Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 * Copyright (C) 2022 Christoph Hellwig.
5 */
6
7#include <linux/bio.h>
8#include "bio.h"
9#include "ctree.h"
10#include "volumes.h"
11#include "raid56.h"
12#include "async-thread.h"
13#include "dev-replace.h"
14#include "zoned.h"
15#include "file-item.h"
16#include "raid-stripe-tree.h"
17
18static struct bio_set btrfs_bioset;
19static struct bio_set btrfs_clone_bioset;
20static struct bio_set btrfs_repair_bioset;
21static mempool_t btrfs_failed_bio_pool;
22
23struct btrfs_failed_bio {
24 struct btrfs_bio *bbio;
25 int num_copies;
26 atomic_t repair_count;
27};
28
29/* Is this a data path I/O that needs storage layer checksum and repair? */
30static inline bool is_data_bbio(const struct btrfs_bio *bbio)
31{
32 return bbio->inode && is_data_inode(bbio->inode);
33}
34
35static bool bbio_has_ordered_extent(const struct btrfs_bio *bbio)
36{
37 return is_data_bbio(bbio) && btrfs_op(&bbio->bio) == BTRFS_MAP_WRITE;
38}
39
40/*
41 * Initialize a btrfs_bio structure. This skips the embedded bio itself as it
42 * is already initialized by the block layer.
43 */
44void btrfs_bio_init(struct btrfs_bio *bbio, struct btrfs_inode *inode, u64 file_offset,
45 btrfs_bio_end_io_t end_io, void *private)
46{
47 /* @inode parameter is mandatory. */
48 ASSERT(inode);
49
50 memset(bbio, 0, offsetof(struct btrfs_bio, bio));
51 bbio->inode = inode;
52 bbio->end_io = end_io;
53 bbio->private = private;
54 bbio->file_offset = file_offset;
55 atomic_set(&bbio->pending_ios, 1);
56 WRITE_ONCE(bbio->status, BLK_STS_OK);
57}
58
59/*
60 * Allocate a btrfs_bio structure. The btrfs_bio is the main I/O container for
61 * btrfs, and is used for all I/O submitted through btrfs_submit_bbio().
62 *
63 * Just like the underlying bio_alloc_bioset it will not fail as it is backed by
64 * a mempool.
65 */
66struct btrfs_bio *btrfs_bio_alloc(unsigned int nr_vecs, blk_opf_t opf,
67 struct btrfs_inode *inode, u64 file_offset,
68 btrfs_bio_end_io_t end_io, void *private)
69{
70 struct btrfs_bio *bbio;
71 struct bio *bio;
72
73 bio = bio_alloc_bioset(NULL, nr_vecs, opf, GFP_NOFS, &btrfs_bioset);
74 bbio = btrfs_bio(bio);
75 btrfs_bio_init(bbio, inode, file_offset, end_io, private);
76 return bbio;
77}
78
79static struct btrfs_bio *btrfs_split_bio(struct btrfs_fs_info *fs_info,
80 struct btrfs_bio *orig_bbio,
81 u64 map_length)
82{
83 struct btrfs_bio *bbio;
84 struct bio *bio;
85
86 bio = bio_split(&orig_bbio->bio, map_length >> SECTOR_SHIFT, GFP_NOFS,
87 &btrfs_clone_bioset);
88 if (IS_ERR(bio))
89 return ERR_CAST(bio);
90
91 bbio = btrfs_bio(bio);
92 btrfs_bio_init(bbio, orig_bbio->inode, orig_bbio->file_offset, NULL, orig_bbio);
93 orig_bbio->file_offset += map_length;
94 if (bbio_has_ordered_extent(bbio)) {
95 refcount_inc(&orig_bbio->ordered->refs);
96 bbio->ordered = orig_bbio->ordered;
97 bbio->orig_logical = orig_bbio->orig_logical;
98 orig_bbio->orig_logical += map_length;
99 }
100 bbio->csum_search_commit_root = orig_bbio->csum_search_commit_root;
101 atomic_inc(&orig_bbio->pending_ios);
102 return bbio;
103}
104
105void btrfs_bio_end_io(struct btrfs_bio *bbio, blk_status_t status)
106{
107 /* Make sure we're already in task context. */
108 ASSERT(in_task());
109
110 if (bbio->async_csum)
111 wait_for_completion(&bbio->csum_done);
112
113 bbio->bio.bi_status = status;
114 if (bbio->bio.bi_pool == &btrfs_clone_bioset) {
115 struct btrfs_bio *orig_bbio = bbio->private;
116
117 /* Free bio that was never submitted to the underlying device. */
118 if (bbio_has_ordered_extent(bbio))
119 btrfs_put_ordered_extent(bbio->ordered);
120 bio_put(&bbio->bio);
121
122 bbio = orig_bbio;
123 }
124
125 /*
126 * At this point, bbio always points to the original btrfs_bio. Save
127 * the first error in it.
128 */
129 if (status != BLK_STS_OK)
130 cmpxchg(&bbio->status, BLK_STS_OK, status);
131
132 if (atomic_dec_and_test(&bbio->pending_ios)) {
133 /* Load split bio's error which might be set above. */
134 if (status == BLK_STS_OK)
135 bbio->bio.bi_status = READ_ONCE(bbio->status);
136
137 if (bbio_has_ordered_extent(bbio)) {
138 struct btrfs_ordered_extent *ordered = bbio->ordered;
139
140 bbio->end_io(bbio);
141 btrfs_put_ordered_extent(ordered);
142 } else {
143 bbio->end_io(bbio);
144 }
145 }
146}
147
148static int next_repair_mirror(const struct btrfs_failed_bio *fbio, int cur_mirror)
149{
150 if (cur_mirror == fbio->num_copies)
151 return cur_mirror + 1 - fbio->num_copies;
152 return cur_mirror + 1;
153}
154
155static int prev_repair_mirror(const struct btrfs_failed_bio *fbio, int cur_mirror)
156{
157 if (cur_mirror == 1)
158 return fbio->num_copies;
159 return cur_mirror - 1;
160}
161
162static void btrfs_repair_done(struct btrfs_failed_bio *fbio)
163{
164 if (atomic_dec_and_test(&fbio->repair_count)) {
165 btrfs_bio_end_io(fbio->bbio, fbio->bbio->bio.bi_status);
166 mempool_free(fbio, &btrfs_failed_bio_pool);
167 }
168}
169
170static void btrfs_end_repair_bio(struct btrfs_bio *repair_bbio,
171 struct btrfs_device *dev)
172{
173 struct btrfs_failed_bio *fbio = repair_bbio->private;
174 struct btrfs_inode *inode = repair_bbio->inode;
175 struct btrfs_fs_info *fs_info = inode->root->fs_info;
176 /*
177 * We can not move forward the saved_iter, as it will be later
178 * utilized by repair_bbio again.
179 */
180 struct bvec_iter saved_iter = repair_bbio->saved_iter;
181 const u32 step = min(fs_info->sectorsize, PAGE_SIZE);
182 const u64 logical = repair_bbio->saved_iter.bi_sector << SECTOR_SHIFT;
183 const u32 nr_steps = repair_bbio->saved_iter.bi_size / step;
184 int mirror = repair_bbio->mirror_num;
185 phys_addr_t paddrs[BTRFS_MAX_BLOCKSIZE / PAGE_SIZE];
186 phys_addr_t paddr;
187 unsigned int slot = 0;
188
189 /* Repair bbio should be eaxctly one block sized. */
190 ASSERT(repair_bbio->saved_iter.bi_size == fs_info->sectorsize);
191
192 btrfs_bio_for_each_block(paddr, &repair_bbio->bio, &saved_iter, step) {
193 ASSERT(slot < nr_steps);
194 paddrs[slot] = paddr;
195 slot++;
196 }
197
198 if (repair_bbio->bio.bi_status ||
199 !btrfs_data_csum_ok(repair_bbio, dev, 0, paddrs)) {
200 bio_reset(&repair_bbio->bio, NULL, REQ_OP_READ);
201 repair_bbio->bio.bi_iter = repair_bbio->saved_iter;
202
203 mirror = next_repair_mirror(fbio, mirror);
204 if (mirror == fbio->bbio->mirror_num) {
205 btrfs_debug(fs_info, "no mirror left");
206 fbio->bbio->bio.bi_status = BLK_STS_IOERR;
207 goto done;
208 }
209
210 btrfs_submit_bbio(repair_bbio, mirror);
211 return;
212 }
213
214 do {
215 mirror = prev_repair_mirror(fbio, mirror);
216 btrfs_repair_io_failure(fs_info, btrfs_ino(inode),
217 repair_bbio->file_offset, fs_info->sectorsize,
218 logical, paddrs, step, mirror);
219 } while (mirror != fbio->bbio->mirror_num);
220
221done:
222 btrfs_repair_done(fbio);
223 bio_put(&repair_bbio->bio);
224}
225
226/*
227 * Try to kick off a repair read to the next available mirror for a bad sector.
228 *
229 * This primarily tries to recover good data to serve the actual read request,
230 * but also tries to write the good data back to the bad mirror(s) when a
231 * read succeeded to restore the redundancy.
232 */
233static struct btrfs_failed_bio *repair_one_sector(struct btrfs_bio *failed_bbio,
234 u32 bio_offset,
235 phys_addr_t paddrs[],
236 struct btrfs_failed_bio *fbio)
237{
238 struct btrfs_inode *inode = failed_bbio->inode;
239 struct btrfs_fs_info *fs_info = inode->root->fs_info;
240 const u32 sectorsize = fs_info->sectorsize;
241 const u32 step = min(fs_info->sectorsize, PAGE_SIZE);
242 const u32 nr_steps = sectorsize / step;
243 /*
244 * For bs > ps cases, the saved_iter can be partially moved forward.
245 * In that case we should round it down to the block boundary.
246 */
247 const u64 logical = round_down(failed_bbio->saved_iter.bi_sector << SECTOR_SHIFT,
248 sectorsize);
249 struct btrfs_bio *repair_bbio;
250 struct bio *repair_bio;
251 int num_copies;
252 int mirror;
253
254 btrfs_debug(fs_info, "repair read error: read error at %llu",
255 failed_bbio->file_offset + bio_offset);
256
257 num_copies = btrfs_num_copies(fs_info, logical, sectorsize);
258 if (num_copies == 1) {
259 btrfs_debug(fs_info, "no copy to repair from");
260 failed_bbio->bio.bi_status = BLK_STS_IOERR;
261 return fbio;
262 }
263
264 if (!fbio) {
265 fbio = mempool_alloc(&btrfs_failed_bio_pool, GFP_NOFS);
266 fbio->bbio = failed_bbio;
267 fbio->num_copies = num_copies;
268 atomic_set(&fbio->repair_count, 1);
269 }
270
271 atomic_inc(&fbio->repair_count);
272
273 repair_bio = bio_alloc_bioset(NULL, nr_steps, REQ_OP_READ, GFP_NOFS,
274 &btrfs_repair_bioset);
275 repair_bio->bi_iter.bi_sector = logical >> SECTOR_SHIFT;
276 for (int i = 0; i < nr_steps; i++) {
277 int ret;
278
279 ASSERT(offset_in_page(paddrs[i]) + step <= PAGE_SIZE);
280
281 ret = bio_add_page(repair_bio, phys_to_page(paddrs[i]), step,
282 offset_in_page(paddrs[i]));
283 ASSERT(ret == step);
284 }
285
286 repair_bbio = btrfs_bio(repair_bio);
287 btrfs_bio_init(repair_bbio, failed_bbio->inode, failed_bbio->file_offset + bio_offset,
288 NULL, fbio);
289
290 mirror = next_repair_mirror(fbio, failed_bbio->mirror_num);
291 btrfs_debug(fs_info, "submitting repair read to mirror %d", mirror);
292 btrfs_submit_bbio(repair_bbio, mirror);
293 return fbio;
294}
295
296static void btrfs_check_read_bio(struct btrfs_bio *bbio, struct btrfs_device *dev)
297{
298 struct btrfs_inode *inode = bbio->inode;
299 struct btrfs_fs_info *fs_info = inode->root->fs_info;
300 const u32 sectorsize = fs_info->sectorsize;
301 const u32 step = min(sectorsize, PAGE_SIZE);
302 const u32 nr_steps = sectorsize / step;
303 struct bvec_iter *iter = &bbio->saved_iter;
304 blk_status_t status = bbio->bio.bi_status;
305 struct btrfs_failed_bio *fbio = NULL;
306 phys_addr_t paddrs[BTRFS_MAX_BLOCKSIZE / PAGE_SIZE];
307 phys_addr_t paddr;
308 u32 offset = 0;
309
310 /* Read-repair requires the inode field to be set by the submitter. */
311 ASSERT(inode);
312
313 /*
314 * Hand off repair bios to the repair code as there is no upper level
315 * submitter for them.
316 */
317 if (bbio->bio.bi_pool == &btrfs_repair_bioset) {
318 btrfs_end_repair_bio(bbio, dev);
319 return;
320 }
321
322 /* Clear the I/O error. A failed repair will reset it. */
323 bbio->bio.bi_status = BLK_STS_OK;
324
325 btrfs_bio_for_each_block(paddr, &bbio->bio, iter, step) {
326 paddrs[(offset / step) % nr_steps] = paddr;
327 offset += step;
328
329 if (IS_ALIGNED(offset, sectorsize)) {
330 if (status ||
331 !btrfs_data_csum_ok(bbio, dev, offset - sectorsize, paddrs))
332 fbio = repair_one_sector(bbio, offset - sectorsize,
333 paddrs, fbio);
334 }
335 }
336 if (bbio->csum != bbio->csum_inline)
337 kvfree(bbio->csum);
338
339 if (fbio)
340 btrfs_repair_done(fbio);
341 else
342 btrfs_bio_end_io(bbio, bbio->bio.bi_status);
343}
344
345static void btrfs_log_dev_io_error(const struct bio *bio, struct btrfs_device *dev)
346{
347 if (!dev || !dev->bdev)
348 return;
349 if (bio->bi_status != BLK_STS_IOERR && bio->bi_status != BLK_STS_TARGET)
350 return;
351
352 if (btrfs_op(bio) == BTRFS_MAP_WRITE)
353 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
354 else if (!(bio->bi_opf & REQ_RAHEAD))
355 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
356 if (bio->bi_opf & REQ_PREFLUSH)
357 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_FLUSH_ERRS);
358}
359
360static struct workqueue_struct *btrfs_end_io_wq(const struct btrfs_fs_info *fs_info,
361 const struct bio *bio)
362{
363 if (bio->bi_opf & REQ_META)
364 return fs_info->endio_meta_workers;
365 return fs_info->endio_workers;
366}
367
368static void simple_end_io_work(struct work_struct *work)
369{
370 struct btrfs_bio *bbio = container_of(work, struct btrfs_bio, end_io_work);
371 struct bio *bio = &bbio->bio;
372
373 if (bio_op(bio) == REQ_OP_READ) {
374 /* Metadata reads are checked and repaired by the submitter. */
375 if (is_data_bbio(bbio))
376 return btrfs_check_read_bio(bbio, bbio->bio.bi_private);
377 return btrfs_bio_end_io(bbio, bbio->bio.bi_status);
378 }
379 if (bio_is_zone_append(bio) && !bio->bi_status)
380 btrfs_record_physical_zoned(bbio);
381 btrfs_bio_end_io(bbio, bbio->bio.bi_status);
382}
383
384static void btrfs_simple_end_io(struct bio *bio)
385{
386 struct btrfs_bio *bbio = btrfs_bio(bio);
387 struct btrfs_device *dev = bio->bi_private;
388 struct btrfs_fs_info *fs_info = bbio->inode->root->fs_info;
389
390 btrfs_bio_counter_dec(fs_info);
391
392 if (bio->bi_status)
393 btrfs_log_dev_io_error(bio, dev);
394
395 INIT_WORK(&bbio->end_io_work, simple_end_io_work);
396 queue_work(btrfs_end_io_wq(fs_info, bio), &bbio->end_io_work);
397}
398
399static void btrfs_raid56_end_io(struct bio *bio)
400{
401 struct btrfs_io_context *bioc = bio->bi_private;
402 struct btrfs_bio *bbio = btrfs_bio(bio);
403
404 /* RAID56 endio is always handled in workqueue. */
405 ASSERT(in_task());
406
407 btrfs_bio_counter_dec(bioc->fs_info);
408 bbio->mirror_num = bioc->mirror_num;
409 if (bio_op(bio) == REQ_OP_READ && is_data_bbio(bbio))
410 btrfs_check_read_bio(bbio, NULL);
411 else
412 btrfs_bio_end_io(bbio, bbio->bio.bi_status);
413
414 btrfs_put_bioc(bioc);
415}
416
417static void orig_write_end_io_work(struct work_struct *work)
418{
419 struct btrfs_bio *bbio = container_of(work, struct btrfs_bio, end_io_work);
420 struct bio *bio = &bbio->bio;
421 struct btrfs_io_stripe *stripe = bio->bi_private;
422 struct btrfs_io_context *bioc = stripe->bioc;
423
424 btrfs_bio_counter_dec(bioc->fs_info);
425
426 if (bio->bi_status) {
427 atomic_inc(&bioc->error);
428 btrfs_log_dev_io_error(bio, stripe->dev);
429 }
430
431 /*
432 * Only send an error to the higher layers if it is beyond the tolerance
433 * threshold.
434 */
435 if (atomic_read(&bioc->error) > bioc->max_errors)
436 bio->bi_status = BLK_STS_IOERR;
437 else
438 bio->bi_status = BLK_STS_OK;
439
440 if (bio_is_zone_append(bio) && !bio->bi_status)
441 stripe->physical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
442
443 btrfs_bio_end_io(bbio, bbio->bio.bi_status);
444 btrfs_put_bioc(bioc);
445}
446
447static void btrfs_orig_write_end_io(struct bio *bio)
448{
449 struct btrfs_bio *bbio = btrfs_bio(bio);
450
451 INIT_WORK(&bbio->end_io_work, orig_write_end_io_work);
452 queue_work(btrfs_end_io_wq(bbio->inode->root->fs_info, bio), &bbio->end_io_work);
453}
454
455static void clone_write_end_io_work(struct work_struct *work)
456{
457 struct btrfs_bio *bbio = container_of(work, struct btrfs_bio, end_io_work);
458 struct bio *bio = &bbio->bio;
459 struct btrfs_io_stripe *stripe = bio->bi_private;
460
461 if (bio->bi_status) {
462 atomic_inc(&stripe->bioc->error);
463 btrfs_log_dev_io_error(bio, stripe->dev);
464 } else if (bio_is_zone_append(bio)) {
465 stripe->physical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
466 }
467
468 /* Pass on control to the original bio this one was cloned from */
469 bio_endio(stripe->bioc->orig_bio);
470 bio_put(bio);
471}
472
473static void btrfs_clone_write_end_io(struct bio *bio)
474{
475 struct btrfs_bio *bbio = btrfs_bio(bio);
476
477 INIT_WORK(&bbio->end_io_work, clone_write_end_io_work);
478 queue_work(btrfs_end_io_wq(bbio->inode->root->fs_info, bio), &bbio->end_io_work);
479}
480
481static void btrfs_submit_dev_bio(struct btrfs_device *dev, struct bio *bio)
482{
483 if (!dev || !dev->bdev ||
484 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
485 (btrfs_op(bio) == BTRFS_MAP_WRITE &&
486 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
487 bio_io_error(bio);
488 return;
489 }
490
491 bio_set_dev(bio, dev->bdev);
492
493 /*
494 * For zone append writing, bi_sector must point the beginning of the
495 * zone
496 */
497 if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
498 u64 physical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
499 u64 zone_start = round_down(physical, dev->fs_info->zone_size);
500
501 ASSERT(btrfs_dev_is_sequential(dev, physical));
502 bio->bi_iter.bi_sector = zone_start >> SECTOR_SHIFT;
503 }
504 btrfs_debug(dev->fs_info,
505 "%s: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
506 __func__, bio_op(bio), bio->bi_opf, bio->bi_iter.bi_sector,
507 (unsigned long)dev->bdev->bd_dev, btrfs_dev_name(dev),
508 dev->devid, bio->bi_iter.bi_size);
509
510 /*
511 * Track reads if tracking is enabled; ignore I/O operations before the
512 * filesystem is fully initialized.
513 */
514 if (dev->fs_devices->collect_fs_stats && bio_op(bio) == REQ_OP_READ && dev->fs_info)
515 percpu_counter_add(&dev->fs_info->stats_read_blocks,
516 bio->bi_iter.bi_size >> dev->fs_info->sectorsize_bits);
517
518 if (bio->bi_opf & REQ_BTRFS_CGROUP_PUNT)
519 blkcg_punt_bio_submit(bio);
520 else
521 submit_bio(bio);
522}
523
524static void btrfs_submit_mirrored_bio(struct btrfs_io_context *bioc, int dev_nr)
525{
526 struct bio *orig_bio = bioc->orig_bio, *bio;
527 struct btrfs_bio *orig_bbio = btrfs_bio(orig_bio);
528
529 ASSERT(bio_op(orig_bio) != REQ_OP_READ);
530
531 /* Reuse the bio embedded into the btrfs_bio for the last mirror */
532 if (dev_nr == bioc->num_stripes - 1) {
533 bio = orig_bio;
534 bio->bi_end_io = btrfs_orig_write_end_io;
535 } else {
536 /* We need to use endio_work to run end_io in task context. */
537 bio = bio_alloc_clone(NULL, orig_bio, GFP_NOFS, &btrfs_bioset);
538 bio_inc_remaining(orig_bio);
539 btrfs_bio_init(btrfs_bio(bio), orig_bbio->inode,
540 orig_bbio->file_offset, NULL, NULL);
541 bio->bi_end_io = btrfs_clone_write_end_io;
542 }
543
544 bio->bi_private = &bioc->stripes[dev_nr];
545 bio->bi_iter.bi_sector = bioc->stripes[dev_nr].physical >> SECTOR_SHIFT;
546 bioc->stripes[dev_nr].bioc = bioc;
547 bioc->size = bio->bi_iter.bi_size;
548 btrfs_submit_dev_bio(bioc->stripes[dev_nr].dev, bio);
549}
550
551static void btrfs_submit_bio(struct bio *bio, struct btrfs_io_context *bioc,
552 struct btrfs_io_stripe *smap, int mirror_num)
553{
554 if (!bioc) {
555 /* Single mirror read/write fast path. */
556 btrfs_bio(bio)->mirror_num = mirror_num;
557 bio->bi_iter.bi_sector = smap->physical >> SECTOR_SHIFT;
558 if (bio_op(bio) != REQ_OP_READ)
559 btrfs_bio(bio)->orig_physical = smap->physical;
560 bio->bi_private = smap->dev;
561 bio->bi_end_io = btrfs_simple_end_io;
562 btrfs_submit_dev_bio(smap->dev, bio);
563 } else if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
564 /* Parity RAID write or read recovery. */
565 bio->bi_private = bioc;
566 bio->bi_end_io = btrfs_raid56_end_io;
567 if (bio_op(bio) == REQ_OP_READ)
568 raid56_parity_recover(bio, bioc, mirror_num);
569 else
570 raid56_parity_write(bio, bioc);
571 } else {
572 /* Write to multiple mirrors. */
573 int total_devs = bioc->num_stripes;
574
575 bioc->orig_bio = bio;
576 for (int dev_nr = 0; dev_nr < total_devs; dev_nr++)
577 btrfs_submit_mirrored_bio(bioc, dev_nr);
578 }
579}
580
581static int btrfs_bio_csum(struct btrfs_bio *bbio)
582{
583 if (bbio->bio.bi_opf & REQ_META)
584 return btree_csum_one_bio(bbio);
585#ifdef CONFIG_BTRFS_EXPERIMENTAL
586 return btrfs_csum_one_bio(bbio, true);
587#else
588 return btrfs_csum_one_bio(bbio, false);
589#endif
590}
591
592/*
593 * Async submit bios are used to offload expensive checksumming onto the worker
594 * threads.
595 */
596struct async_submit_bio {
597 struct btrfs_bio *bbio;
598 struct btrfs_io_context *bioc;
599 struct btrfs_io_stripe smap;
600 int mirror_num;
601 struct btrfs_work work;
602};
603
604/*
605 * In order to insert checksums into the metadata in large chunks, we wait
606 * until bio submission time. All the pages in the bio are checksummed and
607 * sums are attached onto the ordered extent record.
608 *
609 * At IO completion time the csums attached on the ordered extent record are
610 * inserted into the btree.
611 */
612static void run_one_async_start(struct btrfs_work *work)
613{
614 struct async_submit_bio *async =
615 container_of(work, struct async_submit_bio, work);
616 int ret;
617
618 ret = btrfs_bio_csum(async->bbio);
619 if (ret)
620 async->bbio->bio.bi_status = errno_to_blk_status(ret);
621}
622
623/*
624 * In order to insert checksums into the metadata in large chunks, we wait
625 * until bio submission time. All the pages in the bio are checksummed and
626 * sums are attached onto the ordered extent record.
627 *
628 * At IO completion time the csums attached on the ordered extent record are
629 * inserted into the tree.
630 *
631 * If called with @do_free == true, then it will free the work struct.
632 */
633static void run_one_async_done(struct btrfs_work *work, bool do_free)
634{
635 struct async_submit_bio *async =
636 container_of(work, struct async_submit_bio, work);
637 struct bio *bio = &async->bbio->bio;
638
639 if (do_free) {
640 kfree(container_of(work, struct async_submit_bio, work));
641 return;
642 }
643
644 /* If an error occurred we just want to clean up the bio and move on. */
645 if (bio->bi_status) {
646 btrfs_bio_end_io(async->bbio, bio->bi_status);
647 return;
648 }
649
650 /*
651 * All of the bios that pass through here are from async helpers.
652 * Use REQ_BTRFS_CGROUP_PUNT to issue them from the owning cgroup's
653 * context. This changes nothing when cgroups aren't in use.
654 */
655 bio->bi_opf |= REQ_BTRFS_CGROUP_PUNT;
656 btrfs_submit_bio(bio, async->bioc, &async->smap, async->mirror_num);
657}
658
659static bool should_async_write(struct btrfs_bio *bbio)
660{
661 struct btrfs_fs_info *fs_info = bbio->inode->root->fs_info;
662 bool auto_csum_mode = true;
663
664#ifdef CONFIG_BTRFS_EXPERIMENTAL
665 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
666 enum btrfs_offload_csum_mode csum_mode = READ_ONCE(fs_devices->offload_csum_mode);
667
668 if (csum_mode == BTRFS_OFFLOAD_CSUM_FORCE_ON)
669 return true;
670 /*
671 * Write bios will calculate checksum and submit bio at the same time.
672 * Unless explicitly required don't offload serial csum calculate and bio
673 * submit into a workqueue.
674 */
675 return false;
676#endif
677
678 /* Submit synchronously if the checksum implementation is fast. */
679 if (auto_csum_mode && test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
680 return false;
681
682 /*
683 * Try to defer the submission to a workqueue to parallelize the
684 * checksum calculation unless the I/O is issued synchronously.
685 */
686 if (op_is_sync(bbio->bio.bi_opf))
687 return false;
688
689 /* Zoned devices require I/O to be submitted in order. */
690 if ((bbio->bio.bi_opf & REQ_META) && btrfs_is_zoned(fs_info))
691 return false;
692
693 return true;
694}
695
696/*
697 * Submit bio to an async queue.
698 *
699 * Return true if the work has been successfully submitted, else false.
700 */
701static bool btrfs_wq_submit_bio(struct btrfs_bio *bbio,
702 struct btrfs_io_context *bioc,
703 struct btrfs_io_stripe *smap, int mirror_num)
704{
705 struct btrfs_fs_info *fs_info = bbio->inode->root->fs_info;
706 struct async_submit_bio *async;
707
708 async = kmalloc(sizeof(*async), GFP_NOFS);
709 if (!async)
710 return false;
711
712 async->bbio = bbio;
713 async->bioc = bioc;
714 async->smap = *smap;
715 async->mirror_num = mirror_num;
716
717 btrfs_init_work(&async->work, run_one_async_start, run_one_async_done);
718 btrfs_queue_work(fs_info->workers, &async->work);
719 return true;
720}
721
722static u64 btrfs_append_map_length(struct btrfs_bio *bbio, u64 map_length)
723{
724 struct btrfs_fs_info *fs_info = bbio->inode->root->fs_info;
725 unsigned int nr_segs;
726 int sector_offset;
727
728 map_length = min(map_length, fs_info->max_zone_append_size);
729 sector_offset = bio_split_rw_at(&bbio->bio, &fs_info->limits,
730 &nr_segs, map_length);
731 if (sector_offset) {
732 /*
733 * bio_split_rw_at() could split at a size smaller than our
734 * sectorsize and thus cause unaligned I/Os. Fix that by
735 * always rounding down to the nearest boundary.
736 */
737 return ALIGN_DOWN(sector_offset << SECTOR_SHIFT, fs_info->sectorsize);
738 }
739 return map_length;
740}
741
742static bool btrfs_submit_chunk(struct btrfs_bio *bbio, int mirror_num)
743{
744 struct btrfs_inode *inode = bbio->inode;
745 struct btrfs_fs_info *fs_info = inode->root->fs_info;
746 struct bio *bio = &bbio->bio;
747 u64 logical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
748 u64 length = bio->bi_iter.bi_size;
749 u64 map_length = length;
750 bool use_append = btrfs_use_zone_append(bbio);
751 struct btrfs_io_context *bioc = NULL;
752 struct btrfs_io_stripe smap;
753 blk_status_t status;
754 int ret;
755
756 if (bbio->is_scrub || btrfs_is_data_reloc_root(inode->root))
757 smap.rst_search_commit_root = true;
758 else
759 smap.rst_search_commit_root = false;
760
761 btrfs_bio_counter_inc_blocked(fs_info);
762 ret = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length,
763 &bioc, &smap, &mirror_num);
764 if (ret) {
765 status = errno_to_blk_status(ret);
766 btrfs_bio_counter_dec(fs_info);
767 goto end_bbio;
768 }
769
770 /*
771 * For fscrypt writes we will get the encrypted bio after we've remapped
772 * our bio to the physical disk location, so we need to save the
773 * original bytenr so we know what we're checksumming.
774 */
775 if (bio_op(bio) == REQ_OP_WRITE && is_data_bbio(bbio))
776 bbio->orig_logical = logical;
777
778 map_length = min(map_length, length);
779 if (use_append)
780 map_length = btrfs_append_map_length(bbio, map_length);
781
782 if (map_length < length) {
783 struct btrfs_bio *split;
784
785 split = btrfs_split_bio(fs_info, bbio, map_length);
786 if (IS_ERR(split)) {
787 status = errno_to_blk_status(PTR_ERR(split));
788 btrfs_bio_counter_dec(fs_info);
789 goto end_bbio;
790 }
791 bbio = split;
792 bio = &bbio->bio;
793 }
794
795 /*
796 * Save the iter for the end_io handler and preload the checksums for
797 * data reads.
798 */
799 if (bio_op(bio) == REQ_OP_READ && is_data_bbio(bbio)) {
800 bbio->saved_iter = bio->bi_iter;
801 ret = btrfs_lookup_bio_sums(bbio);
802 status = errno_to_blk_status(ret);
803 if (status)
804 goto fail;
805 }
806
807 if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
808 if (use_append) {
809 bio->bi_opf &= ~REQ_OP_WRITE;
810 bio->bi_opf |= REQ_OP_ZONE_APPEND;
811 }
812
813 if (is_data_bbio(bbio) && bioc && bioc->use_rst) {
814 /*
815 * No locking for the list update, as we only add to
816 * the list in the I/O submission path, and list
817 * iteration only happens in the completion path, which
818 * can't happen until after the last submission.
819 */
820 btrfs_get_bioc(bioc);
821 list_add_tail(&bioc->rst_ordered_entry, &bbio->ordered->bioc_list);
822 }
823
824 /*
825 * Csum items for reloc roots have already been cloned at this
826 * point, so they are handled as part of the no-checksum case.
827 */
828 if (!(inode->flags & BTRFS_INODE_NODATASUM) &&
829 !test_bit(BTRFS_FS_STATE_NO_DATA_CSUMS, &fs_info->fs_state) &&
830 !btrfs_is_data_reloc_root(inode->root)) {
831 if (should_async_write(bbio) &&
832 btrfs_wq_submit_bio(bbio, bioc, &smap, mirror_num))
833 goto done;
834
835 ret = btrfs_bio_csum(bbio);
836 status = errno_to_blk_status(ret);
837 if (status)
838 goto fail;
839 } else if (use_append ||
840 (btrfs_is_zoned(fs_info) && inode &&
841 inode->flags & BTRFS_INODE_NODATASUM)) {
842 ret = btrfs_alloc_dummy_sum(bbio);
843 status = errno_to_blk_status(ret);
844 if (status)
845 goto fail;
846 }
847 }
848
849 btrfs_submit_bio(bio, bioc, &smap, mirror_num);
850done:
851 return map_length == length;
852
853fail:
854 btrfs_bio_counter_dec(fs_info);
855 /*
856 * We have split the original bbio, now we have to end both the current
857 * @bbio and remaining one, as the remaining one will never be submitted.
858 */
859 if (map_length < length) {
860 struct btrfs_bio *remaining = bbio->private;
861
862 ASSERT(bbio->bio.bi_pool == &btrfs_clone_bioset);
863 ASSERT(remaining);
864
865 btrfs_bio_end_io(remaining, status);
866 }
867end_bbio:
868 btrfs_bio_end_io(bbio, status);
869 /* Do not submit another chunk */
870 return true;
871}
872
873static void assert_bbio_alignment(struct btrfs_bio *bbio)
874{
875#ifdef CONFIG_BTRFS_ASSERT
876 struct btrfs_fs_info *fs_info = bbio->inode->root->fs_info;
877 struct bio_vec bvec;
878 struct bvec_iter iter;
879 const u32 blocksize = fs_info->sectorsize;
880 const u32 alignment = min(blocksize, PAGE_SIZE);
881 const u64 logical = bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT;
882 const u32 length = bbio->bio.bi_iter.bi_size;
883
884 /* The logical and length should still be aligned to blocksize. */
885 ASSERT(IS_ALIGNED(logical, blocksize) && IS_ALIGNED(length, blocksize) &&
886 length != 0, "root=%llu inode=%llu logical=%llu length=%u",
887 btrfs_root_id(bbio->inode->root),
888 btrfs_ino(bbio->inode), logical, length);
889
890 bio_for_each_bvec(bvec, &bbio->bio, iter)
891 ASSERT(IS_ALIGNED(bvec.bv_offset, alignment) &&
892 IS_ALIGNED(bvec.bv_len, alignment),
893 "root=%llu inode=%llu logical=%llu length=%u index=%u bv_offset=%u bv_len=%u",
894 btrfs_root_id(bbio->inode->root),
895 btrfs_ino(bbio->inode), logical, length, iter.bi_idx,
896 bvec.bv_offset, bvec.bv_len);
897#endif
898}
899
900void btrfs_submit_bbio(struct btrfs_bio *bbio, int mirror_num)
901{
902 /* If bbio->inode is not populated, its file_offset must be 0. */
903 ASSERT(bbio->inode || bbio->file_offset == 0);
904
905 assert_bbio_alignment(bbio);
906
907 while (!btrfs_submit_chunk(bbio, mirror_num))
908 ;
909}
910
911/*
912 * Submit a repair write.
913 *
914 * This bypasses btrfs_submit_bbio() deliberately, as that writes all copies in a
915 * RAID setup. Here we only want to write the one bad copy, so we do the
916 * mapping ourselves and submit the bio directly.
917 *
918 * The I/O is issued synchronously to block the repair read completion from
919 * freeing the bio.
920 *
921 * @ino: Offending inode number
922 * @fileoff: File offset inside the inode
923 * @length: Length of the repair write
924 * @logical: Logical address of the range
925 * @paddrs: Physical address array of the content
926 * @step: Length of for each paddrs
927 * @mirror_num: Mirror number to write to. Must not be zero
928 */
929int btrfs_repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 fileoff,
930 u32 length, u64 logical, const phys_addr_t paddrs[],
931 unsigned int step, int mirror_num)
932{
933 const u32 nr_steps = DIV_ROUND_UP_POW2(length, step);
934 struct btrfs_io_stripe smap = { 0 };
935 struct bio *bio = NULL;
936 int ret = 0;
937
938 ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
939 BUG_ON(!mirror_num);
940
941 /* Basic alignment checks. */
942 ASSERT(IS_ALIGNED(logical, fs_info->sectorsize));
943 ASSERT(IS_ALIGNED(length, fs_info->sectorsize));
944 ASSERT(IS_ALIGNED(fileoff, fs_info->sectorsize));
945 /* Either it's a single data or metadata block. */
946 ASSERT(length <= BTRFS_MAX_BLOCKSIZE);
947 ASSERT(step <= length);
948 ASSERT(is_power_of_2(step));
949
950 if (btrfs_repair_one_zone(fs_info, logical))
951 return 0;
952
953 /*
954 * Avoid races with device replace and make sure our bioc has devices
955 * associated to its stripes that don't go away while we are doing the
956 * read repair operation.
957 */
958 btrfs_bio_counter_inc_blocked(fs_info);
959 ret = btrfs_map_repair_block(fs_info, &smap, logical, length, mirror_num);
960 if (ret < 0)
961 goto out_counter_dec;
962
963 if (unlikely(!smap.dev->bdev ||
964 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &smap.dev->dev_state))) {
965 ret = -EIO;
966 goto out_counter_dec;
967 }
968
969 bio = bio_alloc(smap.dev->bdev, nr_steps, REQ_OP_WRITE | REQ_SYNC, GFP_NOFS);
970 bio->bi_iter.bi_sector = smap.physical >> SECTOR_SHIFT;
971 for (int i = 0; i < nr_steps; i++) {
972 ret = bio_add_page(bio, phys_to_page(paddrs[i]), step, offset_in_page(paddrs[i]));
973 /* We should have allocated enough slots to contain all the different pages. */
974 ASSERT(ret == step);
975 }
976 ret = submit_bio_wait(bio);
977 bio_put(bio);
978 if (ret) {
979 /* try to remap that extent elsewhere? */
980 btrfs_dev_stat_inc_and_print(smap.dev, BTRFS_DEV_STAT_WRITE_ERRS);
981 goto out_counter_dec;
982 }
983
984 btrfs_info_rl(fs_info,
985 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
986 ino, fileoff, btrfs_dev_name(smap.dev),
987 smap.physical >> SECTOR_SHIFT);
988 ret = 0;
989
990out_counter_dec:
991 btrfs_bio_counter_dec(fs_info);
992 return ret;
993}
994
995/*
996 * Submit a btrfs_bio based repair write.
997 *
998 * If @dev_replace is true, the write would be submitted to dev-replace target.
999 */
1000void btrfs_submit_repair_write(struct btrfs_bio *bbio, int mirror_num, bool dev_replace)
1001{
1002 struct btrfs_fs_info *fs_info = bbio->inode->root->fs_info;
1003 u64 logical = bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT;
1004 u64 length = bbio->bio.bi_iter.bi_size;
1005 struct btrfs_io_stripe smap = { 0 };
1006 int ret;
1007
1008 ASSERT(mirror_num > 0);
1009 ASSERT(btrfs_op(&bbio->bio) == BTRFS_MAP_WRITE);
1010 ASSERT(!is_data_inode(bbio->inode));
1011 ASSERT(bbio->is_scrub);
1012
1013 btrfs_bio_counter_inc_blocked(fs_info);
1014 ret = btrfs_map_repair_block(fs_info, &smap, logical, length, mirror_num);
1015 if (ret < 0)
1016 goto fail;
1017
1018 if (dev_replace) {
1019 ASSERT(smap.dev == fs_info->dev_replace.srcdev);
1020 smap.dev = fs_info->dev_replace.tgtdev;
1021 }
1022 btrfs_submit_bio(&bbio->bio, NULL, &smap, mirror_num);
1023 return;
1024
1025fail:
1026 btrfs_bio_counter_dec(fs_info);
1027 btrfs_bio_end_io(bbio, errno_to_blk_status(ret));
1028}
1029
1030int __init btrfs_bioset_init(void)
1031{
1032 if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
1033 offsetof(struct btrfs_bio, bio),
1034 BIOSET_NEED_BVECS))
1035 return -ENOMEM;
1036 if (bioset_init(&btrfs_clone_bioset, BIO_POOL_SIZE,
1037 offsetof(struct btrfs_bio, bio), 0))
1038 goto out;
1039 if (bioset_init(&btrfs_repair_bioset, BIO_POOL_SIZE,
1040 offsetof(struct btrfs_bio, bio),
1041 BIOSET_NEED_BVECS))
1042 goto out;
1043 if (mempool_init_kmalloc_pool(&btrfs_failed_bio_pool, BIO_POOL_SIZE,
1044 sizeof(struct btrfs_failed_bio)))
1045 goto out;
1046 return 0;
1047
1048out:
1049 btrfs_bioset_exit();
1050 return -ENOMEM;
1051}
1052
1053void __cold btrfs_bioset_exit(void)
1054{
1055 mempool_exit(&btrfs_failed_bio_pool);
1056 bioset_exit(&btrfs_repair_bioset);
1057 bioset_exit(&btrfs_clone_bioset);
1058 bioset_exit(&btrfs_bioset);
1059}