset, bytes,
9581 iter) != bytes) {
9582 ret = -EFAULT;
9583 goto out;
9584 }
9585 i++;
9586 cur += bytes;
9587 page_offset = 0;
9588 }
9589 ret = count;
9590out:
9591 for (i = 0; i < nr_pages; i++) {
9592 if (pages[i])
9593 __free_page(pages[i]);
9594 }
9595 kfree(pages);
9596 return ret;
9597}
9598
9599ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter,
9600 struct btrfs_ioctl_encoded_io_args *encoded,
9601 struct extent_state **cached_state,
9602 u64 *disk_bytenr, u64 *disk_io_size)
9603{
9604 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
9605 struct btrfs_fs_info *fs_info = inode->root->fs_info;
9606 struct extent_io_tree *io_tree = &inode->io_tree;
9607 ssize_t ret;
9608 size_t count = iov_iter_count(iter);
9609 u64 start, lockend;
9610 struct extent_map *em;
9611 const bool nowait = (iocb->ki_flags & IOCB_NOWAIT);
9612 bool unlocked = false;
9613
9614 file_accessed(iocb->ki_filp);
9615
9616 ret = btrfs_inode_lock(inode,
9617 BTRFS_ILOCK_SHARED | (nowait ? BTRFS_ILOCK_TRY : 0));
9618 if (ret)
9619 return ret;
9620
9621 if (iocb->ki_pos >= inode->vfs_inode.i_size) {
9622 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9623 return 0;
9624 }
9625 start = ALIGN_DOWN(iocb->ki_pos, fs_info->sectorsize);
9626 /*
9627 * We don't know how long the extent containing iocb->ki_pos is, but if
9628 * it's compressed we know that it won't be longer than this.
9629 */
9630 lockend = start + BTRFS_MAX_UNCOMPRESSED - 1;
9631
9632 if (nowait) {
9633 struct btrfs_ordered_extent *ordered;
9634
9635 if (filemap_range_needs_writeback(inode->vfs_inode.i_mapping,
9636 start, lockend)) {
9637 ret = -EAGAIN;
9638 goto out_unlock_inode;
9639 }
9640
9641 if (!btrfs_try_lock_extent(io_tree, start, lockend, cached_state)) {
9642 ret = -EAGAIN;
9643 goto out_unlock_inode;
9644 }
9645
9646 ordered = btrfs_lookup_ordered_range(inode, start,
9647 lockend - start + 1);
9648 if (ordered) {
9649 btrfs_put_ordered_extent(ordered);
9650 btrfs_unlock_extent(io_tree, start, lockend, cached_state);
9651 ret = -EAGAIN;
9652 goto out_unlock_inode;
9653 }
9654 } else {
9655 for (;;) {
9656 struct btrfs_ordered_extent *ordered;
9657
9658 ret = btrfs_wait_ordered_range(inode, start,
9659 lockend - start + 1);
9660 if (ret)
9661 goto out_unlock_inode;
9662
9663 btrfs_lock_extent(io_tree, start, lockend, cached_state);
9664 ordered = btrfs_lookup_ordered_range(inode, start,
9665 lockend - start + 1);
9666 if (!ordered)
9667 break;
9668 btrfs_put_ordered_extent(ordered);
9669 btrfs_unlock_extent(io_tree, start, lockend, cached_state);
9670 cond_resched();
9671 }
9672 }
9673
9674 em = btrfs_get_extent(inode, NULL, start, lockend - start + 1);
9675 if (IS_ERR(em)) {
9676 ret = PTR_ERR(em);
9677 goto out_unlock_extent;
9678 }
9679
9680 if (em->disk_bytenr == EXTENT_MAP_INLINE) {
9681 u64 extent_start = em->start;
9682
9683 /*
9684 * For inline extents we get everything we need out of the
9685 * extent item.
9686 */
9687 btrfs_free_extent_map(em);
9688 em = NULL;
9689 ret = btrfs_encoded_read_inline(iocb, iter, start, lockend,
9690 cached_state, extent_start,
9691 count, encoded, &unlocked);
9692 goto out_unlock_extent;
9693 }
9694
9695 /*
9696 * We only want to return up to EOF even if the extent extends beyond
9697 * that.
9698 */
9699 encoded->len = min_t(u64, btrfs_extent_map_end(em),
9700 inode->vfs_inode.i_size) - iocb->ki_pos;
9701 if (em->disk_bytenr == EXTENT_MAP_HOLE ||
9702 (em->flags & EXTENT_FLAG_PREALLOC)) {
9703 *disk_bytenr = EXTENT_MAP_HOLE;
9704 count = min_t(u64, count, encoded->len);
9705 encoded->len = count;
9706 encoded->unencoded_len = count;
9707 } else if (btrfs_extent_map_is_compressed(em)) {
9708 *disk_bytenr = em->disk_bytenr;
9709 /*
9710 * Bail if the buffer isn't large enough to return the whole
9711 * compressed extent.
9712 */
9713 if (em->disk_num_bytes > count) {
9714 ret = -ENOBUFS;
9715 goto out_em;
9716 }
9717 *disk_io_size = em->disk_num_bytes;
9718 count = em->disk_num_bytes;
9719 encoded->unencoded_len = em->ram_bytes;
9720 encoded->unencoded_offset = iocb->ki_pos - (em->start - em->offset);
9721 ret = btrfs_encoded_io_compression_from_extent(fs_info,
9722 btrfs_extent_map_compression(em));
9723 if (ret < 0)
9724 goto out_em;
9725 encoded->compression = ret;
9726 } else {
9727 *disk_bytenr = btrfs_extent_map_block_start(em) + (start - em->start);
9728 if (encoded->len > count)
9729 encoded->len = count;
9730 /*
9731 * Don't read beyond what we locked. This also limits the page
9732 * allocations that we'll do.
9733 */
9734 *disk_io_size = min(lockend + 1, iocb->ki_pos + encoded->len) - start;
9735 count = start + *disk_io_size - iocb->ki_pos;
9736 encoded->len = count;
9737 encoded->unencoded_len = count;
9738 *disk_io_size = ALIGN(*disk_io_size, fs_info->sectorsize);
9739 }
9740 btrfs_free_extent_map(em);
9741 em = NULL;
9742
9743 if (*disk_bytenr == EXTENT_MAP_HOLE) {
9744 btrfs_unlock_extent(io_tree, start, lockend, cached_state);
9745 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9746 unlocked = true;
9747 ret = iov_iter_zero(count, iter);
9748 if (ret != count)
9749 ret = -EFAULT;
9750 } else {
9751 ret = -EIOCBQUEUED;
9752 goto out_unlock_extent;
9753 }
9754
9755out_em:
9756 btrfs_free_extent_map(em);
9757out_unlock_extent:
9758 /* Leave inode and extent locked if we need to do a read. */
9759 if (!unlocked && ret != -EIOCBQUEUED)
9760 btrfs_unlock_extent(io_tree, start, lockend, cached_state);
9761out_unlock_inode:
9762 if (!unlocked && ret != -EIOCBQUEUED)
9763 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9764 return ret;
9765}
9766
9767ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from,
9768 const struct btrfs_ioctl_encoded_io_args *encoded)
9769{
9770 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
9771 struct btrfs_root *root = inode->root;
9772 struct btrfs_fs_info *fs_info = root->fs_info;
9773 struct extent_io_tree *io_tree = &inode->io_tree;
9774 struct extent_changeset *data_reserved = NULL;
9775 struct extent_state *cached_state = NULL;
9776 struct btrfs_ordered_extent *ordered;
9777 struct btrfs_file_extent file_extent;
9778 int compression;
9779 size_t orig_count;
9780 u64 start, end;
9781 u64 num_bytes, ram_bytes, disk_num_bytes;
9782 unsigned long nr_folios, i;
9783 struct folio **folios;
9784 struct btrfs_key ins;
9785 bool extent_reserved = false;
9786 struct extent_map *em;
9787 ssize_t ret;
9788
9789 switch (encoded->compression) {
9790 case BTRFS_ENCODED_IO_COMPRESSION_ZLIB:
9791 compression = BTRFS_COMPRESS_ZLIB;
9792 break;
9793 case BTRFS_ENCODED_IO_COMPRESSION_ZSTD:
9794 compression = BTRFS_COMPRESS_ZSTD;
9795 break;
9796 case BTRFS_ENCODED_IO_COMPRESSION_LZO_4K:
9797 case BTRFS_ENCODED_IO_COMPRESSION_LZO_8K:
9798 case BTRFS_ENCODED_IO_COMPRESSION_LZO_16K:
9799 case BTRFS_ENCODED_IO_COMPRESSION_LZO_32K:
9800 case BTRFS_ENCODED_IO_COMPRESSION_LZO_64K:
9801 /* The sector size must match for LZO. */
9802 if (encoded->compression -
9803 BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 12 !=
9804 fs_info->sectorsize_bits)
9805 return -EINVAL;
9806 compression = BTRFS_COMPRESS_LZO;
9807 break;
9808 default:
9809 return -EINVAL;
9810 }
9811 if (encoded->encryption != BTRFS_ENCODED_IO_ENCRYPTION_NONE)
9812 return -EINVAL;
9813
9814 /*
9815 * Compressed extents should always have checksums, so error out if we
9816 * have a NOCOW file or inode was created while mounted with NODATASUM.
9817 */
9818 if (inode->flags & BTRFS_INODE_NODATASUM)
9819 return -EINVAL;
9820
9821 orig_count = iov_iter_count(from);
9822
9823 /* The extent size must be sane. */
9824 if (encoded->unencoded_len > BTRFS_MAX_UNCOMPRESSED ||
9825 orig_count > BTRFS_MAX_COMPRESSED || orig_count == 0)
9826 return -EINVAL;
9827
9828 /*
9829 * The compressed data must be smaller than the decompressed data.
9830 *
9831 * It's of course possible for data to compress to larger or the same
9832 * size, but the buffered I/O path falls back to no compression for such
9833 * data, and we don't want to break any assumptions by creating these
9834 * extents.
9835 *
9836 * Note that this is less strict than the current check we have that the
9837 * compressed data must be at least one sector smaller than the
9838 * decompressed data. We only want to enforce the weaker requirement
9839 * from old kernels that it is at least one byte smaller.
9840 */
9841 if (orig_count >= encoded->unencoded_len)
9842 return -EINVAL;
9843
9844 /* The extent must start on a sector boundary. */
9845 start = iocb->ki_pos;
9846 if (!IS_ALIGNED(start, fs_info->sectorsize))
9847 return -EINVAL;
9848
9849 /*
9850 * The extent must end on a sector boundary. However, we allow a write
9851 * which ends at or extends i_size to have an unaligned length; we round
9852 * up the extent size and set i_size to the unaligned end.
9853 */
9854 if (start + encoded->len < inode->vfs_inode.i_size &&
9855 !IS_ALIGNED(start + encoded->len, fs_info->sectorsize))
9856 return -EINVAL;
9857
9858 /* Finally, the offset in the unencoded data must be sector-aligned. */
9859 if (!IS_ALIGNED(encoded->unencoded_offset, fs_info->sectorsize))
9860 return -EINVAL;
9861
9862 num_bytes = ALIGN(encoded->len, fs_info->sectorsize);
9863 ram_bytes = ALIGN(encoded->unencoded_len, fs_info->sectorsize);
9864 end = start + num_bytes - 1;
9865
9866 /*
9867 * If the extent cannot be inline, the compressed data on disk must be
9868 * sector-aligned. For convenience, we extend it with zeroes if it
9869 * isn't.
9870 */
9871 disk_num_bytes = ALIGN(orig_count, fs_info->sectorsize);
9872 nr_folios = DIV_ROUND_UP(disk_num_bytes, PAGE_SIZE);
9873 folios = kvcalloc(nr_folios, sizeof(struct folio *), GFP_KERNEL_ACCOUNT);
9874 if (!folios)
9875 return -ENOMEM;
9876 for (i = 0; i < nr_folios; i++) {
9877 size_t bytes = min_t(size_t, PAGE_SIZE, iov_iter_count(from));
9878 char *kaddr;
9879
9880 folios[i] = folio_alloc(GFP_KERNEL_ACCOUNT, 0);
9881 if (!folios[i]) {
9882 ret = -ENOMEM;
9883 goto out_folios;
9884 }
9885 kaddr = kmap_local_folio(folios[i], 0);
9886 if (copy_from_iter(kaddr, bytes, from) != bytes) {
9887 kunmap_local(kaddr);
9888 ret = -EFAULT;
9889 goto out_folios;
9890 }
9891 if (bytes < PAGE_SIZE)
9892 memset(kaddr + bytes, 0, PAGE_SIZE - bytes);
9893 kunmap_local(kaddr);
9894 }
9895
9896 for (;;) {
9897 ret = btrfs_wait_ordered_range(inode, start, num_bytes);
9898 if (ret)
9899 goto out_folios;
9900 ret = invalidate_inode_pages2_range(inode->vfs_inode.i_mapping,
9901 start >> PAGE_SHIFT,
9902 end >> PAGE_SHIFT);
9903 if (ret)
9904 goto out_folios;
9905 btrfs_lock_extent(io_tree, start, end, &cached_state);
9906 ordered = btrfs_lookup_ordered_range(inode, start, num_bytes);
9907 if (!ordered &&
9908 !filemap_range_has_page(inode->vfs_inode.i_mapping, start, end))
9909 break;
9910 if (ordered)
9911 btrfs_put_ordered_extent(ordered);
9912 btrfs_unlock_extent(io_tree, start, end, &cached_state);
9913 cond_resched();
9914 }
9915
9916 /*
9917 * We don't use the higher-level delalloc space functions because our
9918 * num_bytes and disk_num_bytes are different.
9919 */
9920 ret = btrfs_alloc_data_chunk_ondemand(inode, disk_num_bytes);
9921 if (ret)
9922 goto out_unlock;
9923 ret = btrfs_qgroup_reserve_data(inode, &data_reserved, start, num_bytes);
9924 if (ret)
9925 goto out_free_data_space;
9926 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes, disk_num_bytes,
9927 false);
9928 if (ret)
9929 goto out_qgroup_free_data;
9930
9931 /* Try an inline extent first. */
9932 if (encoded->unencoded_len == encoded->len &&
9933 encoded->unencoded_offset == 0 &&
9934 can_cow_file_range_inline(inode, start, encoded->len, orig_count)) {
9935 ret = __cow_file_range_inline(inode, encoded->len,
9936 orig_count, compression, folios[0],
9937 true);
9938 if (ret <= 0) {
9939 if (ret == 0)
9940 ret = orig_count;
9941 goto out_delalloc_release;
9942 }
9943 }
9944
9945 ret = btrfs_reserve_extent(root, disk_num_bytes, disk_num_bytes,
9946 disk_num_bytes, 0, 0, &ins, true, true);
9947 if (ret)
9948 goto out_delalloc_release;
9949 extent_reserved = true;
9950
9951 file_extent.disk_bytenr = ins.objectid;
9952 file_extent.disk_num_bytes = ins.offset;
9953 file_extent.num_bytes = num_bytes;
9954 file_extent.ram_bytes = ram_bytes;
9955 file_extent.offset = encoded->unencoded_offset;
9956 file_extent.compression = compression;
9957 em = btrfs_create_io_em(inode, start, &file_extent, BTRFS_ORDERED_COMPRESSED);
9958 if (IS_ERR(em)) {
9959 ret = PTR_ERR(em);
9960 goto out_free_reserved;
9961 }
9962 btrfs_free_extent_map(em);
9963
9964 ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent,
9965 (1U << BTRFS_ORDERED_ENCODED) |
9966 (1U << BTRFS_ORDERED_COMPRESSED));
9967 if (IS_ERR(ordered)) {
9968 btrfs_drop_extent_map_range(inode, start, end, false);
9969 ret = PTR_ERR(ordered);
9970 goto out_free_reserved;
9971 }
9972 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9973
9974 if (start + encoded->len > inode->vfs_inode.i_size)
9975 i_size_write(&inode->vfs_inode, start + encoded->len);
9976
9977 btrfs_unlock_extent(io_tree, start, end, &cached_state);
9978
9979 btrfs_delalloc_release_extents(inode, num_bytes);
9980
9981 btrfs_submit_compressed_write(ordered, folios, nr_folios, 0, false);
9982 ret = orig_count;
9983 goto out;
9984
9985out_free_reserved:
9986 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9987 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, true);
9988out_delalloc_release:
9989 btrfs_delalloc_release_extents(inode, num_bytes);
9990 btrfs_delalloc_release_metadata(inode, disk_num_bytes, ret < 0);
9991out_qgroup_free_data:
9992 if (ret < 0)
9993 btrfs_qgroup_free_data(inode, data_reserved, start, num_bytes, NULL);
9994out_free_data_space:
9995 /*
9996 * If btrfs_reserve_extent() succeeded, then we already decremented
9997 * bytes_may_use.
9998 */
9999 if (!extent_reserved)
10000 btrfs_free_reserved_data_space_noquota(inode, disk_num_bytes);
10001out_unlock:
10002 btrfs_unlock_extent(io_tree, start, end, &cached_state);
10003out_folios:
10004 for (i = 0; i < nr_folios; i++) {
10005 if (folios[i])
10006 folio_put(folios[i]);
10007 }
10008 kvfree(folios);
10009out:
10010 if (ret >= 0)
10011 iocb->ki_pos += encoded->len;
10012 return ret;
10013}
10014
10015#ifdef CONFIG_SWAP
10016/*
10017 * Add an entry indicating a block group or device which is pinned by a
10018 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
10019 * negative errno on failure.
10020 */
10021static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
10022 bool is_block_group)
10023{
10024 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10025 struct btrfs_swapfile_pin *sp, *entry;
10026 struct rb_node **p;
10027 struct rb_node *parent = NULL;
10028
10029 sp = kmalloc(sizeof(*sp), GFP_NOFS);
10030 if (!sp)
10031 return -ENOMEM;
10032 sp->ptr = ptr;
10033 sp->inode = inode;
10034 sp->is_block_group = is_block_group;
10035 sp->bg_extent_count = 1;
10036
10037 spin_lock(&fs_info->swapfile_pins_lock);
10038 p = &fs_info->swapfile_pins.rb_node;
10039 while (*p) {
10040 parent = *p;
10041 entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
10042 if (sp->ptr < entry->ptr ||
10043 (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
10044 p = &(*p)->rb_left;
10045 } else if (sp->ptr > entry->ptr ||
10046 (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
10047 p = &(*p)->rb_right;
10048 } else {
10049 if (is_block_group)
10050 entry->bg_extent_count++;
10051 spin_unlock(&fs_info->swapfile_pins_lock);
10052 kfree(sp);
10053 return 1;
10054 }
10055 }
10056 rb_link_node(&sp->node, parent, p);
10057 rb_insert_color(&sp->node, &fs_info->swapfile_pins);
10058 spin_unlock(&fs_info->swapfile_pins_lock);
10059 return 0;
10060}
10061
10062/* Free all of the entries pinned by this swapfile. */
10063static void btrfs_free_swapfile_pins(struct inode *inode)
10064{
10065 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10066 struct btrfs_swapfile_pin *sp;
10067 struct rb_node *node, *next;
10068
10069 spin_lock(&fs_info->swapfile_pins_lock);
10070 node = rb_first(&fs_info->swapfile_pins);
10071 while (node) {
10072 next = rb_next(node);
10073 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
10074 if (sp->inode == inode) {
10075 rb_erase(&sp->node, &fs_info->swapfile_pins);
10076 if (sp->is_block_group) {
10077 btrfs_dec_block_group_swap_extents(sp->ptr,
10078 sp->bg_extent_count);
10079 btrfs_put_block_group(sp->ptr);
10080 }
10081 kfree(sp);
10082 }
10083 node = next;
10084 }
10085 spin_unlock(&fs_info->swapfile_pins_lock);
10086}
10087
10088struct btrfs_swap_info {
10089 u64 start;
10090 u64 block_start;
10091 u64 block_len;
10092 u64 lowest_ppage;
10093 u64 highest_ppage;
10094 unsigned long nr_pages;
10095 int nr_extents;
10096};
10097
10098static int btrfs_add_swap_extent(struct swap_info_struct *sis,
10099 struct btrfs_swap_info *bsi)
10100{
10101 unsigned long nr_pages;
10102 unsigned long max_pages;
10103 u64 first_ppage, first_ppage_reported, next_ppage;
10104 int ret;
10105
10106 /*
10107 * Our swapfile may have had its size extended after the swap header was
10108 * written. In that case activating the swapfile should not go beyond
10109 * the max size set in the swap header.
10110 */
10111 if (bsi->nr_pages >= sis->max)
10112 return 0;
10113
10114 max_pages = sis->max - bsi->nr_pages;
10115 first_ppage = PAGE_ALIGN(bsi->block_start) >> PAGE_SHIFT;
10116 next_ppage = PAGE_ALIGN_DOWN(bsi->block_start + bsi->block_len) >> PAGE_SHIFT;
10117
10118 if (first_ppage >= next_ppage)
10119 return 0;
10120 nr_pages = next_ppage - first_ppage;
10121 nr_pages = min(nr_pages, max_pages);
10122
10123 first_ppage_reported = first_ppage;
10124 if (bsi->start == 0)
10125 first_ppage_reported++;
10126 if (bsi->lowest_ppage > first_ppage_reported)
10127 bsi->lowest_ppage = first_ppage_reported;
10128 if (bsi->highest_ppage < (next_ppage - 1))
10129 bsi->highest_ppage = next_ppage - 1;
10130
10131 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
10132 if (ret < 0)
10133 return ret;
10134 bsi->nr_extents += ret;
10135 bsi->nr_pages += nr_pages;
10136 return 0;
10137}
10138
10139static void btrfs_swap_deactivate(struct file *file)
10140{
10141 struct inode *inode = file_inode(file);
10142
10143 btrfs_free_swapfile_pins(inode);
10144 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
10145}
10146
10147static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10148 sector_t *span)
10149{
10150 struct inode *inode = file_inode(file);
10151 struct btrfs_root *root = BTRFS_I(inode)->root;
10152 struct btrfs_fs_info *fs_info = root->fs_info;
10153 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
10154 struct extent_state *cached_state = NULL;
10155 struct btrfs_chunk_map *map = NULL;
10156 struct btrfs_device *device = NULL;
10157 struct btrfs_swap_info bsi = {
10158 .lowest_ppage = (sector_t)-1ULL,
10159 };
10160 struct btrfs_backref_share_check_ctx *backref_ctx = NULL;
10161 struct btrfs_path *path = NULL;
10162 int ret = 0;
10163 u64 isize;
10164 u64 prev_extent_end = 0;
10165
10166 /*
10167 * Acquire the inode's mmap lock to prevent races with memory mapped
10168 * writes, as they could happen after we flush delalloc below and before
10169 * we lock the extent range further below. The inode was already locked
10170 * up in the call chain.
10171 */
10172 btrfs_assert_inode_locked(BTRFS_I(inode));
10173 down_write(&BTRFS_I(inode)->i_mmap_lock);
10174
10175 /*
10176 * If the swap file was just created, make sure delalloc is done. If the
10177 * file changes again after this, the user is doing something stupid and
10178 * we don't really care.
10179 */
10180 ret = btrfs_wait_ordered_range(BTRFS_I(inode), 0, (u64)-1);
10181 if (ret)
10182 goto out_unlock_mmap;
10183
10184 /*
10185 * The inode is locked, so these flags won't change after we check them.
10186 */
10187 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
10188 btrfs_warn(fs_info, "swapfile must not be compressed");
10189 ret = -EINVAL;
10190 goto out_unlock_mmap;
10191 }
10192 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
10193 btrfs_warn(fs_info, "swapfile must not be copy-on-write");
10194 ret = -EINVAL;
10195 goto out_unlock_mmap;
10196 }
10197 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
10198 btrfs_warn(fs_info, "swapfile must not be checksummed");
10199 ret = -EINVAL;
10200 goto out_unlock_mmap;
10201 }
10202
10203 path = btrfs_alloc_path();
10204 backref_ctx = btrfs_alloc_backref_share_check_ctx();
10205 if (!path || !backref_ctx) {
10206 ret = -ENOMEM;
10207 goto out_unlock_mmap;
10208 }
10209
10210 /*
10211 * Balance or device remove/replace/resize can move stuff around from
10212 * under us. The exclop protection makes sure they aren't running/won't
10213 * run concurrently while we are mapping the swap extents, and
10214 * fs_info->swapfile_pins prevents them from running while the swap
10215 * file is active and moving the extents. Note that this also prevents
10216 * a concurrent device add which isn't actually necessary, but it's not
10217 * really worth the trouble to allow it.
10218 */
10219 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) {
10220 btrfs_warn(fs_info,
10221 "cannot activate swapfile while exclusive operation is running");
10222 ret = -EBUSY;
10223 goto out_unlock_mmap;
10224 }
10225
10226 /*
10227 * Prevent snapshot creation while we are activating the swap file.
10228 * We do not want to race with snapshot creation. If snapshot creation
10229 * already started before we bumped nr_swapfiles from 0 to 1 and
10230 * completes before the first write into the swap file after it is
10231 * activated, than that write would fallback to COW.
10232 */
10233 if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) {
10234 btrfs_exclop_finish(fs_info);
10235 btrfs_warn(fs_info,
10236 "cannot activate swapfile because snapshot creation is in progress");
10237 ret = -EINVAL;
10238 goto out_unlock_mmap;
10239 }
10240 /*
10241 * Snapshots can create extents which require COW even if NODATACOW is
10242 * set. We use this counter to prevent snapshots. We must increment it
10243 * before walking the extents because we don't want a concurrent
10244 * snapshot to run after we've already checked the extents.
10245 *
10246 * It is possible that subvolume is marked for deletion but still not
10247 * removed yet. To prevent this race, we check the root status before
10248 * activating the swapfile.
10249 */
10250 spin_lock(&root->root_item_lock);
10251 if (btrfs_root_dead(root)) {
10252 spin_unlock(&root->root_item_lock);
10253
10254 btrfs_drew_write_unlock(&root->snapshot_lock);
10255 btrfs_exclop_finish(fs_info);
10256 btrfs_warn(fs_info,
10257 "cannot activate swapfile because subvolume %llu is being deleted",
10258 btrfs_root_id(root));
10259 ret = -EPERM;
10260 goto out_unlock_mmap;
10261 }
10262 atomic_inc(&root->nr_swapfiles);
10263 spin_unlock(&root->root_item_lock);
10264
10265 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
10266
10267 btrfs_lock_extent(io_tree, 0, isize - 1, &cached_state);
10268 while (prev_extent_end < isize) {
10269 struct btrfs_key key;
10270 struct extent_buffer *leaf;
10271 struct btrfs_file_extent_item *ei;
10272 struct btrfs_block_group *bg;
10273 u64 logical_block_start;
10274 u64 physical_block_start;
10275 u64 extent_gen;
10276 u64 disk_bytenr;
10277 u64 len;
10278
10279 key.objectid = btrfs_ino(BTRFS_I(inode));
10280 key.type = BTRFS_EXTENT_DATA_KEY;
10281 key.offset = prev_extent_end;
10282
10283 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
10284 if (ret < 0)
10285 goto out;
10286
10287 /*
10288 * If key not found it means we have an implicit hole (NO_HOLES
10289 * is enabled).
10290 */
10291 if (ret > 0) {
10292 btrfs_warn(fs_info, "swapfile must not have holes");
10293 ret = -EINVAL;
10294 goto out;
10295 }
10296
10297 leaf = path->nodes[0];
10298 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
10299
10300 if (btrfs_file_extent_type(leaf, ei) == BTRFS_FILE_EXTENT_INLINE) {
10301 /*
10302 * It's unlikely we'll ever actually find ourselves
10303 * here, as a file small enough to fit inline won't be
10304 * big enough to store more than the swap header, but in
10305 * case something changes in the future, let's catch it
10306 * here rather than later.
10307 */
10308 btrfs_warn(fs_info, "swapfile must not be inline");
10309 ret = -EINVAL;
10310 goto out;
10311 }
10312
10313 if (btrfs_file_extent_compression(leaf, ei) != BTRFS_COMPRESS_NONE) {
10314 btrfs_warn(fs_info, "swapfile must not be compressed");
10315 ret = -EINVAL;
10316 goto out;
10317 }
10318
10319 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
10320 if (disk_bytenr == 0) {
10321 btrfs_warn(fs_info, "swapfile must not have holes");
10322 ret = -EINVAL;
10323 goto out;
10324 }
10325
10326 logical_block_start = disk_bytenr + btrfs_file_extent_offset(leaf, ei);
10327 extent_gen = btrfs_file_extent_generation(leaf, ei);
10328 prev_extent_end = btrfs_file_extent_end(path);
10329
10330 if (prev_extent_end > isize)
10331 len = isize - key.offset;
10332 else
10333 len = btrfs_file_extent_num_bytes(leaf, ei);
10334
10335 backref_ctx->curr_leaf_bytenr = leaf->start;
10336
10337 /*
10338 * Don't need the path anymore, release to avoid deadlocks when
10339 * calling btrfs_is_data_extent_shared() because when joining a
10340 * transaction it can block waiting for the current one's commit
10341 * which in turn may be trying to lock the same leaf to flush
10342 * delayed items for example.
10343 */
10344 btrfs_release_path(path);
10345
10346 ret = btrfs_is_data_extent_shared(BTRFS_I(inode), disk_bytenr,
10347 extent_gen, backref_ctx);
10348 if (ret < 0) {
10349 goto out;
10350 } else if (ret > 0) {
10351 btrfs_warn(fs_info,
10352 "swapfile must not be copy-on-write");
10353 ret = -EINVAL;
10354 goto out;
10355 }
10356
10357 map = btrfs_get_chunk_map(fs_info, logical_block_start, len);
10358 if (IS_ERR(map)) {
10359 ret = PTR_ERR(map);
10360 goto out;
10361 }
10362
10363 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
10364 btrfs_warn(fs_info,
10365 "swapfile must have single data profile");
10366 ret = -EINVAL;
10367 goto out;
10368 }
10369
10370 if (device == NULL) {
10371 device = map->stripes[0].dev;
10372 ret = btrfs_add_swapfile_pin(inode, device, false);
10373 if (ret == 1)
10374 ret = 0;
10375 else if (ret)
10376 goto out;
10377 } else if (device != map->stripes[0].dev) {
10378 btrfs_warn(fs_info, "swapfile must be on one device");
10379 ret = -EINVAL;
10380 goto out;
10381 }
10382
10383 physical_block_start = (map->stripes[0].physical +
10384 (logical_block_start - map->start));
10385 btrfs_free_chunk_map(map);
10386 map = NULL;
10387
10388 bg = btrfs_lookup_block_group(fs_info, logical_block_start);
10389 if (!bg) {
10390 btrfs_warn(fs_info,
10391 "could not find block group containing swapfile");
10392 ret = -EINVAL;
10393 goto out;
10394 }
10395
10396 if (!btrfs_inc_block_group_swap_extents(bg)) {
10397 btrfs_warn(fs_info,
10398 "block group for swapfile at %llu is read-only%s",
10399 bg->start,
10400 atomic_read(&fs_info->scrubs_running) ?
10401 " (scrub running)" : "");
10402 btrfs_put_block_group(bg);
10403 ret = -EINVAL;
10404 goto out;
10405 }
10406
10407 ret = btrfs_add_swapfile_pin(inode, bg, true);
10408 if (ret) {
10409 btrfs_put_block_group(bg);
10410 if (ret == 1)
10411 ret = 0;
10412 else
10413 goto out;
10414 }
10415
10416 if (bsi.block_len &&
10417 bsi.block_start + bsi.block_len == physical_block_start) {
10418 bsi.block_len += len;
10419 } else {
10420 if (bsi.block_len) {
10421 ret = btrfs_add_swap_extent(sis, &bsi);
10422 if (ret)
10423 goto out;
10424 }
10425 bsi.start = key.offset;
10426 bsi.block_start = physical_block_start;
10427 bsi.block_len = len;
10428 }
10429
10430 if (fatal_signal_pending(current)) {
10431 ret = -EINTR;
10432 goto out;
10433 }
10434
10435 cond_resched();
10436 }
10437
10438 if (bsi.block_len)
10439 ret = btrfs_add_swap_extent(sis, &bsi);
10440
10441out:
10442 if (!IS_ERR_OR_NULL(map))
10443 btrfs_free_chunk_map(map);
10444
10445 btrfs_unlock_extent(io_tree, 0, isize - 1, &cached_state);
10446
10447 if (ret)
10448 btrfs_swap_deactivate(file);
10449
10450 btrfs_drew_write_unlock(&root->snapshot_lock);
10451
10452 btrfs_exclop_finish(fs_info);
10453
10454out_unlock_mmap:
10455 up_write(&BTRFS_I(inode)->i_mmap_lock);
10456 btrfs_free_backref_share_ctx(backref_ctx);
10457 btrfs_free_path(path);
10458 if (ret)
10459 return ret;
10460
10461 if (device)
10462 sis->bdev = device->bdev;
10463 *span = bsi.highest_ppage - bsi.lowest_ppage + 1;
10464 sis->max = bsi.nr_pages;
10465 sis->pages = bsi.nr_pages - 1;
10466 return bsi.nr_extents;
10467}
10468#else
10469static void btrfs_swap_deactivate(struct file *file)
10470{
10471}
10472
10473static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10474 sector_t *span)
10475{
10476 return -EOPNOTSUPP;
10477}
10478#endif
10479
10480/*
10481 * Update the number of bytes used in the VFS' inode. When we replace extents in
10482 * a range (clone, dedupe, fallocate's zero range), we must update the number of
10483 * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls
10484 * always get a correct value.
10485 */
10486void btrfs_update_inode_bytes(struct btrfs_inode *inode,
10487 const u64 add_bytes,
10488 const u64 del_bytes)
10489{
10490 if (add_bytes == del_bytes)
10491 return;
10492
10493 spin_lock(&inode->lock);
10494 if (del_bytes > 0)
10495 inode_sub_bytes(&inode->vfs_inode, del_bytes);
10496 if (add_bytes > 0)
10497 inode_add_bytes(&inode->vfs_inode, add_bytes);
10498 spin_unlock(&inode->lock);
10499}
10500
10501/*
10502 * Verify that there are no ordered extents for a given file range.
10503 *
10504 * @inode: The target inode.
10505 * @start: Start offset of the file range, should be sector size aligned.
10506 * @end: End offset (inclusive) of the file range, its value +1 should be
10507 * sector size aligned.
10508 *
10509 * This should typically be used for cases where we locked an inode's VFS lock in
10510 * exclusive mode, we have also locked the inode's i_mmap_lock in exclusive mode,
10511 * we have flushed all delalloc in the range, we have waited for all ordered
10512 * extents in the range to complete and finally we have locked the file range in
10513 * the inode's io_tree.
10514 */
10515void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end)
10516{
10517 struct btrfs_root *root = inode->root;
10518 struct btrfs_ordered_extent *ordered;
10519
10520 if (!IS_ENABLED(CONFIG_BTRFS_ASSERT))
10521 return;
10522
10523 ordered = btrfs_lookup_first_ordered_range(inode, start, end + 1 - start);
10524 if (ordered) {
10525 btrfs_err(root->fs_info,
10526"found unexpected ordered extent in file range [%llu, %llu] for inode %llu root %llu (ordered range [%llu, %llu])",
10527 start, end, btrfs_ino(inode), btrfs_root_id(root),
10528 ordered->file_offset,
10529 ordered->file_offset + ordered->num_bytes - 1);
10530 btrfs_put_ordered_extent(ordered);
10531 }
10532
10533 ASSERT(ordered == NULL);
10534}
10535
10536/*
10537 * Find the first inode with a minimum number.
10538 *
10539 * @root: The root to search for.
10540 * @min_ino: The minimum inode number.
10541 *
10542 * Find the first inode in the @root with a number >= @min_ino and return it.
10543 * Returns NULL if no such inode found.
10544 */
10545struct btrfs_inode *btrfs_find_first_inode(struct btrfs_root *root, u64 min_ino)
10546{
10547 struct btrfs_inode *inode;
10548 unsigned long from = min_ino;
10549
10550 xa_lock(&root->inodes);
10551 while (true) {
10552 inode = xa_find(&root->inodes, &from, ULONG_MAX, XA_PRESENT);
10553 if (!inode)
10554 break;
10555 if (igrab(&inode->vfs_inode))
10556 break;
10557
10558 from = btrfs_ino(inode) + 1;
10559 cond_resched_lock(&root->inodes.xa_lock);
10560 }
10561 xa_unlock(&root->inodes);
10562
10563 return inode;
10564}
10565
10566static const struct inode_operations btrfs_dir_inode_operations = {
10567 .getattr = btrfs_getattr,
10568 .lookup = btrfs_lookup,
10569 .create = btrfs_create,
10570 .unlink = btrfs_unlink,
10571 .link = btrfs_link,
10572 .mkdir = btrfs_mkdir,
10573 .rmdir = btrfs_rmdir,
10574 .rename = btrfs_rename2,
10575 .symlink = btrfs_symlink,
10576 .setattr = btrfs_setattr,
10577 .mknod = btrfs_mknod,
10578 .listxattr = btrfs_listxattr,
10579 .permission = btrfs_permission,
10580 .get_inode_acl = btrfs_get_acl,
10581 .set_acl = btrfs_set_acl,
10582 .update_time = btrfs_update_time,
10583 .tmpfile = btrfs_tmpfile,
10584 .fileattr_get = btrfs_fileattr_get,
10585 .fileattr_set = btrfs_fileattr_set,
10586};
10587
10588static const struct file_operations btrfs_dir_file_operations = {
10589 .llseek = btrfs_dir_llseek,
10590 .read = generic_read_dir,
10591 .iterate_shared = btrfs_real_readdir,
10592 .open = btrfs_opendir,
10593 .unlocked_ioctl = btrfs_ioctl,
10594#ifdef CONFIG_COMPAT
10595 .compat_ioctl = btrfs_compat_ioctl,
10596#endif
10597 .release = btrfs_release_file,
10598 .fsync = btrfs_sync_file,
10599};
10600
10601/*
10602 * btrfs doesn't support the bmap operation because swapfiles
10603 * use bmap to make a mapping of extents in the file. They assume
10604 * these extents won't change over the life of the file and they
10605 * use the bmap result to do IO directly to the drive.
10606 *
10607 * the btrfs bmap call would return logical addresses that aren't
10608 * suitable for IO and they also will change frequently as COW
10609 * operations happen. So, swapfile + btrfs == corruption.
10610 *
10611 * For now we're avoiding this by dropping bmap.
10612 */
10613static const struct address_space_operations btrfs_aops = {
10614 .read_folio = btrfs_read_folio,
10615 .writepages = btrfs_writepages,
10616 .readahead = btrfs_readahead,
10617 .invalidate_folio = btrfs_invalidate_folio,
10618 .launder_folio = btrfs_launder_folio,
10619 .release_folio = btrfs_release_folio,
10620 .migrate_folio = btrfs_migrate_folio,
10621 .dirty_folio = filemap_dirty_folio,
10622 .error_remove_folio = generic_error_remove_folio,
10623 .swap_activate = btrfs_swap_activate,
10624 .swap_deactivate = btrfs_swap_deactivate,
10625};
10626
10627static const struct inode_operations btrfs_file_inode_operations = {
10628 .getattr = btrfs_getattr,
10629 .setattr = btrfs_setattr,
10630 .listxattr = btrfs_listxattr,
10631 .permission = btrfs_permission,
10632 .fiemap = btrfs_fiemap,
10633 .get_inode_acl = btrfs_get_acl,
10634 .set_acl = btrfs_set_acl,
10635 .update_time = btrfs_update_time,
10636 .fileattr_get = btrfs_fileattr_get,
10637 .fileattr_set = btrfs_fileattr_set,
10638};
10639static const struct inode_operations btrfs_special_inode_operations = {
10640 .getattr = btrfs_getattr,
10641 .setattr = btrfs_setattr,
10642 .permission = btrfs_permission,
10643 .listxattr = btrfs_listxattr,
10644 .get_inode_acl = btrfs_get_acl,
10645 .set_acl = btrfs_set_acl,
10646 .update_time = btrfs_update_time,
10647};
10648static const struct inode_operations btrfs_symlink_inode_operations = {
10649 .get_link = page_get_link,
10650 .getattr = btrfs_getattr,
10651 .setattr = btrfs_setattr,
10652 .permission = btrfs_permission,
10653 .listxattr = btrfs_listxattr,
10654 .update_time = btrfs_update_time,
10655};
10656
10657const struct dentry_operations btrfs_dentry_operations = {
10658 .d_delete = btrfs_dentry_delete,
10659};