at master 142 kB view raw
1// SPDX-License-Identifier: GPL-2.0 2/* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6#include <linux/fs.h> 7#include <linux/blkdev.h> 8#include <linux/radix-tree.h> 9#include <linux/writeback.h> 10#include <linux/workqueue.h> 11#include <linux/kthread.h> 12#include <linux/slab.h> 13#include <linux/migrate.h> 14#include <linux/ratelimit.h> 15#include <linux/uuid.h> 16#include <linux/semaphore.h> 17#include <linux/error-injection.h> 18#include <linux/crc32c.h> 19#include <linux/sched/mm.h> 20#include <linux/unaligned.h> 21#include <crypto/hash.h> 22#include "ctree.h" 23#include "disk-io.h" 24#include "transaction.h" 25#include "btrfs_inode.h" 26#include "bio.h" 27#include "print-tree.h" 28#include "locking.h" 29#include "tree-log.h" 30#include "free-space-cache.h" 31#include "free-space-tree.h" 32#include "dev-replace.h" 33#include "raid56.h" 34#include "sysfs.h" 35#include "qgroup.h" 36#include "compression.h" 37#include "tree-checker.h" 38#include "ref-verify.h" 39#include "block-group.h" 40#include "discard.h" 41#include "space-info.h" 42#include "zoned.h" 43#include "subpage.h" 44#include "fs.h" 45#include "accessors.h" 46#include "extent-tree.h" 47#include "root-tree.h" 48#include "defrag.h" 49#include "uuid-tree.h" 50#include "relocation.h" 51#include "scrub.h" 52#include "super.h" 53#include "delayed-inode.h" 54 55#define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\ 56 BTRFS_HEADER_FLAG_RELOC |\ 57 BTRFS_SUPER_FLAG_ERROR |\ 58 BTRFS_SUPER_FLAG_SEEDING |\ 59 BTRFS_SUPER_FLAG_METADUMP |\ 60 BTRFS_SUPER_FLAG_METADUMP_V2) 61 62static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info); 63static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info); 64 65static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info) 66{ 67 if (fs_info->csum_shash) 68 crypto_free_shash(fs_info->csum_shash); 69} 70 71/* 72 * Compute the csum of a btree block and store the result to provided buffer. 73 */ 74static void csum_tree_block(struct extent_buffer *buf, u8 *result) 75{ 76 struct btrfs_fs_info *fs_info = buf->fs_info; 77 int num_pages; 78 u32 first_page_part; 79 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 80 char *kaddr; 81 int i; 82 83 shash->tfm = fs_info->csum_shash; 84 crypto_shash_init(shash); 85 86 if (buf->addr) { 87 /* Pages are contiguous, handle them as a big one. */ 88 kaddr = buf->addr; 89 first_page_part = fs_info->nodesize; 90 num_pages = 1; 91 } else { 92 kaddr = folio_address(buf->folios[0]); 93 first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize); 94 num_pages = num_extent_pages(buf); 95 } 96 97 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE, 98 first_page_part - BTRFS_CSUM_SIZE); 99 100 /* 101 * Multiple single-page folios case would reach here. 102 * 103 * nodesize <= PAGE_SIZE and large folio all handled by above 104 * crypto_shash_update() already. 105 */ 106 for (i = 1; i < num_pages && INLINE_EXTENT_BUFFER_PAGES > 1; i++) { 107 kaddr = folio_address(buf->folios[i]); 108 crypto_shash_update(shash, kaddr, PAGE_SIZE); 109 } 110 memset(result, 0, BTRFS_CSUM_SIZE); 111 crypto_shash_final(shash, result); 112} 113 114/* 115 * we can't consider a given block up to date unless the transid of the 116 * block matches the transid in the parent node's pointer. This is how we 117 * detect blocks that either didn't get written at all or got written 118 * in the wrong place. 119 */ 120int btrfs_buffer_uptodate(struct extent_buffer *eb, u64 parent_transid, bool atomic) 121{ 122 if (!extent_buffer_uptodate(eb)) 123 return 0; 124 125 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 126 return 1; 127 128 if (atomic) 129 return -EAGAIN; 130 131 if (!extent_buffer_uptodate(eb) || 132 btrfs_header_generation(eb) != parent_transid) { 133 btrfs_err_rl(eb->fs_info, 134"parent transid verify failed on logical %llu mirror %u wanted %llu found %llu", 135 eb->start, eb->read_mirror, 136 parent_transid, btrfs_header_generation(eb)); 137 clear_extent_buffer_uptodate(eb); 138 return 0; 139 } 140 return 1; 141} 142 143static bool btrfs_supported_super_csum(u16 csum_type) 144{ 145 switch (csum_type) { 146 case BTRFS_CSUM_TYPE_CRC32: 147 case BTRFS_CSUM_TYPE_XXHASH: 148 case BTRFS_CSUM_TYPE_SHA256: 149 case BTRFS_CSUM_TYPE_BLAKE2: 150 return true; 151 default: 152 return false; 153 } 154} 155 156/* 157 * Return 0 if the superblock checksum type matches the checksum value of that 158 * algorithm. Pass the raw disk superblock data. 159 */ 160int btrfs_check_super_csum(struct btrfs_fs_info *fs_info, 161 const struct btrfs_super_block *disk_sb) 162{ 163 char result[BTRFS_CSUM_SIZE]; 164 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 165 166 shash->tfm = fs_info->csum_shash; 167 168 /* 169 * The super_block structure does not span the whole 170 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is 171 * filled with zeros and is included in the checksum. 172 */ 173 crypto_shash_digest(shash, (const u8 *)disk_sb + BTRFS_CSUM_SIZE, 174 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result); 175 176 if (memcmp(disk_sb->csum, result, fs_info->csum_size)) 177 return 1; 178 179 return 0; 180} 181 182static int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, 183 int mirror_num) 184{ 185 struct btrfs_fs_info *fs_info = eb->fs_info; 186 const u32 step = min(fs_info->nodesize, PAGE_SIZE); 187 const u32 nr_steps = eb->len / step; 188 phys_addr_t paddrs[BTRFS_MAX_BLOCKSIZE / PAGE_SIZE]; 189 int ret = 0; 190 191 if (sb_rdonly(fs_info->sb)) 192 return -EROFS; 193 194 for (int i = 0; i < num_extent_pages(eb); i++) { 195 struct folio *folio = eb->folios[i]; 196 197 /* No large folio support yet. */ 198 ASSERT(folio_order(folio) == 0); 199 ASSERT(i < nr_steps); 200 201 /* 202 * For nodesize < page size, there is just one paddr, with some 203 * offset inside the page. 204 * 205 * For nodesize >= page size, it's one or more paddrs, and eb->start 206 * must be aligned to page boundary. 207 */ 208 paddrs[i] = page_to_phys(&folio->page) + offset_in_page(eb->start); 209 } 210 211 ret = btrfs_repair_io_failure(fs_info, 0, eb->start, eb->len, eb->start, 212 paddrs, step, mirror_num); 213 return ret; 214} 215 216/* 217 * helper to read a given tree block, doing retries as required when 218 * the checksums don't match and we have alternate mirrors to try. 219 * 220 * @check: expected tree parentness check, see the comments of the 221 * structure for details. 222 */ 223int btrfs_read_extent_buffer(struct extent_buffer *eb, 224 const struct btrfs_tree_parent_check *check) 225{ 226 struct btrfs_fs_info *fs_info = eb->fs_info; 227 int failed = 0; 228 int ret; 229 int num_copies = 0; 230 int mirror_num = 0; 231 int failed_mirror = 0; 232 233 ASSERT(check); 234 235 while (1) { 236 ret = read_extent_buffer_pages(eb, mirror_num, check); 237 if (!ret) 238 break; 239 240 num_copies = btrfs_num_copies(fs_info, 241 eb->start, eb->len); 242 if (num_copies == 1) 243 break; 244 245 if (!failed_mirror) { 246 failed = 1; 247 failed_mirror = eb->read_mirror; 248 } 249 250 mirror_num++; 251 if (mirror_num == failed_mirror) 252 mirror_num++; 253 254 if (mirror_num > num_copies) 255 break; 256 } 257 258 if (failed && !ret && failed_mirror) 259 btrfs_repair_eb_io_failure(eb, failed_mirror); 260 261 return ret; 262} 263 264/* 265 * Checksum a dirty tree block before IO. 266 */ 267int btree_csum_one_bio(struct btrfs_bio *bbio) 268{ 269 struct extent_buffer *eb = bbio->private; 270 struct btrfs_fs_info *fs_info = eb->fs_info; 271 u64 found_start = btrfs_header_bytenr(eb); 272 u64 last_trans; 273 u8 result[BTRFS_CSUM_SIZE]; 274 int ret; 275 276 /* Btree blocks are always contiguous on disk. */ 277 if (WARN_ON_ONCE(bbio->file_offset != eb->start)) 278 return -EIO; 279 if (WARN_ON_ONCE(bbio->bio.bi_iter.bi_size != eb->len)) 280 return -EIO; 281 282 /* 283 * If an extent_buffer is marked as EXTENT_BUFFER_ZONED_ZEROOUT, don't 284 * checksum it but zero-out its content. This is done to preserve 285 * ordering of I/O without unnecessarily writing out data. 286 */ 287 if (test_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags)) { 288 memzero_extent_buffer(eb, 0, eb->len); 289 return 0; 290 } 291 292 if (WARN_ON_ONCE(found_start != eb->start)) 293 return -EIO; 294 if (WARN_ON(!btrfs_meta_folio_test_uptodate(eb->folios[0], eb))) 295 return -EIO; 296 297 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid, 298 offsetof(struct btrfs_header, fsid), 299 BTRFS_FSID_SIZE) == 0); 300 csum_tree_block(eb, result); 301 302 if (btrfs_header_level(eb)) 303 ret = btrfs_check_node(eb); 304 else 305 ret = btrfs_check_leaf(eb); 306 307 if (ret < 0) 308 goto error; 309 310 /* 311 * Also check the generation, the eb reached here must be newer than 312 * last committed. Or something seriously wrong happened. 313 */ 314 last_trans = btrfs_get_last_trans_committed(fs_info); 315 if (unlikely(btrfs_header_generation(eb) <= last_trans)) { 316 ret = -EUCLEAN; 317 btrfs_err(fs_info, 318 "block=%llu bad generation, have %llu expect > %llu", 319 eb->start, btrfs_header_generation(eb), last_trans); 320 goto error; 321 } 322 write_extent_buffer(eb, result, 0, fs_info->csum_size); 323 return 0; 324 325error: 326 btrfs_print_tree(eb, 0); 327 btrfs_err(fs_info, "block=%llu write time tree block corruption detected", 328 eb->start); 329 /* 330 * Be noisy if this is an extent buffer from a log tree. We don't abort 331 * a transaction in case there's a bad log tree extent buffer, we just 332 * fallback to a transaction commit. Still we want to know when there is 333 * a bad log tree extent buffer, as that may signal a bug somewhere. 334 */ 335 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG) || 336 btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID); 337 return ret; 338} 339 340static bool check_tree_block_fsid(struct extent_buffer *eb) 341{ 342 struct btrfs_fs_info *fs_info = eb->fs_info; 343 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 344 u8 fsid[BTRFS_FSID_SIZE]; 345 346 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid), 347 BTRFS_FSID_SIZE); 348 349 /* 350 * alloc_fsid_devices() copies the fsid into fs_devices::metadata_uuid. 351 * This is then overwritten by metadata_uuid if it is present in the 352 * device_list_add(). The same true for a seed device as well. So use of 353 * fs_devices::metadata_uuid is appropriate here. 354 */ 355 if (memcmp(fsid, fs_info->fs_devices->metadata_uuid, BTRFS_FSID_SIZE) == 0) 356 return false; 357 358 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) 359 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE)) 360 return false; 361 362 return true; 363} 364 365/* Do basic extent buffer checks at read time */ 366int btrfs_validate_extent_buffer(struct extent_buffer *eb, 367 const struct btrfs_tree_parent_check *check) 368{ 369 struct btrfs_fs_info *fs_info = eb->fs_info; 370 u64 found_start; 371 const u32 csum_size = fs_info->csum_size; 372 u8 found_level; 373 u8 result[BTRFS_CSUM_SIZE]; 374 const u8 *header_csum; 375 int ret = 0; 376 const bool ignore_csum = btrfs_test_opt(fs_info, IGNOREMETACSUMS); 377 378 ASSERT(check); 379 380 found_start = btrfs_header_bytenr(eb); 381 if (unlikely(found_start != eb->start)) { 382 btrfs_err_rl(fs_info, 383 "bad tree block start, mirror %u want %llu have %llu", 384 eb->read_mirror, eb->start, found_start); 385 ret = -EIO; 386 goto out; 387 } 388 if (unlikely(check_tree_block_fsid(eb))) { 389 btrfs_err_rl(fs_info, "bad fsid on logical %llu mirror %u", 390 eb->start, eb->read_mirror); 391 ret = -EIO; 392 goto out; 393 } 394 found_level = btrfs_header_level(eb); 395 if (unlikely(found_level >= BTRFS_MAX_LEVEL)) { 396 btrfs_err(fs_info, 397 "bad tree block level, mirror %u level %d on logical %llu", 398 eb->read_mirror, btrfs_header_level(eb), eb->start); 399 ret = -EIO; 400 goto out; 401 } 402 403 csum_tree_block(eb, result); 404 header_csum = folio_address(eb->folios[0]) + 405 get_eb_offset_in_folio(eb, offsetof(struct btrfs_header, csum)); 406 407 if (memcmp(result, header_csum, csum_size) != 0) { 408 btrfs_warn_rl(fs_info, 409"checksum verify failed on logical %llu mirror %u wanted " BTRFS_CSUM_FMT " found " BTRFS_CSUM_FMT " level %d%s", 410 eb->start, eb->read_mirror, 411 BTRFS_CSUM_FMT_VALUE(csum_size, header_csum), 412 BTRFS_CSUM_FMT_VALUE(csum_size, result), 413 btrfs_header_level(eb), 414 ignore_csum ? ", ignored" : ""); 415 if (unlikely(!ignore_csum)) { 416 ret = -EUCLEAN; 417 goto out; 418 } 419 } 420 421 if (unlikely(found_level != check->level)) { 422 btrfs_err(fs_info, 423 "level verify failed on logical %llu mirror %u wanted %u found %u", 424 eb->start, eb->read_mirror, check->level, found_level); 425 ret = -EIO; 426 goto out; 427 } 428 if (unlikely(check->transid && 429 btrfs_header_generation(eb) != check->transid)) { 430 btrfs_err_rl(eb->fs_info, 431"parent transid verify failed on logical %llu mirror %u wanted %llu found %llu", 432 eb->start, eb->read_mirror, check->transid, 433 btrfs_header_generation(eb)); 434 ret = -EIO; 435 goto out; 436 } 437 if (check->has_first_key) { 438 const struct btrfs_key *expect_key = &check->first_key; 439 struct btrfs_key found_key; 440 441 if (found_level) 442 btrfs_node_key_to_cpu(eb, &found_key, 0); 443 else 444 btrfs_item_key_to_cpu(eb, &found_key, 0); 445 if (unlikely(btrfs_comp_cpu_keys(expect_key, &found_key))) { 446 btrfs_err(fs_info, 447"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)", 448 eb->start, check->transid, 449 expect_key->objectid, 450 expect_key->type, expect_key->offset, 451 found_key.objectid, found_key.type, 452 found_key.offset); 453 ret = -EUCLEAN; 454 goto out; 455 } 456 } 457 if (check->owner_root) { 458 ret = btrfs_check_eb_owner(eb, check->owner_root); 459 if (ret < 0) 460 goto out; 461 } 462 463 /* If this is a leaf block and it is corrupt, just return -EIO. */ 464 if (found_level == 0 && btrfs_check_leaf(eb)) 465 ret = -EIO; 466 467 if (found_level > 0 && btrfs_check_node(eb)) 468 ret = -EIO; 469 470 if (ret) 471 btrfs_err(fs_info, 472 "read time tree block corruption detected on logical %llu mirror %u", 473 eb->start, eb->read_mirror); 474out: 475 return ret; 476} 477 478#ifdef CONFIG_MIGRATION 479static int btree_migrate_folio(struct address_space *mapping, 480 struct folio *dst, struct folio *src, enum migrate_mode mode) 481{ 482 /* 483 * we can't safely write a btree page from here, 484 * we haven't done the locking hook 485 */ 486 if (folio_test_dirty(src)) 487 return -EAGAIN; 488 /* 489 * Buffers may be managed in a filesystem specific way. 490 * We must have no buffers or drop them. 491 */ 492 if (folio_get_private(src) && 493 !filemap_release_folio(src, GFP_KERNEL)) 494 return -EAGAIN; 495 return migrate_folio(mapping, dst, src, mode); 496} 497#else 498#define btree_migrate_folio NULL 499#endif 500 501static int btree_writepages(struct address_space *mapping, 502 struct writeback_control *wbc) 503{ 504 int ret; 505 506 if (wbc->sync_mode == WB_SYNC_NONE) { 507 struct btrfs_fs_info *fs_info; 508 509 if (wbc->for_kupdate) 510 return 0; 511 512 fs_info = inode_to_fs_info(mapping->host); 513 /* this is a bit racy, but that's ok */ 514 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 515 BTRFS_DIRTY_METADATA_THRESH, 516 fs_info->dirty_metadata_batch); 517 if (ret < 0) 518 return 0; 519 } 520 return btree_write_cache_pages(mapping, wbc); 521} 522 523static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags) 524{ 525 if (folio_test_writeback(folio) || folio_test_dirty(folio)) 526 return false; 527 528 return try_release_extent_buffer(folio); 529} 530 531static void btree_invalidate_folio(struct folio *folio, size_t offset, 532 size_t length) 533{ 534 struct extent_io_tree *tree; 535 536 tree = &folio_to_inode(folio)->io_tree; 537 extent_invalidate_folio(tree, folio, offset); 538 btree_release_folio(folio, GFP_NOFS); 539 if (folio_get_private(folio)) { 540 btrfs_warn(folio_to_fs_info(folio), 541 "folio private not zero on folio %llu", 542 (unsigned long long)folio_pos(folio)); 543 folio_detach_private(folio); 544 } 545} 546 547#ifdef DEBUG 548static bool btree_dirty_folio(struct address_space *mapping, 549 struct folio *folio) 550{ 551 struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host); 552 struct btrfs_subpage_info *spi = fs_info->subpage_info; 553 struct btrfs_subpage *subpage; 554 struct extent_buffer *eb; 555 int cur_bit = 0; 556 u64 page_start = folio_pos(folio); 557 558 if (fs_info->sectorsize == PAGE_SIZE) { 559 eb = folio_get_private(folio); 560 BUG_ON(!eb); 561 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 562 BUG_ON(!atomic_read(&eb->refs)); 563 btrfs_assert_tree_write_locked(eb); 564 return filemap_dirty_folio(mapping, folio); 565 } 566 567 ASSERT(spi); 568 subpage = folio_get_private(folio); 569 570 for (cur_bit = spi->dirty_offset; 571 cur_bit < spi->dirty_offset + spi->bitmap_nr_bits; 572 cur_bit++) { 573 unsigned long flags; 574 u64 cur; 575 576 spin_lock_irqsave(&subpage->lock, flags); 577 if (!test_bit(cur_bit, subpage->bitmaps)) { 578 spin_unlock_irqrestore(&subpage->lock, flags); 579 continue; 580 } 581 spin_unlock_irqrestore(&subpage->lock, flags); 582 cur = page_start + cur_bit * fs_info->sectorsize; 583 584 eb = find_extent_buffer(fs_info, cur); 585 ASSERT(eb); 586 ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 587 ASSERT(atomic_read(&eb->refs)); 588 btrfs_assert_tree_write_locked(eb); 589 free_extent_buffer(eb); 590 591 cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits) - 1; 592 } 593 return filemap_dirty_folio(mapping, folio); 594} 595#else 596#define btree_dirty_folio filemap_dirty_folio 597#endif 598 599static const struct address_space_operations btree_aops = { 600 .writepages = btree_writepages, 601 .release_folio = btree_release_folio, 602 .invalidate_folio = btree_invalidate_folio, 603 .migrate_folio = btree_migrate_folio, 604 .dirty_folio = btree_dirty_folio, 605}; 606 607struct extent_buffer *btrfs_find_create_tree_block( 608 struct btrfs_fs_info *fs_info, 609 u64 bytenr, u64 owner_root, 610 int level) 611{ 612 if (btrfs_is_testing(fs_info)) 613 return alloc_test_extent_buffer(fs_info, bytenr); 614 return alloc_extent_buffer(fs_info, bytenr, owner_root, level); 615} 616 617/* 618 * Read tree block at logical address @bytenr and do variant basic but critical 619 * verification. 620 * 621 * @check: expected tree parentness check, see comments of the 622 * structure for details. 623 */ 624struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr, 625 struct btrfs_tree_parent_check *check) 626{ 627 struct extent_buffer *buf = NULL; 628 int ret; 629 630 ASSERT(check); 631 632 buf = btrfs_find_create_tree_block(fs_info, bytenr, check->owner_root, 633 check->level); 634 if (IS_ERR(buf)) 635 return buf; 636 637 ret = btrfs_read_extent_buffer(buf, check); 638 if (ret) { 639 free_extent_buffer_stale(buf); 640 return ERR_PTR(ret); 641 } 642 return buf; 643 644} 645 646static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info, 647 u64 objectid, gfp_t flags) 648{ 649 struct btrfs_root *root; 650 651 root = kzalloc(sizeof(*root), flags); 652 if (!root) 653 return NULL; 654 655 root->fs_info = fs_info; 656 root->root_key.objectid = objectid; 657 RB_CLEAR_NODE(&root->rb_node); 658 659 xa_init(&root->inodes); 660 xa_init(&root->delayed_nodes); 661 662 btrfs_init_root_block_rsv(root); 663 664 INIT_LIST_HEAD(&root->dirty_list); 665 INIT_LIST_HEAD(&root->root_list); 666 INIT_LIST_HEAD(&root->delalloc_inodes); 667 INIT_LIST_HEAD(&root->delalloc_root); 668 INIT_LIST_HEAD(&root->ordered_extents); 669 INIT_LIST_HEAD(&root->ordered_root); 670 INIT_LIST_HEAD(&root->reloc_dirty_list); 671 spin_lock_init(&root->delalloc_lock); 672 spin_lock_init(&root->ordered_extent_lock); 673 spin_lock_init(&root->accounting_lock); 674 spin_lock_init(&root->qgroup_meta_rsv_lock); 675 mutex_init(&root->objectid_mutex); 676 mutex_init(&root->log_mutex); 677 mutex_init(&root->ordered_extent_mutex); 678 mutex_init(&root->delalloc_mutex); 679 init_waitqueue_head(&root->qgroup_flush_wait); 680 init_waitqueue_head(&root->log_writer_wait); 681 init_waitqueue_head(&root->log_commit_wait[0]); 682 init_waitqueue_head(&root->log_commit_wait[1]); 683 INIT_LIST_HEAD(&root->log_ctxs[0]); 684 INIT_LIST_HEAD(&root->log_ctxs[1]); 685 atomic_set(&root->log_commit[0], 0); 686 atomic_set(&root->log_commit[1], 0); 687 atomic_set(&root->log_writers, 0); 688 atomic_set(&root->log_batch, 0); 689 refcount_set(&root->refs, 1); 690 atomic_set(&root->snapshot_force_cow, 0); 691 atomic_set(&root->nr_swapfiles, 0); 692 root->log_transid_committed = -1; 693 if (!btrfs_is_testing(fs_info)) { 694 btrfs_extent_io_tree_init(fs_info, &root->dirty_log_pages, 695 IO_TREE_ROOT_DIRTY_LOG_PAGES); 696 btrfs_extent_io_tree_init(fs_info, &root->log_csum_range, 697 IO_TREE_LOG_CSUM_RANGE); 698 } 699 700 spin_lock_init(&root->root_item_lock); 701 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks); 702#ifdef CONFIG_BTRFS_DEBUG 703 INIT_LIST_HEAD(&root->leak_list); 704 spin_lock(&fs_info->fs_roots_radix_lock); 705 list_add_tail(&root->leak_list, &fs_info->allocated_roots); 706 spin_unlock(&fs_info->fs_roots_radix_lock); 707#endif 708 709 return root; 710} 711 712#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 713/* Should only be used by the testing infrastructure */ 714struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info) 715{ 716 struct btrfs_root *root; 717 718 if (!fs_info) 719 return ERR_PTR(-EINVAL); 720 721 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL); 722 if (!root) 723 return ERR_PTR(-ENOMEM); 724 725 /* We don't use the stripesize in selftest, set it as sectorsize */ 726 root->alloc_bytenr = 0; 727 728 return root; 729} 730#endif 731 732static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node) 733{ 734 const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node); 735 const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node); 736 737 return btrfs_comp_cpu_keys(&a->root_key, &b->root_key); 738} 739 740static int global_root_key_cmp(const void *k, const struct rb_node *node) 741{ 742 const struct btrfs_key *key = k; 743 const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node); 744 745 return btrfs_comp_cpu_keys(key, &root->root_key); 746} 747 748int btrfs_global_root_insert(struct btrfs_root *root) 749{ 750 struct btrfs_fs_info *fs_info = root->fs_info; 751 struct rb_node *tmp; 752 int ret = 0; 753 754 write_lock(&fs_info->global_root_lock); 755 tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp); 756 write_unlock(&fs_info->global_root_lock); 757 758 if (tmp) { 759 ret = -EEXIST; 760 btrfs_warn(fs_info, "global root %llu %llu already exists", 761 btrfs_root_id(root), root->root_key.offset); 762 } 763 return ret; 764} 765 766void btrfs_global_root_delete(struct btrfs_root *root) 767{ 768 struct btrfs_fs_info *fs_info = root->fs_info; 769 770 write_lock(&fs_info->global_root_lock); 771 rb_erase(&root->rb_node, &fs_info->global_root_tree); 772 write_unlock(&fs_info->global_root_lock); 773} 774 775struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info, 776 struct btrfs_key *key) 777{ 778 struct rb_node *node; 779 struct btrfs_root *root = NULL; 780 781 read_lock(&fs_info->global_root_lock); 782 node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp); 783 if (node) 784 root = container_of(node, struct btrfs_root, rb_node); 785 read_unlock(&fs_info->global_root_lock); 786 787 return root; 788} 789 790static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr) 791{ 792 struct btrfs_block_group *block_group; 793 u64 ret; 794 795 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) 796 return 0; 797 798 if (bytenr) 799 block_group = btrfs_lookup_block_group(fs_info, bytenr); 800 else 801 block_group = btrfs_lookup_first_block_group(fs_info, bytenr); 802 ASSERT(block_group); 803 if (!block_group) 804 return 0; 805 ret = block_group->global_root_id; 806 btrfs_put_block_group(block_group); 807 808 return ret; 809} 810 811struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr) 812{ 813 struct btrfs_key key = { 814 .objectid = BTRFS_CSUM_TREE_OBJECTID, 815 .type = BTRFS_ROOT_ITEM_KEY, 816 .offset = btrfs_global_root_id(fs_info, bytenr), 817 }; 818 819 return btrfs_global_root(fs_info, &key); 820} 821 822struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr) 823{ 824 struct btrfs_key key = { 825 .objectid = BTRFS_EXTENT_TREE_OBJECTID, 826 .type = BTRFS_ROOT_ITEM_KEY, 827 .offset = btrfs_global_root_id(fs_info, bytenr), 828 }; 829 830 return btrfs_global_root(fs_info, &key); 831} 832 833struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, 834 u64 objectid) 835{ 836 struct btrfs_fs_info *fs_info = trans->fs_info; 837 struct extent_buffer *leaf; 838 struct btrfs_root *tree_root = fs_info->tree_root; 839 struct btrfs_root *root; 840 struct btrfs_key key; 841 unsigned int nofs_flag; 842 int ret = 0; 843 844 /* 845 * We're holding a transaction handle, so use a NOFS memory allocation 846 * context to avoid deadlock if reclaim happens. 847 */ 848 nofs_flag = memalloc_nofs_save(); 849 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL); 850 memalloc_nofs_restore(nofs_flag); 851 if (!root) 852 return ERR_PTR(-ENOMEM); 853 854 root->root_key.objectid = objectid; 855 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 856 root->root_key.offset = 0; 857 858 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0, 859 0, BTRFS_NESTING_NORMAL); 860 if (IS_ERR(leaf)) { 861 ret = PTR_ERR(leaf); 862 leaf = NULL; 863 goto fail; 864 } 865 866 root->node = leaf; 867 btrfs_mark_buffer_dirty(trans, leaf); 868 869 root->commit_root = btrfs_root_node(root); 870 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 871 872 btrfs_set_root_flags(&root->root_item, 0); 873 btrfs_set_root_limit(&root->root_item, 0); 874 btrfs_set_root_bytenr(&root->root_item, leaf->start); 875 btrfs_set_root_generation(&root->root_item, trans->transid); 876 btrfs_set_root_level(&root->root_item, 0); 877 btrfs_set_root_refs(&root->root_item, 1); 878 btrfs_set_root_used(&root->root_item, leaf->len); 879 btrfs_set_root_last_snapshot(&root->root_item, 0); 880 btrfs_set_root_dirid(&root->root_item, 0); 881 if (btrfs_is_fstree(objectid)) 882 generate_random_guid(root->root_item.uuid); 883 else 884 export_guid(root->root_item.uuid, &guid_null); 885 btrfs_set_root_drop_level(&root->root_item, 0); 886 887 btrfs_tree_unlock(leaf); 888 889 key.objectid = objectid; 890 key.type = BTRFS_ROOT_ITEM_KEY; 891 key.offset = 0; 892 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); 893 if (ret) 894 goto fail; 895 896 return root; 897 898fail: 899 btrfs_put_root(root); 900 901 return ERR_PTR(ret); 902} 903 904static struct btrfs_root *alloc_log_tree(struct btrfs_fs_info *fs_info) 905{ 906 struct btrfs_root *root; 907 908 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS); 909 if (!root) 910 return ERR_PTR(-ENOMEM); 911 912 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 913 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 914 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 915 916 return root; 917} 918 919int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans, 920 struct btrfs_root *root) 921{ 922 struct extent_buffer *leaf; 923 924 /* 925 * DON'T set SHAREABLE bit for log trees. 926 * 927 * Log trees are not exposed to user space thus can't be snapshotted, 928 * and they go away before a real commit is actually done. 929 * 930 * They do store pointers to file data extents, and those reference 931 * counts still get updated (along with back refs to the log tree). 932 */ 933 934 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID, 935 NULL, 0, 0, 0, 0, BTRFS_NESTING_NORMAL); 936 if (IS_ERR(leaf)) 937 return PTR_ERR(leaf); 938 939 root->node = leaf; 940 941 btrfs_mark_buffer_dirty(trans, root->node); 942 btrfs_tree_unlock(root->node); 943 944 return 0; 945} 946 947int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 948 struct btrfs_fs_info *fs_info) 949{ 950 struct btrfs_root *log_root; 951 952 log_root = alloc_log_tree(fs_info); 953 if (IS_ERR(log_root)) 954 return PTR_ERR(log_root); 955 956 if (!btrfs_is_zoned(fs_info)) { 957 int ret = btrfs_alloc_log_tree_node(trans, log_root); 958 959 if (ret) { 960 btrfs_put_root(log_root); 961 return ret; 962 } 963 } 964 965 WARN_ON(fs_info->log_root_tree); 966 fs_info->log_root_tree = log_root; 967 return 0; 968} 969 970int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 971 struct btrfs_root *root) 972{ 973 struct btrfs_fs_info *fs_info = root->fs_info; 974 struct btrfs_root *log_root; 975 struct btrfs_inode_item *inode_item; 976 int ret; 977 978 log_root = alloc_log_tree(fs_info); 979 if (IS_ERR(log_root)) 980 return PTR_ERR(log_root); 981 982 ret = btrfs_alloc_log_tree_node(trans, log_root); 983 if (ret) { 984 btrfs_put_root(log_root); 985 return ret; 986 } 987 988 btrfs_set_root_last_trans(log_root, trans->transid); 989 log_root->root_key.offset = btrfs_root_id(root); 990 991 inode_item = &log_root->root_item.inode; 992 btrfs_set_stack_inode_generation(inode_item, 1); 993 btrfs_set_stack_inode_size(inode_item, 3); 994 btrfs_set_stack_inode_nlink(inode_item, 1); 995 btrfs_set_stack_inode_nbytes(inode_item, 996 fs_info->nodesize); 997 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 998 999 btrfs_set_root_node(&log_root->root_item, log_root->node); 1000 1001 WARN_ON(root->log_root); 1002 root->log_root = log_root; 1003 btrfs_set_root_log_transid(root, 0); 1004 root->log_transid_committed = -1; 1005 btrfs_set_root_last_log_commit(root, 0); 1006 return 0; 1007} 1008 1009static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root, 1010 struct btrfs_path *path, 1011 const struct btrfs_key *key) 1012{ 1013 struct btrfs_root *root; 1014 struct btrfs_tree_parent_check check = { 0 }; 1015 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1016 u64 generation; 1017 int ret; 1018 int level; 1019 1020 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS); 1021 if (!root) 1022 return ERR_PTR(-ENOMEM); 1023 1024 ret = btrfs_find_root(tree_root, key, path, 1025 &root->root_item, &root->root_key); 1026 if (ret) { 1027 if (ret > 0) 1028 ret = -ENOENT; 1029 goto fail; 1030 } 1031 1032 generation = btrfs_root_generation(&root->root_item); 1033 level = btrfs_root_level(&root->root_item); 1034 check.level = level; 1035 check.transid = generation; 1036 check.owner_root = key->objectid; 1037 root->node = read_tree_block(fs_info, btrfs_root_bytenr(&root->root_item), 1038 &check); 1039 if (IS_ERR(root->node)) { 1040 ret = PTR_ERR(root->node); 1041 root->node = NULL; 1042 goto fail; 1043 } 1044 if (unlikely(!btrfs_buffer_uptodate(root->node, generation, false))) { 1045 ret = -EIO; 1046 goto fail; 1047 } 1048 1049 /* 1050 * For real fs, and not log/reloc trees, root owner must 1051 * match its root node owner 1052 */ 1053 if (unlikely(!btrfs_is_testing(fs_info) && 1054 btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID && 1055 btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID && 1056 btrfs_root_id(root) != btrfs_header_owner(root->node))) { 1057 btrfs_crit(fs_info, 1058"root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu", 1059 btrfs_root_id(root), root->node->start, 1060 btrfs_header_owner(root->node), 1061 btrfs_root_id(root)); 1062 ret = -EUCLEAN; 1063 goto fail; 1064 } 1065 root->commit_root = btrfs_root_node(root); 1066 return root; 1067fail: 1068 btrfs_put_root(root); 1069 return ERR_PTR(ret); 1070} 1071 1072struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root, 1073 const struct btrfs_key *key) 1074{ 1075 struct btrfs_root *root; 1076 BTRFS_PATH_AUTO_FREE(path); 1077 1078 path = btrfs_alloc_path(); 1079 if (!path) 1080 return ERR_PTR(-ENOMEM); 1081 root = read_tree_root_path(tree_root, path, key); 1082 1083 return root; 1084} 1085 1086/* 1087 * Initialize subvolume root in-memory structure. 1088 * 1089 * @anon_dev: anonymous device to attach to the root, if zero, allocate new 1090 * 1091 * In case of failure the caller is responsible to call btrfs_free_fs_root() 1092 */ 1093static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev) 1094{ 1095 int ret; 1096 1097 btrfs_drew_lock_init(&root->snapshot_lock); 1098 1099 if (btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID && 1100 !btrfs_is_data_reloc_root(root) && 1101 btrfs_is_fstree(btrfs_root_id(root))) { 1102 set_bit(BTRFS_ROOT_SHAREABLE, &root->state); 1103 btrfs_check_and_init_root_item(&root->root_item); 1104 } 1105 1106 /* 1107 * Don't assign anonymous block device to roots that are not exposed to 1108 * userspace, the id pool is limited to 1M 1109 */ 1110 if (btrfs_is_fstree(btrfs_root_id(root)) && 1111 btrfs_root_refs(&root->root_item) > 0) { 1112 if (!anon_dev) { 1113 ret = get_anon_bdev(&root->anon_dev); 1114 if (ret) 1115 return ret; 1116 } else { 1117 root->anon_dev = anon_dev; 1118 } 1119 } 1120 1121 mutex_lock(&root->objectid_mutex); 1122 ret = btrfs_init_root_free_objectid(root); 1123 if (ret) { 1124 mutex_unlock(&root->objectid_mutex); 1125 return ret; 1126 } 1127 1128 ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID); 1129 1130 mutex_unlock(&root->objectid_mutex); 1131 1132 return 0; 1133} 1134 1135static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 1136 u64 root_id) 1137{ 1138 struct btrfs_root *root; 1139 1140 spin_lock(&fs_info->fs_roots_radix_lock); 1141 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1142 (unsigned long)root_id); 1143 root = btrfs_grab_root(root); 1144 spin_unlock(&fs_info->fs_roots_radix_lock); 1145 return root; 1146} 1147 1148static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info, 1149 u64 objectid) 1150{ 1151 struct btrfs_key key = { 1152 .objectid = objectid, 1153 .type = BTRFS_ROOT_ITEM_KEY, 1154 .offset = 0, 1155 }; 1156 1157 switch (objectid) { 1158 case BTRFS_ROOT_TREE_OBJECTID: 1159 return btrfs_grab_root(fs_info->tree_root); 1160 case BTRFS_EXTENT_TREE_OBJECTID: 1161 return btrfs_grab_root(btrfs_global_root(fs_info, &key)); 1162 case BTRFS_CHUNK_TREE_OBJECTID: 1163 return btrfs_grab_root(fs_info->chunk_root); 1164 case BTRFS_DEV_TREE_OBJECTID: 1165 return btrfs_grab_root(fs_info->dev_root); 1166 case BTRFS_CSUM_TREE_OBJECTID: 1167 return btrfs_grab_root(btrfs_global_root(fs_info, &key)); 1168 case BTRFS_QUOTA_TREE_OBJECTID: 1169 return btrfs_grab_root(fs_info->quota_root); 1170 case BTRFS_UUID_TREE_OBJECTID: 1171 return btrfs_grab_root(fs_info->uuid_root); 1172 case BTRFS_BLOCK_GROUP_TREE_OBJECTID: 1173 return btrfs_grab_root(fs_info->block_group_root); 1174 case BTRFS_FREE_SPACE_TREE_OBJECTID: 1175 return btrfs_grab_root(btrfs_global_root(fs_info, &key)); 1176 case BTRFS_RAID_STRIPE_TREE_OBJECTID: 1177 return btrfs_grab_root(fs_info->stripe_root); 1178 default: 1179 return NULL; 1180 } 1181} 1182 1183int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info, 1184 struct btrfs_root *root) 1185{ 1186 int ret; 1187 1188 ret = radix_tree_preload(GFP_NOFS); 1189 if (ret) 1190 return ret; 1191 1192 spin_lock(&fs_info->fs_roots_radix_lock); 1193 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1194 (unsigned long)btrfs_root_id(root), 1195 root); 1196 if (ret == 0) { 1197 btrfs_grab_root(root); 1198 set_bit(BTRFS_ROOT_IN_RADIX, &root->state); 1199 } 1200 spin_unlock(&fs_info->fs_roots_radix_lock); 1201 radix_tree_preload_end(); 1202 1203 return ret; 1204} 1205 1206void btrfs_check_leaked_roots(const struct btrfs_fs_info *fs_info) 1207{ 1208#ifdef CONFIG_BTRFS_DEBUG 1209 struct btrfs_root *root; 1210 1211 while (!list_empty(&fs_info->allocated_roots)) { 1212 char buf[BTRFS_ROOT_NAME_BUF_LEN]; 1213 1214 root = list_first_entry(&fs_info->allocated_roots, 1215 struct btrfs_root, leak_list); 1216 btrfs_err(fs_info, "leaked root %s refcount %d", 1217 btrfs_root_name(&root->root_key, buf), 1218 refcount_read(&root->refs)); 1219 WARN_ON_ONCE(1); 1220 while (refcount_read(&root->refs) > 1) 1221 btrfs_put_root(root); 1222 btrfs_put_root(root); 1223 } 1224#endif 1225} 1226 1227static void free_global_roots(struct btrfs_fs_info *fs_info) 1228{ 1229 struct btrfs_root *root; 1230 struct rb_node *node; 1231 1232 while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) { 1233 root = rb_entry(node, struct btrfs_root, rb_node); 1234 rb_erase(&root->rb_node, &fs_info->global_root_tree); 1235 btrfs_put_root(root); 1236 } 1237} 1238 1239void btrfs_free_fs_info(struct btrfs_fs_info *fs_info) 1240{ 1241 struct percpu_counter *em_counter = &fs_info->evictable_extent_maps; 1242 1243 if (fs_info->fs_devices) 1244 btrfs_close_devices(fs_info->fs_devices); 1245 btrfs_free_compress_wsm(fs_info); 1246 percpu_counter_destroy(&fs_info->stats_read_blocks); 1247 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 1248 percpu_counter_destroy(&fs_info->delalloc_bytes); 1249 percpu_counter_destroy(&fs_info->ordered_bytes); 1250 if (percpu_counter_initialized(em_counter)) 1251 ASSERT(percpu_counter_sum_positive(em_counter) == 0); 1252 percpu_counter_destroy(em_counter); 1253 percpu_counter_destroy(&fs_info->dev_replace.bio_counter); 1254 btrfs_free_csum_hash(fs_info); 1255 btrfs_free_stripe_hash_table(fs_info); 1256 btrfs_free_ref_cache(fs_info); 1257 kfree(fs_info->balance_ctl); 1258 kfree(fs_info->delayed_root); 1259 free_global_roots(fs_info); 1260 btrfs_put_root(fs_info->tree_root); 1261 btrfs_put_root(fs_info->chunk_root); 1262 btrfs_put_root(fs_info->dev_root); 1263 btrfs_put_root(fs_info->quota_root); 1264 btrfs_put_root(fs_info->uuid_root); 1265 btrfs_put_root(fs_info->fs_root); 1266 btrfs_put_root(fs_info->data_reloc_root); 1267 btrfs_put_root(fs_info->block_group_root); 1268 btrfs_put_root(fs_info->stripe_root); 1269 btrfs_check_leaked_roots(fs_info); 1270 btrfs_extent_buffer_leak_debug_check(fs_info); 1271 kfree(fs_info->super_copy); 1272 kfree(fs_info->super_for_commit); 1273 kvfree(fs_info); 1274} 1275 1276 1277/* 1278 * Get an in-memory reference of a root structure. 1279 * 1280 * For essential trees like root/extent tree, we grab it from fs_info directly. 1281 * For subvolume trees, we check the cached filesystem roots first. If not 1282 * found, then read it from disk and add it to cached fs roots. 1283 * 1284 * Caller should release the root by calling btrfs_put_root() after the usage. 1285 * 1286 * NOTE: Reloc and log trees can't be read by this function as they share the 1287 * same root objectid. 1288 * 1289 * @objectid: root id 1290 * @anon_dev: preallocated anonymous block device number for new roots, 1291 * pass NULL for a new allocation. 1292 * @check_ref: whether to check root item references, If true, return -ENOENT 1293 * for orphan roots 1294 */ 1295static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info, 1296 u64 objectid, dev_t *anon_dev, 1297 bool check_ref) 1298{ 1299 struct btrfs_root *root; 1300 struct btrfs_path *path; 1301 struct btrfs_key key; 1302 int ret; 1303 1304 root = btrfs_get_global_root(fs_info, objectid); 1305 if (root) 1306 return root; 1307 1308 /* 1309 * If we're called for non-subvolume trees, and above function didn't 1310 * find one, do not try to read it from disk. 1311 * 1312 * This is namely for free-space-tree and quota tree, which can change 1313 * at runtime and should only be grabbed from fs_info. 1314 */ 1315 if (!btrfs_is_fstree(objectid) && objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) 1316 return ERR_PTR(-ENOENT); 1317again: 1318 root = btrfs_lookup_fs_root(fs_info, objectid); 1319 if (root) { 1320 /* 1321 * Some other caller may have read out the newly inserted 1322 * subvolume already (for things like backref walk etc). Not 1323 * that common but still possible. In that case, we just need 1324 * to free the anon_dev. 1325 */ 1326 if (unlikely(anon_dev && *anon_dev)) { 1327 free_anon_bdev(*anon_dev); 1328 *anon_dev = 0; 1329 } 1330 1331 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1332 btrfs_put_root(root); 1333 return ERR_PTR(-ENOENT); 1334 } 1335 return root; 1336 } 1337 1338 key.objectid = objectid; 1339 key.type = BTRFS_ROOT_ITEM_KEY; 1340 key.offset = (u64)-1; 1341 root = btrfs_read_tree_root(fs_info->tree_root, &key); 1342 if (IS_ERR(root)) 1343 return root; 1344 1345 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1346 ret = -ENOENT; 1347 goto fail; 1348 } 1349 1350 ret = btrfs_init_fs_root(root, anon_dev ? *anon_dev : 0); 1351 if (ret) 1352 goto fail; 1353 1354 path = btrfs_alloc_path(); 1355 if (!path) { 1356 ret = -ENOMEM; 1357 goto fail; 1358 } 1359 key.objectid = BTRFS_ORPHAN_OBJECTID; 1360 key.type = BTRFS_ORPHAN_ITEM_KEY; 1361 key.offset = objectid; 1362 1363 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 1364 btrfs_free_path(path); 1365 if (ret < 0) 1366 goto fail; 1367 if (ret == 0) 1368 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state); 1369 1370 ret = btrfs_insert_fs_root(fs_info, root); 1371 if (ret) { 1372 if (ret == -EEXIST) { 1373 btrfs_put_root(root); 1374 goto again; 1375 } 1376 goto fail; 1377 } 1378 return root; 1379fail: 1380 /* 1381 * If our caller provided us an anonymous device, then it's his 1382 * responsibility to free it in case we fail. So we have to set our 1383 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root() 1384 * and once again by our caller. 1385 */ 1386 if (anon_dev && *anon_dev) 1387 root->anon_dev = 0; 1388 btrfs_put_root(root); 1389 return ERR_PTR(ret); 1390} 1391 1392/* 1393 * Get in-memory reference of a root structure 1394 * 1395 * @objectid: tree objectid 1396 * @check_ref: if set, verify that the tree exists and the item has at least 1397 * one reference 1398 */ 1399struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info, 1400 u64 objectid, bool check_ref) 1401{ 1402 return btrfs_get_root_ref(fs_info, objectid, NULL, check_ref); 1403} 1404 1405/* 1406 * Get in-memory reference of a root structure, created as new, optionally pass 1407 * the anonymous block device id 1408 * 1409 * @objectid: tree objectid 1410 * @anon_dev: if NULL, allocate a new anonymous block device or use the 1411 * parameter value if not NULL 1412 */ 1413struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info, 1414 u64 objectid, dev_t *anon_dev) 1415{ 1416 return btrfs_get_root_ref(fs_info, objectid, anon_dev, true); 1417} 1418 1419/* 1420 * Return a root for the given objectid. 1421 * 1422 * @fs_info: the fs_info 1423 * @objectid: the objectid we need to lookup 1424 * 1425 * This is exclusively used for backref walking, and exists specifically because 1426 * of how qgroups does lookups. Qgroups will do a backref lookup at delayed ref 1427 * creation time, which means we may have to read the tree_root in order to look 1428 * up a fs root that is not in memory. If the root is not in memory we will 1429 * read the tree root commit root and look up the fs root from there. This is a 1430 * temporary root, it will not be inserted into the radix tree as it doesn't 1431 * have the most uptodate information, it'll simply be discarded once the 1432 * backref code is finished using the root. 1433 */ 1434struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info, 1435 struct btrfs_path *path, 1436 u64 objectid) 1437{ 1438 struct btrfs_root *root; 1439 struct btrfs_key key; 1440 1441 ASSERT(path->search_commit_root && path->skip_locking); 1442 1443 /* 1444 * This can return -ENOENT if we ask for a root that doesn't exist, but 1445 * since this is called via the backref walking code we won't be looking 1446 * up a root that doesn't exist, unless there's corruption. So if root 1447 * != NULL just return it. 1448 */ 1449 root = btrfs_get_global_root(fs_info, objectid); 1450 if (root) 1451 return root; 1452 1453 root = btrfs_lookup_fs_root(fs_info, objectid); 1454 if (root) 1455 return root; 1456 1457 key.objectid = objectid; 1458 key.type = BTRFS_ROOT_ITEM_KEY; 1459 key.offset = (u64)-1; 1460 root = read_tree_root_path(fs_info->tree_root, path, &key); 1461 btrfs_release_path(path); 1462 1463 return root; 1464} 1465 1466static int cleaner_kthread(void *arg) 1467{ 1468 struct btrfs_fs_info *fs_info = arg; 1469 int again; 1470 1471 while (1) { 1472 again = 0; 1473 1474 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1475 1476 /* Make the cleaner go to sleep early. */ 1477 if (btrfs_need_cleaner_sleep(fs_info)) 1478 goto sleep; 1479 1480 /* 1481 * Do not do anything if we might cause open_ctree() to block 1482 * before we have finished mounting the filesystem. 1483 */ 1484 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1485 goto sleep; 1486 1487 if (!mutex_trylock(&fs_info->cleaner_mutex)) 1488 goto sleep; 1489 1490 /* 1491 * Avoid the problem that we change the status of the fs 1492 * during the above check and trylock. 1493 */ 1494 if (btrfs_need_cleaner_sleep(fs_info)) { 1495 mutex_unlock(&fs_info->cleaner_mutex); 1496 goto sleep; 1497 } 1498 1499 if (test_and_clear_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags)) 1500 btrfs_sysfs_feature_update(fs_info); 1501 1502 btrfs_run_delayed_iputs(fs_info); 1503 1504 again = btrfs_clean_one_deleted_snapshot(fs_info); 1505 mutex_unlock(&fs_info->cleaner_mutex); 1506 1507 /* 1508 * The defragger has dealt with the R/O remount and umount, 1509 * needn't do anything special here. 1510 */ 1511 btrfs_run_defrag_inodes(fs_info); 1512 1513 /* 1514 * Acquires fs_info->reclaim_bgs_lock to avoid racing 1515 * with relocation (btrfs_relocate_chunk) and relocation 1516 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group) 1517 * after acquiring fs_info->reclaim_bgs_lock. So we 1518 * can't hold, nor need to, fs_info->cleaner_mutex when deleting 1519 * unused block groups. 1520 */ 1521 btrfs_delete_unused_bgs(fs_info); 1522 1523 /* 1524 * Reclaim block groups in the reclaim_bgs list after we deleted 1525 * all unused block_groups. This possibly gives us some more free 1526 * space. 1527 */ 1528 btrfs_reclaim_bgs(fs_info); 1529sleep: 1530 clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1531 if (kthread_should_park()) 1532 kthread_parkme(); 1533 if (kthread_should_stop()) 1534 return 0; 1535 if (!again) { 1536 set_current_state(TASK_INTERRUPTIBLE); 1537 schedule(); 1538 __set_current_state(TASK_RUNNING); 1539 } 1540 } 1541} 1542 1543static int transaction_kthread(void *arg) 1544{ 1545 struct btrfs_root *root = arg; 1546 struct btrfs_fs_info *fs_info = root->fs_info; 1547 struct btrfs_trans_handle *trans; 1548 struct btrfs_transaction *cur; 1549 u64 transid; 1550 time64_t delta; 1551 unsigned long delay; 1552 bool cannot_commit; 1553 1554 do { 1555 cannot_commit = false; 1556 delay = secs_to_jiffies(fs_info->commit_interval); 1557 mutex_lock(&fs_info->transaction_kthread_mutex); 1558 1559 spin_lock(&fs_info->trans_lock); 1560 cur = fs_info->running_transaction; 1561 if (!cur) { 1562 spin_unlock(&fs_info->trans_lock); 1563 goto sleep; 1564 } 1565 1566 delta = ktime_get_seconds() - cur->start_time; 1567 if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) && 1568 cur->state < TRANS_STATE_COMMIT_PREP && 1569 delta < fs_info->commit_interval) { 1570 spin_unlock(&fs_info->trans_lock); 1571 delay -= secs_to_jiffies(delta - 1); 1572 delay = min(delay, 1573 secs_to_jiffies(fs_info->commit_interval)); 1574 goto sleep; 1575 } 1576 transid = cur->transid; 1577 spin_unlock(&fs_info->trans_lock); 1578 1579 /* If the file system is aborted, this will always fail. */ 1580 trans = btrfs_attach_transaction(root); 1581 if (IS_ERR(trans)) { 1582 if (PTR_ERR(trans) != -ENOENT) 1583 cannot_commit = true; 1584 goto sleep; 1585 } 1586 if (transid == trans->transid) { 1587 btrfs_commit_transaction(trans); 1588 } else { 1589 btrfs_end_transaction(trans); 1590 } 1591sleep: 1592 wake_up_process(fs_info->cleaner_kthread); 1593 mutex_unlock(&fs_info->transaction_kthread_mutex); 1594 1595 if (BTRFS_FS_ERROR(fs_info)) 1596 btrfs_cleanup_transaction(fs_info); 1597 if (!kthread_should_stop() && 1598 (!btrfs_transaction_blocked(fs_info) || 1599 cannot_commit)) 1600 schedule_timeout_interruptible(delay); 1601 } while (!kthread_should_stop()); 1602 return 0; 1603} 1604 1605/* 1606 * This will find the highest generation in the array of root backups. The 1607 * index of the highest array is returned, or -EINVAL if we can't find 1608 * anything. 1609 * 1610 * We check to make sure the array is valid by comparing the 1611 * generation of the latest root in the array with the generation 1612 * in the super block. If they don't match we pitch it. 1613 */ 1614static int find_newest_super_backup(struct btrfs_fs_info *info) 1615{ 1616 const u64 newest_gen = btrfs_super_generation(info->super_copy); 1617 u64 cur; 1618 struct btrfs_root_backup *root_backup; 1619 int i; 1620 1621 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 1622 root_backup = info->super_copy->super_roots + i; 1623 cur = btrfs_backup_tree_root_gen(root_backup); 1624 if (cur == newest_gen) 1625 return i; 1626 } 1627 1628 return -EINVAL; 1629} 1630 1631/* 1632 * copy all the root pointers into the super backup array. 1633 * this will bump the backup pointer by one when it is 1634 * done 1635 */ 1636static void backup_super_roots(struct btrfs_fs_info *info) 1637{ 1638 const int next_backup = info->backup_root_index; 1639 struct btrfs_root_backup *root_backup; 1640 1641 root_backup = info->super_for_commit->super_roots + next_backup; 1642 1643 /* 1644 * make sure all of our padding and empty slots get zero filled 1645 * regardless of which ones we use today 1646 */ 1647 memset(root_backup, 0, sizeof(*root_backup)); 1648 1649 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; 1650 1651 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); 1652 btrfs_set_backup_tree_root_gen(root_backup, 1653 btrfs_header_generation(info->tree_root->node)); 1654 1655 btrfs_set_backup_tree_root_level(root_backup, 1656 btrfs_header_level(info->tree_root->node)); 1657 1658 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); 1659 btrfs_set_backup_chunk_root_gen(root_backup, 1660 btrfs_header_generation(info->chunk_root->node)); 1661 btrfs_set_backup_chunk_root_level(root_backup, 1662 btrfs_header_level(info->chunk_root->node)); 1663 1664 if (!btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE)) { 1665 struct btrfs_root *extent_root = btrfs_extent_root(info, 0); 1666 struct btrfs_root *csum_root = btrfs_csum_root(info, 0); 1667 1668 btrfs_set_backup_extent_root(root_backup, 1669 extent_root->node->start); 1670 btrfs_set_backup_extent_root_gen(root_backup, 1671 btrfs_header_generation(extent_root->node)); 1672 btrfs_set_backup_extent_root_level(root_backup, 1673 btrfs_header_level(extent_root->node)); 1674 1675 btrfs_set_backup_csum_root(root_backup, csum_root->node->start); 1676 btrfs_set_backup_csum_root_gen(root_backup, 1677 btrfs_header_generation(csum_root->node)); 1678 btrfs_set_backup_csum_root_level(root_backup, 1679 btrfs_header_level(csum_root->node)); 1680 } 1681 1682 /* 1683 * we might commit during log recovery, which happens before we set 1684 * the fs_root. Make sure it is valid before we fill it in. 1685 */ 1686 if (info->fs_root && info->fs_root->node) { 1687 btrfs_set_backup_fs_root(root_backup, 1688 info->fs_root->node->start); 1689 btrfs_set_backup_fs_root_gen(root_backup, 1690 btrfs_header_generation(info->fs_root->node)); 1691 btrfs_set_backup_fs_root_level(root_backup, 1692 btrfs_header_level(info->fs_root->node)); 1693 } 1694 1695 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); 1696 btrfs_set_backup_dev_root_gen(root_backup, 1697 btrfs_header_generation(info->dev_root->node)); 1698 btrfs_set_backup_dev_root_level(root_backup, 1699 btrfs_header_level(info->dev_root->node)); 1700 1701 btrfs_set_backup_total_bytes(root_backup, 1702 btrfs_super_total_bytes(info->super_copy)); 1703 btrfs_set_backup_bytes_used(root_backup, 1704 btrfs_super_bytes_used(info->super_copy)); 1705 btrfs_set_backup_num_devices(root_backup, 1706 btrfs_super_num_devices(info->super_copy)); 1707 1708 /* 1709 * if we don't copy this out to the super_copy, it won't get remembered 1710 * for the next commit 1711 */ 1712 memcpy(&info->super_copy->super_roots, 1713 &info->super_for_commit->super_roots, 1714 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); 1715} 1716 1717/* 1718 * Reads a backup root based on the passed priority. Prio 0 is the newest, prio 1719 * 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots 1720 * 1721 * @fs_info: filesystem whose backup roots need to be read 1722 * @priority: priority of backup root required 1723 * 1724 * Returns backup root index on success and -EINVAL otherwise. 1725 */ 1726static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority) 1727{ 1728 int backup_index = find_newest_super_backup(fs_info); 1729 struct btrfs_super_block *super = fs_info->super_copy; 1730 struct btrfs_root_backup *root_backup; 1731 1732 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) { 1733 if (priority == 0) 1734 return backup_index; 1735 1736 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority; 1737 backup_index %= BTRFS_NUM_BACKUP_ROOTS; 1738 } else { 1739 return -EINVAL; 1740 } 1741 1742 root_backup = super->super_roots + backup_index; 1743 1744 btrfs_set_super_generation(super, 1745 btrfs_backup_tree_root_gen(root_backup)); 1746 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); 1747 btrfs_set_super_root_level(super, 1748 btrfs_backup_tree_root_level(root_backup)); 1749 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); 1750 1751 /* 1752 * Fixme: the total bytes and num_devices need to match or we should 1753 * need a fsck 1754 */ 1755 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); 1756 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); 1757 1758 return backup_index; 1759} 1760 1761/* helper to cleanup workers */ 1762static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info) 1763{ 1764 btrfs_destroy_workqueue(fs_info->fixup_workers); 1765 btrfs_destroy_workqueue(fs_info->delalloc_workers); 1766 btrfs_destroy_workqueue(fs_info->workers); 1767 if (fs_info->endio_workers) 1768 destroy_workqueue(fs_info->endio_workers); 1769 if (fs_info->rmw_workers) 1770 destroy_workqueue(fs_info->rmw_workers); 1771 btrfs_destroy_workqueue(fs_info->endio_write_workers); 1772 btrfs_destroy_workqueue(fs_info->endio_freespace_worker); 1773 btrfs_destroy_workqueue(fs_info->delayed_workers); 1774 btrfs_destroy_workqueue(fs_info->caching_workers); 1775 btrfs_destroy_workqueue(fs_info->flush_workers); 1776 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers); 1777 if (fs_info->discard_ctl.discard_workers) 1778 destroy_workqueue(fs_info->discard_ctl.discard_workers); 1779 /* 1780 * Now that all other work queues are destroyed, we can safely destroy 1781 * the queues used for metadata I/O, since tasks from those other work 1782 * queues can do metadata I/O operations. 1783 */ 1784 if (fs_info->endio_meta_workers) 1785 destroy_workqueue(fs_info->endio_meta_workers); 1786} 1787 1788static void free_root_extent_buffers(struct btrfs_root *root) 1789{ 1790 if (root) { 1791 free_extent_buffer(root->node); 1792 free_extent_buffer(root->commit_root); 1793 root->node = NULL; 1794 root->commit_root = NULL; 1795 } 1796} 1797 1798static void free_global_root_pointers(struct btrfs_fs_info *fs_info) 1799{ 1800 struct btrfs_root *root, *tmp; 1801 1802 rbtree_postorder_for_each_entry_safe(root, tmp, 1803 &fs_info->global_root_tree, 1804 rb_node) 1805 free_root_extent_buffers(root); 1806} 1807 1808/* helper to cleanup tree roots */ 1809static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root) 1810{ 1811 free_root_extent_buffers(info->tree_root); 1812 1813 free_global_root_pointers(info); 1814 free_root_extent_buffers(info->dev_root); 1815 free_root_extent_buffers(info->quota_root); 1816 free_root_extent_buffers(info->uuid_root); 1817 free_root_extent_buffers(info->fs_root); 1818 free_root_extent_buffers(info->data_reloc_root); 1819 free_root_extent_buffers(info->block_group_root); 1820 free_root_extent_buffers(info->stripe_root); 1821 if (free_chunk_root) 1822 free_root_extent_buffers(info->chunk_root); 1823} 1824 1825void btrfs_put_root(struct btrfs_root *root) 1826{ 1827 if (!root) 1828 return; 1829 1830 if (refcount_dec_and_test(&root->refs)) { 1831 if (WARN_ON(!xa_empty(&root->inodes))) 1832 xa_destroy(&root->inodes); 1833 if (WARN_ON(!xa_empty(&root->delayed_nodes))) 1834 xa_destroy(&root->delayed_nodes); 1835 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state)); 1836 if (root->anon_dev) 1837 free_anon_bdev(root->anon_dev); 1838 free_root_extent_buffers(root); 1839#ifdef CONFIG_BTRFS_DEBUG 1840 spin_lock(&root->fs_info->fs_roots_radix_lock); 1841 list_del_init(&root->leak_list); 1842 spin_unlock(&root->fs_info->fs_roots_radix_lock); 1843#endif 1844 kfree(root); 1845 } 1846} 1847 1848void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info) 1849{ 1850 int ret; 1851 struct btrfs_root *gang[8]; 1852 int i; 1853 1854 while (!list_empty(&fs_info->dead_roots)) { 1855 gang[0] = list_first_entry(&fs_info->dead_roots, 1856 struct btrfs_root, root_list); 1857 list_del(&gang[0]->root_list); 1858 1859 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) 1860 btrfs_drop_and_free_fs_root(fs_info, gang[0]); 1861 btrfs_put_root(gang[0]); 1862 } 1863 1864 while (1) { 1865 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 1866 (void **)gang, 0, 1867 ARRAY_SIZE(gang)); 1868 if (!ret) 1869 break; 1870 for (i = 0; i < ret; i++) 1871 btrfs_drop_and_free_fs_root(fs_info, gang[i]); 1872 } 1873} 1874 1875static void btrfs_init_scrub(struct btrfs_fs_info *fs_info) 1876{ 1877 mutex_init(&fs_info->scrub_lock); 1878 atomic_set(&fs_info->scrubs_running, 0); 1879 atomic_set(&fs_info->scrub_pause_req, 0); 1880 atomic_set(&fs_info->scrubs_paused, 0); 1881 atomic_set(&fs_info->scrub_cancel_req, 0); 1882 init_waitqueue_head(&fs_info->scrub_pause_wait); 1883 refcount_set(&fs_info->scrub_workers_refcnt, 0); 1884} 1885 1886static void btrfs_init_balance(struct btrfs_fs_info *fs_info) 1887{ 1888 spin_lock_init(&fs_info->balance_lock); 1889 mutex_init(&fs_info->balance_mutex); 1890 atomic_set(&fs_info->balance_pause_req, 0); 1891 atomic_set(&fs_info->balance_cancel_req, 0); 1892 fs_info->balance_ctl = NULL; 1893 init_waitqueue_head(&fs_info->balance_wait_q); 1894 atomic_set(&fs_info->reloc_cancel_req, 0); 1895} 1896 1897static int btrfs_init_btree_inode(struct super_block *sb) 1898{ 1899 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1900 unsigned long hash = btrfs_inode_hash(BTRFS_BTREE_INODE_OBJECTID, 1901 fs_info->tree_root); 1902 struct inode *inode; 1903 1904 inode = new_inode(sb); 1905 if (!inode) 1906 return -ENOMEM; 1907 1908 btrfs_set_inode_number(BTRFS_I(inode), BTRFS_BTREE_INODE_OBJECTID); 1909 set_nlink(inode, 1); 1910 /* 1911 * we set the i_size on the btree inode to the max possible int. 1912 * the real end of the address space is determined by all of 1913 * the devices in the system 1914 */ 1915 inode->i_size = OFFSET_MAX; 1916 inode->i_mapping->a_ops = &btree_aops; 1917 mapping_set_gfp_mask(inode->i_mapping, GFP_NOFS); 1918 1919 btrfs_extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree, 1920 IO_TREE_BTREE_INODE_IO); 1921 btrfs_extent_map_tree_init(&BTRFS_I(inode)->extent_tree); 1922 1923 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root); 1924 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 1925 __insert_inode_hash(inode, hash); 1926 set_bit(AS_KERNEL_FILE, &inode->i_mapping->flags); 1927 fs_info->btree_inode = inode; 1928 1929 return 0; 1930} 1931 1932static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info) 1933{ 1934 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount); 1935 init_rwsem(&fs_info->dev_replace.rwsem); 1936 init_waitqueue_head(&fs_info->dev_replace.replace_wait); 1937} 1938 1939static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info) 1940{ 1941 spin_lock_init(&fs_info->qgroup_lock); 1942 mutex_init(&fs_info->qgroup_ioctl_lock); 1943 fs_info->qgroup_tree = RB_ROOT; 1944 INIT_LIST_HEAD(&fs_info->dirty_qgroups); 1945 fs_info->qgroup_seq = 1; 1946 fs_info->qgroup_rescan_running = false; 1947 fs_info->qgroup_drop_subtree_thres = BTRFS_QGROUP_DROP_SUBTREE_THRES_DEFAULT; 1948 mutex_init(&fs_info->qgroup_rescan_lock); 1949} 1950 1951static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info) 1952{ 1953 u32 max_active = fs_info->thread_pool_size; 1954 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND; 1955 unsigned int ordered_flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_PERCPU; 1956 1957 fs_info->workers = 1958 btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16); 1959 1960 fs_info->delalloc_workers = 1961 btrfs_alloc_workqueue(fs_info, "delalloc", 1962 flags, max_active, 2); 1963 1964 fs_info->flush_workers = 1965 btrfs_alloc_workqueue(fs_info, "flush_delalloc", 1966 flags, max_active, 0); 1967 1968 fs_info->caching_workers = 1969 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0); 1970 1971 fs_info->fixup_workers = 1972 btrfs_alloc_ordered_workqueue(fs_info, "fixup", ordered_flags); 1973 1974 fs_info->endio_workers = 1975 alloc_workqueue("btrfs-endio", flags, max_active); 1976 fs_info->endio_meta_workers = 1977 alloc_workqueue("btrfs-endio-meta", flags, max_active); 1978 fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active); 1979 fs_info->endio_write_workers = 1980 btrfs_alloc_workqueue(fs_info, "endio-write", flags, 1981 max_active, 2); 1982 fs_info->endio_freespace_worker = 1983 btrfs_alloc_workqueue(fs_info, "freespace-write", flags, 1984 max_active, 0); 1985 fs_info->delayed_workers = 1986 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags, 1987 max_active, 0); 1988 fs_info->qgroup_rescan_workers = 1989 btrfs_alloc_ordered_workqueue(fs_info, "qgroup-rescan", 1990 ordered_flags); 1991 fs_info->discard_ctl.discard_workers = 1992 alloc_ordered_workqueue("btrfs-discard", WQ_FREEZABLE); 1993 1994 if (!(fs_info->workers && 1995 fs_info->delalloc_workers && fs_info->flush_workers && 1996 fs_info->endio_workers && fs_info->endio_meta_workers && 1997 fs_info->endio_write_workers && 1998 fs_info->endio_freespace_worker && fs_info->rmw_workers && 1999 fs_info->caching_workers && fs_info->fixup_workers && 2000 fs_info->delayed_workers && fs_info->qgroup_rescan_workers && 2001 fs_info->discard_ctl.discard_workers)) { 2002 return -ENOMEM; 2003 } 2004 2005 return 0; 2006} 2007 2008static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type) 2009{ 2010 struct crypto_shash *csum_shash; 2011 const char *csum_driver = btrfs_super_csum_driver(csum_type); 2012 2013 csum_shash = crypto_alloc_shash(csum_driver, 0, 0); 2014 2015 if (IS_ERR(csum_shash)) { 2016 btrfs_err(fs_info, "error allocating %s hash for checksum", 2017 csum_driver); 2018 return PTR_ERR(csum_shash); 2019 } 2020 2021 fs_info->csum_shash = csum_shash; 2022 2023 /* Check if the checksum implementation is a fast accelerated one. */ 2024 switch (csum_type) { 2025 case BTRFS_CSUM_TYPE_CRC32: 2026 if (crc32_optimizations() & CRC32C_OPTIMIZATION) 2027 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags); 2028 break; 2029 case BTRFS_CSUM_TYPE_XXHASH: 2030 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags); 2031 break; 2032 default: 2033 break; 2034 } 2035 2036 btrfs_info(fs_info, "using %s (%s) checksum algorithm", 2037 btrfs_super_csum_name(csum_type), 2038 crypto_shash_driver_name(csum_shash)); 2039 return 0; 2040} 2041 2042static int btrfs_replay_log(struct btrfs_fs_info *fs_info, 2043 struct btrfs_fs_devices *fs_devices) 2044{ 2045 int ret; 2046 struct btrfs_tree_parent_check check = { 0 }; 2047 struct btrfs_root *log_tree_root; 2048 struct btrfs_super_block *disk_super = fs_info->super_copy; 2049 u64 bytenr = btrfs_super_log_root(disk_super); 2050 int level = btrfs_super_log_root_level(disk_super); 2051 2052 if (unlikely(fs_devices->rw_devices == 0)) { 2053 btrfs_warn(fs_info, "log replay required on RO media"); 2054 return -EIO; 2055 } 2056 2057 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, 2058 GFP_KERNEL); 2059 if (!log_tree_root) 2060 return -ENOMEM; 2061 2062 check.level = level; 2063 check.transid = fs_info->generation + 1; 2064 check.owner_root = BTRFS_TREE_LOG_OBJECTID; 2065 log_tree_root->node = read_tree_block(fs_info, bytenr, &check); 2066 if (IS_ERR(log_tree_root->node)) { 2067 btrfs_warn(fs_info, "failed to read log tree"); 2068 ret = PTR_ERR(log_tree_root->node); 2069 log_tree_root->node = NULL; 2070 btrfs_put_root(log_tree_root); 2071 return ret; 2072 } 2073 if (unlikely(!extent_buffer_uptodate(log_tree_root->node))) { 2074 btrfs_err(fs_info, "failed to read log tree"); 2075 btrfs_put_root(log_tree_root); 2076 return -EIO; 2077 } 2078 2079 /* returns with log_tree_root freed on success */ 2080 ret = btrfs_recover_log_trees(log_tree_root); 2081 btrfs_put_root(log_tree_root); 2082 if (ret) { 2083 btrfs_handle_fs_error(fs_info, ret, 2084 "Failed to recover log tree"); 2085 return ret; 2086 } 2087 2088 if (sb_rdonly(fs_info->sb)) { 2089 ret = btrfs_commit_super(fs_info); 2090 if (ret) 2091 return ret; 2092 } 2093 2094 return 0; 2095} 2096 2097static int load_global_roots_objectid(struct btrfs_root *tree_root, 2098 struct btrfs_path *path, u64 objectid, 2099 const char *name) 2100{ 2101 struct btrfs_fs_info *fs_info = tree_root->fs_info; 2102 struct btrfs_root *root; 2103 u64 max_global_id = 0; 2104 int ret; 2105 struct btrfs_key key = { 2106 .objectid = objectid, 2107 .type = BTRFS_ROOT_ITEM_KEY, 2108 .offset = 0, 2109 }; 2110 bool found = false; 2111 2112 /* If we have IGNOREDATACSUMS skip loading these roots. */ 2113 if (objectid == BTRFS_CSUM_TREE_OBJECTID && 2114 btrfs_test_opt(fs_info, IGNOREDATACSUMS)) { 2115 set_bit(BTRFS_FS_STATE_NO_DATA_CSUMS, &fs_info->fs_state); 2116 return 0; 2117 } 2118 2119 while (1) { 2120 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0); 2121 if (ret < 0) 2122 break; 2123 2124 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 2125 ret = btrfs_next_leaf(tree_root, path); 2126 if (ret) { 2127 if (ret > 0) 2128 ret = 0; 2129 break; 2130 } 2131 } 2132 ret = 0; 2133 2134 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2135 if (key.objectid != objectid) 2136 break; 2137 btrfs_release_path(path); 2138 2139 /* 2140 * Just worry about this for extent tree, it'll be the same for 2141 * everybody. 2142 */ 2143 if (objectid == BTRFS_EXTENT_TREE_OBJECTID) 2144 max_global_id = max(max_global_id, key.offset); 2145 2146 found = true; 2147 root = read_tree_root_path(tree_root, path, &key); 2148 if (IS_ERR(root)) { 2149 ret = PTR_ERR(root); 2150 break; 2151 } 2152 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2153 ret = btrfs_global_root_insert(root); 2154 if (ret) { 2155 btrfs_put_root(root); 2156 break; 2157 } 2158 key.offset++; 2159 } 2160 btrfs_release_path(path); 2161 2162 if (objectid == BTRFS_EXTENT_TREE_OBJECTID) 2163 fs_info->nr_global_roots = max_global_id + 1; 2164 2165 if (!found || ret) { 2166 if (objectid == BTRFS_CSUM_TREE_OBJECTID) 2167 set_bit(BTRFS_FS_STATE_NO_DATA_CSUMS, &fs_info->fs_state); 2168 2169 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) 2170 ret = ret ? ret : -ENOENT; 2171 else 2172 ret = 0; 2173 btrfs_err(fs_info, "failed to load root %s", name); 2174 } 2175 return ret; 2176} 2177 2178static int load_global_roots(struct btrfs_root *tree_root) 2179{ 2180 BTRFS_PATH_AUTO_FREE(path); 2181 int ret; 2182 2183 path = btrfs_alloc_path(); 2184 if (!path) 2185 return -ENOMEM; 2186 2187 ret = load_global_roots_objectid(tree_root, path, 2188 BTRFS_EXTENT_TREE_OBJECTID, "extent"); 2189 if (ret) 2190 return ret; 2191 ret = load_global_roots_objectid(tree_root, path, 2192 BTRFS_CSUM_TREE_OBJECTID, "csum"); 2193 if (ret) 2194 return ret; 2195 if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE)) 2196 return ret; 2197 ret = load_global_roots_objectid(tree_root, path, 2198 BTRFS_FREE_SPACE_TREE_OBJECTID, 2199 "free space"); 2200 2201 return ret; 2202} 2203 2204static int btrfs_read_roots(struct btrfs_fs_info *fs_info) 2205{ 2206 struct btrfs_root *tree_root = fs_info->tree_root; 2207 struct btrfs_root *root; 2208 struct btrfs_key location; 2209 int ret; 2210 2211 ASSERT(fs_info->tree_root); 2212 2213 ret = load_global_roots(tree_root); 2214 if (ret) 2215 return ret; 2216 2217 location.type = BTRFS_ROOT_ITEM_KEY; 2218 location.offset = 0; 2219 2220 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) { 2221 location.objectid = BTRFS_BLOCK_GROUP_TREE_OBJECTID; 2222 root = btrfs_read_tree_root(tree_root, &location); 2223 if (IS_ERR(root)) { 2224 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2225 ret = PTR_ERR(root); 2226 goto out; 2227 } 2228 } else { 2229 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2230 fs_info->block_group_root = root; 2231 } 2232 } 2233 2234 location.objectid = BTRFS_DEV_TREE_OBJECTID; 2235 root = btrfs_read_tree_root(tree_root, &location); 2236 if (IS_ERR(root)) { 2237 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2238 ret = PTR_ERR(root); 2239 goto out; 2240 } 2241 } else { 2242 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2243 fs_info->dev_root = root; 2244 } 2245 /* Initialize fs_info for all devices in any case */ 2246 ret = btrfs_init_devices_late(fs_info); 2247 if (ret) 2248 goto out; 2249 2250 /* 2251 * This tree can share blocks with some other fs tree during relocation 2252 * and we need a proper setup by btrfs_get_fs_root 2253 */ 2254 root = btrfs_get_fs_root(tree_root->fs_info, 2255 BTRFS_DATA_RELOC_TREE_OBJECTID, true); 2256 if (IS_ERR(root)) { 2257 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2258 location.objectid = BTRFS_DATA_RELOC_TREE_OBJECTID; 2259 ret = PTR_ERR(root); 2260 goto out; 2261 } 2262 } else { 2263 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2264 fs_info->data_reloc_root = root; 2265 } 2266 2267 location.objectid = BTRFS_QUOTA_TREE_OBJECTID; 2268 root = btrfs_read_tree_root(tree_root, &location); 2269 if (!IS_ERR(root)) { 2270 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2271 fs_info->quota_root = root; 2272 } 2273 2274 location.objectid = BTRFS_UUID_TREE_OBJECTID; 2275 root = btrfs_read_tree_root(tree_root, &location); 2276 if (IS_ERR(root)) { 2277 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2278 ret = PTR_ERR(root); 2279 if (ret != -ENOENT) 2280 goto out; 2281 } 2282 } else { 2283 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2284 fs_info->uuid_root = root; 2285 } 2286 2287 if (btrfs_fs_incompat(fs_info, RAID_STRIPE_TREE)) { 2288 location.objectid = BTRFS_RAID_STRIPE_TREE_OBJECTID; 2289 root = btrfs_read_tree_root(tree_root, &location); 2290 if (IS_ERR(root)) { 2291 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2292 ret = PTR_ERR(root); 2293 goto out; 2294 } 2295 } else { 2296 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2297 fs_info->stripe_root = root; 2298 } 2299 } 2300 2301 return 0; 2302out: 2303 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d", 2304 location.objectid, ret); 2305 return ret; 2306} 2307 2308static int validate_sys_chunk_array(const struct btrfs_fs_info *fs_info, 2309 const struct btrfs_super_block *sb) 2310{ 2311 unsigned int cur = 0; /* Offset inside the sys chunk array */ 2312 /* 2313 * At sb read time, fs_info is not fully initialized. Thus we have 2314 * to use super block sectorsize, which should have been validated. 2315 */ 2316 const u32 sectorsize = btrfs_super_sectorsize(sb); 2317 u32 sys_array_size = btrfs_super_sys_array_size(sb); 2318 2319 if (unlikely(sys_array_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)) { 2320 btrfs_err(fs_info, "system chunk array too big %u > %u", 2321 sys_array_size, BTRFS_SYSTEM_CHUNK_ARRAY_SIZE); 2322 return -EUCLEAN; 2323 } 2324 2325 while (cur < sys_array_size) { 2326 struct btrfs_disk_key *disk_key; 2327 struct btrfs_chunk *chunk; 2328 struct btrfs_key key; 2329 u64 type; 2330 u16 num_stripes; 2331 u32 len; 2332 int ret; 2333 2334 disk_key = (struct btrfs_disk_key *)(sb->sys_chunk_array + cur); 2335 len = sizeof(*disk_key); 2336 2337 if (unlikely(cur + len > sys_array_size)) 2338 goto short_read; 2339 cur += len; 2340 2341 btrfs_disk_key_to_cpu(&key, disk_key); 2342 if (unlikely(key.type != BTRFS_CHUNK_ITEM_KEY)) { 2343 btrfs_err(fs_info, 2344 "unexpected item type %u in sys_array at offset %u", 2345 key.type, cur); 2346 return -EUCLEAN; 2347 } 2348 chunk = (struct btrfs_chunk *)(sb->sys_chunk_array + cur); 2349 num_stripes = btrfs_stack_chunk_num_stripes(chunk); 2350 if (unlikely(cur + btrfs_chunk_item_size(num_stripes) > sys_array_size)) 2351 goto short_read; 2352 type = btrfs_stack_chunk_type(chunk); 2353 if (unlikely(!(type & BTRFS_BLOCK_GROUP_SYSTEM))) { 2354 btrfs_err(fs_info, 2355 "invalid chunk type %llu in sys_array at offset %u", 2356 type, cur); 2357 return -EUCLEAN; 2358 } 2359 ret = btrfs_check_chunk_valid(fs_info, NULL, chunk, key.offset, 2360 sectorsize); 2361 if (ret < 0) 2362 return ret; 2363 cur += btrfs_chunk_item_size(num_stripes); 2364 } 2365 return 0; 2366short_read: 2367 btrfs_err(fs_info, 2368 "super block sys chunk array short read, cur=%u sys_array_size=%u", 2369 cur, sys_array_size); 2370 return -EUCLEAN; 2371} 2372 2373/* 2374 * Real super block validation 2375 * NOTE: super csum type and incompat features will not be checked here. 2376 * 2377 * @sb: super block to check 2378 * @mirror_num: the super block number to check its bytenr: 2379 * 0 the primary (1st) sb 2380 * 1, 2 2nd and 3rd backup copy 2381 * -1 skip bytenr check 2382 */ 2383int btrfs_validate_super(const struct btrfs_fs_info *fs_info, 2384 const struct btrfs_super_block *sb, int mirror_num) 2385{ 2386 u64 nodesize = btrfs_super_nodesize(sb); 2387 u64 sectorsize = btrfs_super_sectorsize(sb); 2388 int ret = 0; 2389 const bool ignore_flags = btrfs_test_opt(fs_info, IGNORESUPERFLAGS); 2390 2391 if (btrfs_super_magic(sb) != BTRFS_MAGIC) { 2392 btrfs_err(fs_info, "no valid FS found"); 2393 ret = -EINVAL; 2394 } 2395 if ((btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)) { 2396 if (!ignore_flags) { 2397 btrfs_err(fs_info, 2398 "unrecognized or unsupported super flag 0x%llx", 2399 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP); 2400 ret = -EINVAL; 2401 } else { 2402 btrfs_info(fs_info, 2403 "unrecognized or unsupported super flags: 0x%llx, ignored", 2404 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP); 2405 } 2406 } 2407 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) { 2408 btrfs_err(fs_info, "tree_root level too big: %d >= %d", 2409 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL); 2410 ret = -EINVAL; 2411 } 2412 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) { 2413 btrfs_err(fs_info, "chunk_root level too big: %d >= %d", 2414 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL); 2415 ret = -EINVAL; 2416 } 2417 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) { 2418 btrfs_err(fs_info, "log_root level too big: %d >= %d", 2419 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL); 2420 ret = -EINVAL; 2421 } 2422 2423 /* 2424 * Check sectorsize and nodesize first, other check will need it. 2425 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here. 2426 */ 2427 if (!is_power_of_2(sectorsize) || sectorsize < BTRFS_MIN_BLOCKSIZE || 2428 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2429 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize); 2430 ret = -EINVAL; 2431 } 2432 2433 if (!btrfs_supported_blocksize(sectorsize)) { 2434 btrfs_err(fs_info, 2435 "sectorsize %llu not yet supported for page size %lu", 2436 sectorsize, PAGE_SIZE); 2437 ret = -EINVAL; 2438 } 2439 2440 if (!is_power_of_2(nodesize) || nodesize < sectorsize || 2441 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2442 btrfs_err(fs_info, "invalid nodesize %llu", nodesize); 2443 ret = -EINVAL; 2444 } 2445 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) { 2446 btrfs_err(fs_info, "invalid leafsize %u, should be %llu", 2447 le32_to_cpu(sb->__unused_leafsize), nodesize); 2448 ret = -EINVAL; 2449 } 2450 2451 /* Root alignment check */ 2452 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) { 2453 btrfs_warn(fs_info, "tree_root block unaligned: %llu", 2454 btrfs_super_root(sb)); 2455 ret = -EINVAL; 2456 } 2457 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) { 2458 btrfs_warn(fs_info, "chunk_root block unaligned: %llu", 2459 btrfs_super_chunk_root(sb)); 2460 ret = -EINVAL; 2461 } 2462 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) { 2463 btrfs_warn(fs_info, "log_root block unaligned: %llu", 2464 btrfs_super_log_root(sb)); 2465 ret = -EINVAL; 2466 } 2467 2468 if (!fs_info->fs_devices->temp_fsid && 2469 memcmp(fs_info->fs_devices->fsid, sb->fsid, BTRFS_FSID_SIZE) != 0) { 2470 btrfs_err(fs_info, 2471 "superblock fsid doesn't match fsid of fs_devices: %pU != %pU", 2472 sb->fsid, fs_info->fs_devices->fsid); 2473 ret = -EINVAL; 2474 } 2475 2476 if (memcmp(fs_info->fs_devices->metadata_uuid, btrfs_sb_fsid_ptr(sb), 2477 BTRFS_FSID_SIZE) != 0) { 2478 btrfs_err(fs_info, 2479"superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU", 2480 btrfs_sb_fsid_ptr(sb), fs_info->fs_devices->metadata_uuid); 2481 ret = -EINVAL; 2482 } 2483 2484 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid, 2485 BTRFS_FSID_SIZE) != 0) { 2486 btrfs_err(fs_info, 2487 "dev_item UUID does not match metadata fsid: %pU != %pU", 2488 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid); 2489 ret = -EINVAL; 2490 } 2491 2492 /* 2493 * Artificial requirement for block-group-tree to force newer features 2494 * (free-space-tree, no-holes) so the test matrix is smaller. 2495 */ 2496 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) && 2497 (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID) || 2498 !btrfs_fs_incompat(fs_info, NO_HOLES))) { 2499 btrfs_err(fs_info, 2500 "block-group-tree feature requires free-space-tree and no-holes"); 2501 ret = -EINVAL; 2502 } 2503 2504 /* 2505 * Hint to catch really bogus numbers, bitflips or so, more exact checks are 2506 * done later 2507 */ 2508 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) { 2509 btrfs_err(fs_info, "bytes_used is too small %llu", 2510 btrfs_super_bytes_used(sb)); 2511 ret = -EINVAL; 2512 } 2513 if (!is_power_of_2(btrfs_super_stripesize(sb))) { 2514 btrfs_err(fs_info, "invalid stripesize %u", 2515 btrfs_super_stripesize(sb)); 2516 ret = -EINVAL; 2517 } 2518 if (btrfs_super_num_devices(sb) > (1UL << 31)) 2519 btrfs_warn(fs_info, "suspicious number of devices: %llu", 2520 btrfs_super_num_devices(sb)); 2521 if (btrfs_super_num_devices(sb) == 0) { 2522 btrfs_err(fs_info, "number of devices is 0"); 2523 ret = -EINVAL; 2524 } 2525 2526 if (mirror_num >= 0 && 2527 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) { 2528 btrfs_err(fs_info, "super offset mismatch %llu != %u", 2529 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET); 2530 ret = -EINVAL; 2531 } 2532 2533 if (ret) 2534 return ret; 2535 2536 ret = validate_sys_chunk_array(fs_info, sb); 2537 2538 /* 2539 * Obvious sys_chunk_array corruptions, it must hold at least one key 2540 * and one chunk 2541 */ 2542 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 2543 btrfs_err(fs_info, "system chunk array too big %u > %u", 2544 btrfs_super_sys_array_size(sb), 2545 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE); 2546 ret = -EINVAL; 2547 } 2548 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key) 2549 + sizeof(struct btrfs_chunk)) { 2550 btrfs_err(fs_info, "system chunk array too small %u < %zu", 2551 btrfs_super_sys_array_size(sb), 2552 sizeof(struct btrfs_disk_key) 2553 + sizeof(struct btrfs_chunk)); 2554 ret = -EINVAL; 2555 } 2556 2557 /* 2558 * The generation is a global counter, we'll trust it more than the others 2559 * but it's still possible that it's the one that's wrong. 2560 */ 2561 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb)) 2562 btrfs_warn(fs_info, 2563 "suspicious: generation < chunk_root_generation: %llu < %llu", 2564 btrfs_super_generation(sb), 2565 btrfs_super_chunk_root_generation(sb)); 2566 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb) 2567 && btrfs_super_cache_generation(sb) != (u64)-1) 2568 btrfs_warn(fs_info, 2569 "suspicious: generation < cache_generation: %llu < %llu", 2570 btrfs_super_generation(sb), 2571 btrfs_super_cache_generation(sb)); 2572 2573 return ret; 2574} 2575 2576/* 2577 * Validation of super block at mount time. 2578 * Some checks already done early at mount time, like csum type and incompat 2579 * flags will be skipped. 2580 */ 2581static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info) 2582{ 2583 return btrfs_validate_super(fs_info, fs_info->super_copy, 0); 2584} 2585 2586/* 2587 * Validation of super block at write time. 2588 * Some checks like bytenr check will be skipped as their values will be 2589 * overwritten soon. 2590 * Extra checks like csum type and incompat flags will be done here. 2591 */ 2592static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info, 2593 struct btrfs_super_block *sb) 2594{ 2595 int ret; 2596 2597 ret = btrfs_validate_super(fs_info, sb, -1); 2598 if (ret < 0) 2599 goto out; 2600 if (unlikely(!btrfs_supported_super_csum(btrfs_super_csum_type(sb)))) { 2601 ret = -EUCLEAN; 2602 btrfs_err(fs_info, "invalid csum type, has %u want %u", 2603 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32); 2604 goto out; 2605 } 2606 if (unlikely(btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP)) { 2607 ret = -EUCLEAN; 2608 btrfs_err(fs_info, 2609 "invalid incompat flags, has 0x%llx valid mask 0x%llx", 2610 btrfs_super_incompat_flags(sb), 2611 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP); 2612 goto out; 2613 } 2614out: 2615 if (ret < 0) 2616 btrfs_err(fs_info, 2617 "super block corruption detected before writing it to disk"); 2618 return ret; 2619} 2620 2621static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level) 2622{ 2623 struct btrfs_tree_parent_check check = { 2624 .level = level, 2625 .transid = gen, 2626 .owner_root = btrfs_root_id(root) 2627 }; 2628 int ret = 0; 2629 2630 root->node = read_tree_block(root->fs_info, bytenr, &check); 2631 if (IS_ERR(root->node)) { 2632 ret = PTR_ERR(root->node); 2633 root->node = NULL; 2634 return ret; 2635 } 2636 if (unlikely(!extent_buffer_uptodate(root->node))) { 2637 free_extent_buffer(root->node); 2638 root->node = NULL; 2639 return -EIO; 2640 } 2641 2642 btrfs_set_root_node(&root->root_item, root->node); 2643 root->commit_root = btrfs_root_node(root); 2644 btrfs_set_root_refs(&root->root_item, 1); 2645 return ret; 2646} 2647 2648static int load_important_roots(struct btrfs_fs_info *fs_info) 2649{ 2650 struct btrfs_super_block *sb = fs_info->super_copy; 2651 u64 gen, bytenr; 2652 int level, ret; 2653 2654 bytenr = btrfs_super_root(sb); 2655 gen = btrfs_super_generation(sb); 2656 level = btrfs_super_root_level(sb); 2657 ret = load_super_root(fs_info->tree_root, bytenr, gen, level); 2658 if (ret) { 2659 btrfs_warn(fs_info, "couldn't read tree root"); 2660 return ret; 2661 } 2662 return 0; 2663} 2664 2665static int __cold init_tree_roots(struct btrfs_fs_info *fs_info) 2666{ 2667 int backup_index = find_newest_super_backup(fs_info); 2668 struct btrfs_super_block *sb = fs_info->super_copy; 2669 struct btrfs_root *tree_root = fs_info->tree_root; 2670 bool handle_error = false; 2671 int ret = 0; 2672 int i; 2673 2674 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 2675 if (handle_error) { 2676 if (!IS_ERR(tree_root->node)) 2677 free_extent_buffer(tree_root->node); 2678 tree_root->node = NULL; 2679 2680 if (!btrfs_test_opt(fs_info, USEBACKUPROOT)) 2681 break; 2682 2683 free_root_pointers(fs_info, 0); 2684 2685 /* 2686 * Don't use the log in recovery mode, it won't be 2687 * valid 2688 */ 2689 btrfs_set_super_log_root(sb, 0); 2690 2691 btrfs_warn(fs_info, "try to load backup roots slot %d", i); 2692 ret = read_backup_root(fs_info, i); 2693 backup_index = ret; 2694 if (ret < 0) 2695 return ret; 2696 } 2697 2698 ret = load_important_roots(fs_info); 2699 if (ret) { 2700 handle_error = true; 2701 continue; 2702 } 2703 2704 /* 2705 * No need to hold btrfs_root::objectid_mutex since the fs 2706 * hasn't been fully initialised and we are the only user 2707 */ 2708 ret = btrfs_init_root_free_objectid(tree_root); 2709 if (ret < 0) { 2710 handle_error = true; 2711 continue; 2712 } 2713 2714 ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID); 2715 2716 ret = btrfs_read_roots(fs_info); 2717 if (ret < 0) { 2718 handle_error = true; 2719 continue; 2720 } 2721 2722 /* All successful */ 2723 fs_info->generation = btrfs_header_generation(tree_root->node); 2724 btrfs_set_last_trans_committed(fs_info, fs_info->generation); 2725 fs_info->last_reloc_trans = 0; 2726 2727 /* Always begin writing backup roots after the one being used */ 2728 if (backup_index < 0) { 2729 fs_info->backup_root_index = 0; 2730 } else { 2731 fs_info->backup_root_index = backup_index + 1; 2732 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS; 2733 } 2734 break; 2735 } 2736 2737 return ret; 2738} 2739 2740/* 2741 * Lockdep gets confused between our buffer_tree which requires IRQ locking because 2742 * we modify marks in the IRQ context, and our delayed inode xarray which doesn't 2743 * have these requirements. Use a class key so lockdep doesn't get them mixed up. 2744 */ 2745static struct lock_class_key buffer_xa_class; 2746 2747void btrfs_init_fs_info(struct btrfs_fs_info *fs_info) 2748{ 2749 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 2750 2751 /* Use the same flags as mapping->i_pages. */ 2752 xa_init_flags(&fs_info->buffer_tree, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT); 2753 lockdep_set_class(&fs_info->buffer_tree.xa_lock, &buffer_xa_class); 2754 2755 INIT_LIST_HEAD(&fs_info->trans_list); 2756 INIT_LIST_HEAD(&fs_info->dead_roots); 2757 INIT_LIST_HEAD(&fs_info->delayed_iputs); 2758 INIT_LIST_HEAD(&fs_info->delalloc_roots); 2759 INIT_LIST_HEAD(&fs_info->caching_block_groups); 2760 spin_lock_init(&fs_info->delalloc_root_lock); 2761 spin_lock_init(&fs_info->trans_lock); 2762 spin_lock_init(&fs_info->fs_roots_radix_lock); 2763 spin_lock_init(&fs_info->delayed_iput_lock); 2764 spin_lock_init(&fs_info->defrag_inodes_lock); 2765 spin_lock_init(&fs_info->super_lock); 2766 spin_lock_init(&fs_info->unused_bgs_lock); 2767 spin_lock_init(&fs_info->treelog_bg_lock); 2768 spin_lock_init(&fs_info->zone_active_bgs_lock); 2769 spin_lock_init(&fs_info->relocation_bg_lock); 2770 rwlock_init(&fs_info->tree_mod_log_lock); 2771 rwlock_init(&fs_info->global_root_lock); 2772 mutex_init(&fs_info->unused_bg_unpin_mutex); 2773 mutex_init(&fs_info->reclaim_bgs_lock); 2774 mutex_init(&fs_info->reloc_mutex); 2775 mutex_init(&fs_info->delalloc_root_mutex); 2776 mutex_init(&fs_info->zoned_meta_io_lock); 2777 mutex_init(&fs_info->zoned_data_reloc_io_lock); 2778 seqlock_init(&fs_info->profiles_lock); 2779 2780 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_writers); 2781 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_extwriters); 2782 btrfs_lockdep_init_map(fs_info, btrfs_trans_pending_ordered); 2783 btrfs_lockdep_init_map(fs_info, btrfs_ordered_extent); 2784 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_commit_prep, 2785 BTRFS_LOCKDEP_TRANS_COMMIT_PREP); 2786 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_unblocked, 2787 BTRFS_LOCKDEP_TRANS_UNBLOCKED); 2788 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_super_committed, 2789 BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED); 2790 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_completed, 2791 BTRFS_LOCKDEP_TRANS_COMPLETED); 2792 2793 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 2794 INIT_LIST_HEAD(&fs_info->space_info); 2795 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); 2796 INIT_LIST_HEAD(&fs_info->unused_bgs); 2797 INIT_LIST_HEAD(&fs_info->reclaim_bgs); 2798 INIT_LIST_HEAD(&fs_info->zone_active_bgs); 2799#ifdef CONFIG_BTRFS_DEBUG 2800 INIT_LIST_HEAD(&fs_info->allocated_roots); 2801 INIT_LIST_HEAD(&fs_info->allocated_ebs); 2802 spin_lock_init(&fs_info->eb_leak_lock); 2803#endif 2804 fs_info->mapping_tree = RB_ROOT_CACHED; 2805 rwlock_init(&fs_info->mapping_tree_lock); 2806 btrfs_init_block_rsv(&fs_info->global_block_rsv, 2807 BTRFS_BLOCK_RSV_GLOBAL); 2808 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS); 2809 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK); 2810 btrfs_init_block_rsv(&fs_info->treelog_rsv, BTRFS_BLOCK_RSV_TREELOG); 2811 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY); 2812 btrfs_init_block_rsv(&fs_info->delayed_block_rsv, 2813 BTRFS_BLOCK_RSV_DELOPS); 2814 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv, 2815 BTRFS_BLOCK_RSV_DELREFS); 2816 2817 atomic_set(&fs_info->async_delalloc_pages, 0); 2818 atomic_set(&fs_info->defrag_running, 0); 2819 atomic_set(&fs_info->nr_delayed_iputs, 0); 2820 atomic64_set(&fs_info->tree_mod_seq, 0); 2821 fs_info->global_root_tree = RB_ROOT; 2822 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE; 2823 fs_info->metadata_ratio = 0; 2824 fs_info->defrag_inodes = RB_ROOT; 2825 atomic64_set(&fs_info->free_chunk_space, 0); 2826 fs_info->tree_mod_log = RB_ROOT; 2827 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 2828 btrfs_init_ref_verify(fs_info); 2829 2830 fs_info->thread_pool_size = min_t(unsigned long, 2831 num_online_cpus() + 2, 8); 2832 2833 INIT_LIST_HEAD(&fs_info->ordered_roots); 2834 spin_lock_init(&fs_info->ordered_root_lock); 2835 2836 btrfs_init_scrub(fs_info); 2837 btrfs_init_balance(fs_info); 2838 btrfs_init_async_reclaim_work(fs_info); 2839 btrfs_init_extent_map_shrinker_work(fs_info); 2840 2841 rwlock_init(&fs_info->block_group_cache_lock); 2842 fs_info->block_group_cache_tree = RB_ROOT_CACHED; 2843 2844 btrfs_extent_io_tree_init(fs_info, &fs_info->excluded_extents, 2845 IO_TREE_FS_EXCLUDED_EXTENTS); 2846 2847 mutex_init(&fs_info->ordered_operations_mutex); 2848 mutex_init(&fs_info->tree_log_mutex); 2849 mutex_init(&fs_info->chunk_mutex); 2850 mutex_init(&fs_info->transaction_kthread_mutex); 2851 mutex_init(&fs_info->cleaner_mutex); 2852 mutex_init(&fs_info->ro_block_group_mutex); 2853 init_rwsem(&fs_info->commit_root_sem); 2854 init_rwsem(&fs_info->cleanup_work_sem); 2855 init_rwsem(&fs_info->subvol_sem); 2856 sema_init(&fs_info->uuid_tree_rescan_sem, 1); 2857 2858 btrfs_init_dev_replace_locks(fs_info); 2859 btrfs_init_qgroup(fs_info); 2860 btrfs_discard_init(fs_info); 2861 2862 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 2863 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 2864 2865 init_waitqueue_head(&fs_info->transaction_throttle); 2866 init_waitqueue_head(&fs_info->transaction_wait); 2867 init_waitqueue_head(&fs_info->transaction_blocked_wait); 2868 init_waitqueue_head(&fs_info->async_submit_wait); 2869 init_waitqueue_head(&fs_info->delayed_iputs_wait); 2870 2871 /* Usable values until the real ones are cached from the superblock */ 2872 fs_info->nodesize = 4096; 2873 fs_info->sectorsize = 4096; 2874 fs_info->sectorsize_bits = ilog2(4096); 2875 fs_info->stripesize = 4096; 2876 2877 /* Default compress algorithm when user does -o compress */ 2878 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 2879 2880 fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE; 2881 2882 spin_lock_init(&fs_info->swapfile_pins_lock); 2883 fs_info->swapfile_pins = RB_ROOT; 2884 2885 fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH; 2886 INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work); 2887} 2888 2889static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb) 2890{ 2891 int ret; 2892 2893 fs_info->sb = sb; 2894 /* Temporary fixed values for block size until we read the superblock. */ 2895 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE; 2896 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE); 2897 2898 ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL); 2899 if (ret) 2900 return ret; 2901 2902 ret = percpu_counter_init(&fs_info->evictable_extent_maps, 0, GFP_KERNEL); 2903 if (ret) 2904 return ret; 2905 2906 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL); 2907 if (ret) 2908 return ret; 2909 2910 ret = percpu_counter_init(&fs_info->stats_read_blocks, 0, GFP_KERNEL); 2911 if (ret) 2912 return ret; 2913 2914 fs_info->dirty_metadata_batch = PAGE_SIZE * 2915 (1 + ilog2(nr_cpu_ids)); 2916 2917 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL); 2918 if (ret) 2919 return ret; 2920 2921 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0, 2922 GFP_KERNEL); 2923 if (ret) 2924 return ret; 2925 2926 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), 2927 GFP_KERNEL); 2928 if (!fs_info->delayed_root) 2929 return -ENOMEM; 2930 btrfs_init_delayed_root(fs_info->delayed_root); 2931 2932 if (sb_rdonly(sb)) 2933 set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state); 2934 if (btrfs_test_opt(fs_info, IGNOREMETACSUMS)) 2935 set_bit(BTRFS_FS_STATE_SKIP_META_CSUMS, &fs_info->fs_state); 2936 2937 return btrfs_alloc_stripe_hash_table(fs_info); 2938} 2939 2940static int btrfs_uuid_rescan_kthread(void *data) 2941{ 2942 struct btrfs_fs_info *fs_info = data; 2943 int ret; 2944 2945 /* 2946 * 1st step is to iterate through the existing UUID tree and 2947 * to delete all entries that contain outdated data. 2948 * 2nd step is to add all missing entries to the UUID tree. 2949 */ 2950 ret = btrfs_uuid_tree_iterate(fs_info); 2951 if (ret < 0) { 2952 if (ret != -EINTR) 2953 btrfs_warn(fs_info, "iterating uuid_tree failed %d", 2954 ret); 2955 up(&fs_info->uuid_tree_rescan_sem); 2956 return ret; 2957 } 2958 return btrfs_uuid_scan_kthread(data); 2959} 2960 2961static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info) 2962{ 2963 struct task_struct *task; 2964 2965 down(&fs_info->uuid_tree_rescan_sem); 2966 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid"); 2967 if (IS_ERR(task)) { 2968 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 2969 btrfs_warn(fs_info, "failed to start uuid_rescan task"); 2970 up(&fs_info->uuid_tree_rescan_sem); 2971 return PTR_ERR(task); 2972 } 2973 2974 return 0; 2975} 2976 2977static int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 2978{ 2979 u64 root_objectid = 0; 2980 struct btrfs_root *gang[8]; 2981 int ret = 0; 2982 2983 while (1) { 2984 unsigned int found; 2985 2986 spin_lock(&fs_info->fs_roots_radix_lock); 2987 found = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2988 (void **)gang, root_objectid, 2989 ARRAY_SIZE(gang)); 2990 if (!found) { 2991 spin_unlock(&fs_info->fs_roots_radix_lock); 2992 break; 2993 } 2994 root_objectid = btrfs_root_id(gang[found - 1]) + 1; 2995 2996 for (int i = 0; i < found; i++) { 2997 /* Avoid to grab roots in dead_roots. */ 2998 if (btrfs_root_refs(&gang[i]->root_item) == 0) { 2999 gang[i] = NULL; 3000 continue; 3001 } 3002 /* Grab all the search result for later use. */ 3003 gang[i] = btrfs_grab_root(gang[i]); 3004 } 3005 spin_unlock(&fs_info->fs_roots_radix_lock); 3006 3007 for (int i = 0; i < found; i++) { 3008 if (!gang[i]) 3009 continue; 3010 root_objectid = btrfs_root_id(gang[i]); 3011 /* 3012 * Continue to release the remaining roots after the first 3013 * error without cleanup and preserve the first error 3014 * for the return. 3015 */ 3016 if (!ret) 3017 ret = btrfs_orphan_cleanup(gang[i]); 3018 btrfs_put_root(gang[i]); 3019 } 3020 if (ret) 3021 break; 3022 3023 root_objectid++; 3024 } 3025 return ret; 3026} 3027 3028/* 3029 * Mounting logic specific to read-write file systems. Shared by open_ctree 3030 * and btrfs_remount when remounting from read-only to read-write. 3031 */ 3032int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info) 3033{ 3034 int ret; 3035 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE); 3036 bool rebuild_free_space_tree = false; 3037 3038 if (btrfs_test_opt(fs_info, CLEAR_CACHE) && 3039 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3040 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) 3041 btrfs_warn(fs_info, 3042 "'clear_cache' option is ignored with extent tree v2"); 3043 else 3044 rebuild_free_space_tree = true; 3045 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 3046 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) { 3047 btrfs_warn(fs_info, "free space tree is invalid"); 3048 rebuild_free_space_tree = true; 3049 } 3050 3051 if (rebuild_free_space_tree) { 3052 btrfs_info(fs_info, "rebuilding free space tree"); 3053 ret = btrfs_rebuild_free_space_tree(fs_info); 3054 if (ret) { 3055 btrfs_warn(fs_info, 3056 "failed to rebuild free space tree: %d", ret); 3057 goto out; 3058 } 3059 } 3060 3061 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 3062 !btrfs_test_opt(fs_info, FREE_SPACE_TREE)) { 3063 btrfs_info(fs_info, "disabling free space tree"); 3064 ret = btrfs_delete_free_space_tree(fs_info); 3065 if (ret) { 3066 btrfs_warn(fs_info, 3067 "failed to disable free space tree: %d", ret); 3068 goto out; 3069 } 3070 } 3071 3072 /* 3073 * btrfs_find_orphan_roots() is responsible for finding all the dead 3074 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load 3075 * them into the fs_info->fs_roots_radix tree. This must be done before 3076 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it 3077 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan 3078 * item before the root's tree is deleted - this means that if we unmount 3079 * or crash before the deletion completes, on the next mount we will not 3080 * delete what remains of the tree because the orphan item does not 3081 * exists anymore, which is what tells us we have a pending deletion. 3082 */ 3083 ret = btrfs_find_orphan_roots(fs_info); 3084 if (ret) 3085 goto out; 3086 3087 ret = btrfs_cleanup_fs_roots(fs_info); 3088 if (ret) 3089 goto out; 3090 3091 down_read(&fs_info->cleanup_work_sem); 3092 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || 3093 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { 3094 up_read(&fs_info->cleanup_work_sem); 3095 goto out; 3096 } 3097 up_read(&fs_info->cleanup_work_sem); 3098 3099 mutex_lock(&fs_info->cleaner_mutex); 3100 ret = btrfs_recover_relocation(fs_info); 3101 mutex_unlock(&fs_info->cleaner_mutex); 3102 if (ret < 0) { 3103 btrfs_warn(fs_info, "failed to recover relocation: %d", ret); 3104 goto out; 3105 } 3106 3107 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) && 3108 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3109 btrfs_info(fs_info, "creating free space tree"); 3110 ret = btrfs_create_free_space_tree(fs_info); 3111 if (ret) { 3112 btrfs_warn(fs_info, 3113 "failed to create free space tree: %d", ret); 3114 goto out; 3115 } 3116 } 3117 3118 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) { 3119 ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt); 3120 if (ret) 3121 goto out; 3122 } 3123 3124 ret = btrfs_resume_balance_async(fs_info); 3125 if (ret) 3126 goto out; 3127 3128 ret = btrfs_resume_dev_replace_async(fs_info); 3129 if (ret) { 3130 btrfs_warn(fs_info, "failed to resume dev_replace"); 3131 goto out; 3132 } 3133 3134 btrfs_qgroup_rescan_resume(fs_info); 3135 3136 if (!fs_info->uuid_root) { 3137 btrfs_info(fs_info, "creating UUID tree"); 3138 ret = btrfs_create_uuid_tree(fs_info); 3139 if (ret) { 3140 btrfs_warn(fs_info, 3141 "failed to create the UUID tree %d", ret); 3142 goto out; 3143 } 3144 } 3145 3146out: 3147 return ret; 3148} 3149 3150/* 3151 * Do various sanity and dependency checks of different features. 3152 * 3153 * @is_rw_mount: If the mount is read-write. 3154 * 3155 * This is the place for less strict checks (like for subpage or artificial 3156 * feature dependencies). 3157 * 3158 * For strict checks or possible corruption detection, see 3159 * btrfs_validate_super(). 3160 * 3161 * This should be called after btrfs_parse_options(), as some mount options 3162 * (space cache related) can modify on-disk format like free space tree and 3163 * screw up certain feature dependencies. 3164 */ 3165int btrfs_check_features(struct btrfs_fs_info *fs_info, bool is_rw_mount) 3166{ 3167 struct btrfs_super_block *disk_super = fs_info->super_copy; 3168 u64 incompat = btrfs_super_incompat_flags(disk_super); 3169 const u64 compat_ro = btrfs_super_compat_ro_flags(disk_super); 3170 const u64 compat_ro_unsupp = (compat_ro & ~BTRFS_FEATURE_COMPAT_RO_SUPP); 3171 3172 if (incompat & ~BTRFS_FEATURE_INCOMPAT_SUPP) { 3173 btrfs_err(fs_info, 3174 "cannot mount because of unknown incompat features (0x%llx)", 3175 incompat); 3176 return -EINVAL; 3177 } 3178 3179 /* Runtime limitation for mixed block groups. */ 3180 if ((incompat & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && 3181 (fs_info->sectorsize != fs_info->nodesize)) { 3182 btrfs_err(fs_info, 3183"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups", 3184 fs_info->nodesize, fs_info->sectorsize); 3185 return -EINVAL; 3186 } 3187 3188 /* Mixed backref is an always-enabled feature. */ 3189 incompat |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 3190 3191 /* Set compression related flags just in case. */ 3192 if (fs_info->compress_type == BTRFS_COMPRESS_LZO) 3193 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 3194 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD) 3195 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD; 3196 3197 /* 3198 * An ancient flag, which should really be marked deprecated. 3199 * Such runtime limitation doesn't really need a incompat flag. 3200 */ 3201 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) 3202 incompat |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; 3203 3204 if (compat_ro_unsupp && is_rw_mount) { 3205 btrfs_err(fs_info, 3206 "cannot mount read-write because of unknown compat_ro features (0x%llx)", 3207 compat_ro); 3208 return -EINVAL; 3209 } 3210 3211 /* 3212 * We have unsupported RO compat features, although RO mounted, we 3213 * should not cause any metadata writes, including log replay. 3214 * Or we could screw up whatever the new feature requires. 3215 */ 3216 if (compat_ro_unsupp && btrfs_super_log_root(disk_super) && 3217 !btrfs_test_opt(fs_info, NOLOGREPLAY)) { 3218 btrfs_err(fs_info, 3219"cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay", 3220 compat_ro); 3221 return -EINVAL; 3222 } 3223 3224 /* 3225 * Artificial limitations for block group tree, to force 3226 * block-group-tree to rely on no-holes and free-space-tree. 3227 */ 3228 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) && 3229 (!btrfs_fs_incompat(fs_info, NO_HOLES) || 3230 !btrfs_test_opt(fs_info, FREE_SPACE_TREE))) { 3231 btrfs_err(fs_info, 3232"block-group-tree feature requires no-holes and free-space-tree features"); 3233 return -EINVAL; 3234 } 3235 3236 /* 3237 * Subpage/bs > ps runtime limitation on v1 cache. 3238 * 3239 * V1 space cache still has some hard coded PAGE_SIZE usage, while 3240 * we're already defaulting to v2 cache, no need to bother v1 as it's 3241 * going to be deprecated anyway. 3242 */ 3243 if (fs_info->sectorsize != PAGE_SIZE && btrfs_test_opt(fs_info, SPACE_CACHE)) { 3244 btrfs_warn(fs_info, 3245 "v1 space cache is not supported for page size %lu with sectorsize %u", 3246 PAGE_SIZE, fs_info->sectorsize); 3247 return -EINVAL; 3248 } 3249 3250 /* This can be called by remount, we need to protect the super block. */ 3251 spin_lock(&fs_info->super_lock); 3252 btrfs_set_super_incompat_flags(disk_super, incompat); 3253 spin_unlock(&fs_info->super_lock); 3254 3255 return 0; 3256} 3257 3258int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices) 3259{ 3260 u32 sectorsize; 3261 u32 nodesize; 3262 u32 stripesize; 3263 u64 generation; 3264 u16 csum_type; 3265 struct btrfs_super_block *disk_super; 3266 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 3267 struct btrfs_root *tree_root; 3268 struct btrfs_root *chunk_root; 3269 int ret; 3270 int level; 3271 3272 ret = init_mount_fs_info(fs_info, sb); 3273 if (ret) 3274 goto fail; 3275 3276 /* These need to be init'ed before we start creating inodes and such. */ 3277 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, 3278 GFP_KERNEL); 3279 fs_info->tree_root = tree_root; 3280 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID, 3281 GFP_KERNEL); 3282 fs_info->chunk_root = chunk_root; 3283 if (!tree_root || !chunk_root) { 3284 ret = -ENOMEM; 3285 goto fail; 3286 } 3287 3288 ret = btrfs_init_btree_inode(sb); 3289 if (ret) 3290 goto fail; 3291 3292 invalidate_bdev(fs_devices->latest_dev->bdev); 3293 3294 /* 3295 * Read super block and check the signature bytes only 3296 */ 3297 disk_super = btrfs_read_disk_super(fs_devices->latest_dev->bdev, 0, false); 3298 if (IS_ERR(disk_super)) { 3299 ret = PTR_ERR(disk_super); 3300 goto fail_alloc; 3301 } 3302 3303 btrfs_info(fs_info, "first mount of filesystem %pU", disk_super->fsid); 3304 /* 3305 * Verify the type first, if that or the checksum value are 3306 * corrupted, we'll find out 3307 */ 3308 csum_type = btrfs_super_csum_type(disk_super); 3309 if (!btrfs_supported_super_csum(csum_type)) { 3310 btrfs_err(fs_info, "unsupported checksum algorithm: %u", 3311 csum_type); 3312 ret = -EINVAL; 3313 btrfs_release_disk_super(disk_super); 3314 goto fail_alloc; 3315 } 3316 3317 fs_info->csum_size = btrfs_super_csum_size(disk_super); 3318 3319 ret = btrfs_init_csum_hash(fs_info, csum_type); 3320 if (ret) { 3321 btrfs_release_disk_super(disk_super); 3322 goto fail_alloc; 3323 } 3324 3325 /* 3326 * We want to check superblock checksum, the type is stored inside. 3327 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k). 3328 */ 3329 if (btrfs_check_super_csum(fs_info, disk_super)) { 3330 btrfs_err(fs_info, "superblock checksum mismatch"); 3331 ret = -EINVAL; 3332 btrfs_release_disk_super(disk_super); 3333 goto fail_alloc; 3334 } 3335 3336 /* 3337 * super_copy is zeroed at allocation time and we never touch the 3338 * following bytes up to INFO_SIZE, the checksum is calculated from 3339 * the whole block of INFO_SIZE 3340 */ 3341 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy)); 3342 btrfs_release_disk_super(disk_super); 3343 3344 disk_super = fs_info->super_copy; 3345 3346 memcpy(fs_info->super_for_commit, fs_info->super_copy, 3347 sizeof(*fs_info->super_for_commit)); 3348 3349 ret = btrfs_validate_mount_super(fs_info); 3350 if (ret) { 3351 btrfs_err(fs_info, "superblock contains fatal errors"); 3352 ret = -EINVAL; 3353 goto fail_alloc; 3354 } 3355 3356 if (!btrfs_super_root(disk_super)) { 3357 btrfs_err(fs_info, "invalid superblock tree root bytenr"); 3358 ret = -EINVAL; 3359 goto fail_alloc; 3360 } 3361 3362 /* check FS state, whether FS is broken. */ 3363 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR) 3364 WRITE_ONCE(fs_info->fs_error, -EUCLEAN); 3365 3366 /* Set up fs_info before parsing mount options */ 3367 nodesize = btrfs_super_nodesize(disk_super); 3368 sectorsize = btrfs_super_sectorsize(disk_super); 3369 stripesize = sectorsize; 3370 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids)); 3371 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids)); 3372 3373 fs_info->nodesize = nodesize; 3374 fs_info->nodesize_bits = ilog2(nodesize); 3375 fs_info->sectorsize = sectorsize; 3376 fs_info->sectorsize_bits = ilog2(sectorsize); 3377 fs_info->block_min_order = ilog2(round_up(sectorsize, PAGE_SIZE) >> PAGE_SHIFT); 3378 fs_info->block_max_order = ilog2((BITS_PER_LONG << fs_info->sectorsize_bits) >> PAGE_SHIFT); 3379 fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size; 3380 fs_info->stripesize = stripesize; 3381 fs_info->fs_devices->fs_info = fs_info; 3382 3383 if (fs_info->sectorsize > PAGE_SIZE) 3384 btrfs_warn(fs_info, 3385 "support for block size %u with page size %lu is experimental, some features may be missing", 3386 fs_info->sectorsize, PAGE_SIZE); 3387 /* 3388 * Handle the space caching options appropriately now that we have the 3389 * super block loaded and validated. 3390 */ 3391 btrfs_set_free_space_cache_settings(fs_info); 3392 3393 if (!btrfs_check_options(fs_info, &fs_info->mount_opt, sb->s_flags)) { 3394 ret = -EINVAL; 3395 goto fail_alloc; 3396 } 3397 3398 ret = btrfs_check_features(fs_info, !sb_rdonly(sb)); 3399 if (ret < 0) 3400 goto fail_alloc; 3401 3402 /* 3403 * At this point our mount options are validated, if we set ->max_inline 3404 * to something non-standard make sure we truncate it to sectorsize. 3405 */ 3406 fs_info->max_inline = min_t(u64, fs_info->max_inline, fs_info->sectorsize); 3407 3408 ret = btrfs_alloc_compress_wsm(fs_info); 3409 if (ret) 3410 goto fail_sb_buffer; 3411 ret = btrfs_init_workqueues(fs_info); 3412 if (ret) 3413 goto fail_sb_buffer; 3414 3415 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super); 3416 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE); 3417 3418 /* Update the values for the current filesystem. */ 3419 sb->s_blocksize = sectorsize; 3420 sb->s_blocksize_bits = blksize_bits(sectorsize); 3421 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE); 3422 3423 mutex_lock(&fs_info->chunk_mutex); 3424 ret = btrfs_read_sys_array(fs_info); 3425 mutex_unlock(&fs_info->chunk_mutex); 3426 if (ret) { 3427 btrfs_err(fs_info, "failed to read the system array: %d", ret); 3428 goto fail_sb_buffer; 3429 } 3430 3431 generation = btrfs_super_chunk_root_generation(disk_super); 3432 level = btrfs_super_chunk_root_level(disk_super); 3433 ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super), 3434 generation, level); 3435 if (ret) { 3436 btrfs_err(fs_info, "failed to read chunk root"); 3437 goto fail_tree_roots; 3438 } 3439 3440 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 3441 offsetof(struct btrfs_header, chunk_tree_uuid), 3442 BTRFS_UUID_SIZE); 3443 3444 ret = btrfs_read_chunk_tree(fs_info); 3445 if (ret) { 3446 btrfs_err(fs_info, "failed to read chunk tree: %d", ret); 3447 goto fail_tree_roots; 3448 } 3449 3450 /* 3451 * At this point we know all the devices that make this filesystem, 3452 * including the seed devices but we don't know yet if the replace 3453 * target is required. So free devices that are not part of this 3454 * filesystem but skip the replace target device which is checked 3455 * below in btrfs_init_dev_replace(). 3456 */ 3457 btrfs_free_extra_devids(fs_devices); 3458 if (unlikely(!fs_devices->latest_dev->bdev)) { 3459 btrfs_err(fs_info, "failed to read devices"); 3460 ret = -EIO; 3461 goto fail_tree_roots; 3462 } 3463 3464 ret = init_tree_roots(fs_info); 3465 if (ret) 3466 goto fail_tree_roots; 3467 3468 /* 3469 * Get zone type information of zoned block devices. This will also 3470 * handle emulation of a zoned filesystem if a regular device has the 3471 * zoned incompat feature flag set. 3472 */ 3473 ret = btrfs_get_dev_zone_info_all_devices(fs_info); 3474 if (ret) { 3475 btrfs_err(fs_info, 3476 "zoned: failed to read device zone info: %d", ret); 3477 goto fail_block_groups; 3478 } 3479 3480 /* 3481 * If we have a uuid root and we're not being told to rescan we need to 3482 * check the generation here so we can set the 3483 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the 3484 * transaction during a balance or the log replay without updating the 3485 * uuid generation, and then if we crash we would rescan the uuid tree, 3486 * even though it was perfectly fine. 3487 */ 3488 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) && 3489 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super)) 3490 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 3491 3492 ret = btrfs_verify_dev_extents(fs_info); 3493 if (ret) { 3494 btrfs_err(fs_info, 3495 "failed to verify dev extents against chunks: %d", 3496 ret); 3497 goto fail_block_groups; 3498 } 3499 ret = btrfs_recover_balance(fs_info); 3500 if (ret) { 3501 btrfs_err(fs_info, "failed to recover balance: %d", ret); 3502 goto fail_block_groups; 3503 } 3504 3505 ret = btrfs_init_dev_stats(fs_info); 3506 if (ret) { 3507 btrfs_err(fs_info, "failed to init dev_stats: %d", ret); 3508 goto fail_block_groups; 3509 } 3510 3511 ret = btrfs_init_dev_replace(fs_info); 3512 if (ret) { 3513 btrfs_err(fs_info, "failed to init dev_replace: %d", ret); 3514 goto fail_block_groups; 3515 } 3516 3517 ret = btrfs_check_zoned_mode(fs_info); 3518 if (ret) { 3519 btrfs_err(fs_info, "failed to initialize zoned mode: %d", 3520 ret); 3521 goto fail_block_groups; 3522 } 3523 3524 ret = btrfs_sysfs_add_fsid(fs_devices); 3525 if (ret) { 3526 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d", 3527 ret); 3528 goto fail_block_groups; 3529 } 3530 3531 ret = btrfs_sysfs_add_mounted(fs_info); 3532 if (ret) { 3533 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret); 3534 goto fail_fsdev_sysfs; 3535 } 3536 3537 ret = btrfs_init_space_info(fs_info); 3538 if (ret) { 3539 btrfs_err(fs_info, "failed to initialize space info: %d", ret); 3540 goto fail_sysfs; 3541 } 3542 3543 ret = btrfs_read_block_groups(fs_info); 3544 if (ret) { 3545 btrfs_err(fs_info, "failed to read block groups: %d", ret); 3546 goto fail_sysfs; 3547 } 3548 3549 btrfs_zoned_reserve_data_reloc_bg(fs_info); 3550 btrfs_free_zone_cache(fs_info); 3551 3552 btrfs_check_active_zone_reservation(fs_info); 3553 3554 if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices && 3555 !btrfs_check_rw_degradable(fs_info, NULL)) { 3556 btrfs_warn(fs_info, 3557 "writable mount is not allowed due to too many missing devices"); 3558 ret = -EINVAL; 3559 goto fail_sysfs; 3560 } 3561 3562 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info, 3563 "btrfs-cleaner"); 3564 if (IS_ERR(fs_info->cleaner_kthread)) { 3565 ret = PTR_ERR(fs_info->cleaner_kthread); 3566 goto fail_sysfs; 3567 } 3568 3569 fs_info->transaction_kthread = kthread_run(transaction_kthread, 3570 tree_root, 3571 "btrfs-transaction"); 3572 if (IS_ERR(fs_info->transaction_kthread)) { 3573 ret = PTR_ERR(fs_info->transaction_kthread); 3574 goto fail_cleaner; 3575 } 3576 3577 ret = btrfs_read_qgroup_config(fs_info); 3578 if (ret) 3579 goto fail_trans_kthread; 3580 3581 if (btrfs_build_ref_tree(fs_info)) 3582 btrfs_err(fs_info, "couldn't build ref tree"); 3583 3584 /* do not make disk changes in broken FS or nologreplay is given */ 3585 if (btrfs_super_log_root(disk_super) != 0 && 3586 !btrfs_test_opt(fs_info, NOLOGREPLAY)) { 3587 btrfs_info(fs_info, "start tree-log replay"); 3588 ret = btrfs_replay_log(fs_info, fs_devices); 3589 if (ret) 3590 goto fail_qgroup; 3591 } 3592 3593 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true); 3594 if (IS_ERR(fs_info->fs_root)) { 3595 ret = PTR_ERR(fs_info->fs_root); 3596 btrfs_warn(fs_info, "failed to read fs tree: %d", ret); 3597 fs_info->fs_root = NULL; 3598 goto fail_qgroup; 3599 } 3600 3601 if (sb_rdonly(sb)) 3602 return 0; 3603 3604 ret = btrfs_start_pre_rw_mount(fs_info); 3605 if (ret) { 3606 close_ctree(fs_info); 3607 return ret; 3608 } 3609 btrfs_discard_resume(fs_info); 3610 3611 if (fs_info->uuid_root && 3612 (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) || 3613 fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) { 3614 btrfs_info(fs_info, "checking UUID tree"); 3615 ret = btrfs_check_uuid_tree(fs_info); 3616 if (ret) { 3617 btrfs_warn(fs_info, 3618 "failed to check the UUID tree: %d", ret); 3619 close_ctree(fs_info); 3620 return ret; 3621 } 3622 } 3623 3624 set_bit(BTRFS_FS_OPEN, &fs_info->flags); 3625 3626 /* Kick the cleaner thread so it'll start deleting snapshots. */ 3627 if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags)) 3628 wake_up_process(fs_info->cleaner_kthread); 3629 3630 return 0; 3631 3632fail_qgroup: 3633 btrfs_free_qgroup_config(fs_info); 3634fail_trans_kthread: 3635 kthread_stop(fs_info->transaction_kthread); 3636 btrfs_cleanup_transaction(fs_info); 3637 btrfs_free_fs_roots(fs_info); 3638fail_cleaner: 3639 kthread_stop(fs_info->cleaner_kthread); 3640 3641 /* 3642 * make sure we're done with the btree inode before we stop our 3643 * kthreads 3644 */ 3645 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 3646 3647fail_sysfs: 3648 btrfs_sysfs_remove_mounted(fs_info); 3649 3650fail_fsdev_sysfs: 3651 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 3652 3653fail_block_groups: 3654 btrfs_put_block_group_cache(fs_info); 3655 3656fail_tree_roots: 3657 if (fs_info->data_reloc_root) 3658 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root); 3659 free_root_pointers(fs_info, true); 3660 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3661 3662fail_sb_buffer: 3663 btrfs_stop_all_workers(fs_info); 3664 btrfs_free_block_groups(fs_info); 3665fail_alloc: 3666 btrfs_mapping_tree_free(fs_info); 3667 3668 iput(fs_info->btree_inode); 3669fail: 3670 ASSERT(ret < 0); 3671 return ret; 3672} 3673ALLOW_ERROR_INJECTION(open_ctree, ERRNO); 3674 3675static void btrfs_end_super_write(struct bio *bio) 3676{ 3677 struct btrfs_device *device = bio->bi_private; 3678 struct folio_iter fi; 3679 3680 bio_for_each_folio_all(fi, bio) { 3681 if (bio->bi_status) { 3682 btrfs_warn_rl(device->fs_info, 3683 "lost super block write due to IO error on %s (%d)", 3684 btrfs_dev_name(device), 3685 blk_status_to_errno(bio->bi_status)); 3686 btrfs_dev_stat_inc_and_print(device, 3687 BTRFS_DEV_STAT_WRITE_ERRS); 3688 /* Ensure failure if the primary sb fails. */ 3689 if (bio->bi_opf & REQ_FUA) 3690 atomic_add(BTRFS_SUPER_PRIMARY_WRITE_ERROR, 3691 &device->sb_write_errors); 3692 else 3693 atomic_inc(&device->sb_write_errors); 3694 } 3695 folio_unlock(fi.folio); 3696 folio_put(fi.folio); 3697 } 3698 3699 bio_put(bio); 3700} 3701 3702/* 3703 * Write superblock @sb to the @device. Do not wait for completion, all the 3704 * folios we use for writing are locked. 3705 * 3706 * Write @max_mirrors copies of the superblock, where 0 means default that fit 3707 * the expected device size at commit time. Note that max_mirrors must be 3708 * same for write and wait phases. 3709 * 3710 * Return number of errors when folio is not found or submission fails. 3711 */ 3712static int write_dev_supers(struct btrfs_device *device, 3713 struct btrfs_super_block *sb, int max_mirrors) 3714{ 3715 struct btrfs_fs_info *fs_info = device->fs_info; 3716 struct address_space *mapping = device->bdev->bd_mapping; 3717 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 3718 int i; 3719 int ret; 3720 u64 bytenr, bytenr_orig; 3721 3722 atomic_set(&device->sb_write_errors, 0); 3723 3724 if (max_mirrors == 0) 3725 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3726 3727 shash->tfm = fs_info->csum_shash; 3728 3729 for (i = 0; i < max_mirrors; i++) { 3730 struct folio *folio; 3731 struct bio *bio; 3732 struct btrfs_super_block *disk_super; 3733 size_t offset; 3734 3735 bytenr_orig = btrfs_sb_offset(i); 3736 ret = btrfs_sb_log_location(device, i, WRITE, &bytenr); 3737 if (ret == -ENOENT) { 3738 continue; 3739 } else if (ret < 0) { 3740 btrfs_err(device->fs_info, 3741 "couldn't get super block location for mirror %d error %d", 3742 i, ret); 3743 atomic_inc(&device->sb_write_errors); 3744 continue; 3745 } 3746 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3747 device->commit_total_bytes) 3748 break; 3749 3750 btrfs_set_super_bytenr(sb, bytenr_orig); 3751 3752 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE, 3753 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, 3754 sb->csum); 3755 3756 folio = __filemap_get_folio(mapping, bytenr >> PAGE_SHIFT, 3757 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, 3758 GFP_NOFS); 3759 if (IS_ERR(folio)) { 3760 btrfs_err(device->fs_info, 3761 "couldn't get super block page for bytenr %llu error %ld", 3762 bytenr, PTR_ERR(folio)); 3763 atomic_inc(&device->sb_write_errors); 3764 continue; 3765 } 3766 3767 offset = offset_in_folio(folio, bytenr); 3768 disk_super = folio_address(folio) + offset; 3769 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE); 3770 3771 /* 3772 * Directly use bios here instead of relying on the page cache 3773 * to do I/O, so we don't lose the ability to do integrity 3774 * checking. 3775 */ 3776 bio = bio_alloc(device->bdev, 1, 3777 REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO, 3778 GFP_NOFS); 3779 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT; 3780 bio->bi_private = device; 3781 bio->bi_end_io = btrfs_end_super_write; 3782 bio_add_folio_nofail(bio, folio, BTRFS_SUPER_INFO_SIZE, offset); 3783 3784 /* 3785 * We FUA only the first super block. The others we allow to 3786 * go down lazy and there's a short window where the on-disk 3787 * copies might still contain the older version. 3788 */ 3789 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER)) 3790 bio->bi_opf |= REQ_FUA; 3791 submit_bio(bio); 3792 3793 if (btrfs_advance_sb_log(device, i)) 3794 atomic_inc(&device->sb_write_errors); 3795 } 3796 return atomic_read(&device->sb_write_errors) < i ? 0 : -1; 3797} 3798 3799/* 3800 * Wait for write completion of superblocks done by write_dev_supers, 3801 * @max_mirrors same for write and wait phases. 3802 * 3803 * Return -1 if primary super block write failed or when there were no super block 3804 * copies written. Otherwise 0. 3805 */ 3806static int wait_dev_supers(struct btrfs_device *device, int max_mirrors) 3807{ 3808 int i; 3809 int errors = 0; 3810 bool primary_failed = false; 3811 int ret; 3812 u64 bytenr; 3813 3814 if (max_mirrors == 0) 3815 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3816 3817 for (i = 0; i < max_mirrors; i++) { 3818 struct folio *folio; 3819 3820 ret = btrfs_sb_log_location(device, i, READ, &bytenr); 3821 if (ret == -ENOENT) { 3822 break; 3823 } else if (ret < 0) { 3824 errors++; 3825 if (i == 0) 3826 primary_failed = true; 3827 continue; 3828 } 3829 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3830 device->commit_total_bytes) 3831 break; 3832 3833 folio = filemap_get_folio(device->bdev->bd_mapping, 3834 bytenr >> PAGE_SHIFT); 3835 /* If the folio has been removed, then we know it completed. */ 3836 if (IS_ERR(folio)) 3837 continue; 3838 3839 /* Folio will be unlocked once the write completes. */ 3840 folio_wait_locked(folio); 3841 folio_put(folio); 3842 } 3843 3844 errors += atomic_read(&device->sb_write_errors); 3845 if (errors >= BTRFS_SUPER_PRIMARY_WRITE_ERROR) 3846 primary_failed = true; 3847 if (primary_failed) { 3848 btrfs_err(device->fs_info, "error writing primary super block to device %llu", 3849 device->devid); 3850 return -1; 3851 } 3852 3853 return errors < i ? 0 : -1; 3854} 3855 3856/* 3857 * endio for the write_dev_flush, this will wake anyone waiting 3858 * for the barrier when it is done 3859 */ 3860static void btrfs_end_empty_barrier(struct bio *bio) 3861{ 3862 bio_uninit(bio); 3863 complete(bio->bi_private); 3864} 3865 3866/* 3867 * Submit a flush request to the device if it supports it. Error handling is 3868 * done in the waiting counterpart. 3869 */ 3870static void write_dev_flush(struct btrfs_device *device) 3871{ 3872 struct bio *bio = &device->flush_bio; 3873 3874 device->last_flush_error = BLK_STS_OK; 3875 3876 bio_init(bio, device->bdev, NULL, 0, 3877 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH); 3878 bio->bi_end_io = btrfs_end_empty_barrier; 3879 init_completion(&device->flush_wait); 3880 bio->bi_private = &device->flush_wait; 3881 submit_bio(bio); 3882 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); 3883} 3884 3885/* 3886 * If the flush bio has been submitted by write_dev_flush, wait for it. 3887 * Return true for any error, and false otherwise. 3888 */ 3889static bool wait_dev_flush(struct btrfs_device *device) 3890{ 3891 struct bio *bio = &device->flush_bio; 3892 3893 if (!test_and_clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)) 3894 return false; 3895 3896 wait_for_completion_io(&device->flush_wait); 3897 3898 if (bio->bi_status) { 3899 device->last_flush_error = bio->bi_status; 3900 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_FLUSH_ERRS); 3901 return true; 3902 } 3903 3904 return false; 3905} 3906 3907/* 3908 * send an empty flush down to each device in parallel, 3909 * then wait for them 3910 */ 3911static int barrier_all_devices(struct btrfs_fs_info *info) 3912{ 3913 struct list_head *head; 3914 struct btrfs_device *dev; 3915 int errors_wait = 0; 3916 3917 lockdep_assert_held(&info->fs_devices->device_list_mutex); 3918 /* send down all the barriers */ 3919 head = &info->fs_devices->devices; 3920 list_for_each_entry(dev, head, dev_list) { 3921 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 3922 continue; 3923 if (!dev->bdev) 3924 continue; 3925 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3926 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3927 continue; 3928 3929 write_dev_flush(dev); 3930 } 3931 3932 /* wait for all the barriers */ 3933 list_for_each_entry(dev, head, dev_list) { 3934 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 3935 continue; 3936 if (!dev->bdev) { 3937 errors_wait++; 3938 continue; 3939 } 3940 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3941 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3942 continue; 3943 3944 if (wait_dev_flush(dev)) 3945 errors_wait++; 3946 } 3947 3948 /* 3949 * Checks last_flush_error of disks in order to determine the device 3950 * state. 3951 */ 3952 if (unlikely(errors_wait && !btrfs_check_rw_degradable(info, NULL))) 3953 return -EIO; 3954 3955 return 0; 3956} 3957 3958int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags) 3959{ 3960 int raid_type; 3961 int min_tolerated = INT_MAX; 3962 3963 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 || 3964 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE)) 3965 min_tolerated = min_t(int, min_tolerated, 3966 btrfs_raid_array[BTRFS_RAID_SINGLE]. 3967 tolerated_failures); 3968 3969 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 3970 if (raid_type == BTRFS_RAID_SINGLE) 3971 continue; 3972 if (!(flags & btrfs_raid_array[raid_type].bg_flag)) 3973 continue; 3974 min_tolerated = min_t(int, min_tolerated, 3975 btrfs_raid_array[raid_type]. 3976 tolerated_failures); 3977 } 3978 3979 if (min_tolerated == INT_MAX) { 3980 btrfs_warn(NULL, "unknown raid flag: %llu", flags); 3981 min_tolerated = 0; 3982 } 3983 3984 return min_tolerated; 3985} 3986 3987int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors) 3988{ 3989 struct list_head *head; 3990 struct btrfs_device *dev; 3991 struct btrfs_super_block *sb; 3992 struct btrfs_dev_item *dev_item; 3993 int ret; 3994 int do_barriers; 3995 int max_errors; 3996 int total_errors = 0; 3997 u64 flags; 3998 3999 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER); 4000 4001 /* 4002 * max_mirrors == 0 indicates we're from commit_transaction, 4003 * not from fsync where the tree roots in fs_info have not 4004 * been consistent on disk. 4005 */ 4006 if (max_mirrors == 0) 4007 backup_super_roots(fs_info); 4008 4009 sb = fs_info->super_for_commit; 4010 dev_item = &sb->dev_item; 4011 4012 mutex_lock(&fs_info->fs_devices->device_list_mutex); 4013 head = &fs_info->fs_devices->devices; 4014 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1; 4015 4016 if (do_barriers) { 4017 ret = barrier_all_devices(fs_info); 4018 if (ret) { 4019 mutex_unlock( 4020 &fs_info->fs_devices->device_list_mutex); 4021 btrfs_handle_fs_error(fs_info, ret, 4022 "errors while submitting device barriers."); 4023 return ret; 4024 } 4025 } 4026 4027 list_for_each_entry(dev, head, dev_list) { 4028 if (!dev->bdev) { 4029 total_errors++; 4030 continue; 4031 } 4032 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4033 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4034 continue; 4035 4036 btrfs_set_stack_device_generation(dev_item, 0); 4037 btrfs_set_stack_device_type(dev_item, dev->type); 4038 btrfs_set_stack_device_id(dev_item, dev->devid); 4039 btrfs_set_stack_device_total_bytes(dev_item, 4040 dev->commit_total_bytes); 4041 btrfs_set_stack_device_bytes_used(dev_item, 4042 dev->commit_bytes_used); 4043 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 4044 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 4045 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 4046 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 4047 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid, 4048 BTRFS_FSID_SIZE); 4049 4050 flags = btrfs_super_flags(sb); 4051 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 4052 4053 ret = btrfs_validate_write_super(fs_info, sb); 4054 if (unlikely(ret < 0)) { 4055 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4056 btrfs_handle_fs_error(fs_info, -EUCLEAN, 4057 "unexpected superblock corruption detected"); 4058 return -EUCLEAN; 4059 } 4060 4061 ret = write_dev_supers(dev, sb, max_mirrors); 4062 if (ret) 4063 total_errors++; 4064 } 4065 if (unlikely(total_errors > max_errors)) { 4066 btrfs_err(fs_info, "%d errors while writing supers", 4067 total_errors); 4068 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4069 4070 /* FUA is masked off if unsupported and can't be the reason */ 4071 btrfs_handle_fs_error(fs_info, -EIO, 4072 "%d errors while writing supers", 4073 total_errors); 4074 return -EIO; 4075 } 4076 4077 total_errors = 0; 4078 list_for_each_entry(dev, head, dev_list) { 4079 if (!dev->bdev) 4080 continue; 4081 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4082 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4083 continue; 4084 4085 ret = wait_dev_supers(dev, max_mirrors); 4086 if (ret) 4087 total_errors++; 4088 } 4089 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4090 if (unlikely(total_errors > max_errors)) { 4091 btrfs_handle_fs_error(fs_info, -EIO, 4092 "%d errors while writing supers", 4093 total_errors); 4094 return -EIO; 4095 } 4096 return 0; 4097} 4098 4099/* Drop a fs root from the radix tree and free it. */ 4100void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info, 4101 struct btrfs_root *root) 4102{ 4103 bool drop_ref = false; 4104 4105 spin_lock(&fs_info->fs_roots_radix_lock); 4106 radix_tree_delete(&fs_info->fs_roots_radix, 4107 (unsigned long)btrfs_root_id(root)); 4108 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state)) 4109 drop_ref = true; 4110 spin_unlock(&fs_info->fs_roots_radix_lock); 4111 4112 if (BTRFS_FS_ERROR(fs_info)) { 4113 ASSERT(root->log_root == NULL); 4114 if (root->reloc_root) { 4115 btrfs_put_root(root->reloc_root); 4116 root->reloc_root = NULL; 4117 } 4118 } 4119 4120 if (drop_ref) 4121 btrfs_put_root(root); 4122} 4123 4124int btrfs_commit_super(struct btrfs_fs_info *fs_info) 4125{ 4126 mutex_lock(&fs_info->cleaner_mutex); 4127 btrfs_run_delayed_iputs(fs_info); 4128 mutex_unlock(&fs_info->cleaner_mutex); 4129 wake_up_process(fs_info->cleaner_kthread); 4130 4131 /* wait until ongoing cleanup work done */ 4132 down_write(&fs_info->cleanup_work_sem); 4133 up_write(&fs_info->cleanup_work_sem); 4134 4135 return btrfs_commit_current_transaction(fs_info->tree_root); 4136} 4137 4138static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info) 4139{ 4140 struct btrfs_transaction *trans; 4141 struct btrfs_transaction *tmp; 4142 bool found = false; 4143 4144 /* 4145 * This function is only called at the very end of close_ctree(), 4146 * thus no other running transaction, no need to take trans_lock. 4147 */ 4148 ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags)); 4149 list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) { 4150 struct extent_state *cached = NULL; 4151 u64 dirty_bytes = 0; 4152 u64 cur = 0; 4153 u64 found_start; 4154 u64 found_end; 4155 4156 found = true; 4157 while (btrfs_find_first_extent_bit(&trans->dirty_pages, cur, 4158 &found_start, &found_end, 4159 EXTENT_DIRTY, &cached)) { 4160 dirty_bytes += found_end + 1 - found_start; 4161 cur = found_end + 1; 4162 } 4163 btrfs_warn(fs_info, 4164 "transaction %llu (with %llu dirty metadata bytes) is not committed", 4165 trans->transid, dirty_bytes); 4166 btrfs_cleanup_one_transaction(trans); 4167 4168 if (trans == fs_info->running_transaction) 4169 fs_info->running_transaction = NULL; 4170 list_del_init(&trans->list); 4171 4172 btrfs_put_transaction(trans); 4173 trace_btrfs_transaction_commit(fs_info); 4174 } 4175 ASSERT(!found); 4176} 4177 4178void __cold close_ctree(struct btrfs_fs_info *fs_info) 4179{ 4180 int ret; 4181 4182 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags); 4183 4184 /* 4185 * If we had UNFINISHED_DROPS we could still be processing them, so 4186 * clear that bit and wake up relocation so it can stop. 4187 * We must do this before stopping the block group reclaim task, because 4188 * at btrfs_relocate_block_group() we wait for this bit, and after the 4189 * wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we 4190 * have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will 4191 * return 1. 4192 */ 4193 btrfs_wake_unfinished_drop(fs_info); 4194 4195 /* 4196 * We may have the reclaim task running and relocating a data block group, 4197 * in which case it may create delayed iputs. So stop it before we park 4198 * the cleaner kthread otherwise we can get new delayed iputs after 4199 * parking the cleaner, and that can make the async reclaim task to hang 4200 * if it's waiting for delayed iputs to complete, since the cleaner is 4201 * parked and can not run delayed iputs - this will make us hang when 4202 * trying to stop the async reclaim task. 4203 */ 4204 cancel_work_sync(&fs_info->reclaim_bgs_work); 4205 /* 4206 * We don't want the cleaner to start new transactions, add more delayed 4207 * iputs, etc. while we're closing. We can't use kthread_stop() yet 4208 * because that frees the task_struct, and the transaction kthread might 4209 * still try to wake up the cleaner. 4210 */ 4211 kthread_park(fs_info->cleaner_kthread); 4212 4213 /* wait for the qgroup rescan worker to stop */ 4214 btrfs_qgroup_wait_for_completion(fs_info, false); 4215 4216 /* wait for the uuid_scan task to finish */ 4217 down(&fs_info->uuid_tree_rescan_sem); 4218 /* avoid complains from lockdep et al., set sem back to initial state */ 4219 up(&fs_info->uuid_tree_rescan_sem); 4220 4221 /* pause restriper - we want to resume on mount */ 4222 btrfs_pause_balance(fs_info); 4223 4224 btrfs_dev_replace_suspend_for_unmount(fs_info); 4225 4226 btrfs_scrub_cancel(fs_info); 4227 4228 /* wait for any defraggers to finish */ 4229 wait_event(fs_info->transaction_wait, 4230 (atomic_read(&fs_info->defrag_running) == 0)); 4231 4232 /* clear out the rbtree of defraggable inodes */ 4233 btrfs_cleanup_defrag_inodes(fs_info); 4234 4235 /* 4236 * Handle the error fs first, as it will flush and wait for all ordered 4237 * extents. This will generate delayed iputs, thus we want to handle 4238 * it first. 4239 */ 4240 if (unlikely(BTRFS_FS_ERROR(fs_info))) 4241 btrfs_error_commit_super(fs_info); 4242 4243 /* 4244 * Wait for any fixup workers to complete. 4245 * If we don't wait for them here and they are still running by the time 4246 * we call kthread_stop() against the cleaner kthread further below, we 4247 * get an use-after-free on the cleaner because the fixup worker adds an 4248 * inode to the list of delayed iputs and then attempts to wakeup the 4249 * cleaner kthread, which was already stopped and destroyed. We parked 4250 * already the cleaner, but below we run all pending delayed iputs. 4251 */ 4252 btrfs_flush_workqueue(fs_info->fixup_workers); 4253 /* 4254 * Similar case here, we have to wait for delalloc workers before we 4255 * proceed below and stop the cleaner kthread, otherwise we trigger a 4256 * use-after-tree on the cleaner kthread task_struct when a delalloc 4257 * worker running submit_compressed_extents() adds a delayed iput, which 4258 * does a wake up on the cleaner kthread, which was already freed below 4259 * when we call kthread_stop(). 4260 */ 4261 btrfs_flush_workqueue(fs_info->delalloc_workers); 4262 4263 /* 4264 * We can have ordered extents getting their last reference dropped from 4265 * the fs_info->workers queue because for async writes for data bios we 4266 * queue a work for that queue, at btrfs_wq_submit_bio(), that runs 4267 * run_one_async_done() which calls btrfs_bio_end_io() in case the bio 4268 * has an error, and that later function can do the final 4269 * btrfs_put_ordered_extent() on the ordered extent attached to the bio, 4270 * which adds a delayed iput for the inode. So we must flush the queue 4271 * so that we don't have delayed iputs after committing the current 4272 * transaction below and stopping the cleaner and transaction kthreads. 4273 */ 4274 btrfs_flush_workqueue(fs_info->workers); 4275 4276 /* 4277 * When finishing a compressed write bio we schedule a work queue item 4278 * to finish an ordered extent - end_bbio_compressed_write() 4279 * calls btrfs_finish_ordered_extent() which in turns does a call to 4280 * btrfs_queue_ordered_fn(), and that queues the ordered extent 4281 * completion either in the endio_write_workers work queue or in the 4282 * fs_info->endio_freespace_worker work queue. We flush those queues 4283 * below, so before we flush them we must flush this queue for the 4284 * workers of compressed writes. 4285 */ 4286 flush_workqueue(fs_info->endio_workers); 4287 4288 /* 4289 * After we parked the cleaner kthread, ordered extents may have 4290 * completed and created new delayed iputs. If one of the async reclaim 4291 * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we 4292 * can hang forever trying to stop it, because if a delayed iput is 4293 * added after it ran btrfs_run_delayed_iputs() and before it called 4294 * btrfs_wait_on_delayed_iputs(), it will hang forever since there is 4295 * no one else to run iputs. 4296 * 4297 * So wait for all ongoing ordered extents to complete and then run 4298 * delayed iputs. This works because once we reach this point no one 4299 * can create new ordered extents, but delayed iputs can still be added 4300 * by a reclaim worker (see comments further below). 4301 * 4302 * Also note that btrfs_wait_ordered_roots() is not safe here, because 4303 * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent, 4304 * but the delayed iput for the respective inode is made only when doing 4305 * the final btrfs_put_ordered_extent() (which must happen at 4306 * btrfs_finish_ordered_io() when we are unmounting). 4307 */ 4308 btrfs_flush_workqueue(fs_info->endio_write_workers); 4309 /* Ordered extents for free space inodes. */ 4310 btrfs_flush_workqueue(fs_info->endio_freespace_worker); 4311 /* 4312 * Run delayed iputs in case an async reclaim worker is waiting for them 4313 * to be run as mentioned above. 4314 */ 4315 btrfs_run_delayed_iputs(fs_info); 4316 4317 cancel_work_sync(&fs_info->async_reclaim_work); 4318 cancel_work_sync(&fs_info->async_data_reclaim_work); 4319 cancel_work_sync(&fs_info->preempt_reclaim_work); 4320 cancel_work_sync(&fs_info->em_shrinker_work); 4321 4322 /* 4323 * Run delayed iputs again because an async reclaim worker may have 4324 * added new ones if it was flushing delalloc: 4325 * 4326 * shrink_delalloc() -> btrfs_start_delalloc_roots() -> 4327 * start_delalloc_inodes() -> btrfs_add_delayed_iput() 4328 */ 4329 btrfs_run_delayed_iputs(fs_info); 4330 4331 /* There should be no more workload to generate new delayed iputs. */ 4332 set_bit(BTRFS_FS_STATE_NO_DELAYED_IPUT, &fs_info->fs_state); 4333 4334 /* Cancel or finish ongoing discard work */ 4335 btrfs_discard_cleanup(fs_info); 4336 4337 if (!sb_rdonly(fs_info->sb)) { 4338 /* 4339 * The cleaner kthread is stopped, so do one final pass over 4340 * unused block groups. 4341 */ 4342 btrfs_delete_unused_bgs(fs_info); 4343 4344 /* 4345 * There might be existing delayed inode workers still running 4346 * and holding an empty delayed inode item. We must wait for 4347 * them to complete first because they can create a transaction. 4348 * This happens when someone calls btrfs_balance_delayed_items() 4349 * and then a transaction commit runs the same delayed nodes 4350 * before any delayed worker has done something with the nodes. 4351 * We must wait for any worker here and not at transaction 4352 * commit time since that could cause a deadlock. 4353 * This is a very rare case. 4354 */ 4355 btrfs_flush_workqueue(fs_info->delayed_workers); 4356 4357 ret = btrfs_commit_super(fs_info); 4358 if (ret) 4359 btrfs_err(fs_info, "commit super ret %d", ret); 4360 } 4361 4362 kthread_stop(fs_info->transaction_kthread); 4363 kthread_stop(fs_info->cleaner_kthread); 4364 4365 ASSERT(list_empty(&fs_info->delayed_iputs)); 4366 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags); 4367 4368 if (btrfs_check_quota_leak(fs_info)) { 4369 DEBUG_WARN("qgroup reserved space leaked"); 4370 btrfs_err(fs_info, "qgroup reserved space leaked"); 4371 } 4372 4373 btrfs_free_qgroup_config(fs_info); 4374 ASSERT(list_empty(&fs_info->delalloc_roots)); 4375 4376 if (percpu_counter_sum(&fs_info->delalloc_bytes)) { 4377 btrfs_info(fs_info, "at unmount delalloc count %lld", 4378 percpu_counter_sum(&fs_info->delalloc_bytes)); 4379 } 4380 4381 if (percpu_counter_sum(&fs_info->ordered_bytes)) 4382 btrfs_info(fs_info, "at unmount dio bytes count %lld", 4383 percpu_counter_sum(&fs_info->ordered_bytes)); 4384 4385 btrfs_sysfs_remove_mounted(fs_info); 4386 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 4387 4388 btrfs_put_block_group_cache(fs_info); 4389 4390 /* 4391 * we must make sure there is not any read request to 4392 * submit after we stopping all workers. 4393 */ 4394 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 4395 btrfs_stop_all_workers(fs_info); 4396 4397 /* We shouldn't have any transaction open at this point */ 4398 warn_about_uncommitted_trans(fs_info); 4399 4400 clear_bit(BTRFS_FS_OPEN, &fs_info->flags); 4401 free_root_pointers(fs_info, true); 4402 btrfs_free_fs_roots(fs_info); 4403 4404 /* 4405 * We must free the block groups after dropping the fs_roots as we could 4406 * have had an IO error and have left over tree log blocks that aren't 4407 * cleaned up until the fs roots are freed. This makes the block group 4408 * accounting appear to be wrong because there's pending reserved bytes, 4409 * so make sure we do the block group cleanup afterwards. 4410 */ 4411 btrfs_free_block_groups(fs_info); 4412 4413 iput(fs_info->btree_inode); 4414 4415 btrfs_mapping_tree_free(fs_info); 4416} 4417 4418void btrfs_mark_buffer_dirty(struct btrfs_trans_handle *trans, 4419 struct extent_buffer *buf) 4420{ 4421 struct btrfs_fs_info *fs_info = buf->fs_info; 4422 u64 transid = btrfs_header_generation(buf); 4423 4424#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4425 /* 4426 * This is a fast path so only do this check if we have sanity tests 4427 * enabled. Normal people shouldn't be using unmapped buffers as dirty 4428 * outside of the sanity tests. 4429 */ 4430 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags))) 4431 return; 4432#endif 4433 /* This is an active transaction (its state < TRANS_STATE_UNBLOCKED). */ 4434 ASSERT(trans->transid == fs_info->generation); 4435 btrfs_assert_tree_write_locked(buf); 4436 if (unlikely(transid != fs_info->generation)) { 4437 btrfs_abort_transaction(trans, -EUCLEAN); 4438 btrfs_crit(fs_info, 4439"dirty buffer transid mismatch, logical %llu found transid %llu running transid %llu", 4440 buf->start, transid, fs_info->generation); 4441 } 4442 set_extent_buffer_dirty(buf); 4443} 4444 4445static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info, 4446 int flush_delayed) 4447{ 4448 /* 4449 * looks as though older kernels can get into trouble with 4450 * this code, they end up stuck in balance_dirty_pages forever 4451 */ 4452 int ret; 4453 4454 if (current->flags & PF_MEMALLOC) 4455 return; 4456 4457 if (flush_delayed) 4458 btrfs_balance_delayed_items(fs_info); 4459 4460 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 4461 BTRFS_DIRTY_METADATA_THRESH, 4462 fs_info->dirty_metadata_batch); 4463 if (ret > 0) { 4464 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping); 4465 } 4466} 4467 4468void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info) 4469{ 4470 __btrfs_btree_balance_dirty(fs_info, 1); 4471} 4472 4473void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info) 4474{ 4475 __btrfs_btree_balance_dirty(fs_info, 0); 4476} 4477 4478static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info) 4479{ 4480 /* cleanup FS via transaction */ 4481 btrfs_cleanup_transaction(fs_info); 4482 4483 down_write(&fs_info->cleanup_work_sem); 4484 up_write(&fs_info->cleanup_work_sem); 4485} 4486 4487static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info) 4488{ 4489 struct btrfs_root *gang[8]; 4490 u64 root_objectid = 0; 4491 int ret; 4492 4493 spin_lock(&fs_info->fs_roots_radix_lock); 4494 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 4495 (void **)gang, root_objectid, 4496 ARRAY_SIZE(gang))) != 0) { 4497 int i; 4498 4499 for (i = 0; i < ret; i++) 4500 gang[i] = btrfs_grab_root(gang[i]); 4501 spin_unlock(&fs_info->fs_roots_radix_lock); 4502 4503 for (i = 0; i < ret; i++) { 4504 if (!gang[i]) 4505 continue; 4506 root_objectid = btrfs_root_id(gang[i]); 4507 btrfs_free_log(NULL, gang[i]); 4508 btrfs_put_root(gang[i]); 4509 } 4510 root_objectid++; 4511 spin_lock(&fs_info->fs_roots_radix_lock); 4512 } 4513 spin_unlock(&fs_info->fs_roots_radix_lock); 4514 btrfs_free_log_root_tree(NULL, fs_info); 4515} 4516 4517static void btrfs_destroy_ordered_extents(struct btrfs_root *root) 4518{ 4519 struct btrfs_ordered_extent *ordered; 4520 4521 spin_lock(&root->ordered_extent_lock); 4522 /* 4523 * This will just short circuit the ordered completion stuff which will 4524 * make sure the ordered extent gets properly cleaned up. 4525 */ 4526 list_for_each_entry(ordered, &root->ordered_extents, 4527 root_extent_list) 4528 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 4529 spin_unlock(&root->ordered_extent_lock); 4530} 4531 4532static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info) 4533{ 4534 struct btrfs_root *root; 4535 LIST_HEAD(splice); 4536 4537 spin_lock(&fs_info->ordered_root_lock); 4538 list_splice_init(&fs_info->ordered_roots, &splice); 4539 while (!list_empty(&splice)) { 4540 root = list_first_entry(&splice, struct btrfs_root, 4541 ordered_root); 4542 list_move_tail(&root->ordered_root, 4543 &fs_info->ordered_roots); 4544 4545 spin_unlock(&fs_info->ordered_root_lock); 4546 btrfs_destroy_ordered_extents(root); 4547 4548 cond_resched(); 4549 spin_lock(&fs_info->ordered_root_lock); 4550 } 4551 spin_unlock(&fs_info->ordered_root_lock); 4552 4553 /* 4554 * We need this here because if we've been flipped read-only we won't 4555 * get sync() from the umount, so we need to make sure any ordered 4556 * extents that haven't had their dirty pages IO start writeout yet 4557 * actually get run and error out properly. 4558 */ 4559 btrfs_wait_ordered_roots(fs_info, U64_MAX, NULL); 4560} 4561 4562static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 4563{ 4564 struct btrfs_inode *btrfs_inode; 4565 LIST_HEAD(splice); 4566 4567 spin_lock(&root->delalloc_lock); 4568 list_splice_init(&root->delalloc_inodes, &splice); 4569 4570 while (!list_empty(&splice)) { 4571 struct inode *inode = NULL; 4572 btrfs_inode = list_first_entry(&splice, struct btrfs_inode, 4573 delalloc_inodes); 4574 btrfs_del_delalloc_inode(btrfs_inode); 4575 spin_unlock(&root->delalloc_lock); 4576 4577 /* 4578 * Make sure we get a live inode and that it'll not disappear 4579 * meanwhile. 4580 */ 4581 inode = igrab(&btrfs_inode->vfs_inode); 4582 if (inode) { 4583 unsigned int nofs_flag; 4584 4585 nofs_flag = memalloc_nofs_save(); 4586 invalidate_inode_pages2(inode->i_mapping); 4587 memalloc_nofs_restore(nofs_flag); 4588 iput(inode); 4589 } 4590 spin_lock(&root->delalloc_lock); 4591 } 4592 spin_unlock(&root->delalloc_lock); 4593} 4594 4595static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info) 4596{ 4597 struct btrfs_root *root; 4598 LIST_HEAD(splice); 4599 4600 spin_lock(&fs_info->delalloc_root_lock); 4601 list_splice_init(&fs_info->delalloc_roots, &splice); 4602 while (!list_empty(&splice)) { 4603 root = list_first_entry(&splice, struct btrfs_root, 4604 delalloc_root); 4605 root = btrfs_grab_root(root); 4606 BUG_ON(!root); 4607 spin_unlock(&fs_info->delalloc_root_lock); 4608 4609 btrfs_destroy_delalloc_inodes(root); 4610 btrfs_put_root(root); 4611 4612 spin_lock(&fs_info->delalloc_root_lock); 4613 } 4614 spin_unlock(&fs_info->delalloc_root_lock); 4615} 4616 4617static void btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 4618 struct extent_io_tree *dirty_pages, 4619 int mark) 4620{ 4621 struct extent_buffer *eb; 4622 u64 start = 0; 4623 u64 end; 4624 4625 while (btrfs_find_first_extent_bit(dirty_pages, start, &start, &end, 4626 mark, NULL)) { 4627 btrfs_clear_extent_bit(dirty_pages, start, end, mark, NULL); 4628 while (start <= end) { 4629 eb = find_extent_buffer(fs_info, start); 4630 start += fs_info->nodesize; 4631 if (!eb) 4632 continue; 4633 4634 btrfs_tree_lock(eb); 4635 wait_on_extent_buffer_writeback(eb); 4636 btrfs_clear_buffer_dirty(NULL, eb); 4637 btrfs_tree_unlock(eb); 4638 4639 free_extent_buffer_stale(eb); 4640 } 4641 } 4642} 4643 4644static void btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 4645 struct extent_io_tree *unpin) 4646{ 4647 u64 start; 4648 u64 end; 4649 4650 while (1) { 4651 struct extent_state *cached_state = NULL; 4652 4653 /* 4654 * The btrfs_finish_extent_commit() may get the same range as 4655 * ours between find_first_extent_bit and clear_extent_dirty. 4656 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin 4657 * the same extent range. 4658 */ 4659 mutex_lock(&fs_info->unused_bg_unpin_mutex); 4660 if (!btrfs_find_first_extent_bit(unpin, 0, &start, &end, 4661 EXTENT_DIRTY, &cached_state)) { 4662 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 4663 break; 4664 } 4665 4666 btrfs_clear_extent_dirty(unpin, start, end, &cached_state); 4667 btrfs_free_extent_state(cached_state); 4668 btrfs_error_unpin_extent_range(fs_info, start, end); 4669 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 4670 cond_resched(); 4671 } 4672} 4673 4674static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache) 4675{ 4676 struct inode *inode; 4677 4678 inode = cache->io_ctl.inode; 4679 if (inode) { 4680 unsigned int nofs_flag; 4681 4682 nofs_flag = memalloc_nofs_save(); 4683 invalidate_inode_pages2(inode->i_mapping); 4684 memalloc_nofs_restore(nofs_flag); 4685 4686 BTRFS_I(inode)->generation = 0; 4687 cache->io_ctl.inode = NULL; 4688 iput(inode); 4689 } 4690 ASSERT(cache->io_ctl.pages == NULL); 4691 btrfs_put_block_group(cache); 4692} 4693 4694void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans, 4695 struct btrfs_fs_info *fs_info) 4696{ 4697 struct btrfs_block_group *cache; 4698 4699 spin_lock(&cur_trans->dirty_bgs_lock); 4700 while (!list_empty(&cur_trans->dirty_bgs)) { 4701 cache = list_first_entry(&cur_trans->dirty_bgs, 4702 struct btrfs_block_group, 4703 dirty_list); 4704 4705 if (!list_empty(&cache->io_list)) { 4706 spin_unlock(&cur_trans->dirty_bgs_lock); 4707 list_del_init(&cache->io_list); 4708 btrfs_cleanup_bg_io(cache); 4709 spin_lock(&cur_trans->dirty_bgs_lock); 4710 } 4711 4712 list_del_init(&cache->dirty_list); 4713 spin_lock(&cache->lock); 4714 cache->disk_cache_state = BTRFS_DC_ERROR; 4715 spin_unlock(&cache->lock); 4716 4717 spin_unlock(&cur_trans->dirty_bgs_lock); 4718 btrfs_put_block_group(cache); 4719 btrfs_dec_delayed_refs_rsv_bg_updates(fs_info); 4720 spin_lock(&cur_trans->dirty_bgs_lock); 4721 } 4722 spin_unlock(&cur_trans->dirty_bgs_lock); 4723 4724 /* 4725 * Refer to the definition of io_bgs member for details why it's safe 4726 * to use it without any locking 4727 */ 4728 while (!list_empty(&cur_trans->io_bgs)) { 4729 cache = list_first_entry(&cur_trans->io_bgs, 4730 struct btrfs_block_group, 4731 io_list); 4732 4733 list_del_init(&cache->io_list); 4734 spin_lock(&cache->lock); 4735 cache->disk_cache_state = BTRFS_DC_ERROR; 4736 spin_unlock(&cache->lock); 4737 btrfs_cleanup_bg_io(cache); 4738 } 4739} 4740 4741static void btrfs_free_all_qgroup_pertrans(struct btrfs_fs_info *fs_info) 4742{ 4743 struct btrfs_root *gang[8]; 4744 int i; 4745 int ret; 4746 4747 spin_lock(&fs_info->fs_roots_radix_lock); 4748 while (1) { 4749 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix, 4750 (void **)gang, 0, 4751 ARRAY_SIZE(gang), 4752 BTRFS_ROOT_TRANS_TAG); 4753 if (ret == 0) 4754 break; 4755 for (i = 0; i < ret; i++) { 4756 struct btrfs_root *root = gang[i]; 4757 4758 btrfs_qgroup_free_meta_all_pertrans(root); 4759 radix_tree_tag_clear(&fs_info->fs_roots_radix, 4760 (unsigned long)btrfs_root_id(root), 4761 BTRFS_ROOT_TRANS_TAG); 4762 } 4763 } 4764 spin_unlock(&fs_info->fs_roots_radix_lock); 4765} 4766 4767void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans) 4768{ 4769 struct btrfs_fs_info *fs_info = cur_trans->fs_info; 4770 struct btrfs_device *dev, *tmp; 4771 4772 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 4773 ASSERT(list_empty(&cur_trans->dirty_bgs)); 4774 ASSERT(list_empty(&cur_trans->io_bgs)); 4775 4776 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list, 4777 post_commit_list) { 4778 list_del_init(&dev->post_commit_list); 4779 } 4780 4781 btrfs_destroy_delayed_refs(cur_trans); 4782 4783 cur_trans->state = TRANS_STATE_COMMIT_START; 4784 wake_up(&fs_info->transaction_blocked_wait); 4785 4786 cur_trans->state = TRANS_STATE_UNBLOCKED; 4787 wake_up(&fs_info->transaction_wait); 4788 4789 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages, 4790 EXTENT_DIRTY); 4791 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents); 4792 4793 cur_trans->state =TRANS_STATE_COMPLETED; 4794 wake_up(&cur_trans->commit_wait); 4795} 4796 4797static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info) 4798{ 4799 struct btrfs_transaction *t; 4800 4801 mutex_lock(&fs_info->transaction_kthread_mutex); 4802 4803 spin_lock(&fs_info->trans_lock); 4804 while (!list_empty(&fs_info->trans_list)) { 4805 t = list_first_entry(&fs_info->trans_list, 4806 struct btrfs_transaction, list); 4807 if (t->state >= TRANS_STATE_COMMIT_PREP) { 4808 refcount_inc(&t->use_count); 4809 spin_unlock(&fs_info->trans_lock); 4810 btrfs_wait_for_commit(fs_info, t->transid); 4811 btrfs_put_transaction(t); 4812 spin_lock(&fs_info->trans_lock); 4813 continue; 4814 } 4815 if (t == fs_info->running_transaction) { 4816 t->state = TRANS_STATE_COMMIT_DOING; 4817 spin_unlock(&fs_info->trans_lock); 4818 /* 4819 * We wait for 0 num_writers since we don't hold a trans 4820 * handle open currently for this transaction. 4821 */ 4822 wait_event(t->writer_wait, 4823 atomic_read(&t->num_writers) == 0); 4824 } else { 4825 spin_unlock(&fs_info->trans_lock); 4826 } 4827 btrfs_cleanup_one_transaction(t); 4828 4829 spin_lock(&fs_info->trans_lock); 4830 if (t == fs_info->running_transaction) 4831 fs_info->running_transaction = NULL; 4832 list_del_init(&t->list); 4833 spin_unlock(&fs_info->trans_lock); 4834 4835 btrfs_put_transaction(t); 4836 trace_btrfs_transaction_commit(fs_info); 4837 spin_lock(&fs_info->trans_lock); 4838 } 4839 spin_unlock(&fs_info->trans_lock); 4840 btrfs_destroy_all_ordered_extents(fs_info); 4841 btrfs_destroy_delayed_inodes(fs_info); 4842 btrfs_assert_delayed_root_empty(fs_info); 4843 btrfs_destroy_all_delalloc_inodes(fs_info); 4844 btrfs_drop_all_logs(fs_info); 4845 btrfs_free_all_qgroup_pertrans(fs_info); 4846 mutex_unlock(&fs_info->transaction_kthread_mutex); 4847 4848 return 0; 4849} 4850 4851int btrfs_init_root_free_objectid(struct btrfs_root *root) 4852{ 4853 BTRFS_PATH_AUTO_FREE(path); 4854 int ret; 4855 struct extent_buffer *l; 4856 struct btrfs_key search_key; 4857 struct btrfs_key found_key; 4858 int slot; 4859 4860 path = btrfs_alloc_path(); 4861 if (!path) 4862 return -ENOMEM; 4863 4864 search_key.objectid = BTRFS_LAST_FREE_OBJECTID; 4865 search_key.type = -1; 4866 search_key.offset = (u64)-1; 4867 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 4868 if (ret < 0) 4869 return ret; 4870 if (unlikely(ret == 0)) { 4871 /* 4872 * Key with offset -1 found, there would have to exist a root 4873 * with such id, but this is out of valid range. 4874 */ 4875 return -EUCLEAN; 4876 } 4877 if (path->slots[0] > 0) { 4878 slot = path->slots[0] - 1; 4879 l = path->nodes[0]; 4880 btrfs_item_key_to_cpu(l, &found_key, slot); 4881 root->free_objectid = max_t(u64, found_key.objectid + 1, 4882 BTRFS_FIRST_FREE_OBJECTID); 4883 } else { 4884 root->free_objectid = BTRFS_FIRST_FREE_OBJECTID; 4885 } 4886 4887 return 0; 4888} 4889 4890int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid) 4891{ 4892 int ret; 4893 mutex_lock(&root->objectid_mutex); 4894 4895 if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) { 4896 btrfs_warn(root->fs_info, 4897 "the objectid of root %llu reaches its highest value", 4898 btrfs_root_id(root)); 4899 ret = -ENOSPC; 4900 goto out; 4901 } 4902 4903 *objectid = root->free_objectid++; 4904 ret = 0; 4905out: 4906 mutex_unlock(&root->objectid_mutex); 4907 return ret; 4908}