Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#include <linux/fs.h>
7#include <linux/pagemap.h>
8#include <linux/time.h>
9#include <linux/init.h>
10#include <linux/string.h>
11#include <linux/backing-dev.h>
12#include <linux/falloc.h>
13#include <linux/writeback.h>
14#include <linux/compat.h>
15#include <linux/slab.h>
16#include <linux/btrfs.h>
17#include <linux/uio.h>
18#include <linux/iversion.h>
19#include <linux/fsverity.h>
20#include "ctree.h"
21#include "direct-io.h"
22#include "disk-io.h"
23#include "transaction.h"
24#include "btrfs_inode.h"
25#include "tree-log.h"
26#include "locking.h"
27#include "qgroup.h"
28#include "compression.h"
29#include "delalloc-space.h"
30#include "reflink.h"
31#include "subpage.h"
32#include "fs.h"
33#include "accessors.h"
34#include "extent-tree.h"
35#include "file-item.h"
36#include "ioctl.h"
37#include "file.h"
38#include "super.h"
39#include "print-tree.h"
40
41/*
42 * Unlock folio after btrfs_file_write() is done with it.
43 */
44static void btrfs_drop_folio(struct btrfs_fs_info *fs_info, struct folio *folio,
45 u64 pos, u64 copied)
46{
47 u64 block_start = round_down(pos, fs_info->sectorsize);
48 u64 block_len = round_up(pos + copied, fs_info->sectorsize) - block_start;
49
50 ASSERT(block_len <= U32_MAX);
51 /*
52 * Folio checked is some magic around finding folios that have been
53 * modified without going through btrfs_dirty_folio(). Clear it here.
54 * There should be no need to mark the pages accessed as
55 * prepare_one_folio() should have marked them accessed in
56 * prepare_one_folio() via find_or_create_page()
57 */
58 btrfs_folio_clamp_clear_checked(fs_info, folio, block_start, block_len);
59 folio_unlock(folio);
60 folio_put(folio);
61}
62
63/*
64 * After copy_folio_from_iter_atomic(), update the following things for delalloc:
65 * - Mark newly dirtied folio as DELALLOC in the io tree.
66 * Used to advise which range is to be written back.
67 * - Mark modified folio as Uptodate/Dirty and not needing COW fixup
68 * - Update inode size for past EOF write
69 */
70int btrfs_dirty_folio(struct btrfs_inode *inode, struct folio *folio, loff_t pos,
71 size_t write_bytes, struct extent_state **cached, bool noreserve)
72{
73 struct btrfs_fs_info *fs_info = inode->root->fs_info;
74 int ret = 0;
75 u64 num_bytes;
76 u64 start_pos;
77 u64 end_of_last_block;
78 const u64 end_pos = pos + write_bytes;
79 loff_t isize = i_size_read(&inode->vfs_inode);
80 unsigned int extra_bits = 0;
81
82 if (write_bytes == 0)
83 return 0;
84
85 if (noreserve)
86 extra_bits |= EXTENT_NORESERVE;
87
88 start_pos = round_down(pos, fs_info->sectorsize);
89 num_bytes = round_up(end_pos - start_pos, fs_info->sectorsize);
90 ASSERT(num_bytes <= U32_MAX);
91 ASSERT(folio_pos(folio) <= pos && folio_next_pos(folio) >= end_pos);
92
93 end_of_last_block = start_pos + num_bytes - 1;
94
95 /*
96 * The pages may have already been dirty, clear out old accounting so
97 * we can set things up properly
98 */
99 btrfs_clear_extent_bit(&inode->io_tree, start_pos, end_of_last_block,
100 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
101 cached);
102
103 ret = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
104 extra_bits, cached);
105 if (ret)
106 return ret;
107
108 btrfs_folio_clamp_set_uptodate(fs_info, folio, start_pos, num_bytes);
109 btrfs_folio_clamp_clear_checked(fs_info, folio, start_pos, num_bytes);
110 btrfs_folio_clamp_set_dirty(fs_info, folio, start_pos, num_bytes);
111
112 /*
113 * we've only changed i_size in ram, and we haven't updated
114 * the disk i_size. There is no need to log the inode
115 * at this time.
116 */
117 if (end_pos > isize)
118 i_size_write(&inode->vfs_inode, end_pos);
119 return 0;
120}
121
122/*
123 * this is very complex, but the basic idea is to drop all extents
124 * in the range start - end. hint_block is filled in with a block number
125 * that would be a good hint to the block allocator for this file.
126 *
127 * If an extent intersects the range but is not entirely inside the range
128 * it is either truncated or split. Anything entirely inside the range
129 * is deleted from the tree.
130 *
131 * Note: the VFS' inode number of bytes is not updated, it's up to the caller
132 * to deal with that. We set the field 'bytes_found' of the arguments structure
133 * with the number of allocated bytes found in the target range, so that the
134 * caller can update the inode's number of bytes in an atomic way when
135 * replacing extents in a range to avoid races with stat(2).
136 */
137int btrfs_drop_extents(struct btrfs_trans_handle *trans,
138 struct btrfs_root *root, struct btrfs_inode *inode,
139 struct btrfs_drop_extents_args *args)
140{
141 struct btrfs_fs_info *fs_info = root->fs_info;
142 struct extent_buffer *leaf;
143 struct btrfs_file_extent_item *fi;
144 struct btrfs_key key;
145 struct btrfs_key new_key;
146 u64 ino = btrfs_ino(inode);
147 u64 search_start = args->start;
148 u64 disk_bytenr = 0;
149 u64 num_bytes = 0;
150 u64 extent_offset = 0;
151 u64 extent_end = 0;
152 u64 last_end = args->start;
153 int del_nr = 0;
154 int del_slot = 0;
155 int extent_type;
156 int recow;
157 int ret;
158 int modify_tree = -1;
159 int update_refs;
160 int found = 0;
161 struct btrfs_path *path = args->path;
162
163 args->bytes_found = 0;
164 args->extent_inserted = false;
165
166 /* Must always have a path if ->replace_extent is true */
167 ASSERT(!(args->replace_extent && !args->path));
168
169 if (!path) {
170 path = btrfs_alloc_path();
171 if (!path) {
172 ret = -ENOMEM;
173 goto out;
174 }
175 }
176
177 if (args->drop_cache)
178 btrfs_drop_extent_map_range(inode, args->start, args->end - 1, false);
179
180 if (data_race(args->start >= inode->disk_i_size) && !args->replace_extent)
181 modify_tree = 0;
182
183 update_refs = (btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID);
184 while (1) {
185 recow = 0;
186 ret = btrfs_lookup_file_extent(trans, root, path, ino,
187 search_start, modify_tree);
188 if (ret < 0)
189 break;
190 if (ret > 0 && path->slots[0] > 0 && search_start == args->start) {
191 leaf = path->nodes[0];
192 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
193 if (key.objectid == ino &&
194 key.type == BTRFS_EXTENT_DATA_KEY)
195 path->slots[0]--;
196 }
197 ret = 0;
198next_slot:
199 leaf = path->nodes[0];
200 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
201 if (WARN_ON(del_nr > 0)) {
202 btrfs_print_leaf(leaf);
203 ret = -EINVAL;
204 break;
205 }
206 ret = btrfs_next_leaf(root, path);
207 if (ret < 0)
208 break;
209 if (ret > 0) {
210 ret = 0;
211 break;
212 }
213 leaf = path->nodes[0];
214 recow = 1;
215 }
216
217 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
218
219 if (key.objectid > ino)
220 break;
221 if (WARN_ON_ONCE(key.objectid < ino) ||
222 key.type < BTRFS_EXTENT_DATA_KEY) {
223 ASSERT(del_nr == 0);
224 path->slots[0]++;
225 goto next_slot;
226 }
227 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= args->end)
228 break;
229
230 fi = btrfs_item_ptr(leaf, path->slots[0],
231 struct btrfs_file_extent_item);
232 extent_type = btrfs_file_extent_type(leaf, fi);
233
234 if (extent_type == BTRFS_FILE_EXTENT_REG ||
235 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
236 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
237 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
238 extent_offset = btrfs_file_extent_offset(leaf, fi);
239 extent_end = key.offset +
240 btrfs_file_extent_num_bytes(leaf, fi);
241 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
242 extent_end = key.offset +
243 btrfs_file_extent_ram_bytes(leaf, fi);
244 } else {
245 /* can't happen */
246 BUG();
247 }
248
249 /*
250 * Don't skip extent items representing 0 byte lengths. They
251 * used to be created (bug) if while punching holes we hit
252 * -ENOSPC condition. So if we find one here, just ensure we
253 * delete it, otherwise we would insert a new file extent item
254 * with the same key (offset) as that 0 bytes length file
255 * extent item in the call to setup_items_for_insert() later
256 * in this function.
257 */
258 if (extent_end == key.offset && extent_end >= search_start) {
259 last_end = extent_end;
260 goto delete_extent_item;
261 }
262
263 if (extent_end <= search_start) {
264 path->slots[0]++;
265 goto next_slot;
266 }
267
268 found = 1;
269 search_start = max(key.offset, args->start);
270 if (recow || !modify_tree) {
271 modify_tree = -1;
272 btrfs_release_path(path);
273 continue;
274 }
275
276 /*
277 * | - range to drop - |
278 * | -------- extent -------- |
279 */
280 if (args->start > key.offset && args->end < extent_end) {
281 if (WARN_ON(del_nr > 0)) {
282 btrfs_print_leaf(leaf);
283 ret = -EINVAL;
284 break;
285 }
286 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
287 ret = -EOPNOTSUPP;
288 break;
289 }
290
291 memcpy(&new_key, &key, sizeof(new_key));
292 new_key.offset = args->start;
293 ret = btrfs_duplicate_item(trans, root, path,
294 &new_key);
295 if (ret == -EAGAIN) {
296 btrfs_release_path(path);
297 continue;
298 }
299 if (ret < 0)
300 break;
301
302 leaf = path->nodes[0];
303 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
304 struct btrfs_file_extent_item);
305 btrfs_set_file_extent_num_bytes(leaf, fi,
306 args->start - key.offset);
307
308 fi = btrfs_item_ptr(leaf, path->slots[0],
309 struct btrfs_file_extent_item);
310
311 extent_offset += args->start - key.offset;
312 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
313 btrfs_set_file_extent_num_bytes(leaf, fi,
314 extent_end - args->start);
315
316 if (update_refs && disk_bytenr > 0) {
317 struct btrfs_ref ref = {
318 .action = BTRFS_ADD_DELAYED_REF,
319 .bytenr = disk_bytenr,
320 .num_bytes = num_bytes,
321 .parent = 0,
322 .owning_root = btrfs_root_id(root),
323 .ref_root = btrfs_root_id(root),
324 };
325 btrfs_init_data_ref(&ref, new_key.objectid,
326 args->start - extent_offset,
327 0, false);
328 ret = btrfs_inc_extent_ref(trans, &ref);
329 if (unlikely(ret)) {
330 btrfs_abort_transaction(trans, ret);
331 break;
332 }
333 }
334 key.offset = args->start;
335 }
336 /*
337 * From here on out we will have actually dropped something, so
338 * last_end can be updated.
339 */
340 last_end = extent_end;
341
342 /*
343 * | ---- range to drop ----- |
344 * | -------- extent -------- |
345 */
346 if (args->start <= key.offset && args->end < extent_end) {
347 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
348 ret = -EOPNOTSUPP;
349 break;
350 }
351
352 memcpy(&new_key, &key, sizeof(new_key));
353 new_key.offset = args->end;
354 btrfs_set_item_key_safe(trans, path, &new_key);
355
356 extent_offset += args->end - key.offset;
357 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
358 btrfs_set_file_extent_num_bytes(leaf, fi,
359 extent_end - args->end);
360 if (update_refs && disk_bytenr > 0)
361 args->bytes_found += args->end - key.offset;
362 break;
363 }
364
365 search_start = extent_end;
366 /*
367 * | ---- range to drop ----- |
368 * | -------- extent -------- |
369 */
370 if (args->start > key.offset && args->end >= extent_end) {
371 if (WARN_ON(del_nr > 0)) {
372 btrfs_print_leaf(leaf);
373 ret = -EINVAL;
374 break;
375 }
376 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
377 ret = -EOPNOTSUPP;
378 break;
379 }
380
381 btrfs_set_file_extent_num_bytes(leaf, fi,
382 args->start - key.offset);
383 if (update_refs && disk_bytenr > 0)
384 args->bytes_found += extent_end - args->start;
385 if (args->end == extent_end)
386 break;
387
388 path->slots[0]++;
389 goto next_slot;
390 }
391
392 /*
393 * | ---- range to drop ----- |
394 * | ------ extent ------ |
395 */
396 if (args->start <= key.offset && args->end >= extent_end) {
397delete_extent_item:
398 if (del_nr == 0) {
399 del_slot = path->slots[0];
400 del_nr = 1;
401 } else {
402 if (WARN_ON(del_slot + del_nr != path->slots[0])) {
403 btrfs_print_leaf(leaf);
404 ret = -EINVAL;
405 break;
406 }
407 del_nr++;
408 }
409
410 if (update_refs &&
411 extent_type == BTRFS_FILE_EXTENT_INLINE) {
412 args->bytes_found += extent_end - key.offset;
413 extent_end = ALIGN(extent_end,
414 fs_info->sectorsize);
415 } else if (update_refs && disk_bytenr > 0) {
416 struct btrfs_ref ref = {
417 .action = BTRFS_DROP_DELAYED_REF,
418 .bytenr = disk_bytenr,
419 .num_bytes = num_bytes,
420 .parent = 0,
421 .owning_root = btrfs_root_id(root),
422 .ref_root = btrfs_root_id(root),
423 };
424 btrfs_init_data_ref(&ref, key.objectid,
425 key.offset - extent_offset,
426 0, false);
427 ret = btrfs_free_extent(trans, &ref);
428 if (unlikely(ret)) {
429 btrfs_abort_transaction(trans, ret);
430 break;
431 }
432 args->bytes_found += extent_end - key.offset;
433 }
434
435 if (args->end == extent_end)
436 break;
437
438 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
439 path->slots[0]++;
440 goto next_slot;
441 }
442
443 ret = btrfs_del_items(trans, root, path, del_slot,
444 del_nr);
445 if (unlikely(ret)) {
446 btrfs_abort_transaction(trans, ret);
447 break;
448 }
449
450 del_nr = 0;
451 del_slot = 0;
452
453 btrfs_release_path(path);
454 continue;
455 }
456
457 BUG();
458 }
459
460 if (!ret && del_nr > 0) {
461 /*
462 * Set path->slots[0] to first slot, so that after the delete
463 * if items are move off from our leaf to its immediate left or
464 * right neighbor leafs, we end up with a correct and adjusted
465 * path->slots[0] for our insertion (if args->replace_extent).
466 */
467 path->slots[0] = del_slot;
468 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
469 if (ret)
470 btrfs_abort_transaction(trans, ret);
471 }
472
473 leaf = path->nodes[0];
474 /*
475 * If btrfs_del_items() was called, it might have deleted a leaf, in
476 * which case it unlocked our path, so check path->locks[0] matches a
477 * write lock.
478 */
479 if (!ret && args->replace_extent &&
480 path->locks[0] == BTRFS_WRITE_LOCK &&
481 btrfs_leaf_free_space(leaf) >=
482 sizeof(struct btrfs_item) + args->extent_item_size) {
483
484 key.objectid = ino;
485 key.type = BTRFS_EXTENT_DATA_KEY;
486 key.offset = args->start;
487 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
488 struct btrfs_key slot_key;
489
490 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
491 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
492 path->slots[0]++;
493 }
494 btrfs_setup_item_for_insert(trans, root, path, &key,
495 args->extent_item_size);
496 args->extent_inserted = true;
497 }
498
499 if (!args->path)
500 btrfs_free_path(path);
501 else if (!args->extent_inserted)
502 btrfs_release_path(path);
503out:
504 args->drop_end = found ? min(args->end, last_end) : args->end;
505
506 return ret;
507}
508
509static bool extent_mergeable(struct extent_buffer *leaf, int slot, u64 objectid,
510 u64 bytenr, u64 orig_offset, u64 *start, u64 *end)
511{
512 struct btrfs_file_extent_item *fi;
513 struct btrfs_key key;
514 u64 extent_end;
515
516 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
517 return false;
518
519 btrfs_item_key_to_cpu(leaf, &key, slot);
520 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
521 return false;
522
523 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
524 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
525 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
526 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
527 btrfs_file_extent_compression(leaf, fi) ||
528 btrfs_file_extent_encryption(leaf, fi) ||
529 btrfs_file_extent_other_encoding(leaf, fi))
530 return false;
531
532 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
533 if ((*start && *start != key.offset) || (*end && *end != extent_end))
534 return false;
535
536 *start = key.offset;
537 *end = extent_end;
538 return true;
539}
540
541/*
542 * Mark extent in the range start - end as written.
543 *
544 * This changes extent type from 'pre-allocated' to 'regular'. If only
545 * part of extent is marked as written, the extent will be split into
546 * two or three.
547 */
548int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
549 struct btrfs_inode *inode, u64 start, u64 end)
550{
551 struct btrfs_root *root = inode->root;
552 struct extent_buffer *leaf;
553 BTRFS_PATH_AUTO_FREE(path);
554 struct btrfs_file_extent_item *fi;
555 struct btrfs_ref ref = { 0 };
556 struct btrfs_key key;
557 struct btrfs_key new_key;
558 u64 bytenr;
559 u64 num_bytes;
560 u64 extent_end;
561 u64 orig_offset;
562 u64 other_start;
563 u64 other_end;
564 u64 split;
565 int del_nr = 0;
566 int del_slot = 0;
567 int recow;
568 int ret = 0;
569 u64 ino = btrfs_ino(inode);
570
571 path = btrfs_alloc_path();
572 if (!path)
573 return -ENOMEM;
574again:
575 recow = 0;
576 split = start;
577 key.objectid = ino;
578 key.type = BTRFS_EXTENT_DATA_KEY;
579 key.offset = split;
580
581 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
582 if (ret < 0)
583 goto out;
584 if (ret > 0 && path->slots[0] > 0)
585 path->slots[0]--;
586
587 leaf = path->nodes[0];
588 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
589 if (unlikely(key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)) {
590 ret = -EINVAL;
591 btrfs_abort_transaction(trans, ret);
592 goto out;
593 }
594 fi = btrfs_item_ptr(leaf, path->slots[0],
595 struct btrfs_file_extent_item);
596 if (unlikely(btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC)) {
597 ret = -EINVAL;
598 btrfs_abort_transaction(trans, ret);
599 goto out;
600 }
601 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
602 if (unlikely(key.offset > start || extent_end < end)) {
603 ret = -EINVAL;
604 btrfs_abort_transaction(trans, ret);
605 goto out;
606 }
607
608 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
609 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
610 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
611 memcpy(&new_key, &key, sizeof(new_key));
612
613 if (start == key.offset && end < extent_end) {
614 other_start = 0;
615 other_end = start;
616 if (extent_mergeable(leaf, path->slots[0] - 1,
617 ino, bytenr, orig_offset,
618 &other_start, &other_end)) {
619 new_key.offset = end;
620 btrfs_set_item_key_safe(trans, path, &new_key);
621 fi = btrfs_item_ptr(leaf, path->slots[0],
622 struct btrfs_file_extent_item);
623 btrfs_set_file_extent_generation(leaf, fi,
624 trans->transid);
625 btrfs_set_file_extent_num_bytes(leaf, fi,
626 extent_end - end);
627 btrfs_set_file_extent_offset(leaf, fi,
628 end - orig_offset);
629 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
630 struct btrfs_file_extent_item);
631 btrfs_set_file_extent_generation(leaf, fi,
632 trans->transid);
633 btrfs_set_file_extent_num_bytes(leaf, fi,
634 end - other_start);
635 goto out;
636 }
637 }
638
639 if (start > key.offset && end == extent_end) {
640 other_start = end;
641 other_end = 0;
642 if (extent_mergeable(leaf, path->slots[0] + 1,
643 ino, bytenr, orig_offset,
644 &other_start, &other_end)) {
645 fi = btrfs_item_ptr(leaf, path->slots[0],
646 struct btrfs_file_extent_item);
647 btrfs_set_file_extent_num_bytes(leaf, fi,
648 start - key.offset);
649 btrfs_set_file_extent_generation(leaf, fi,
650 trans->transid);
651 path->slots[0]++;
652 new_key.offset = start;
653 btrfs_set_item_key_safe(trans, path, &new_key);
654
655 fi = btrfs_item_ptr(leaf, path->slots[0],
656 struct btrfs_file_extent_item);
657 btrfs_set_file_extent_generation(leaf, fi,
658 trans->transid);
659 btrfs_set_file_extent_num_bytes(leaf, fi,
660 other_end - start);
661 btrfs_set_file_extent_offset(leaf, fi,
662 start - orig_offset);
663 goto out;
664 }
665 }
666
667 while (start > key.offset || end < extent_end) {
668 if (key.offset == start)
669 split = end;
670
671 new_key.offset = split;
672 ret = btrfs_duplicate_item(trans, root, path, &new_key);
673 if (ret == -EAGAIN) {
674 btrfs_release_path(path);
675 goto again;
676 }
677 if (unlikely(ret < 0)) {
678 btrfs_abort_transaction(trans, ret);
679 goto out;
680 }
681
682 leaf = path->nodes[0];
683 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
684 struct btrfs_file_extent_item);
685 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
686 btrfs_set_file_extent_num_bytes(leaf, fi,
687 split - key.offset);
688
689 fi = btrfs_item_ptr(leaf, path->slots[0],
690 struct btrfs_file_extent_item);
691
692 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
693 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
694 btrfs_set_file_extent_num_bytes(leaf, fi,
695 extent_end - split);
696
697 ref.action = BTRFS_ADD_DELAYED_REF;
698 ref.bytenr = bytenr;
699 ref.num_bytes = num_bytes;
700 ref.parent = 0;
701 ref.owning_root = btrfs_root_id(root);
702 ref.ref_root = btrfs_root_id(root);
703 btrfs_init_data_ref(&ref, ino, orig_offset, 0, false);
704 ret = btrfs_inc_extent_ref(trans, &ref);
705 if (unlikely(ret)) {
706 btrfs_abort_transaction(trans, ret);
707 goto out;
708 }
709
710 if (split == start) {
711 key.offset = start;
712 } else {
713 if (unlikely(start != key.offset)) {
714 ret = -EINVAL;
715 btrfs_abort_transaction(trans, ret);
716 goto out;
717 }
718 path->slots[0]--;
719 extent_end = end;
720 }
721 recow = 1;
722 }
723
724 other_start = end;
725 other_end = 0;
726
727 ref.action = BTRFS_DROP_DELAYED_REF;
728 ref.bytenr = bytenr;
729 ref.num_bytes = num_bytes;
730 ref.parent = 0;
731 ref.owning_root = btrfs_root_id(root);
732 ref.ref_root = btrfs_root_id(root);
733 btrfs_init_data_ref(&ref, ino, orig_offset, 0, false);
734 if (extent_mergeable(leaf, path->slots[0] + 1,
735 ino, bytenr, orig_offset,
736 &other_start, &other_end)) {
737 if (recow) {
738 btrfs_release_path(path);
739 goto again;
740 }
741 extent_end = other_end;
742 del_slot = path->slots[0] + 1;
743 del_nr++;
744 ret = btrfs_free_extent(trans, &ref);
745 if (unlikely(ret)) {
746 btrfs_abort_transaction(trans, ret);
747 goto out;
748 }
749 }
750 other_start = 0;
751 other_end = start;
752 if (extent_mergeable(leaf, path->slots[0] - 1,
753 ino, bytenr, orig_offset,
754 &other_start, &other_end)) {
755 if (recow) {
756 btrfs_release_path(path);
757 goto again;
758 }
759 key.offset = other_start;
760 del_slot = path->slots[0];
761 del_nr++;
762 ret = btrfs_free_extent(trans, &ref);
763 if (unlikely(ret)) {
764 btrfs_abort_transaction(trans, ret);
765 goto out;
766 }
767 }
768 if (del_nr == 0) {
769 fi = btrfs_item_ptr(leaf, path->slots[0],
770 struct btrfs_file_extent_item);
771 btrfs_set_file_extent_type(leaf, fi,
772 BTRFS_FILE_EXTENT_REG);
773 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
774 } else {
775 fi = btrfs_item_ptr(leaf, del_slot - 1,
776 struct btrfs_file_extent_item);
777 btrfs_set_file_extent_type(leaf, fi,
778 BTRFS_FILE_EXTENT_REG);
779 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
780 btrfs_set_file_extent_num_bytes(leaf, fi,
781 extent_end - key.offset);
782
783 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
784 if (unlikely(ret < 0)) {
785 btrfs_abort_transaction(trans, ret);
786 goto out;
787 }
788 }
789out:
790 return ret;
791}
792
793/*
794 * On error return an unlocked folio and the error value
795 * On success return a locked folio and 0
796 */
797static int prepare_uptodate_folio(struct inode *inode, struct folio *folio, u64 pos,
798 u64 len)
799{
800 u64 clamp_start = max_t(u64, pos, folio_pos(folio));
801 u64 clamp_end = min_t(u64, pos + len, folio_next_pos(folio));
802 const u32 blocksize = inode_to_fs_info(inode)->sectorsize;
803 int ret = 0;
804
805 if (folio_test_uptodate(folio))
806 return 0;
807
808 if (IS_ALIGNED(clamp_start, blocksize) &&
809 IS_ALIGNED(clamp_end, blocksize))
810 return 0;
811
812 ret = btrfs_read_folio(NULL, folio);
813 if (ret)
814 return ret;
815 folio_lock(folio);
816 if (unlikely(!folio_test_uptodate(folio))) {
817 folio_unlock(folio);
818 return -EIO;
819 }
820
821 /*
822 * Since btrfs_read_folio() will unlock the folio before it returns,
823 * there is a window where btrfs_release_folio() can be called to
824 * release the page. Here we check both inode mapping and page
825 * private to make sure the page was not released.
826 *
827 * The private flag check is essential for subpage as we need to store
828 * extra bitmap using folio private.
829 */
830 if (folio->mapping != inode->i_mapping || !folio_test_private(folio)) {
831 folio_unlock(folio);
832 return -EAGAIN;
833 }
834 return 0;
835}
836
837static gfp_t get_prepare_gfp_flags(struct inode *inode, bool nowait)
838{
839 gfp_t gfp;
840
841 gfp = btrfs_alloc_write_mask(inode->i_mapping);
842 if (nowait) {
843 gfp &= ~__GFP_DIRECT_RECLAIM;
844 gfp |= GFP_NOWAIT;
845 }
846
847 return gfp;
848}
849
850/*
851 * Get folio into the page cache and lock it.
852 */
853static noinline int prepare_one_folio(struct inode *inode, struct folio **folio_ret,
854 loff_t pos, size_t write_bytes,
855 bool nowait)
856{
857 const pgoff_t index = pos >> PAGE_SHIFT;
858 gfp_t mask = get_prepare_gfp_flags(inode, nowait);
859 fgf_t fgp_flags = (nowait ? FGP_WRITEBEGIN | FGP_NOWAIT : FGP_WRITEBEGIN) |
860 fgf_set_order(write_bytes);
861 struct folio *folio;
862 int ret = 0;
863
864again:
865 folio = __filemap_get_folio(inode->i_mapping, index, fgp_flags, mask);
866 if (IS_ERR(folio))
867 return PTR_ERR(folio);
868
869 ret = set_folio_extent_mapped(folio);
870 if (ret < 0) {
871 folio_unlock(folio);
872 folio_put(folio);
873 return ret;
874 }
875 ret = prepare_uptodate_folio(inode, folio, pos, write_bytes);
876 if (ret) {
877 /* The folio is already unlocked. */
878 folio_put(folio);
879 if (!nowait && ret == -EAGAIN) {
880 ret = 0;
881 goto again;
882 }
883 return ret;
884 }
885 *folio_ret = folio;
886 return 0;
887}
888
889/*
890 * Locks the extent and properly waits for data=ordered extents to finish
891 * before allowing the folios to be modified if need.
892 *
893 * Return:
894 * 1 - the extent is locked
895 * 0 - the extent is not locked, and everything is OK
896 * -EAGAIN - need to prepare the folios again
897 */
898static noinline int
899lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct folio *folio,
900 loff_t pos, size_t write_bytes,
901 u64 *lockstart, u64 *lockend, bool nowait,
902 struct extent_state **cached_state)
903{
904 struct btrfs_fs_info *fs_info = inode->root->fs_info;
905 u64 start_pos;
906 u64 last_pos;
907 int ret = 0;
908
909 start_pos = round_down(pos, fs_info->sectorsize);
910 last_pos = round_up(pos + write_bytes, fs_info->sectorsize) - 1;
911
912 if (start_pos < inode->vfs_inode.i_size) {
913 struct btrfs_ordered_extent *ordered;
914
915 if (nowait) {
916 if (!btrfs_try_lock_extent(&inode->io_tree, start_pos,
917 last_pos, cached_state)) {
918 folio_unlock(folio);
919 folio_put(folio);
920 return -EAGAIN;
921 }
922 } else {
923 btrfs_lock_extent(&inode->io_tree, start_pos, last_pos,
924 cached_state);
925 }
926
927 ordered = btrfs_lookup_ordered_range(inode, start_pos,
928 last_pos - start_pos + 1);
929 if (ordered &&
930 ordered->file_offset + ordered->num_bytes > start_pos &&
931 ordered->file_offset <= last_pos) {
932 btrfs_unlock_extent(&inode->io_tree, start_pos, last_pos,
933 cached_state);
934 folio_unlock(folio);
935 folio_put(folio);
936 btrfs_start_ordered_extent(ordered);
937 btrfs_put_ordered_extent(ordered);
938 return -EAGAIN;
939 }
940 if (ordered)
941 btrfs_put_ordered_extent(ordered);
942
943 *lockstart = start_pos;
944 *lockend = last_pos;
945 ret = 1;
946 }
947
948 /*
949 * We should be called after prepare_one_folio() which should have locked
950 * all pages in the range.
951 */
952 WARN_ON(!folio_test_locked(folio));
953
954 return ret;
955}
956
957/*
958 * Check if we can do nocow write into the range [@pos, @pos + @write_bytes)
959 *
960 * @pos: File offset.
961 * @write_bytes: The length to write, will be updated to the nocow writeable
962 * range.
963 * @nowait: Indicate if we can block or not (non-blocking IO context).
964 *
965 * This function will flush ordered extents in the range to ensure proper
966 * nocow checks.
967 *
968 * Return:
969 * > 0 If we can nocow, and updates @write_bytes.
970 * 0 If we can't do a nocow write.
971 * -EAGAIN If we can't do a nocow write because snapshotting of the inode's
972 * root is in progress or because we are in a non-blocking IO
973 * context and need to block (@nowait is true).
974 * < 0 If an error happened.
975 *
976 * NOTE: Callers need to call btrfs_check_nocow_unlock() if we return > 0.
977 */
978int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos,
979 size_t *write_bytes, bool nowait)
980{
981 struct btrfs_fs_info *fs_info = inode->root->fs_info;
982 struct btrfs_root *root = inode->root;
983 struct extent_state *cached_state = NULL;
984 u64 lockstart, lockend;
985 u64 cur_offset;
986 int ret = 0;
987
988 if (!(inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
989 return 0;
990
991 if (!btrfs_drew_try_write_lock(&root->snapshot_lock))
992 return -EAGAIN;
993
994 lockstart = round_down(pos, fs_info->sectorsize);
995 lockend = round_up(pos + *write_bytes,
996 fs_info->sectorsize) - 1;
997
998 if (nowait) {
999 if (!btrfs_try_lock_ordered_range(inode, lockstart, lockend,
1000 &cached_state)) {
1001 btrfs_drew_write_unlock(&root->snapshot_lock);
1002 return -EAGAIN;
1003 }
1004 } else {
1005 btrfs_lock_and_flush_ordered_range(inode, lockstart, lockend,
1006 &cached_state);
1007 }
1008
1009 cur_offset = lockstart;
1010 while (cur_offset < lockend) {
1011 u64 num_bytes = lockend - cur_offset + 1;
1012
1013 ret = can_nocow_extent(inode, cur_offset, &num_bytes, NULL, nowait);
1014 if (ret <= 0) {
1015 /*
1016 * If cur_offset == lockstart it means we haven't found
1017 * any extent against which we can NOCOW, so unlock the
1018 * snapshot lock.
1019 */
1020 if (cur_offset == lockstart)
1021 btrfs_drew_write_unlock(&root->snapshot_lock);
1022 break;
1023 }
1024 cur_offset += num_bytes;
1025 }
1026
1027 btrfs_unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
1028
1029 /*
1030 * cur_offset > lockstart means there's at least a partial range we can
1031 * NOCOW, and that range can cover one or more extents.
1032 */
1033 if (cur_offset > lockstart) {
1034 *write_bytes = min_t(size_t, *write_bytes, cur_offset - pos);
1035 return 1;
1036 }
1037
1038 return ret;
1039}
1040
1041void btrfs_check_nocow_unlock(struct btrfs_inode *inode)
1042{
1043 btrfs_drew_write_unlock(&inode->root->snapshot_lock);
1044}
1045
1046int btrfs_write_check(struct kiocb *iocb, size_t count)
1047{
1048 struct file *file = iocb->ki_filp;
1049 struct inode *inode = file_inode(file);
1050 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1051 loff_t pos = iocb->ki_pos;
1052 int ret;
1053 loff_t oldsize;
1054
1055 /*
1056 * Quickly bail out on NOWAIT writes if we don't have the nodatacow or
1057 * prealloc flags, as without those flags we always have to COW. We will
1058 * later check if we can really COW into the target range (using
1059 * can_nocow_extent() at btrfs_get_blocks_direct_write()).
1060 */
1061 if ((iocb->ki_flags & IOCB_NOWAIT) &&
1062 !(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1063 return -EAGAIN;
1064
1065 ret = file_remove_privs(file);
1066 if (ret)
1067 return ret;
1068
1069 /*
1070 * We reserve space for updating the inode when we reserve space for the
1071 * extent we are going to write, so we will enospc out there. We don't
1072 * need to start yet another transaction to update the inode as we will
1073 * update the inode when we finish writing whatever data we write.
1074 */
1075 if (!IS_NOCMTIME(inode)) {
1076 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1077 inode_inc_iversion(inode);
1078 }
1079
1080 oldsize = i_size_read(inode);
1081 if (pos > oldsize) {
1082 /* Expand hole size to cover write data, preventing empty gap */
1083 loff_t end_pos = round_up(pos + count, fs_info->sectorsize);
1084
1085 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, end_pos);
1086 if (ret)
1087 return ret;
1088 }
1089
1090 return 0;
1091}
1092
1093static void release_space(struct btrfs_inode *inode, struct extent_changeset *data_reserved,
1094 u64 start, u64 len, bool only_release_metadata)
1095{
1096 if (len == 0)
1097 return;
1098
1099 if (only_release_metadata) {
1100 btrfs_check_nocow_unlock(inode);
1101 btrfs_delalloc_release_metadata(inode, len, true);
1102 } else {
1103 const struct btrfs_fs_info *fs_info = inode->root->fs_info;
1104
1105 btrfs_delalloc_release_space(inode, data_reserved,
1106 round_down(start, fs_info->sectorsize),
1107 len, true);
1108 }
1109}
1110
1111/*
1112 * Reserve data and metadata space for this buffered write range.
1113 *
1114 * Return >0 for the number of bytes reserved, which is always block aligned.
1115 * Return <0 for error.
1116 */
1117static ssize_t reserve_space(struct btrfs_inode *inode,
1118 struct extent_changeset **data_reserved,
1119 u64 start, size_t *len, bool nowait,
1120 bool *only_release_metadata)
1121{
1122 const struct btrfs_fs_info *fs_info = inode->root->fs_info;
1123 const unsigned int block_offset = (start & (fs_info->sectorsize - 1));
1124 size_t reserve_bytes;
1125 int ret;
1126
1127 ret = btrfs_check_data_free_space(inode, data_reserved, start, *len, nowait);
1128 if (ret < 0) {
1129 int can_nocow;
1130
1131 if (nowait && (ret == -ENOSPC || ret == -EAGAIN))
1132 return -EAGAIN;
1133
1134 /*
1135 * If we don't have to COW at the offset, reserve metadata only.
1136 * write_bytes may get smaller than requested here.
1137 */
1138 can_nocow = btrfs_check_nocow_lock(inode, start, len, nowait);
1139 if (can_nocow < 0)
1140 ret = can_nocow;
1141 if (can_nocow > 0)
1142 ret = 0;
1143 if (ret)
1144 return ret;
1145 *only_release_metadata = true;
1146 }
1147
1148 reserve_bytes = round_up(*len + block_offset, fs_info->sectorsize);
1149 WARN_ON(reserve_bytes == 0);
1150 ret = btrfs_delalloc_reserve_metadata(inode, reserve_bytes,
1151 reserve_bytes, nowait);
1152 if (ret) {
1153 if (!*only_release_metadata)
1154 btrfs_free_reserved_data_space(inode, *data_reserved,
1155 start, *len);
1156 else
1157 btrfs_check_nocow_unlock(inode);
1158
1159 if (nowait && ret == -ENOSPC)
1160 ret = -EAGAIN;
1161 return ret;
1162 }
1163 return reserve_bytes;
1164}
1165
1166/* Shrink the reserved data and metadata space from @reserved_len to @new_len. */
1167static void shrink_reserved_space(struct btrfs_inode *inode,
1168 struct extent_changeset *data_reserved,
1169 u64 reserved_start, u64 reserved_len,
1170 u64 new_len, bool only_release_metadata)
1171{
1172 const u64 diff = reserved_len - new_len;
1173
1174 ASSERT(new_len <= reserved_len);
1175 btrfs_delalloc_shrink_extents(inode, reserved_len, new_len);
1176 if (only_release_metadata)
1177 btrfs_delalloc_release_metadata(inode, diff, true);
1178 else
1179 btrfs_delalloc_release_space(inode, data_reserved,
1180 reserved_start + new_len, diff, true);
1181}
1182
1183/* Calculate the maximum amount of bytes we can write into one folio. */
1184static size_t calc_write_bytes(const struct btrfs_inode *inode,
1185 const struct iov_iter *iter, u64 start)
1186{
1187 const size_t max_folio_size = mapping_max_folio_size(inode->vfs_inode.i_mapping);
1188
1189 return min(max_folio_size - (start & (max_folio_size - 1)),
1190 iov_iter_count(iter));
1191}
1192
1193/*
1194 * Do the heavy-lifting work to copy one range into one folio of the page cache.
1195 *
1196 * Return > 0 in case we copied all bytes or just some of them.
1197 * Return 0 if no bytes were copied, in which case the caller should retry.
1198 * Return <0 on error.
1199 */
1200static int copy_one_range(struct btrfs_inode *inode, struct iov_iter *iter,
1201 struct extent_changeset **data_reserved, u64 start,
1202 bool nowait)
1203{
1204 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1205 struct extent_state *cached_state = NULL;
1206 size_t write_bytes = calc_write_bytes(inode, iter, start);
1207 size_t copied;
1208 const u64 reserved_start = round_down(start, fs_info->sectorsize);
1209 u64 reserved_len;
1210 struct folio *folio = NULL;
1211 int extents_locked;
1212 u64 lockstart;
1213 u64 lockend;
1214 bool only_release_metadata = false;
1215 const unsigned int bdp_flags = (nowait ? BDP_ASYNC : 0);
1216 int ret;
1217
1218 /*
1219 * Fault all pages before locking them in prepare_one_folio() to avoid
1220 * recursive lock.
1221 */
1222 if (unlikely(fault_in_iov_iter_readable(iter, write_bytes)))
1223 return -EFAULT;
1224 extent_changeset_release(*data_reserved);
1225 ret = reserve_space(inode, data_reserved, start, &write_bytes, nowait,
1226 &only_release_metadata);
1227 if (ret < 0)
1228 return ret;
1229 reserved_len = ret;
1230 /* Write range must be inside the reserved range. */
1231 ASSERT(reserved_start <= start);
1232 ASSERT(start + write_bytes <= reserved_start + reserved_len);
1233
1234again:
1235 ret = balance_dirty_pages_ratelimited_flags(inode->vfs_inode.i_mapping,
1236 bdp_flags);
1237 if (ret) {
1238 btrfs_delalloc_release_extents(inode, reserved_len);
1239 release_space(inode, *data_reserved, reserved_start, reserved_len,
1240 only_release_metadata);
1241 return ret;
1242 }
1243
1244 ret = prepare_one_folio(&inode->vfs_inode, &folio, start, write_bytes, false);
1245 if (ret) {
1246 btrfs_delalloc_release_extents(inode, reserved_len);
1247 release_space(inode, *data_reserved, reserved_start, reserved_len,
1248 only_release_metadata);
1249 return ret;
1250 }
1251
1252 /*
1253 * The reserved range goes beyond the current folio, shrink the reserved
1254 * space to the folio boundary.
1255 */
1256 if (reserved_start + reserved_len > folio_next_pos(folio)) {
1257 const u64 last_block = folio_next_pos(folio);
1258
1259 shrink_reserved_space(inode, *data_reserved, reserved_start,
1260 reserved_len, last_block - reserved_start,
1261 only_release_metadata);
1262 write_bytes = last_block - start;
1263 reserved_len = last_block - reserved_start;
1264 }
1265
1266 extents_locked = lock_and_cleanup_extent_if_need(inode, folio, start,
1267 write_bytes, &lockstart,
1268 &lockend, nowait,
1269 &cached_state);
1270 if (extents_locked < 0) {
1271 if (!nowait && extents_locked == -EAGAIN)
1272 goto again;
1273
1274 btrfs_delalloc_release_extents(inode, reserved_len);
1275 release_space(inode, *data_reserved, reserved_start, reserved_len,
1276 only_release_metadata);
1277 ret = extents_locked;
1278 return ret;
1279 }
1280
1281 copied = copy_folio_from_iter_atomic(folio, offset_in_folio(folio, start),
1282 write_bytes, iter);
1283 flush_dcache_folio(folio);
1284
1285 if (unlikely(copied < write_bytes)) {
1286 u64 last_block;
1287
1288 /*
1289 * The original write range doesn't need an uptodate folio as
1290 * the range is block aligned. But now a short copy happened.
1291 * We cannot handle it without an uptodate folio.
1292 *
1293 * So just revert the range and we will retry.
1294 */
1295 if (!folio_test_uptodate(folio)) {
1296 iov_iter_revert(iter, copied);
1297 copied = 0;
1298 }
1299
1300 /* No copied bytes, unlock, release reserved space and exit. */
1301 if (copied == 0) {
1302 if (extents_locked)
1303 btrfs_unlock_extent(&inode->io_tree, lockstart, lockend,
1304 &cached_state);
1305 else
1306 btrfs_free_extent_state(cached_state);
1307 btrfs_delalloc_release_extents(inode, reserved_len);
1308 release_space(inode, *data_reserved, reserved_start, reserved_len,
1309 only_release_metadata);
1310 btrfs_drop_folio(fs_info, folio, start, copied);
1311 return 0;
1312 }
1313
1314 /* Release the reserved space beyond the last block. */
1315 last_block = round_up(start + copied, fs_info->sectorsize);
1316
1317 shrink_reserved_space(inode, *data_reserved, reserved_start,
1318 reserved_len, last_block - reserved_start,
1319 only_release_metadata);
1320 reserved_len = last_block - reserved_start;
1321 }
1322
1323 ret = btrfs_dirty_folio(inode, folio, start, copied, &cached_state,
1324 only_release_metadata);
1325 /*
1326 * If we have not locked the extent range, because the range's start
1327 * offset is >= i_size, we might still have a non-NULL cached extent
1328 * state, acquired while marking the extent range as delalloc through
1329 * btrfs_dirty_page(). Therefore free any possible cached extent state
1330 * to avoid a memory leak.
1331 */
1332 if (extents_locked)
1333 btrfs_unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
1334 else
1335 btrfs_free_extent_state(cached_state);
1336
1337 btrfs_delalloc_release_extents(inode, reserved_len);
1338 if (ret) {
1339 btrfs_drop_folio(fs_info, folio, start, copied);
1340 release_space(inode, *data_reserved, reserved_start, reserved_len,
1341 only_release_metadata);
1342 return ret;
1343 }
1344 if (only_release_metadata)
1345 btrfs_check_nocow_unlock(inode);
1346
1347 btrfs_drop_folio(fs_info, folio, start, copied);
1348 return copied;
1349}
1350
1351ssize_t btrfs_buffered_write(struct kiocb *iocb, struct iov_iter *iter)
1352{
1353 struct file *file = iocb->ki_filp;
1354 loff_t pos;
1355 struct inode *inode = file_inode(file);
1356 struct extent_changeset *data_reserved = NULL;
1357 size_t num_written = 0;
1358 ssize_t ret;
1359 loff_t old_isize;
1360 unsigned int ilock_flags = 0;
1361 const bool nowait = (iocb->ki_flags & IOCB_NOWAIT);
1362
1363 if (nowait)
1364 ilock_flags |= BTRFS_ILOCK_TRY;
1365
1366 ret = btrfs_inode_lock(BTRFS_I(inode), ilock_flags);
1367 if (ret < 0)
1368 return ret;
1369
1370 /*
1371 * We can only trust the isize with inode lock held, or it can race with
1372 * other buffered writes and cause incorrect call of
1373 * pagecache_isize_extended() to overwrite existing data.
1374 */
1375 old_isize = i_size_read(inode);
1376
1377 ret = generic_write_checks(iocb, iter);
1378 if (ret <= 0)
1379 goto out;
1380
1381 ret = btrfs_write_check(iocb, ret);
1382 if (ret < 0)
1383 goto out;
1384
1385 pos = iocb->ki_pos;
1386 while (iov_iter_count(iter) > 0) {
1387 ret = copy_one_range(BTRFS_I(inode), iter, &data_reserved, pos, nowait);
1388 if (ret < 0)
1389 break;
1390 pos += ret;
1391 num_written += ret;
1392 cond_resched();
1393 }
1394
1395 extent_changeset_free(data_reserved);
1396 if (num_written > 0) {
1397 pagecache_isize_extended(inode, old_isize, iocb->ki_pos);
1398 iocb->ki_pos += num_written;
1399 }
1400out:
1401 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1402 return num_written ? num_written : ret;
1403}
1404
1405static ssize_t btrfs_encoded_write(struct kiocb *iocb, struct iov_iter *from,
1406 const struct btrfs_ioctl_encoded_io_args *encoded)
1407{
1408 struct file *file = iocb->ki_filp;
1409 struct inode *inode = file_inode(file);
1410 loff_t count;
1411 ssize_t ret;
1412
1413 btrfs_inode_lock(BTRFS_I(inode), 0);
1414 count = encoded->len;
1415 ret = generic_write_checks_count(iocb, &count);
1416 if (ret == 0 && count != encoded->len) {
1417 /*
1418 * The write got truncated by generic_write_checks_count(). We
1419 * can't do a partial encoded write.
1420 */
1421 ret = -EFBIG;
1422 }
1423 if (ret || encoded->len == 0)
1424 goto out;
1425
1426 ret = btrfs_write_check(iocb, encoded->len);
1427 if (ret < 0)
1428 goto out;
1429
1430 ret = btrfs_do_encoded_write(iocb, from, encoded);
1431out:
1432 btrfs_inode_unlock(BTRFS_I(inode), 0);
1433 return ret;
1434}
1435
1436ssize_t btrfs_do_write_iter(struct kiocb *iocb, struct iov_iter *from,
1437 const struct btrfs_ioctl_encoded_io_args *encoded)
1438{
1439 struct file *file = iocb->ki_filp;
1440 struct btrfs_inode *inode = BTRFS_I(file_inode(file));
1441 ssize_t num_written, num_sync;
1442
1443 if (unlikely(btrfs_is_shutdown(inode->root->fs_info)))
1444 return -EIO;
1445 /*
1446 * If the fs flips readonly due to some impossible error, although we
1447 * have opened a file as writable, we have to stop this write operation
1448 * to ensure consistency.
1449 */
1450 if (BTRFS_FS_ERROR(inode->root->fs_info))
1451 return -EROFS;
1452
1453 if (encoded && (iocb->ki_flags & IOCB_NOWAIT))
1454 return -EOPNOTSUPP;
1455
1456 if (encoded) {
1457 num_written = btrfs_encoded_write(iocb, from, encoded);
1458 num_sync = encoded->len;
1459 } else if (iocb->ki_flags & IOCB_DIRECT) {
1460 num_written = btrfs_direct_write(iocb, from);
1461 num_sync = num_written;
1462 } else {
1463 num_written = btrfs_buffered_write(iocb, from);
1464 num_sync = num_written;
1465 }
1466
1467 btrfs_set_inode_last_sub_trans(inode);
1468
1469 if (num_sync > 0) {
1470 num_sync = generic_write_sync(iocb, num_sync);
1471 if (num_sync < 0)
1472 num_written = num_sync;
1473 }
1474
1475 return num_written;
1476}
1477
1478static ssize_t btrfs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1479{
1480 return btrfs_do_write_iter(iocb, from, NULL);
1481}
1482
1483int btrfs_release_file(struct inode *inode, struct file *filp)
1484{
1485 struct btrfs_file_private *private = filp->private_data;
1486
1487 if (private) {
1488 kfree(private->filldir_buf);
1489 btrfs_free_extent_state(private->llseek_cached_state);
1490 kfree(private);
1491 filp->private_data = NULL;
1492 }
1493
1494 /*
1495 * Set by setattr when we are about to truncate a file from a non-zero
1496 * size to a zero size. This tries to flush down new bytes that may
1497 * have been written if the application were using truncate to replace
1498 * a file in place.
1499 */
1500 if (test_and_clear_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
1501 &BTRFS_I(inode)->runtime_flags))
1502 filemap_flush(inode->i_mapping);
1503 return 0;
1504}
1505
1506static int start_ordered_ops(struct btrfs_inode *inode, loff_t start, loff_t end)
1507{
1508 int ret;
1509 struct blk_plug plug;
1510
1511 /*
1512 * This is only called in fsync, which would do synchronous writes, so
1513 * a plug can merge adjacent IOs as much as possible. Esp. in case of
1514 * multiple disks using raid profile, a large IO can be split to
1515 * several segments of stripe length (currently 64K).
1516 */
1517 blk_start_plug(&plug);
1518 ret = btrfs_fdatawrite_range(inode, start, end);
1519 blk_finish_plug(&plug);
1520
1521 return ret;
1522}
1523
1524static inline bool skip_inode_logging(const struct btrfs_log_ctx *ctx)
1525{
1526 struct btrfs_inode *inode = ctx->inode;
1527 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1528
1529 if (btrfs_inode_in_log(inode, btrfs_get_fs_generation(fs_info)) &&
1530 list_empty(&ctx->ordered_extents))
1531 return true;
1532
1533 /*
1534 * If we are doing a fast fsync we can not bail out if the inode's
1535 * last_trans is <= then the last committed transaction, because we only
1536 * update the last_trans of the inode during ordered extent completion,
1537 * and for a fast fsync we don't wait for that, we only wait for the
1538 * writeback to complete.
1539 */
1540 if (inode->last_trans <= btrfs_get_last_trans_committed(fs_info) &&
1541 (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) ||
1542 list_empty(&ctx->ordered_extents)))
1543 return true;
1544
1545 return false;
1546}
1547
1548/*
1549 * fsync call for both files and directories. This logs the inode into
1550 * the tree log instead of forcing full commits whenever possible.
1551 *
1552 * It needs to call filemap_fdatawait so that all ordered extent updates are
1553 * in the metadata btree are up to date for copying to the log.
1554 *
1555 * It drops the inode mutex before doing the tree log commit. This is an
1556 * important optimization for directories because holding the mutex prevents
1557 * new operations on the dir while we write to disk.
1558 */
1559int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
1560{
1561 struct dentry *dentry = file_dentry(file);
1562 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
1563 struct btrfs_root *root = inode->root;
1564 struct btrfs_fs_info *fs_info = root->fs_info;
1565 struct btrfs_trans_handle *trans;
1566 struct btrfs_log_ctx ctx;
1567 int ret = 0, err;
1568 u64 len;
1569 bool full_sync;
1570 bool skip_ilock = false;
1571
1572 if (current->journal_info == BTRFS_TRANS_DIO_WRITE_STUB) {
1573 skip_ilock = true;
1574 current->journal_info = NULL;
1575 btrfs_assert_inode_locked(inode);
1576 }
1577
1578 trace_btrfs_sync_file(file, datasync);
1579
1580 btrfs_init_log_ctx(&ctx, inode);
1581
1582 /*
1583 * Always set the range to a full range, otherwise we can get into
1584 * several problems, from missing file extent items to represent holes
1585 * when not using the NO_HOLES feature, to log tree corruption due to
1586 * races between hole detection during logging and completion of ordered
1587 * extents outside the range, to missing checksums due to ordered extents
1588 * for which we flushed only a subset of their pages.
1589 */
1590 start = 0;
1591 end = LLONG_MAX;
1592 len = (u64)LLONG_MAX + 1;
1593
1594 /*
1595 * We write the dirty pages in the range and wait until they complete
1596 * out of the ->i_mutex. If so, we can flush the dirty pages by
1597 * multi-task, and make the performance up. See
1598 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
1599 */
1600 ret = start_ordered_ops(inode, start, end);
1601 if (ret)
1602 goto out;
1603
1604 if (skip_ilock)
1605 down_write(&inode->i_mmap_lock);
1606 else
1607 btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP);
1608
1609 atomic_inc(&root->log_batch);
1610
1611 /*
1612 * Before we acquired the inode's lock and the mmap lock, someone may
1613 * have dirtied more pages in the target range. We need to make sure
1614 * that writeback for any such pages does not start while we are logging
1615 * the inode, because if it does, any of the following might happen when
1616 * we are not doing a full inode sync:
1617 *
1618 * 1) We log an extent after its writeback finishes but before its
1619 * checksums are added to the csum tree, leading to -EIO errors
1620 * when attempting to read the extent after a log replay.
1621 *
1622 * 2) We can end up logging an extent before its writeback finishes.
1623 * Therefore after the log replay we will have a file extent item
1624 * pointing to an unwritten extent (and no data checksums as well).
1625 *
1626 * So trigger writeback for any eventual new dirty pages and then we
1627 * wait for all ordered extents to complete below.
1628 */
1629 ret = start_ordered_ops(inode, start, end);
1630 if (ret) {
1631 if (skip_ilock)
1632 up_write(&inode->i_mmap_lock);
1633 else
1634 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
1635 goto out;
1636 }
1637
1638 /*
1639 * Always check for the full sync flag while holding the inode's lock,
1640 * to avoid races with other tasks. The flag must be either set all the
1641 * time during logging or always off all the time while logging.
1642 * We check the flag here after starting delalloc above, because when
1643 * running delalloc the full sync flag may be set if we need to drop
1644 * extra extent map ranges due to temporary memory allocation failures.
1645 */
1646 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
1647
1648 /*
1649 * We have to do this here to avoid the priority inversion of waiting on
1650 * IO of a lower priority task while holding a transaction open.
1651 *
1652 * For a full fsync we wait for the ordered extents to complete while
1653 * for a fast fsync we wait just for writeback to complete, and then
1654 * attach the ordered extents to the transaction so that a transaction
1655 * commit waits for their completion, to avoid data loss if we fsync,
1656 * the current transaction commits before the ordered extents complete
1657 * and a power failure happens right after that.
1658 *
1659 * For zoned filesystem, if a write IO uses a ZONE_APPEND command, the
1660 * logical address recorded in the ordered extent may change. We need
1661 * to wait for the IO to stabilize the logical address.
1662 */
1663 if (full_sync || btrfs_is_zoned(fs_info)) {
1664 ret = btrfs_wait_ordered_range(inode, start, len);
1665 clear_bit(BTRFS_INODE_COW_WRITE_ERROR, &inode->runtime_flags);
1666 } else {
1667 /*
1668 * Get our ordered extents as soon as possible to avoid doing
1669 * checksum lookups in the csum tree, and use instead the
1670 * checksums attached to the ordered extents.
1671 */
1672 btrfs_get_ordered_extents_for_logging(inode, &ctx.ordered_extents);
1673 ret = filemap_fdatawait_range(inode->vfs_inode.i_mapping, start, end);
1674 if (ret)
1675 goto out_release_extents;
1676
1677 /*
1678 * Check and clear the BTRFS_INODE_COW_WRITE_ERROR now after
1679 * starting and waiting for writeback, because for buffered IO
1680 * it may have been set during the end IO callback
1681 * (end_bbio_data_write() -> btrfs_finish_ordered_extent()) in
1682 * case an error happened and we need to wait for ordered
1683 * extents to complete so that any extent maps that point to
1684 * unwritten locations are dropped and we don't log them.
1685 */
1686 if (test_and_clear_bit(BTRFS_INODE_COW_WRITE_ERROR, &inode->runtime_flags))
1687 ret = btrfs_wait_ordered_range(inode, start, len);
1688 }
1689
1690 if (ret)
1691 goto out_release_extents;
1692
1693 atomic_inc(&root->log_batch);
1694
1695 if (skip_inode_logging(&ctx)) {
1696 /*
1697 * We've had everything committed since the last time we were
1698 * modified so clear this flag in case it was set for whatever
1699 * reason, it's no longer relevant.
1700 */
1701 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
1702 /*
1703 * An ordered extent might have started before and completed
1704 * already with io errors, in which case the inode was not
1705 * updated and we end up here. So check the inode's mapping
1706 * for any errors that might have happened since we last
1707 * checked called fsync.
1708 */
1709 ret = filemap_check_wb_err(inode->vfs_inode.i_mapping, file->f_wb_err);
1710 goto out_release_extents;
1711 }
1712
1713 btrfs_init_log_ctx_scratch_eb(&ctx);
1714
1715 /*
1716 * We use start here because we will need to wait on the IO to complete
1717 * in btrfs_sync_log, which could require joining a transaction (for
1718 * example checking cross references in the nocow path). If we use join
1719 * here we could get into a situation where we're waiting on IO to
1720 * happen that is blocked on a transaction trying to commit. With start
1721 * we inc the extwriter counter, so we wait for all extwriters to exit
1722 * before we start blocking joiners. This comment is to keep somebody
1723 * from thinking they are super smart and changing this to
1724 * btrfs_join_transaction *cough*Josef*cough*.
1725 */
1726 trans = btrfs_start_transaction(root, 0);
1727 if (IS_ERR(trans)) {
1728 ret = PTR_ERR(trans);
1729 goto out_release_extents;
1730 }
1731 trans->in_fsync = true;
1732
1733 ret = btrfs_log_dentry_safe(trans, dentry, &ctx);
1734 /*
1735 * Scratch eb no longer needed, release before syncing log or commit
1736 * transaction, to avoid holding unnecessary memory during such long
1737 * operations.
1738 */
1739 if (ctx.scratch_eb) {
1740 free_extent_buffer(ctx.scratch_eb);
1741 ctx.scratch_eb = NULL;
1742 }
1743 btrfs_release_log_ctx_extents(&ctx);
1744 if (ret < 0) {
1745 /* Fallthrough and commit/free transaction. */
1746 ret = BTRFS_LOG_FORCE_COMMIT;
1747 }
1748
1749 /* we've logged all the items and now have a consistent
1750 * version of the file in the log. It is possible that
1751 * someone will come in and modify the file, but that's
1752 * fine because the log is consistent on disk, and we
1753 * have references to all of the file's extents
1754 *
1755 * It is possible that someone will come in and log the
1756 * file again, but that will end up using the synchronization
1757 * inside btrfs_sync_log to keep things safe.
1758 */
1759 if (skip_ilock)
1760 up_write(&inode->i_mmap_lock);
1761 else
1762 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
1763
1764 if (ret == BTRFS_NO_LOG_SYNC) {
1765 ret = btrfs_end_transaction(trans);
1766 goto out;
1767 }
1768
1769 /* We successfully logged the inode, attempt to sync the log. */
1770 if (!ret) {
1771 ret = btrfs_sync_log(trans, root, &ctx);
1772 if (!ret) {
1773 ret = btrfs_end_transaction(trans);
1774 goto out;
1775 }
1776 }
1777
1778 /*
1779 * At this point we need to commit the transaction because we had
1780 * btrfs_need_log_full_commit() or some other error.
1781 *
1782 * If we didn't do a full sync we have to stop the trans handle, wait on
1783 * the ordered extents, start it again and commit the transaction. If
1784 * we attempt to wait on the ordered extents here we could deadlock with
1785 * something like fallocate() that is holding the extent lock trying to
1786 * start a transaction while some other thread is trying to commit the
1787 * transaction while we (fsync) are currently holding the transaction
1788 * open.
1789 */
1790 if (!full_sync) {
1791 ret = btrfs_end_transaction(trans);
1792 if (ret)
1793 goto out;
1794 ret = btrfs_wait_ordered_range(inode, start, len);
1795 if (ret)
1796 goto out;
1797
1798 /*
1799 * This is safe to use here because we're only interested in
1800 * making sure the transaction that had the ordered extents is
1801 * committed. We aren't waiting on anything past this point,
1802 * we're purely getting the transaction and committing it.
1803 */
1804 trans = btrfs_attach_transaction_barrier(root);
1805 if (IS_ERR(trans)) {
1806 ret = PTR_ERR(trans);
1807
1808 /*
1809 * We committed the transaction and there's no currently
1810 * running transaction, this means everything we care
1811 * about made it to disk and we are done.
1812 */
1813 if (ret == -ENOENT)
1814 ret = 0;
1815 goto out;
1816 }
1817 }
1818
1819 ret = btrfs_commit_transaction(trans);
1820out:
1821 free_extent_buffer(ctx.scratch_eb);
1822 ASSERT(list_empty(&ctx.list));
1823 ASSERT(list_empty(&ctx.conflict_inodes));
1824 err = file_check_and_advance_wb_err(file);
1825 if (!ret)
1826 ret = err;
1827 return ret > 0 ? -EIO : ret;
1828
1829out_release_extents:
1830 btrfs_release_log_ctx_extents(&ctx);
1831 if (skip_ilock)
1832 up_write(&inode->i_mmap_lock);
1833 else
1834 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
1835 goto out;
1836}
1837
1838/*
1839 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
1840 * called from a page fault handler when a page is first dirtied. Hence we must
1841 * be careful to check for EOF conditions here. We set the page up correctly
1842 * for a written page which means we get ENOSPC checking when writing into
1843 * holes and correct delalloc and unwritten extent mapping on filesystems that
1844 * support these features.
1845 *
1846 * We are not allowed to take the i_mutex here so we have to play games to
1847 * protect against truncate races as the page could now be beyond EOF. Because
1848 * truncate_setsize() writes the inode size before removing pages, once we have
1849 * the page lock we can determine safely if the page is beyond EOF. If it is not
1850 * beyond EOF, then the page is guaranteed safe against truncation until we
1851 * unlock the page.
1852 */
1853static vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
1854{
1855 struct page *page = vmf->page;
1856 struct folio *folio = page_folio(page);
1857 struct btrfs_inode *inode = BTRFS_I(file_inode(vmf->vma->vm_file));
1858 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1859 struct extent_io_tree *io_tree = &inode->io_tree;
1860 struct btrfs_ordered_extent *ordered;
1861 struct extent_state *cached_state = NULL;
1862 struct extent_changeset *data_reserved = NULL;
1863 unsigned long zero_start;
1864 loff_t size;
1865 size_t fsize = folio_size(folio);
1866 int ret;
1867 bool only_release_metadata = false;
1868 u64 reserved_space;
1869 u64 page_start;
1870 u64 page_end;
1871 u64 end;
1872
1873 reserved_space = fsize;
1874
1875 sb_start_pagefault(inode->vfs_inode.i_sb);
1876 page_start = folio_pos(folio);
1877 page_end = page_start + folio_size(folio) - 1;
1878 end = page_end;
1879
1880 /*
1881 * Reserving delalloc space after obtaining the page lock can lead to
1882 * deadlock. For example, if a dirty page is locked by this function
1883 * and the call to btrfs_delalloc_reserve_space() ends up triggering
1884 * dirty page write out, then the btrfs_writepages() function could
1885 * end up waiting indefinitely to get a lock on the page currently
1886 * being processed by btrfs_page_mkwrite() function.
1887 */
1888 ret = btrfs_check_data_free_space(inode, &data_reserved, page_start,
1889 reserved_space, false);
1890 if (ret < 0) {
1891 size_t write_bytes = reserved_space;
1892
1893 if (btrfs_check_nocow_lock(inode, page_start, &write_bytes, false) <= 0)
1894 goto out_noreserve;
1895
1896 only_release_metadata = true;
1897
1898 /*
1899 * Can't write the whole range, there may be shared extents or
1900 * holes in the range, bail out with @only_release_metadata set
1901 * to true so that we unlock the nocow lock before returning the
1902 * error.
1903 */
1904 if (write_bytes < reserved_space)
1905 goto out_noreserve;
1906 }
1907 ret = btrfs_delalloc_reserve_metadata(inode, reserved_space,
1908 reserved_space, false);
1909 if (ret < 0) {
1910 if (!only_release_metadata)
1911 btrfs_free_reserved_data_space(inode, data_reserved,
1912 page_start, reserved_space);
1913 goto out_noreserve;
1914 }
1915
1916 ret = file_update_time(vmf->vma->vm_file);
1917 if (ret < 0)
1918 goto out;
1919again:
1920 down_read(&inode->i_mmap_lock);
1921 folio_lock(folio);
1922 size = i_size_read(&inode->vfs_inode);
1923
1924 if ((folio->mapping != inode->vfs_inode.i_mapping) ||
1925 (page_start >= size)) {
1926 /* Page got truncated out from underneath us. */
1927 goto out_unlock;
1928 }
1929 folio_wait_writeback(folio);
1930
1931 btrfs_lock_extent(io_tree, page_start, page_end, &cached_state);
1932 ret = set_folio_extent_mapped(folio);
1933 if (ret < 0) {
1934 btrfs_unlock_extent(io_tree, page_start, page_end, &cached_state);
1935 goto out_unlock;
1936 }
1937
1938 /*
1939 * We can't set the delalloc bits if there are pending ordered
1940 * extents. Drop our locks and wait for them to finish.
1941 */
1942 ordered = btrfs_lookup_ordered_range(inode, page_start, fsize);
1943 if (ordered) {
1944 btrfs_unlock_extent(io_tree, page_start, page_end, &cached_state);
1945 folio_unlock(folio);
1946 up_read(&inode->i_mmap_lock);
1947 btrfs_start_ordered_extent(ordered);
1948 btrfs_put_ordered_extent(ordered);
1949 goto again;
1950 }
1951
1952 if (folio_contains(folio, (size - 1) >> PAGE_SHIFT)) {
1953 reserved_space = round_up(size - page_start, fs_info->sectorsize);
1954 if (reserved_space < fsize) {
1955 const u64 to_free = fsize - reserved_space;
1956
1957 end = page_start + reserved_space - 1;
1958 if (only_release_metadata)
1959 btrfs_delalloc_release_metadata(inode, to_free, true);
1960 else
1961 btrfs_delalloc_release_space(inode, data_reserved,
1962 end + 1, to_free, true);
1963 }
1964 }
1965
1966 /*
1967 * page_mkwrite gets called when the page is firstly dirtied after it's
1968 * faulted in, but write(2) could also dirty a page and set delalloc
1969 * bits, thus in this case for space account reason, we still need to
1970 * clear any delalloc bits within this page range since we have to
1971 * reserve data&meta space before lock_page() (see above comments).
1972 */
1973 btrfs_clear_extent_bit(io_tree, page_start, end,
1974 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
1975 EXTENT_DEFRAG, &cached_state);
1976
1977 ret = btrfs_set_extent_delalloc(inode, page_start, end, 0, &cached_state);
1978 if (ret < 0) {
1979 btrfs_unlock_extent(io_tree, page_start, page_end, &cached_state);
1980 goto out_unlock;
1981 }
1982
1983 /* Page is wholly or partially inside EOF. */
1984 if (page_start + folio_size(folio) > size)
1985 zero_start = offset_in_folio(folio, size);
1986 else
1987 zero_start = fsize;
1988
1989 if (zero_start != fsize)
1990 folio_zero_range(folio, zero_start, folio_size(folio) - zero_start);
1991
1992 btrfs_folio_clear_checked(fs_info, folio, page_start, fsize);
1993 btrfs_folio_set_dirty(fs_info, folio, page_start, end + 1 - page_start);
1994 btrfs_folio_set_uptodate(fs_info, folio, page_start, end + 1 - page_start);
1995
1996 btrfs_set_inode_last_sub_trans(inode);
1997
1998 if (only_release_metadata)
1999 btrfs_set_extent_bit(io_tree, page_start, end, EXTENT_NORESERVE,
2000 &cached_state);
2001
2002 btrfs_unlock_extent(io_tree, page_start, page_end, &cached_state);
2003 up_read(&inode->i_mmap_lock);
2004
2005 btrfs_delalloc_release_extents(inode, fsize);
2006 if (only_release_metadata)
2007 btrfs_check_nocow_unlock(inode);
2008 sb_end_pagefault(inode->vfs_inode.i_sb);
2009 extent_changeset_free(data_reserved);
2010 return VM_FAULT_LOCKED;
2011
2012out_unlock:
2013 folio_unlock(folio);
2014 up_read(&inode->i_mmap_lock);
2015out:
2016 btrfs_delalloc_release_extents(inode, fsize);
2017 if (only_release_metadata)
2018 btrfs_delalloc_release_metadata(inode, reserved_space, true);
2019 else
2020 btrfs_delalloc_release_space(inode, data_reserved, page_start,
2021 reserved_space, true);
2022out_noreserve:
2023 if (only_release_metadata)
2024 btrfs_check_nocow_unlock(inode);
2025
2026 sb_end_pagefault(inode->vfs_inode.i_sb);
2027
2028 extent_changeset_free(data_reserved);
2029
2030 if (ret < 0)
2031 return vmf_error(ret);
2032
2033 /* Make the VM retry the fault. */
2034 return VM_FAULT_NOPAGE;
2035}
2036
2037static const struct vm_operations_struct btrfs_file_vm_ops = {
2038 .fault = filemap_fault,
2039 .map_pages = filemap_map_pages,
2040 .page_mkwrite = btrfs_page_mkwrite,
2041};
2042
2043static int btrfs_file_mmap_prepare(struct vm_area_desc *desc)
2044{
2045 struct file *filp = desc->file;
2046 struct address_space *mapping = filp->f_mapping;
2047
2048 if (unlikely(btrfs_is_shutdown(inode_to_fs_info(file_inode(filp)))))
2049 return -EIO;
2050 if (!mapping->a_ops->read_folio)
2051 return -ENOEXEC;
2052
2053 file_accessed(filp);
2054 desc->vm_ops = &btrfs_file_vm_ops;
2055
2056 return 0;
2057}
2058
2059static bool hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
2060 int slot, u64 start, u64 end)
2061{
2062 struct btrfs_file_extent_item *fi;
2063 struct btrfs_key key;
2064
2065 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2066 return false;
2067
2068 btrfs_item_key_to_cpu(leaf, &key, slot);
2069 if (key.objectid != btrfs_ino(inode) ||
2070 key.type != BTRFS_EXTENT_DATA_KEY)
2071 return false;
2072
2073 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2074
2075 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2076 return false;
2077
2078 if (btrfs_file_extent_disk_bytenr(leaf, fi))
2079 return false;
2080
2081 if (key.offset == end)
2082 return true;
2083 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2084 return true;
2085 return false;
2086}
2087
2088static int fill_holes(struct btrfs_trans_handle *trans,
2089 struct btrfs_inode *inode,
2090 struct btrfs_path *path, u64 offset, u64 end)
2091{
2092 struct btrfs_fs_info *fs_info = trans->fs_info;
2093 struct btrfs_root *root = inode->root;
2094 struct extent_buffer *leaf;
2095 struct btrfs_file_extent_item *fi;
2096 struct extent_map *hole_em;
2097 struct btrfs_key key;
2098 int ret;
2099
2100 if (btrfs_fs_incompat(fs_info, NO_HOLES))
2101 goto out;
2102
2103 key.objectid = btrfs_ino(inode);
2104 key.type = BTRFS_EXTENT_DATA_KEY;
2105 key.offset = offset;
2106
2107 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2108 if (ret <= 0) {
2109 /*
2110 * We should have dropped this offset, so if we find it then
2111 * something has gone horribly wrong.
2112 */
2113 if (ret == 0)
2114 ret = -EINVAL;
2115 return ret;
2116 }
2117
2118 leaf = path->nodes[0];
2119 if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2120 u64 num_bytes;
2121
2122 path->slots[0]--;
2123 fi = btrfs_item_ptr(leaf, path->slots[0],
2124 struct btrfs_file_extent_item);
2125 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2126 end - offset;
2127 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2128 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2129 btrfs_set_file_extent_offset(leaf, fi, 0);
2130 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2131 goto out;
2132 }
2133
2134 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2135 u64 num_bytes;
2136
2137 key.offset = offset;
2138 btrfs_set_item_key_safe(trans, path, &key);
2139 fi = btrfs_item_ptr(leaf, path->slots[0],
2140 struct btrfs_file_extent_item);
2141 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2142 offset;
2143 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2144 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2145 btrfs_set_file_extent_offset(leaf, fi, 0);
2146 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2147 goto out;
2148 }
2149 btrfs_release_path(path);
2150
2151 ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset,
2152 end - offset);
2153 if (ret)
2154 return ret;
2155
2156out:
2157 btrfs_release_path(path);
2158
2159 hole_em = btrfs_alloc_extent_map();
2160 if (!hole_em) {
2161 btrfs_drop_extent_map_range(inode, offset, end - 1, false);
2162 btrfs_set_inode_full_sync(inode);
2163 } else {
2164 hole_em->start = offset;
2165 hole_em->len = end - offset;
2166 hole_em->ram_bytes = hole_em->len;
2167
2168 hole_em->disk_bytenr = EXTENT_MAP_HOLE;
2169 hole_em->disk_num_bytes = 0;
2170 hole_em->generation = trans->transid;
2171
2172 ret = btrfs_replace_extent_map_range(inode, hole_em, true);
2173 btrfs_free_extent_map(hole_em);
2174 if (ret)
2175 btrfs_set_inode_full_sync(inode);
2176 }
2177
2178 return 0;
2179}
2180
2181/*
2182 * Find a hole extent on given inode and change start/len to the end of hole
2183 * extent.(hole/vacuum extent whose em->start <= start &&
2184 * em->start + em->len > start)
2185 * When a hole extent is found, return 1 and modify start/len.
2186 */
2187static int find_first_non_hole(struct btrfs_inode *inode, u64 *start, u64 *len)
2188{
2189 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2190 struct extent_map *em;
2191 int ret = 0;
2192
2193 em = btrfs_get_extent(inode, NULL,
2194 round_down(*start, fs_info->sectorsize),
2195 round_up(*len, fs_info->sectorsize));
2196 if (IS_ERR(em))
2197 return PTR_ERR(em);
2198
2199 /* Hole or vacuum extent(only exists in no-hole mode) */
2200 if (em->disk_bytenr == EXTENT_MAP_HOLE) {
2201 ret = 1;
2202 *len = em->start + em->len > *start + *len ?
2203 0 : *start + *len - em->start - em->len;
2204 *start = em->start + em->len;
2205 }
2206 btrfs_free_extent_map(em);
2207 return ret;
2208}
2209
2210/*
2211 * Check if there is no folio in the range.
2212 *
2213 * We cannot utilize filemap_range_has_page() in a filemap with large folios
2214 * as we can hit the following false positive:
2215 *
2216 * start end
2217 * | |
2218 * |//|//|//|//| | | | | | | | |//|//|
2219 * \ / \ /
2220 * Folio A Folio B
2221 *
2222 * That large folio A and B cover the start and end indexes.
2223 * In that case filemap_range_has_page() will always return true, but the above
2224 * case is fine for btrfs_punch_hole_lock_range() usage.
2225 *
2226 * So here we only ensure that no other folios is in the range, excluding the
2227 * head/tail large folio.
2228 */
2229static bool check_range_has_page(struct inode *inode, u64 start, u64 end)
2230{
2231 struct folio_batch fbatch;
2232 bool ret = false;
2233 /*
2234 * For subpage case, if the range is not at page boundary, we could
2235 * have pages at the leading/tailing part of the range.
2236 * This could lead to dead loop since filemap_range_has_page()
2237 * will always return true.
2238 * So here we need to do extra page alignment for
2239 * filemap_range_has_page().
2240 *
2241 * And do not decrease page_lockend right now, as it can be 0.
2242 */
2243 const u64 page_lockstart = round_up(start, PAGE_SIZE);
2244 const u64 page_lockend = round_down(end + 1, PAGE_SIZE);
2245 const pgoff_t start_index = page_lockstart >> PAGE_SHIFT;
2246 const pgoff_t end_index = (page_lockend - 1) >> PAGE_SHIFT;
2247 pgoff_t tmp = start_index;
2248 int found_folios;
2249
2250 /* The same page or adjacent pages. */
2251 if (page_lockend <= page_lockstart)
2252 return false;
2253
2254 folio_batch_init(&fbatch);
2255 found_folios = filemap_get_folios(inode->i_mapping, &tmp, end_index, &fbatch);
2256 for (int i = 0; i < found_folios; i++) {
2257 struct folio *folio = fbatch.folios[i];
2258
2259 /* A large folio begins before the start. Not a target. */
2260 if (folio->index < start_index)
2261 continue;
2262 /* A large folio extends beyond the end. Not a target. */
2263 if (folio_next_index(folio) > end_index)
2264 continue;
2265 /* A folio doesn't cover the head/tail index. Found a target. */
2266 ret = true;
2267 break;
2268 }
2269 folio_batch_release(&fbatch);
2270 return ret;
2271}
2272
2273static void btrfs_punch_hole_lock_range(struct inode *inode,
2274 const u64 lockstart, const u64 lockend,
2275 struct extent_state **cached_state)
2276{
2277 while (1) {
2278 truncate_pagecache_range(inode, lockstart, lockend);
2279
2280 btrfs_lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2281 cached_state);
2282 /*
2283 * We can't have ordered extents in the range, nor dirty/writeback
2284 * pages, because we have locked the inode's VFS lock in exclusive
2285 * mode, we have locked the inode's i_mmap_lock in exclusive mode,
2286 * we have flushed all delalloc in the range and we have waited
2287 * for any ordered extents in the range to complete.
2288 * We can race with anyone reading pages from this range, so after
2289 * locking the range check if we have pages in the range, and if
2290 * we do, unlock the range and retry.
2291 */
2292 if (!check_range_has_page(inode, lockstart, lockend))
2293 break;
2294
2295 btrfs_unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2296 cached_state);
2297 }
2298
2299 btrfs_assert_inode_range_clean(BTRFS_I(inode), lockstart, lockend);
2300}
2301
2302static int btrfs_insert_replace_extent(struct btrfs_trans_handle *trans,
2303 struct btrfs_inode *inode,
2304 struct btrfs_path *path,
2305 struct btrfs_replace_extent_info *extent_info,
2306 const u64 replace_len,
2307 const u64 bytes_to_drop)
2308{
2309 struct btrfs_fs_info *fs_info = trans->fs_info;
2310 struct btrfs_root *root = inode->root;
2311 struct btrfs_file_extent_item *extent;
2312 struct extent_buffer *leaf;
2313 struct btrfs_key key;
2314 int slot;
2315 int ret;
2316
2317 if (replace_len == 0)
2318 return 0;
2319
2320 if (extent_info->disk_offset == 0 &&
2321 btrfs_fs_incompat(fs_info, NO_HOLES)) {
2322 btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2323 return 0;
2324 }
2325
2326 key.objectid = btrfs_ino(inode);
2327 key.type = BTRFS_EXTENT_DATA_KEY;
2328 key.offset = extent_info->file_offset;
2329 ret = btrfs_insert_empty_item(trans, root, path, &key,
2330 sizeof(struct btrfs_file_extent_item));
2331 if (ret)
2332 return ret;
2333 leaf = path->nodes[0];
2334 slot = path->slots[0];
2335 write_extent_buffer(leaf, extent_info->extent_buf,
2336 btrfs_item_ptr_offset(leaf, slot),
2337 sizeof(struct btrfs_file_extent_item));
2338 extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2339 ASSERT(btrfs_file_extent_type(leaf, extent) != BTRFS_FILE_EXTENT_INLINE);
2340 btrfs_set_file_extent_offset(leaf, extent, extent_info->data_offset);
2341 btrfs_set_file_extent_num_bytes(leaf, extent, replace_len);
2342 if (extent_info->is_new_extent)
2343 btrfs_set_file_extent_generation(leaf, extent, trans->transid);
2344 btrfs_release_path(path);
2345
2346 ret = btrfs_inode_set_file_extent_range(inode, extent_info->file_offset,
2347 replace_len);
2348 if (ret)
2349 return ret;
2350
2351 /* If it's a hole, nothing more needs to be done. */
2352 if (extent_info->disk_offset == 0) {
2353 btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2354 return 0;
2355 }
2356
2357 btrfs_update_inode_bytes(inode, replace_len, bytes_to_drop);
2358
2359 if (extent_info->is_new_extent && extent_info->insertions == 0) {
2360 key.objectid = extent_info->disk_offset;
2361 key.type = BTRFS_EXTENT_ITEM_KEY;
2362 key.offset = extent_info->disk_len;
2363 ret = btrfs_alloc_reserved_file_extent(trans, root,
2364 btrfs_ino(inode),
2365 extent_info->file_offset,
2366 extent_info->qgroup_reserved,
2367 &key);
2368 } else {
2369 struct btrfs_ref ref = {
2370 .action = BTRFS_ADD_DELAYED_REF,
2371 .bytenr = extent_info->disk_offset,
2372 .num_bytes = extent_info->disk_len,
2373 .owning_root = btrfs_root_id(root),
2374 .ref_root = btrfs_root_id(root),
2375 };
2376 u64 ref_offset;
2377
2378 ref_offset = extent_info->file_offset - extent_info->data_offset;
2379 btrfs_init_data_ref(&ref, btrfs_ino(inode), ref_offset, 0, false);
2380 ret = btrfs_inc_extent_ref(trans, &ref);
2381 }
2382
2383 extent_info->insertions++;
2384
2385 return ret;
2386}
2387
2388/*
2389 * The respective range must have been previously locked, as well as the inode.
2390 * The end offset is inclusive (last byte of the range).
2391 * @extent_info is NULL for fallocate's hole punching and non-NULL when replacing
2392 * the file range with an extent.
2393 * When not punching a hole, we don't want to end up in a state where we dropped
2394 * extents without inserting a new one, so we must abort the transaction to avoid
2395 * a corruption.
2396 */
2397int btrfs_replace_file_extents(struct btrfs_inode *inode,
2398 struct btrfs_path *path, const u64 start,
2399 const u64 end,
2400 struct btrfs_replace_extent_info *extent_info,
2401 struct btrfs_trans_handle **trans_out)
2402{
2403 struct btrfs_drop_extents_args drop_args = { 0 };
2404 struct btrfs_root *root = inode->root;
2405 struct btrfs_fs_info *fs_info = root->fs_info;
2406 u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1);
2407 u64 ino_size = round_up(inode->vfs_inode.i_size, fs_info->sectorsize);
2408 struct btrfs_trans_handle *trans = NULL;
2409 struct btrfs_block_rsv rsv;
2410 unsigned int rsv_count;
2411 u64 cur_offset;
2412 u64 len = end - start;
2413 int ret = 0;
2414
2415 if (end <= start)
2416 return -EINVAL;
2417
2418 btrfs_init_metadata_block_rsv(fs_info, &rsv, BTRFS_BLOCK_RSV_TEMP);
2419 rsv.size = btrfs_calc_insert_metadata_size(fs_info, 1);
2420 rsv.failfast = true;
2421
2422 /*
2423 * 1 - update the inode
2424 * 1 - removing the extents in the range
2425 * 1 - adding the hole extent if no_holes isn't set or if we are
2426 * replacing the range with a new extent
2427 */
2428 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || extent_info)
2429 rsv_count = 3;
2430 else
2431 rsv_count = 2;
2432
2433 trans = btrfs_start_transaction(root, rsv_count);
2434 if (IS_ERR(trans)) {
2435 ret = PTR_ERR(trans);
2436 trans = NULL;
2437 goto out_release;
2438 }
2439
2440 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, &rsv,
2441 min_size, false);
2442 if (WARN_ON(ret))
2443 goto out_trans;
2444 trans->block_rsv = &rsv;
2445
2446 cur_offset = start;
2447 drop_args.path = path;
2448 drop_args.end = end + 1;
2449 drop_args.drop_cache = true;
2450 while (cur_offset < end) {
2451 drop_args.start = cur_offset;
2452 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2453 /* If we are punching a hole decrement the inode's byte count */
2454 if (!extent_info)
2455 btrfs_update_inode_bytes(inode, 0,
2456 drop_args.bytes_found);
2457 if (ret != -ENOSPC) {
2458 /*
2459 * The only time we don't want to abort is if we are
2460 * attempting to clone a partial inline extent, in which
2461 * case we'll get EOPNOTSUPP. However if we aren't
2462 * clone we need to abort no matter what, because if we
2463 * got EOPNOTSUPP via prealloc then we messed up and
2464 * need to abort.
2465 */
2466 if (unlikely(ret &&
2467 (ret != -EOPNOTSUPP ||
2468 (extent_info && extent_info->is_new_extent))))
2469 btrfs_abort_transaction(trans, ret);
2470 break;
2471 }
2472
2473 trans->block_rsv = &fs_info->trans_block_rsv;
2474
2475 if (!extent_info && cur_offset < drop_args.drop_end &&
2476 cur_offset < ino_size) {
2477 ret = fill_holes(trans, inode, path, cur_offset,
2478 drop_args.drop_end);
2479 if (unlikely(ret)) {
2480 /*
2481 * If we failed then we didn't insert our hole
2482 * entries for the area we dropped, so now the
2483 * fs is corrupted, so we must abort the
2484 * transaction.
2485 */
2486 btrfs_abort_transaction(trans, ret);
2487 break;
2488 }
2489 } else if (!extent_info && cur_offset < drop_args.drop_end) {
2490 /*
2491 * We are past the i_size here, but since we didn't
2492 * insert holes we need to clear the mapped area so we
2493 * know to not set disk_i_size in this area until a new
2494 * file extent is inserted here.
2495 */
2496 ret = btrfs_inode_clear_file_extent_range(inode,
2497 cur_offset,
2498 drop_args.drop_end - cur_offset);
2499 if (unlikely(ret)) {
2500 /*
2501 * We couldn't clear our area, so we could
2502 * presumably adjust up and corrupt the fs, so
2503 * we need to abort.
2504 */
2505 btrfs_abort_transaction(trans, ret);
2506 break;
2507 }
2508 }
2509
2510 if (extent_info &&
2511 drop_args.drop_end > extent_info->file_offset) {
2512 u64 replace_len = drop_args.drop_end -
2513 extent_info->file_offset;
2514
2515 ret = btrfs_insert_replace_extent(trans, inode, path,
2516 extent_info, replace_len,
2517 drop_args.bytes_found);
2518 if (unlikely(ret)) {
2519 btrfs_abort_transaction(trans, ret);
2520 break;
2521 }
2522 extent_info->data_len -= replace_len;
2523 extent_info->data_offset += replace_len;
2524 extent_info->file_offset += replace_len;
2525 }
2526
2527 /*
2528 * We are releasing our handle on the transaction, balance the
2529 * dirty pages of the btree inode and flush delayed items, and
2530 * then get a new transaction handle, which may now point to a
2531 * new transaction in case someone else may have committed the
2532 * transaction we used to replace/drop file extent items. So
2533 * bump the inode's iversion and update mtime and ctime except
2534 * if we are called from a dedupe context. This is because a
2535 * power failure/crash may happen after the transaction is
2536 * committed and before we finish replacing/dropping all the
2537 * file extent items we need.
2538 */
2539 inode_inc_iversion(&inode->vfs_inode);
2540
2541 if (!extent_info || extent_info->update_times)
2542 inode_set_mtime_to_ts(&inode->vfs_inode,
2543 inode_set_ctime_current(&inode->vfs_inode));
2544
2545 ret = btrfs_update_inode(trans, inode);
2546 if (ret)
2547 break;
2548
2549 btrfs_end_transaction(trans);
2550 btrfs_btree_balance_dirty(fs_info);
2551
2552 trans = btrfs_start_transaction(root, rsv_count);
2553 if (IS_ERR(trans)) {
2554 ret = PTR_ERR(trans);
2555 trans = NULL;
2556 break;
2557 }
2558
2559 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2560 &rsv, min_size, false);
2561 if (WARN_ON(ret))
2562 break;
2563 trans->block_rsv = &rsv;
2564
2565 cur_offset = drop_args.drop_end;
2566 len = end - cur_offset;
2567 if (!extent_info && len) {
2568 ret = find_first_non_hole(inode, &cur_offset, &len);
2569 if (unlikely(ret < 0))
2570 break;
2571 if (ret && !len) {
2572 ret = 0;
2573 break;
2574 }
2575 }
2576 }
2577
2578 /*
2579 * If we were cloning, force the next fsync to be a full one since we
2580 * we replaced (or just dropped in the case of cloning holes when
2581 * NO_HOLES is enabled) file extent items and did not setup new extent
2582 * maps for the replacement extents (or holes).
2583 */
2584 if (extent_info && !extent_info->is_new_extent)
2585 btrfs_set_inode_full_sync(inode);
2586
2587 if (ret)
2588 goto out_trans;
2589
2590 trans->block_rsv = &fs_info->trans_block_rsv;
2591 /*
2592 * If we are using the NO_HOLES feature we might have had already an
2593 * hole that overlaps a part of the region [lockstart, lockend] and
2594 * ends at (or beyond) lockend. Since we have no file extent items to
2595 * represent holes, drop_end can be less than lockend and so we must
2596 * make sure we have an extent map representing the existing hole (the
2597 * call to __btrfs_drop_extents() might have dropped the existing extent
2598 * map representing the existing hole), otherwise the fast fsync path
2599 * will not record the existence of the hole region
2600 * [existing_hole_start, lockend].
2601 */
2602 if (drop_args.drop_end <= end)
2603 drop_args.drop_end = end + 1;
2604 /*
2605 * Don't insert file hole extent item if it's for a range beyond eof
2606 * (because it's useless) or if it represents a 0 bytes range (when
2607 * cur_offset == drop_end).
2608 */
2609 if (!extent_info && cur_offset < ino_size &&
2610 cur_offset < drop_args.drop_end) {
2611 ret = fill_holes(trans, inode, path, cur_offset,
2612 drop_args.drop_end);
2613 if (unlikely(ret)) {
2614 /* Same comment as above. */
2615 btrfs_abort_transaction(trans, ret);
2616 goto out_trans;
2617 }
2618 } else if (!extent_info && cur_offset < drop_args.drop_end) {
2619 /* See the comment in the loop above for the reasoning here. */
2620 ret = btrfs_inode_clear_file_extent_range(inode, cur_offset,
2621 drop_args.drop_end - cur_offset);
2622 if (unlikely(ret)) {
2623 btrfs_abort_transaction(trans, ret);
2624 goto out_trans;
2625 }
2626
2627 }
2628 if (extent_info) {
2629 ret = btrfs_insert_replace_extent(trans, inode, path,
2630 extent_info, extent_info->data_len,
2631 drop_args.bytes_found);
2632 if (unlikely(ret)) {
2633 btrfs_abort_transaction(trans, ret);
2634 goto out_trans;
2635 }
2636 }
2637
2638out_trans:
2639 if (!trans)
2640 goto out_release;
2641
2642 trans->block_rsv = &fs_info->trans_block_rsv;
2643 if (ret)
2644 btrfs_end_transaction(trans);
2645 else
2646 *trans_out = trans;
2647out_release:
2648 btrfs_block_rsv_release(fs_info, &rsv, (u64)-1, NULL);
2649 return ret;
2650}
2651
2652static int btrfs_punch_hole(struct file *file, loff_t offset, loff_t len)
2653{
2654 struct inode *inode = file_inode(file);
2655 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2656 struct btrfs_root *root = BTRFS_I(inode)->root;
2657 struct extent_state *cached_state = NULL;
2658 struct btrfs_path *path;
2659 struct btrfs_trans_handle *trans = NULL;
2660 u64 lockstart;
2661 u64 lockend;
2662 u64 tail_start;
2663 u64 tail_len;
2664 const u64 orig_start = offset;
2665 const u64 orig_end = offset + len - 1;
2666 int ret = 0;
2667 bool same_block;
2668 u64 ino_size;
2669 bool truncated_block = false;
2670 bool updated_inode = false;
2671
2672 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2673
2674 ret = btrfs_wait_ordered_range(BTRFS_I(inode), offset, len);
2675 if (ret)
2676 goto out_only_mutex;
2677
2678 ino_size = round_up(inode->i_size, fs_info->sectorsize);
2679 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
2680 if (ret < 0)
2681 goto out_only_mutex;
2682 if (ret && !len) {
2683 /* Already in a large hole */
2684 ret = 0;
2685 goto out_only_mutex;
2686 }
2687
2688 ret = file_modified(file);
2689 if (ret)
2690 goto out_only_mutex;
2691
2692 lockstart = round_up(offset, fs_info->sectorsize);
2693 lockend = round_down(offset + len, fs_info->sectorsize) - 1;
2694 same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2695 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
2696 /*
2697 * Only do this if we are in the same block and we aren't doing the
2698 * entire block.
2699 */
2700 if (same_block && len < fs_info->sectorsize) {
2701 if (offset < ino_size) {
2702 truncated_block = true;
2703 ret = btrfs_truncate_block(BTRFS_I(inode), offset + len - 1,
2704 orig_start, orig_end);
2705 } else {
2706 ret = 0;
2707 }
2708 goto out_only_mutex;
2709 }
2710
2711 /* zero back part of the first block */
2712 if (offset < ino_size) {
2713 truncated_block = true;
2714 ret = btrfs_truncate_block(BTRFS_I(inode), offset, orig_start, orig_end);
2715 if (ret) {
2716 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2717 return ret;
2718 }
2719 }
2720
2721 /* Check the aligned pages after the first unaligned page,
2722 * if offset != orig_start, which means the first unaligned page
2723 * including several following pages are already in holes,
2724 * the extra check can be skipped */
2725 if (offset == orig_start) {
2726 /* after truncate page, check hole again */
2727 len = offset + len - lockstart;
2728 offset = lockstart;
2729 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
2730 if (ret < 0)
2731 goto out_only_mutex;
2732 if (ret && !len) {
2733 ret = 0;
2734 goto out_only_mutex;
2735 }
2736 lockstart = offset;
2737 }
2738
2739 /* Check the tail unaligned part is in a hole */
2740 tail_start = lockend + 1;
2741 tail_len = offset + len - tail_start;
2742 if (tail_len) {
2743 ret = find_first_non_hole(BTRFS_I(inode), &tail_start, &tail_len);
2744 if (unlikely(ret < 0))
2745 goto out_only_mutex;
2746 if (!ret) {
2747 /* zero the front end of the last page */
2748 if (tail_start + tail_len < ino_size) {
2749 truncated_block = true;
2750 ret = btrfs_truncate_block(BTRFS_I(inode),
2751 tail_start + tail_len - 1,
2752 orig_start, orig_end);
2753 if (ret)
2754 goto out_only_mutex;
2755 }
2756 }
2757 }
2758
2759 if (lockend < lockstart) {
2760 ret = 0;
2761 goto out_only_mutex;
2762 }
2763
2764 btrfs_punch_hole_lock_range(inode, lockstart, lockend, &cached_state);
2765
2766 path = btrfs_alloc_path();
2767 if (!path) {
2768 ret = -ENOMEM;
2769 goto out;
2770 }
2771
2772 ret = btrfs_replace_file_extents(BTRFS_I(inode), path, lockstart,
2773 lockend, NULL, &trans);
2774 btrfs_free_path(path);
2775 if (ret)
2776 goto out;
2777
2778 ASSERT(trans != NULL);
2779 inode_inc_iversion(inode);
2780 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
2781 ret = btrfs_update_inode(trans, BTRFS_I(inode));
2782 updated_inode = true;
2783 btrfs_end_transaction(trans);
2784 btrfs_btree_balance_dirty(fs_info);
2785out:
2786 btrfs_unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2787 &cached_state);
2788out_only_mutex:
2789 if (!updated_inode && truncated_block && !ret) {
2790 /*
2791 * If we only end up zeroing part of a page, we still need to
2792 * update the inode item, so that all the time fields are
2793 * updated as well as the necessary btrfs inode in memory fields
2794 * for detecting, at fsync time, if the inode isn't yet in the
2795 * log tree or it's there but not up to date.
2796 */
2797 struct timespec64 now = inode_set_ctime_current(inode);
2798
2799 inode_inc_iversion(inode);
2800 inode_set_mtime_to_ts(inode, now);
2801 trans = btrfs_start_transaction(root, 1);
2802 if (IS_ERR(trans)) {
2803 ret = PTR_ERR(trans);
2804 } else {
2805 int ret2;
2806
2807 ret = btrfs_update_inode(trans, BTRFS_I(inode));
2808 ret2 = btrfs_end_transaction(trans);
2809 if (!ret)
2810 ret = ret2;
2811 }
2812 }
2813 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2814 return ret;
2815}
2816
2817/* Helper structure to record which range is already reserved */
2818struct falloc_range {
2819 struct list_head list;
2820 u64 start;
2821 u64 len;
2822};
2823
2824/*
2825 * Helper function to add falloc range
2826 *
2827 * Caller should have locked the larger range of extent containing
2828 * [start, len)
2829 */
2830static int add_falloc_range(struct list_head *head, u64 start, u64 len)
2831{
2832 struct falloc_range *range = NULL;
2833
2834 if (!list_empty(head)) {
2835 /*
2836 * As fallocate iterates by bytenr order, we only need to check
2837 * the last range.
2838 */
2839 range = list_last_entry(head, struct falloc_range, list);
2840 if (range->start + range->len == start) {
2841 range->len += len;
2842 return 0;
2843 }
2844 }
2845
2846 range = kmalloc(sizeof(*range), GFP_KERNEL);
2847 if (!range)
2848 return -ENOMEM;
2849 range->start = start;
2850 range->len = len;
2851 list_add_tail(&range->list, head);
2852 return 0;
2853}
2854
2855static int btrfs_fallocate_update_isize(struct inode *inode,
2856 const u64 end,
2857 const int mode)
2858{
2859 struct btrfs_trans_handle *trans;
2860 struct btrfs_root *root = BTRFS_I(inode)->root;
2861 u64 range_start;
2862 u64 range_end;
2863 int ret;
2864 int ret2;
2865
2866 if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
2867 return 0;
2868
2869 range_start = round_down(i_size_read(inode), root->fs_info->sectorsize);
2870 range_end = round_up(end, root->fs_info->sectorsize);
2871
2872 ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), range_start,
2873 range_end - range_start);
2874 if (ret)
2875 return ret;
2876
2877 trans = btrfs_start_transaction(root, 1);
2878 if (IS_ERR(trans))
2879 return PTR_ERR(trans);
2880
2881 inode_set_ctime_current(inode);
2882 i_size_write(inode, end);
2883 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
2884 ret = btrfs_update_inode(trans, BTRFS_I(inode));
2885 ret2 = btrfs_end_transaction(trans);
2886
2887 return ret ? ret : ret2;
2888}
2889
2890enum {
2891 RANGE_BOUNDARY_WRITTEN_EXTENT,
2892 RANGE_BOUNDARY_PREALLOC_EXTENT,
2893 RANGE_BOUNDARY_HOLE,
2894};
2895
2896static int btrfs_zero_range_check_range_boundary(struct btrfs_inode *inode,
2897 u64 offset)
2898{
2899 const u64 sectorsize = inode->root->fs_info->sectorsize;
2900 struct extent_map *em;
2901 int ret;
2902
2903 offset = round_down(offset, sectorsize);
2904 em = btrfs_get_extent(inode, NULL, offset, sectorsize);
2905 if (IS_ERR(em))
2906 return PTR_ERR(em);
2907
2908 if (em->disk_bytenr == EXTENT_MAP_HOLE)
2909 ret = RANGE_BOUNDARY_HOLE;
2910 else if (em->flags & EXTENT_FLAG_PREALLOC)
2911 ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
2912 else
2913 ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
2914
2915 btrfs_free_extent_map(em);
2916 return ret;
2917}
2918
2919static int btrfs_zero_range(struct inode *inode,
2920 loff_t offset,
2921 loff_t len,
2922 const int mode)
2923{
2924 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2925 struct extent_map *em;
2926 struct extent_changeset *data_reserved = NULL;
2927 int ret;
2928 u64 alloc_hint = 0;
2929 const u64 sectorsize = fs_info->sectorsize;
2930 const u64 orig_start = offset;
2931 const u64 orig_end = offset + len - 1;
2932 u64 alloc_start = round_down(offset, sectorsize);
2933 u64 alloc_end = round_up(offset + len, sectorsize);
2934 u64 bytes_to_reserve = 0;
2935 bool space_reserved = false;
2936
2937 em = btrfs_get_extent(BTRFS_I(inode), NULL, alloc_start,
2938 alloc_end - alloc_start);
2939 if (IS_ERR(em)) {
2940 ret = PTR_ERR(em);
2941 goto out;
2942 }
2943
2944 /*
2945 * Avoid hole punching and extent allocation for some cases. More cases
2946 * could be considered, but these are unlikely common and we keep things
2947 * as simple as possible for now. Also, intentionally, if the target
2948 * range contains one or more prealloc extents together with regular
2949 * extents and holes, we drop all the existing extents and allocate a
2950 * new prealloc extent, so that we get a larger contiguous disk extent.
2951 */
2952 if (em->start <= alloc_start && (em->flags & EXTENT_FLAG_PREALLOC)) {
2953 const u64 em_end = em->start + em->len;
2954
2955 if (em_end >= offset + len) {
2956 /*
2957 * The whole range is already a prealloc extent,
2958 * do nothing except updating the inode's i_size if
2959 * needed.
2960 */
2961 btrfs_free_extent_map(em);
2962 ret = btrfs_fallocate_update_isize(inode, offset + len,
2963 mode);
2964 goto out;
2965 }
2966 /*
2967 * Part of the range is already a prealloc extent, so operate
2968 * only on the remaining part of the range.
2969 */
2970 alloc_start = em_end;
2971 ASSERT(IS_ALIGNED(alloc_start, sectorsize));
2972 len = offset + len - alloc_start;
2973 offset = alloc_start;
2974 alloc_hint = btrfs_extent_map_block_start(em) + em->len;
2975 }
2976 btrfs_free_extent_map(em);
2977
2978 if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
2979 BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
2980 em = btrfs_get_extent(BTRFS_I(inode), NULL, alloc_start, sectorsize);
2981 if (IS_ERR(em)) {
2982 ret = PTR_ERR(em);
2983 goto out;
2984 }
2985
2986 if (em->flags & EXTENT_FLAG_PREALLOC) {
2987 btrfs_free_extent_map(em);
2988 ret = btrfs_fallocate_update_isize(inode, offset + len,
2989 mode);
2990 goto out;
2991 }
2992 if (len < sectorsize && em->disk_bytenr != EXTENT_MAP_HOLE) {
2993 btrfs_free_extent_map(em);
2994 ret = btrfs_truncate_block(BTRFS_I(inode), offset + len - 1,
2995 orig_start, orig_end);
2996 if (!ret)
2997 ret = btrfs_fallocate_update_isize(inode,
2998 offset + len,
2999 mode);
3000 return ret;
3001 }
3002 btrfs_free_extent_map(em);
3003 alloc_start = round_down(offset, sectorsize);
3004 alloc_end = alloc_start + sectorsize;
3005 goto reserve_space;
3006 }
3007
3008 alloc_start = round_up(offset, sectorsize);
3009 alloc_end = round_down(offset + len, sectorsize);
3010
3011 /*
3012 * For unaligned ranges, check the pages at the boundaries, they might
3013 * map to an extent, in which case we need to partially zero them, or
3014 * they might map to a hole, in which case we need our allocation range
3015 * to cover them.
3016 */
3017 if (!IS_ALIGNED(offset, sectorsize)) {
3018 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
3019 offset);
3020 if (ret < 0)
3021 goto out;
3022 if (ret == RANGE_BOUNDARY_HOLE) {
3023 alloc_start = round_down(offset, sectorsize);
3024 ret = 0;
3025 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
3026 ret = btrfs_truncate_block(BTRFS_I(inode), offset,
3027 orig_start, orig_end);
3028 if (ret)
3029 goto out;
3030 } else {
3031 ret = 0;
3032 }
3033 }
3034
3035 if (!IS_ALIGNED(offset + len, sectorsize)) {
3036 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
3037 offset + len);
3038 if (ret < 0)
3039 goto out;
3040 if (ret == RANGE_BOUNDARY_HOLE) {
3041 alloc_end = round_up(offset + len, sectorsize);
3042 ret = 0;
3043 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
3044 ret = btrfs_truncate_block(BTRFS_I(inode), offset + len - 1,
3045 orig_start, orig_end);
3046 if (ret)
3047 goto out;
3048 } else {
3049 ret = 0;
3050 }
3051 }
3052
3053reserve_space:
3054 if (alloc_start < alloc_end) {
3055 struct extent_state *cached_state = NULL;
3056 const u64 lockstart = alloc_start;
3057 const u64 lockend = alloc_end - 1;
3058
3059 bytes_to_reserve = alloc_end - alloc_start;
3060 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3061 bytes_to_reserve);
3062 if (ret < 0)
3063 goto out;
3064 space_reserved = true;
3065 btrfs_punch_hole_lock_range(inode, lockstart, lockend,
3066 &cached_state);
3067 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), &data_reserved,
3068 alloc_start, bytes_to_reserve);
3069 if (ret) {
3070 btrfs_unlock_extent(&BTRFS_I(inode)->io_tree, lockstart,
3071 lockend, &cached_state);
3072 goto out;
3073 }
3074 ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
3075 alloc_end - alloc_start,
3076 fs_info->sectorsize,
3077 offset + len, &alloc_hint);
3078 btrfs_unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3079 &cached_state);
3080 /* btrfs_prealloc_file_range releases reserved space on error */
3081 if (ret) {
3082 space_reserved = false;
3083 goto out;
3084 }
3085 }
3086 ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
3087 out:
3088 if (ret && space_reserved)
3089 btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved,
3090 alloc_start, bytes_to_reserve);
3091 extent_changeset_free(data_reserved);
3092
3093 return ret;
3094}
3095
3096static long btrfs_fallocate(struct file *file, int mode,
3097 loff_t offset, loff_t len)
3098{
3099 struct inode *inode = file_inode(file);
3100 struct extent_state *cached_state = NULL;
3101 struct extent_changeset *data_reserved = NULL;
3102 struct falloc_range *range;
3103 struct falloc_range *tmp;
3104 LIST_HEAD(reserve_list);
3105 u64 cur_offset;
3106 u64 last_byte;
3107 u64 alloc_start;
3108 u64 alloc_end;
3109 u64 alloc_hint = 0;
3110 u64 locked_end;
3111 u64 actual_end = 0;
3112 u64 data_space_needed = 0;
3113 u64 data_space_reserved = 0;
3114 u64 qgroup_reserved = 0;
3115 struct extent_map *em;
3116 int blocksize = BTRFS_I(inode)->root->fs_info->sectorsize;
3117 int ret;
3118
3119 if (unlikely(btrfs_is_shutdown(inode_to_fs_info(inode))))
3120 return -EIO;
3121
3122 /* Do not allow fallocate in ZONED mode */
3123 if (btrfs_is_zoned(inode_to_fs_info(inode)))
3124 return -EOPNOTSUPP;
3125
3126 alloc_start = round_down(offset, blocksize);
3127 alloc_end = round_up(offset + len, blocksize);
3128 cur_offset = alloc_start;
3129
3130 /* Make sure we aren't being give some crap mode */
3131 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
3132 FALLOC_FL_ZERO_RANGE))
3133 return -EOPNOTSUPP;
3134
3135 if (mode & FALLOC_FL_PUNCH_HOLE)
3136 return btrfs_punch_hole(file, offset, len);
3137
3138 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
3139
3140 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
3141 ret = inode_newsize_ok(inode, offset + len);
3142 if (ret)
3143 goto out;
3144 }
3145
3146 ret = file_modified(file);
3147 if (ret)
3148 goto out;
3149
3150 /*
3151 * TODO: Move these two operations after we have checked
3152 * accurate reserved space, or fallocate can still fail but
3153 * with page truncated or size expanded.
3154 *
3155 * But that's a minor problem and won't do much harm BTW.
3156 */
3157 if (alloc_start > inode->i_size) {
3158 ret = btrfs_cont_expand(BTRFS_I(inode), i_size_read(inode),
3159 alloc_start);
3160 if (ret)
3161 goto out;
3162 } else if (offset + len > inode->i_size) {
3163 /*
3164 * If we are fallocating from the end of the file onward we
3165 * need to zero out the end of the block if i_size lands in the
3166 * middle of a block.
3167 */
3168 ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size,
3169 inode->i_size, (u64)-1);
3170 if (ret)
3171 goto out;
3172 }
3173
3174 /*
3175 * We have locked the inode at the VFS level (in exclusive mode) and we
3176 * have locked the i_mmap_lock lock (in exclusive mode). Now before
3177 * locking the file range, flush all dealloc in the range and wait for
3178 * all ordered extents in the range to complete. After this we can lock
3179 * the file range and, due to the previous locking we did, we know there
3180 * can't be more delalloc or ordered extents in the range.
3181 */
3182 ret = btrfs_wait_ordered_range(BTRFS_I(inode), alloc_start,
3183 alloc_end - alloc_start);
3184 if (ret)
3185 goto out;
3186
3187 if (mode & FALLOC_FL_ZERO_RANGE) {
3188 ret = btrfs_zero_range(inode, offset, len, mode);
3189 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
3190 return ret;
3191 }
3192
3193 locked_end = alloc_end - 1;
3194 btrfs_lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3195 &cached_state);
3196
3197 btrfs_assert_inode_range_clean(BTRFS_I(inode), alloc_start, locked_end);
3198
3199 /* First, check if we exceed the qgroup limit */
3200 while (cur_offset < alloc_end) {
3201 em = btrfs_get_extent(BTRFS_I(inode), NULL, cur_offset,
3202 alloc_end - cur_offset);
3203 if (IS_ERR(em)) {
3204 ret = PTR_ERR(em);
3205 break;
3206 }
3207 last_byte = min(btrfs_extent_map_end(em), alloc_end);
3208 actual_end = min_t(u64, btrfs_extent_map_end(em), offset + len);
3209 last_byte = ALIGN(last_byte, blocksize);
3210 if (em->disk_bytenr == EXTENT_MAP_HOLE ||
3211 (cur_offset >= inode->i_size &&
3212 !(em->flags & EXTENT_FLAG_PREALLOC))) {
3213 const u64 range_len = last_byte - cur_offset;
3214
3215 ret = add_falloc_range(&reserve_list, cur_offset, range_len);
3216 if (ret < 0) {
3217 btrfs_free_extent_map(em);
3218 break;
3219 }
3220 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode),
3221 &data_reserved, cur_offset, range_len);
3222 if (ret < 0) {
3223 btrfs_free_extent_map(em);
3224 break;
3225 }
3226 qgroup_reserved += range_len;
3227 data_space_needed += range_len;
3228 }
3229 btrfs_free_extent_map(em);
3230 cur_offset = last_byte;
3231 }
3232
3233 if (!ret && data_space_needed > 0) {
3234 /*
3235 * We are safe to reserve space here as we can't have delalloc
3236 * in the range, see above.
3237 */
3238 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3239 data_space_needed);
3240 if (!ret)
3241 data_space_reserved = data_space_needed;
3242 }
3243
3244 /*
3245 * If ret is still 0, means we're OK to fallocate.
3246 * Or just cleanup the list and exit.
3247 */
3248 list_for_each_entry_safe(range, tmp, &reserve_list, list) {
3249 if (!ret) {
3250 ret = btrfs_prealloc_file_range(inode, mode,
3251 range->start,
3252 range->len, blocksize,
3253 offset + len, &alloc_hint);
3254 /*
3255 * btrfs_prealloc_file_range() releases space even
3256 * if it returns an error.
3257 */
3258 data_space_reserved -= range->len;
3259 qgroup_reserved -= range->len;
3260 } else if (data_space_reserved > 0) {
3261 btrfs_free_reserved_data_space(BTRFS_I(inode),
3262 data_reserved, range->start,
3263 range->len);
3264 data_space_reserved -= range->len;
3265 qgroup_reserved -= range->len;
3266 } else if (qgroup_reserved > 0) {
3267 btrfs_qgroup_free_data(BTRFS_I(inode), data_reserved,
3268 range->start, range->len, NULL);
3269 qgroup_reserved -= range->len;
3270 }
3271 list_del(&range->list);
3272 kfree(range);
3273 }
3274 if (ret < 0)
3275 goto out_unlock;
3276
3277 /*
3278 * We didn't need to allocate any more space, but we still extended the
3279 * size of the file so we need to update i_size and the inode item.
3280 */
3281 ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
3282out_unlock:
3283 btrfs_unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3284 &cached_state);
3285out:
3286 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
3287 extent_changeset_free(data_reserved);
3288 return ret;
3289}
3290
3291/*
3292 * Helper for btrfs_find_delalloc_in_range(). Find a subrange in a given range
3293 * that has unflushed and/or flushing delalloc. There might be other adjacent
3294 * subranges after the one it found, so btrfs_find_delalloc_in_range() keeps
3295 * looping while it gets adjacent subranges, and merging them together.
3296 */
3297static bool find_delalloc_subrange(struct btrfs_inode *inode, u64 start, u64 end,
3298 struct extent_state **cached_state,
3299 bool *search_io_tree,
3300 u64 *delalloc_start_ret, u64 *delalloc_end_ret)
3301{
3302 u64 len = end + 1 - start;
3303 u64 delalloc_len = 0;
3304 struct btrfs_ordered_extent *oe;
3305 u64 oe_start;
3306 u64 oe_end;
3307
3308 /*
3309 * Search the io tree first for EXTENT_DELALLOC. If we find any, it
3310 * means we have delalloc (dirty pages) for which writeback has not
3311 * started yet.
3312 */
3313 if (*search_io_tree) {
3314 spin_lock(&inode->lock);
3315 if (inode->delalloc_bytes > 0) {
3316 spin_unlock(&inode->lock);
3317 *delalloc_start_ret = start;
3318 delalloc_len = btrfs_count_range_bits(&inode->io_tree,
3319 delalloc_start_ret, end,
3320 len, EXTENT_DELALLOC, 1,
3321 cached_state);
3322 } else {
3323 spin_unlock(&inode->lock);
3324 }
3325 }
3326
3327 if (delalloc_len > 0) {
3328 /*
3329 * If delalloc was found then *delalloc_start_ret has a sector size
3330 * aligned value (rounded down).
3331 */
3332 *delalloc_end_ret = *delalloc_start_ret + delalloc_len - 1;
3333
3334 if (*delalloc_start_ret == start) {
3335 /* Delalloc for the whole range, nothing more to do. */
3336 if (*delalloc_end_ret == end)
3337 return true;
3338 /* Else trim our search range for ordered extents. */
3339 start = *delalloc_end_ret + 1;
3340 len = end + 1 - start;
3341 }
3342 } else {
3343 /* No delalloc, future calls don't need to search again. */
3344 *search_io_tree = false;
3345 }
3346
3347 /*
3348 * Now also check if there's any ordered extent in the range.
3349 * We do this because:
3350 *
3351 * 1) When delalloc is flushed, the file range is locked, we clear the
3352 * EXTENT_DELALLOC bit from the io tree and create an extent map and
3353 * an ordered extent for the write. So we might just have been called
3354 * after delalloc is flushed and before the ordered extent completes
3355 * and inserts the new file extent item in the subvolume's btree;
3356 *
3357 * 2) We may have an ordered extent created by flushing delalloc for a
3358 * subrange that starts before the subrange we found marked with
3359 * EXTENT_DELALLOC in the io tree.
3360 *
3361 * We could also use the extent map tree to find such delalloc that is
3362 * being flushed, but using the ordered extents tree is more efficient
3363 * because it's usually much smaller as ordered extents are removed from
3364 * the tree once they complete. With the extent maps, we may have them
3365 * in the extent map tree for a very long time, and they were either
3366 * created by previous writes or loaded by read operations.
3367 */
3368 oe = btrfs_lookup_first_ordered_range(inode, start, len);
3369 if (!oe)
3370 return (delalloc_len > 0);
3371
3372 /* The ordered extent may span beyond our search range. */
3373 oe_start = max(oe->file_offset, start);
3374 oe_end = min(oe->file_offset + oe->num_bytes - 1, end);
3375
3376 btrfs_put_ordered_extent(oe);
3377
3378 /* Don't have unflushed delalloc, return the ordered extent range. */
3379 if (delalloc_len == 0) {
3380 *delalloc_start_ret = oe_start;
3381 *delalloc_end_ret = oe_end;
3382 return true;
3383 }
3384
3385 /*
3386 * We have both unflushed delalloc (io_tree) and an ordered extent.
3387 * If the ranges are adjacent returned a combined range, otherwise
3388 * return the leftmost range.
3389 */
3390 if (oe_start < *delalloc_start_ret) {
3391 if (oe_end < *delalloc_start_ret)
3392 *delalloc_end_ret = oe_end;
3393 *delalloc_start_ret = oe_start;
3394 } else if (*delalloc_end_ret + 1 == oe_start) {
3395 *delalloc_end_ret = oe_end;
3396 }
3397
3398 return true;
3399}
3400
3401/*
3402 * Check if there's delalloc in a given range.
3403 *
3404 * @inode: The inode.
3405 * @start: The start offset of the range. It does not need to be
3406 * sector size aligned.
3407 * @end: The end offset (inclusive value) of the search range.
3408 * It does not need to be sector size aligned.
3409 * @cached_state: Extent state record used for speeding up delalloc
3410 * searches in the inode's io_tree. Can be NULL.
3411 * @delalloc_start_ret: Output argument, set to the start offset of the
3412 * subrange found with delalloc (may not be sector size
3413 * aligned).
3414 * @delalloc_end_ret: Output argument, set to he end offset (inclusive value)
3415 * of the subrange found with delalloc.
3416 *
3417 * Returns true if a subrange with delalloc is found within the given range, and
3418 * if so it sets @delalloc_start_ret and @delalloc_end_ret with the start and
3419 * end offsets of the subrange.
3420 */
3421bool btrfs_find_delalloc_in_range(struct btrfs_inode *inode, u64 start, u64 end,
3422 struct extent_state **cached_state,
3423 u64 *delalloc_start_ret, u64 *delalloc_end_ret)
3424{
3425 u64 cur_offset = round_down(start, inode->root->fs_info->sectorsize);
3426 u64 prev_delalloc_end = 0;
3427 bool search_io_tree = true;
3428 bool ret = false;
3429
3430 while (cur_offset <= end) {
3431 u64 delalloc_start;
3432 u64 delalloc_end;
3433 bool delalloc;
3434
3435 delalloc = find_delalloc_subrange(inode, cur_offset, end,
3436 cached_state, &search_io_tree,
3437 &delalloc_start,
3438 &delalloc_end);
3439 if (!delalloc)
3440 break;
3441
3442 if (prev_delalloc_end == 0) {
3443 /* First subrange found. */
3444 *delalloc_start_ret = max(delalloc_start, start);
3445 *delalloc_end_ret = delalloc_end;
3446 ret = true;
3447 } else if (delalloc_start == prev_delalloc_end + 1) {
3448 /* Subrange adjacent to the previous one, merge them. */
3449 *delalloc_end_ret = delalloc_end;
3450 } else {
3451 /* Subrange not adjacent to the previous one, exit. */
3452 break;
3453 }
3454
3455 prev_delalloc_end = delalloc_end;
3456 cur_offset = delalloc_end + 1;
3457 cond_resched();
3458 }
3459
3460 return ret;
3461}
3462
3463/*
3464 * Check if there's a hole or delalloc range in a range representing a hole (or
3465 * prealloc extent) found in the inode's subvolume btree.
3466 *
3467 * @inode: The inode.
3468 * @whence: Seek mode (SEEK_DATA or SEEK_HOLE).
3469 * @start: Start offset of the hole region. It does not need to be sector
3470 * size aligned.
3471 * @end: End offset (inclusive value) of the hole region. It does not
3472 * need to be sector size aligned.
3473 * @start_ret: Return parameter, used to set the start of the subrange in the
3474 * hole that matches the search criteria (seek mode), if such
3475 * subrange is found (return value of the function is true).
3476 * The value returned here may not be sector size aligned.
3477 *
3478 * Returns true if a subrange matching the given seek mode is found, and if one
3479 * is found, it updates @start_ret with the start of the subrange.
3480 */
3481static bool find_desired_extent_in_hole(struct btrfs_inode *inode, int whence,
3482 struct extent_state **cached_state,
3483 u64 start, u64 end, u64 *start_ret)
3484{
3485 u64 delalloc_start;
3486 u64 delalloc_end;
3487 bool delalloc;
3488
3489 delalloc = btrfs_find_delalloc_in_range(inode, start, end, cached_state,
3490 &delalloc_start, &delalloc_end);
3491 if (delalloc && whence == SEEK_DATA) {
3492 *start_ret = delalloc_start;
3493 return true;
3494 }
3495
3496 if (delalloc && whence == SEEK_HOLE) {
3497 /*
3498 * We found delalloc but it starts after out start offset. So we
3499 * have a hole between our start offset and the delalloc start.
3500 */
3501 if (start < delalloc_start) {
3502 *start_ret = start;
3503 return true;
3504 }
3505 /*
3506 * Delalloc range starts at our start offset.
3507 * If the delalloc range's length is smaller than our range,
3508 * then it means we have a hole that starts where the delalloc
3509 * subrange ends.
3510 */
3511 if (delalloc_end < end) {
3512 *start_ret = delalloc_end + 1;
3513 return true;
3514 }
3515
3516 /* There's delalloc for the whole range. */
3517 return false;
3518 }
3519
3520 if (!delalloc && whence == SEEK_HOLE) {
3521 *start_ret = start;
3522 return true;
3523 }
3524
3525 /*
3526 * No delalloc in the range and we are seeking for data. The caller has
3527 * to iterate to the next extent item in the subvolume btree.
3528 */
3529 return false;
3530}
3531
3532static loff_t find_desired_extent(struct file *file, loff_t offset, int whence)
3533{
3534 struct btrfs_inode *inode = BTRFS_I(file->f_mapping->host);
3535 struct btrfs_file_private *private;
3536 struct btrfs_fs_info *fs_info = inode->root->fs_info;
3537 struct extent_state *cached_state = NULL;
3538 struct extent_state **delalloc_cached_state;
3539 const loff_t i_size = i_size_read(&inode->vfs_inode);
3540 const u64 ino = btrfs_ino(inode);
3541 struct btrfs_root *root = inode->root;
3542 struct btrfs_path *path;
3543 struct btrfs_key key;
3544 u64 last_extent_end;
3545 u64 lockstart;
3546 u64 lockend;
3547 u64 start;
3548 int ret;
3549 bool found = false;
3550
3551 if (i_size == 0 || offset >= i_size)
3552 return -ENXIO;
3553
3554 /*
3555 * Quick path. If the inode has no prealloc extents and its number of
3556 * bytes used matches its i_size, then it can not have holes.
3557 */
3558 if (whence == SEEK_HOLE &&
3559 !(inode->flags & BTRFS_INODE_PREALLOC) &&
3560 inode_get_bytes(&inode->vfs_inode) == i_size)
3561 return i_size;
3562
3563 spin_lock(&inode->lock);
3564 private = file->private_data;
3565 spin_unlock(&inode->lock);
3566
3567 if (private && private->owner_task != current) {
3568 /*
3569 * Not allocated by us, don't use it as its cached state is used
3570 * by the task that allocated it and we don't want neither to
3571 * mess with it nor get incorrect results because it reflects an
3572 * invalid state for the current task.
3573 */
3574 private = NULL;
3575 } else if (!private) {
3576 private = kzalloc(sizeof(*private), GFP_KERNEL);
3577 /*
3578 * No worries if memory allocation failed.
3579 * The private structure is used only for speeding up multiple
3580 * lseek SEEK_HOLE/DATA calls to a file when there's delalloc,
3581 * so everything will still be correct.
3582 */
3583 if (private) {
3584 bool free = false;
3585
3586 private->owner_task = current;
3587
3588 spin_lock(&inode->lock);
3589 if (file->private_data)
3590 free = true;
3591 else
3592 file->private_data = private;
3593 spin_unlock(&inode->lock);
3594
3595 if (free) {
3596 kfree(private);
3597 private = NULL;
3598 }
3599 }
3600 }
3601
3602 if (private)
3603 delalloc_cached_state = &private->llseek_cached_state;
3604 else
3605 delalloc_cached_state = NULL;
3606
3607 /*
3608 * offset can be negative, in this case we start finding DATA/HOLE from
3609 * the very start of the file.
3610 */
3611 start = max_t(loff_t, 0, offset);
3612
3613 lockstart = round_down(start, fs_info->sectorsize);
3614 lockend = round_up(i_size, fs_info->sectorsize);
3615 if (lockend <= lockstart)
3616 lockend = lockstart + fs_info->sectorsize;
3617 lockend--;
3618
3619 path = btrfs_alloc_path();
3620 if (!path)
3621 return -ENOMEM;
3622 path->reada = READA_FORWARD;
3623
3624 key.objectid = ino;
3625 key.type = BTRFS_EXTENT_DATA_KEY;
3626 key.offset = start;
3627
3628 last_extent_end = lockstart;
3629
3630 btrfs_lock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
3631
3632 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3633 if (ret < 0) {
3634 goto out;
3635 } else if (ret > 0 && path->slots[0] > 0) {
3636 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
3637 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
3638 path->slots[0]--;
3639 }
3640
3641 while (start < i_size) {
3642 struct extent_buffer *leaf = path->nodes[0];
3643 struct btrfs_file_extent_item *extent;
3644 u64 extent_end;
3645 u8 type;
3646
3647 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3648 ret = btrfs_next_leaf(root, path);
3649 if (ret < 0)
3650 goto out;
3651 else if (ret > 0)
3652 break;
3653
3654 leaf = path->nodes[0];
3655 }
3656
3657 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3658 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
3659 break;
3660
3661 extent_end = btrfs_file_extent_end(path);
3662
3663 /*
3664 * In the first iteration we may have a slot that points to an
3665 * extent that ends before our start offset, so skip it.
3666 */
3667 if (extent_end <= start) {
3668 path->slots[0]++;
3669 continue;
3670 }
3671
3672 /* We have an implicit hole, NO_HOLES feature is likely set. */
3673 if (last_extent_end < key.offset) {
3674 u64 search_start = last_extent_end;
3675 u64 found_start;
3676
3677 /*
3678 * First iteration, @start matches @offset and it's
3679 * within the hole.
3680 */
3681 if (start == offset)
3682 search_start = offset;
3683
3684 found = find_desired_extent_in_hole(inode, whence,
3685 delalloc_cached_state,
3686 search_start,
3687 key.offset - 1,
3688 &found_start);
3689 if (found) {
3690 start = found_start;
3691 break;
3692 }
3693 /*
3694 * Didn't find data or a hole (due to delalloc) in the
3695 * implicit hole range, so need to analyze the extent.
3696 */
3697 }
3698
3699 extent = btrfs_item_ptr(leaf, path->slots[0],
3700 struct btrfs_file_extent_item);
3701 type = btrfs_file_extent_type(leaf, extent);
3702
3703 /*
3704 * Can't access the extent's disk_bytenr field if this is an
3705 * inline extent, since at that offset, it's where the extent
3706 * data starts.
3707 */
3708 if (type == BTRFS_FILE_EXTENT_PREALLOC ||
3709 (type == BTRFS_FILE_EXTENT_REG &&
3710 btrfs_file_extent_disk_bytenr(leaf, extent) == 0)) {
3711 /*
3712 * Explicit hole or prealloc extent, search for delalloc.
3713 * A prealloc extent is treated like a hole.
3714 */
3715 u64 search_start = key.offset;
3716 u64 found_start;
3717
3718 /*
3719 * First iteration, @start matches @offset and it's
3720 * within the hole.
3721 */
3722 if (start == offset)
3723 search_start = offset;
3724
3725 found = find_desired_extent_in_hole(inode, whence,
3726 delalloc_cached_state,
3727 search_start,
3728 extent_end - 1,
3729 &found_start);
3730 if (found) {
3731 start = found_start;
3732 break;
3733 }
3734 /*
3735 * Didn't find data or a hole (due to delalloc) in the
3736 * implicit hole range, so need to analyze the next
3737 * extent item.
3738 */
3739 } else {
3740 /*
3741 * Found a regular or inline extent.
3742 * If we are seeking for data, adjust the start offset
3743 * and stop, we're done.
3744 */
3745 if (whence == SEEK_DATA) {
3746 start = max_t(u64, key.offset, offset);
3747 found = true;
3748 break;
3749 }
3750 /*
3751 * Else, we are seeking for a hole, check the next file
3752 * extent item.
3753 */
3754 }
3755
3756 start = extent_end;
3757 last_extent_end = extent_end;
3758 path->slots[0]++;
3759 if (fatal_signal_pending(current)) {
3760 ret = -EINTR;
3761 goto out;
3762 }
3763 cond_resched();
3764 }
3765
3766 /* We have an implicit hole from the last extent found up to i_size. */
3767 if (!found && start < i_size) {
3768 found = find_desired_extent_in_hole(inode, whence,
3769 delalloc_cached_state, start,
3770 i_size - 1, &start);
3771 if (!found)
3772 start = i_size;
3773 }
3774
3775out:
3776 btrfs_unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
3777 btrfs_free_path(path);
3778
3779 if (ret < 0)
3780 return ret;
3781
3782 if (whence == SEEK_DATA && start >= i_size)
3783 return -ENXIO;
3784
3785 return min_t(loff_t, start, i_size);
3786}
3787
3788static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
3789{
3790 struct inode *inode = file->f_mapping->host;
3791
3792 switch (whence) {
3793 default:
3794 return generic_file_llseek(file, offset, whence);
3795 case SEEK_DATA:
3796 case SEEK_HOLE:
3797 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
3798 offset = find_desired_extent(file, offset, whence);
3799 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
3800 break;
3801 }
3802
3803 if (offset < 0)
3804 return offset;
3805
3806 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3807}
3808
3809static int btrfs_file_open(struct inode *inode, struct file *filp)
3810{
3811 int ret;
3812
3813 if (unlikely(btrfs_is_shutdown(inode_to_fs_info(inode))))
3814 return -EIO;
3815
3816 filp->f_mode |= FMODE_NOWAIT | FMODE_CAN_ODIRECT;
3817
3818 ret = fsverity_file_open(inode, filp);
3819 if (ret)
3820 return ret;
3821 return generic_file_open(inode, filp);
3822}
3823
3824static ssize_t btrfs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
3825{
3826 ssize_t ret = 0;
3827
3828 if (unlikely(btrfs_is_shutdown(inode_to_fs_info(file_inode(iocb->ki_filp)))))
3829 return -EIO;
3830
3831 if (iocb->ki_flags & IOCB_DIRECT) {
3832 ret = btrfs_direct_read(iocb, to);
3833 if (ret < 0 || !iov_iter_count(to) ||
3834 iocb->ki_pos >= i_size_read(file_inode(iocb->ki_filp)))
3835 return ret;
3836 }
3837
3838 return filemap_read(iocb, to, ret);
3839}
3840
3841static ssize_t btrfs_file_splice_read(struct file *in, loff_t *ppos,
3842 struct pipe_inode_info *pipe,
3843 size_t len, unsigned int flags)
3844{
3845 if (unlikely(btrfs_is_shutdown(inode_to_fs_info(file_inode(in)))))
3846 return -EIO;
3847
3848 return filemap_splice_read(in, ppos, pipe, len, flags);
3849}
3850
3851const struct file_operations btrfs_file_operations = {
3852 .llseek = btrfs_file_llseek,
3853 .read_iter = btrfs_file_read_iter,
3854 .splice_read = btrfs_file_splice_read,
3855 .write_iter = btrfs_file_write_iter,
3856 .splice_write = iter_file_splice_write,
3857 .mmap_prepare = btrfs_file_mmap_prepare,
3858 .open = btrfs_file_open,
3859 .release = btrfs_release_file,
3860 .get_unmapped_area = thp_get_unmapped_area,
3861 .fsync = btrfs_sync_file,
3862 .fallocate = btrfs_fallocate,
3863 .unlocked_ioctl = btrfs_ioctl,
3864#ifdef CONFIG_COMPAT
3865 .compat_ioctl = btrfs_compat_ioctl,
3866#endif
3867 .remap_file_range = btrfs_remap_file_range,
3868 .uring_cmd = btrfs_uring_cmd,
3869 .fop_flags = FOP_BUFFER_RASYNC | FOP_BUFFER_WASYNC,
3870};
3871
3872int btrfs_fdatawrite_range(struct btrfs_inode *inode, loff_t start, loff_t end)
3873{
3874 struct address_space *mapping = inode->vfs_inode.i_mapping;
3875 int ret;
3876
3877 /*
3878 * So with compression we will find and lock a dirty page and clear the
3879 * first one as dirty, setup an async extent, and immediately return
3880 * with the entire range locked but with nobody actually marked with
3881 * writeback. So we can't just filemap_write_and_wait_range() and
3882 * expect it to work since it will just kick off a thread to do the
3883 * actual work. So we need to call filemap_fdatawrite_range _again_
3884 * since it will wait on the page lock, which won't be unlocked until
3885 * after the pages have been marked as writeback and so we're good to go
3886 * from there. We have to do this otherwise we'll miss the ordered
3887 * extents and that results in badness. Please Josef, do not think you
3888 * know better and pull this out at some point in the future, it is
3889 * right and you are wrong.
3890 */
3891 ret = filemap_fdatawrite_range(mapping, start, end);
3892 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags))
3893 ret = filemap_fdatawrite_range(mapping, start, end);
3894
3895 return ret;
3896}