Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2
3#include <linux/sizes.h>
4#include <linux/list_sort.h>
5#include "misc.h"
6#include "ctree.h"
7#include "block-group.h"
8#include "space-info.h"
9#include "disk-io.h"
10#include "free-space-cache.h"
11#include "free-space-tree.h"
12#include "volumes.h"
13#include "transaction.h"
14#include "ref-verify.h"
15#include "sysfs.h"
16#include "tree-log.h"
17#include "delalloc-space.h"
18#include "discard.h"
19#include "raid56.h"
20#include "zoned.h"
21#include "fs.h"
22#include "accessors.h"
23#include "extent-tree.h"
24
25#ifdef CONFIG_BTRFS_DEBUG
26int btrfs_should_fragment_free_space(const struct btrfs_block_group *block_group)
27{
28 struct btrfs_fs_info *fs_info = block_group->fs_info;
29
30 return (btrfs_test_opt(fs_info, FRAGMENT_METADATA) &&
31 block_group->flags & BTRFS_BLOCK_GROUP_METADATA) ||
32 (btrfs_test_opt(fs_info, FRAGMENT_DATA) &&
33 block_group->flags & BTRFS_BLOCK_GROUP_DATA);
34}
35#endif
36
37static inline bool has_unwritten_metadata(struct btrfs_block_group *block_group)
38{
39 /* The meta_write_pointer is available only on the zoned setup. */
40 if (!btrfs_is_zoned(block_group->fs_info))
41 return false;
42
43 if (block_group->flags & BTRFS_BLOCK_GROUP_DATA)
44 return false;
45
46 return block_group->start + block_group->alloc_offset >
47 block_group->meta_write_pointer;
48}
49
50/*
51 * Return target flags in extended format or 0 if restripe for this chunk_type
52 * is not in progress
53 *
54 * Should be called with balance_lock held
55 */
56static u64 get_restripe_target(const struct btrfs_fs_info *fs_info, u64 flags)
57{
58 const struct btrfs_balance_control *bctl = fs_info->balance_ctl;
59 u64 target = 0;
60
61 if (!bctl)
62 return 0;
63
64 if (flags & BTRFS_BLOCK_GROUP_DATA &&
65 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
66 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
67 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
68 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
69 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
70 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
71 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
72 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
73 }
74
75 return target;
76}
77
78/*
79 * @flags: available profiles in extended format (see ctree.h)
80 *
81 * Return reduced profile in chunk format. If profile changing is in progress
82 * (either running or paused) picks the target profile (if it's already
83 * available), otherwise falls back to plain reducing.
84 */
85static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
86{
87 u64 num_devices = fs_info->fs_devices->rw_devices;
88 u64 target;
89 u64 raid_type;
90 u64 allowed = 0;
91
92 /*
93 * See if restripe for this chunk_type is in progress, if so try to
94 * reduce to the target profile
95 */
96 spin_lock(&fs_info->balance_lock);
97 target = get_restripe_target(fs_info, flags);
98 if (target) {
99 spin_unlock(&fs_info->balance_lock);
100 return extended_to_chunk(target);
101 }
102 spin_unlock(&fs_info->balance_lock);
103
104 /* First, mask out the RAID levels which aren't possible */
105 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
106 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
107 allowed |= btrfs_raid_array[raid_type].bg_flag;
108 }
109 allowed &= flags;
110
111 /* Select the highest-redundancy RAID level. */
112 if (allowed & BTRFS_BLOCK_GROUP_RAID1C4)
113 allowed = BTRFS_BLOCK_GROUP_RAID1C4;
114 else if (allowed & BTRFS_BLOCK_GROUP_RAID6)
115 allowed = BTRFS_BLOCK_GROUP_RAID6;
116 else if (allowed & BTRFS_BLOCK_GROUP_RAID1C3)
117 allowed = BTRFS_BLOCK_GROUP_RAID1C3;
118 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
119 allowed = BTRFS_BLOCK_GROUP_RAID5;
120 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
121 allowed = BTRFS_BLOCK_GROUP_RAID10;
122 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
123 allowed = BTRFS_BLOCK_GROUP_RAID1;
124 else if (allowed & BTRFS_BLOCK_GROUP_DUP)
125 allowed = BTRFS_BLOCK_GROUP_DUP;
126 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
127 allowed = BTRFS_BLOCK_GROUP_RAID0;
128
129 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
130
131 return extended_to_chunk(flags | allowed);
132}
133
134u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
135{
136 unsigned seq;
137 u64 flags;
138
139 do {
140 flags = orig_flags;
141 seq = read_seqbegin(&fs_info->profiles_lock);
142
143 if (flags & BTRFS_BLOCK_GROUP_DATA)
144 flags |= fs_info->avail_data_alloc_bits;
145 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
146 flags |= fs_info->avail_system_alloc_bits;
147 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
148 flags |= fs_info->avail_metadata_alloc_bits;
149 } while (read_seqretry(&fs_info->profiles_lock, seq));
150
151 return btrfs_reduce_alloc_profile(fs_info, flags);
152}
153
154void btrfs_get_block_group(struct btrfs_block_group *cache)
155{
156 refcount_inc(&cache->refs);
157}
158
159void btrfs_put_block_group(struct btrfs_block_group *cache)
160{
161 if (refcount_dec_and_test(&cache->refs)) {
162 WARN_ON(cache->pinned > 0);
163 /*
164 * If there was a failure to cleanup a log tree, very likely due
165 * to an IO failure on a writeback attempt of one or more of its
166 * extent buffers, we could not do proper (and cheap) unaccounting
167 * of their reserved space, so don't warn on reserved > 0 in that
168 * case.
169 */
170 if (!(cache->flags & BTRFS_BLOCK_GROUP_METADATA) ||
171 !BTRFS_FS_LOG_CLEANUP_ERROR(cache->fs_info))
172 WARN_ON(cache->reserved > 0);
173
174 /*
175 * A block_group shouldn't be on the discard_list anymore.
176 * Remove the block_group from the discard_list to prevent us
177 * from causing a panic due to NULL pointer dereference.
178 */
179 if (WARN_ON(!list_empty(&cache->discard_list)))
180 btrfs_discard_cancel_work(&cache->fs_info->discard_ctl,
181 cache);
182
183 kfree(cache->free_space_ctl);
184 btrfs_free_chunk_map(cache->physical_map);
185 kfree(cache);
186 }
187}
188
189static int btrfs_bg_start_cmp(const struct rb_node *new,
190 const struct rb_node *exist)
191{
192 const struct btrfs_block_group *new_bg =
193 rb_entry(new, struct btrfs_block_group, cache_node);
194 const struct btrfs_block_group *exist_bg =
195 rb_entry(exist, struct btrfs_block_group, cache_node);
196
197 if (new_bg->start < exist_bg->start)
198 return -1;
199 if (new_bg->start > exist_bg->start)
200 return 1;
201 return 0;
202}
203
204/*
205 * This adds the block group to the fs_info rb tree for the block group cache
206 */
207static int btrfs_add_block_group_cache(struct btrfs_block_group *block_group)
208{
209 struct btrfs_fs_info *fs_info = block_group->fs_info;
210 struct rb_node *exist;
211 int ret = 0;
212
213 ASSERT(block_group->length != 0);
214
215 write_lock(&fs_info->block_group_cache_lock);
216
217 exist = rb_find_add_cached(&block_group->cache_node,
218 &fs_info->block_group_cache_tree, btrfs_bg_start_cmp);
219 if (exist)
220 ret = -EEXIST;
221 write_unlock(&fs_info->block_group_cache_lock);
222
223 return ret;
224}
225
226/*
227 * This will return the block group at or after bytenr if contains is 0, else
228 * it will return the block group that contains the bytenr
229 */
230static struct btrfs_block_group *block_group_cache_tree_search(
231 struct btrfs_fs_info *info, u64 bytenr, int contains)
232{
233 struct btrfs_block_group *cache, *ret = NULL;
234 struct rb_node *n;
235 u64 end, start;
236
237 read_lock(&info->block_group_cache_lock);
238 n = info->block_group_cache_tree.rb_root.rb_node;
239
240 while (n) {
241 cache = rb_entry(n, struct btrfs_block_group, cache_node);
242 end = cache->start + cache->length - 1;
243 start = cache->start;
244
245 if (bytenr < start) {
246 if (!contains && (!ret || start < ret->start))
247 ret = cache;
248 n = n->rb_left;
249 } else if (bytenr > start) {
250 if (contains && bytenr <= end) {
251 ret = cache;
252 break;
253 }
254 n = n->rb_right;
255 } else {
256 ret = cache;
257 break;
258 }
259 }
260 if (ret)
261 btrfs_get_block_group(ret);
262 read_unlock(&info->block_group_cache_lock);
263
264 return ret;
265}
266
267/*
268 * Return the block group that starts at or after bytenr
269 */
270struct btrfs_block_group *btrfs_lookup_first_block_group(
271 struct btrfs_fs_info *info, u64 bytenr)
272{
273 return block_group_cache_tree_search(info, bytenr, 0);
274}
275
276/*
277 * Return the block group that contains the given bytenr
278 */
279struct btrfs_block_group *btrfs_lookup_block_group(
280 struct btrfs_fs_info *info, u64 bytenr)
281{
282 return block_group_cache_tree_search(info, bytenr, 1);
283}
284
285struct btrfs_block_group *btrfs_next_block_group(
286 struct btrfs_block_group *cache)
287{
288 struct btrfs_fs_info *fs_info = cache->fs_info;
289 struct rb_node *node;
290
291 read_lock(&fs_info->block_group_cache_lock);
292
293 /* If our block group was removed, we need a full search. */
294 if (RB_EMPTY_NODE(&cache->cache_node)) {
295 const u64 next_bytenr = cache->start + cache->length;
296
297 read_unlock(&fs_info->block_group_cache_lock);
298 btrfs_put_block_group(cache);
299 return btrfs_lookup_first_block_group(fs_info, next_bytenr);
300 }
301 node = rb_next(&cache->cache_node);
302 btrfs_put_block_group(cache);
303 if (node) {
304 cache = rb_entry(node, struct btrfs_block_group, cache_node);
305 btrfs_get_block_group(cache);
306 } else
307 cache = NULL;
308 read_unlock(&fs_info->block_group_cache_lock);
309 return cache;
310}
311
312/*
313 * Check if we can do a NOCOW write for a given extent.
314 *
315 * @fs_info: The filesystem information object.
316 * @bytenr: Logical start address of the extent.
317 *
318 * Check if we can do a NOCOW write for the given extent, and increments the
319 * number of NOCOW writers in the block group that contains the extent, as long
320 * as the block group exists and it's currently not in read-only mode.
321 *
322 * Returns: A non-NULL block group pointer if we can do a NOCOW write, the caller
323 * is responsible for calling btrfs_dec_nocow_writers() later.
324 *
325 * Or NULL if we can not do a NOCOW write
326 */
327struct btrfs_block_group *btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info,
328 u64 bytenr)
329{
330 struct btrfs_block_group *bg;
331 bool can_nocow = true;
332
333 bg = btrfs_lookup_block_group(fs_info, bytenr);
334 if (!bg)
335 return NULL;
336
337 spin_lock(&bg->lock);
338 if (bg->ro)
339 can_nocow = false;
340 else
341 atomic_inc(&bg->nocow_writers);
342 spin_unlock(&bg->lock);
343
344 if (!can_nocow) {
345 btrfs_put_block_group(bg);
346 return NULL;
347 }
348
349 /* No put on block group, done by btrfs_dec_nocow_writers(). */
350 return bg;
351}
352
353/*
354 * Decrement the number of NOCOW writers in a block group.
355 *
356 * This is meant to be called after a previous call to btrfs_inc_nocow_writers(),
357 * and on the block group returned by that call. Typically this is called after
358 * creating an ordered extent for a NOCOW write, to prevent races with scrub and
359 * relocation.
360 *
361 * After this call, the caller should not use the block group anymore. It it wants
362 * to use it, then it should get a reference on it before calling this function.
363 */
364void btrfs_dec_nocow_writers(struct btrfs_block_group *bg)
365{
366 if (atomic_dec_and_test(&bg->nocow_writers))
367 wake_up_var(&bg->nocow_writers);
368
369 /* For the lookup done by a previous call to btrfs_inc_nocow_writers(). */
370 btrfs_put_block_group(bg);
371}
372
373void btrfs_wait_nocow_writers(struct btrfs_block_group *bg)
374{
375 wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
376}
377
378void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
379 const u64 start)
380{
381 struct btrfs_block_group *bg;
382
383 bg = btrfs_lookup_block_group(fs_info, start);
384 ASSERT(bg);
385 if (atomic_dec_and_test(&bg->reservations))
386 wake_up_var(&bg->reservations);
387 btrfs_put_block_group(bg);
388}
389
390void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg)
391{
392 struct btrfs_space_info *space_info = bg->space_info;
393
394 ASSERT(bg->ro);
395
396 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
397 return;
398
399 /*
400 * Our block group is read only but before we set it to read only,
401 * some task might have had allocated an extent from it already, but it
402 * has not yet created a respective ordered extent (and added it to a
403 * root's list of ordered extents).
404 * Therefore wait for any task currently allocating extents, since the
405 * block group's reservations counter is incremented while a read lock
406 * on the groups' semaphore is held and decremented after releasing
407 * the read access on that semaphore and creating the ordered extent.
408 */
409 down_write(&space_info->groups_sem);
410 up_write(&space_info->groups_sem);
411
412 wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
413}
414
415struct btrfs_caching_control *btrfs_get_caching_control(
416 struct btrfs_block_group *cache)
417{
418 struct btrfs_caching_control *ctl;
419
420 spin_lock(&cache->lock);
421 if (!cache->caching_ctl) {
422 spin_unlock(&cache->lock);
423 return NULL;
424 }
425
426 ctl = cache->caching_ctl;
427 refcount_inc(&ctl->count);
428 spin_unlock(&cache->lock);
429 return ctl;
430}
431
432static void btrfs_put_caching_control(struct btrfs_caching_control *ctl)
433{
434 if (refcount_dec_and_test(&ctl->count))
435 kfree(ctl);
436}
437
438/*
439 * When we wait for progress in the block group caching, its because our
440 * allocation attempt failed at least once. So, we must sleep and let some
441 * progress happen before we try again.
442 *
443 * This function will sleep at least once waiting for new free space to show
444 * up, and then it will check the block group free space numbers for our min
445 * num_bytes. Another option is to have it go ahead and look in the rbtree for
446 * a free extent of a given size, but this is a good start.
447 *
448 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
449 * any of the information in this block group.
450 */
451void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache,
452 u64 num_bytes)
453{
454 struct btrfs_caching_control *caching_ctl;
455 int progress;
456
457 caching_ctl = btrfs_get_caching_control(cache);
458 if (!caching_ctl)
459 return;
460
461 /*
462 * We've already failed to allocate from this block group, so even if
463 * there's enough space in the block group it isn't contiguous enough to
464 * allow for an allocation, so wait for at least the next wakeup tick,
465 * or for the thing to be done.
466 */
467 progress = atomic_read(&caching_ctl->progress);
468
469 wait_event(caching_ctl->wait, btrfs_block_group_done(cache) ||
470 (progress != atomic_read(&caching_ctl->progress) &&
471 (cache->free_space_ctl->free_space >= num_bytes)));
472
473 btrfs_put_caching_control(caching_ctl);
474}
475
476static int btrfs_caching_ctl_wait_done(struct btrfs_block_group *cache,
477 struct btrfs_caching_control *caching_ctl)
478{
479 wait_event(caching_ctl->wait, btrfs_block_group_done(cache));
480 return cache->cached == BTRFS_CACHE_ERROR ? -EIO : 0;
481}
482
483static int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache)
484{
485 struct btrfs_caching_control *caching_ctl;
486 int ret;
487
488 caching_ctl = btrfs_get_caching_control(cache);
489 if (!caching_ctl)
490 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
491 ret = btrfs_caching_ctl_wait_done(cache, caching_ctl);
492 btrfs_put_caching_control(caching_ctl);
493 return ret;
494}
495
496#ifdef CONFIG_BTRFS_DEBUG
497static void fragment_free_space(struct btrfs_block_group *block_group)
498{
499 struct btrfs_fs_info *fs_info = block_group->fs_info;
500 u64 start = block_group->start;
501 u64 len = block_group->length;
502 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
503 fs_info->nodesize : fs_info->sectorsize;
504 u64 step = chunk << 1;
505
506 while (len > chunk) {
507 btrfs_remove_free_space(block_group, start, chunk);
508 start += step;
509 if (len < step)
510 len = 0;
511 else
512 len -= step;
513 }
514}
515#endif
516
517/*
518 * Add a free space range to the in memory free space cache of a block group.
519 * This checks if the range contains super block locations and any such
520 * locations are not added to the free space cache.
521 *
522 * @block_group: The target block group.
523 * @start: Start offset of the range.
524 * @end: End offset of the range (exclusive).
525 * @total_added_ret: Optional pointer to return the total amount of space
526 * added to the block group's free space cache.
527 *
528 * Returns 0 on success or < 0 on error.
529 */
530int btrfs_add_new_free_space(struct btrfs_block_group *block_group, u64 start,
531 u64 end, u64 *total_added_ret)
532{
533 struct btrfs_fs_info *info = block_group->fs_info;
534 u64 extent_start, extent_end, size;
535 int ret;
536
537 if (total_added_ret)
538 *total_added_ret = 0;
539
540 while (start < end) {
541 if (!btrfs_find_first_extent_bit(&info->excluded_extents, start,
542 &extent_start, &extent_end,
543 EXTENT_DIRTY, NULL))
544 break;
545
546 if (extent_start <= start) {
547 start = extent_end + 1;
548 } else if (extent_start > start && extent_start < end) {
549 size = extent_start - start;
550 ret = btrfs_add_free_space_async_trimmed(block_group,
551 start, size);
552 if (ret)
553 return ret;
554 if (total_added_ret)
555 *total_added_ret += size;
556 start = extent_end + 1;
557 } else {
558 break;
559 }
560 }
561
562 if (start < end) {
563 size = end - start;
564 ret = btrfs_add_free_space_async_trimmed(block_group, start,
565 size);
566 if (ret)
567 return ret;
568 if (total_added_ret)
569 *total_added_ret += size;
570 }
571
572 return 0;
573}
574
575/*
576 * Get an arbitrary extent item index / max_index through the block group
577 *
578 * @block_group the block group to sample from
579 * @index: the integral step through the block group to grab from
580 * @max_index: the granularity of the sampling
581 * @key: return value parameter for the item we find
582 *
583 * Pre-conditions on indices:
584 * 0 <= index <= max_index
585 * 0 < max_index
586 *
587 * Returns: 0 on success, 1 if the search didn't yield a useful item, negative
588 * error code on error.
589 */
590static int sample_block_group_extent_item(struct btrfs_caching_control *caching_ctl,
591 struct btrfs_block_group *block_group,
592 int index, int max_index,
593 struct btrfs_key *found_key)
594{
595 struct btrfs_fs_info *fs_info = block_group->fs_info;
596 struct btrfs_root *extent_root;
597 u64 search_offset;
598 u64 search_end = block_group->start + block_group->length;
599 BTRFS_PATH_AUTO_FREE(path);
600 struct btrfs_key search_key;
601 int ret = 0;
602
603 ASSERT(index >= 0);
604 ASSERT(index <= max_index);
605 ASSERT(max_index > 0);
606 lockdep_assert_held(&caching_ctl->mutex);
607 lockdep_assert_held_read(&fs_info->commit_root_sem);
608
609 path = btrfs_alloc_path();
610 if (!path)
611 return -ENOMEM;
612
613 extent_root = btrfs_extent_root(fs_info, max_t(u64, block_group->start,
614 BTRFS_SUPER_INFO_OFFSET));
615
616 path->skip_locking = true;
617 path->search_commit_root = true;
618 path->reada = READA_FORWARD;
619
620 search_offset = index * div_u64(block_group->length, max_index);
621 search_key.objectid = block_group->start + search_offset;
622 search_key.type = BTRFS_EXTENT_ITEM_KEY;
623 search_key.offset = 0;
624
625 btrfs_for_each_slot(extent_root, &search_key, found_key, path, ret) {
626 /* Success; sampled an extent item in the block group */
627 if (found_key->type == BTRFS_EXTENT_ITEM_KEY &&
628 found_key->objectid >= block_group->start &&
629 found_key->objectid + found_key->offset <= search_end)
630 break;
631
632 /* We can't possibly find a valid extent item anymore */
633 if (found_key->objectid >= search_end) {
634 ret = 1;
635 break;
636 }
637 }
638
639 lockdep_assert_held(&caching_ctl->mutex);
640 lockdep_assert_held_read(&fs_info->commit_root_sem);
641 return ret;
642}
643
644/*
645 * Best effort attempt to compute a block group's size class while caching it.
646 *
647 * @block_group: the block group we are caching
648 *
649 * We cannot infer the size class while adding free space extents, because that
650 * logic doesn't care about contiguous file extents (it doesn't differentiate
651 * between a 100M extent and 100 contiguous 1M extents). So we need to read the
652 * file extent items. Reading all of them is quite wasteful, because usually
653 * only a handful are enough to give a good answer. Therefore, we just grab 5 of
654 * them at even steps through the block group and pick the smallest size class
655 * we see. Since size class is best effort, and not guaranteed in general,
656 * inaccuracy is acceptable.
657 *
658 * To be more explicit about why this algorithm makes sense:
659 *
660 * If we are caching in a block group from disk, then there are three major cases
661 * to consider:
662 * 1. the block group is well behaved and all extents in it are the same size
663 * class.
664 * 2. the block group is mostly one size class with rare exceptions for last
665 * ditch allocations
666 * 3. the block group was populated before size classes and can have a totally
667 * arbitrary mix of size classes.
668 *
669 * In case 1, looking at any extent in the block group will yield the correct
670 * result. For the mixed cases, taking the minimum size class seems like a good
671 * approximation, since gaps from frees will be usable to the size class. For
672 * 2., a small handful of file extents is likely to yield the right answer. For
673 * 3, we can either read every file extent, or admit that this is best effort
674 * anyway and try to stay fast.
675 *
676 * Returns: 0 on success, negative error code on error.
677 */
678static int load_block_group_size_class(struct btrfs_caching_control *caching_ctl,
679 struct btrfs_block_group *block_group)
680{
681 struct btrfs_fs_info *fs_info = block_group->fs_info;
682 struct btrfs_key key;
683 int i;
684 u64 min_size = block_group->length;
685 enum btrfs_block_group_size_class size_class = BTRFS_BG_SZ_NONE;
686 int ret;
687
688 if (!btrfs_block_group_should_use_size_class(block_group))
689 return 0;
690
691 lockdep_assert_held(&caching_ctl->mutex);
692 lockdep_assert_held_read(&fs_info->commit_root_sem);
693 for (i = 0; i < 5; ++i) {
694 ret = sample_block_group_extent_item(caching_ctl, block_group, i, 5, &key);
695 if (ret < 0)
696 goto out;
697 if (ret > 0)
698 continue;
699 min_size = min_t(u64, min_size, key.offset);
700 size_class = btrfs_calc_block_group_size_class(min_size);
701 }
702 if (size_class != BTRFS_BG_SZ_NONE) {
703 spin_lock(&block_group->lock);
704 block_group->size_class = size_class;
705 spin_unlock(&block_group->lock);
706 }
707out:
708 return ret;
709}
710
711static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
712{
713 struct btrfs_block_group *block_group = caching_ctl->block_group;
714 struct btrfs_fs_info *fs_info = block_group->fs_info;
715 struct btrfs_root *extent_root;
716 BTRFS_PATH_AUTO_FREE(path);
717 struct extent_buffer *leaf;
718 struct btrfs_key key;
719 u64 total_found = 0;
720 u64 last = 0;
721 u32 nritems;
722 int ret;
723 bool wakeup = true;
724
725 path = btrfs_alloc_path();
726 if (!path)
727 return -ENOMEM;
728
729 last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET);
730 extent_root = btrfs_extent_root(fs_info, last);
731
732#ifdef CONFIG_BTRFS_DEBUG
733 /*
734 * If we're fragmenting we don't want to make anybody think we can
735 * allocate from this block group until we've had a chance to fragment
736 * the free space.
737 */
738 if (btrfs_should_fragment_free_space(block_group))
739 wakeup = false;
740#endif
741 /*
742 * We don't want to deadlock with somebody trying to allocate a new
743 * extent for the extent root while also trying to search the extent
744 * root to add free space. So we skip locking and search the commit
745 * root, since its read-only
746 */
747 path->skip_locking = true;
748 path->search_commit_root = true;
749 path->reada = READA_FORWARD;
750
751 key.objectid = last;
752 key.type = BTRFS_EXTENT_ITEM_KEY;
753 key.offset = 0;
754
755next:
756 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
757 if (ret < 0)
758 goto out;
759
760 leaf = path->nodes[0];
761 nritems = btrfs_header_nritems(leaf);
762
763 while (1) {
764 if (btrfs_fs_closing(fs_info) > 1) {
765 last = (u64)-1;
766 break;
767 }
768
769 if (path->slots[0] < nritems) {
770 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
771 } else {
772 ret = btrfs_find_next_key(extent_root, path, &key, 0, 0);
773 if (ret)
774 break;
775
776 if (need_resched() ||
777 rwsem_is_contended(&fs_info->commit_root_sem)) {
778 btrfs_release_path(path);
779 up_read(&fs_info->commit_root_sem);
780 mutex_unlock(&caching_ctl->mutex);
781 cond_resched();
782 mutex_lock(&caching_ctl->mutex);
783 down_read(&fs_info->commit_root_sem);
784 goto next;
785 }
786
787 ret = btrfs_next_leaf(extent_root, path);
788 if (ret < 0)
789 goto out;
790 if (ret)
791 break;
792 leaf = path->nodes[0];
793 nritems = btrfs_header_nritems(leaf);
794 continue;
795 }
796
797 if (key.objectid < last) {
798 key.objectid = last;
799 key.type = BTRFS_EXTENT_ITEM_KEY;
800 key.offset = 0;
801 btrfs_release_path(path);
802 goto next;
803 }
804
805 if (key.objectid < block_group->start) {
806 path->slots[0]++;
807 continue;
808 }
809
810 if (key.objectid >= block_group->start + block_group->length)
811 break;
812
813 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
814 key.type == BTRFS_METADATA_ITEM_KEY) {
815 u64 space_added;
816
817 ret = btrfs_add_new_free_space(block_group, last,
818 key.objectid, &space_added);
819 if (ret)
820 goto out;
821 total_found += space_added;
822 if (key.type == BTRFS_METADATA_ITEM_KEY)
823 last = key.objectid +
824 fs_info->nodesize;
825 else
826 last = key.objectid + key.offset;
827
828 if (total_found > CACHING_CTL_WAKE_UP) {
829 total_found = 0;
830 if (wakeup) {
831 atomic_inc(&caching_ctl->progress);
832 wake_up(&caching_ctl->wait);
833 }
834 }
835 }
836 path->slots[0]++;
837 }
838
839 ret = btrfs_add_new_free_space(block_group, last,
840 block_group->start + block_group->length,
841 NULL);
842out:
843 return ret;
844}
845
846static inline void btrfs_free_excluded_extents(const struct btrfs_block_group *bg)
847{
848 btrfs_clear_extent_bit(&bg->fs_info->excluded_extents, bg->start,
849 bg->start + bg->length - 1, EXTENT_DIRTY, NULL);
850}
851
852static noinline void caching_thread(struct btrfs_work *work)
853{
854 struct btrfs_block_group *block_group;
855 struct btrfs_fs_info *fs_info;
856 struct btrfs_caching_control *caching_ctl;
857 int ret;
858
859 caching_ctl = container_of(work, struct btrfs_caching_control, work);
860 block_group = caching_ctl->block_group;
861 fs_info = block_group->fs_info;
862
863 mutex_lock(&caching_ctl->mutex);
864 down_read(&fs_info->commit_root_sem);
865
866 load_block_group_size_class(caching_ctl, block_group);
867 if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
868 ret = load_free_space_cache(block_group);
869 if (ret == 1) {
870 ret = 0;
871 goto done;
872 }
873
874 /*
875 * We failed to load the space cache, set ourselves to
876 * CACHE_STARTED and carry on.
877 */
878 spin_lock(&block_group->lock);
879 block_group->cached = BTRFS_CACHE_STARTED;
880 spin_unlock(&block_group->lock);
881 wake_up(&caching_ctl->wait);
882 }
883
884 /*
885 * If we are in the transaction that populated the free space tree we
886 * can't actually cache from the free space tree as our commit root and
887 * real root are the same, so we could change the contents of the blocks
888 * while caching. Instead do the slow caching in this case, and after
889 * the transaction has committed we will be safe.
890 */
891 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
892 !(test_bit(BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, &fs_info->flags)))
893 ret = btrfs_load_free_space_tree(caching_ctl);
894 else
895 ret = load_extent_tree_free(caching_ctl);
896done:
897 spin_lock(&block_group->lock);
898 block_group->caching_ctl = NULL;
899 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
900 spin_unlock(&block_group->lock);
901
902#ifdef CONFIG_BTRFS_DEBUG
903 if (btrfs_should_fragment_free_space(block_group)) {
904 u64 bytes_used;
905
906 spin_lock(&block_group->space_info->lock);
907 spin_lock(&block_group->lock);
908 bytes_used = block_group->length - block_group->used;
909 block_group->space_info->bytes_used += bytes_used >> 1;
910 spin_unlock(&block_group->lock);
911 spin_unlock(&block_group->space_info->lock);
912 fragment_free_space(block_group);
913 }
914#endif
915
916 up_read(&fs_info->commit_root_sem);
917 btrfs_free_excluded_extents(block_group);
918 mutex_unlock(&caching_ctl->mutex);
919
920 wake_up(&caching_ctl->wait);
921
922 btrfs_put_caching_control(caching_ctl);
923 btrfs_put_block_group(block_group);
924}
925
926int btrfs_cache_block_group(struct btrfs_block_group *cache, bool wait)
927{
928 struct btrfs_fs_info *fs_info = cache->fs_info;
929 struct btrfs_caching_control *caching_ctl = NULL;
930 int ret = 0;
931
932 /* Allocator for zoned filesystems does not use the cache at all */
933 if (btrfs_is_zoned(fs_info))
934 return 0;
935
936 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
937 if (!caching_ctl)
938 return -ENOMEM;
939
940 INIT_LIST_HEAD(&caching_ctl->list);
941 mutex_init(&caching_ctl->mutex);
942 init_waitqueue_head(&caching_ctl->wait);
943 caching_ctl->block_group = cache;
944 refcount_set(&caching_ctl->count, 2);
945 atomic_set(&caching_ctl->progress, 0);
946 btrfs_init_work(&caching_ctl->work, caching_thread, NULL);
947
948 spin_lock(&cache->lock);
949 if (cache->cached != BTRFS_CACHE_NO) {
950 kfree(caching_ctl);
951
952 caching_ctl = cache->caching_ctl;
953 if (caching_ctl)
954 refcount_inc(&caching_ctl->count);
955 spin_unlock(&cache->lock);
956 goto out;
957 }
958 WARN_ON(cache->caching_ctl);
959 cache->caching_ctl = caching_ctl;
960 cache->cached = BTRFS_CACHE_STARTED;
961 spin_unlock(&cache->lock);
962
963 write_lock(&fs_info->block_group_cache_lock);
964 refcount_inc(&caching_ctl->count);
965 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
966 write_unlock(&fs_info->block_group_cache_lock);
967
968 btrfs_get_block_group(cache);
969
970 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
971out:
972 if (wait && caching_ctl)
973 ret = btrfs_caching_ctl_wait_done(cache, caching_ctl);
974 if (caching_ctl)
975 btrfs_put_caching_control(caching_ctl);
976
977 return ret;
978}
979
980static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
981{
982 u64 extra_flags = chunk_to_extended(flags) &
983 BTRFS_EXTENDED_PROFILE_MASK;
984
985 write_seqlock(&fs_info->profiles_lock);
986 if (flags & BTRFS_BLOCK_GROUP_DATA)
987 fs_info->avail_data_alloc_bits &= ~extra_flags;
988 if (flags & BTRFS_BLOCK_GROUP_METADATA)
989 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
990 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
991 fs_info->avail_system_alloc_bits &= ~extra_flags;
992 write_sequnlock(&fs_info->profiles_lock);
993}
994
995/*
996 * Clear incompat bits for the following feature(s):
997 *
998 * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group
999 * in the whole filesystem
1000 *
1001 * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups
1002 */
1003static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags)
1004{
1005 bool found_raid56 = false;
1006 bool found_raid1c34 = false;
1007
1008 if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) ||
1009 (flags & BTRFS_BLOCK_GROUP_RAID1C3) ||
1010 (flags & BTRFS_BLOCK_GROUP_RAID1C4)) {
1011 struct list_head *head = &fs_info->space_info;
1012 struct btrfs_space_info *sinfo;
1013
1014 list_for_each_entry_rcu(sinfo, head, list) {
1015 down_read(&sinfo->groups_sem);
1016 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5]))
1017 found_raid56 = true;
1018 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6]))
1019 found_raid56 = true;
1020 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3]))
1021 found_raid1c34 = true;
1022 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4]))
1023 found_raid1c34 = true;
1024 up_read(&sinfo->groups_sem);
1025 }
1026 if (!found_raid56)
1027 btrfs_clear_fs_incompat(fs_info, RAID56);
1028 if (!found_raid1c34)
1029 btrfs_clear_fs_incompat(fs_info, RAID1C34);
1030 }
1031}
1032
1033static struct btrfs_root *btrfs_block_group_root(struct btrfs_fs_info *fs_info)
1034{
1035 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE))
1036 return fs_info->block_group_root;
1037 return btrfs_extent_root(fs_info, 0);
1038}
1039
1040static int remove_block_group_item(struct btrfs_trans_handle *trans,
1041 struct btrfs_path *path,
1042 struct btrfs_block_group *block_group)
1043{
1044 struct btrfs_fs_info *fs_info = trans->fs_info;
1045 struct btrfs_root *root;
1046 struct btrfs_key key;
1047 int ret;
1048
1049 root = btrfs_block_group_root(fs_info);
1050 key.objectid = block_group->start;
1051 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
1052 key.offset = block_group->length;
1053
1054 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1055 if (ret > 0)
1056 ret = -ENOENT;
1057 if (ret < 0)
1058 return ret;
1059
1060 ret = btrfs_del_item(trans, root, path);
1061 return ret;
1062}
1063
1064int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
1065 struct btrfs_chunk_map *map)
1066{
1067 struct btrfs_fs_info *fs_info = trans->fs_info;
1068 BTRFS_PATH_AUTO_FREE(path);
1069 struct btrfs_block_group *block_group;
1070 struct btrfs_free_cluster *cluster;
1071 struct inode *inode;
1072 struct kobject *kobj = NULL;
1073 int ret;
1074 int index;
1075 int factor;
1076 struct btrfs_caching_control *caching_ctl = NULL;
1077 bool remove_map;
1078 bool remove_rsv = false;
1079
1080 block_group = btrfs_lookup_block_group(fs_info, map->start);
1081 if (!block_group)
1082 return -ENOENT;
1083
1084 BUG_ON(!block_group->ro);
1085
1086 trace_btrfs_remove_block_group(block_group);
1087 /*
1088 * Free the reserved super bytes from this block group before
1089 * remove it.
1090 */
1091 btrfs_free_excluded_extents(block_group);
1092 btrfs_free_ref_tree_range(fs_info, block_group->start,
1093 block_group->length);
1094
1095 index = btrfs_bg_flags_to_raid_index(block_group->flags);
1096 factor = btrfs_bg_type_to_factor(block_group->flags);
1097
1098 /* make sure this block group isn't part of an allocation cluster */
1099 cluster = &fs_info->data_alloc_cluster;
1100 spin_lock(&cluster->refill_lock);
1101 btrfs_return_cluster_to_free_space(block_group, cluster);
1102 spin_unlock(&cluster->refill_lock);
1103
1104 /*
1105 * make sure this block group isn't part of a metadata
1106 * allocation cluster
1107 */
1108 cluster = &fs_info->meta_alloc_cluster;
1109 spin_lock(&cluster->refill_lock);
1110 btrfs_return_cluster_to_free_space(block_group, cluster);
1111 spin_unlock(&cluster->refill_lock);
1112
1113 btrfs_clear_treelog_bg(block_group);
1114 btrfs_clear_data_reloc_bg(block_group);
1115
1116 path = btrfs_alloc_path();
1117 if (!path) {
1118 ret = -ENOMEM;
1119 goto out;
1120 }
1121
1122 /*
1123 * get the inode first so any iput calls done for the io_list
1124 * aren't the final iput (no unlinks allowed now)
1125 */
1126 inode = lookup_free_space_inode(block_group, path);
1127
1128 mutex_lock(&trans->transaction->cache_write_mutex);
1129 /*
1130 * Make sure our free space cache IO is done before removing the
1131 * free space inode
1132 */
1133 spin_lock(&trans->transaction->dirty_bgs_lock);
1134 if (!list_empty(&block_group->io_list)) {
1135 list_del_init(&block_group->io_list);
1136
1137 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
1138
1139 spin_unlock(&trans->transaction->dirty_bgs_lock);
1140 btrfs_wait_cache_io(trans, block_group, path);
1141 btrfs_put_block_group(block_group);
1142 spin_lock(&trans->transaction->dirty_bgs_lock);
1143 }
1144
1145 if (!list_empty(&block_group->dirty_list)) {
1146 list_del_init(&block_group->dirty_list);
1147 remove_rsv = true;
1148 btrfs_put_block_group(block_group);
1149 }
1150 spin_unlock(&trans->transaction->dirty_bgs_lock);
1151 mutex_unlock(&trans->transaction->cache_write_mutex);
1152
1153 ret = btrfs_remove_free_space_inode(trans, inode, block_group);
1154 if (ret)
1155 goto out;
1156
1157 write_lock(&fs_info->block_group_cache_lock);
1158 rb_erase_cached(&block_group->cache_node,
1159 &fs_info->block_group_cache_tree);
1160 RB_CLEAR_NODE(&block_group->cache_node);
1161
1162 /* Once for the block groups rbtree */
1163 btrfs_put_block_group(block_group);
1164
1165 write_unlock(&fs_info->block_group_cache_lock);
1166
1167 down_write(&block_group->space_info->groups_sem);
1168 /*
1169 * we must use list_del_init so people can check to see if they
1170 * are still on the list after taking the semaphore
1171 */
1172 list_del_init(&block_group->list);
1173 if (list_empty(&block_group->space_info->block_groups[index])) {
1174 kobj = block_group->space_info->block_group_kobjs[index];
1175 block_group->space_info->block_group_kobjs[index] = NULL;
1176 clear_avail_alloc_bits(fs_info, block_group->flags);
1177 }
1178 up_write(&block_group->space_info->groups_sem);
1179 clear_incompat_bg_bits(fs_info, block_group->flags);
1180 if (kobj) {
1181 kobject_del(kobj);
1182 kobject_put(kobj);
1183 }
1184
1185 if (block_group->cached == BTRFS_CACHE_STARTED)
1186 btrfs_wait_block_group_cache_done(block_group);
1187
1188 write_lock(&fs_info->block_group_cache_lock);
1189 caching_ctl = btrfs_get_caching_control(block_group);
1190 if (!caching_ctl) {
1191 struct btrfs_caching_control *ctl;
1192
1193 list_for_each_entry(ctl, &fs_info->caching_block_groups, list) {
1194 if (ctl->block_group == block_group) {
1195 caching_ctl = ctl;
1196 refcount_inc(&caching_ctl->count);
1197 break;
1198 }
1199 }
1200 }
1201 if (caching_ctl)
1202 list_del_init(&caching_ctl->list);
1203 write_unlock(&fs_info->block_group_cache_lock);
1204
1205 if (caching_ctl) {
1206 /* Once for the caching bgs list and once for us. */
1207 btrfs_put_caching_control(caching_ctl);
1208 btrfs_put_caching_control(caching_ctl);
1209 }
1210
1211 spin_lock(&trans->transaction->dirty_bgs_lock);
1212 WARN_ON(!list_empty(&block_group->dirty_list));
1213 WARN_ON(!list_empty(&block_group->io_list));
1214 spin_unlock(&trans->transaction->dirty_bgs_lock);
1215
1216 btrfs_remove_free_space_cache(block_group);
1217
1218 spin_lock(&block_group->space_info->lock);
1219 list_del_init(&block_group->ro_list);
1220
1221 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1222 WARN_ON(block_group->space_info->total_bytes
1223 < block_group->length);
1224 WARN_ON(block_group->space_info->bytes_readonly
1225 < block_group->length - block_group->zone_unusable);
1226 WARN_ON(block_group->space_info->bytes_zone_unusable
1227 < block_group->zone_unusable);
1228 WARN_ON(block_group->space_info->disk_total
1229 < block_group->length * factor);
1230 }
1231 block_group->space_info->total_bytes -= block_group->length;
1232 block_group->space_info->bytes_readonly -=
1233 (block_group->length - block_group->zone_unusable);
1234 btrfs_space_info_update_bytes_zone_unusable(block_group->space_info,
1235 -block_group->zone_unusable);
1236 block_group->space_info->disk_total -= block_group->length * factor;
1237
1238 spin_unlock(&block_group->space_info->lock);
1239
1240 /*
1241 * Remove the free space for the block group from the free space tree
1242 * and the block group's item from the extent tree before marking the
1243 * block group as removed. This is to prevent races with tasks that
1244 * freeze and unfreeze a block group, this task and another task
1245 * allocating a new block group - the unfreeze task ends up removing
1246 * the block group's extent map before the task calling this function
1247 * deletes the block group item from the extent tree, allowing for
1248 * another task to attempt to create another block group with the same
1249 * item key (and failing with -EEXIST and a transaction abort).
1250 */
1251 ret = btrfs_remove_block_group_free_space(trans, block_group);
1252 if (ret)
1253 goto out;
1254
1255 ret = remove_block_group_item(trans, path, block_group);
1256 if (ret < 0)
1257 goto out;
1258
1259 spin_lock(&block_group->lock);
1260 /*
1261 * Hitting this WARN means we removed a block group with an unwritten
1262 * region. It will cause "unable to find chunk map for logical" errors.
1263 */
1264 if (WARN_ON(has_unwritten_metadata(block_group)))
1265 btrfs_warn(fs_info,
1266 "block group %llu is removed before metadata write out",
1267 block_group->start);
1268
1269 set_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags);
1270
1271 /*
1272 * At this point trimming or scrub can't start on this block group,
1273 * because we removed the block group from the rbtree
1274 * fs_info->block_group_cache_tree so no one can't find it anymore and
1275 * even if someone already got this block group before we removed it
1276 * from the rbtree, they have already incremented block_group->frozen -
1277 * if they didn't, for the trimming case they won't find any free space
1278 * entries because we already removed them all when we called
1279 * btrfs_remove_free_space_cache().
1280 *
1281 * And we must not remove the chunk map from the fs_info->mapping_tree
1282 * to prevent the same logical address range and physical device space
1283 * ranges from being reused for a new block group. This is needed to
1284 * avoid races with trimming and scrub.
1285 *
1286 * An fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
1287 * completely transactionless, so while it is trimming a range the
1288 * currently running transaction might finish and a new one start,
1289 * allowing for new block groups to be created that can reuse the same
1290 * physical device locations unless we take this special care.
1291 *
1292 * There may also be an implicit trim operation if the file system
1293 * is mounted with -odiscard. The same protections must remain
1294 * in place until the extents have been discarded completely when
1295 * the transaction commit has completed.
1296 */
1297 remove_map = (atomic_read(&block_group->frozen) == 0);
1298 spin_unlock(&block_group->lock);
1299
1300 if (remove_map)
1301 btrfs_remove_chunk_map(fs_info, map);
1302
1303out:
1304 /* Once for the lookup reference */
1305 btrfs_put_block_group(block_group);
1306 if (remove_rsv)
1307 btrfs_dec_delayed_refs_rsv_bg_updates(fs_info);
1308 return ret;
1309}
1310
1311struct btrfs_trans_handle *btrfs_start_trans_remove_block_group(
1312 struct btrfs_fs_info *fs_info, const u64 chunk_offset)
1313{
1314 struct btrfs_root *root = btrfs_block_group_root(fs_info);
1315 struct btrfs_chunk_map *map;
1316 unsigned int num_items;
1317
1318 map = btrfs_find_chunk_map(fs_info, chunk_offset, 1);
1319 ASSERT(map != NULL);
1320 ASSERT(map->start == chunk_offset);
1321
1322 /*
1323 * We need to reserve 3 + N units from the metadata space info in order
1324 * to remove a block group (done at btrfs_remove_chunk() and at
1325 * btrfs_remove_block_group()), which are used for:
1326 *
1327 * 1 unit for adding the free space inode's orphan (located in the tree
1328 * of tree roots).
1329 * 1 unit for deleting the block group item (located in the extent
1330 * tree).
1331 * 1 unit for deleting the free space item (located in tree of tree
1332 * roots).
1333 * N units for deleting N device extent items corresponding to each
1334 * stripe (located in the device tree).
1335 *
1336 * In order to remove a block group we also need to reserve units in the
1337 * system space info in order to update the chunk tree (update one or
1338 * more device items and remove one chunk item), but this is done at
1339 * btrfs_remove_chunk() through a call to check_system_chunk().
1340 */
1341 num_items = 3 + map->num_stripes;
1342 btrfs_free_chunk_map(map);
1343
1344 return btrfs_start_transaction_fallback_global_rsv(root, num_items);
1345}
1346
1347/*
1348 * Mark block group @cache read-only, so later write won't happen to block
1349 * group @cache.
1350 *
1351 * If @force is not set, this function will only mark the block group readonly
1352 * if we have enough free space (1M) in other metadata/system block groups.
1353 * If @force is not set, this function will mark the block group readonly
1354 * without checking free space.
1355 *
1356 * NOTE: This function doesn't care if other block groups can contain all the
1357 * data in this block group. That check should be done by relocation routine,
1358 * not this function.
1359 */
1360static int inc_block_group_ro(struct btrfs_block_group *cache, bool force)
1361{
1362 struct btrfs_space_info *sinfo = cache->space_info;
1363 u64 num_bytes;
1364 int ret = -ENOSPC;
1365
1366 spin_lock(&sinfo->lock);
1367 spin_lock(&cache->lock);
1368
1369 if (cache->swap_extents) {
1370 ret = -ETXTBSY;
1371 goto out;
1372 }
1373
1374 if (cache->ro) {
1375 cache->ro++;
1376 ret = 0;
1377 goto out;
1378 }
1379
1380 num_bytes = cache->length - cache->reserved - cache->pinned -
1381 cache->bytes_super - cache->zone_unusable - cache->used;
1382
1383 /*
1384 * Data never overcommits, even in mixed mode, so do just the straight
1385 * check of left over space in how much we have allocated.
1386 */
1387 if (force) {
1388 ret = 0;
1389 } else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) {
1390 u64 sinfo_used = btrfs_space_info_used(sinfo, true);
1391
1392 /*
1393 * Here we make sure if we mark this bg RO, we still have enough
1394 * free space as buffer.
1395 */
1396 if (sinfo_used + num_bytes <= sinfo->total_bytes)
1397 ret = 0;
1398 } else {
1399 /*
1400 * We overcommit metadata, so we need to do the
1401 * btrfs_can_overcommit check here, and we need to pass in
1402 * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of
1403 * leeway to allow us to mark this block group as read only.
1404 */
1405 if (btrfs_can_overcommit(sinfo, num_bytes, BTRFS_RESERVE_NO_FLUSH))
1406 ret = 0;
1407 }
1408
1409 if (!ret) {
1410 sinfo->bytes_readonly += num_bytes;
1411 if (btrfs_is_zoned(cache->fs_info)) {
1412 /* Migrate zone_unusable bytes to readonly */
1413 sinfo->bytes_readonly += cache->zone_unusable;
1414 btrfs_space_info_update_bytes_zone_unusable(sinfo, -cache->zone_unusable);
1415 cache->zone_unusable = 0;
1416 }
1417 cache->ro++;
1418 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
1419 }
1420out:
1421 spin_unlock(&cache->lock);
1422 spin_unlock(&sinfo->lock);
1423 if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) {
1424 btrfs_info(cache->fs_info,
1425 "unable to make block group %llu ro", cache->start);
1426 btrfs_dump_space_info(cache->space_info, 0, false);
1427 }
1428 return ret;
1429}
1430
1431static bool clean_pinned_extents(struct btrfs_trans_handle *trans,
1432 const struct btrfs_block_group *bg)
1433{
1434 struct btrfs_fs_info *fs_info = trans->fs_info;
1435 struct btrfs_transaction *prev_trans = NULL;
1436 const u64 start = bg->start;
1437 const u64 end = start + bg->length - 1;
1438 int ret;
1439
1440 spin_lock(&fs_info->trans_lock);
1441 if (!list_is_first(&trans->transaction->list, &fs_info->trans_list)) {
1442 prev_trans = list_prev_entry(trans->transaction, list);
1443 refcount_inc(&prev_trans->use_count);
1444 }
1445 spin_unlock(&fs_info->trans_lock);
1446
1447 /*
1448 * Hold the unused_bg_unpin_mutex lock to avoid racing with
1449 * btrfs_finish_extent_commit(). If we are at transaction N, another
1450 * task might be running finish_extent_commit() for the previous
1451 * transaction N - 1, and have seen a range belonging to the block
1452 * group in pinned_extents before we were able to clear the whole block
1453 * group range from pinned_extents. This means that task can lookup for
1454 * the block group after we unpinned it from pinned_extents and removed
1455 * it, leading to an error at unpin_extent_range().
1456 */
1457 mutex_lock(&fs_info->unused_bg_unpin_mutex);
1458 if (prev_trans) {
1459 ret = btrfs_clear_extent_bit(&prev_trans->pinned_extents, start, end,
1460 EXTENT_DIRTY, NULL);
1461 if (ret)
1462 goto out;
1463 }
1464
1465 ret = btrfs_clear_extent_bit(&trans->transaction->pinned_extents, start, end,
1466 EXTENT_DIRTY, NULL);
1467out:
1468 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
1469 if (prev_trans)
1470 btrfs_put_transaction(prev_trans);
1471
1472 return ret == 0;
1473}
1474
1475/*
1476 * Link the block_group to a list via bg_list.
1477 *
1478 * @bg: The block_group to link to the list.
1479 * @list: The list to link it to.
1480 *
1481 * Use this rather than list_add_tail() directly to ensure proper respect
1482 * to locking and refcounting.
1483 *
1484 * Returns: true if the bg was linked with a refcount bump and false otherwise.
1485 */
1486static bool btrfs_link_bg_list(struct btrfs_block_group *bg, struct list_head *list)
1487{
1488 struct btrfs_fs_info *fs_info = bg->fs_info;
1489 bool added = false;
1490
1491 spin_lock(&fs_info->unused_bgs_lock);
1492 if (list_empty(&bg->bg_list)) {
1493 btrfs_get_block_group(bg);
1494 list_add_tail(&bg->bg_list, list);
1495 added = true;
1496 }
1497 spin_unlock(&fs_info->unused_bgs_lock);
1498 return added;
1499}
1500
1501/*
1502 * Process the unused_bgs list and remove any that don't have any allocated
1503 * space inside of them.
1504 */
1505void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
1506{
1507 LIST_HEAD(retry_list);
1508 struct btrfs_block_group *block_group;
1509 struct btrfs_space_info *space_info;
1510 struct btrfs_trans_handle *trans;
1511 const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC);
1512 int ret = 0;
1513
1514 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1515 return;
1516
1517 if (btrfs_fs_closing(fs_info))
1518 return;
1519
1520 /*
1521 * Long running balances can keep us blocked here for eternity, so
1522 * simply skip deletion if we're unable to get the mutex.
1523 */
1524 if (!mutex_trylock(&fs_info->reclaim_bgs_lock))
1525 return;
1526
1527 spin_lock(&fs_info->unused_bgs_lock);
1528 while (!list_empty(&fs_info->unused_bgs)) {
1529 u64 used;
1530 int trimming;
1531
1532 block_group = list_first_entry(&fs_info->unused_bgs,
1533 struct btrfs_block_group,
1534 bg_list);
1535 list_del_init(&block_group->bg_list);
1536
1537 space_info = block_group->space_info;
1538
1539 if (ret || btrfs_mixed_space_info(space_info)) {
1540 btrfs_put_block_group(block_group);
1541 continue;
1542 }
1543 spin_unlock(&fs_info->unused_bgs_lock);
1544
1545 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
1546
1547 /* Don't want to race with allocators so take the groups_sem */
1548 down_write(&space_info->groups_sem);
1549
1550 /*
1551 * Async discard moves the final block group discard to be prior
1552 * to the unused_bgs code path. Therefore, if it's not fully
1553 * trimmed, punt it back to the async discard lists.
1554 */
1555 if (btrfs_test_opt(fs_info, DISCARD_ASYNC) &&
1556 !btrfs_is_free_space_trimmed(block_group)) {
1557 trace_btrfs_skip_unused_block_group(block_group);
1558 up_write(&space_info->groups_sem);
1559 /* Requeue if we failed because of async discard */
1560 btrfs_discard_queue_work(&fs_info->discard_ctl,
1561 block_group);
1562 goto next;
1563 }
1564
1565 spin_lock(&space_info->lock);
1566 spin_lock(&block_group->lock);
1567 if (btrfs_is_block_group_used(block_group) || block_group->ro ||
1568 list_is_singular(&block_group->list)) {
1569 /*
1570 * We want to bail if we made new allocations or have
1571 * outstanding allocations in this block group. We do
1572 * the ro check in case balance is currently acting on
1573 * this block group.
1574 *
1575 * Also bail out if this is the only block group for its
1576 * type, because otherwise we would lose profile
1577 * information from fs_info->avail_*_alloc_bits and the
1578 * next block group of this type would be created with a
1579 * "single" profile (even if we're in a raid fs) because
1580 * fs_info->avail_*_alloc_bits would be 0.
1581 */
1582 trace_btrfs_skip_unused_block_group(block_group);
1583 spin_unlock(&block_group->lock);
1584 spin_unlock(&space_info->lock);
1585 up_write(&space_info->groups_sem);
1586 goto next;
1587 }
1588
1589 /*
1590 * The block group may be unused but there may be space reserved
1591 * accounting with the existence of that block group, that is,
1592 * space_info->bytes_may_use was incremented by a task but no
1593 * space was yet allocated from the block group by the task.
1594 * That space may or may not be allocated, as we are generally
1595 * pessimistic about space reservation for metadata as well as
1596 * for data when using compression (as we reserve space based on
1597 * the worst case, when data can't be compressed, and before
1598 * actually attempting compression, before starting writeback).
1599 *
1600 * So check if the total space of the space_info minus the size
1601 * of this block group is less than the used space of the
1602 * space_info - if that's the case, then it means we have tasks
1603 * that might be relying on the block group in order to allocate
1604 * extents, and add back the block group to the unused list when
1605 * we finish, so that we retry later in case no tasks ended up
1606 * needing to allocate extents from the block group.
1607 */
1608 used = btrfs_space_info_used(space_info, true);
1609 if ((space_info->total_bytes - block_group->length < used &&
1610 block_group->zone_unusable < block_group->length) ||
1611 has_unwritten_metadata(block_group)) {
1612 /*
1613 * Add a reference for the list, compensate for the ref
1614 * drop under the "next" label for the
1615 * fs_info->unused_bgs list.
1616 */
1617 btrfs_link_bg_list(block_group, &retry_list);
1618
1619 trace_btrfs_skip_unused_block_group(block_group);
1620 spin_unlock(&block_group->lock);
1621 spin_unlock(&space_info->lock);
1622 up_write(&space_info->groups_sem);
1623 goto next;
1624 }
1625
1626 spin_unlock(&block_group->lock);
1627 spin_unlock(&space_info->lock);
1628
1629 /* We don't want to force the issue, only flip if it's ok. */
1630 ret = inc_block_group_ro(block_group, 0);
1631 up_write(&space_info->groups_sem);
1632 if (ret < 0) {
1633 ret = 0;
1634 goto next;
1635 }
1636
1637 ret = btrfs_zone_finish(block_group);
1638 if (ret < 0) {
1639 btrfs_dec_block_group_ro(block_group);
1640 if (ret == -EAGAIN) {
1641 btrfs_link_bg_list(block_group, &retry_list);
1642 ret = 0;
1643 }
1644 goto next;
1645 }
1646
1647 /*
1648 * Want to do this before we do anything else so we can recover
1649 * properly if we fail to join the transaction.
1650 */
1651 trans = btrfs_start_trans_remove_block_group(fs_info,
1652 block_group->start);
1653 if (IS_ERR(trans)) {
1654 btrfs_dec_block_group_ro(block_group);
1655 ret = PTR_ERR(trans);
1656 goto next;
1657 }
1658
1659 /*
1660 * We could have pending pinned extents for this block group,
1661 * just delete them, we don't care about them anymore.
1662 */
1663 if (!clean_pinned_extents(trans, block_group)) {
1664 btrfs_dec_block_group_ro(block_group);
1665 goto end_trans;
1666 }
1667
1668 /*
1669 * At this point, the block_group is read only and should fail
1670 * new allocations. However, btrfs_finish_extent_commit() can
1671 * cause this block_group to be placed back on the discard
1672 * lists because now the block_group isn't fully discarded.
1673 * Bail here and try again later after discarding everything.
1674 */
1675 spin_lock(&fs_info->discard_ctl.lock);
1676 if (!list_empty(&block_group->discard_list)) {
1677 spin_unlock(&fs_info->discard_ctl.lock);
1678 btrfs_dec_block_group_ro(block_group);
1679 btrfs_discard_queue_work(&fs_info->discard_ctl,
1680 block_group);
1681 goto end_trans;
1682 }
1683 spin_unlock(&fs_info->discard_ctl.lock);
1684
1685 /* Reset pinned so btrfs_put_block_group doesn't complain */
1686 spin_lock(&space_info->lock);
1687 spin_lock(&block_group->lock);
1688
1689 btrfs_space_info_update_bytes_pinned(space_info, -block_group->pinned);
1690 space_info->bytes_readonly += block_group->pinned;
1691 block_group->pinned = 0;
1692
1693 spin_unlock(&block_group->lock);
1694 spin_unlock(&space_info->lock);
1695
1696 /*
1697 * The normal path here is an unused block group is passed here,
1698 * then trimming is handled in the transaction commit path.
1699 * Async discard interposes before this to do the trimming
1700 * before coming down the unused block group path as trimming
1701 * will no longer be done later in the transaction commit path.
1702 */
1703 if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC))
1704 goto flip_async;
1705
1706 /*
1707 * DISCARD can flip during remount. On zoned filesystems, we
1708 * need to reset sequential-required zones.
1709 */
1710 trimming = btrfs_test_opt(fs_info, DISCARD_SYNC) ||
1711 btrfs_is_zoned(fs_info);
1712
1713 /* Implicit trim during transaction commit. */
1714 if (trimming)
1715 btrfs_freeze_block_group(block_group);
1716
1717 /*
1718 * Btrfs_remove_chunk will abort the transaction if things go
1719 * horribly wrong.
1720 */
1721 ret = btrfs_remove_chunk(trans, block_group->start);
1722
1723 if (ret) {
1724 if (trimming)
1725 btrfs_unfreeze_block_group(block_group);
1726 goto end_trans;
1727 }
1728
1729 /*
1730 * If we're not mounted with -odiscard, we can just forget
1731 * about this block group. Otherwise we'll need to wait
1732 * until transaction commit to do the actual discard.
1733 */
1734 if (trimming) {
1735 spin_lock(&fs_info->unused_bgs_lock);
1736 /*
1737 * A concurrent scrub might have added us to the list
1738 * fs_info->unused_bgs, so use a list_move operation
1739 * to add the block group to the deleted_bgs list.
1740 */
1741 list_move(&block_group->bg_list,
1742 &trans->transaction->deleted_bgs);
1743 spin_unlock(&fs_info->unused_bgs_lock);
1744 btrfs_get_block_group(block_group);
1745 }
1746end_trans:
1747 btrfs_end_transaction(trans);
1748next:
1749 btrfs_put_block_group(block_group);
1750 spin_lock(&fs_info->unused_bgs_lock);
1751 }
1752 list_splice_tail(&retry_list, &fs_info->unused_bgs);
1753 spin_unlock(&fs_info->unused_bgs_lock);
1754 mutex_unlock(&fs_info->reclaim_bgs_lock);
1755 return;
1756
1757flip_async:
1758 btrfs_end_transaction(trans);
1759 spin_lock(&fs_info->unused_bgs_lock);
1760 list_splice_tail(&retry_list, &fs_info->unused_bgs);
1761 spin_unlock(&fs_info->unused_bgs_lock);
1762 mutex_unlock(&fs_info->reclaim_bgs_lock);
1763 btrfs_put_block_group(block_group);
1764 btrfs_discard_punt_unused_bgs_list(fs_info);
1765}
1766
1767void btrfs_mark_bg_unused(struct btrfs_block_group *bg)
1768{
1769 struct btrfs_fs_info *fs_info = bg->fs_info;
1770
1771 spin_lock(&fs_info->unused_bgs_lock);
1772 if (list_empty(&bg->bg_list)) {
1773 btrfs_get_block_group(bg);
1774 trace_btrfs_add_unused_block_group(bg);
1775 list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
1776 } else if (!test_bit(BLOCK_GROUP_FLAG_NEW, &bg->runtime_flags)) {
1777 /* Pull out the block group from the reclaim_bgs list. */
1778 trace_btrfs_add_unused_block_group(bg);
1779 list_move_tail(&bg->bg_list, &fs_info->unused_bgs);
1780 }
1781 spin_unlock(&fs_info->unused_bgs_lock);
1782}
1783
1784/*
1785 * We want block groups with a low number of used bytes to be in the beginning
1786 * of the list, so they will get reclaimed first.
1787 */
1788static int reclaim_bgs_cmp(void *unused, const struct list_head *a,
1789 const struct list_head *b)
1790{
1791 const struct btrfs_block_group *bg1, *bg2;
1792
1793 bg1 = list_entry(a, struct btrfs_block_group, bg_list);
1794 bg2 = list_entry(b, struct btrfs_block_group, bg_list);
1795
1796 /*
1797 * Some other task may be updating the ->used field concurrently, but it
1798 * is not serious if we get a stale value or load/store tearing issues,
1799 * as sorting the list of block groups to reclaim is not critical and an
1800 * occasional imperfect order is ok. So silence KCSAN and avoid the
1801 * overhead of locking or any other synchronization.
1802 */
1803 return data_race(bg1->used > bg2->used);
1804}
1805
1806static inline bool btrfs_should_reclaim(const struct btrfs_fs_info *fs_info)
1807{
1808 if (btrfs_is_zoned(fs_info))
1809 return btrfs_zoned_should_reclaim(fs_info);
1810 return true;
1811}
1812
1813static bool should_reclaim_block_group(const struct btrfs_block_group *bg, u64 bytes_freed)
1814{
1815 const int thresh_pct = btrfs_calc_reclaim_threshold(bg->space_info);
1816 u64 thresh_bytes = mult_perc(bg->length, thresh_pct);
1817 const u64 new_val = bg->used;
1818 const u64 old_val = new_val + bytes_freed;
1819
1820 if (thresh_bytes == 0)
1821 return false;
1822
1823 /*
1824 * If we were below the threshold before don't reclaim, we are likely a
1825 * brand new block group and we don't want to relocate new block groups.
1826 */
1827 if (old_val < thresh_bytes)
1828 return false;
1829 if (new_val >= thresh_bytes)
1830 return false;
1831 return true;
1832}
1833
1834void btrfs_reclaim_bgs_work(struct work_struct *work)
1835{
1836 struct btrfs_fs_info *fs_info =
1837 container_of(work, struct btrfs_fs_info, reclaim_bgs_work);
1838 struct btrfs_block_group *bg;
1839 struct btrfs_space_info *space_info;
1840 LIST_HEAD(retry_list);
1841
1842 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1843 return;
1844
1845 if (btrfs_fs_closing(fs_info))
1846 return;
1847
1848 if (!btrfs_should_reclaim(fs_info))
1849 return;
1850
1851 guard(super_write)(fs_info->sb);
1852
1853 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE))
1854 return;
1855
1856 /*
1857 * Long running balances can keep us blocked here for eternity, so
1858 * simply skip reclaim if we're unable to get the mutex.
1859 */
1860 if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) {
1861 btrfs_exclop_finish(fs_info);
1862 return;
1863 }
1864
1865 spin_lock(&fs_info->unused_bgs_lock);
1866 /*
1867 * Sort happens under lock because we can't simply splice it and sort.
1868 * The block groups might still be in use and reachable via bg_list,
1869 * and their presence in the reclaim_bgs list must be preserved.
1870 */
1871 list_sort(NULL, &fs_info->reclaim_bgs, reclaim_bgs_cmp);
1872 while (!list_empty(&fs_info->reclaim_bgs)) {
1873 u64 used;
1874 u64 reserved;
1875 int ret = 0;
1876
1877 bg = list_first_entry(&fs_info->reclaim_bgs,
1878 struct btrfs_block_group,
1879 bg_list);
1880 list_del_init(&bg->bg_list);
1881
1882 space_info = bg->space_info;
1883 spin_unlock(&fs_info->unused_bgs_lock);
1884
1885 /* Don't race with allocators so take the groups_sem */
1886 down_write(&space_info->groups_sem);
1887
1888 spin_lock(&space_info->lock);
1889 spin_lock(&bg->lock);
1890 if (bg->reserved || bg->pinned || bg->ro) {
1891 /*
1892 * We want to bail if we made new allocations or have
1893 * outstanding allocations in this block group. We do
1894 * the ro check in case balance is currently acting on
1895 * this block group.
1896 */
1897 spin_unlock(&bg->lock);
1898 spin_unlock(&space_info->lock);
1899 up_write(&space_info->groups_sem);
1900 goto next;
1901 }
1902 if (bg->used == 0) {
1903 /*
1904 * It is possible that we trigger relocation on a block
1905 * group as its extents are deleted and it first goes
1906 * below the threshold, then shortly after goes empty.
1907 *
1908 * In this case, relocating it does delete it, but has
1909 * some overhead in relocation specific metadata, looking
1910 * for the non-existent extents and running some extra
1911 * transactions, which we can avoid by using one of the
1912 * other mechanisms for dealing with empty block groups.
1913 */
1914 if (!btrfs_test_opt(fs_info, DISCARD_ASYNC))
1915 btrfs_mark_bg_unused(bg);
1916 spin_unlock(&bg->lock);
1917 spin_unlock(&space_info->lock);
1918 up_write(&space_info->groups_sem);
1919 goto next;
1920
1921 }
1922 /*
1923 * The block group might no longer meet the reclaim condition by
1924 * the time we get around to reclaiming it, so to avoid
1925 * reclaiming overly full block_groups, skip reclaiming them.
1926 *
1927 * Since the decision making process also depends on the amount
1928 * being freed, pass in a fake giant value to skip that extra
1929 * check, which is more meaningful when adding to the list in
1930 * the first place.
1931 */
1932 if (!should_reclaim_block_group(bg, bg->length)) {
1933 spin_unlock(&bg->lock);
1934 spin_unlock(&space_info->lock);
1935 up_write(&space_info->groups_sem);
1936 goto next;
1937 }
1938
1939 spin_unlock(&bg->lock);
1940 spin_unlock(&space_info->lock);
1941
1942 /*
1943 * Get out fast, in case we're read-only or unmounting the
1944 * filesystem. It is OK to drop block groups from the list even
1945 * for the read-only case. As we did take the super write lock,
1946 * "mount -o remount,ro" won't happen and read-only filesystem
1947 * means it is forced read-only due to a fatal error. So, it
1948 * never gets back to read-write to let us reclaim again.
1949 */
1950 if (btrfs_need_cleaner_sleep(fs_info)) {
1951 up_write(&space_info->groups_sem);
1952 goto next;
1953 }
1954
1955 ret = inc_block_group_ro(bg, 0);
1956 up_write(&space_info->groups_sem);
1957 if (ret < 0)
1958 goto next;
1959
1960 /*
1961 * The amount of bytes reclaimed corresponds to the sum of the
1962 * "used" and "reserved" counters. We have set the block group
1963 * to RO above, which prevents reservations from happening but
1964 * we may have existing reservations for which allocation has
1965 * not yet been done - btrfs_update_block_group() was not yet
1966 * called, which is where we will transfer a reserved extent's
1967 * size from the "reserved" counter to the "used" counter - this
1968 * happens when running delayed references. When we relocate the
1969 * chunk below, relocation first flushes delalloc, waits for
1970 * ordered extent completion (which is where we create delayed
1971 * references for data extents) and commits the current
1972 * transaction (which runs delayed references), and only after
1973 * it does the actual work to move extents out of the block
1974 * group. So the reported amount of reclaimed bytes is
1975 * effectively the sum of the 'used' and 'reserved' counters.
1976 */
1977 spin_lock(&bg->lock);
1978 used = bg->used;
1979 reserved = bg->reserved;
1980 spin_unlock(&bg->lock);
1981
1982 trace_btrfs_reclaim_block_group(bg);
1983 ret = btrfs_relocate_chunk(fs_info, bg->start, false);
1984 if (ret) {
1985 btrfs_dec_block_group_ro(bg);
1986 btrfs_err(fs_info, "error relocating chunk %llu",
1987 bg->start);
1988 used = 0;
1989 reserved = 0;
1990 spin_lock(&space_info->lock);
1991 space_info->reclaim_errors++;
1992 if (READ_ONCE(space_info->periodic_reclaim))
1993 space_info->periodic_reclaim_ready = false;
1994 spin_unlock(&space_info->lock);
1995 }
1996 spin_lock(&space_info->lock);
1997 space_info->reclaim_count++;
1998 space_info->reclaim_bytes += used;
1999 space_info->reclaim_bytes += reserved;
2000 spin_unlock(&space_info->lock);
2001
2002next:
2003 if (ret && !READ_ONCE(space_info->periodic_reclaim))
2004 btrfs_link_bg_list(bg, &retry_list);
2005 btrfs_put_block_group(bg);
2006
2007 mutex_unlock(&fs_info->reclaim_bgs_lock);
2008 /*
2009 * Reclaiming all the block groups in the list can take really
2010 * long. Prioritize cleaning up unused block groups.
2011 */
2012 btrfs_delete_unused_bgs(fs_info);
2013 /*
2014 * If we are interrupted by a balance, we can just bail out. The
2015 * cleaner thread restart again if necessary.
2016 */
2017 if (!mutex_trylock(&fs_info->reclaim_bgs_lock))
2018 goto end;
2019 spin_lock(&fs_info->unused_bgs_lock);
2020 }
2021 spin_unlock(&fs_info->unused_bgs_lock);
2022 mutex_unlock(&fs_info->reclaim_bgs_lock);
2023end:
2024 spin_lock(&fs_info->unused_bgs_lock);
2025 list_splice_tail(&retry_list, &fs_info->reclaim_bgs);
2026 spin_unlock(&fs_info->unused_bgs_lock);
2027 btrfs_exclop_finish(fs_info);
2028}
2029
2030void btrfs_reclaim_bgs(struct btrfs_fs_info *fs_info)
2031{
2032 btrfs_reclaim_sweep(fs_info);
2033 spin_lock(&fs_info->unused_bgs_lock);
2034 if (!list_empty(&fs_info->reclaim_bgs))
2035 queue_work(system_dfl_wq, &fs_info->reclaim_bgs_work);
2036 spin_unlock(&fs_info->unused_bgs_lock);
2037}
2038
2039void btrfs_mark_bg_to_reclaim(struct btrfs_block_group *bg)
2040{
2041 struct btrfs_fs_info *fs_info = bg->fs_info;
2042
2043 if (btrfs_link_bg_list(bg, &fs_info->reclaim_bgs))
2044 trace_btrfs_add_reclaim_block_group(bg);
2045}
2046
2047static int read_bg_from_eb(struct btrfs_fs_info *fs_info, const struct btrfs_key *key,
2048 const struct btrfs_path *path)
2049{
2050 struct btrfs_chunk_map *map;
2051 struct btrfs_block_group_item bg;
2052 struct extent_buffer *leaf;
2053 int slot;
2054 u64 flags;
2055 int ret = 0;
2056
2057 slot = path->slots[0];
2058 leaf = path->nodes[0];
2059
2060 map = btrfs_find_chunk_map(fs_info, key->objectid, key->offset);
2061 if (!map) {
2062 btrfs_err(fs_info,
2063 "logical %llu len %llu found bg but no related chunk",
2064 key->objectid, key->offset);
2065 return -ENOENT;
2066 }
2067
2068 if (unlikely(map->start != key->objectid || map->chunk_len != key->offset)) {
2069 btrfs_err(fs_info,
2070 "block group %llu len %llu mismatch with chunk %llu len %llu",
2071 key->objectid, key->offset, map->start, map->chunk_len);
2072 ret = -EUCLEAN;
2073 goto out_free_map;
2074 }
2075
2076 read_extent_buffer(leaf, &bg, btrfs_item_ptr_offset(leaf, slot),
2077 sizeof(bg));
2078 flags = btrfs_stack_block_group_flags(&bg) &
2079 BTRFS_BLOCK_GROUP_TYPE_MASK;
2080
2081 if (unlikely(flags != (map->type & BTRFS_BLOCK_GROUP_TYPE_MASK))) {
2082 btrfs_err(fs_info,
2083"block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
2084 key->objectid, key->offset, flags,
2085 (BTRFS_BLOCK_GROUP_TYPE_MASK & map->type));
2086 ret = -EUCLEAN;
2087 }
2088
2089out_free_map:
2090 btrfs_free_chunk_map(map);
2091 return ret;
2092}
2093
2094static int find_first_block_group(struct btrfs_fs_info *fs_info,
2095 struct btrfs_path *path,
2096 const struct btrfs_key *key)
2097{
2098 struct btrfs_root *root = btrfs_block_group_root(fs_info);
2099 int ret;
2100 struct btrfs_key found_key;
2101
2102 btrfs_for_each_slot(root, key, &found_key, path, ret) {
2103 if (found_key.objectid >= key->objectid &&
2104 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
2105 return read_bg_from_eb(fs_info, &found_key, path);
2106 }
2107 }
2108 return ret;
2109}
2110
2111static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
2112{
2113 u64 extra_flags = chunk_to_extended(flags) &
2114 BTRFS_EXTENDED_PROFILE_MASK;
2115
2116 write_seqlock(&fs_info->profiles_lock);
2117 if (flags & BTRFS_BLOCK_GROUP_DATA)
2118 fs_info->avail_data_alloc_bits |= extra_flags;
2119 if (flags & BTRFS_BLOCK_GROUP_METADATA)
2120 fs_info->avail_metadata_alloc_bits |= extra_flags;
2121 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
2122 fs_info->avail_system_alloc_bits |= extra_flags;
2123 write_sequnlock(&fs_info->profiles_lock);
2124}
2125
2126/*
2127 * Map a physical disk address to a list of logical addresses.
2128 *
2129 * @fs_info: the filesystem
2130 * @chunk_start: logical address of block group
2131 * @physical: physical address to map to logical addresses
2132 * @logical: return array of logical addresses which map to @physical
2133 * @naddrs: length of @logical
2134 * @stripe_len: size of IO stripe for the given block group
2135 *
2136 * Maps a particular @physical disk address to a list of @logical addresses.
2137 * Used primarily to exclude those portions of a block group that contain super
2138 * block copies.
2139 */
2140int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
2141 u64 physical, u64 **logical, int *naddrs, int *stripe_len)
2142{
2143 struct btrfs_chunk_map *map;
2144 u64 *buf;
2145 u64 bytenr;
2146 u64 data_stripe_length;
2147 u64 io_stripe_size;
2148 int i, nr = 0;
2149 int ret = 0;
2150
2151 map = btrfs_get_chunk_map(fs_info, chunk_start, 1);
2152 if (IS_ERR(map))
2153 return -EIO;
2154
2155 data_stripe_length = map->stripe_size;
2156 io_stripe_size = BTRFS_STRIPE_LEN;
2157 chunk_start = map->start;
2158
2159 /* For RAID5/6 adjust to a full IO stripe length */
2160 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2161 io_stripe_size = btrfs_stripe_nr_to_offset(nr_data_stripes(map));
2162
2163 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
2164 if (!buf) {
2165 ret = -ENOMEM;
2166 goto out;
2167 }
2168
2169 for (i = 0; i < map->num_stripes; i++) {
2170 bool already_inserted = false;
2171 u32 stripe_nr;
2172 u32 offset;
2173 int j;
2174
2175 if (!in_range(physical, map->stripes[i].physical,
2176 data_stripe_length))
2177 continue;
2178
2179 stripe_nr = (physical - map->stripes[i].physical) >>
2180 BTRFS_STRIPE_LEN_SHIFT;
2181 offset = (physical - map->stripes[i].physical) &
2182 BTRFS_STRIPE_LEN_MASK;
2183
2184 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2185 BTRFS_BLOCK_GROUP_RAID10))
2186 stripe_nr = div_u64(stripe_nr * map->num_stripes + i,
2187 map->sub_stripes);
2188 /*
2189 * The remaining case would be for RAID56, multiply by
2190 * nr_data_stripes(). Alternatively, just use rmap_len below
2191 * instead of map->stripe_len
2192 */
2193 bytenr = chunk_start + stripe_nr * io_stripe_size + offset;
2194
2195 /* Ensure we don't add duplicate addresses */
2196 for (j = 0; j < nr; j++) {
2197 if (buf[j] == bytenr) {
2198 already_inserted = true;
2199 break;
2200 }
2201 }
2202
2203 if (!already_inserted)
2204 buf[nr++] = bytenr;
2205 }
2206
2207 *logical = buf;
2208 *naddrs = nr;
2209 *stripe_len = io_stripe_size;
2210out:
2211 btrfs_free_chunk_map(map);
2212 return ret;
2213}
2214
2215static int exclude_super_stripes(struct btrfs_block_group *cache)
2216{
2217 struct btrfs_fs_info *fs_info = cache->fs_info;
2218 const bool zoned = btrfs_is_zoned(fs_info);
2219 u64 bytenr;
2220 u64 *logical;
2221 int stripe_len;
2222 int i, nr, ret;
2223
2224 if (cache->start < BTRFS_SUPER_INFO_OFFSET) {
2225 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start;
2226 cache->bytes_super += stripe_len;
2227 ret = btrfs_set_extent_bit(&fs_info->excluded_extents, cache->start,
2228 cache->start + stripe_len - 1,
2229 EXTENT_DIRTY, NULL);
2230 if (ret)
2231 return ret;
2232 }
2233
2234 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2235 bytenr = btrfs_sb_offset(i);
2236 ret = btrfs_rmap_block(fs_info, cache->start,
2237 bytenr, &logical, &nr, &stripe_len);
2238 if (ret)
2239 return ret;
2240
2241 /* Shouldn't have super stripes in sequential zones */
2242 if (unlikely(zoned && nr)) {
2243 kfree(logical);
2244 btrfs_err(fs_info,
2245 "zoned: block group %llu must not contain super block",
2246 cache->start);
2247 return -EUCLEAN;
2248 }
2249
2250 while (nr--) {
2251 u64 len = min_t(u64, stripe_len,
2252 cache->start + cache->length - logical[nr]);
2253
2254 cache->bytes_super += len;
2255 ret = btrfs_set_extent_bit(&fs_info->excluded_extents,
2256 logical[nr], logical[nr] + len - 1,
2257 EXTENT_DIRTY, NULL);
2258 if (ret) {
2259 kfree(logical);
2260 return ret;
2261 }
2262 }
2263
2264 kfree(logical);
2265 }
2266 return 0;
2267}
2268
2269static struct btrfs_block_group *btrfs_create_block_group_cache(
2270 struct btrfs_fs_info *fs_info, u64 start)
2271{
2272 struct btrfs_block_group *cache;
2273
2274 cache = kzalloc(sizeof(*cache), GFP_NOFS);
2275 if (!cache)
2276 return NULL;
2277
2278 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
2279 GFP_NOFS);
2280 if (!cache->free_space_ctl) {
2281 kfree(cache);
2282 return NULL;
2283 }
2284
2285 cache->start = start;
2286
2287 cache->fs_info = fs_info;
2288 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
2289
2290 cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED;
2291
2292 refcount_set(&cache->refs, 1);
2293 spin_lock_init(&cache->lock);
2294 init_rwsem(&cache->data_rwsem);
2295 INIT_LIST_HEAD(&cache->list);
2296 INIT_LIST_HEAD(&cache->cluster_list);
2297 INIT_LIST_HEAD(&cache->bg_list);
2298 INIT_LIST_HEAD(&cache->ro_list);
2299 INIT_LIST_HEAD(&cache->discard_list);
2300 INIT_LIST_HEAD(&cache->dirty_list);
2301 INIT_LIST_HEAD(&cache->io_list);
2302 INIT_LIST_HEAD(&cache->active_bg_list);
2303 btrfs_init_free_space_ctl(cache, cache->free_space_ctl);
2304 atomic_set(&cache->frozen, 0);
2305 mutex_init(&cache->free_space_lock);
2306
2307 return cache;
2308}
2309
2310/*
2311 * Iterate all chunks and verify that each of them has the corresponding block
2312 * group
2313 */
2314static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
2315{
2316 u64 start = 0;
2317 int ret = 0;
2318
2319 while (1) {
2320 struct btrfs_chunk_map *map;
2321 struct btrfs_block_group *bg;
2322
2323 /*
2324 * btrfs_find_chunk_map() will return the first chunk map
2325 * intersecting the range, so setting @length to 1 is enough to
2326 * get the first chunk.
2327 */
2328 map = btrfs_find_chunk_map(fs_info, start, 1);
2329 if (!map)
2330 break;
2331
2332 bg = btrfs_lookup_block_group(fs_info, map->start);
2333 if (unlikely(!bg)) {
2334 btrfs_err(fs_info,
2335 "chunk start=%llu len=%llu doesn't have corresponding block group",
2336 map->start, map->chunk_len);
2337 ret = -EUCLEAN;
2338 btrfs_free_chunk_map(map);
2339 break;
2340 }
2341 if (unlikely(bg->start != map->start || bg->length != map->chunk_len ||
2342 (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
2343 (map->type & BTRFS_BLOCK_GROUP_TYPE_MASK))) {
2344 btrfs_err(fs_info,
2345"chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
2346 map->start, map->chunk_len,
2347 map->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
2348 bg->start, bg->length,
2349 bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
2350 ret = -EUCLEAN;
2351 btrfs_free_chunk_map(map);
2352 btrfs_put_block_group(bg);
2353 break;
2354 }
2355 start = map->start + map->chunk_len;
2356 btrfs_free_chunk_map(map);
2357 btrfs_put_block_group(bg);
2358 }
2359 return ret;
2360}
2361
2362static int read_one_block_group(struct btrfs_fs_info *info,
2363 struct btrfs_block_group_item *bgi,
2364 const struct btrfs_key *key,
2365 int need_clear)
2366{
2367 struct btrfs_block_group *cache;
2368 const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS);
2369 int ret;
2370
2371 ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY);
2372
2373 cache = btrfs_create_block_group_cache(info, key->objectid);
2374 if (!cache)
2375 return -ENOMEM;
2376
2377 cache->length = key->offset;
2378 cache->used = btrfs_stack_block_group_used(bgi);
2379 cache->commit_used = cache->used;
2380 cache->flags = btrfs_stack_block_group_flags(bgi);
2381 cache->global_root_id = btrfs_stack_block_group_chunk_objectid(bgi);
2382 cache->space_info = btrfs_find_space_info(info, cache->flags);
2383
2384 btrfs_set_free_space_tree_thresholds(cache);
2385
2386 if (need_clear) {
2387 /*
2388 * When we mount with old space cache, we need to
2389 * set BTRFS_DC_CLEAR and set dirty flag.
2390 *
2391 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
2392 * truncate the old free space cache inode and
2393 * setup a new one.
2394 * b) Setting 'dirty flag' makes sure that we flush
2395 * the new space cache info onto disk.
2396 */
2397 if (btrfs_test_opt(info, SPACE_CACHE))
2398 cache->disk_cache_state = BTRFS_DC_CLEAR;
2399 }
2400 if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
2401 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
2402 btrfs_err(info,
2403"bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
2404 cache->start);
2405 ret = -EINVAL;
2406 goto error;
2407 }
2408
2409 ret = btrfs_load_block_group_zone_info(cache, false);
2410 if (ret) {
2411 btrfs_err(info, "zoned: failed to load zone info of bg %llu",
2412 cache->start);
2413 goto error;
2414 }
2415
2416 /*
2417 * We need to exclude the super stripes now so that the space info has
2418 * super bytes accounted for, otherwise we'll think we have more space
2419 * than we actually do.
2420 */
2421 ret = exclude_super_stripes(cache);
2422 if (ret) {
2423 /* We may have excluded something, so call this just in case. */
2424 btrfs_free_excluded_extents(cache);
2425 goto error;
2426 }
2427
2428 /*
2429 * For zoned filesystem, space after the allocation offset is the only
2430 * free space for a block group. So, we don't need any caching work.
2431 * btrfs_calc_zone_unusable() will set the amount of free space and
2432 * zone_unusable space.
2433 *
2434 * For regular filesystem, check for two cases, either we are full, and
2435 * therefore don't need to bother with the caching work since we won't
2436 * find any space, or we are empty, and we can just add all the space
2437 * in and be done with it. This saves us _a_lot_ of time, particularly
2438 * in the full case.
2439 */
2440 if (btrfs_is_zoned(info)) {
2441 btrfs_calc_zone_unusable(cache);
2442 /* Should not have any excluded extents. Just in case, though. */
2443 btrfs_free_excluded_extents(cache);
2444 } else if (cache->length == cache->used) {
2445 cache->cached = BTRFS_CACHE_FINISHED;
2446 btrfs_free_excluded_extents(cache);
2447 } else if (cache->used == 0) {
2448 cache->cached = BTRFS_CACHE_FINISHED;
2449 ret = btrfs_add_new_free_space(cache, cache->start,
2450 cache->start + cache->length, NULL);
2451 btrfs_free_excluded_extents(cache);
2452 if (ret)
2453 goto error;
2454 }
2455
2456 ret = btrfs_add_block_group_cache(cache);
2457 if (ret) {
2458 btrfs_remove_free_space_cache(cache);
2459 goto error;
2460 }
2461
2462 trace_btrfs_add_block_group(info, cache, 0);
2463 btrfs_add_bg_to_space_info(info, cache);
2464
2465 set_avail_alloc_bits(info, cache->flags);
2466 if (btrfs_chunk_writeable(info, cache->start)) {
2467 if (cache->used == 0) {
2468 ASSERT(list_empty(&cache->bg_list));
2469 if (btrfs_test_opt(info, DISCARD_ASYNC))
2470 btrfs_discard_queue_work(&info->discard_ctl, cache);
2471 else
2472 btrfs_mark_bg_unused(cache);
2473 }
2474 } else {
2475 inc_block_group_ro(cache, 1);
2476 }
2477
2478 return 0;
2479error:
2480 btrfs_put_block_group(cache);
2481 return ret;
2482}
2483
2484static int fill_dummy_bgs(struct btrfs_fs_info *fs_info)
2485{
2486 struct rb_node *node;
2487 int ret = 0;
2488
2489 for (node = rb_first_cached(&fs_info->mapping_tree); node; node = rb_next(node)) {
2490 struct btrfs_chunk_map *map;
2491 struct btrfs_block_group *bg;
2492
2493 map = rb_entry(node, struct btrfs_chunk_map, rb_node);
2494 bg = btrfs_create_block_group_cache(fs_info, map->start);
2495 if (!bg) {
2496 ret = -ENOMEM;
2497 break;
2498 }
2499
2500 /* Fill dummy cache as FULL */
2501 bg->length = map->chunk_len;
2502 bg->flags = map->type;
2503 bg->cached = BTRFS_CACHE_FINISHED;
2504 bg->used = map->chunk_len;
2505 bg->flags = map->type;
2506 bg->space_info = btrfs_find_space_info(fs_info, bg->flags);
2507 ret = btrfs_add_block_group_cache(bg);
2508 /*
2509 * We may have some valid block group cache added already, in
2510 * that case we skip to the next one.
2511 */
2512 if (ret == -EEXIST) {
2513 ret = 0;
2514 btrfs_put_block_group(bg);
2515 continue;
2516 }
2517
2518 if (ret) {
2519 btrfs_remove_free_space_cache(bg);
2520 btrfs_put_block_group(bg);
2521 break;
2522 }
2523
2524 btrfs_add_bg_to_space_info(fs_info, bg);
2525
2526 set_avail_alloc_bits(fs_info, bg->flags);
2527 }
2528 if (!ret)
2529 btrfs_init_global_block_rsv(fs_info);
2530 return ret;
2531}
2532
2533int btrfs_read_block_groups(struct btrfs_fs_info *info)
2534{
2535 struct btrfs_root *root = btrfs_block_group_root(info);
2536 struct btrfs_path *path;
2537 int ret;
2538 struct btrfs_block_group *cache;
2539 struct btrfs_space_info *space_info;
2540 struct btrfs_key key;
2541 int need_clear = 0;
2542 u64 cache_gen;
2543
2544 /*
2545 * Either no extent root (with ibadroots rescue option) or we have
2546 * unsupported RO options. The fs can never be mounted read-write, so no
2547 * need to waste time searching block group items.
2548 *
2549 * This also allows new extent tree related changes to be RO compat,
2550 * no need for a full incompat flag.
2551 */
2552 if (!root || (btrfs_super_compat_ro_flags(info->super_copy) &
2553 ~BTRFS_FEATURE_COMPAT_RO_SUPP))
2554 return fill_dummy_bgs(info);
2555
2556 key.objectid = 0;
2557 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2558 key.offset = 0;
2559 path = btrfs_alloc_path();
2560 if (!path)
2561 return -ENOMEM;
2562
2563 cache_gen = btrfs_super_cache_generation(info->super_copy);
2564 if (btrfs_test_opt(info, SPACE_CACHE) &&
2565 btrfs_super_generation(info->super_copy) != cache_gen)
2566 need_clear = 1;
2567 if (btrfs_test_opt(info, CLEAR_CACHE))
2568 need_clear = 1;
2569
2570 while (1) {
2571 struct btrfs_block_group_item bgi;
2572 struct extent_buffer *leaf;
2573 int slot;
2574
2575 ret = find_first_block_group(info, path, &key);
2576 if (ret > 0)
2577 break;
2578 if (ret != 0)
2579 goto error;
2580
2581 leaf = path->nodes[0];
2582 slot = path->slots[0];
2583
2584 read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot),
2585 sizeof(bgi));
2586
2587 btrfs_item_key_to_cpu(leaf, &key, slot);
2588 btrfs_release_path(path);
2589 ret = read_one_block_group(info, &bgi, &key, need_clear);
2590 if (ret < 0)
2591 goto error;
2592 key.objectid += key.offset;
2593 key.offset = 0;
2594 }
2595 btrfs_release_path(path);
2596
2597 list_for_each_entry(space_info, &info->space_info, list) {
2598 int i;
2599
2600 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2601 if (list_empty(&space_info->block_groups[i]))
2602 continue;
2603 cache = list_first_entry(&space_info->block_groups[i],
2604 struct btrfs_block_group,
2605 list);
2606 btrfs_sysfs_add_block_group_type(cache);
2607 }
2608
2609 if (!(btrfs_get_alloc_profile(info, space_info->flags) &
2610 (BTRFS_BLOCK_GROUP_RAID10 |
2611 BTRFS_BLOCK_GROUP_RAID1_MASK |
2612 BTRFS_BLOCK_GROUP_RAID56_MASK |
2613 BTRFS_BLOCK_GROUP_DUP)))
2614 continue;
2615 /*
2616 * Avoid allocating from un-mirrored block group if there are
2617 * mirrored block groups.
2618 */
2619 list_for_each_entry(cache,
2620 &space_info->block_groups[BTRFS_RAID_RAID0],
2621 list)
2622 inc_block_group_ro(cache, 1);
2623 list_for_each_entry(cache,
2624 &space_info->block_groups[BTRFS_RAID_SINGLE],
2625 list)
2626 inc_block_group_ro(cache, 1);
2627 }
2628
2629 btrfs_init_global_block_rsv(info);
2630 ret = check_chunk_block_group_mappings(info);
2631error:
2632 btrfs_free_path(path);
2633 /*
2634 * We've hit some error while reading the extent tree, and have
2635 * rescue=ibadroots mount option.
2636 * Try to fill the tree using dummy block groups so that the user can
2637 * continue to mount and grab their data.
2638 */
2639 if (ret && btrfs_test_opt(info, IGNOREBADROOTS))
2640 ret = fill_dummy_bgs(info);
2641 return ret;
2642}
2643
2644/*
2645 * This function, insert_block_group_item(), belongs to the phase 2 of chunk
2646 * allocation.
2647 *
2648 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2649 * phases.
2650 */
2651static int insert_block_group_item(struct btrfs_trans_handle *trans,
2652 struct btrfs_block_group *block_group)
2653{
2654 struct btrfs_fs_info *fs_info = trans->fs_info;
2655 struct btrfs_block_group_item bgi;
2656 struct btrfs_root *root = btrfs_block_group_root(fs_info);
2657 struct btrfs_key key;
2658 u64 old_commit_used;
2659 int ret;
2660
2661 spin_lock(&block_group->lock);
2662 btrfs_set_stack_block_group_used(&bgi, block_group->used);
2663 btrfs_set_stack_block_group_chunk_objectid(&bgi,
2664 block_group->global_root_id);
2665 btrfs_set_stack_block_group_flags(&bgi, block_group->flags);
2666 old_commit_used = block_group->commit_used;
2667 block_group->commit_used = block_group->used;
2668 key.objectid = block_group->start;
2669 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2670 key.offset = block_group->length;
2671 spin_unlock(&block_group->lock);
2672
2673 ret = btrfs_insert_item(trans, root, &key, &bgi, sizeof(bgi));
2674 if (ret < 0) {
2675 spin_lock(&block_group->lock);
2676 block_group->commit_used = old_commit_used;
2677 spin_unlock(&block_group->lock);
2678 }
2679
2680 return ret;
2681}
2682
2683static int insert_dev_extent(struct btrfs_trans_handle *trans,
2684 const struct btrfs_device *device, u64 chunk_offset,
2685 u64 start, u64 num_bytes)
2686{
2687 struct btrfs_fs_info *fs_info = device->fs_info;
2688 struct btrfs_root *root = fs_info->dev_root;
2689 BTRFS_PATH_AUTO_FREE(path);
2690 struct btrfs_dev_extent *extent;
2691 struct extent_buffer *leaf;
2692 struct btrfs_key key;
2693 int ret;
2694
2695 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
2696 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
2697 path = btrfs_alloc_path();
2698 if (!path)
2699 return -ENOMEM;
2700
2701 key.objectid = device->devid;
2702 key.type = BTRFS_DEV_EXTENT_KEY;
2703 key.offset = start;
2704 ret = btrfs_insert_empty_item(trans, root, path, &key, sizeof(*extent));
2705 if (ret)
2706 return ret;
2707
2708 leaf = path->nodes[0];
2709 extent = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent);
2710 btrfs_set_dev_extent_chunk_tree(leaf, extent, BTRFS_CHUNK_TREE_OBJECTID);
2711 btrfs_set_dev_extent_chunk_objectid(leaf, extent,
2712 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2713 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
2714 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
2715
2716 return ret;
2717}
2718
2719/*
2720 * This function belongs to phase 2.
2721 *
2722 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2723 * phases.
2724 */
2725static int insert_dev_extents(struct btrfs_trans_handle *trans,
2726 u64 chunk_offset, u64 chunk_size)
2727{
2728 struct btrfs_fs_info *fs_info = trans->fs_info;
2729 struct btrfs_device *device;
2730 struct btrfs_chunk_map *map;
2731 u64 dev_offset;
2732 int i;
2733 int ret = 0;
2734
2735 map = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
2736 if (IS_ERR(map))
2737 return PTR_ERR(map);
2738
2739 /*
2740 * Take the device list mutex to prevent races with the final phase of
2741 * a device replace operation that replaces the device object associated
2742 * with the map's stripes, because the device object's id can change
2743 * at any time during that final phase of the device replace operation
2744 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
2745 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
2746 * resulting in persisting a device extent item with such ID.
2747 */
2748 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2749 for (i = 0; i < map->num_stripes; i++) {
2750 device = map->stripes[i].dev;
2751 dev_offset = map->stripes[i].physical;
2752
2753 ret = insert_dev_extent(trans, device, chunk_offset, dev_offset,
2754 map->stripe_size);
2755 if (ret)
2756 break;
2757 }
2758 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2759
2760 btrfs_free_chunk_map(map);
2761 return ret;
2762}
2763
2764/*
2765 * This function, btrfs_create_pending_block_groups(), belongs to the phase 2 of
2766 * chunk allocation.
2767 *
2768 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2769 * phases.
2770 */
2771void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
2772{
2773 struct btrfs_fs_info *fs_info = trans->fs_info;
2774 struct btrfs_block_group *block_group;
2775 int ret = 0;
2776
2777 while (!list_empty(&trans->new_bgs)) {
2778 int index;
2779
2780 block_group = list_first_entry(&trans->new_bgs,
2781 struct btrfs_block_group,
2782 bg_list);
2783 if (ret)
2784 goto next;
2785
2786 index = btrfs_bg_flags_to_raid_index(block_group->flags);
2787
2788 ret = insert_block_group_item(trans, block_group);
2789 if (ret)
2790 btrfs_abort_transaction(trans, ret);
2791 if (!test_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED,
2792 &block_group->runtime_flags)) {
2793 mutex_lock(&fs_info->chunk_mutex);
2794 ret = btrfs_chunk_alloc_add_chunk_item(trans, block_group);
2795 mutex_unlock(&fs_info->chunk_mutex);
2796 if (ret)
2797 btrfs_abort_transaction(trans, ret);
2798 }
2799 ret = insert_dev_extents(trans, block_group->start,
2800 block_group->length);
2801 if (ret)
2802 btrfs_abort_transaction(trans, ret);
2803 btrfs_add_block_group_free_space(trans, block_group);
2804
2805 /*
2806 * If we restriped during balance, we may have added a new raid
2807 * type, so now add the sysfs entries when it is safe to do so.
2808 * We don't have to worry about locking here as it's handled in
2809 * btrfs_sysfs_add_block_group_type.
2810 */
2811 if (block_group->space_info->block_group_kobjs[index] == NULL)
2812 btrfs_sysfs_add_block_group_type(block_group);
2813
2814 /* Already aborted the transaction if it failed. */
2815next:
2816 btrfs_dec_delayed_refs_rsv_bg_inserts(fs_info);
2817
2818 spin_lock(&fs_info->unused_bgs_lock);
2819 list_del_init(&block_group->bg_list);
2820 clear_bit(BLOCK_GROUP_FLAG_NEW, &block_group->runtime_flags);
2821 btrfs_put_block_group(block_group);
2822 spin_unlock(&fs_info->unused_bgs_lock);
2823
2824 /*
2825 * If the block group is still unused, add it to the list of
2826 * unused block groups. The block group may have been created in
2827 * order to satisfy a space reservation, in which case the
2828 * extent allocation only happens later. But often we don't
2829 * actually need to allocate space that we previously reserved,
2830 * so the block group may become unused for a long time. For
2831 * example for metadata we generally reserve space for a worst
2832 * possible scenario, but then don't end up allocating all that
2833 * space or none at all (due to no need to COW, extent buffers
2834 * were already COWed in the current transaction and still
2835 * unwritten, tree heights lower than the maximum possible
2836 * height, etc). For data we generally reserve the exact amount
2837 * of space we are going to allocate later, the exception is
2838 * when using compression, as we must reserve space based on the
2839 * uncompressed data size, because the compression is only done
2840 * when writeback triggered and we don't know how much space we
2841 * are actually going to need, so we reserve the uncompressed
2842 * size because the data may be incompressible in the worst case.
2843 */
2844 if (ret == 0) {
2845 bool used;
2846
2847 spin_lock(&block_group->lock);
2848 used = btrfs_is_block_group_used(block_group);
2849 spin_unlock(&block_group->lock);
2850
2851 if (!used)
2852 btrfs_mark_bg_unused(block_group);
2853 }
2854 }
2855 btrfs_trans_release_chunk_metadata(trans);
2856}
2857
2858/*
2859 * For extent tree v2 we use the block_group_item->chunk_offset to point at our
2860 * global root id. For v1 it's always set to BTRFS_FIRST_CHUNK_TREE_OBJECTID.
2861 */
2862static u64 calculate_global_root_id(const struct btrfs_fs_info *fs_info, u64 offset)
2863{
2864 u64 div = SZ_1G;
2865 u64 index;
2866
2867 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
2868 return BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2869
2870 /* If we have a smaller fs index based on 128MiB. */
2871 if (btrfs_super_total_bytes(fs_info->super_copy) <= (SZ_1G * 10ULL))
2872 div = SZ_128M;
2873
2874 offset = div64_u64(offset, div);
2875 div64_u64_rem(offset, fs_info->nr_global_roots, &index);
2876 return index;
2877}
2878
2879struct btrfs_block_group *btrfs_make_block_group(struct btrfs_trans_handle *trans,
2880 struct btrfs_space_info *space_info,
2881 u64 type, u64 chunk_offset, u64 size)
2882{
2883 struct btrfs_fs_info *fs_info = trans->fs_info;
2884 struct btrfs_block_group *cache;
2885 int ret;
2886
2887 btrfs_set_log_full_commit(trans);
2888
2889 cache = btrfs_create_block_group_cache(fs_info, chunk_offset);
2890 if (!cache)
2891 return ERR_PTR(-ENOMEM);
2892
2893 /*
2894 * Mark it as new before adding it to the rbtree of block groups or any
2895 * list, so that no other task finds it and calls btrfs_mark_bg_unused()
2896 * before the new flag is set.
2897 */
2898 set_bit(BLOCK_GROUP_FLAG_NEW, &cache->runtime_flags);
2899
2900 cache->length = size;
2901 btrfs_set_free_space_tree_thresholds(cache);
2902 cache->flags = type;
2903 cache->cached = BTRFS_CACHE_FINISHED;
2904 cache->global_root_id = calculate_global_root_id(fs_info, cache->start);
2905
2906 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
2907 set_bit(BLOCK_GROUP_FLAG_NEEDS_FREE_SPACE, &cache->runtime_flags);
2908
2909 ret = btrfs_load_block_group_zone_info(cache, true);
2910 if (ret) {
2911 btrfs_put_block_group(cache);
2912 return ERR_PTR(ret);
2913 }
2914
2915 ret = exclude_super_stripes(cache);
2916 if (ret) {
2917 /* We may have excluded something, so call this just in case */
2918 btrfs_free_excluded_extents(cache);
2919 btrfs_put_block_group(cache);
2920 return ERR_PTR(ret);
2921 }
2922
2923 ret = btrfs_add_new_free_space(cache, chunk_offset, chunk_offset + size, NULL);
2924 btrfs_free_excluded_extents(cache);
2925 if (ret) {
2926 btrfs_put_block_group(cache);
2927 return ERR_PTR(ret);
2928 }
2929
2930 /*
2931 * Ensure the corresponding space_info object is created and
2932 * assigned to our block group. We want our bg to be added to the rbtree
2933 * with its ->space_info set.
2934 */
2935 cache->space_info = space_info;
2936 ASSERT(cache->space_info);
2937
2938 ret = btrfs_add_block_group_cache(cache);
2939 if (ret) {
2940 btrfs_remove_free_space_cache(cache);
2941 btrfs_put_block_group(cache);
2942 return ERR_PTR(ret);
2943 }
2944
2945 /*
2946 * Now that our block group has its ->space_info set and is inserted in
2947 * the rbtree, update the space info's counters.
2948 */
2949 trace_btrfs_add_block_group(fs_info, cache, 1);
2950 btrfs_add_bg_to_space_info(fs_info, cache);
2951 btrfs_update_global_block_rsv(fs_info);
2952
2953#ifdef CONFIG_BTRFS_DEBUG
2954 if (btrfs_should_fragment_free_space(cache)) {
2955 cache->space_info->bytes_used += size >> 1;
2956 fragment_free_space(cache);
2957 }
2958#endif
2959
2960 btrfs_link_bg_list(cache, &trans->new_bgs);
2961 btrfs_inc_delayed_refs_rsv_bg_inserts(fs_info);
2962
2963 set_avail_alloc_bits(fs_info, type);
2964 return cache;
2965}
2966
2967/*
2968 * Mark one block group RO, can be called several times for the same block
2969 * group.
2970 *
2971 * @cache: the destination block group
2972 * @do_chunk_alloc: whether need to do chunk pre-allocation, this is to
2973 * ensure we still have some free space after marking this
2974 * block group RO.
2975 */
2976int btrfs_inc_block_group_ro(struct btrfs_block_group *cache,
2977 bool do_chunk_alloc)
2978{
2979 struct btrfs_fs_info *fs_info = cache->fs_info;
2980 struct btrfs_space_info *space_info = cache->space_info;
2981 struct btrfs_trans_handle *trans;
2982 struct btrfs_root *root = btrfs_block_group_root(fs_info);
2983 u64 alloc_flags;
2984 int ret;
2985 bool dirty_bg_running;
2986
2987 /*
2988 * This can only happen when we are doing read-only scrub on read-only
2989 * mount.
2990 * In that case we should not start a new transaction on read-only fs.
2991 * Thus here we skip all chunk allocations.
2992 */
2993 if (sb_rdonly(fs_info->sb)) {
2994 mutex_lock(&fs_info->ro_block_group_mutex);
2995 ret = inc_block_group_ro(cache, 0);
2996 mutex_unlock(&fs_info->ro_block_group_mutex);
2997 return ret;
2998 }
2999
3000 do {
3001 trans = btrfs_join_transaction(root);
3002 if (IS_ERR(trans))
3003 return PTR_ERR(trans);
3004
3005 dirty_bg_running = false;
3006
3007 /*
3008 * We're not allowed to set block groups readonly after the dirty
3009 * block group cache has started writing. If it already started,
3010 * back off and let this transaction commit.
3011 */
3012 mutex_lock(&fs_info->ro_block_group_mutex);
3013 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
3014 u64 transid = trans->transid;
3015
3016 mutex_unlock(&fs_info->ro_block_group_mutex);
3017 btrfs_end_transaction(trans);
3018
3019 ret = btrfs_wait_for_commit(fs_info, transid);
3020 if (ret)
3021 return ret;
3022 dirty_bg_running = true;
3023 }
3024 } while (dirty_bg_running);
3025
3026 if (do_chunk_alloc) {
3027 /*
3028 * If we are changing raid levels, try to allocate a
3029 * corresponding block group with the new raid level.
3030 */
3031 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
3032 if (alloc_flags != cache->flags) {
3033 ret = btrfs_chunk_alloc(trans, space_info, alloc_flags,
3034 CHUNK_ALLOC_FORCE);
3035 /*
3036 * ENOSPC is allowed here, we may have enough space
3037 * already allocated at the new raid level to carry on
3038 */
3039 if (ret == -ENOSPC)
3040 ret = 0;
3041 if (ret < 0)
3042 goto out;
3043 }
3044 }
3045
3046 ret = inc_block_group_ro(cache, 0);
3047 if (!ret)
3048 goto out;
3049 if (ret == -ETXTBSY)
3050 goto unlock_out;
3051
3052 /*
3053 * Skip chunk allocation if the bg is SYSTEM, this is to avoid system
3054 * chunk allocation storm to exhaust the system chunk array. Otherwise
3055 * we still want to try our best to mark the block group read-only.
3056 */
3057 if (!do_chunk_alloc && ret == -ENOSPC &&
3058 (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM))
3059 goto unlock_out;
3060
3061 alloc_flags = btrfs_get_alloc_profile(fs_info, space_info->flags);
3062 ret = btrfs_chunk_alloc(trans, space_info, alloc_flags, CHUNK_ALLOC_FORCE);
3063 if (ret < 0)
3064 goto out;
3065 /*
3066 * We have allocated a new chunk. We also need to activate that chunk to
3067 * grant metadata tickets for zoned filesystem.
3068 */
3069 ret = btrfs_zoned_activate_one_bg(space_info, true);
3070 if (ret < 0)
3071 goto out;
3072
3073 ret = inc_block_group_ro(cache, 0);
3074 if (ret == -ETXTBSY)
3075 goto unlock_out;
3076out:
3077 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
3078 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
3079 mutex_lock(&fs_info->chunk_mutex);
3080 check_system_chunk(trans, alloc_flags);
3081 mutex_unlock(&fs_info->chunk_mutex);
3082 }
3083unlock_out:
3084 mutex_unlock(&fs_info->ro_block_group_mutex);
3085
3086 btrfs_end_transaction(trans);
3087 return ret;
3088}
3089
3090void btrfs_dec_block_group_ro(struct btrfs_block_group *cache)
3091{
3092 struct btrfs_space_info *sinfo = cache->space_info;
3093 u64 num_bytes;
3094
3095 BUG_ON(!cache->ro);
3096
3097 spin_lock(&sinfo->lock);
3098 spin_lock(&cache->lock);
3099 if (!--cache->ro) {
3100 if (btrfs_is_zoned(cache->fs_info)) {
3101 /* Migrate zone_unusable bytes back */
3102 cache->zone_unusable =
3103 (cache->alloc_offset - cache->used - cache->pinned -
3104 cache->reserved) +
3105 (cache->length - cache->zone_capacity);
3106 btrfs_space_info_update_bytes_zone_unusable(sinfo, cache->zone_unusable);
3107 sinfo->bytes_readonly -= cache->zone_unusable;
3108 }
3109 num_bytes = cache->length - cache->reserved -
3110 cache->pinned - cache->bytes_super -
3111 cache->zone_unusable - cache->used;
3112 sinfo->bytes_readonly -= num_bytes;
3113 list_del_init(&cache->ro_list);
3114 }
3115 spin_unlock(&cache->lock);
3116 spin_unlock(&sinfo->lock);
3117}
3118
3119static int update_block_group_item(struct btrfs_trans_handle *trans,
3120 struct btrfs_path *path,
3121 struct btrfs_block_group *cache)
3122{
3123 struct btrfs_fs_info *fs_info = trans->fs_info;
3124 int ret;
3125 struct btrfs_root *root = btrfs_block_group_root(fs_info);
3126 unsigned long bi;
3127 struct extent_buffer *leaf;
3128 struct btrfs_block_group_item bgi;
3129 struct btrfs_key key;
3130 u64 old_commit_used;
3131 u64 used;
3132
3133 /*
3134 * Block group items update can be triggered out of commit transaction
3135 * critical section, thus we need a consistent view of used bytes.
3136 * We cannot use cache->used directly outside of the spin lock, as it
3137 * may be changed.
3138 */
3139 spin_lock(&cache->lock);
3140 old_commit_used = cache->commit_used;
3141 used = cache->used;
3142 /* No change in used bytes, can safely skip it. */
3143 if (cache->commit_used == used) {
3144 spin_unlock(&cache->lock);
3145 return 0;
3146 }
3147 cache->commit_used = used;
3148 spin_unlock(&cache->lock);
3149
3150 key.objectid = cache->start;
3151 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
3152 key.offset = cache->length;
3153
3154 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3155 if (ret) {
3156 if (ret > 0)
3157 ret = -ENOENT;
3158 goto fail;
3159 }
3160
3161 leaf = path->nodes[0];
3162 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3163 btrfs_set_stack_block_group_used(&bgi, used);
3164 btrfs_set_stack_block_group_chunk_objectid(&bgi,
3165 cache->global_root_id);
3166 btrfs_set_stack_block_group_flags(&bgi, cache->flags);
3167 write_extent_buffer(leaf, &bgi, bi, sizeof(bgi));
3168fail:
3169 btrfs_release_path(path);
3170 /*
3171 * We didn't update the block group item, need to revert commit_used
3172 * unless the block group item didn't exist yet - this is to prevent a
3173 * race with a concurrent insertion of the block group item, with
3174 * insert_block_group_item(), that happened just after we attempted to
3175 * update. In that case we would reset commit_used to 0 just after the
3176 * insertion set it to a value greater than 0 - if the block group later
3177 * becomes with 0 used bytes, we would incorrectly skip its update.
3178 */
3179 if (ret < 0 && ret != -ENOENT) {
3180 spin_lock(&cache->lock);
3181 cache->commit_used = old_commit_used;
3182 spin_unlock(&cache->lock);
3183 }
3184 return ret;
3185
3186}
3187
3188static int cache_save_setup(struct btrfs_block_group *block_group,
3189 struct btrfs_trans_handle *trans,
3190 struct btrfs_path *path)
3191{
3192 struct btrfs_fs_info *fs_info = block_group->fs_info;
3193 struct inode *inode = NULL;
3194 struct extent_changeset *data_reserved = NULL;
3195 u64 alloc_hint = 0;
3196 int dcs = BTRFS_DC_ERROR;
3197 u64 cache_size = 0;
3198 int retries = 0;
3199 int ret = 0;
3200
3201 if (!btrfs_test_opt(fs_info, SPACE_CACHE))
3202 return 0;
3203
3204 /*
3205 * If this block group is smaller than 100 megs don't bother caching the
3206 * block group.
3207 */
3208 if (block_group->length < (100 * SZ_1M)) {
3209 spin_lock(&block_group->lock);
3210 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3211 spin_unlock(&block_group->lock);
3212 return 0;
3213 }
3214
3215 if (TRANS_ABORTED(trans))
3216 return 0;
3217again:
3218 inode = lookup_free_space_inode(block_group, path);
3219 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3220 ret = PTR_ERR(inode);
3221 btrfs_release_path(path);
3222 goto out;
3223 }
3224
3225 if (IS_ERR(inode)) {
3226 BUG_ON(retries);
3227 retries++;
3228
3229 if (block_group->ro)
3230 goto out_free;
3231
3232 ret = create_free_space_inode(trans, block_group, path);
3233 if (ret)
3234 goto out_free;
3235 goto again;
3236 }
3237
3238 /*
3239 * We want to set the generation to 0, that way if anything goes wrong
3240 * from here on out we know not to trust this cache when we load up next
3241 * time.
3242 */
3243 BTRFS_I(inode)->generation = 0;
3244 ret = btrfs_update_inode(trans, BTRFS_I(inode));
3245 if (unlikely(ret)) {
3246 /*
3247 * So theoretically we could recover from this, simply set the
3248 * super cache generation to 0 so we know to invalidate the
3249 * cache, but then we'd have to keep track of the block groups
3250 * that fail this way so we know we _have_ to reset this cache
3251 * before the next commit or risk reading stale cache. So to
3252 * limit our exposure to horrible edge cases lets just abort the
3253 * transaction, this only happens in really bad situations
3254 * anyway.
3255 */
3256 btrfs_abort_transaction(trans, ret);
3257 goto out_put;
3258 }
3259 WARN_ON(ret);
3260
3261 /* We've already setup this transaction, go ahead and exit */
3262 if (block_group->cache_generation == trans->transid &&
3263 i_size_read(inode)) {
3264 dcs = BTRFS_DC_SETUP;
3265 goto out_put;
3266 }
3267
3268 if (i_size_read(inode) > 0) {
3269 ret = btrfs_check_trunc_cache_free_space(fs_info,
3270 &fs_info->global_block_rsv);
3271 if (ret)
3272 goto out_put;
3273
3274 ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
3275 if (ret)
3276 goto out_put;
3277 }
3278
3279 spin_lock(&block_group->lock);
3280 if (block_group->cached != BTRFS_CACHE_FINISHED ||
3281 !btrfs_test_opt(fs_info, SPACE_CACHE)) {
3282 /*
3283 * don't bother trying to write stuff out _if_
3284 * a) we're not cached,
3285 * b) we're with nospace_cache mount option,
3286 * c) we're with v2 space_cache (FREE_SPACE_TREE).
3287 */
3288 dcs = BTRFS_DC_WRITTEN;
3289 spin_unlock(&block_group->lock);
3290 goto out_put;
3291 }
3292 spin_unlock(&block_group->lock);
3293
3294 /*
3295 * We hit an ENOSPC when setting up the cache in this transaction, just
3296 * skip doing the setup, we've already cleared the cache so we're safe.
3297 */
3298 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3299 ret = -ENOSPC;
3300 goto out_put;
3301 }
3302
3303 /*
3304 * Try to preallocate enough space based on how big the block group is.
3305 * Keep in mind this has to include any pinned space which could end up
3306 * taking up quite a bit since it's not folded into the other space
3307 * cache.
3308 */
3309 cache_size = div_u64(block_group->length, SZ_256M);
3310 if (!cache_size)
3311 cache_size = 1;
3312
3313 cache_size *= 16;
3314 cache_size *= fs_info->sectorsize;
3315
3316 ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved, 0,
3317 cache_size, false);
3318 if (ret)
3319 goto out_put;
3320
3321 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, cache_size,
3322 cache_size, cache_size,
3323 &alloc_hint);
3324 /*
3325 * Our cache requires contiguous chunks so that we don't modify a bunch
3326 * of metadata or split extents when writing the cache out, which means
3327 * we can enospc if we are heavily fragmented in addition to just normal
3328 * out of space conditions. So if we hit this just skip setting up any
3329 * other block groups for this transaction, maybe we'll unpin enough
3330 * space the next time around.
3331 */
3332 if (!ret)
3333 dcs = BTRFS_DC_SETUP;
3334 else if (ret == -ENOSPC)
3335 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3336
3337out_put:
3338 iput(inode);
3339out_free:
3340 btrfs_release_path(path);
3341out:
3342 spin_lock(&block_group->lock);
3343 if (!ret && dcs == BTRFS_DC_SETUP)
3344 block_group->cache_generation = trans->transid;
3345 block_group->disk_cache_state = dcs;
3346 spin_unlock(&block_group->lock);
3347
3348 extent_changeset_free(data_reserved);
3349 return ret;
3350}
3351
3352int btrfs_setup_space_cache(struct btrfs_trans_handle *trans)
3353{
3354 struct btrfs_fs_info *fs_info = trans->fs_info;
3355 struct btrfs_block_group *cache, *tmp;
3356 struct btrfs_transaction *cur_trans = trans->transaction;
3357 BTRFS_PATH_AUTO_FREE(path);
3358
3359 if (list_empty(&cur_trans->dirty_bgs) ||
3360 !btrfs_test_opt(fs_info, SPACE_CACHE))
3361 return 0;
3362
3363 path = btrfs_alloc_path();
3364 if (!path)
3365 return -ENOMEM;
3366
3367 /* Could add new block groups, use _safe just in case */
3368 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3369 dirty_list) {
3370 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3371 cache_save_setup(cache, trans, path);
3372 }
3373
3374 return 0;
3375}
3376
3377/*
3378 * Transaction commit does final block group cache writeback during a critical
3379 * section where nothing is allowed to change the FS. This is required in
3380 * order for the cache to actually match the block group, but can introduce a
3381 * lot of latency into the commit.
3382 *
3383 * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO.
3384 * There's a chance we'll have to redo some of it if the block group changes
3385 * again during the commit, but it greatly reduces the commit latency by
3386 * getting rid of the easy block groups while we're still allowing others to
3387 * join the commit.
3388 */
3389int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
3390{
3391 struct btrfs_fs_info *fs_info = trans->fs_info;
3392 struct btrfs_block_group *cache;
3393 struct btrfs_transaction *cur_trans = trans->transaction;
3394 int ret = 0;
3395 int should_put;
3396 BTRFS_PATH_AUTO_FREE(path);
3397 LIST_HEAD(dirty);
3398 struct list_head *io = &cur_trans->io_bgs;
3399 int loops = 0;
3400
3401 spin_lock(&cur_trans->dirty_bgs_lock);
3402 if (list_empty(&cur_trans->dirty_bgs)) {
3403 spin_unlock(&cur_trans->dirty_bgs_lock);
3404 return 0;
3405 }
3406 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3407 spin_unlock(&cur_trans->dirty_bgs_lock);
3408
3409again:
3410 /* Make sure all the block groups on our dirty list actually exist */
3411 btrfs_create_pending_block_groups(trans);
3412
3413 if (!path) {
3414 path = btrfs_alloc_path();
3415 if (!path) {
3416 ret = -ENOMEM;
3417 goto out;
3418 }
3419 }
3420
3421 /*
3422 * cache_write_mutex is here only to save us from balance or automatic
3423 * removal of empty block groups deleting this block group while we are
3424 * writing out the cache
3425 */
3426 mutex_lock(&trans->transaction->cache_write_mutex);
3427 while (!list_empty(&dirty)) {
3428 bool drop_reserve = true;
3429
3430 cache = list_first_entry(&dirty, struct btrfs_block_group,
3431 dirty_list);
3432 /*
3433 * This can happen if something re-dirties a block group that
3434 * is already under IO. Just wait for it to finish and then do
3435 * it all again
3436 */
3437 if (!list_empty(&cache->io_list)) {
3438 list_del_init(&cache->io_list);
3439 btrfs_wait_cache_io(trans, cache, path);
3440 btrfs_put_block_group(cache);
3441 }
3442
3443
3444 /*
3445 * btrfs_wait_cache_io uses the cache->dirty_list to decide if
3446 * it should update the cache_state. Don't delete until after
3447 * we wait.
3448 *
3449 * Since we're not running in the commit critical section
3450 * we need the dirty_bgs_lock to protect from update_block_group
3451 */
3452 spin_lock(&cur_trans->dirty_bgs_lock);
3453 list_del_init(&cache->dirty_list);
3454 spin_unlock(&cur_trans->dirty_bgs_lock);
3455
3456 should_put = 1;
3457
3458 cache_save_setup(cache, trans, path);
3459
3460 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3461 cache->io_ctl.inode = NULL;
3462 ret = btrfs_write_out_cache(trans, cache, path);
3463 if (ret == 0 && cache->io_ctl.inode) {
3464 should_put = 0;
3465
3466 /*
3467 * The cache_write_mutex is protecting the
3468 * io_list, also refer to the definition of
3469 * btrfs_transaction::io_bgs for more details
3470 */
3471 list_add_tail(&cache->io_list, io);
3472 } else {
3473 /*
3474 * If we failed to write the cache, the
3475 * generation will be bad and life goes on
3476 */
3477 ret = 0;
3478 }
3479 }
3480 if (!ret) {
3481 ret = update_block_group_item(trans, path, cache);
3482 /*
3483 * Our block group might still be attached to the list
3484 * of new block groups in the transaction handle of some
3485 * other task (struct btrfs_trans_handle->new_bgs). This
3486 * means its block group item isn't yet in the extent
3487 * tree. If this happens ignore the error, as we will
3488 * try again later in the critical section of the
3489 * transaction commit.
3490 */
3491 if (ret == -ENOENT) {
3492 ret = 0;
3493 spin_lock(&cur_trans->dirty_bgs_lock);
3494 if (list_empty(&cache->dirty_list)) {
3495 list_add_tail(&cache->dirty_list,
3496 &cur_trans->dirty_bgs);
3497 btrfs_get_block_group(cache);
3498 drop_reserve = false;
3499 }
3500 spin_unlock(&cur_trans->dirty_bgs_lock);
3501 } else if (ret) {
3502 btrfs_abort_transaction(trans, ret);
3503 }
3504 }
3505
3506 /* If it's not on the io list, we need to put the block group */
3507 if (should_put)
3508 btrfs_put_block_group(cache);
3509 if (drop_reserve)
3510 btrfs_dec_delayed_refs_rsv_bg_updates(fs_info);
3511 /*
3512 * Avoid blocking other tasks for too long. It might even save
3513 * us from writing caches for block groups that are going to be
3514 * removed.
3515 */
3516 mutex_unlock(&trans->transaction->cache_write_mutex);
3517 if (ret)
3518 goto out;
3519 mutex_lock(&trans->transaction->cache_write_mutex);
3520 }
3521 mutex_unlock(&trans->transaction->cache_write_mutex);
3522
3523 /*
3524 * Go through delayed refs for all the stuff we've just kicked off
3525 * and then loop back (just once)
3526 */
3527 if (!ret)
3528 ret = btrfs_run_delayed_refs(trans, 0);
3529 if (!ret && loops == 0) {
3530 loops++;
3531 spin_lock(&cur_trans->dirty_bgs_lock);
3532 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3533 /*
3534 * dirty_bgs_lock protects us from concurrent block group
3535 * deletes too (not just cache_write_mutex).
3536 */
3537 if (!list_empty(&dirty)) {
3538 spin_unlock(&cur_trans->dirty_bgs_lock);
3539 goto again;
3540 }
3541 spin_unlock(&cur_trans->dirty_bgs_lock);
3542 }
3543out:
3544 if (ret < 0) {
3545 spin_lock(&cur_trans->dirty_bgs_lock);
3546 list_splice_init(&dirty, &cur_trans->dirty_bgs);
3547 spin_unlock(&cur_trans->dirty_bgs_lock);
3548 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
3549 }
3550
3551 return ret;
3552}
3553
3554int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans)
3555{
3556 struct btrfs_fs_info *fs_info = trans->fs_info;
3557 struct btrfs_block_group *cache;
3558 struct btrfs_transaction *cur_trans = trans->transaction;
3559 int ret = 0;
3560 int should_put;
3561 BTRFS_PATH_AUTO_FREE(path);
3562 struct list_head *io = &cur_trans->io_bgs;
3563
3564 path = btrfs_alloc_path();
3565 if (!path)
3566 return -ENOMEM;
3567
3568 /*
3569 * Even though we are in the critical section of the transaction commit,
3570 * we can still have concurrent tasks adding elements to this
3571 * transaction's list of dirty block groups. These tasks correspond to
3572 * endio free space workers started when writeback finishes for a
3573 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3574 * allocate new block groups as a result of COWing nodes of the root
3575 * tree when updating the free space inode. The writeback for the space
3576 * caches is triggered by an earlier call to
3577 * btrfs_start_dirty_block_groups() and iterations of the following
3578 * loop.
3579 * Also we want to do the cache_save_setup first and then run the
3580 * delayed refs to make sure we have the best chance at doing this all
3581 * in one shot.
3582 */
3583 spin_lock(&cur_trans->dirty_bgs_lock);
3584 while (!list_empty(&cur_trans->dirty_bgs)) {
3585 cache = list_first_entry(&cur_trans->dirty_bgs,
3586 struct btrfs_block_group,
3587 dirty_list);
3588
3589 /*
3590 * This can happen if cache_save_setup re-dirties a block group
3591 * that is already under IO. Just wait for it to finish and
3592 * then do it all again
3593 */
3594 if (!list_empty(&cache->io_list)) {
3595 spin_unlock(&cur_trans->dirty_bgs_lock);
3596 list_del_init(&cache->io_list);
3597 btrfs_wait_cache_io(trans, cache, path);
3598 btrfs_put_block_group(cache);
3599 spin_lock(&cur_trans->dirty_bgs_lock);
3600 }
3601
3602 /*
3603 * Don't remove from the dirty list until after we've waited on
3604 * any pending IO
3605 */
3606 list_del_init(&cache->dirty_list);
3607 spin_unlock(&cur_trans->dirty_bgs_lock);
3608 should_put = 1;
3609
3610 cache_save_setup(cache, trans, path);
3611
3612 if (!ret)
3613 ret = btrfs_run_delayed_refs(trans, U64_MAX);
3614
3615 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3616 cache->io_ctl.inode = NULL;
3617 ret = btrfs_write_out_cache(trans, cache, path);
3618 if (ret == 0 && cache->io_ctl.inode) {
3619 should_put = 0;
3620 list_add_tail(&cache->io_list, io);
3621 } else {
3622 /*
3623 * If we failed to write the cache, the
3624 * generation will be bad and life goes on
3625 */
3626 ret = 0;
3627 }
3628 }
3629 if (!ret) {
3630 ret = update_block_group_item(trans, path, cache);
3631 /*
3632 * One of the free space endio workers might have
3633 * created a new block group while updating a free space
3634 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3635 * and hasn't released its transaction handle yet, in
3636 * which case the new block group is still attached to
3637 * its transaction handle and its creation has not
3638 * finished yet (no block group item in the extent tree
3639 * yet, etc). If this is the case, wait for all free
3640 * space endio workers to finish and retry. This is a
3641 * very rare case so no need for a more efficient and
3642 * complex approach.
3643 */
3644 if (ret == -ENOENT) {
3645 wait_event(cur_trans->writer_wait,
3646 atomic_read(&cur_trans->num_writers) == 1);
3647 ret = update_block_group_item(trans, path, cache);
3648 if (ret)
3649 btrfs_abort_transaction(trans, ret);
3650 } else if (ret) {
3651 btrfs_abort_transaction(trans, ret);
3652 }
3653 }
3654
3655 /* If its not on the io list, we need to put the block group */
3656 if (should_put)
3657 btrfs_put_block_group(cache);
3658 btrfs_dec_delayed_refs_rsv_bg_updates(fs_info);
3659 spin_lock(&cur_trans->dirty_bgs_lock);
3660 }
3661 spin_unlock(&cur_trans->dirty_bgs_lock);
3662
3663 /*
3664 * Refer to the definition of io_bgs member for details why it's safe
3665 * to use it without any locking
3666 */
3667 while (!list_empty(io)) {
3668 cache = list_first_entry(io, struct btrfs_block_group,
3669 io_list);
3670 list_del_init(&cache->io_list);
3671 btrfs_wait_cache_io(trans, cache, path);
3672 btrfs_put_block_group(cache);
3673 }
3674
3675 return ret;
3676}
3677
3678int btrfs_update_block_group(struct btrfs_trans_handle *trans,
3679 u64 bytenr, u64 num_bytes, bool alloc)
3680{
3681 struct btrfs_fs_info *info = trans->fs_info;
3682 struct btrfs_space_info *space_info;
3683 struct btrfs_block_group *cache;
3684 u64 old_val;
3685 bool reclaim = false;
3686 bool bg_already_dirty = true;
3687 int factor;
3688
3689 /* Block accounting for super block */
3690 spin_lock(&info->delalloc_root_lock);
3691 old_val = btrfs_super_bytes_used(info->super_copy);
3692 if (alloc)
3693 old_val += num_bytes;
3694 else
3695 old_val -= num_bytes;
3696 btrfs_set_super_bytes_used(info->super_copy, old_val);
3697 spin_unlock(&info->delalloc_root_lock);
3698
3699 cache = btrfs_lookup_block_group(info, bytenr);
3700 if (!cache)
3701 return -ENOENT;
3702
3703 /* An extent can not span multiple block groups. */
3704 ASSERT(bytenr + num_bytes <= cache->start + cache->length);
3705
3706 space_info = cache->space_info;
3707 factor = btrfs_bg_type_to_factor(cache->flags);
3708
3709 /*
3710 * If this block group has free space cache written out, we need to make
3711 * sure to load it if we are removing space. This is because we need
3712 * the unpinning stage to actually add the space back to the block group,
3713 * otherwise we will leak space.
3714 */
3715 if (!alloc && !btrfs_block_group_done(cache))
3716 btrfs_cache_block_group(cache, true);
3717
3718 spin_lock(&space_info->lock);
3719 spin_lock(&cache->lock);
3720
3721 if (btrfs_test_opt(info, SPACE_CACHE) &&
3722 cache->disk_cache_state < BTRFS_DC_CLEAR)
3723 cache->disk_cache_state = BTRFS_DC_CLEAR;
3724
3725 old_val = cache->used;
3726 if (alloc) {
3727 old_val += num_bytes;
3728 cache->used = old_val;
3729 cache->reserved -= num_bytes;
3730 cache->reclaim_mark = 0;
3731 space_info->bytes_reserved -= num_bytes;
3732 space_info->bytes_used += num_bytes;
3733 space_info->disk_used += num_bytes * factor;
3734 if (READ_ONCE(space_info->periodic_reclaim))
3735 btrfs_space_info_update_reclaimable(space_info, -num_bytes);
3736 spin_unlock(&cache->lock);
3737 spin_unlock(&space_info->lock);
3738 } else {
3739 old_val -= num_bytes;
3740 cache->used = old_val;
3741 cache->pinned += num_bytes;
3742 btrfs_space_info_update_bytes_pinned(space_info, num_bytes);
3743 space_info->bytes_used -= num_bytes;
3744 space_info->disk_used -= num_bytes * factor;
3745 if (READ_ONCE(space_info->periodic_reclaim))
3746 btrfs_space_info_update_reclaimable(space_info, num_bytes);
3747 else
3748 reclaim = should_reclaim_block_group(cache, num_bytes);
3749
3750 spin_unlock(&cache->lock);
3751 spin_unlock(&space_info->lock);
3752
3753 btrfs_set_extent_bit(&trans->transaction->pinned_extents, bytenr,
3754 bytenr + num_bytes - 1, EXTENT_DIRTY, NULL);
3755 }
3756
3757 spin_lock(&trans->transaction->dirty_bgs_lock);
3758 if (list_empty(&cache->dirty_list)) {
3759 list_add_tail(&cache->dirty_list, &trans->transaction->dirty_bgs);
3760 bg_already_dirty = false;
3761 btrfs_get_block_group(cache);
3762 }
3763 spin_unlock(&trans->transaction->dirty_bgs_lock);
3764
3765 /*
3766 * No longer have used bytes in this block group, queue it for deletion.
3767 * We do this after adding the block group to the dirty list to avoid
3768 * races between cleaner kthread and space cache writeout.
3769 */
3770 if (!alloc && old_val == 0) {
3771 if (!btrfs_test_opt(info, DISCARD_ASYNC))
3772 btrfs_mark_bg_unused(cache);
3773 } else if (!alloc && reclaim) {
3774 btrfs_mark_bg_to_reclaim(cache);
3775 }
3776
3777 btrfs_put_block_group(cache);
3778
3779 /* Modified block groups are accounted for in the delayed_refs_rsv. */
3780 if (!bg_already_dirty)
3781 btrfs_inc_delayed_refs_rsv_bg_updates(info);
3782
3783 return 0;
3784}
3785
3786/*
3787 * Update the block_group and space info counters.
3788 *
3789 * @cache: The cache we are manipulating
3790 * @ram_bytes: The number of bytes of file content, and will be same to
3791 * @num_bytes except for the compress path.
3792 * @num_bytes: The number of bytes in question
3793 * @delalloc: The blocks are allocated for the delalloc write
3794 *
3795 * This is called by the allocator when it reserves space. If this is a
3796 * reservation and the block group has become read only we cannot make the
3797 * reservation and return -EAGAIN, otherwise this function always succeeds.
3798 */
3799int btrfs_add_reserved_bytes(struct btrfs_block_group *cache,
3800 u64 ram_bytes, u64 num_bytes, bool delalloc,
3801 bool force_wrong_size_class)
3802{
3803 struct btrfs_space_info *space_info = cache->space_info;
3804 enum btrfs_block_group_size_class size_class;
3805 int ret = 0;
3806
3807 spin_lock(&space_info->lock);
3808 spin_lock(&cache->lock);
3809 if (cache->ro) {
3810 ret = -EAGAIN;
3811 goto out_error;
3812 }
3813
3814 if (btrfs_block_group_should_use_size_class(cache)) {
3815 size_class = btrfs_calc_block_group_size_class(num_bytes);
3816 ret = btrfs_use_block_group_size_class(cache, size_class, force_wrong_size_class);
3817 if (ret)
3818 goto out_error;
3819 }
3820
3821 cache->reserved += num_bytes;
3822 if (delalloc)
3823 cache->delalloc_bytes += num_bytes;
3824
3825 trace_btrfs_space_reservation(cache->fs_info, "space_info",
3826 space_info->flags, num_bytes, 1);
3827 spin_unlock(&cache->lock);
3828
3829 space_info->bytes_reserved += num_bytes;
3830 btrfs_space_info_update_bytes_may_use(space_info, -ram_bytes);
3831
3832 /*
3833 * Compression can use less space than we reserved, so wake tickets if
3834 * that happens.
3835 */
3836 if (num_bytes < ram_bytes)
3837 btrfs_try_granting_tickets(space_info);
3838 spin_unlock(&space_info->lock);
3839
3840 return 0;
3841
3842out_error:
3843 spin_unlock(&cache->lock);
3844 spin_unlock(&space_info->lock);
3845 return ret;
3846}
3847
3848/*
3849 * Update the block_group and space info counters.
3850 *
3851 * @cache: The cache we are manipulating.
3852 * @num_bytes: The number of bytes in question.
3853 * @is_delalloc: Whether the blocks are allocated for a delalloc write.
3854 *
3855 * This is called by somebody who is freeing space that was never actually used
3856 * on disk. For example if you reserve some space for a new leaf in transaction
3857 * A and before transaction A commits you free that leaf, you call this with
3858 * reserve set to 0 in order to clear the reservation.
3859 */
3860void btrfs_free_reserved_bytes(struct btrfs_block_group *cache, u64 num_bytes,
3861 bool is_delalloc)
3862{
3863 struct btrfs_space_info *space_info = cache->space_info;
3864 bool bg_ro;
3865
3866 spin_lock(&space_info->lock);
3867 spin_lock(&cache->lock);
3868 bg_ro = cache->ro;
3869 cache->reserved -= num_bytes;
3870 if (is_delalloc)
3871 cache->delalloc_bytes -= num_bytes;
3872 spin_unlock(&cache->lock);
3873
3874 if (bg_ro)
3875 space_info->bytes_readonly += num_bytes;
3876 else if (btrfs_is_zoned(cache->fs_info))
3877 space_info->bytes_zone_unusable += num_bytes;
3878
3879 space_info->bytes_reserved -= num_bytes;
3880 space_info->max_extent_size = 0;
3881
3882 btrfs_try_granting_tickets(space_info);
3883 spin_unlock(&space_info->lock);
3884}
3885
3886static void force_metadata_allocation(struct btrfs_fs_info *info)
3887{
3888 struct list_head *head = &info->space_info;
3889 struct btrfs_space_info *found;
3890
3891 list_for_each_entry(found, head, list) {
3892 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3893 found->force_alloc = CHUNK_ALLOC_FORCE;
3894 }
3895}
3896
3897static bool should_alloc_chunk(const struct btrfs_fs_info *fs_info,
3898 const struct btrfs_space_info *sinfo, int force)
3899{
3900 u64 bytes_used = btrfs_space_info_used(sinfo, false);
3901 u64 thresh;
3902
3903 if (force == CHUNK_ALLOC_FORCE)
3904 return true;
3905
3906 /*
3907 * in limited mode, we want to have some free space up to
3908 * about 1% of the FS size.
3909 */
3910 if (force == CHUNK_ALLOC_LIMITED) {
3911 thresh = btrfs_super_total_bytes(fs_info->super_copy);
3912 thresh = max_t(u64, SZ_64M, mult_perc(thresh, 1));
3913
3914 if (sinfo->total_bytes - bytes_used < thresh)
3915 return true;
3916 }
3917
3918 if (bytes_used + SZ_2M < mult_perc(sinfo->total_bytes, 80))
3919 return false;
3920 return true;
3921}
3922
3923int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
3924{
3925 u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type);
3926 struct btrfs_space_info *space_info;
3927
3928 space_info = btrfs_find_space_info(trans->fs_info, type);
3929 if (!space_info) {
3930 DEBUG_WARN();
3931 return -EINVAL;
3932 }
3933
3934 return btrfs_chunk_alloc(trans, space_info, alloc_flags, CHUNK_ALLOC_FORCE);
3935}
3936
3937static struct btrfs_block_group *do_chunk_alloc(struct btrfs_trans_handle *trans,
3938 struct btrfs_space_info *space_info,
3939 u64 flags)
3940{
3941 struct btrfs_block_group *bg;
3942 int ret;
3943
3944 /*
3945 * Check if we have enough space in the system space info because we
3946 * will need to update device items in the chunk btree and insert a new
3947 * chunk item in the chunk btree as well. This will allocate a new
3948 * system block group if needed.
3949 */
3950 check_system_chunk(trans, flags);
3951
3952 bg = btrfs_create_chunk(trans, space_info, flags);
3953 if (IS_ERR(bg)) {
3954 ret = PTR_ERR(bg);
3955 goto out;
3956 }
3957
3958 ret = btrfs_chunk_alloc_add_chunk_item(trans, bg);
3959 /*
3960 * Normally we are not expected to fail with -ENOSPC here, since we have
3961 * previously reserved space in the system space_info and allocated one
3962 * new system chunk if necessary. However there are three exceptions:
3963 *
3964 * 1) We may have enough free space in the system space_info but all the
3965 * existing system block groups have a profile which can not be used
3966 * for extent allocation.
3967 *
3968 * This happens when mounting in degraded mode. For example we have a
3969 * RAID1 filesystem with 2 devices, lose one device and mount the fs
3970 * using the other device in degraded mode. If we then allocate a chunk,
3971 * we may have enough free space in the existing system space_info, but
3972 * none of the block groups can be used for extent allocation since they
3973 * have a RAID1 profile, and because we are in degraded mode with a
3974 * single device, we are forced to allocate a new system chunk with a
3975 * SINGLE profile. Making check_system_chunk() iterate over all system
3976 * block groups and check if they have a usable profile and enough space
3977 * can be slow on very large filesystems, so we tolerate the -ENOSPC and
3978 * try again after forcing allocation of a new system chunk. Like this
3979 * we avoid paying the cost of that search in normal circumstances, when
3980 * we were not mounted in degraded mode;
3981 *
3982 * 2) We had enough free space info the system space_info, and one suitable
3983 * block group to allocate from when we called check_system_chunk()
3984 * above. However right after we called it, the only system block group
3985 * with enough free space got turned into RO mode by a running scrub,
3986 * and in this case we have to allocate a new one and retry. We only
3987 * need do this allocate and retry once, since we have a transaction
3988 * handle and scrub uses the commit root to search for block groups;
3989 *
3990 * 3) We had one system block group with enough free space when we called
3991 * check_system_chunk(), but after that, right before we tried to
3992 * allocate the last extent buffer we needed, a discard operation came
3993 * in and it temporarily removed the last free space entry from the
3994 * block group (discard removes a free space entry, discards it, and
3995 * then adds back the entry to the block group cache).
3996 */
3997 if (ret == -ENOSPC) {
3998 const u64 sys_flags = btrfs_system_alloc_profile(trans->fs_info);
3999 struct btrfs_block_group *sys_bg;
4000 struct btrfs_space_info *sys_space_info;
4001
4002 sys_space_info = btrfs_find_space_info(trans->fs_info, sys_flags);
4003 if (unlikely(!sys_space_info)) {
4004 ret = -EINVAL;
4005 btrfs_abort_transaction(trans, ret);
4006 goto out;
4007 }
4008
4009 sys_bg = btrfs_create_chunk(trans, sys_space_info, sys_flags);
4010 if (IS_ERR(sys_bg)) {
4011 ret = PTR_ERR(sys_bg);
4012 btrfs_abort_transaction(trans, ret);
4013 goto out;
4014 }
4015
4016 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
4017 if (unlikely(ret)) {
4018 btrfs_abort_transaction(trans, ret);
4019 goto out;
4020 }
4021
4022 ret = btrfs_chunk_alloc_add_chunk_item(trans, bg);
4023 if (unlikely(ret)) {
4024 btrfs_abort_transaction(trans, ret);
4025 goto out;
4026 }
4027 } else if (unlikely(ret)) {
4028 btrfs_abort_transaction(trans, ret);
4029 goto out;
4030 }
4031out:
4032 btrfs_trans_release_chunk_metadata(trans);
4033
4034 if (ret)
4035 return ERR_PTR(ret);
4036
4037 btrfs_get_block_group(bg);
4038 return bg;
4039}
4040
4041/*
4042 * Chunk allocation is done in 2 phases:
4043 *
4044 * 1) Phase 1 - through btrfs_chunk_alloc() we allocate device extents for
4045 * the chunk, the chunk mapping, create its block group and add the items
4046 * that belong in the chunk btree to it - more specifically, we need to
4047 * update device items in the chunk btree and add a new chunk item to it.
4048 *
4049 * 2) Phase 2 - through btrfs_create_pending_block_groups(), we add the block
4050 * group item to the extent btree and the device extent items to the devices
4051 * btree.
4052 *
4053 * This is done to prevent deadlocks. For example when COWing a node from the
4054 * extent btree we are holding a write lock on the node's parent and if we
4055 * trigger chunk allocation and attempted to insert the new block group item
4056 * in the extent btree right way, we could deadlock because the path for the
4057 * insertion can include that parent node. At first glance it seems impossible
4058 * to trigger chunk allocation after starting a transaction since tasks should
4059 * reserve enough transaction units (metadata space), however while that is true
4060 * most of the time, chunk allocation may still be triggered for several reasons:
4061 *
4062 * 1) When reserving metadata, we check if there is enough free space in the
4063 * metadata space_info and therefore don't trigger allocation of a new chunk.
4064 * However later when the task actually tries to COW an extent buffer from
4065 * the extent btree or from the device btree for example, it is forced to
4066 * allocate a new block group (chunk) because the only one that had enough
4067 * free space was just turned to RO mode by a running scrub for example (or
4068 * device replace, block group reclaim thread, etc), so we can not use it
4069 * for allocating an extent and end up being forced to allocate a new one;
4070 *
4071 * 2) Because we only check that the metadata space_info has enough free bytes,
4072 * we end up not allocating a new metadata chunk in that case. However if
4073 * the filesystem was mounted in degraded mode, none of the existing block
4074 * groups might be suitable for extent allocation due to their incompatible
4075 * profile (for e.g. mounting a 2 devices filesystem, where all block groups
4076 * use a RAID1 profile, in degraded mode using a single device). In this case
4077 * when the task attempts to COW some extent buffer of the extent btree for
4078 * example, it will trigger allocation of a new metadata block group with a
4079 * suitable profile (SINGLE profile in the example of the degraded mount of
4080 * the RAID1 filesystem);
4081 *
4082 * 3) The task has reserved enough transaction units / metadata space, but when
4083 * it attempts to COW an extent buffer from the extent or device btree for
4084 * example, it does not find any free extent in any metadata block group,
4085 * therefore forced to try to allocate a new metadata block group.
4086 * This is because some other task allocated all available extents in the
4087 * meanwhile - this typically happens with tasks that don't reserve space
4088 * properly, either intentionally or as a bug. One example where this is
4089 * done intentionally is fsync, as it does not reserve any transaction units
4090 * and ends up allocating a variable number of metadata extents for log
4091 * tree extent buffers;
4092 *
4093 * 4) The task has reserved enough transaction units / metadata space, but right
4094 * before it tries to allocate the last extent buffer it needs, a discard
4095 * operation comes in and, temporarily, removes the last free space entry from
4096 * the only metadata block group that had free space (discard starts by
4097 * removing a free space entry from a block group, then does the discard
4098 * operation and, once it's done, it adds back the free space entry to the
4099 * block group).
4100 *
4101 * We also need this 2 phases setup when adding a device to a filesystem with
4102 * a seed device - we must create new metadata and system chunks without adding
4103 * any of the block group items to the chunk, extent and device btrees. If we
4104 * did not do it this way, we would get ENOSPC when attempting to update those
4105 * btrees, since all the chunks from the seed device are read-only.
4106 *
4107 * Phase 1 does the updates and insertions to the chunk btree because if we had
4108 * it done in phase 2 and have a thundering herd of tasks allocating chunks in
4109 * parallel, we risk having too many system chunks allocated by many tasks if
4110 * many tasks reach phase 1 without the previous ones completing phase 2. In the
4111 * extreme case this leads to exhaustion of the system chunk array in the
4112 * superblock. This is easier to trigger if using a btree node/leaf size of 64K
4113 * and with RAID filesystems (so we have more device items in the chunk btree).
4114 * This has happened before and commit eafa4fd0ad0607 ("btrfs: fix exhaustion of
4115 * the system chunk array due to concurrent allocations") provides more details.
4116 *
4117 * Allocation of system chunks does not happen through this function. A task that
4118 * needs to update the chunk btree (the only btree that uses system chunks), must
4119 * preallocate chunk space by calling either check_system_chunk() or
4120 * btrfs_reserve_chunk_metadata() - the former is used when allocating a data or
4121 * metadata chunk or when removing a chunk, while the later is used before doing
4122 * a modification to the chunk btree - use cases for the later are adding,
4123 * removing and resizing a device as well as relocation of a system chunk.
4124 * See the comment below for more details.
4125 *
4126 * The reservation of system space, done through check_system_chunk(), as well
4127 * as all the updates and insertions into the chunk btree must be done while
4128 * holding fs_info->chunk_mutex. This is important to guarantee that while COWing
4129 * an extent buffer from the chunks btree we never trigger allocation of a new
4130 * system chunk, which would result in a deadlock (trying to lock twice an
4131 * extent buffer of the chunk btree, first time before triggering the chunk
4132 * allocation and the second time during chunk allocation while attempting to
4133 * update the chunks btree). The system chunk array is also updated while holding
4134 * that mutex. The same logic applies to removing chunks - we must reserve system
4135 * space, update the chunk btree and the system chunk array in the superblock
4136 * while holding fs_info->chunk_mutex.
4137 *
4138 * This function, btrfs_chunk_alloc(), belongs to phase 1.
4139 *
4140 * @space_info: specify which space_info the new chunk should belong to.
4141 *
4142 * If @force is CHUNK_ALLOC_FORCE:
4143 * - return 1 if it successfully allocates a chunk,
4144 * - return errors including -ENOSPC otherwise.
4145 * If @force is NOT CHUNK_ALLOC_FORCE:
4146 * - return 0 if it doesn't need to allocate a new chunk,
4147 * - return 1 if it successfully allocates a chunk,
4148 * - return errors including -ENOSPC otherwise.
4149 */
4150int btrfs_chunk_alloc(struct btrfs_trans_handle *trans,
4151 struct btrfs_space_info *space_info, u64 flags,
4152 enum btrfs_chunk_alloc_enum force)
4153{
4154 struct btrfs_fs_info *fs_info = trans->fs_info;
4155 struct btrfs_block_group *ret_bg;
4156 bool wait_for_alloc = false;
4157 bool should_alloc = false;
4158 bool from_extent_allocation = false;
4159 int ret = 0;
4160
4161 if (force == CHUNK_ALLOC_FORCE_FOR_EXTENT) {
4162 from_extent_allocation = true;
4163 force = CHUNK_ALLOC_FORCE;
4164 }
4165
4166 /* Don't re-enter if we're already allocating a chunk */
4167 if (trans->allocating_chunk)
4168 return -ENOSPC;
4169 /*
4170 * Allocation of system chunks can not happen through this path, as we
4171 * could end up in a deadlock if we are allocating a data or metadata
4172 * chunk and there is another task modifying the chunk btree.
4173 *
4174 * This is because while we are holding the chunk mutex, we will attempt
4175 * to add the new chunk item to the chunk btree or update an existing
4176 * device item in the chunk btree, while the other task that is modifying
4177 * the chunk btree is attempting to COW an extent buffer while holding a
4178 * lock on it and on its parent - if the COW operation triggers a system
4179 * chunk allocation, then we can deadlock because we are holding the
4180 * chunk mutex and we may need to access that extent buffer or its parent
4181 * in order to add the chunk item or update a device item.
4182 *
4183 * Tasks that want to modify the chunk tree should reserve system space
4184 * before updating the chunk btree, by calling either
4185 * btrfs_reserve_chunk_metadata() or check_system_chunk().
4186 * It's possible that after a task reserves the space, it still ends up
4187 * here - this happens in the cases described above at do_chunk_alloc().
4188 * The task will have to either retry or fail.
4189 */
4190 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4191 return -ENOSPC;
4192
4193 do {
4194 spin_lock(&space_info->lock);
4195 if (force < space_info->force_alloc)
4196 force = space_info->force_alloc;
4197 should_alloc = should_alloc_chunk(fs_info, space_info, force);
4198 if (space_info->full) {
4199 /* No more free physical space */
4200 spin_unlock(&space_info->lock);
4201 if (should_alloc)
4202 ret = -ENOSPC;
4203 else
4204 ret = 0;
4205 return ret;
4206 } else if (!should_alloc) {
4207 spin_unlock(&space_info->lock);
4208 return 0;
4209 } else if (space_info->chunk_alloc) {
4210 /*
4211 * Someone is already allocating, so we need to block
4212 * until this someone is finished and then loop to
4213 * recheck if we should continue with our allocation
4214 * attempt.
4215 */
4216 spin_unlock(&space_info->lock);
4217 wait_for_alloc = true;
4218 force = CHUNK_ALLOC_NO_FORCE;
4219 mutex_lock(&fs_info->chunk_mutex);
4220 mutex_unlock(&fs_info->chunk_mutex);
4221 } else {
4222 /* Proceed with allocation */
4223 space_info->chunk_alloc = true;
4224 spin_unlock(&space_info->lock);
4225 wait_for_alloc = false;
4226 }
4227
4228 cond_resched();
4229 } while (wait_for_alloc);
4230
4231 mutex_lock(&fs_info->chunk_mutex);
4232 trans->allocating_chunk = true;
4233
4234 /*
4235 * If we have mixed data/metadata chunks we want to make sure we keep
4236 * allocating mixed chunks instead of individual chunks.
4237 */
4238 if (btrfs_mixed_space_info(space_info))
4239 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4240
4241 /*
4242 * if we're doing a data chunk, go ahead and make sure that
4243 * we keep a reasonable number of metadata chunks allocated in the
4244 * FS as well.
4245 */
4246 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4247 fs_info->data_chunk_allocations++;
4248 if (!(fs_info->data_chunk_allocations %
4249 fs_info->metadata_ratio))
4250 force_metadata_allocation(fs_info);
4251 }
4252
4253 ret_bg = do_chunk_alloc(trans, space_info, flags);
4254 trans->allocating_chunk = false;
4255
4256 if (IS_ERR(ret_bg)) {
4257 ret = PTR_ERR(ret_bg);
4258 } else if (from_extent_allocation && (flags & BTRFS_BLOCK_GROUP_DATA)) {
4259 /*
4260 * New block group is likely to be used soon. Try to activate
4261 * it now. Failure is OK for now.
4262 */
4263 btrfs_zone_activate(ret_bg);
4264 }
4265
4266 if (!ret)
4267 btrfs_put_block_group(ret_bg);
4268
4269 spin_lock(&space_info->lock);
4270 if (ret < 0) {
4271 if (ret == -ENOSPC)
4272 space_info->full = true;
4273 else
4274 goto out;
4275 } else {
4276 ret = 1;
4277 space_info->max_extent_size = 0;
4278 }
4279
4280 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4281out:
4282 space_info->chunk_alloc = false;
4283 spin_unlock(&space_info->lock);
4284 mutex_unlock(&fs_info->chunk_mutex);
4285
4286 return ret;
4287}
4288
4289static u64 get_profile_num_devs(const struct btrfs_fs_info *fs_info, u64 type)
4290{
4291 u64 num_dev;
4292
4293 num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max;
4294 if (!num_dev)
4295 num_dev = fs_info->fs_devices->rw_devices;
4296
4297 return num_dev;
4298}
4299
4300static void reserve_chunk_space(struct btrfs_trans_handle *trans,
4301 u64 bytes,
4302 u64 type)
4303{
4304 struct btrfs_fs_info *fs_info = trans->fs_info;
4305 struct btrfs_space_info *info;
4306 u64 left;
4307 int ret = 0;
4308
4309 /*
4310 * Needed because we can end up allocating a system chunk and for an
4311 * atomic and race free space reservation in the chunk block reserve.
4312 */
4313 lockdep_assert_held(&fs_info->chunk_mutex);
4314
4315 info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4316 spin_lock(&info->lock);
4317 left = info->total_bytes - btrfs_space_info_used(info, true);
4318 spin_unlock(&info->lock);
4319
4320 if (left < bytes && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4321 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
4322 left, bytes, type);
4323 btrfs_dump_space_info(info, 0, false);
4324 }
4325
4326 if (left < bytes) {
4327 u64 flags = btrfs_system_alloc_profile(fs_info);
4328 struct btrfs_block_group *bg;
4329 struct btrfs_space_info *space_info;
4330
4331 space_info = btrfs_find_space_info(fs_info, flags);
4332 ASSERT(space_info);
4333
4334 /*
4335 * Ignore failure to create system chunk. We might end up not
4336 * needing it, as we might not need to COW all nodes/leafs from
4337 * the paths we visit in the chunk tree (they were already COWed
4338 * or created in the current transaction for example).
4339 */
4340 bg = btrfs_create_chunk(trans, space_info, flags);
4341 if (IS_ERR(bg)) {
4342 ret = PTR_ERR(bg);
4343 } else {
4344 /*
4345 * We have a new chunk. We also need to activate it for
4346 * zoned filesystem.
4347 */
4348 ret = btrfs_zoned_activate_one_bg(info, true);
4349 if (ret < 0)
4350 return;
4351
4352 /*
4353 * If we fail to add the chunk item here, we end up
4354 * trying again at phase 2 of chunk allocation, at
4355 * btrfs_create_pending_block_groups(). So ignore
4356 * any error here. An ENOSPC here could happen, due to
4357 * the cases described at do_chunk_alloc() - the system
4358 * block group we just created was just turned into RO
4359 * mode by a scrub for example, or a running discard
4360 * temporarily removed its free space entries, etc.
4361 */
4362 btrfs_chunk_alloc_add_chunk_item(trans, bg);
4363 }
4364 }
4365
4366 if (!ret) {
4367 ret = btrfs_block_rsv_add(fs_info,
4368 &fs_info->chunk_block_rsv,
4369 bytes, BTRFS_RESERVE_NO_FLUSH);
4370 if (!ret)
4371 trans->chunk_bytes_reserved += bytes;
4372 }
4373}
4374
4375/*
4376 * Reserve space in the system space for allocating or removing a chunk.
4377 * The caller must be holding fs_info->chunk_mutex.
4378 */
4379void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
4380{
4381 struct btrfs_fs_info *fs_info = trans->fs_info;
4382 const u64 num_devs = get_profile_num_devs(fs_info, type);
4383 u64 bytes;
4384
4385 /* num_devs device items to update and 1 chunk item to add or remove. */
4386 bytes = btrfs_calc_metadata_size(fs_info, num_devs) +
4387 btrfs_calc_insert_metadata_size(fs_info, 1);
4388
4389 reserve_chunk_space(trans, bytes, type);
4390}
4391
4392/*
4393 * Reserve space in the system space, if needed, for doing a modification to the
4394 * chunk btree.
4395 *
4396 * @trans: A transaction handle.
4397 * @is_item_insertion: Indicate if the modification is for inserting a new item
4398 * in the chunk btree or if it's for the deletion or update
4399 * of an existing item.
4400 *
4401 * This is used in a context where we need to update the chunk btree outside
4402 * block group allocation and removal, to avoid a deadlock with a concurrent
4403 * task that is allocating a metadata or data block group and therefore needs to
4404 * update the chunk btree while holding the chunk mutex. After the update to the
4405 * chunk btree is done, btrfs_trans_release_chunk_metadata() should be called.
4406 *
4407 */
4408void btrfs_reserve_chunk_metadata(struct btrfs_trans_handle *trans,
4409 bool is_item_insertion)
4410{
4411 struct btrfs_fs_info *fs_info = trans->fs_info;
4412 u64 bytes;
4413
4414 if (is_item_insertion)
4415 bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
4416 else
4417 bytes = btrfs_calc_metadata_size(fs_info, 1);
4418
4419 mutex_lock(&fs_info->chunk_mutex);
4420 reserve_chunk_space(trans, bytes, BTRFS_BLOCK_GROUP_SYSTEM);
4421 mutex_unlock(&fs_info->chunk_mutex);
4422}
4423
4424void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
4425{
4426 struct btrfs_block_group *block_group;
4427
4428 block_group = btrfs_lookup_first_block_group(info, 0);
4429 while (block_group) {
4430 btrfs_wait_block_group_cache_done(block_group);
4431 spin_lock(&block_group->lock);
4432 if (test_and_clear_bit(BLOCK_GROUP_FLAG_IREF,
4433 &block_group->runtime_flags)) {
4434 struct btrfs_inode *inode = block_group->inode;
4435
4436 block_group->inode = NULL;
4437 spin_unlock(&block_group->lock);
4438
4439 ASSERT(block_group->io_ctl.inode == NULL);
4440 iput(&inode->vfs_inode);
4441 } else {
4442 spin_unlock(&block_group->lock);
4443 }
4444 block_group = btrfs_next_block_group(block_group);
4445 }
4446}
4447
4448static void check_removing_space_info(struct btrfs_space_info *space_info)
4449{
4450 struct btrfs_fs_info *info = space_info->fs_info;
4451
4452 if (space_info->subgroup_id == BTRFS_SUB_GROUP_PRIMARY) {
4453 /* This is a top space_info, proceed with its children first. */
4454 for (int i = 0; i < BTRFS_SPACE_INFO_SUB_GROUP_MAX; i++) {
4455 if (space_info->sub_group[i]) {
4456 check_removing_space_info(space_info->sub_group[i]);
4457 kfree(space_info->sub_group[i]);
4458 space_info->sub_group[i] = NULL;
4459 }
4460 }
4461 }
4462
4463 /*
4464 * Do not hide this behind enospc_debug, this is actually important and
4465 * indicates a real bug if this happens.
4466 */
4467 if (WARN_ON(space_info->bytes_pinned > 0 || space_info->bytes_may_use > 0))
4468 btrfs_dump_space_info(space_info, 0, false);
4469
4470 /*
4471 * If there was a failure to cleanup a log tree, very likely due to an
4472 * IO failure on a writeback attempt of one or more of its extent
4473 * buffers, we could not do proper (and cheap) unaccounting of their
4474 * reserved space, so don't warn on bytes_reserved > 0 in that case.
4475 */
4476 if (!(space_info->flags & BTRFS_BLOCK_GROUP_METADATA) ||
4477 !BTRFS_FS_LOG_CLEANUP_ERROR(info)) {
4478 if (WARN_ON(space_info->bytes_reserved > 0))
4479 btrfs_dump_space_info(space_info, 0, false);
4480 }
4481
4482 WARN_ON(space_info->reclaim_size > 0);
4483}
4484
4485/*
4486 * Must be called only after stopping all workers, since we could have block
4487 * group caching kthreads running, and therefore they could race with us if we
4488 * freed the block groups before stopping them.
4489 */
4490int btrfs_free_block_groups(struct btrfs_fs_info *info)
4491{
4492 struct btrfs_block_group *block_group;
4493 struct btrfs_space_info *space_info;
4494 struct btrfs_caching_control *caching_ctl;
4495 struct rb_node *n;
4496
4497 if (btrfs_is_zoned(info)) {
4498 if (info->active_meta_bg) {
4499 btrfs_put_block_group(info->active_meta_bg);
4500 info->active_meta_bg = NULL;
4501 }
4502 if (info->active_system_bg) {
4503 btrfs_put_block_group(info->active_system_bg);
4504 info->active_system_bg = NULL;
4505 }
4506 }
4507
4508 write_lock(&info->block_group_cache_lock);
4509 while (!list_empty(&info->caching_block_groups)) {
4510 caching_ctl = list_first_entry(&info->caching_block_groups,
4511 struct btrfs_caching_control, list);
4512 list_del(&caching_ctl->list);
4513 btrfs_put_caching_control(caching_ctl);
4514 }
4515 write_unlock(&info->block_group_cache_lock);
4516
4517 spin_lock(&info->unused_bgs_lock);
4518 while (!list_empty(&info->unused_bgs)) {
4519 block_group = list_first_entry(&info->unused_bgs,
4520 struct btrfs_block_group,
4521 bg_list);
4522 list_del_init(&block_group->bg_list);
4523 btrfs_put_block_group(block_group);
4524 }
4525
4526 while (!list_empty(&info->reclaim_bgs)) {
4527 block_group = list_first_entry(&info->reclaim_bgs,
4528 struct btrfs_block_group,
4529 bg_list);
4530 list_del_init(&block_group->bg_list);
4531 btrfs_put_block_group(block_group);
4532 }
4533 spin_unlock(&info->unused_bgs_lock);
4534
4535 spin_lock(&info->zone_active_bgs_lock);
4536 while (!list_empty(&info->zone_active_bgs)) {
4537 block_group = list_first_entry(&info->zone_active_bgs,
4538 struct btrfs_block_group,
4539 active_bg_list);
4540 list_del_init(&block_group->active_bg_list);
4541 btrfs_put_block_group(block_group);
4542 }
4543 spin_unlock(&info->zone_active_bgs_lock);
4544
4545 write_lock(&info->block_group_cache_lock);
4546 while ((n = rb_last(&info->block_group_cache_tree.rb_root)) != NULL) {
4547 block_group = rb_entry(n, struct btrfs_block_group,
4548 cache_node);
4549 rb_erase_cached(&block_group->cache_node,
4550 &info->block_group_cache_tree);
4551 RB_CLEAR_NODE(&block_group->cache_node);
4552 write_unlock(&info->block_group_cache_lock);
4553
4554 down_write(&block_group->space_info->groups_sem);
4555 list_del(&block_group->list);
4556 up_write(&block_group->space_info->groups_sem);
4557
4558 /*
4559 * We haven't cached this block group, which means we could
4560 * possibly have excluded extents on this block group.
4561 */
4562 if (block_group->cached == BTRFS_CACHE_NO ||
4563 block_group->cached == BTRFS_CACHE_ERROR)
4564 btrfs_free_excluded_extents(block_group);
4565
4566 btrfs_remove_free_space_cache(block_group);
4567 ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
4568 ASSERT(list_empty(&block_group->dirty_list));
4569 ASSERT(list_empty(&block_group->io_list));
4570 ASSERT(list_empty(&block_group->bg_list));
4571 ASSERT(refcount_read(&block_group->refs) == 1);
4572 ASSERT(block_group->swap_extents == 0);
4573 btrfs_put_block_group(block_group);
4574
4575 write_lock(&info->block_group_cache_lock);
4576 }
4577 write_unlock(&info->block_group_cache_lock);
4578
4579 btrfs_release_global_block_rsv(info);
4580
4581 while (!list_empty(&info->space_info)) {
4582 space_info = list_first_entry(&info->space_info,
4583 struct btrfs_space_info, list);
4584
4585 check_removing_space_info(space_info);
4586 list_del(&space_info->list);
4587 btrfs_sysfs_remove_space_info(space_info);
4588 }
4589 return 0;
4590}
4591
4592void btrfs_freeze_block_group(struct btrfs_block_group *cache)
4593{
4594 atomic_inc(&cache->frozen);
4595}
4596
4597void btrfs_unfreeze_block_group(struct btrfs_block_group *block_group)
4598{
4599 struct btrfs_fs_info *fs_info = block_group->fs_info;
4600 bool cleanup;
4601
4602 spin_lock(&block_group->lock);
4603 cleanup = (atomic_dec_and_test(&block_group->frozen) &&
4604 test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags));
4605 spin_unlock(&block_group->lock);
4606
4607 if (cleanup) {
4608 struct btrfs_chunk_map *map;
4609
4610 map = btrfs_find_chunk_map(fs_info, block_group->start, 1);
4611 /* Logic error, can't happen. */
4612 ASSERT(map);
4613
4614 btrfs_remove_chunk_map(fs_info, map);
4615
4616 /* Once for our lookup reference. */
4617 btrfs_free_chunk_map(map);
4618
4619 /*
4620 * We may have left one free space entry and other possible
4621 * tasks trimming this block group have left 1 entry each one.
4622 * Free them if any.
4623 */
4624 btrfs_remove_free_space_cache(block_group);
4625 }
4626}
4627
4628bool btrfs_inc_block_group_swap_extents(struct btrfs_block_group *bg)
4629{
4630 bool ret = true;
4631
4632 spin_lock(&bg->lock);
4633 if (bg->ro)
4634 ret = false;
4635 else
4636 bg->swap_extents++;
4637 spin_unlock(&bg->lock);
4638
4639 return ret;
4640}
4641
4642void btrfs_dec_block_group_swap_extents(struct btrfs_block_group *bg, int amount)
4643{
4644 spin_lock(&bg->lock);
4645 ASSERT(!bg->ro);
4646 ASSERT(bg->swap_extents >= amount);
4647 bg->swap_extents -= amount;
4648 spin_unlock(&bg->lock);
4649}
4650
4651enum btrfs_block_group_size_class btrfs_calc_block_group_size_class(u64 size)
4652{
4653 if (size <= SZ_128K)
4654 return BTRFS_BG_SZ_SMALL;
4655 if (size <= SZ_8M)
4656 return BTRFS_BG_SZ_MEDIUM;
4657 return BTRFS_BG_SZ_LARGE;
4658}
4659
4660/*
4661 * Handle a block group allocating an extent in a size class
4662 *
4663 * @bg: The block group we allocated in.
4664 * @size_class: The size class of the allocation.
4665 * @force_wrong_size_class: Whether we are desperate enough to allow
4666 * mismatched size classes.
4667 *
4668 * Returns: 0 if the size class was valid for this block_group, -EAGAIN in the
4669 * case of a race that leads to the wrong size class without
4670 * force_wrong_size_class set.
4671 *
4672 * find_free_extent will skip block groups with a mismatched size class until
4673 * it really needs to avoid ENOSPC. In that case it will set
4674 * force_wrong_size_class. However, if a block group is newly allocated and
4675 * doesn't yet have a size class, then it is possible for two allocations of
4676 * different sizes to race and both try to use it. The loser is caught here and
4677 * has to retry.
4678 */
4679int btrfs_use_block_group_size_class(struct btrfs_block_group *bg,
4680 enum btrfs_block_group_size_class size_class,
4681 bool force_wrong_size_class)
4682{
4683 ASSERT(size_class != BTRFS_BG_SZ_NONE);
4684
4685 /* The new allocation is in the right size class, do nothing */
4686 if (bg->size_class == size_class)
4687 return 0;
4688 /*
4689 * The new allocation is in a mismatched size class.
4690 * This means one of two things:
4691 *
4692 * 1. Two tasks in find_free_extent for different size_classes raced
4693 * and hit the same empty block_group. Make the loser try again.
4694 * 2. A call to find_free_extent got desperate enough to set
4695 * 'force_wrong_slab'. Don't change the size_class, but allow the
4696 * allocation.
4697 */
4698 if (bg->size_class != BTRFS_BG_SZ_NONE) {
4699 if (force_wrong_size_class)
4700 return 0;
4701 return -EAGAIN;
4702 }
4703 /*
4704 * The happy new block group case: the new allocation is the first
4705 * one in the block_group so we set size_class.
4706 */
4707 bg->size_class = size_class;
4708
4709 return 0;
4710}
4711
4712bool btrfs_block_group_should_use_size_class(const struct btrfs_block_group *bg)
4713{
4714 if (btrfs_is_zoned(bg->fs_info))
4715 return false;
4716 if (!btrfs_is_block_group_data_only(bg))
4717 return false;
4718 return true;
4719}