at master 115 kB view raw
1// SPDX-License-Identifier: GPL-2.0 2/* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6#include <linux/fs.h> 7#include <linux/pagemap.h> 8#include <linux/time.h> 9#include <linux/init.h> 10#include <linux/string.h> 11#include <linux/backing-dev.h> 12#include <linux/falloc.h> 13#include <linux/writeback.h> 14#include <linux/compat.h> 15#include <linux/slab.h> 16#include <linux/btrfs.h> 17#include <linux/uio.h> 18#include <linux/iversion.h> 19#include <linux/fsverity.h> 20#include "ctree.h" 21#include "direct-io.h" 22#include "disk-io.h" 23#include "transaction.h" 24#include "btrfs_inode.h" 25#include "tree-log.h" 26#include "locking.h" 27#include "qgroup.h" 28#include "compression.h" 29#include "delalloc-space.h" 30#include "reflink.h" 31#include "subpage.h" 32#include "fs.h" 33#include "accessors.h" 34#include "extent-tree.h" 35#include "file-item.h" 36#include "ioctl.h" 37#include "file.h" 38#include "super.h" 39#include "print-tree.h" 40 41/* 42 * Unlock folio after btrfs_file_write() is done with it. 43 */ 44static void btrfs_drop_folio(struct btrfs_fs_info *fs_info, struct folio *folio, 45 u64 pos, u64 copied) 46{ 47 u64 block_start = round_down(pos, fs_info->sectorsize); 48 u64 block_len = round_up(pos + copied, fs_info->sectorsize) - block_start; 49 50 ASSERT(block_len <= U32_MAX); 51 /* 52 * Folio checked is some magic around finding folios that have been 53 * modified without going through btrfs_dirty_folio(). Clear it here. 54 * There should be no need to mark the pages accessed as 55 * prepare_one_folio() should have marked them accessed in 56 * prepare_one_folio() via find_or_create_page() 57 */ 58 btrfs_folio_clamp_clear_checked(fs_info, folio, block_start, block_len); 59 folio_unlock(folio); 60 folio_put(folio); 61} 62 63/* 64 * After copy_folio_from_iter_atomic(), update the following things for delalloc: 65 * - Mark newly dirtied folio as DELALLOC in the io tree. 66 * Used to advise which range is to be written back. 67 * - Mark modified folio as Uptodate/Dirty and not needing COW fixup 68 * - Update inode size for past EOF write 69 */ 70int btrfs_dirty_folio(struct btrfs_inode *inode, struct folio *folio, loff_t pos, 71 size_t write_bytes, struct extent_state **cached, bool noreserve) 72{ 73 struct btrfs_fs_info *fs_info = inode->root->fs_info; 74 int ret = 0; 75 u64 num_bytes; 76 u64 start_pos; 77 u64 end_of_last_block; 78 const u64 end_pos = pos + write_bytes; 79 loff_t isize = i_size_read(&inode->vfs_inode); 80 unsigned int extra_bits = 0; 81 82 if (write_bytes == 0) 83 return 0; 84 85 if (noreserve) 86 extra_bits |= EXTENT_NORESERVE; 87 88 start_pos = round_down(pos, fs_info->sectorsize); 89 num_bytes = round_up(end_pos - start_pos, fs_info->sectorsize); 90 ASSERT(num_bytes <= U32_MAX); 91 ASSERT(folio_pos(folio) <= pos && folio_next_pos(folio) >= end_pos); 92 93 end_of_last_block = start_pos + num_bytes - 1; 94 95 /* 96 * The pages may have already been dirty, clear out old accounting so 97 * we can set things up properly 98 */ 99 btrfs_clear_extent_bit(&inode->io_tree, start_pos, end_of_last_block, 100 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 101 cached); 102 103 ret = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block, 104 extra_bits, cached); 105 if (ret) 106 return ret; 107 108 btrfs_folio_clamp_set_uptodate(fs_info, folio, start_pos, num_bytes); 109 btrfs_folio_clamp_clear_checked(fs_info, folio, start_pos, num_bytes); 110 btrfs_folio_clamp_set_dirty(fs_info, folio, start_pos, num_bytes); 111 112 /* 113 * we've only changed i_size in ram, and we haven't updated 114 * the disk i_size. There is no need to log the inode 115 * at this time. 116 */ 117 if (end_pos > isize) 118 i_size_write(&inode->vfs_inode, end_pos); 119 return 0; 120} 121 122/* 123 * this is very complex, but the basic idea is to drop all extents 124 * in the range start - end. hint_block is filled in with a block number 125 * that would be a good hint to the block allocator for this file. 126 * 127 * If an extent intersects the range but is not entirely inside the range 128 * it is either truncated or split. Anything entirely inside the range 129 * is deleted from the tree. 130 * 131 * Note: the VFS' inode number of bytes is not updated, it's up to the caller 132 * to deal with that. We set the field 'bytes_found' of the arguments structure 133 * with the number of allocated bytes found in the target range, so that the 134 * caller can update the inode's number of bytes in an atomic way when 135 * replacing extents in a range to avoid races with stat(2). 136 */ 137int btrfs_drop_extents(struct btrfs_trans_handle *trans, 138 struct btrfs_root *root, struct btrfs_inode *inode, 139 struct btrfs_drop_extents_args *args) 140{ 141 struct btrfs_fs_info *fs_info = root->fs_info; 142 struct extent_buffer *leaf; 143 struct btrfs_file_extent_item *fi; 144 struct btrfs_key key; 145 struct btrfs_key new_key; 146 u64 ino = btrfs_ino(inode); 147 u64 search_start = args->start; 148 u64 disk_bytenr = 0; 149 u64 num_bytes = 0; 150 u64 extent_offset = 0; 151 u64 extent_end = 0; 152 u64 last_end = args->start; 153 int del_nr = 0; 154 int del_slot = 0; 155 int extent_type; 156 int recow; 157 int ret; 158 int modify_tree = -1; 159 int update_refs; 160 int found = 0; 161 struct btrfs_path *path = args->path; 162 163 args->bytes_found = 0; 164 args->extent_inserted = false; 165 166 /* Must always have a path if ->replace_extent is true */ 167 ASSERT(!(args->replace_extent && !args->path)); 168 169 if (!path) { 170 path = btrfs_alloc_path(); 171 if (!path) { 172 ret = -ENOMEM; 173 goto out; 174 } 175 } 176 177 if (args->drop_cache) 178 btrfs_drop_extent_map_range(inode, args->start, args->end - 1, false); 179 180 if (data_race(args->start >= inode->disk_i_size) && !args->replace_extent) 181 modify_tree = 0; 182 183 update_refs = (btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID); 184 while (1) { 185 recow = 0; 186 ret = btrfs_lookup_file_extent(trans, root, path, ino, 187 search_start, modify_tree); 188 if (ret < 0) 189 break; 190 if (ret > 0 && path->slots[0] > 0 && search_start == args->start) { 191 leaf = path->nodes[0]; 192 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1); 193 if (key.objectid == ino && 194 key.type == BTRFS_EXTENT_DATA_KEY) 195 path->slots[0]--; 196 } 197 ret = 0; 198next_slot: 199 leaf = path->nodes[0]; 200 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 201 if (WARN_ON(del_nr > 0)) { 202 btrfs_print_leaf(leaf); 203 ret = -EINVAL; 204 break; 205 } 206 ret = btrfs_next_leaf(root, path); 207 if (ret < 0) 208 break; 209 if (ret > 0) { 210 ret = 0; 211 break; 212 } 213 leaf = path->nodes[0]; 214 recow = 1; 215 } 216 217 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 218 219 if (key.objectid > ino) 220 break; 221 if (WARN_ON_ONCE(key.objectid < ino) || 222 key.type < BTRFS_EXTENT_DATA_KEY) { 223 ASSERT(del_nr == 0); 224 path->slots[0]++; 225 goto next_slot; 226 } 227 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= args->end) 228 break; 229 230 fi = btrfs_item_ptr(leaf, path->slots[0], 231 struct btrfs_file_extent_item); 232 extent_type = btrfs_file_extent_type(leaf, fi); 233 234 if (extent_type == BTRFS_FILE_EXTENT_REG || 235 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 236 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 237 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 238 extent_offset = btrfs_file_extent_offset(leaf, fi); 239 extent_end = key.offset + 240 btrfs_file_extent_num_bytes(leaf, fi); 241 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 242 extent_end = key.offset + 243 btrfs_file_extent_ram_bytes(leaf, fi); 244 } else { 245 /* can't happen */ 246 BUG(); 247 } 248 249 /* 250 * Don't skip extent items representing 0 byte lengths. They 251 * used to be created (bug) if while punching holes we hit 252 * -ENOSPC condition. So if we find one here, just ensure we 253 * delete it, otherwise we would insert a new file extent item 254 * with the same key (offset) as that 0 bytes length file 255 * extent item in the call to setup_items_for_insert() later 256 * in this function. 257 */ 258 if (extent_end == key.offset && extent_end >= search_start) { 259 last_end = extent_end; 260 goto delete_extent_item; 261 } 262 263 if (extent_end <= search_start) { 264 path->slots[0]++; 265 goto next_slot; 266 } 267 268 found = 1; 269 search_start = max(key.offset, args->start); 270 if (recow || !modify_tree) { 271 modify_tree = -1; 272 btrfs_release_path(path); 273 continue; 274 } 275 276 /* 277 * | - range to drop - | 278 * | -------- extent -------- | 279 */ 280 if (args->start > key.offset && args->end < extent_end) { 281 if (WARN_ON(del_nr > 0)) { 282 btrfs_print_leaf(leaf); 283 ret = -EINVAL; 284 break; 285 } 286 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 287 ret = -EOPNOTSUPP; 288 break; 289 } 290 291 memcpy(&new_key, &key, sizeof(new_key)); 292 new_key.offset = args->start; 293 ret = btrfs_duplicate_item(trans, root, path, 294 &new_key); 295 if (ret == -EAGAIN) { 296 btrfs_release_path(path); 297 continue; 298 } 299 if (ret < 0) 300 break; 301 302 leaf = path->nodes[0]; 303 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 304 struct btrfs_file_extent_item); 305 btrfs_set_file_extent_num_bytes(leaf, fi, 306 args->start - key.offset); 307 308 fi = btrfs_item_ptr(leaf, path->slots[0], 309 struct btrfs_file_extent_item); 310 311 extent_offset += args->start - key.offset; 312 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 313 btrfs_set_file_extent_num_bytes(leaf, fi, 314 extent_end - args->start); 315 316 if (update_refs && disk_bytenr > 0) { 317 struct btrfs_ref ref = { 318 .action = BTRFS_ADD_DELAYED_REF, 319 .bytenr = disk_bytenr, 320 .num_bytes = num_bytes, 321 .parent = 0, 322 .owning_root = btrfs_root_id(root), 323 .ref_root = btrfs_root_id(root), 324 }; 325 btrfs_init_data_ref(&ref, new_key.objectid, 326 args->start - extent_offset, 327 0, false); 328 ret = btrfs_inc_extent_ref(trans, &ref); 329 if (unlikely(ret)) { 330 btrfs_abort_transaction(trans, ret); 331 break; 332 } 333 } 334 key.offset = args->start; 335 } 336 /* 337 * From here on out we will have actually dropped something, so 338 * last_end can be updated. 339 */ 340 last_end = extent_end; 341 342 /* 343 * | ---- range to drop ----- | 344 * | -------- extent -------- | 345 */ 346 if (args->start <= key.offset && args->end < extent_end) { 347 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 348 ret = -EOPNOTSUPP; 349 break; 350 } 351 352 memcpy(&new_key, &key, sizeof(new_key)); 353 new_key.offset = args->end; 354 btrfs_set_item_key_safe(trans, path, &new_key); 355 356 extent_offset += args->end - key.offset; 357 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 358 btrfs_set_file_extent_num_bytes(leaf, fi, 359 extent_end - args->end); 360 if (update_refs && disk_bytenr > 0) 361 args->bytes_found += args->end - key.offset; 362 break; 363 } 364 365 search_start = extent_end; 366 /* 367 * | ---- range to drop ----- | 368 * | -------- extent -------- | 369 */ 370 if (args->start > key.offset && args->end >= extent_end) { 371 if (WARN_ON(del_nr > 0)) { 372 btrfs_print_leaf(leaf); 373 ret = -EINVAL; 374 break; 375 } 376 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 377 ret = -EOPNOTSUPP; 378 break; 379 } 380 381 btrfs_set_file_extent_num_bytes(leaf, fi, 382 args->start - key.offset); 383 if (update_refs && disk_bytenr > 0) 384 args->bytes_found += extent_end - args->start; 385 if (args->end == extent_end) 386 break; 387 388 path->slots[0]++; 389 goto next_slot; 390 } 391 392 /* 393 * | ---- range to drop ----- | 394 * | ------ extent ------ | 395 */ 396 if (args->start <= key.offset && args->end >= extent_end) { 397delete_extent_item: 398 if (del_nr == 0) { 399 del_slot = path->slots[0]; 400 del_nr = 1; 401 } else { 402 if (WARN_ON(del_slot + del_nr != path->slots[0])) { 403 btrfs_print_leaf(leaf); 404 ret = -EINVAL; 405 break; 406 } 407 del_nr++; 408 } 409 410 if (update_refs && 411 extent_type == BTRFS_FILE_EXTENT_INLINE) { 412 args->bytes_found += extent_end - key.offset; 413 extent_end = ALIGN(extent_end, 414 fs_info->sectorsize); 415 } else if (update_refs && disk_bytenr > 0) { 416 struct btrfs_ref ref = { 417 .action = BTRFS_DROP_DELAYED_REF, 418 .bytenr = disk_bytenr, 419 .num_bytes = num_bytes, 420 .parent = 0, 421 .owning_root = btrfs_root_id(root), 422 .ref_root = btrfs_root_id(root), 423 }; 424 btrfs_init_data_ref(&ref, key.objectid, 425 key.offset - extent_offset, 426 0, false); 427 ret = btrfs_free_extent(trans, &ref); 428 if (unlikely(ret)) { 429 btrfs_abort_transaction(trans, ret); 430 break; 431 } 432 args->bytes_found += extent_end - key.offset; 433 } 434 435 if (args->end == extent_end) 436 break; 437 438 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) { 439 path->slots[0]++; 440 goto next_slot; 441 } 442 443 ret = btrfs_del_items(trans, root, path, del_slot, 444 del_nr); 445 if (unlikely(ret)) { 446 btrfs_abort_transaction(trans, ret); 447 break; 448 } 449 450 del_nr = 0; 451 del_slot = 0; 452 453 btrfs_release_path(path); 454 continue; 455 } 456 457 BUG(); 458 } 459 460 if (!ret && del_nr > 0) { 461 /* 462 * Set path->slots[0] to first slot, so that after the delete 463 * if items are move off from our leaf to its immediate left or 464 * right neighbor leafs, we end up with a correct and adjusted 465 * path->slots[0] for our insertion (if args->replace_extent). 466 */ 467 path->slots[0] = del_slot; 468 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 469 if (ret) 470 btrfs_abort_transaction(trans, ret); 471 } 472 473 leaf = path->nodes[0]; 474 /* 475 * If btrfs_del_items() was called, it might have deleted a leaf, in 476 * which case it unlocked our path, so check path->locks[0] matches a 477 * write lock. 478 */ 479 if (!ret && args->replace_extent && 480 path->locks[0] == BTRFS_WRITE_LOCK && 481 btrfs_leaf_free_space(leaf) >= 482 sizeof(struct btrfs_item) + args->extent_item_size) { 483 484 key.objectid = ino; 485 key.type = BTRFS_EXTENT_DATA_KEY; 486 key.offset = args->start; 487 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) { 488 struct btrfs_key slot_key; 489 490 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]); 491 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0) 492 path->slots[0]++; 493 } 494 btrfs_setup_item_for_insert(trans, root, path, &key, 495 args->extent_item_size); 496 args->extent_inserted = true; 497 } 498 499 if (!args->path) 500 btrfs_free_path(path); 501 else if (!args->extent_inserted) 502 btrfs_release_path(path); 503out: 504 args->drop_end = found ? min(args->end, last_end) : args->end; 505 506 return ret; 507} 508 509static bool extent_mergeable(struct extent_buffer *leaf, int slot, u64 objectid, 510 u64 bytenr, u64 orig_offset, u64 *start, u64 *end) 511{ 512 struct btrfs_file_extent_item *fi; 513 struct btrfs_key key; 514 u64 extent_end; 515 516 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 517 return false; 518 519 btrfs_item_key_to_cpu(leaf, &key, slot); 520 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY) 521 return false; 522 523 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 524 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG || 525 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr || 526 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset || 527 btrfs_file_extent_compression(leaf, fi) || 528 btrfs_file_extent_encryption(leaf, fi) || 529 btrfs_file_extent_other_encoding(leaf, fi)) 530 return false; 531 532 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 533 if ((*start && *start != key.offset) || (*end && *end != extent_end)) 534 return false; 535 536 *start = key.offset; 537 *end = extent_end; 538 return true; 539} 540 541/* 542 * Mark extent in the range start - end as written. 543 * 544 * This changes extent type from 'pre-allocated' to 'regular'. If only 545 * part of extent is marked as written, the extent will be split into 546 * two or three. 547 */ 548int btrfs_mark_extent_written(struct btrfs_trans_handle *trans, 549 struct btrfs_inode *inode, u64 start, u64 end) 550{ 551 struct btrfs_root *root = inode->root; 552 struct extent_buffer *leaf; 553 BTRFS_PATH_AUTO_FREE(path); 554 struct btrfs_file_extent_item *fi; 555 struct btrfs_ref ref = { 0 }; 556 struct btrfs_key key; 557 struct btrfs_key new_key; 558 u64 bytenr; 559 u64 num_bytes; 560 u64 extent_end; 561 u64 orig_offset; 562 u64 other_start; 563 u64 other_end; 564 u64 split; 565 int del_nr = 0; 566 int del_slot = 0; 567 int recow; 568 int ret = 0; 569 u64 ino = btrfs_ino(inode); 570 571 path = btrfs_alloc_path(); 572 if (!path) 573 return -ENOMEM; 574again: 575 recow = 0; 576 split = start; 577 key.objectid = ino; 578 key.type = BTRFS_EXTENT_DATA_KEY; 579 key.offset = split; 580 581 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 582 if (ret < 0) 583 goto out; 584 if (ret > 0 && path->slots[0] > 0) 585 path->slots[0]--; 586 587 leaf = path->nodes[0]; 588 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 589 if (unlikely(key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)) { 590 ret = -EINVAL; 591 btrfs_abort_transaction(trans, ret); 592 goto out; 593 } 594 fi = btrfs_item_ptr(leaf, path->slots[0], 595 struct btrfs_file_extent_item); 596 if (unlikely(btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC)) { 597 ret = -EINVAL; 598 btrfs_abort_transaction(trans, ret); 599 goto out; 600 } 601 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 602 if (unlikely(key.offset > start || extent_end < end)) { 603 ret = -EINVAL; 604 btrfs_abort_transaction(trans, ret); 605 goto out; 606 } 607 608 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 609 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 610 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi); 611 memcpy(&new_key, &key, sizeof(new_key)); 612 613 if (start == key.offset && end < extent_end) { 614 other_start = 0; 615 other_end = start; 616 if (extent_mergeable(leaf, path->slots[0] - 1, 617 ino, bytenr, orig_offset, 618 &other_start, &other_end)) { 619 new_key.offset = end; 620 btrfs_set_item_key_safe(trans, path, &new_key); 621 fi = btrfs_item_ptr(leaf, path->slots[0], 622 struct btrfs_file_extent_item); 623 btrfs_set_file_extent_generation(leaf, fi, 624 trans->transid); 625 btrfs_set_file_extent_num_bytes(leaf, fi, 626 extent_end - end); 627 btrfs_set_file_extent_offset(leaf, fi, 628 end - orig_offset); 629 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 630 struct btrfs_file_extent_item); 631 btrfs_set_file_extent_generation(leaf, fi, 632 trans->transid); 633 btrfs_set_file_extent_num_bytes(leaf, fi, 634 end - other_start); 635 goto out; 636 } 637 } 638 639 if (start > key.offset && end == extent_end) { 640 other_start = end; 641 other_end = 0; 642 if (extent_mergeable(leaf, path->slots[0] + 1, 643 ino, bytenr, orig_offset, 644 &other_start, &other_end)) { 645 fi = btrfs_item_ptr(leaf, path->slots[0], 646 struct btrfs_file_extent_item); 647 btrfs_set_file_extent_num_bytes(leaf, fi, 648 start - key.offset); 649 btrfs_set_file_extent_generation(leaf, fi, 650 trans->transid); 651 path->slots[0]++; 652 new_key.offset = start; 653 btrfs_set_item_key_safe(trans, path, &new_key); 654 655 fi = btrfs_item_ptr(leaf, path->slots[0], 656 struct btrfs_file_extent_item); 657 btrfs_set_file_extent_generation(leaf, fi, 658 trans->transid); 659 btrfs_set_file_extent_num_bytes(leaf, fi, 660 other_end - start); 661 btrfs_set_file_extent_offset(leaf, fi, 662 start - orig_offset); 663 goto out; 664 } 665 } 666 667 while (start > key.offset || end < extent_end) { 668 if (key.offset == start) 669 split = end; 670 671 new_key.offset = split; 672 ret = btrfs_duplicate_item(trans, root, path, &new_key); 673 if (ret == -EAGAIN) { 674 btrfs_release_path(path); 675 goto again; 676 } 677 if (unlikely(ret < 0)) { 678 btrfs_abort_transaction(trans, ret); 679 goto out; 680 } 681 682 leaf = path->nodes[0]; 683 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 684 struct btrfs_file_extent_item); 685 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 686 btrfs_set_file_extent_num_bytes(leaf, fi, 687 split - key.offset); 688 689 fi = btrfs_item_ptr(leaf, path->slots[0], 690 struct btrfs_file_extent_item); 691 692 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 693 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset); 694 btrfs_set_file_extent_num_bytes(leaf, fi, 695 extent_end - split); 696 697 ref.action = BTRFS_ADD_DELAYED_REF; 698 ref.bytenr = bytenr; 699 ref.num_bytes = num_bytes; 700 ref.parent = 0; 701 ref.owning_root = btrfs_root_id(root); 702 ref.ref_root = btrfs_root_id(root); 703 btrfs_init_data_ref(&ref, ino, orig_offset, 0, false); 704 ret = btrfs_inc_extent_ref(trans, &ref); 705 if (unlikely(ret)) { 706 btrfs_abort_transaction(trans, ret); 707 goto out; 708 } 709 710 if (split == start) { 711 key.offset = start; 712 } else { 713 if (unlikely(start != key.offset)) { 714 ret = -EINVAL; 715 btrfs_abort_transaction(trans, ret); 716 goto out; 717 } 718 path->slots[0]--; 719 extent_end = end; 720 } 721 recow = 1; 722 } 723 724 other_start = end; 725 other_end = 0; 726 727 ref.action = BTRFS_DROP_DELAYED_REF; 728 ref.bytenr = bytenr; 729 ref.num_bytes = num_bytes; 730 ref.parent = 0; 731 ref.owning_root = btrfs_root_id(root); 732 ref.ref_root = btrfs_root_id(root); 733 btrfs_init_data_ref(&ref, ino, orig_offset, 0, false); 734 if (extent_mergeable(leaf, path->slots[0] + 1, 735 ino, bytenr, orig_offset, 736 &other_start, &other_end)) { 737 if (recow) { 738 btrfs_release_path(path); 739 goto again; 740 } 741 extent_end = other_end; 742 del_slot = path->slots[0] + 1; 743 del_nr++; 744 ret = btrfs_free_extent(trans, &ref); 745 if (unlikely(ret)) { 746 btrfs_abort_transaction(trans, ret); 747 goto out; 748 } 749 } 750 other_start = 0; 751 other_end = start; 752 if (extent_mergeable(leaf, path->slots[0] - 1, 753 ino, bytenr, orig_offset, 754 &other_start, &other_end)) { 755 if (recow) { 756 btrfs_release_path(path); 757 goto again; 758 } 759 key.offset = other_start; 760 del_slot = path->slots[0]; 761 del_nr++; 762 ret = btrfs_free_extent(trans, &ref); 763 if (unlikely(ret)) { 764 btrfs_abort_transaction(trans, ret); 765 goto out; 766 } 767 } 768 if (del_nr == 0) { 769 fi = btrfs_item_ptr(leaf, path->slots[0], 770 struct btrfs_file_extent_item); 771 btrfs_set_file_extent_type(leaf, fi, 772 BTRFS_FILE_EXTENT_REG); 773 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 774 } else { 775 fi = btrfs_item_ptr(leaf, del_slot - 1, 776 struct btrfs_file_extent_item); 777 btrfs_set_file_extent_type(leaf, fi, 778 BTRFS_FILE_EXTENT_REG); 779 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 780 btrfs_set_file_extent_num_bytes(leaf, fi, 781 extent_end - key.offset); 782 783 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 784 if (unlikely(ret < 0)) { 785 btrfs_abort_transaction(trans, ret); 786 goto out; 787 } 788 } 789out: 790 return ret; 791} 792 793/* 794 * On error return an unlocked folio and the error value 795 * On success return a locked folio and 0 796 */ 797static int prepare_uptodate_folio(struct inode *inode, struct folio *folio, u64 pos, 798 u64 len) 799{ 800 u64 clamp_start = max_t(u64, pos, folio_pos(folio)); 801 u64 clamp_end = min_t(u64, pos + len, folio_next_pos(folio)); 802 const u32 blocksize = inode_to_fs_info(inode)->sectorsize; 803 int ret = 0; 804 805 if (folio_test_uptodate(folio)) 806 return 0; 807 808 if (IS_ALIGNED(clamp_start, blocksize) && 809 IS_ALIGNED(clamp_end, blocksize)) 810 return 0; 811 812 ret = btrfs_read_folio(NULL, folio); 813 if (ret) 814 return ret; 815 folio_lock(folio); 816 if (unlikely(!folio_test_uptodate(folio))) { 817 folio_unlock(folio); 818 return -EIO; 819 } 820 821 /* 822 * Since btrfs_read_folio() will unlock the folio before it returns, 823 * there is a window where btrfs_release_folio() can be called to 824 * release the page. Here we check both inode mapping and page 825 * private to make sure the page was not released. 826 * 827 * The private flag check is essential for subpage as we need to store 828 * extra bitmap using folio private. 829 */ 830 if (folio->mapping != inode->i_mapping || !folio_test_private(folio)) { 831 folio_unlock(folio); 832 return -EAGAIN; 833 } 834 return 0; 835} 836 837static gfp_t get_prepare_gfp_flags(struct inode *inode, bool nowait) 838{ 839 gfp_t gfp; 840 841 gfp = btrfs_alloc_write_mask(inode->i_mapping); 842 if (nowait) { 843 gfp &= ~__GFP_DIRECT_RECLAIM; 844 gfp |= GFP_NOWAIT; 845 } 846 847 return gfp; 848} 849 850/* 851 * Get folio into the page cache and lock it. 852 */ 853static noinline int prepare_one_folio(struct inode *inode, struct folio **folio_ret, 854 loff_t pos, size_t write_bytes, 855 bool nowait) 856{ 857 const pgoff_t index = pos >> PAGE_SHIFT; 858 gfp_t mask = get_prepare_gfp_flags(inode, nowait); 859 fgf_t fgp_flags = (nowait ? FGP_WRITEBEGIN | FGP_NOWAIT : FGP_WRITEBEGIN) | 860 fgf_set_order(write_bytes); 861 struct folio *folio; 862 int ret = 0; 863 864again: 865 folio = __filemap_get_folio(inode->i_mapping, index, fgp_flags, mask); 866 if (IS_ERR(folio)) 867 return PTR_ERR(folio); 868 869 ret = set_folio_extent_mapped(folio); 870 if (ret < 0) { 871 folio_unlock(folio); 872 folio_put(folio); 873 return ret; 874 } 875 ret = prepare_uptodate_folio(inode, folio, pos, write_bytes); 876 if (ret) { 877 /* The folio is already unlocked. */ 878 folio_put(folio); 879 if (!nowait && ret == -EAGAIN) { 880 ret = 0; 881 goto again; 882 } 883 return ret; 884 } 885 *folio_ret = folio; 886 return 0; 887} 888 889/* 890 * Locks the extent and properly waits for data=ordered extents to finish 891 * before allowing the folios to be modified if need. 892 * 893 * Return: 894 * 1 - the extent is locked 895 * 0 - the extent is not locked, and everything is OK 896 * -EAGAIN - need to prepare the folios again 897 */ 898static noinline int 899lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct folio *folio, 900 loff_t pos, size_t write_bytes, 901 u64 *lockstart, u64 *lockend, bool nowait, 902 struct extent_state **cached_state) 903{ 904 struct btrfs_fs_info *fs_info = inode->root->fs_info; 905 u64 start_pos; 906 u64 last_pos; 907 int ret = 0; 908 909 start_pos = round_down(pos, fs_info->sectorsize); 910 last_pos = round_up(pos + write_bytes, fs_info->sectorsize) - 1; 911 912 if (start_pos < inode->vfs_inode.i_size) { 913 struct btrfs_ordered_extent *ordered; 914 915 if (nowait) { 916 if (!btrfs_try_lock_extent(&inode->io_tree, start_pos, 917 last_pos, cached_state)) { 918 folio_unlock(folio); 919 folio_put(folio); 920 return -EAGAIN; 921 } 922 } else { 923 btrfs_lock_extent(&inode->io_tree, start_pos, last_pos, 924 cached_state); 925 } 926 927 ordered = btrfs_lookup_ordered_range(inode, start_pos, 928 last_pos - start_pos + 1); 929 if (ordered && 930 ordered->file_offset + ordered->num_bytes > start_pos && 931 ordered->file_offset <= last_pos) { 932 btrfs_unlock_extent(&inode->io_tree, start_pos, last_pos, 933 cached_state); 934 folio_unlock(folio); 935 folio_put(folio); 936 btrfs_start_ordered_extent(ordered); 937 btrfs_put_ordered_extent(ordered); 938 return -EAGAIN; 939 } 940 if (ordered) 941 btrfs_put_ordered_extent(ordered); 942 943 *lockstart = start_pos; 944 *lockend = last_pos; 945 ret = 1; 946 } 947 948 /* 949 * We should be called after prepare_one_folio() which should have locked 950 * all pages in the range. 951 */ 952 WARN_ON(!folio_test_locked(folio)); 953 954 return ret; 955} 956 957/* 958 * Check if we can do nocow write into the range [@pos, @pos + @write_bytes) 959 * 960 * @pos: File offset. 961 * @write_bytes: The length to write, will be updated to the nocow writeable 962 * range. 963 * @nowait: Indicate if we can block or not (non-blocking IO context). 964 * 965 * This function will flush ordered extents in the range to ensure proper 966 * nocow checks. 967 * 968 * Return: 969 * > 0 If we can nocow, and updates @write_bytes. 970 * 0 If we can't do a nocow write. 971 * -EAGAIN If we can't do a nocow write because snapshotting of the inode's 972 * root is in progress or because we are in a non-blocking IO 973 * context and need to block (@nowait is true). 974 * < 0 If an error happened. 975 * 976 * NOTE: Callers need to call btrfs_check_nocow_unlock() if we return > 0. 977 */ 978int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos, 979 size_t *write_bytes, bool nowait) 980{ 981 struct btrfs_fs_info *fs_info = inode->root->fs_info; 982 struct btrfs_root *root = inode->root; 983 struct extent_state *cached_state = NULL; 984 u64 lockstart, lockend; 985 u64 cur_offset; 986 int ret = 0; 987 988 if (!(inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC))) 989 return 0; 990 991 if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) 992 return -EAGAIN; 993 994 lockstart = round_down(pos, fs_info->sectorsize); 995 lockend = round_up(pos + *write_bytes, 996 fs_info->sectorsize) - 1; 997 998 if (nowait) { 999 if (!btrfs_try_lock_ordered_range(inode, lockstart, lockend, 1000 &cached_state)) { 1001 btrfs_drew_write_unlock(&root->snapshot_lock); 1002 return -EAGAIN; 1003 } 1004 } else { 1005 btrfs_lock_and_flush_ordered_range(inode, lockstart, lockend, 1006 &cached_state); 1007 } 1008 1009 cur_offset = lockstart; 1010 while (cur_offset < lockend) { 1011 u64 num_bytes = lockend - cur_offset + 1; 1012 1013 ret = can_nocow_extent(inode, cur_offset, &num_bytes, NULL, nowait); 1014 if (ret <= 0) { 1015 /* 1016 * If cur_offset == lockstart it means we haven't found 1017 * any extent against which we can NOCOW, so unlock the 1018 * snapshot lock. 1019 */ 1020 if (cur_offset == lockstart) 1021 btrfs_drew_write_unlock(&root->snapshot_lock); 1022 break; 1023 } 1024 cur_offset += num_bytes; 1025 } 1026 1027 btrfs_unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state); 1028 1029 /* 1030 * cur_offset > lockstart means there's at least a partial range we can 1031 * NOCOW, and that range can cover one or more extents. 1032 */ 1033 if (cur_offset > lockstart) { 1034 *write_bytes = min_t(size_t, *write_bytes, cur_offset - pos); 1035 return 1; 1036 } 1037 1038 return ret; 1039} 1040 1041void btrfs_check_nocow_unlock(struct btrfs_inode *inode) 1042{ 1043 btrfs_drew_write_unlock(&inode->root->snapshot_lock); 1044} 1045 1046int btrfs_write_check(struct kiocb *iocb, size_t count) 1047{ 1048 struct file *file = iocb->ki_filp; 1049 struct inode *inode = file_inode(file); 1050 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 1051 loff_t pos = iocb->ki_pos; 1052 int ret; 1053 loff_t oldsize; 1054 1055 /* 1056 * Quickly bail out on NOWAIT writes if we don't have the nodatacow or 1057 * prealloc flags, as without those flags we always have to COW. We will 1058 * later check if we can really COW into the target range (using 1059 * can_nocow_extent() at btrfs_get_blocks_direct_write()). 1060 */ 1061 if ((iocb->ki_flags & IOCB_NOWAIT) && 1062 !(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC))) 1063 return -EAGAIN; 1064 1065 ret = file_remove_privs(file); 1066 if (ret) 1067 return ret; 1068 1069 /* 1070 * We reserve space for updating the inode when we reserve space for the 1071 * extent we are going to write, so we will enospc out there. We don't 1072 * need to start yet another transaction to update the inode as we will 1073 * update the inode when we finish writing whatever data we write. 1074 */ 1075 if (!IS_NOCMTIME(inode)) { 1076 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 1077 inode_inc_iversion(inode); 1078 } 1079 1080 oldsize = i_size_read(inode); 1081 if (pos > oldsize) { 1082 /* Expand hole size to cover write data, preventing empty gap */ 1083 loff_t end_pos = round_up(pos + count, fs_info->sectorsize); 1084 1085 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, end_pos); 1086 if (ret) 1087 return ret; 1088 } 1089 1090 return 0; 1091} 1092 1093static void release_space(struct btrfs_inode *inode, struct extent_changeset *data_reserved, 1094 u64 start, u64 len, bool only_release_metadata) 1095{ 1096 if (len == 0) 1097 return; 1098 1099 if (only_release_metadata) { 1100 btrfs_check_nocow_unlock(inode); 1101 btrfs_delalloc_release_metadata(inode, len, true); 1102 } else { 1103 const struct btrfs_fs_info *fs_info = inode->root->fs_info; 1104 1105 btrfs_delalloc_release_space(inode, data_reserved, 1106 round_down(start, fs_info->sectorsize), 1107 len, true); 1108 } 1109} 1110 1111/* 1112 * Reserve data and metadata space for this buffered write range. 1113 * 1114 * Return >0 for the number of bytes reserved, which is always block aligned. 1115 * Return <0 for error. 1116 */ 1117static ssize_t reserve_space(struct btrfs_inode *inode, 1118 struct extent_changeset **data_reserved, 1119 u64 start, size_t *len, bool nowait, 1120 bool *only_release_metadata) 1121{ 1122 const struct btrfs_fs_info *fs_info = inode->root->fs_info; 1123 const unsigned int block_offset = (start & (fs_info->sectorsize - 1)); 1124 size_t reserve_bytes; 1125 int ret; 1126 1127 ret = btrfs_check_data_free_space(inode, data_reserved, start, *len, nowait); 1128 if (ret < 0) { 1129 int can_nocow; 1130 1131 if (nowait && (ret == -ENOSPC || ret == -EAGAIN)) 1132 return -EAGAIN; 1133 1134 /* 1135 * If we don't have to COW at the offset, reserve metadata only. 1136 * write_bytes may get smaller than requested here. 1137 */ 1138 can_nocow = btrfs_check_nocow_lock(inode, start, len, nowait); 1139 if (can_nocow < 0) 1140 ret = can_nocow; 1141 if (can_nocow > 0) 1142 ret = 0; 1143 if (ret) 1144 return ret; 1145 *only_release_metadata = true; 1146 } 1147 1148 reserve_bytes = round_up(*len + block_offset, fs_info->sectorsize); 1149 WARN_ON(reserve_bytes == 0); 1150 ret = btrfs_delalloc_reserve_metadata(inode, reserve_bytes, 1151 reserve_bytes, nowait); 1152 if (ret) { 1153 if (!*only_release_metadata) 1154 btrfs_free_reserved_data_space(inode, *data_reserved, 1155 start, *len); 1156 else 1157 btrfs_check_nocow_unlock(inode); 1158 1159 if (nowait && ret == -ENOSPC) 1160 ret = -EAGAIN; 1161 return ret; 1162 } 1163 return reserve_bytes; 1164} 1165 1166/* Shrink the reserved data and metadata space from @reserved_len to @new_len. */ 1167static void shrink_reserved_space(struct btrfs_inode *inode, 1168 struct extent_changeset *data_reserved, 1169 u64 reserved_start, u64 reserved_len, 1170 u64 new_len, bool only_release_metadata) 1171{ 1172 const u64 diff = reserved_len - new_len; 1173 1174 ASSERT(new_len <= reserved_len); 1175 btrfs_delalloc_shrink_extents(inode, reserved_len, new_len); 1176 if (only_release_metadata) 1177 btrfs_delalloc_release_metadata(inode, diff, true); 1178 else 1179 btrfs_delalloc_release_space(inode, data_reserved, 1180 reserved_start + new_len, diff, true); 1181} 1182 1183/* Calculate the maximum amount of bytes we can write into one folio. */ 1184static size_t calc_write_bytes(const struct btrfs_inode *inode, 1185 const struct iov_iter *iter, u64 start) 1186{ 1187 const size_t max_folio_size = mapping_max_folio_size(inode->vfs_inode.i_mapping); 1188 1189 return min(max_folio_size - (start & (max_folio_size - 1)), 1190 iov_iter_count(iter)); 1191} 1192 1193/* 1194 * Do the heavy-lifting work to copy one range into one folio of the page cache. 1195 * 1196 * Return > 0 in case we copied all bytes or just some of them. 1197 * Return 0 if no bytes were copied, in which case the caller should retry. 1198 * Return <0 on error. 1199 */ 1200static int copy_one_range(struct btrfs_inode *inode, struct iov_iter *iter, 1201 struct extent_changeset **data_reserved, u64 start, 1202 bool nowait) 1203{ 1204 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1205 struct extent_state *cached_state = NULL; 1206 size_t write_bytes = calc_write_bytes(inode, iter, start); 1207 size_t copied; 1208 const u64 reserved_start = round_down(start, fs_info->sectorsize); 1209 u64 reserved_len; 1210 struct folio *folio = NULL; 1211 int extents_locked; 1212 u64 lockstart; 1213 u64 lockend; 1214 bool only_release_metadata = false; 1215 const unsigned int bdp_flags = (nowait ? BDP_ASYNC : 0); 1216 int ret; 1217 1218 /* 1219 * Fault all pages before locking them in prepare_one_folio() to avoid 1220 * recursive lock. 1221 */ 1222 if (unlikely(fault_in_iov_iter_readable(iter, write_bytes))) 1223 return -EFAULT; 1224 extent_changeset_release(*data_reserved); 1225 ret = reserve_space(inode, data_reserved, start, &write_bytes, nowait, 1226 &only_release_metadata); 1227 if (ret < 0) 1228 return ret; 1229 reserved_len = ret; 1230 /* Write range must be inside the reserved range. */ 1231 ASSERT(reserved_start <= start); 1232 ASSERT(start + write_bytes <= reserved_start + reserved_len); 1233 1234again: 1235 ret = balance_dirty_pages_ratelimited_flags(inode->vfs_inode.i_mapping, 1236 bdp_flags); 1237 if (ret) { 1238 btrfs_delalloc_release_extents(inode, reserved_len); 1239 release_space(inode, *data_reserved, reserved_start, reserved_len, 1240 only_release_metadata); 1241 return ret; 1242 } 1243 1244 ret = prepare_one_folio(&inode->vfs_inode, &folio, start, write_bytes, false); 1245 if (ret) { 1246 btrfs_delalloc_release_extents(inode, reserved_len); 1247 release_space(inode, *data_reserved, reserved_start, reserved_len, 1248 only_release_metadata); 1249 return ret; 1250 } 1251 1252 /* 1253 * The reserved range goes beyond the current folio, shrink the reserved 1254 * space to the folio boundary. 1255 */ 1256 if (reserved_start + reserved_len > folio_next_pos(folio)) { 1257 const u64 last_block = folio_next_pos(folio); 1258 1259 shrink_reserved_space(inode, *data_reserved, reserved_start, 1260 reserved_len, last_block - reserved_start, 1261 only_release_metadata); 1262 write_bytes = last_block - start; 1263 reserved_len = last_block - reserved_start; 1264 } 1265 1266 extents_locked = lock_and_cleanup_extent_if_need(inode, folio, start, 1267 write_bytes, &lockstart, 1268 &lockend, nowait, 1269 &cached_state); 1270 if (extents_locked < 0) { 1271 if (!nowait && extents_locked == -EAGAIN) 1272 goto again; 1273 1274 btrfs_delalloc_release_extents(inode, reserved_len); 1275 release_space(inode, *data_reserved, reserved_start, reserved_len, 1276 only_release_metadata); 1277 ret = extents_locked; 1278 return ret; 1279 } 1280 1281 copied = copy_folio_from_iter_atomic(folio, offset_in_folio(folio, start), 1282 write_bytes, iter); 1283 flush_dcache_folio(folio); 1284 1285 if (unlikely(copied < write_bytes)) { 1286 u64 last_block; 1287 1288 /* 1289 * The original write range doesn't need an uptodate folio as 1290 * the range is block aligned. But now a short copy happened. 1291 * We cannot handle it without an uptodate folio. 1292 * 1293 * So just revert the range and we will retry. 1294 */ 1295 if (!folio_test_uptodate(folio)) { 1296 iov_iter_revert(iter, copied); 1297 copied = 0; 1298 } 1299 1300 /* No copied bytes, unlock, release reserved space and exit. */ 1301 if (copied == 0) { 1302 if (extents_locked) 1303 btrfs_unlock_extent(&inode->io_tree, lockstart, lockend, 1304 &cached_state); 1305 else 1306 btrfs_free_extent_state(cached_state); 1307 btrfs_delalloc_release_extents(inode, reserved_len); 1308 release_space(inode, *data_reserved, reserved_start, reserved_len, 1309 only_release_metadata); 1310 btrfs_drop_folio(fs_info, folio, start, copied); 1311 return 0; 1312 } 1313 1314 /* Release the reserved space beyond the last block. */ 1315 last_block = round_up(start + copied, fs_info->sectorsize); 1316 1317 shrink_reserved_space(inode, *data_reserved, reserved_start, 1318 reserved_len, last_block - reserved_start, 1319 only_release_metadata); 1320 reserved_len = last_block - reserved_start; 1321 } 1322 1323 ret = btrfs_dirty_folio(inode, folio, start, copied, &cached_state, 1324 only_release_metadata); 1325 /* 1326 * If we have not locked the extent range, because the range's start 1327 * offset is >= i_size, we might still have a non-NULL cached extent 1328 * state, acquired while marking the extent range as delalloc through 1329 * btrfs_dirty_page(). Therefore free any possible cached extent state 1330 * to avoid a memory leak. 1331 */ 1332 if (extents_locked) 1333 btrfs_unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state); 1334 else 1335 btrfs_free_extent_state(cached_state); 1336 1337 btrfs_delalloc_release_extents(inode, reserved_len); 1338 if (ret) { 1339 btrfs_drop_folio(fs_info, folio, start, copied); 1340 release_space(inode, *data_reserved, reserved_start, reserved_len, 1341 only_release_metadata); 1342 return ret; 1343 } 1344 if (only_release_metadata) 1345 btrfs_check_nocow_unlock(inode); 1346 1347 btrfs_drop_folio(fs_info, folio, start, copied); 1348 return copied; 1349} 1350 1351ssize_t btrfs_buffered_write(struct kiocb *iocb, struct iov_iter *iter) 1352{ 1353 struct file *file = iocb->ki_filp; 1354 loff_t pos; 1355 struct inode *inode = file_inode(file); 1356 struct extent_changeset *data_reserved = NULL; 1357 size_t num_written = 0; 1358 ssize_t ret; 1359 loff_t old_isize; 1360 unsigned int ilock_flags = 0; 1361 const bool nowait = (iocb->ki_flags & IOCB_NOWAIT); 1362 1363 if (nowait) 1364 ilock_flags |= BTRFS_ILOCK_TRY; 1365 1366 ret = btrfs_inode_lock(BTRFS_I(inode), ilock_flags); 1367 if (ret < 0) 1368 return ret; 1369 1370 /* 1371 * We can only trust the isize with inode lock held, or it can race with 1372 * other buffered writes and cause incorrect call of 1373 * pagecache_isize_extended() to overwrite existing data. 1374 */ 1375 old_isize = i_size_read(inode); 1376 1377 ret = generic_write_checks(iocb, iter); 1378 if (ret <= 0) 1379 goto out; 1380 1381 ret = btrfs_write_check(iocb, ret); 1382 if (ret < 0) 1383 goto out; 1384 1385 pos = iocb->ki_pos; 1386 while (iov_iter_count(iter) > 0) { 1387 ret = copy_one_range(BTRFS_I(inode), iter, &data_reserved, pos, nowait); 1388 if (ret < 0) 1389 break; 1390 pos += ret; 1391 num_written += ret; 1392 cond_resched(); 1393 } 1394 1395 extent_changeset_free(data_reserved); 1396 if (num_written > 0) { 1397 pagecache_isize_extended(inode, old_isize, iocb->ki_pos); 1398 iocb->ki_pos += num_written; 1399 } 1400out: 1401 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags); 1402 return num_written ? num_written : ret; 1403} 1404 1405static ssize_t btrfs_encoded_write(struct kiocb *iocb, struct iov_iter *from, 1406 const struct btrfs_ioctl_encoded_io_args *encoded) 1407{ 1408 struct file *file = iocb->ki_filp; 1409 struct inode *inode = file_inode(file); 1410 loff_t count; 1411 ssize_t ret; 1412 1413 btrfs_inode_lock(BTRFS_I(inode), 0); 1414 count = encoded->len; 1415 ret = generic_write_checks_count(iocb, &count); 1416 if (ret == 0 && count != encoded->len) { 1417 /* 1418 * The write got truncated by generic_write_checks_count(). We 1419 * can't do a partial encoded write. 1420 */ 1421 ret = -EFBIG; 1422 } 1423 if (ret || encoded->len == 0) 1424 goto out; 1425 1426 ret = btrfs_write_check(iocb, encoded->len); 1427 if (ret < 0) 1428 goto out; 1429 1430 ret = btrfs_do_encoded_write(iocb, from, encoded); 1431out: 1432 btrfs_inode_unlock(BTRFS_I(inode), 0); 1433 return ret; 1434} 1435 1436ssize_t btrfs_do_write_iter(struct kiocb *iocb, struct iov_iter *from, 1437 const struct btrfs_ioctl_encoded_io_args *encoded) 1438{ 1439 struct file *file = iocb->ki_filp; 1440 struct btrfs_inode *inode = BTRFS_I(file_inode(file)); 1441 ssize_t num_written, num_sync; 1442 1443 if (unlikely(btrfs_is_shutdown(inode->root->fs_info))) 1444 return -EIO; 1445 /* 1446 * If the fs flips readonly due to some impossible error, although we 1447 * have opened a file as writable, we have to stop this write operation 1448 * to ensure consistency. 1449 */ 1450 if (BTRFS_FS_ERROR(inode->root->fs_info)) 1451 return -EROFS; 1452 1453 if (encoded && (iocb->ki_flags & IOCB_NOWAIT)) 1454 return -EOPNOTSUPP; 1455 1456 if (encoded) { 1457 num_written = btrfs_encoded_write(iocb, from, encoded); 1458 num_sync = encoded->len; 1459 } else if (iocb->ki_flags & IOCB_DIRECT) { 1460 num_written = btrfs_direct_write(iocb, from); 1461 num_sync = num_written; 1462 } else { 1463 num_written = btrfs_buffered_write(iocb, from); 1464 num_sync = num_written; 1465 } 1466 1467 btrfs_set_inode_last_sub_trans(inode); 1468 1469 if (num_sync > 0) { 1470 num_sync = generic_write_sync(iocb, num_sync); 1471 if (num_sync < 0) 1472 num_written = num_sync; 1473 } 1474 1475 return num_written; 1476} 1477 1478static ssize_t btrfs_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 1479{ 1480 return btrfs_do_write_iter(iocb, from, NULL); 1481} 1482 1483int btrfs_release_file(struct inode *inode, struct file *filp) 1484{ 1485 struct btrfs_file_private *private = filp->private_data; 1486 1487 if (private) { 1488 kfree(private->filldir_buf); 1489 btrfs_free_extent_state(private->llseek_cached_state); 1490 kfree(private); 1491 filp->private_data = NULL; 1492 } 1493 1494 /* 1495 * Set by setattr when we are about to truncate a file from a non-zero 1496 * size to a zero size. This tries to flush down new bytes that may 1497 * have been written if the application were using truncate to replace 1498 * a file in place. 1499 */ 1500 if (test_and_clear_bit(BTRFS_INODE_FLUSH_ON_CLOSE, 1501 &BTRFS_I(inode)->runtime_flags)) 1502 filemap_flush(inode->i_mapping); 1503 return 0; 1504} 1505 1506static int start_ordered_ops(struct btrfs_inode *inode, loff_t start, loff_t end) 1507{ 1508 int ret; 1509 struct blk_plug plug; 1510 1511 /* 1512 * This is only called in fsync, which would do synchronous writes, so 1513 * a plug can merge adjacent IOs as much as possible. Esp. in case of 1514 * multiple disks using raid profile, a large IO can be split to 1515 * several segments of stripe length (currently 64K). 1516 */ 1517 blk_start_plug(&plug); 1518 ret = btrfs_fdatawrite_range(inode, start, end); 1519 blk_finish_plug(&plug); 1520 1521 return ret; 1522} 1523 1524static inline bool skip_inode_logging(const struct btrfs_log_ctx *ctx) 1525{ 1526 struct btrfs_inode *inode = ctx->inode; 1527 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1528 1529 if (btrfs_inode_in_log(inode, btrfs_get_fs_generation(fs_info)) && 1530 list_empty(&ctx->ordered_extents)) 1531 return true; 1532 1533 /* 1534 * If we are doing a fast fsync we can not bail out if the inode's 1535 * last_trans is <= then the last committed transaction, because we only 1536 * update the last_trans of the inode during ordered extent completion, 1537 * and for a fast fsync we don't wait for that, we only wait for the 1538 * writeback to complete. 1539 */ 1540 if (inode->last_trans <= btrfs_get_last_trans_committed(fs_info) && 1541 (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) || 1542 list_empty(&ctx->ordered_extents))) 1543 return true; 1544 1545 return false; 1546} 1547 1548/* 1549 * fsync call for both files and directories. This logs the inode into 1550 * the tree log instead of forcing full commits whenever possible. 1551 * 1552 * It needs to call filemap_fdatawait so that all ordered extent updates are 1553 * in the metadata btree are up to date for copying to the log. 1554 * 1555 * It drops the inode mutex before doing the tree log commit. This is an 1556 * important optimization for directories because holding the mutex prevents 1557 * new operations on the dir while we write to disk. 1558 */ 1559int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync) 1560{ 1561 struct dentry *dentry = file_dentry(file); 1562 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry)); 1563 struct btrfs_root *root = inode->root; 1564 struct btrfs_fs_info *fs_info = root->fs_info; 1565 struct btrfs_trans_handle *trans; 1566 struct btrfs_log_ctx ctx; 1567 int ret = 0, err; 1568 u64 len; 1569 bool full_sync; 1570 bool skip_ilock = false; 1571 1572 if (current->journal_info == BTRFS_TRANS_DIO_WRITE_STUB) { 1573 skip_ilock = true; 1574 current->journal_info = NULL; 1575 btrfs_assert_inode_locked(inode); 1576 } 1577 1578 trace_btrfs_sync_file(file, datasync); 1579 1580 btrfs_init_log_ctx(&ctx, inode); 1581 1582 /* 1583 * Always set the range to a full range, otherwise we can get into 1584 * several problems, from missing file extent items to represent holes 1585 * when not using the NO_HOLES feature, to log tree corruption due to 1586 * races between hole detection during logging and completion of ordered 1587 * extents outside the range, to missing checksums due to ordered extents 1588 * for which we flushed only a subset of their pages. 1589 */ 1590 start = 0; 1591 end = LLONG_MAX; 1592 len = (u64)LLONG_MAX + 1; 1593 1594 /* 1595 * We write the dirty pages in the range and wait until they complete 1596 * out of the ->i_mutex. If so, we can flush the dirty pages by 1597 * multi-task, and make the performance up. See 1598 * btrfs_wait_ordered_range for an explanation of the ASYNC check. 1599 */ 1600 ret = start_ordered_ops(inode, start, end); 1601 if (ret) 1602 goto out; 1603 1604 if (skip_ilock) 1605 down_write(&inode->i_mmap_lock); 1606 else 1607 btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP); 1608 1609 atomic_inc(&root->log_batch); 1610 1611 /* 1612 * Before we acquired the inode's lock and the mmap lock, someone may 1613 * have dirtied more pages in the target range. We need to make sure 1614 * that writeback for any such pages does not start while we are logging 1615 * the inode, because if it does, any of the following might happen when 1616 * we are not doing a full inode sync: 1617 * 1618 * 1) We log an extent after its writeback finishes but before its 1619 * checksums are added to the csum tree, leading to -EIO errors 1620 * when attempting to read the extent after a log replay. 1621 * 1622 * 2) We can end up logging an extent before its writeback finishes. 1623 * Therefore after the log replay we will have a file extent item 1624 * pointing to an unwritten extent (and no data checksums as well). 1625 * 1626 * So trigger writeback for any eventual new dirty pages and then we 1627 * wait for all ordered extents to complete below. 1628 */ 1629 ret = start_ordered_ops(inode, start, end); 1630 if (ret) { 1631 if (skip_ilock) 1632 up_write(&inode->i_mmap_lock); 1633 else 1634 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP); 1635 goto out; 1636 } 1637 1638 /* 1639 * Always check for the full sync flag while holding the inode's lock, 1640 * to avoid races with other tasks. The flag must be either set all the 1641 * time during logging or always off all the time while logging. 1642 * We check the flag here after starting delalloc above, because when 1643 * running delalloc the full sync flag may be set if we need to drop 1644 * extra extent map ranges due to temporary memory allocation failures. 1645 */ 1646 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags); 1647 1648 /* 1649 * We have to do this here to avoid the priority inversion of waiting on 1650 * IO of a lower priority task while holding a transaction open. 1651 * 1652 * For a full fsync we wait for the ordered extents to complete while 1653 * for a fast fsync we wait just for writeback to complete, and then 1654 * attach the ordered extents to the transaction so that a transaction 1655 * commit waits for their completion, to avoid data loss if we fsync, 1656 * the current transaction commits before the ordered extents complete 1657 * and a power failure happens right after that. 1658 * 1659 * For zoned filesystem, if a write IO uses a ZONE_APPEND command, the 1660 * logical address recorded in the ordered extent may change. We need 1661 * to wait for the IO to stabilize the logical address. 1662 */ 1663 if (full_sync || btrfs_is_zoned(fs_info)) { 1664 ret = btrfs_wait_ordered_range(inode, start, len); 1665 clear_bit(BTRFS_INODE_COW_WRITE_ERROR, &inode->runtime_flags); 1666 } else { 1667 /* 1668 * Get our ordered extents as soon as possible to avoid doing 1669 * checksum lookups in the csum tree, and use instead the 1670 * checksums attached to the ordered extents. 1671 */ 1672 btrfs_get_ordered_extents_for_logging(inode, &ctx.ordered_extents); 1673 ret = filemap_fdatawait_range(inode->vfs_inode.i_mapping, start, end); 1674 if (ret) 1675 goto out_release_extents; 1676 1677 /* 1678 * Check and clear the BTRFS_INODE_COW_WRITE_ERROR now after 1679 * starting and waiting for writeback, because for buffered IO 1680 * it may have been set during the end IO callback 1681 * (end_bbio_data_write() -> btrfs_finish_ordered_extent()) in 1682 * case an error happened and we need to wait for ordered 1683 * extents to complete so that any extent maps that point to 1684 * unwritten locations are dropped and we don't log them. 1685 */ 1686 if (test_and_clear_bit(BTRFS_INODE_COW_WRITE_ERROR, &inode->runtime_flags)) 1687 ret = btrfs_wait_ordered_range(inode, start, len); 1688 } 1689 1690 if (ret) 1691 goto out_release_extents; 1692 1693 atomic_inc(&root->log_batch); 1694 1695 if (skip_inode_logging(&ctx)) { 1696 /* 1697 * We've had everything committed since the last time we were 1698 * modified so clear this flag in case it was set for whatever 1699 * reason, it's no longer relevant. 1700 */ 1701 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags); 1702 /* 1703 * An ordered extent might have started before and completed 1704 * already with io errors, in which case the inode was not 1705 * updated and we end up here. So check the inode's mapping 1706 * for any errors that might have happened since we last 1707 * checked called fsync. 1708 */ 1709 ret = filemap_check_wb_err(inode->vfs_inode.i_mapping, file->f_wb_err); 1710 goto out_release_extents; 1711 } 1712 1713 btrfs_init_log_ctx_scratch_eb(&ctx); 1714 1715 /* 1716 * We use start here because we will need to wait on the IO to complete 1717 * in btrfs_sync_log, which could require joining a transaction (for 1718 * example checking cross references in the nocow path). If we use join 1719 * here we could get into a situation where we're waiting on IO to 1720 * happen that is blocked on a transaction trying to commit. With start 1721 * we inc the extwriter counter, so we wait for all extwriters to exit 1722 * before we start blocking joiners. This comment is to keep somebody 1723 * from thinking they are super smart and changing this to 1724 * btrfs_join_transaction *cough*Josef*cough*. 1725 */ 1726 trans = btrfs_start_transaction(root, 0); 1727 if (IS_ERR(trans)) { 1728 ret = PTR_ERR(trans); 1729 goto out_release_extents; 1730 } 1731 trans->in_fsync = true; 1732 1733 ret = btrfs_log_dentry_safe(trans, dentry, &ctx); 1734 /* 1735 * Scratch eb no longer needed, release before syncing log or commit 1736 * transaction, to avoid holding unnecessary memory during such long 1737 * operations. 1738 */ 1739 if (ctx.scratch_eb) { 1740 free_extent_buffer(ctx.scratch_eb); 1741 ctx.scratch_eb = NULL; 1742 } 1743 btrfs_release_log_ctx_extents(&ctx); 1744 if (ret < 0) { 1745 /* Fallthrough and commit/free transaction. */ 1746 ret = BTRFS_LOG_FORCE_COMMIT; 1747 } 1748 1749 /* we've logged all the items and now have a consistent 1750 * version of the file in the log. It is possible that 1751 * someone will come in and modify the file, but that's 1752 * fine because the log is consistent on disk, and we 1753 * have references to all of the file's extents 1754 * 1755 * It is possible that someone will come in and log the 1756 * file again, but that will end up using the synchronization 1757 * inside btrfs_sync_log to keep things safe. 1758 */ 1759 if (skip_ilock) 1760 up_write(&inode->i_mmap_lock); 1761 else 1762 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP); 1763 1764 if (ret == BTRFS_NO_LOG_SYNC) { 1765 ret = btrfs_end_transaction(trans); 1766 goto out; 1767 } 1768 1769 /* We successfully logged the inode, attempt to sync the log. */ 1770 if (!ret) { 1771 ret = btrfs_sync_log(trans, root, &ctx); 1772 if (!ret) { 1773 ret = btrfs_end_transaction(trans); 1774 goto out; 1775 } 1776 } 1777 1778 /* 1779 * At this point we need to commit the transaction because we had 1780 * btrfs_need_log_full_commit() or some other error. 1781 * 1782 * If we didn't do a full sync we have to stop the trans handle, wait on 1783 * the ordered extents, start it again and commit the transaction. If 1784 * we attempt to wait on the ordered extents here we could deadlock with 1785 * something like fallocate() that is holding the extent lock trying to 1786 * start a transaction while some other thread is trying to commit the 1787 * transaction while we (fsync) are currently holding the transaction 1788 * open. 1789 */ 1790 if (!full_sync) { 1791 ret = btrfs_end_transaction(trans); 1792 if (ret) 1793 goto out; 1794 ret = btrfs_wait_ordered_range(inode, start, len); 1795 if (ret) 1796 goto out; 1797 1798 /* 1799 * This is safe to use here because we're only interested in 1800 * making sure the transaction that had the ordered extents is 1801 * committed. We aren't waiting on anything past this point, 1802 * we're purely getting the transaction and committing it. 1803 */ 1804 trans = btrfs_attach_transaction_barrier(root); 1805 if (IS_ERR(trans)) { 1806 ret = PTR_ERR(trans); 1807 1808 /* 1809 * We committed the transaction and there's no currently 1810 * running transaction, this means everything we care 1811 * about made it to disk and we are done. 1812 */ 1813 if (ret == -ENOENT) 1814 ret = 0; 1815 goto out; 1816 } 1817 } 1818 1819 ret = btrfs_commit_transaction(trans); 1820out: 1821 free_extent_buffer(ctx.scratch_eb); 1822 ASSERT(list_empty(&ctx.list)); 1823 ASSERT(list_empty(&ctx.conflict_inodes)); 1824 err = file_check_and_advance_wb_err(file); 1825 if (!ret) 1826 ret = err; 1827 return ret > 0 ? -EIO : ret; 1828 1829out_release_extents: 1830 btrfs_release_log_ctx_extents(&ctx); 1831 if (skip_ilock) 1832 up_write(&inode->i_mmap_lock); 1833 else 1834 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP); 1835 goto out; 1836} 1837 1838/* 1839 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 1840 * called from a page fault handler when a page is first dirtied. Hence we must 1841 * be careful to check for EOF conditions here. We set the page up correctly 1842 * for a written page which means we get ENOSPC checking when writing into 1843 * holes and correct delalloc and unwritten extent mapping on filesystems that 1844 * support these features. 1845 * 1846 * We are not allowed to take the i_mutex here so we have to play games to 1847 * protect against truncate races as the page could now be beyond EOF. Because 1848 * truncate_setsize() writes the inode size before removing pages, once we have 1849 * the page lock we can determine safely if the page is beyond EOF. If it is not 1850 * beyond EOF, then the page is guaranteed safe against truncation until we 1851 * unlock the page. 1852 */ 1853static vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf) 1854{ 1855 struct page *page = vmf->page; 1856 struct folio *folio = page_folio(page); 1857 struct btrfs_inode *inode = BTRFS_I(file_inode(vmf->vma->vm_file)); 1858 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1859 struct extent_io_tree *io_tree = &inode->io_tree; 1860 struct btrfs_ordered_extent *ordered; 1861 struct extent_state *cached_state = NULL; 1862 struct extent_changeset *data_reserved = NULL; 1863 unsigned long zero_start; 1864 loff_t size; 1865 size_t fsize = folio_size(folio); 1866 int ret; 1867 bool only_release_metadata = false; 1868 u64 reserved_space; 1869 u64 page_start; 1870 u64 page_end; 1871 u64 end; 1872 1873 reserved_space = fsize; 1874 1875 sb_start_pagefault(inode->vfs_inode.i_sb); 1876 page_start = folio_pos(folio); 1877 page_end = page_start + folio_size(folio) - 1; 1878 end = page_end; 1879 1880 /* 1881 * Reserving delalloc space after obtaining the page lock can lead to 1882 * deadlock. For example, if a dirty page is locked by this function 1883 * and the call to btrfs_delalloc_reserve_space() ends up triggering 1884 * dirty page write out, then the btrfs_writepages() function could 1885 * end up waiting indefinitely to get a lock on the page currently 1886 * being processed by btrfs_page_mkwrite() function. 1887 */ 1888 ret = btrfs_check_data_free_space(inode, &data_reserved, page_start, 1889 reserved_space, false); 1890 if (ret < 0) { 1891 size_t write_bytes = reserved_space; 1892 1893 if (btrfs_check_nocow_lock(inode, page_start, &write_bytes, false) <= 0) 1894 goto out_noreserve; 1895 1896 only_release_metadata = true; 1897 1898 /* 1899 * Can't write the whole range, there may be shared extents or 1900 * holes in the range, bail out with @only_release_metadata set 1901 * to true so that we unlock the nocow lock before returning the 1902 * error. 1903 */ 1904 if (write_bytes < reserved_space) 1905 goto out_noreserve; 1906 } 1907 ret = btrfs_delalloc_reserve_metadata(inode, reserved_space, 1908 reserved_space, false); 1909 if (ret < 0) { 1910 if (!only_release_metadata) 1911 btrfs_free_reserved_data_space(inode, data_reserved, 1912 page_start, reserved_space); 1913 goto out_noreserve; 1914 } 1915 1916 ret = file_update_time(vmf->vma->vm_file); 1917 if (ret < 0) 1918 goto out; 1919again: 1920 down_read(&inode->i_mmap_lock); 1921 folio_lock(folio); 1922 size = i_size_read(&inode->vfs_inode); 1923 1924 if ((folio->mapping != inode->vfs_inode.i_mapping) || 1925 (page_start >= size)) { 1926 /* Page got truncated out from underneath us. */ 1927 goto out_unlock; 1928 } 1929 folio_wait_writeback(folio); 1930 1931 btrfs_lock_extent(io_tree, page_start, page_end, &cached_state); 1932 ret = set_folio_extent_mapped(folio); 1933 if (ret < 0) { 1934 btrfs_unlock_extent(io_tree, page_start, page_end, &cached_state); 1935 goto out_unlock; 1936 } 1937 1938 /* 1939 * We can't set the delalloc bits if there are pending ordered 1940 * extents. Drop our locks and wait for them to finish. 1941 */ 1942 ordered = btrfs_lookup_ordered_range(inode, page_start, fsize); 1943 if (ordered) { 1944 btrfs_unlock_extent(io_tree, page_start, page_end, &cached_state); 1945 folio_unlock(folio); 1946 up_read(&inode->i_mmap_lock); 1947 btrfs_start_ordered_extent(ordered); 1948 btrfs_put_ordered_extent(ordered); 1949 goto again; 1950 } 1951 1952 if (folio_contains(folio, (size - 1) >> PAGE_SHIFT)) { 1953 reserved_space = round_up(size - page_start, fs_info->sectorsize); 1954 if (reserved_space < fsize) { 1955 const u64 to_free = fsize - reserved_space; 1956 1957 end = page_start + reserved_space - 1; 1958 if (only_release_metadata) 1959 btrfs_delalloc_release_metadata(inode, to_free, true); 1960 else 1961 btrfs_delalloc_release_space(inode, data_reserved, 1962 end + 1, to_free, true); 1963 } 1964 } 1965 1966 /* 1967 * page_mkwrite gets called when the page is firstly dirtied after it's 1968 * faulted in, but write(2) could also dirty a page and set delalloc 1969 * bits, thus in this case for space account reason, we still need to 1970 * clear any delalloc bits within this page range since we have to 1971 * reserve data&meta space before lock_page() (see above comments). 1972 */ 1973 btrfs_clear_extent_bit(io_tree, page_start, end, 1974 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 1975 EXTENT_DEFRAG, &cached_state); 1976 1977 ret = btrfs_set_extent_delalloc(inode, page_start, end, 0, &cached_state); 1978 if (ret < 0) { 1979 btrfs_unlock_extent(io_tree, page_start, page_end, &cached_state); 1980 goto out_unlock; 1981 } 1982 1983 /* Page is wholly or partially inside EOF. */ 1984 if (page_start + folio_size(folio) > size) 1985 zero_start = offset_in_folio(folio, size); 1986 else 1987 zero_start = fsize; 1988 1989 if (zero_start != fsize) 1990 folio_zero_range(folio, zero_start, folio_size(folio) - zero_start); 1991 1992 btrfs_folio_clear_checked(fs_info, folio, page_start, fsize); 1993 btrfs_folio_set_dirty(fs_info, folio, page_start, end + 1 - page_start); 1994 btrfs_folio_set_uptodate(fs_info, folio, page_start, end + 1 - page_start); 1995 1996 btrfs_set_inode_last_sub_trans(inode); 1997 1998 if (only_release_metadata) 1999 btrfs_set_extent_bit(io_tree, page_start, end, EXTENT_NORESERVE, 2000 &cached_state); 2001 2002 btrfs_unlock_extent(io_tree, page_start, page_end, &cached_state); 2003 up_read(&inode->i_mmap_lock); 2004 2005 btrfs_delalloc_release_extents(inode, fsize); 2006 if (only_release_metadata) 2007 btrfs_check_nocow_unlock(inode); 2008 sb_end_pagefault(inode->vfs_inode.i_sb); 2009 extent_changeset_free(data_reserved); 2010 return VM_FAULT_LOCKED; 2011 2012out_unlock: 2013 folio_unlock(folio); 2014 up_read(&inode->i_mmap_lock); 2015out: 2016 btrfs_delalloc_release_extents(inode, fsize); 2017 if (only_release_metadata) 2018 btrfs_delalloc_release_metadata(inode, reserved_space, true); 2019 else 2020 btrfs_delalloc_release_space(inode, data_reserved, page_start, 2021 reserved_space, true); 2022out_noreserve: 2023 if (only_release_metadata) 2024 btrfs_check_nocow_unlock(inode); 2025 2026 sb_end_pagefault(inode->vfs_inode.i_sb); 2027 2028 extent_changeset_free(data_reserved); 2029 2030 if (ret < 0) 2031 return vmf_error(ret); 2032 2033 /* Make the VM retry the fault. */ 2034 return VM_FAULT_NOPAGE; 2035} 2036 2037static const struct vm_operations_struct btrfs_file_vm_ops = { 2038 .fault = filemap_fault, 2039 .map_pages = filemap_map_pages, 2040 .page_mkwrite = btrfs_page_mkwrite, 2041}; 2042 2043static int btrfs_file_mmap_prepare(struct vm_area_desc *desc) 2044{ 2045 struct file *filp = desc->file; 2046 struct address_space *mapping = filp->f_mapping; 2047 2048 if (unlikely(btrfs_is_shutdown(inode_to_fs_info(file_inode(filp))))) 2049 return -EIO; 2050 if (!mapping->a_ops->read_folio) 2051 return -ENOEXEC; 2052 2053 file_accessed(filp); 2054 desc->vm_ops = &btrfs_file_vm_ops; 2055 2056 return 0; 2057} 2058 2059static bool hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf, 2060 int slot, u64 start, u64 end) 2061{ 2062 struct btrfs_file_extent_item *fi; 2063 struct btrfs_key key; 2064 2065 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 2066 return false; 2067 2068 btrfs_item_key_to_cpu(leaf, &key, slot); 2069 if (key.objectid != btrfs_ino(inode) || 2070 key.type != BTRFS_EXTENT_DATA_KEY) 2071 return false; 2072 2073 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 2074 2075 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 2076 return false; 2077 2078 if (btrfs_file_extent_disk_bytenr(leaf, fi)) 2079 return false; 2080 2081 if (key.offset == end) 2082 return true; 2083 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start) 2084 return true; 2085 return false; 2086} 2087 2088static int fill_holes(struct btrfs_trans_handle *trans, 2089 struct btrfs_inode *inode, 2090 struct btrfs_path *path, u64 offset, u64 end) 2091{ 2092 struct btrfs_fs_info *fs_info = trans->fs_info; 2093 struct btrfs_root *root = inode->root; 2094 struct extent_buffer *leaf; 2095 struct btrfs_file_extent_item *fi; 2096 struct extent_map *hole_em; 2097 struct btrfs_key key; 2098 int ret; 2099 2100 if (btrfs_fs_incompat(fs_info, NO_HOLES)) 2101 goto out; 2102 2103 key.objectid = btrfs_ino(inode); 2104 key.type = BTRFS_EXTENT_DATA_KEY; 2105 key.offset = offset; 2106 2107 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2108 if (ret <= 0) { 2109 /* 2110 * We should have dropped this offset, so if we find it then 2111 * something has gone horribly wrong. 2112 */ 2113 if (ret == 0) 2114 ret = -EINVAL; 2115 return ret; 2116 } 2117 2118 leaf = path->nodes[0]; 2119 if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) { 2120 u64 num_bytes; 2121 2122 path->slots[0]--; 2123 fi = btrfs_item_ptr(leaf, path->slots[0], 2124 struct btrfs_file_extent_item); 2125 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + 2126 end - offset; 2127 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2128 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2129 btrfs_set_file_extent_offset(leaf, fi, 0); 2130 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 2131 goto out; 2132 } 2133 2134 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) { 2135 u64 num_bytes; 2136 2137 key.offset = offset; 2138 btrfs_set_item_key_safe(trans, path, &key); 2139 fi = btrfs_item_ptr(leaf, path->slots[0], 2140 struct btrfs_file_extent_item); 2141 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end - 2142 offset; 2143 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2144 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2145 btrfs_set_file_extent_offset(leaf, fi, 0); 2146 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 2147 goto out; 2148 } 2149 btrfs_release_path(path); 2150 2151 ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset, 2152 end - offset); 2153 if (ret) 2154 return ret; 2155 2156out: 2157 btrfs_release_path(path); 2158 2159 hole_em = btrfs_alloc_extent_map(); 2160 if (!hole_em) { 2161 btrfs_drop_extent_map_range(inode, offset, end - 1, false); 2162 btrfs_set_inode_full_sync(inode); 2163 } else { 2164 hole_em->start = offset; 2165 hole_em->len = end - offset; 2166 hole_em->ram_bytes = hole_em->len; 2167 2168 hole_em->disk_bytenr = EXTENT_MAP_HOLE; 2169 hole_em->disk_num_bytes = 0; 2170 hole_em->generation = trans->transid; 2171 2172 ret = btrfs_replace_extent_map_range(inode, hole_em, true); 2173 btrfs_free_extent_map(hole_em); 2174 if (ret) 2175 btrfs_set_inode_full_sync(inode); 2176 } 2177 2178 return 0; 2179} 2180 2181/* 2182 * Find a hole extent on given inode and change start/len to the end of hole 2183 * extent.(hole/vacuum extent whose em->start <= start && 2184 * em->start + em->len > start) 2185 * When a hole extent is found, return 1 and modify start/len. 2186 */ 2187static int find_first_non_hole(struct btrfs_inode *inode, u64 *start, u64 *len) 2188{ 2189 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2190 struct extent_map *em; 2191 int ret = 0; 2192 2193 em = btrfs_get_extent(inode, NULL, 2194 round_down(*start, fs_info->sectorsize), 2195 round_up(*len, fs_info->sectorsize)); 2196 if (IS_ERR(em)) 2197 return PTR_ERR(em); 2198 2199 /* Hole or vacuum extent(only exists in no-hole mode) */ 2200 if (em->disk_bytenr == EXTENT_MAP_HOLE) { 2201 ret = 1; 2202 *len = em->start + em->len > *start + *len ? 2203 0 : *start + *len - em->start - em->len; 2204 *start = em->start + em->len; 2205 } 2206 btrfs_free_extent_map(em); 2207 return ret; 2208} 2209 2210/* 2211 * Check if there is no folio in the range. 2212 * 2213 * We cannot utilize filemap_range_has_page() in a filemap with large folios 2214 * as we can hit the following false positive: 2215 * 2216 * start end 2217 * | | 2218 * |//|//|//|//| | | | | | | | |//|//| 2219 * \ / \ / 2220 * Folio A Folio B 2221 * 2222 * That large folio A and B cover the start and end indexes. 2223 * In that case filemap_range_has_page() will always return true, but the above 2224 * case is fine for btrfs_punch_hole_lock_range() usage. 2225 * 2226 * So here we only ensure that no other folios is in the range, excluding the 2227 * head/tail large folio. 2228 */ 2229static bool check_range_has_page(struct inode *inode, u64 start, u64 end) 2230{ 2231 struct folio_batch fbatch; 2232 bool ret = false; 2233 /* 2234 * For subpage case, if the range is not at page boundary, we could 2235 * have pages at the leading/tailing part of the range. 2236 * This could lead to dead loop since filemap_range_has_page() 2237 * will always return true. 2238 * So here we need to do extra page alignment for 2239 * filemap_range_has_page(). 2240 * 2241 * And do not decrease page_lockend right now, as it can be 0. 2242 */ 2243 const u64 page_lockstart = round_up(start, PAGE_SIZE); 2244 const u64 page_lockend = round_down(end + 1, PAGE_SIZE); 2245 const pgoff_t start_index = page_lockstart >> PAGE_SHIFT; 2246 const pgoff_t end_index = (page_lockend - 1) >> PAGE_SHIFT; 2247 pgoff_t tmp = start_index; 2248 int found_folios; 2249 2250 /* The same page or adjacent pages. */ 2251 if (page_lockend <= page_lockstart) 2252 return false; 2253 2254 folio_batch_init(&fbatch); 2255 found_folios = filemap_get_folios(inode->i_mapping, &tmp, end_index, &fbatch); 2256 for (int i = 0; i < found_folios; i++) { 2257 struct folio *folio = fbatch.folios[i]; 2258 2259 /* A large folio begins before the start. Not a target. */ 2260 if (folio->index < start_index) 2261 continue; 2262 /* A large folio extends beyond the end. Not a target. */ 2263 if (folio_next_index(folio) > end_index) 2264 continue; 2265 /* A folio doesn't cover the head/tail index. Found a target. */ 2266 ret = true; 2267 break; 2268 } 2269 folio_batch_release(&fbatch); 2270 return ret; 2271} 2272 2273static void btrfs_punch_hole_lock_range(struct inode *inode, 2274 const u64 lockstart, const u64 lockend, 2275 struct extent_state **cached_state) 2276{ 2277 while (1) { 2278 truncate_pagecache_range(inode, lockstart, lockend); 2279 2280 btrfs_lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2281 cached_state); 2282 /* 2283 * We can't have ordered extents in the range, nor dirty/writeback 2284 * pages, because we have locked the inode's VFS lock in exclusive 2285 * mode, we have locked the inode's i_mmap_lock in exclusive mode, 2286 * we have flushed all delalloc in the range and we have waited 2287 * for any ordered extents in the range to complete. 2288 * We can race with anyone reading pages from this range, so after 2289 * locking the range check if we have pages in the range, and if 2290 * we do, unlock the range and retry. 2291 */ 2292 if (!check_range_has_page(inode, lockstart, lockend)) 2293 break; 2294 2295 btrfs_unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2296 cached_state); 2297 } 2298 2299 btrfs_assert_inode_range_clean(BTRFS_I(inode), lockstart, lockend); 2300} 2301 2302static int btrfs_insert_replace_extent(struct btrfs_trans_handle *trans, 2303 struct btrfs_inode *inode, 2304 struct btrfs_path *path, 2305 struct btrfs_replace_extent_info *extent_info, 2306 const u64 replace_len, 2307 const u64 bytes_to_drop) 2308{ 2309 struct btrfs_fs_info *fs_info = trans->fs_info; 2310 struct btrfs_root *root = inode->root; 2311 struct btrfs_file_extent_item *extent; 2312 struct extent_buffer *leaf; 2313 struct btrfs_key key; 2314 int slot; 2315 int ret; 2316 2317 if (replace_len == 0) 2318 return 0; 2319 2320 if (extent_info->disk_offset == 0 && 2321 btrfs_fs_incompat(fs_info, NO_HOLES)) { 2322 btrfs_update_inode_bytes(inode, 0, bytes_to_drop); 2323 return 0; 2324 } 2325 2326 key.objectid = btrfs_ino(inode); 2327 key.type = BTRFS_EXTENT_DATA_KEY; 2328 key.offset = extent_info->file_offset; 2329 ret = btrfs_insert_empty_item(trans, root, path, &key, 2330 sizeof(struct btrfs_file_extent_item)); 2331 if (ret) 2332 return ret; 2333 leaf = path->nodes[0]; 2334 slot = path->slots[0]; 2335 write_extent_buffer(leaf, extent_info->extent_buf, 2336 btrfs_item_ptr_offset(leaf, slot), 2337 sizeof(struct btrfs_file_extent_item)); 2338 extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 2339 ASSERT(btrfs_file_extent_type(leaf, extent) != BTRFS_FILE_EXTENT_INLINE); 2340 btrfs_set_file_extent_offset(leaf, extent, extent_info->data_offset); 2341 btrfs_set_file_extent_num_bytes(leaf, extent, replace_len); 2342 if (extent_info->is_new_extent) 2343 btrfs_set_file_extent_generation(leaf, extent, trans->transid); 2344 btrfs_release_path(path); 2345 2346 ret = btrfs_inode_set_file_extent_range(inode, extent_info->file_offset, 2347 replace_len); 2348 if (ret) 2349 return ret; 2350 2351 /* If it's a hole, nothing more needs to be done. */ 2352 if (extent_info->disk_offset == 0) { 2353 btrfs_update_inode_bytes(inode, 0, bytes_to_drop); 2354 return 0; 2355 } 2356 2357 btrfs_update_inode_bytes(inode, replace_len, bytes_to_drop); 2358 2359 if (extent_info->is_new_extent && extent_info->insertions == 0) { 2360 key.objectid = extent_info->disk_offset; 2361 key.type = BTRFS_EXTENT_ITEM_KEY; 2362 key.offset = extent_info->disk_len; 2363 ret = btrfs_alloc_reserved_file_extent(trans, root, 2364 btrfs_ino(inode), 2365 extent_info->file_offset, 2366 extent_info->qgroup_reserved, 2367 &key); 2368 } else { 2369 struct btrfs_ref ref = { 2370 .action = BTRFS_ADD_DELAYED_REF, 2371 .bytenr = extent_info->disk_offset, 2372 .num_bytes = extent_info->disk_len, 2373 .owning_root = btrfs_root_id(root), 2374 .ref_root = btrfs_root_id(root), 2375 }; 2376 u64 ref_offset; 2377 2378 ref_offset = extent_info->file_offset - extent_info->data_offset; 2379 btrfs_init_data_ref(&ref, btrfs_ino(inode), ref_offset, 0, false); 2380 ret = btrfs_inc_extent_ref(trans, &ref); 2381 } 2382 2383 extent_info->insertions++; 2384 2385 return ret; 2386} 2387 2388/* 2389 * The respective range must have been previously locked, as well as the inode. 2390 * The end offset is inclusive (last byte of the range). 2391 * @extent_info is NULL for fallocate's hole punching and non-NULL when replacing 2392 * the file range with an extent. 2393 * When not punching a hole, we don't want to end up in a state where we dropped 2394 * extents without inserting a new one, so we must abort the transaction to avoid 2395 * a corruption. 2396 */ 2397int btrfs_replace_file_extents(struct btrfs_inode *inode, 2398 struct btrfs_path *path, const u64 start, 2399 const u64 end, 2400 struct btrfs_replace_extent_info *extent_info, 2401 struct btrfs_trans_handle **trans_out) 2402{ 2403 struct btrfs_drop_extents_args drop_args = { 0 }; 2404 struct btrfs_root *root = inode->root; 2405 struct btrfs_fs_info *fs_info = root->fs_info; 2406 u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1); 2407 u64 ino_size = round_up(inode->vfs_inode.i_size, fs_info->sectorsize); 2408 struct btrfs_trans_handle *trans = NULL; 2409 struct btrfs_block_rsv rsv; 2410 unsigned int rsv_count; 2411 u64 cur_offset; 2412 u64 len = end - start; 2413 int ret = 0; 2414 2415 if (end <= start) 2416 return -EINVAL; 2417 2418 btrfs_init_metadata_block_rsv(fs_info, &rsv, BTRFS_BLOCK_RSV_TEMP); 2419 rsv.size = btrfs_calc_insert_metadata_size(fs_info, 1); 2420 rsv.failfast = true; 2421 2422 /* 2423 * 1 - update the inode 2424 * 1 - removing the extents in the range 2425 * 1 - adding the hole extent if no_holes isn't set or if we are 2426 * replacing the range with a new extent 2427 */ 2428 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || extent_info) 2429 rsv_count = 3; 2430 else 2431 rsv_count = 2; 2432 2433 trans = btrfs_start_transaction(root, rsv_count); 2434 if (IS_ERR(trans)) { 2435 ret = PTR_ERR(trans); 2436 trans = NULL; 2437 goto out_release; 2438 } 2439 2440 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, &rsv, 2441 min_size, false); 2442 if (WARN_ON(ret)) 2443 goto out_trans; 2444 trans->block_rsv = &rsv; 2445 2446 cur_offset = start; 2447 drop_args.path = path; 2448 drop_args.end = end + 1; 2449 drop_args.drop_cache = true; 2450 while (cur_offset < end) { 2451 drop_args.start = cur_offset; 2452 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 2453 /* If we are punching a hole decrement the inode's byte count */ 2454 if (!extent_info) 2455 btrfs_update_inode_bytes(inode, 0, 2456 drop_args.bytes_found); 2457 if (ret != -ENOSPC) { 2458 /* 2459 * The only time we don't want to abort is if we are 2460 * attempting to clone a partial inline extent, in which 2461 * case we'll get EOPNOTSUPP. However if we aren't 2462 * clone we need to abort no matter what, because if we 2463 * got EOPNOTSUPP via prealloc then we messed up and 2464 * need to abort. 2465 */ 2466 if (unlikely(ret && 2467 (ret != -EOPNOTSUPP || 2468 (extent_info && extent_info->is_new_extent)))) 2469 btrfs_abort_transaction(trans, ret); 2470 break; 2471 } 2472 2473 trans->block_rsv = &fs_info->trans_block_rsv; 2474 2475 if (!extent_info && cur_offset < drop_args.drop_end && 2476 cur_offset < ino_size) { 2477 ret = fill_holes(trans, inode, path, cur_offset, 2478 drop_args.drop_end); 2479 if (unlikely(ret)) { 2480 /* 2481 * If we failed then we didn't insert our hole 2482 * entries for the area we dropped, so now the 2483 * fs is corrupted, so we must abort the 2484 * transaction. 2485 */ 2486 btrfs_abort_transaction(trans, ret); 2487 break; 2488 } 2489 } else if (!extent_info && cur_offset < drop_args.drop_end) { 2490 /* 2491 * We are past the i_size here, but since we didn't 2492 * insert holes we need to clear the mapped area so we 2493 * know to not set disk_i_size in this area until a new 2494 * file extent is inserted here. 2495 */ 2496 ret = btrfs_inode_clear_file_extent_range(inode, 2497 cur_offset, 2498 drop_args.drop_end - cur_offset); 2499 if (unlikely(ret)) { 2500 /* 2501 * We couldn't clear our area, so we could 2502 * presumably adjust up and corrupt the fs, so 2503 * we need to abort. 2504 */ 2505 btrfs_abort_transaction(trans, ret); 2506 break; 2507 } 2508 } 2509 2510 if (extent_info && 2511 drop_args.drop_end > extent_info->file_offset) { 2512 u64 replace_len = drop_args.drop_end - 2513 extent_info->file_offset; 2514 2515 ret = btrfs_insert_replace_extent(trans, inode, path, 2516 extent_info, replace_len, 2517 drop_args.bytes_found); 2518 if (unlikely(ret)) { 2519 btrfs_abort_transaction(trans, ret); 2520 break; 2521 } 2522 extent_info->data_len -= replace_len; 2523 extent_info->data_offset += replace_len; 2524 extent_info->file_offset += replace_len; 2525 } 2526 2527 /* 2528 * We are releasing our handle on the transaction, balance the 2529 * dirty pages of the btree inode and flush delayed items, and 2530 * then get a new transaction handle, which may now point to a 2531 * new transaction in case someone else may have committed the 2532 * transaction we used to replace/drop file extent items. So 2533 * bump the inode's iversion and update mtime and ctime except 2534 * if we are called from a dedupe context. This is because a 2535 * power failure/crash may happen after the transaction is 2536 * committed and before we finish replacing/dropping all the 2537 * file extent items we need. 2538 */ 2539 inode_inc_iversion(&inode->vfs_inode); 2540 2541 if (!extent_info || extent_info->update_times) 2542 inode_set_mtime_to_ts(&inode->vfs_inode, 2543 inode_set_ctime_current(&inode->vfs_inode)); 2544 2545 ret = btrfs_update_inode(trans, inode); 2546 if (ret) 2547 break; 2548 2549 btrfs_end_transaction(trans); 2550 btrfs_btree_balance_dirty(fs_info); 2551 2552 trans = btrfs_start_transaction(root, rsv_count); 2553 if (IS_ERR(trans)) { 2554 ret = PTR_ERR(trans); 2555 trans = NULL; 2556 break; 2557 } 2558 2559 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 2560 &rsv, min_size, false); 2561 if (WARN_ON(ret)) 2562 break; 2563 trans->block_rsv = &rsv; 2564 2565 cur_offset = drop_args.drop_end; 2566 len = end - cur_offset; 2567 if (!extent_info && len) { 2568 ret = find_first_non_hole(inode, &cur_offset, &len); 2569 if (unlikely(ret < 0)) 2570 break; 2571 if (ret && !len) { 2572 ret = 0; 2573 break; 2574 } 2575 } 2576 } 2577 2578 /* 2579 * If we were cloning, force the next fsync to be a full one since we 2580 * we replaced (or just dropped in the case of cloning holes when 2581 * NO_HOLES is enabled) file extent items and did not setup new extent 2582 * maps for the replacement extents (or holes). 2583 */ 2584 if (extent_info && !extent_info->is_new_extent) 2585 btrfs_set_inode_full_sync(inode); 2586 2587 if (ret) 2588 goto out_trans; 2589 2590 trans->block_rsv = &fs_info->trans_block_rsv; 2591 /* 2592 * If we are using the NO_HOLES feature we might have had already an 2593 * hole that overlaps a part of the region [lockstart, lockend] and 2594 * ends at (or beyond) lockend. Since we have no file extent items to 2595 * represent holes, drop_end can be less than lockend and so we must 2596 * make sure we have an extent map representing the existing hole (the 2597 * call to __btrfs_drop_extents() might have dropped the existing extent 2598 * map representing the existing hole), otherwise the fast fsync path 2599 * will not record the existence of the hole region 2600 * [existing_hole_start, lockend]. 2601 */ 2602 if (drop_args.drop_end <= end) 2603 drop_args.drop_end = end + 1; 2604 /* 2605 * Don't insert file hole extent item if it's for a range beyond eof 2606 * (because it's useless) or if it represents a 0 bytes range (when 2607 * cur_offset == drop_end). 2608 */ 2609 if (!extent_info && cur_offset < ino_size && 2610 cur_offset < drop_args.drop_end) { 2611 ret = fill_holes(trans, inode, path, cur_offset, 2612 drop_args.drop_end); 2613 if (unlikely(ret)) { 2614 /* Same comment as above. */ 2615 btrfs_abort_transaction(trans, ret); 2616 goto out_trans; 2617 } 2618 } else if (!extent_info && cur_offset < drop_args.drop_end) { 2619 /* See the comment in the loop above for the reasoning here. */ 2620 ret = btrfs_inode_clear_file_extent_range(inode, cur_offset, 2621 drop_args.drop_end - cur_offset); 2622 if (unlikely(ret)) { 2623 btrfs_abort_transaction(trans, ret); 2624 goto out_trans; 2625 } 2626 2627 } 2628 if (extent_info) { 2629 ret = btrfs_insert_replace_extent(trans, inode, path, 2630 extent_info, extent_info->data_len, 2631 drop_args.bytes_found); 2632 if (unlikely(ret)) { 2633 btrfs_abort_transaction(trans, ret); 2634 goto out_trans; 2635 } 2636 } 2637 2638out_trans: 2639 if (!trans) 2640 goto out_release; 2641 2642 trans->block_rsv = &fs_info->trans_block_rsv; 2643 if (ret) 2644 btrfs_end_transaction(trans); 2645 else 2646 *trans_out = trans; 2647out_release: 2648 btrfs_block_rsv_release(fs_info, &rsv, (u64)-1, NULL); 2649 return ret; 2650} 2651 2652static int btrfs_punch_hole(struct file *file, loff_t offset, loff_t len) 2653{ 2654 struct inode *inode = file_inode(file); 2655 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 2656 struct btrfs_root *root = BTRFS_I(inode)->root; 2657 struct extent_state *cached_state = NULL; 2658 struct btrfs_path *path; 2659 struct btrfs_trans_handle *trans = NULL; 2660 u64 lockstart; 2661 u64 lockend; 2662 u64 tail_start; 2663 u64 tail_len; 2664 const u64 orig_start = offset; 2665 const u64 orig_end = offset + len - 1; 2666 int ret = 0; 2667 bool same_block; 2668 u64 ino_size; 2669 bool truncated_block = false; 2670 bool updated_inode = false; 2671 2672 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 2673 2674 ret = btrfs_wait_ordered_range(BTRFS_I(inode), offset, len); 2675 if (ret) 2676 goto out_only_mutex; 2677 2678 ino_size = round_up(inode->i_size, fs_info->sectorsize); 2679 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len); 2680 if (ret < 0) 2681 goto out_only_mutex; 2682 if (ret && !len) { 2683 /* Already in a large hole */ 2684 ret = 0; 2685 goto out_only_mutex; 2686 } 2687 2688 ret = file_modified(file); 2689 if (ret) 2690 goto out_only_mutex; 2691 2692 lockstart = round_up(offset, fs_info->sectorsize); 2693 lockend = round_down(offset + len, fs_info->sectorsize) - 1; 2694 same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset)) 2695 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)); 2696 /* 2697 * Only do this if we are in the same block and we aren't doing the 2698 * entire block. 2699 */ 2700 if (same_block && len < fs_info->sectorsize) { 2701 if (offset < ino_size) { 2702 truncated_block = true; 2703 ret = btrfs_truncate_block(BTRFS_I(inode), offset + len - 1, 2704 orig_start, orig_end); 2705 } else { 2706 ret = 0; 2707 } 2708 goto out_only_mutex; 2709 } 2710 2711 /* zero back part of the first block */ 2712 if (offset < ino_size) { 2713 truncated_block = true; 2714 ret = btrfs_truncate_block(BTRFS_I(inode), offset, orig_start, orig_end); 2715 if (ret) { 2716 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 2717 return ret; 2718 } 2719 } 2720 2721 /* Check the aligned pages after the first unaligned page, 2722 * if offset != orig_start, which means the first unaligned page 2723 * including several following pages are already in holes, 2724 * the extra check can be skipped */ 2725 if (offset == orig_start) { 2726 /* after truncate page, check hole again */ 2727 len = offset + len - lockstart; 2728 offset = lockstart; 2729 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len); 2730 if (ret < 0) 2731 goto out_only_mutex; 2732 if (ret && !len) { 2733 ret = 0; 2734 goto out_only_mutex; 2735 } 2736 lockstart = offset; 2737 } 2738 2739 /* Check the tail unaligned part is in a hole */ 2740 tail_start = lockend + 1; 2741 tail_len = offset + len - tail_start; 2742 if (tail_len) { 2743 ret = find_first_non_hole(BTRFS_I(inode), &tail_start, &tail_len); 2744 if (unlikely(ret < 0)) 2745 goto out_only_mutex; 2746 if (!ret) { 2747 /* zero the front end of the last page */ 2748 if (tail_start + tail_len < ino_size) { 2749 truncated_block = true; 2750 ret = btrfs_truncate_block(BTRFS_I(inode), 2751 tail_start + tail_len - 1, 2752 orig_start, orig_end); 2753 if (ret) 2754 goto out_only_mutex; 2755 } 2756 } 2757 } 2758 2759 if (lockend < lockstart) { 2760 ret = 0; 2761 goto out_only_mutex; 2762 } 2763 2764 btrfs_punch_hole_lock_range(inode, lockstart, lockend, &cached_state); 2765 2766 path = btrfs_alloc_path(); 2767 if (!path) { 2768 ret = -ENOMEM; 2769 goto out; 2770 } 2771 2772 ret = btrfs_replace_file_extents(BTRFS_I(inode), path, lockstart, 2773 lockend, NULL, &trans); 2774 btrfs_free_path(path); 2775 if (ret) 2776 goto out; 2777 2778 ASSERT(trans != NULL); 2779 inode_inc_iversion(inode); 2780 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 2781 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 2782 updated_inode = true; 2783 btrfs_end_transaction(trans); 2784 btrfs_btree_balance_dirty(fs_info); 2785out: 2786 btrfs_unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2787 &cached_state); 2788out_only_mutex: 2789 if (!updated_inode && truncated_block && !ret) { 2790 /* 2791 * If we only end up zeroing part of a page, we still need to 2792 * update the inode item, so that all the time fields are 2793 * updated as well as the necessary btrfs inode in memory fields 2794 * for detecting, at fsync time, if the inode isn't yet in the 2795 * log tree or it's there but not up to date. 2796 */ 2797 struct timespec64 now = inode_set_ctime_current(inode); 2798 2799 inode_inc_iversion(inode); 2800 inode_set_mtime_to_ts(inode, now); 2801 trans = btrfs_start_transaction(root, 1); 2802 if (IS_ERR(trans)) { 2803 ret = PTR_ERR(trans); 2804 } else { 2805 int ret2; 2806 2807 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 2808 ret2 = btrfs_end_transaction(trans); 2809 if (!ret) 2810 ret = ret2; 2811 } 2812 } 2813 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 2814 return ret; 2815} 2816 2817/* Helper structure to record which range is already reserved */ 2818struct falloc_range { 2819 struct list_head list; 2820 u64 start; 2821 u64 len; 2822}; 2823 2824/* 2825 * Helper function to add falloc range 2826 * 2827 * Caller should have locked the larger range of extent containing 2828 * [start, len) 2829 */ 2830static int add_falloc_range(struct list_head *head, u64 start, u64 len) 2831{ 2832 struct falloc_range *range = NULL; 2833 2834 if (!list_empty(head)) { 2835 /* 2836 * As fallocate iterates by bytenr order, we only need to check 2837 * the last range. 2838 */ 2839 range = list_last_entry(head, struct falloc_range, list); 2840 if (range->start + range->len == start) { 2841 range->len += len; 2842 return 0; 2843 } 2844 } 2845 2846 range = kmalloc(sizeof(*range), GFP_KERNEL); 2847 if (!range) 2848 return -ENOMEM; 2849 range->start = start; 2850 range->len = len; 2851 list_add_tail(&range->list, head); 2852 return 0; 2853} 2854 2855static int btrfs_fallocate_update_isize(struct inode *inode, 2856 const u64 end, 2857 const int mode) 2858{ 2859 struct btrfs_trans_handle *trans; 2860 struct btrfs_root *root = BTRFS_I(inode)->root; 2861 u64 range_start; 2862 u64 range_end; 2863 int ret; 2864 int ret2; 2865 2866 if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode)) 2867 return 0; 2868 2869 range_start = round_down(i_size_read(inode), root->fs_info->sectorsize); 2870 range_end = round_up(end, root->fs_info->sectorsize); 2871 2872 ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), range_start, 2873 range_end - range_start); 2874 if (ret) 2875 return ret; 2876 2877 trans = btrfs_start_transaction(root, 1); 2878 if (IS_ERR(trans)) 2879 return PTR_ERR(trans); 2880 2881 inode_set_ctime_current(inode); 2882 i_size_write(inode, end); 2883 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 2884 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 2885 ret2 = btrfs_end_transaction(trans); 2886 2887 return ret ? ret : ret2; 2888} 2889 2890enum { 2891 RANGE_BOUNDARY_WRITTEN_EXTENT, 2892 RANGE_BOUNDARY_PREALLOC_EXTENT, 2893 RANGE_BOUNDARY_HOLE, 2894}; 2895 2896static int btrfs_zero_range_check_range_boundary(struct btrfs_inode *inode, 2897 u64 offset) 2898{ 2899 const u64 sectorsize = inode->root->fs_info->sectorsize; 2900 struct extent_map *em; 2901 int ret; 2902 2903 offset = round_down(offset, sectorsize); 2904 em = btrfs_get_extent(inode, NULL, offset, sectorsize); 2905 if (IS_ERR(em)) 2906 return PTR_ERR(em); 2907 2908 if (em->disk_bytenr == EXTENT_MAP_HOLE) 2909 ret = RANGE_BOUNDARY_HOLE; 2910 else if (em->flags & EXTENT_FLAG_PREALLOC) 2911 ret = RANGE_BOUNDARY_PREALLOC_EXTENT; 2912 else 2913 ret = RANGE_BOUNDARY_WRITTEN_EXTENT; 2914 2915 btrfs_free_extent_map(em); 2916 return ret; 2917} 2918 2919static int btrfs_zero_range(struct inode *inode, 2920 loff_t offset, 2921 loff_t len, 2922 const int mode) 2923{ 2924 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2925 struct extent_map *em; 2926 struct extent_changeset *data_reserved = NULL; 2927 int ret; 2928 u64 alloc_hint = 0; 2929 const u64 sectorsize = fs_info->sectorsize; 2930 const u64 orig_start = offset; 2931 const u64 orig_end = offset + len - 1; 2932 u64 alloc_start = round_down(offset, sectorsize); 2933 u64 alloc_end = round_up(offset + len, sectorsize); 2934 u64 bytes_to_reserve = 0; 2935 bool space_reserved = false; 2936 2937 em = btrfs_get_extent(BTRFS_I(inode), NULL, alloc_start, 2938 alloc_end - alloc_start); 2939 if (IS_ERR(em)) { 2940 ret = PTR_ERR(em); 2941 goto out; 2942 } 2943 2944 /* 2945 * Avoid hole punching and extent allocation for some cases. More cases 2946 * could be considered, but these are unlikely common and we keep things 2947 * as simple as possible for now. Also, intentionally, if the target 2948 * range contains one or more prealloc extents together with regular 2949 * extents and holes, we drop all the existing extents and allocate a 2950 * new prealloc extent, so that we get a larger contiguous disk extent. 2951 */ 2952 if (em->start <= alloc_start && (em->flags & EXTENT_FLAG_PREALLOC)) { 2953 const u64 em_end = em->start + em->len; 2954 2955 if (em_end >= offset + len) { 2956 /* 2957 * The whole range is already a prealloc extent, 2958 * do nothing except updating the inode's i_size if 2959 * needed. 2960 */ 2961 btrfs_free_extent_map(em); 2962 ret = btrfs_fallocate_update_isize(inode, offset + len, 2963 mode); 2964 goto out; 2965 } 2966 /* 2967 * Part of the range is already a prealloc extent, so operate 2968 * only on the remaining part of the range. 2969 */ 2970 alloc_start = em_end; 2971 ASSERT(IS_ALIGNED(alloc_start, sectorsize)); 2972 len = offset + len - alloc_start; 2973 offset = alloc_start; 2974 alloc_hint = btrfs_extent_map_block_start(em) + em->len; 2975 } 2976 btrfs_free_extent_map(em); 2977 2978 if (BTRFS_BYTES_TO_BLKS(fs_info, offset) == 2979 BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) { 2980 em = btrfs_get_extent(BTRFS_I(inode), NULL, alloc_start, sectorsize); 2981 if (IS_ERR(em)) { 2982 ret = PTR_ERR(em); 2983 goto out; 2984 } 2985 2986 if (em->flags & EXTENT_FLAG_PREALLOC) { 2987 btrfs_free_extent_map(em); 2988 ret = btrfs_fallocate_update_isize(inode, offset + len, 2989 mode); 2990 goto out; 2991 } 2992 if (len < sectorsize && em->disk_bytenr != EXTENT_MAP_HOLE) { 2993 btrfs_free_extent_map(em); 2994 ret = btrfs_truncate_block(BTRFS_I(inode), offset + len - 1, 2995 orig_start, orig_end); 2996 if (!ret) 2997 ret = btrfs_fallocate_update_isize(inode, 2998 offset + len, 2999 mode); 3000 return ret; 3001 } 3002 btrfs_free_extent_map(em); 3003 alloc_start = round_down(offset, sectorsize); 3004 alloc_end = alloc_start + sectorsize; 3005 goto reserve_space; 3006 } 3007 3008 alloc_start = round_up(offset, sectorsize); 3009 alloc_end = round_down(offset + len, sectorsize); 3010 3011 /* 3012 * For unaligned ranges, check the pages at the boundaries, they might 3013 * map to an extent, in which case we need to partially zero them, or 3014 * they might map to a hole, in which case we need our allocation range 3015 * to cover them. 3016 */ 3017 if (!IS_ALIGNED(offset, sectorsize)) { 3018 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode), 3019 offset); 3020 if (ret < 0) 3021 goto out; 3022 if (ret == RANGE_BOUNDARY_HOLE) { 3023 alloc_start = round_down(offset, sectorsize); 3024 ret = 0; 3025 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) { 3026 ret = btrfs_truncate_block(BTRFS_I(inode), offset, 3027 orig_start, orig_end); 3028 if (ret) 3029 goto out; 3030 } else { 3031 ret = 0; 3032 } 3033 } 3034 3035 if (!IS_ALIGNED(offset + len, sectorsize)) { 3036 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode), 3037 offset + len); 3038 if (ret < 0) 3039 goto out; 3040 if (ret == RANGE_BOUNDARY_HOLE) { 3041 alloc_end = round_up(offset + len, sectorsize); 3042 ret = 0; 3043 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) { 3044 ret = btrfs_truncate_block(BTRFS_I(inode), offset + len - 1, 3045 orig_start, orig_end); 3046 if (ret) 3047 goto out; 3048 } else { 3049 ret = 0; 3050 } 3051 } 3052 3053reserve_space: 3054 if (alloc_start < alloc_end) { 3055 struct extent_state *cached_state = NULL; 3056 const u64 lockstart = alloc_start; 3057 const u64 lockend = alloc_end - 1; 3058 3059 bytes_to_reserve = alloc_end - alloc_start; 3060 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), 3061 bytes_to_reserve); 3062 if (ret < 0) 3063 goto out; 3064 space_reserved = true; 3065 btrfs_punch_hole_lock_range(inode, lockstart, lockend, 3066 &cached_state); 3067 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), &data_reserved, 3068 alloc_start, bytes_to_reserve); 3069 if (ret) { 3070 btrfs_unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, 3071 lockend, &cached_state); 3072 goto out; 3073 } 3074 ret = btrfs_prealloc_file_range(inode, mode, alloc_start, 3075 alloc_end - alloc_start, 3076 fs_info->sectorsize, 3077 offset + len, &alloc_hint); 3078 btrfs_unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, 3079 &cached_state); 3080 /* btrfs_prealloc_file_range releases reserved space on error */ 3081 if (ret) { 3082 space_reserved = false; 3083 goto out; 3084 } 3085 } 3086 ret = btrfs_fallocate_update_isize(inode, offset + len, mode); 3087 out: 3088 if (ret && space_reserved) 3089 btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved, 3090 alloc_start, bytes_to_reserve); 3091 extent_changeset_free(data_reserved); 3092 3093 return ret; 3094} 3095 3096static long btrfs_fallocate(struct file *file, int mode, 3097 loff_t offset, loff_t len) 3098{ 3099 struct inode *inode = file_inode(file); 3100 struct extent_state *cached_state = NULL; 3101 struct extent_changeset *data_reserved = NULL; 3102 struct falloc_range *range; 3103 struct falloc_range *tmp; 3104 LIST_HEAD(reserve_list); 3105 u64 cur_offset; 3106 u64 last_byte; 3107 u64 alloc_start; 3108 u64 alloc_end; 3109 u64 alloc_hint = 0; 3110 u64 locked_end; 3111 u64 actual_end = 0; 3112 u64 data_space_needed = 0; 3113 u64 data_space_reserved = 0; 3114 u64 qgroup_reserved = 0; 3115 struct extent_map *em; 3116 int blocksize = BTRFS_I(inode)->root->fs_info->sectorsize; 3117 int ret; 3118 3119 if (unlikely(btrfs_is_shutdown(inode_to_fs_info(inode)))) 3120 return -EIO; 3121 3122 /* Do not allow fallocate in ZONED mode */ 3123 if (btrfs_is_zoned(inode_to_fs_info(inode))) 3124 return -EOPNOTSUPP; 3125 3126 alloc_start = round_down(offset, blocksize); 3127 alloc_end = round_up(offset + len, blocksize); 3128 cur_offset = alloc_start; 3129 3130 /* Make sure we aren't being give some crap mode */ 3131 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | 3132 FALLOC_FL_ZERO_RANGE)) 3133 return -EOPNOTSUPP; 3134 3135 if (mode & FALLOC_FL_PUNCH_HOLE) 3136 return btrfs_punch_hole(file, offset, len); 3137 3138 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 3139 3140 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) { 3141 ret = inode_newsize_ok(inode, offset + len); 3142 if (ret) 3143 goto out; 3144 } 3145 3146 ret = file_modified(file); 3147 if (ret) 3148 goto out; 3149 3150 /* 3151 * TODO: Move these two operations after we have checked 3152 * accurate reserved space, or fallocate can still fail but 3153 * with page truncated or size expanded. 3154 * 3155 * But that's a minor problem and won't do much harm BTW. 3156 */ 3157 if (alloc_start > inode->i_size) { 3158 ret = btrfs_cont_expand(BTRFS_I(inode), i_size_read(inode), 3159 alloc_start); 3160 if (ret) 3161 goto out; 3162 } else if (offset + len > inode->i_size) { 3163 /* 3164 * If we are fallocating from the end of the file onward we 3165 * need to zero out the end of the block if i_size lands in the 3166 * middle of a block. 3167 */ 3168 ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 3169 inode->i_size, (u64)-1); 3170 if (ret) 3171 goto out; 3172 } 3173 3174 /* 3175 * We have locked the inode at the VFS level (in exclusive mode) and we 3176 * have locked the i_mmap_lock lock (in exclusive mode). Now before 3177 * locking the file range, flush all dealloc in the range and wait for 3178 * all ordered extents in the range to complete. After this we can lock 3179 * the file range and, due to the previous locking we did, we know there 3180 * can't be more delalloc or ordered extents in the range. 3181 */ 3182 ret = btrfs_wait_ordered_range(BTRFS_I(inode), alloc_start, 3183 alloc_end - alloc_start); 3184 if (ret) 3185 goto out; 3186 3187 if (mode & FALLOC_FL_ZERO_RANGE) { 3188 ret = btrfs_zero_range(inode, offset, len, mode); 3189 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 3190 return ret; 3191 } 3192 3193 locked_end = alloc_end - 1; 3194 btrfs_lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end, 3195 &cached_state); 3196 3197 btrfs_assert_inode_range_clean(BTRFS_I(inode), alloc_start, locked_end); 3198 3199 /* First, check if we exceed the qgroup limit */ 3200 while (cur_offset < alloc_end) { 3201 em = btrfs_get_extent(BTRFS_I(inode), NULL, cur_offset, 3202 alloc_end - cur_offset); 3203 if (IS_ERR(em)) { 3204 ret = PTR_ERR(em); 3205 break; 3206 } 3207 last_byte = min(btrfs_extent_map_end(em), alloc_end); 3208 actual_end = min_t(u64, btrfs_extent_map_end(em), offset + len); 3209 last_byte = ALIGN(last_byte, blocksize); 3210 if (em->disk_bytenr == EXTENT_MAP_HOLE || 3211 (cur_offset >= inode->i_size && 3212 !(em->flags & EXTENT_FLAG_PREALLOC))) { 3213 const u64 range_len = last_byte - cur_offset; 3214 3215 ret = add_falloc_range(&reserve_list, cur_offset, range_len); 3216 if (ret < 0) { 3217 btrfs_free_extent_map(em); 3218 break; 3219 } 3220 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), 3221 &data_reserved, cur_offset, range_len); 3222 if (ret < 0) { 3223 btrfs_free_extent_map(em); 3224 break; 3225 } 3226 qgroup_reserved += range_len; 3227 data_space_needed += range_len; 3228 } 3229 btrfs_free_extent_map(em); 3230 cur_offset = last_byte; 3231 } 3232 3233 if (!ret && data_space_needed > 0) { 3234 /* 3235 * We are safe to reserve space here as we can't have delalloc 3236 * in the range, see above. 3237 */ 3238 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), 3239 data_space_needed); 3240 if (!ret) 3241 data_space_reserved = data_space_needed; 3242 } 3243 3244 /* 3245 * If ret is still 0, means we're OK to fallocate. 3246 * Or just cleanup the list and exit. 3247 */ 3248 list_for_each_entry_safe(range, tmp, &reserve_list, list) { 3249 if (!ret) { 3250 ret = btrfs_prealloc_file_range(inode, mode, 3251 range->start, 3252 range->len, blocksize, 3253 offset + len, &alloc_hint); 3254 /* 3255 * btrfs_prealloc_file_range() releases space even 3256 * if it returns an error. 3257 */ 3258 data_space_reserved -= range->len; 3259 qgroup_reserved -= range->len; 3260 } else if (data_space_reserved > 0) { 3261 btrfs_free_reserved_data_space(BTRFS_I(inode), 3262 data_reserved, range->start, 3263 range->len); 3264 data_space_reserved -= range->len; 3265 qgroup_reserved -= range->len; 3266 } else if (qgroup_reserved > 0) { 3267 btrfs_qgroup_free_data(BTRFS_I(inode), data_reserved, 3268 range->start, range->len, NULL); 3269 qgroup_reserved -= range->len; 3270 } 3271 list_del(&range->list); 3272 kfree(range); 3273 } 3274 if (ret < 0) 3275 goto out_unlock; 3276 3277 /* 3278 * We didn't need to allocate any more space, but we still extended the 3279 * size of the file so we need to update i_size and the inode item. 3280 */ 3281 ret = btrfs_fallocate_update_isize(inode, actual_end, mode); 3282out_unlock: 3283 btrfs_unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end, 3284 &cached_state); 3285out: 3286 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 3287 extent_changeset_free(data_reserved); 3288 return ret; 3289} 3290 3291/* 3292 * Helper for btrfs_find_delalloc_in_range(). Find a subrange in a given range 3293 * that has unflushed and/or flushing delalloc. There might be other adjacent 3294 * subranges after the one it found, so btrfs_find_delalloc_in_range() keeps 3295 * looping while it gets adjacent subranges, and merging them together. 3296 */ 3297static bool find_delalloc_subrange(struct btrfs_inode *inode, u64 start, u64 end, 3298 struct extent_state **cached_state, 3299 bool *search_io_tree, 3300 u64 *delalloc_start_ret, u64 *delalloc_end_ret) 3301{ 3302 u64 len = end + 1 - start; 3303 u64 delalloc_len = 0; 3304 struct btrfs_ordered_extent *oe; 3305 u64 oe_start; 3306 u64 oe_end; 3307 3308 /* 3309 * Search the io tree first for EXTENT_DELALLOC. If we find any, it 3310 * means we have delalloc (dirty pages) for which writeback has not 3311 * started yet. 3312 */ 3313 if (*search_io_tree) { 3314 spin_lock(&inode->lock); 3315 if (inode->delalloc_bytes > 0) { 3316 spin_unlock(&inode->lock); 3317 *delalloc_start_ret = start; 3318 delalloc_len = btrfs_count_range_bits(&inode->io_tree, 3319 delalloc_start_ret, end, 3320 len, EXTENT_DELALLOC, 1, 3321 cached_state); 3322 } else { 3323 spin_unlock(&inode->lock); 3324 } 3325 } 3326 3327 if (delalloc_len > 0) { 3328 /* 3329 * If delalloc was found then *delalloc_start_ret has a sector size 3330 * aligned value (rounded down). 3331 */ 3332 *delalloc_end_ret = *delalloc_start_ret + delalloc_len - 1; 3333 3334 if (*delalloc_start_ret == start) { 3335 /* Delalloc for the whole range, nothing more to do. */ 3336 if (*delalloc_end_ret == end) 3337 return true; 3338 /* Else trim our search range for ordered extents. */ 3339 start = *delalloc_end_ret + 1; 3340 len = end + 1 - start; 3341 } 3342 } else { 3343 /* No delalloc, future calls don't need to search again. */ 3344 *search_io_tree = false; 3345 } 3346 3347 /* 3348 * Now also check if there's any ordered extent in the range. 3349 * We do this because: 3350 * 3351 * 1) When delalloc is flushed, the file range is locked, we clear the 3352 * EXTENT_DELALLOC bit from the io tree and create an extent map and 3353 * an ordered extent for the write. So we might just have been called 3354 * after delalloc is flushed and before the ordered extent completes 3355 * and inserts the new file extent item in the subvolume's btree; 3356 * 3357 * 2) We may have an ordered extent created by flushing delalloc for a 3358 * subrange that starts before the subrange we found marked with 3359 * EXTENT_DELALLOC in the io tree. 3360 * 3361 * We could also use the extent map tree to find such delalloc that is 3362 * being flushed, but using the ordered extents tree is more efficient 3363 * because it's usually much smaller as ordered extents are removed from 3364 * the tree once they complete. With the extent maps, we may have them 3365 * in the extent map tree for a very long time, and they were either 3366 * created by previous writes or loaded by read operations. 3367 */ 3368 oe = btrfs_lookup_first_ordered_range(inode, start, len); 3369 if (!oe) 3370 return (delalloc_len > 0); 3371 3372 /* The ordered extent may span beyond our search range. */ 3373 oe_start = max(oe->file_offset, start); 3374 oe_end = min(oe->file_offset + oe->num_bytes - 1, end); 3375 3376 btrfs_put_ordered_extent(oe); 3377 3378 /* Don't have unflushed delalloc, return the ordered extent range. */ 3379 if (delalloc_len == 0) { 3380 *delalloc_start_ret = oe_start; 3381 *delalloc_end_ret = oe_end; 3382 return true; 3383 } 3384 3385 /* 3386 * We have both unflushed delalloc (io_tree) and an ordered extent. 3387 * If the ranges are adjacent returned a combined range, otherwise 3388 * return the leftmost range. 3389 */ 3390 if (oe_start < *delalloc_start_ret) { 3391 if (oe_end < *delalloc_start_ret) 3392 *delalloc_end_ret = oe_end; 3393 *delalloc_start_ret = oe_start; 3394 } else if (*delalloc_end_ret + 1 == oe_start) { 3395 *delalloc_end_ret = oe_end; 3396 } 3397 3398 return true; 3399} 3400 3401/* 3402 * Check if there's delalloc in a given range. 3403 * 3404 * @inode: The inode. 3405 * @start: The start offset of the range. It does not need to be 3406 * sector size aligned. 3407 * @end: The end offset (inclusive value) of the search range. 3408 * It does not need to be sector size aligned. 3409 * @cached_state: Extent state record used for speeding up delalloc 3410 * searches in the inode's io_tree. Can be NULL. 3411 * @delalloc_start_ret: Output argument, set to the start offset of the 3412 * subrange found with delalloc (may not be sector size 3413 * aligned). 3414 * @delalloc_end_ret: Output argument, set to he end offset (inclusive value) 3415 * of the subrange found with delalloc. 3416 * 3417 * Returns true if a subrange with delalloc is found within the given range, and 3418 * if so it sets @delalloc_start_ret and @delalloc_end_ret with the start and 3419 * end offsets of the subrange. 3420 */ 3421bool btrfs_find_delalloc_in_range(struct btrfs_inode *inode, u64 start, u64 end, 3422 struct extent_state **cached_state, 3423 u64 *delalloc_start_ret, u64 *delalloc_end_ret) 3424{ 3425 u64 cur_offset = round_down(start, inode->root->fs_info->sectorsize); 3426 u64 prev_delalloc_end = 0; 3427 bool search_io_tree = true; 3428 bool ret = false; 3429 3430 while (cur_offset <= end) { 3431 u64 delalloc_start; 3432 u64 delalloc_end; 3433 bool delalloc; 3434 3435 delalloc = find_delalloc_subrange(inode, cur_offset, end, 3436 cached_state, &search_io_tree, 3437 &delalloc_start, 3438 &delalloc_end); 3439 if (!delalloc) 3440 break; 3441 3442 if (prev_delalloc_end == 0) { 3443 /* First subrange found. */ 3444 *delalloc_start_ret = max(delalloc_start, start); 3445 *delalloc_end_ret = delalloc_end; 3446 ret = true; 3447 } else if (delalloc_start == prev_delalloc_end + 1) { 3448 /* Subrange adjacent to the previous one, merge them. */ 3449 *delalloc_end_ret = delalloc_end; 3450 } else { 3451 /* Subrange not adjacent to the previous one, exit. */ 3452 break; 3453 } 3454 3455 prev_delalloc_end = delalloc_end; 3456 cur_offset = delalloc_end + 1; 3457 cond_resched(); 3458 } 3459 3460 return ret; 3461} 3462 3463/* 3464 * Check if there's a hole or delalloc range in a range representing a hole (or 3465 * prealloc extent) found in the inode's subvolume btree. 3466 * 3467 * @inode: The inode. 3468 * @whence: Seek mode (SEEK_DATA or SEEK_HOLE). 3469 * @start: Start offset of the hole region. It does not need to be sector 3470 * size aligned. 3471 * @end: End offset (inclusive value) of the hole region. It does not 3472 * need to be sector size aligned. 3473 * @start_ret: Return parameter, used to set the start of the subrange in the 3474 * hole that matches the search criteria (seek mode), if such 3475 * subrange is found (return value of the function is true). 3476 * The value returned here may not be sector size aligned. 3477 * 3478 * Returns true if a subrange matching the given seek mode is found, and if one 3479 * is found, it updates @start_ret with the start of the subrange. 3480 */ 3481static bool find_desired_extent_in_hole(struct btrfs_inode *inode, int whence, 3482 struct extent_state **cached_state, 3483 u64 start, u64 end, u64 *start_ret) 3484{ 3485 u64 delalloc_start; 3486 u64 delalloc_end; 3487 bool delalloc; 3488 3489 delalloc = btrfs_find_delalloc_in_range(inode, start, end, cached_state, 3490 &delalloc_start, &delalloc_end); 3491 if (delalloc && whence == SEEK_DATA) { 3492 *start_ret = delalloc_start; 3493 return true; 3494 } 3495 3496 if (delalloc && whence == SEEK_HOLE) { 3497 /* 3498 * We found delalloc but it starts after out start offset. So we 3499 * have a hole between our start offset and the delalloc start. 3500 */ 3501 if (start < delalloc_start) { 3502 *start_ret = start; 3503 return true; 3504 } 3505 /* 3506 * Delalloc range starts at our start offset. 3507 * If the delalloc range's length is smaller than our range, 3508 * then it means we have a hole that starts where the delalloc 3509 * subrange ends. 3510 */ 3511 if (delalloc_end < end) { 3512 *start_ret = delalloc_end + 1; 3513 return true; 3514 } 3515 3516 /* There's delalloc for the whole range. */ 3517 return false; 3518 } 3519 3520 if (!delalloc && whence == SEEK_HOLE) { 3521 *start_ret = start; 3522 return true; 3523 } 3524 3525 /* 3526 * No delalloc in the range and we are seeking for data. The caller has 3527 * to iterate to the next extent item in the subvolume btree. 3528 */ 3529 return false; 3530} 3531 3532static loff_t find_desired_extent(struct file *file, loff_t offset, int whence) 3533{ 3534 struct btrfs_inode *inode = BTRFS_I(file->f_mapping->host); 3535 struct btrfs_file_private *private; 3536 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3537 struct extent_state *cached_state = NULL; 3538 struct extent_state **delalloc_cached_state; 3539 const loff_t i_size = i_size_read(&inode->vfs_inode); 3540 const u64 ino = btrfs_ino(inode); 3541 struct btrfs_root *root = inode->root; 3542 struct btrfs_path *path; 3543 struct btrfs_key key; 3544 u64 last_extent_end; 3545 u64 lockstart; 3546 u64 lockend; 3547 u64 start; 3548 int ret; 3549 bool found = false; 3550 3551 if (i_size == 0 || offset >= i_size) 3552 return -ENXIO; 3553 3554 /* 3555 * Quick path. If the inode has no prealloc extents and its number of 3556 * bytes used matches its i_size, then it can not have holes. 3557 */ 3558 if (whence == SEEK_HOLE && 3559 !(inode->flags & BTRFS_INODE_PREALLOC) && 3560 inode_get_bytes(&inode->vfs_inode) == i_size) 3561 return i_size; 3562 3563 spin_lock(&inode->lock); 3564 private = file->private_data; 3565 spin_unlock(&inode->lock); 3566 3567 if (private && private->owner_task != current) { 3568 /* 3569 * Not allocated by us, don't use it as its cached state is used 3570 * by the task that allocated it and we don't want neither to 3571 * mess with it nor get incorrect results because it reflects an 3572 * invalid state for the current task. 3573 */ 3574 private = NULL; 3575 } else if (!private) { 3576 private = kzalloc(sizeof(*private), GFP_KERNEL); 3577 /* 3578 * No worries if memory allocation failed. 3579 * The private structure is used only for speeding up multiple 3580 * lseek SEEK_HOLE/DATA calls to a file when there's delalloc, 3581 * so everything will still be correct. 3582 */ 3583 if (private) { 3584 bool free = false; 3585 3586 private->owner_task = current; 3587 3588 spin_lock(&inode->lock); 3589 if (file->private_data) 3590 free = true; 3591 else 3592 file->private_data = private; 3593 spin_unlock(&inode->lock); 3594 3595 if (free) { 3596 kfree(private); 3597 private = NULL; 3598 } 3599 } 3600 } 3601 3602 if (private) 3603 delalloc_cached_state = &private->llseek_cached_state; 3604 else 3605 delalloc_cached_state = NULL; 3606 3607 /* 3608 * offset can be negative, in this case we start finding DATA/HOLE from 3609 * the very start of the file. 3610 */ 3611 start = max_t(loff_t, 0, offset); 3612 3613 lockstart = round_down(start, fs_info->sectorsize); 3614 lockend = round_up(i_size, fs_info->sectorsize); 3615 if (lockend <= lockstart) 3616 lockend = lockstart + fs_info->sectorsize; 3617 lockend--; 3618 3619 path = btrfs_alloc_path(); 3620 if (!path) 3621 return -ENOMEM; 3622 path->reada = READA_FORWARD; 3623 3624 key.objectid = ino; 3625 key.type = BTRFS_EXTENT_DATA_KEY; 3626 key.offset = start; 3627 3628 last_extent_end = lockstart; 3629 3630 btrfs_lock_extent(&inode->io_tree, lockstart, lockend, &cached_state); 3631 3632 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3633 if (ret < 0) { 3634 goto out; 3635 } else if (ret > 0 && path->slots[0] > 0) { 3636 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1); 3637 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY) 3638 path->slots[0]--; 3639 } 3640 3641 while (start < i_size) { 3642 struct extent_buffer *leaf = path->nodes[0]; 3643 struct btrfs_file_extent_item *extent; 3644 u64 extent_end; 3645 u8 type; 3646 3647 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 3648 ret = btrfs_next_leaf(root, path); 3649 if (ret < 0) 3650 goto out; 3651 else if (ret > 0) 3652 break; 3653 3654 leaf = path->nodes[0]; 3655 } 3656 3657 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3658 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) 3659 break; 3660 3661 extent_end = btrfs_file_extent_end(path); 3662 3663 /* 3664 * In the first iteration we may have a slot that points to an 3665 * extent that ends before our start offset, so skip it. 3666 */ 3667 if (extent_end <= start) { 3668 path->slots[0]++; 3669 continue; 3670 } 3671 3672 /* We have an implicit hole, NO_HOLES feature is likely set. */ 3673 if (last_extent_end < key.offset) { 3674 u64 search_start = last_extent_end; 3675 u64 found_start; 3676 3677 /* 3678 * First iteration, @start matches @offset and it's 3679 * within the hole. 3680 */ 3681 if (start == offset) 3682 search_start = offset; 3683 3684 found = find_desired_extent_in_hole(inode, whence, 3685 delalloc_cached_state, 3686 search_start, 3687 key.offset - 1, 3688 &found_start); 3689 if (found) { 3690 start = found_start; 3691 break; 3692 } 3693 /* 3694 * Didn't find data or a hole (due to delalloc) in the 3695 * implicit hole range, so need to analyze the extent. 3696 */ 3697 } 3698 3699 extent = btrfs_item_ptr(leaf, path->slots[0], 3700 struct btrfs_file_extent_item); 3701 type = btrfs_file_extent_type(leaf, extent); 3702 3703 /* 3704 * Can't access the extent's disk_bytenr field if this is an 3705 * inline extent, since at that offset, it's where the extent 3706 * data starts. 3707 */ 3708 if (type == BTRFS_FILE_EXTENT_PREALLOC || 3709 (type == BTRFS_FILE_EXTENT_REG && 3710 btrfs_file_extent_disk_bytenr(leaf, extent) == 0)) { 3711 /* 3712 * Explicit hole or prealloc extent, search for delalloc. 3713 * A prealloc extent is treated like a hole. 3714 */ 3715 u64 search_start = key.offset; 3716 u64 found_start; 3717 3718 /* 3719 * First iteration, @start matches @offset and it's 3720 * within the hole. 3721 */ 3722 if (start == offset) 3723 search_start = offset; 3724 3725 found = find_desired_extent_in_hole(inode, whence, 3726 delalloc_cached_state, 3727 search_start, 3728 extent_end - 1, 3729 &found_start); 3730 if (found) { 3731 start = found_start; 3732 break; 3733 } 3734 /* 3735 * Didn't find data or a hole (due to delalloc) in the 3736 * implicit hole range, so need to analyze the next 3737 * extent item. 3738 */ 3739 } else { 3740 /* 3741 * Found a regular or inline extent. 3742 * If we are seeking for data, adjust the start offset 3743 * and stop, we're done. 3744 */ 3745 if (whence == SEEK_DATA) { 3746 start = max_t(u64, key.offset, offset); 3747 found = true; 3748 break; 3749 } 3750 /* 3751 * Else, we are seeking for a hole, check the next file 3752 * extent item. 3753 */ 3754 } 3755 3756 start = extent_end; 3757 last_extent_end = extent_end; 3758 path->slots[0]++; 3759 if (fatal_signal_pending(current)) { 3760 ret = -EINTR; 3761 goto out; 3762 } 3763 cond_resched(); 3764 } 3765 3766 /* We have an implicit hole from the last extent found up to i_size. */ 3767 if (!found && start < i_size) { 3768 found = find_desired_extent_in_hole(inode, whence, 3769 delalloc_cached_state, start, 3770 i_size - 1, &start); 3771 if (!found) 3772 start = i_size; 3773 } 3774 3775out: 3776 btrfs_unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state); 3777 btrfs_free_path(path); 3778 3779 if (ret < 0) 3780 return ret; 3781 3782 if (whence == SEEK_DATA && start >= i_size) 3783 return -ENXIO; 3784 3785 return min_t(loff_t, start, i_size); 3786} 3787 3788static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence) 3789{ 3790 struct inode *inode = file->f_mapping->host; 3791 3792 switch (whence) { 3793 default: 3794 return generic_file_llseek(file, offset, whence); 3795 case SEEK_DATA: 3796 case SEEK_HOLE: 3797 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_SHARED); 3798 offset = find_desired_extent(file, offset, whence); 3799 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED); 3800 break; 3801 } 3802 3803 if (offset < 0) 3804 return offset; 3805 3806 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 3807} 3808 3809static int btrfs_file_open(struct inode *inode, struct file *filp) 3810{ 3811 int ret; 3812 3813 if (unlikely(btrfs_is_shutdown(inode_to_fs_info(inode)))) 3814 return -EIO; 3815 3816 filp->f_mode |= FMODE_NOWAIT | FMODE_CAN_ODIRECT; 3817 3818 ret = fsverity_file_open(inode, filp); 3819 if (ret) 3820 return ret; 3821 return generic_file_open(inode, filp); 3822} 3823 3824static ssize_t btrfs_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 3825{ 3826 ssize_t ret = 0; 3827 3828 if (unlikely(btrfs_is_shutdown(inode_to_fs_info(file_inode(iocb->ki_filp))))) 3829 return -EIO; 3830 3831 if (iocb->ki_flags & IOCB_DIRECT) { 3832 ret = btrfs_direct_read(iocb, to); 3833 if (ret < 0 || !iov_iter_count(to) || 3834 iocb->ki_pos >= i_size_read(file_inode(iocb->ki_filp))) 3835 return ret; 3836 } 3837 3838 return filemap_read(iocb, to, ret); 3839} 3840 3841static ssize_t btrfs_file_splice_read(struct file *in, loff_t *ppos, 3842 struct pipe_inode_info *pipe, 3843 size_t len, unsigned int flags) 3844{ 3845 if (unlikely(btrfs_is_shutdown(inode_to_fs_info(file_inode(in))))) 3846 return -EIO; 3847 3848 return filemap_splice_read(in, ppos, pipe, len, flags); 3849} 3850 3851const struct file_operations btrfs_file_operations = { 3852 .llseek = btrfs_file_llseek, 3853 .read_iter = btrfs_file_read_iter, 3854 .splice_read = btrfs_file_splice_read, 3855 .write_iter = btrfs_file_write_iter, 3856 .splice_write = iter_file_splice_write, 3857 .mmap_prepare = btrfs_file_mmap_prepare, 3858 .open = btrfs_file_open, 3859 .release = btrfs_release_file, 3860 .get_unmapped_area = thp_get_unmapped_area, 3861 .fsync = btrfs_sync_file, 3862 .fallocate = btrfs_fallocate, 3863 .unlocked_ioctl = btrfs_ioctl, 3864#ifdef CONFIG_COMPAT 3865 .compat_ioctl = btrfs_compat_ioctl, 3866#endif 3867 .remap_file_range = btrfs_remap_file_range, 3868 .uring_cmd = btrfs_uring_cmd, 3869 .fop_flags = FOP_BUFFER_RASYNC | FOP_BUFFER_WASYNC, 3870}; 3871 3872int btrfs_fdatawrite_range(struct btrfs_inode *inode, loff_t start, loff_t end) 3873{ 3874 struct address_space *mapping = inode->vfs_inode.i_mapping; 3875 int ret; 3876 3877 /* 3878 * So with compression we will find and lock a dirty page and clear the 3879 * first one as dirty, setup an async extent, and immediately return 3880 * with the entire range locked but with nobody actually marked with 3881 * writeback. So we can't just filemap_write_and_wait_range() and 3882 * expect it to work since it will just kick off a thread to do the 3883 * actual work. So we need to call filemap_fdatawrite_range _again_ 3884 * since it will wait on the page lock, which won't be unlocked until 3885 * after the pages have been marked as writeback and so we're good to go 3886 * from there. We have to do this otherwise we'll miss the ordered 3887 * extents and that results in badness. Please Josef, do not think you 3888 * know better and pull this out at some point in the future, it is 3889 * right and you are wrong. 3890 */ 3891 ret = filemap_fdatawrite_range(mapping, start, end); 3892 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags)) 3893 ret = filemap_fdatawrite_range(mapping, start, end); 3894 3895 return ret; 3896}