Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2011 STRATO. All rights reserved.
4 */
5
6#include <linux/mm.h>
7#include <linux/rbtree.h>
8#include <trace/events/btrfs.h>
9#include "ctree.h"
10#include "disk-io.h"
11#include "backref.h"
12#include "ulist.h"
13#include "transaction.h"
14#include "delayed-ref.h"
15#include "locking.h"
16#include "misc.h"
17#include "tree-mod-log.h"
18#include "fs.h"
19#include "accessors.h"
20#include "extent-tree.h"
21#include "relocation.h"
22#include "tree-checker.h"
23
24/* Just arbitrary numbers so we can be sure one of these happened. */
25#define BACKREF_FOUND_SHARED 6
26#define BACKREF_FOUND_NOT_SHARED 7
27
28struct extent_inode_elem {
29 u64 inum;
30 u64 offset;
31 u64 num_bytes;
32 struct extent_inode_elem *next;
33};
34
35static int check_extent_in_eb(struct btrfs_backref_walk_ctx *ctx,
36 const struct btrfs_key *key,
37 const struct extent_buffer *eb,
38 const struct btrfs_file_extent_item *fi,
39 struct extent_inode_elem **eie)
40{
41 const u64 data_len = btrfs_file_extent_num_bytes(eb, fi);
42 u64 offset = key->offset;
43 struct extent_inode_elem *e;
44 const u64 *root_ids;
45 int root_count;
46 bool cached;
47
48 if (!ctx->ignore_extent_item_pos &&
49 !btrfs_file_extent_compression(eb, fi) &&
50 !btrfs_file_extent_encryption(eb, fi) &&
51 !btrfs_file_extent_other_encoding(eb, fi)) {
52 u64 data_offset;
53
54 data_offset = btrfs_file_extent_offset(eb, fi);
55
56 if (ctx->extent_item_pos < data_offset ||
57 ctx->extent_item_pos >= data_offset + data_len)
58 return 1;
59 offset += ctx->extent_item_pos - data_offset;
60 }
61
62 if (!ctx->indirect_ref_iterator || !ctx->cache_lookup)
63 goto add_inode_elem;
64
65 cached = ctx->cache_lookup(eb->start, ctx->user_ctx, &root_ids,
66 &root_count);
67 if (!cached)
68 goto add_inode_elem;
69
70 for (int i = 0; i < root_count; i++) {
71 int ret;
72
73 ret = ctx->indirect_ref_iterator(key->objectid, offset,
74 data_len, root_ids[i],
75 ctx->user_ctx);
76 if (ret)
77 return ret;
78 }
79
80add_inode_elem:
81 e = kmalloc(sizeof(*e), GFP_NOFS);
82 if (!e)
83 return -ENOMEM;
84
85 e->next = *eie;
86 e->inum = key->objectid;
87 e->offset = offset;
88 e->num_bytes = data_len;
89 *eie = e;
90
91 return 0;
92}
93
94static void free_inode_elem_list(struct extent_inode_elem *eie)
95{
96 struct extent_inode_elem *eie_next;
97
98 for (; eie; eie = eie_next) {
99 eie_next = eie->next;
100 kfree(eie);
101 }
102}
103
104static int find_extent_in_eb(struct btrfs_backref_walk_ctx *ctx,
105 const struct extent_buffer *eb,
106 struct extent_inode_elem **eie)
107{
108 u64 disk_byte;
109 struct btrfs_key key;
110 struct btrfs_file_extent_item *fi;
111 int slot;
112 int nritems;
113 int extent_type;
114 int ret;
115
116 /*
117 * from the shared data ref, we only have the leaf but we need
118 * the key. thus, we must look into all items and see that we
119 * find one (some) with a reference to our extent item.
120 */
121 nritems = btrfs_header_nritems(eb);
122 for (slot = 0; slot < nritems; ++slot) {
123 btrfs_item_key_to_cpu(eb, &key, slot);
124 if (key.type != BTRFS_EXTENT_DATA_KEY)
125 continue;
126 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
127 extent_type = btrfs_file_extent_type(eb, fi);
128 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
129 continue;
130 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
131 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
132 if (disk_byte != ctx->bytenr)
133 continue;
134
135 ret = check_extent_in_eb(ctx, &key, eb, fi, eie);
136 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || ret < 0)
137 return ret;
138 }
139
140 return 0;
141}
142
143struct preftree {
144 struct rb_root_cached root;
145 unsigned int count;
146};
147
148#define PREFTREE_INIT { .root = RB_ROOT_CACHED, .count = 0 }
149
150struct preftrees {
151 struct preftree direct; /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */
152 struct preftree indirect; /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */
153 struct preftree indirect_missing_keys;
154};
155
156/*
157 * Checks for a shared extent during backref search.
158 *
159 * The share_count tracks prelim_refs (direct and indirect) having a
160 * ref->count >0:
161 * - incremented when a ref->count transitions to >0
162 * - decremented when a ref->count transitions to <1
163 */
164struct share_check {
165 struct btrfs_backref_share_check_ctx *ctx;
166 struct btrfs_root *root;
167 u64 inum;
168 u64 data_bytenr;
169 u64 data_extent_gen;
170 /*
171 * Counts number of inodes that refer to an extent (different inodes in
172 * the same root or different roots) that we could find. The sharedness
173 * check typically stops once this counter gets greater than 1, so it
174 * may not reflect the total number of inodes.
175 */
176 int share_count;
177 /*
178 * The number of times we found our inode refers to the data extent we
179 * are determining the sharedness. In other words, how many file extent
180 * items we could find for our inode that point to our target data
181 * extent. The value we get here after finishing the extent sharedness
182 * check may be smaller than reality, but if it ends up being greater
183 * than 1, then we know for sure the inode has multiple file extent
184 * items that point to our inode, and we can safely assume it's useful
185 * to cache the sharedness check result.
186 */
187 int self_ref_count;
188 bool have_delayed_delete_refs;
189};
190
191static inline int extent_is_shared(struct share_check *sc)
192{
193 return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0;
194}
195
196static struct kmem_cache *btrfs_prelim_ref_cache;
197
198int __init btrfs_prelim_ref_init(void)
199{
200 btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
201 sizeof(struct prelim_ref), 0, 0, NULL);
202 if (!btrfs_prelim_ref_cache)
203 return -ENOMEM;
204 return 0;
205}
206
207void __cold btrfs_prelim_ref_exit(void)
208{
209 kmem_cache_destroy(btrfs_prelim_ref_cache);
210}
211
212static void free_pref(struct prelim_ref *ref)
213{
214 kmem_cache_free(btrfs_prelim_ref_cache, ref);
215}
216
217/*
218 * Return 0 when both refs are for the same block (and can be merged).
219 * A -1 return indicates ref1 is a 'lower' block than ref2, while 1
220 * indicates a 'higher' block.
221 */
222static int prelim_ref_compare(const struct prelim_ref *ref1,
223 const struct prelim_ref *ref2)
224{
225 if (ref1->level < ref2->level)
226 return -1;
227 if (ref1->level > ref2->level)
228 return 1;
229 if (ref1->root_id < ref2->root_id)
230 return -1;
231 if (ref1->root_id > ref2->root_id)
232 return 1;
233 if (ref1->key_for_search.type < ref2->key_for_search.type)
234 return -1;
235 if (ref1->key_for_search.type > ref2->key_for_search.type)
236 return 1;
237 if (ref1->key_for_search.objectid < ref2->key_for_search.objectid)
238 return -1;
239 if (ref1->key_for_search.objectid > ref2->key_for_search.objectid)
240 return 1;
241 if (ref1->key_for_search.offset < ref2->key_for_search.offset)
242 return -1;
243 if (ref1->key_for_search.offset > ref2->key_for_search.offset)
244 return 1;
245 if (ref1->parent < ref2->parent)
246 return -1;
247 if (ref1->parent > ref2->parent)
248 return 1;
249
250 return 0;
251}
252
253static int prelim_ref_rb_add_cmp(const struct rb_node *new,
254 const struct rb_node *exist)
255{
256 const struct prelim_ref *ref_new =
257 rb_entry(new, struct prelim_ref, rbnode);
258 const struct prelim_ref *ref_exist =
259 rb_entry(exist, struct prelim_ref, rbnode);
260
261 /*
262 * prelim_ref_compare() expects the first parameter as the existing one,
263 * different from the rb_find_add_cached() order.
264 */
265 return prelim_ref_compare(ref_exist, ref_new);
266}
267
268static void update_share_count(struct share_check *sc, int oldcount,
269 int newcount, const struct prelim_ref *newref)
270{
271 if ((!sc) || (oldcount == 0 && newcount < 1))
272 return;
273
274 if (oldcount > 0 && newcount < 1)
275 sc->share_count--;
276 else if (oldcount < 1 && newcount > 0)
277 sc->share_count++;
278
279 if (newref->root_id == btrfs_root_id(sc->root) &&
280 newref->wanted_disk_byte == sc->data_bytenr &&
281 newref->key_for_search.objectid == sc->inum)
282 sc->self_ref_count += newref->count;
283}
284
285/*
286 * Add @newref to the @root rbtree, merging identical refs.
287 *
288 * Callers should assume that newref has been freed after calling.
289 */
290static void prelim_ref_insert(const struct btrfs_fs_info *fs_info,
291 struct preftree *preftree,
292 struct prelim_ref *newref,
293 struct share_check *sc)
294{
295 struct rb_root_cached *root;
296 struct rb_node *exist;
297
298 root = &preftree->root;
299 exist = rb_find_add_cached(&newref->rbnode, root, prelim_ref_rb_add_cmp);
300 if (exist) {
301 struct prelim_ref *ref = rb_entry(exist, struct prelim_ref, rbnode);
302 /* Identical refs, merge them and free @newref */
303 struct extent_inode_elem *eie = ref->inode_list;
304
305 while (eie && eie->next)
306 eie = eie->next;
307
308 if (!eie)
309 ref->inode_list = newref->inode_list;
310 else
311 eie->next = newref->inode_list;
312 trace_btrfs_prelim_ref_merge(fs_info, ref, newref,
313 preftree->count);
314 /*
315 * A delayed ref can have newref->count < 0.
316 * The ref->count is updated to follow any
317 * BTRFS_[ADD|DROP]_DELAYED_REF actions.
318 */
319 update_share_count(sc, ref->count,
320 ref->count + newref->count, newref);
321 ref->count += newref->count;
322 free_pref(newref);
323 return;
324 }
325
326 update_share_count(sc, 0, newref->count, newref);
327 preftree->count++;
328 trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count);
329}
330
331/*
332 * Release the entire tree. We don't care about internal consistency so
333 * just free everything and then reset the tree root.
334 */
335static void prelim_release(struct preftree *preftree)
336{
337 struct prelim_ref *ref, *next_ref;
338
339 rbtree_postorder_for_each_entry_safe(ref, next_ref,
340 &preftree->root.rb_root, rbnode) {
341 free_inode_elem_list(ref->inode_list);
342 free_pref(ref);
343 }
344
345 preftree->root = RB_ROOT_CACHED;
346 preftree->count = 0;
347}
348
349/*
350 * the rules for all callers of this function are:
351 * - obtaining the parent is the goal
352 * - if you add a key, you must know that it is a correct key
353 * - if you cannot add the parent or a correct key, then we will look into the
354 * block later to set a correct key
355 *
356 * delayed refs
357 * ============
358 * backref type | shared | indirect | shared | indirect
359 * information | tree | tree | data | data
360 * --------------------+--------+----------+--------+----------
361 * parent logical | y | - | - | -
362 * key to resolve | - | y | y | y
363 * tree block logical | - | - | - | -
364 * root for resolving | y | y | y | y
365 *
366 * - column 1: we've the parent -> done
367 * - column 2, 3, 4: we use the key to find the parent
368 *
369 * on disk refs (inline or keyed)
370 * ==============================
371 * backref type | shared | indirect | shared | indirect
372 * information | tree | tree | data | data
373 * --------------------+--------+----------+--------+----------
374 * parent logical | y | - | y | -
375 * key to resolve | - | - | - | y
376 * tree block logical | y | y | y | y
377 * root for resolving | - | y | y | y
378 *
379 * - column 1, 3: we've the parent -> done
380 * - column 2: we take the first key from the block to find the parent
381 * (see add_missing_keys)
382 * - column 4: we use the key to find the parent
383 *
384 * additional information that's available but not required to find the parent
385 * block might help in merging entries to gain some speed.
386 */
387static int add_prelim_ref(const struct btrfs_fs_info *fs_info,
388 struct preftree *preftree, u64 root_id,
389 const struct btrfs_key *key, int level, u64 parent,
390 u64 wanted_disk_byte, int count,
391 struct share_check *sc, gfp_t gfp_mask)
392{
393 struct prelim_ref *ref;
394
395 if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
396 return 0;
397
398 ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
399 if (!ref)
400 return -ENOMEM;
401
402 ref->root_id = root_id;
403 if (key)
404 ref->key_for_search = *key;
405 else
406 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
407
408 ref->inode_list = NULL;
409 ref->level = level;
410 ref->count = count;
411 ref->parent = parent;
412 ref->wanted_disk_byte = wanted_disk_byte;
413 prelim_ref_insert(fs_info, preftree, ref, sc);
414 return extent_is_shared(sc);
415}
416
417/* direct refs use root == 0, key == NULL */
418static int add_direct_ref(const struct btrfs_fs_info *fs_info,
419 struct preftrees *preftrees, int level, u64 parent,
420 u64 wanted_disk_byte, int count,
421 struct share_check *sc, gfp_t gfp_mask)
422{
423 return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level,
424 parent, wanted_disk_byte, count, sc, gfp_mask);
425}
426
427/* indirect refs use parent == 0 */
428static int add_indirect_ref(const struct btrfs_fs_info *fs_info,
429 struct preftrees *preftrees, u64 root_id,
430 const struct btrfs_key *key, int level,
431 u64 wanted_disk_byte, int count,
432 struct share_check *sc, gfp_t gfp_mask)
433{
434 struct preftree *tree = &preftrees->indirect;
435
436 if (!key)
437 tree = &preftrees->indirect_missing_keys;
438 return add_prelim_ref(fs_info, tree, root_id, key, level, 0,
439 wanted_disk_byte, count, sc, gfp_mask);
440}
441
442static int is_shared_data_backref(struct preftrees *preftrees, u64 bytenr)
443{
444 struct rb_node **p = &preftrees->direct.root.rb_root.rb_node;
445 struct rb_node *parent = NULL;
446 struct prelim_ref *ref = NULL;
447 struct prelim_ref target = {};
448 int result;
449
450 target.parent = bytenr;
451
452 while (*p) {
453 parent = *p;
454 ref = rb_entry(parent, struct prelim_ref, rbnode);
455 result = prelim_ref_compare(ref, &target);
456
457 if (result < 0)
458 p = &(*p)->rb_left;
459 else if (result > 0)
460 p = &(*p)->rb_right;
461 else
462 return 1;
463 }
464 return 0;
465}
466
467static int add_all_parents(struct btrfs_backref_walk_ctx *ctx,
468 struct btrfs_root *root, struct btrfs_path *path,
469 struct ulist *parents,
470 struct preftrees *preftrees, struct prelim_ref *ref,
471 int level)
472{
473 int ret = 0;
474 int slot;
475 struct extent_buffer *eb;
476 struct btrfs_key key;
477 struct btrfs_key *key_for_search = &ref->key_for_search;
478 struct btrfs_file_extent_item *fi;
479 struct extent_inode_elem *eie = NULL, *old = NULL;
480 u64 disk_byte;
481 u64 wanted_disk_byte = ref->wanted_disk_byte;
482 u64 count = 0;
483 u64 data_offset;
484 u8 type;
485
486 if (level != 0) {
487 eb = path->nodes[level];
488 ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
489 if (ret < 0)
490 return ret;
491 return 0;
492 }
493
494 /*
495 * 1. We normally enter this function with the path already pointing to
496 * the first item to check. But sometimes, we may enter it with
497 * slot == nritems.
498 * 2. We are searching for normal backref but bytenr of this leaf
499 * matches shared data backref
500 * 3. The leaf owner is not equal to the root we are searching
501 *
502 * For these cases, go to the next leaf before we continue.
503 */
504 eb = path->nodes[0];
505 if (path->slots[0] >= btrfs_header_nritems(eb) ||
506 is_shared_data_backref(preftrees, eb->start) ||
507 ref->root_id != btrfs_header_owner(eb)) {
508 if (ctx->time_seq == BTRFS_SEQ_LAST)
509 ret = btrfs_next_leaf(root, path);
510 else
511 ret = btrfs_next_old_leaf(root, path, ctx->time_seq);
512 }
513
514 while (!ret && count < ref->count) {
515 eb = path->nodes[0];
516 slot = path->slots[0];
517
518 btrfs_item_key_to_cpu(eb, &key, slot);
519
520 if (key.objectid != key_for_search->objectid ||
521 key.type != BTRFS_EXTENT_DATA_KEY)
522 break;
523
524 /*
525 * We are searching for normal backref but bytenr of this leaf
526 * matches shared data backref, OR
527 * the leaf owner is not equal to the root we are searching for
528 */
529 if (slot == 0 &&
530 (is_shared_data_backref(preftrees, eb->start) ||
531 ref->root_id != btrfs_header_owner(eb))) {
532 if (ctx->time_seq == BTRFS_SEQ_LAST)
533 ret = btrfs_next_leaf(root, path);
534 else
535 ret = btrfs_next_old_leaf(root, path, ctx->time_seq);
536 continue;
537 }
538 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
539 type = btrfs_file_extent_type(eb, fi);
540 if (type == BTRFS_FILE_EXTENT_INLINE)
541 goto next;
542 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
543 data_offset = btrfs_file_extent_offset(eb, fi);
544
545 if (disk_byte == wanted_disk_byte) {
546 eie = NULL;
547 old = NULL;
548 if (ref->key_for_search.offset == key.offset - data_offset)
549 count++;
550 else
551 goto next;
552 if (!ctx->skip_inode_ref_list) {
553 ret = check_extent_in_eb(ctx, &key, eb, fi, &eie);
554 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP ||
555 ret < 0)
556 break;
557 }
558 if (ret > 0)
559 goto next;
560 ret = ulist_add_merge_ptr(parents, eb->start,
561 eie, (void **)&old, GFP_NOFS);
562 if (ret < 0)
563 break;
564 if (!ret && !ctx->skip_inode_ref_list) {
565 while (old->next)
566 old = old->next;
567 old->next = eie;
568 }
569 eie = NULL;
570 }
571next:
572 if (ctx->time_seq == BTRFS_SEQ_LAST)
573 ret = btrfs_next_item(root, path);
574 else
575 ret = btrfs_next_old_item(root, path, ctx->time_seq);
576 }
577
578 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || ret < 0)
579 free_inode_elem_list(eie);
580 else if (ret > 0)
581 ret = 0;
582
583 return ret;
584}
585
586/*
587 * resolve an indirect backref in the form (root_id, key, level)
588 * to a logical address
589 */
590static int resolve_indirect_ref(struct btrfs_backref_walk_ctx *ctx,
591 struct btrfs_path *path,
592 struct preftrees *preftrees,
593 struct prelim_ref *ref, struct ulist *parents)
594{
595 struct btrfs_root *root;
596 struct extent_buffer *eb;
597 int ret = 0;
598 int root_level;
599 int level = ref->level;
600 struct btrfs_key search_key = ref->key_for_search;
601
602 /*
603 * If we're search_commit_root we could possibly be holding locks on
604 * other tree nodes. This happens when qgroups does backref walks when
605 * adding new delayed refs. To deal with this we need to look in cache
606 * for the root, and if we don't find it then we need to search the
607 * tree_root's commit root, thus the btrfs_get_fs_root_commit_root usage
608 * here.
609 */
610 if (path->search_commit_root)
611 root = btrfs_get_fs_root_commit_root(ctx->fs_info, path, ref->root_id);
612 else
613 root = btrfs_get_fs_root(ctx->fs_info, ref->root_id, false);
614 if (IS_ERR(root)) {
615 ret = PTR_ERR(root);
616 goto out_free;
617 }
618
619 if (!path->search_commit_root &&
620 test_bit(BTRFS_ROOT_DELETING, &root->state)) {
621 ret = -ENOENT;
622 goto out;
623 }
624
625 if (btrfs_is_testing(ctx->fs_info)) {
626 ret = -ENOENT;
627 goto out;
628 }
629
630 if (path->search_commit_root)
631 root_level = btrfs_header_level(root->commit_root);
632 else if (ctx->time_seq == BTRFS_SEQ_LAST)
633 root_level = btrfs_header_level(root->node);
634 else
635 root_level = btrfs_old_root_level(root, ctx->time_seq);
636
637 if (root_level + 1 == level)
638 goto out;
639
640 /*
641 * We can often find data backrefs with an offset that is too large
642 * (>= LLONG_MAX, maximum allowed file offset) due to underflows when
643 * subtracting a file's offset with the data offset of its
644 * corresponding extent data item. This can happen for example in the
645 * clone ioctl.
646 *
647 * So if we detect such case we set the search key's offset to zero to
648 * make sure we will find the matching file extent item at
649 * add_all_parents(), otherwise we will miss it because the offset
650 * taken form the backref is much larger then the offset of the file
651 * extent item. This can make us scan a very large number of file
652 * extent items, but at least it will not make us miss any.
653 *
654 * This is an ugly workaround for a behaviour that should have never
655 * existed, but it does and a fix for the clone ioctl would touch a lot
656 * of places, cause backwards incompatibility and would not fix the
657 * problem for extents cloned with older kernels.
658 */
659 if (search_key.type == BTRFS_EXTENT_DATA_KEY &&
660 search_key.offset >= LLONG_MAX)
661 search_key.offset = 0;
662 path->lowest_level = level;
663 if (ctx->time_seq == BTRFS_SEQ_LAST)
664 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
665 else
666 ret = btrfs_search_old_slot(root, &search_key, path, ctx->time_seq);
667
668 btrfs_debug(ctx->fs_info,
669"search slot in root %llu (level %d, ref count %d) returned %d for key " BTRFS_KEY_FMT,
670 ref->root_id, level, ref->count, ret,
671 BTRFS_KEY_FMT_VALUE(&ref->key_for_search));
672 if (ret < 0)
673 goto out;
674
675 eb = path->nodes[level];
676 while (!eb) {
677 if (WARN_ON(!level)) {
678 ret = 1;
679 goto out;
680 }
681 level--;
682 eb = path->nodes[level];
683 }
684
685 ret = add_all_parents(ctx, root, path, parents, preftrees, ref, level);
686out:
687 btrfs_put_root(root);
688out_free:
689 path->lowest_level = 0;
690 btrfs_release_path(path);
691 return ret;
692}
693
694static struct extent_inode_elem *
695unode_aux_to_inode_list(struct ulist_node *node)
696{
697 if (!node)
698 return NULL;
699 return (struct extent_inode_elem *)(uintptr_t)node->aux;
700}
701
702static void free_leaf_list(struct ulist *ulist)
703{
704 struct ulist_node *node;
705 struct ulist_iterator uiter;
706
707 ULIST_ITER_INIT(&uiter);
708 while ((node = ulist_next(ulist, &uiter)))
709 free_inode_elem_list(unode_aux_to_inode_list(node));
710
711 ulist_free(ulist);
712}
713
714/*
715 * We maintain three separate rbtrees: one for direct refs, one for
716 * indirect refs which have a key, and one for indirect refs which do not
717 * have a key. Each tree does merge on insertion.
718 *
719 * Once all of the references are located, we iterate over the tree of
720 * indirect refs with missing keys. An appropriate key is located and
721 * the ref is moved onto the tree for indirect refs. After all missing
722 * keys are thus located, we iterate over the indirect ref tree, resolve
723 * each reference, and then insert the resolved reference onto the
724 * direct tree (merging there too).
725 *
726 * New backrefs (i.e., for parent nodes) are added to the appropriate
727 * rbtree as they are encountered. The new backrefs are subsequently
728 * resolved as above.
729 */
730static int resolve_indirect_refs(struct btrfs_backref_walk_ctx *ctx,
731 struct btrfs_path *path,
732 struct preftrees *preftrees,
733 struct share_check *sc)
734{
735 int ret = 0;
736 struct ulist *parents;
737 struct ulist_node *node;
738 struct ulist_iterator uiter;
739 struct rb_node *rnode;
740
741 parents = ulist_alloc(GFP_NOFS);
742 if (!parents)
743 return -ENOMEM;
744
745 /*
746 * We could trade memory usage for performance here by iterating
747 * the tree, allocating new refs for each insertion, and then
748 * freeing the entire indirect tree when we're done. In some test
749 * cases, the tree can grow quite large (~200k objects).
750 */
751 while ((rnode = rb_first_cached(&preftrees->indirect.root))) {
752 struct prelim_ref *ref;
753 int ret2;
754
755 ref = rb_entry(rnode, struct prelim_ref, rbnode);
756 if (WARN(ref->parent,
757 "BUG: direct ref found in indirect tree")) {
758 ret = -EINVAL;
759 goto out;
760 }
761
762 rb_erase_cached(&ref->rbnode, &preftrees->indirect.root);
763 preftrees->indirect.count--;
764
765 if (ref->count == 0) {
766 free_pref(ref);
767 continue;
768 }
769
770 if (sc && ref->root_id != btrfs_root_id(sc->root)) {
771 free_pref(ref);
772 ret = BACKREF_FOUND_SHARED;
773 goto out;
774 }
775 ret2 = resolve_indirect_ref(ctx, path, preftrees, ref, parents);
776 /*
777 * we can only tolerate ENOENT,otherwise,we should catch error
778 * and return directly.
779 */
780 if (ret2 == -ENOENT) {
781 prelim_ref_insert(ctx->fs_info, &preftrees->direct, ref,
782 NULL);
783 continue;
784 } else if (ret2) {
785 free_pref(ref);
786 ret = ret2;
787 goto out;
788 }
789
790 /* we put the first parent into the ref at hand */
791 ULIST_ITER_INIT(&uiter);
792 node = ulist_next(parents, &uiter);
793 ref->parent = node ? node->val : 0;
794 ref->inode_list = unode_aux_to_inode_list(node);
795
796 /* Add a prelim_ref(s) for any other parent(s). */
797 while ((node = ulist_next(parents, &uiter))) {
798 struct prelim_ref *new_ref;
799
800 new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
801 GFP_NOFS);
802 if (!new_ref) {
803 free_pref(ref);
804 ret = -ENOMEM;
805 goto out;
806 }
807 memcpy(new_ref, ref, sizeof(*ref));
808 new_ref->parent = node->val;
809 new_ref->inode_list = unode_aux_to_inode_list(node);
810 prelim_ref_insert(ctx->fs_info, &preftrees->direct,
811 new_ref, NULL);
812 }
813
814 /*
815 * Now it's a direct ref, put it in the direct tree. We must
816 * do this last because the ref could be merged/freed here.
817 */
818 prelim_ref_insert(ctx->fs_info, &preftrees->direct, ref, NULL);
819
820 ulist_reinit(parents);
821 cond_resched();
822 }
823out:
824 /*
825 * We may have inode lists attached to refs in the parents ulist, so we
826 * must free them before freeing the ulist and its refs.
827 */
828 free_leaf_list(parents);
829 return ret;
830}
831
832/*
833 * read tree blocks and add keys where required.
834 */
835static int add_missing_keys(struct btrfs_fs_info *fs_info,
836 struct preftrees *preftrees, bool lock)
837{
838 struct prelim_ref *ref;
839 struct extent_buffer *eb;
840 struct preftree *tree = &preftrees->indirect_missing_keys;
841 struct rb_node *node;
842
843 while ((node = rb_first_cached(&tree->root))) {
844 struct btrfs_tree_parent_check check = { 0 };
845
846 ref = rb_entry(node, struct prelim_ref, rbnode);
847 rb_erase_cached(node, &tree->root);
848
849 BUG_ON(ref->parent); /* should not be a direct ref */
850 BUG_ON(ref->key_for_search.type);
851 BUG_ON(!ref->wanted_disk_byte);
852
853 check.level = ref->level - 1;
854 check.owner_root = ref->root_id;
855
856 eb = read_tree_block(fs_info, ref->wanted_disk_byte, &check);
857 if (IS_ERR(eb)) {
858 free_pref(ref);
859 return PTR_ERR(eb);
860 }
861 if (unlikely(!extent_buffer_uptodate(eb))) {
862 free_pref(ref);
863 free_extent_buffer(eb);
864 return -EIO;
865 }
866
867 if (lock)
868 btrfs_tree_read_lock(eb);
869 if (btrfs_header_level(eb) == 0)
870 btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
871 else
872 btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
873 if (lock)
874 btrfs_tree_read_unlock(eb);
875 free_extent_buffer(eb);
876 prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL);
877 cond_resched();
878 }
879 return 0;
880}
881
882/*
883 * add all currently queued delayed refs from this head whose seq nr is
884 * smaller or equal that seq to the list
885 */
886static int add_delayed_refs(const struct btrfs_fs_info *fs_info,
887 struct btrfs_delayed_ref_head *head, u64 seq,
888 struct preftrees *preftrees, struct share_check *sc)
889{
890 struct btrfs_delayed_ref_node *node;
891 struct btrfs_key key;
892 struct rb_node *n;
893 int count;
894 int ret = 0;
895
896 spin_lock(&head->lock);
897 for (n = rb_first_cached(&head->ref_tree); n; n = rb_next(n)) {
898 node = rb_entry(n, struct btrfs_delayed_ref_node,
899 ref_node);
900 if (node->seq > seq)
901 continue;
902
903 switch (node->action) {
904 case BTRFS_ADD_DELAYED_EXTENT:
905 case BTRFS_UPDATE_DELAYED_HEAD:
906 WARN_ON(1);
907 continue;
908 case BTRFS_ADD_DELAYED_REF:
909 count = node->ref_mod;
910 break;
911 case BTRFS_DROP_DELAYED_REF:
912 count = node->ref_mod * -1;
913 break;
914 default:
915 BUG();
916 }
917 switch (node->type) {
918 case BTRFS_TREE_BLOCK_REF_KEY: {
919 /* NORMAL INDIRECT METADATA backref */
920 struct btrfs_key *key_ptr = NULL;
921 /* The owner of a tree block ref is the level. */
922 int level = btrfs_delayed_ref_owner(node);
923
924 if (head->extent_op && head->extent_op->update_key) {
925 btrfs_disk_key_to_cpu(&key, &head->extent_op->key);
926 key_ptr = &key;
927 }
928
929 ret = add_indirect_ref(fs_info, preftrees, node->ref_root,
930 key_ptr, level + 1, node->bytenr,
931 count, sc, GFP_ATOMIC);
932 break;
933 }
934 case BTRFS_SHARED_BLOCK_REF_KEY: {
935 /*
936 * SHARED DIRECT METADATA backref
937 *
938 * The owner of a tree block ref is the level.
939 */
940 int level = btrfs_delayed_ref_owner(node);
941
942 ret = add_direct_ref(fs_info, preftrees, level + 1,
943 node->parent, node->bytenr, count,
944 sc, GFP_ATOMIC);
945 break;
946 }
947 case BTRFS_EXTENT_DATA_REF_KEY: {
948 /* NORMAL INDIRECT DATA backref */
949 key.objectid = btrfs_delayed_ref_owner(node);
950 key.type = BTRFS_EXTENT_DATA_KEY;
951 key.offset = btrfs_delayed_ref_offset(node);
952
953 /*
954 * If we have a share check context and a reference for
955 * another inode, we can't exit immediately. This is
956 * because even if this is a BTRFS_ADD_DELAYED_REF
957 * reference we may find next a BTRFS_DROP_DELAYED_REF
958 * which cancels out this ADD reference.
959 *
960 * If this is a DROP reference and there was no previous
961 * ADD reference, then we need to signal that when we
962 * process references from the extent tree (through
963 * add_inline_refs() and add_keyed_refs()), we should
964 * not exit early if we find a reference for another
965 * inode, because one of the delayed DROP references
966 * may cancel that reference in the extent tree.
967 */
968 if (sc && count < 0)
969 sc->have_delayed_delete_refs = true;
970
971 ret = add_indirect_ref(fs_info, preftrees, node->ref_root,
972 &key, 0, node->bytenr, count, sc,
973 GFP_ATOMIC);
974 break;
975 }
976 case BTRFS_SHARED_DATA_REF_KEY: {
977 /* SHARED DIRECT FULL backref */
978 ret = add_direct_ref(fs_info, preftrees, 0, node->parent,
979 node->bytenr, count, sc,
980 GFP_ATOMIC);
981 break;
982 }
983 default:
984 WARN_ON(1);
985 }
986 /*
987 * We must ignore BACKREF_FOUND_SHARED until all delayed
988 * refs have been checked.
989 */
990 if (ret && (ret != BACKREF_FOUND_SHARED))
991 break;
992 }
993 if (!ret)
994 ret = extent_is_shared(sc);
995
996 spin_unlock(&head->lock);
997 return ret;
998}
999
1000/*
1001 * add all inline backrefs for bytenr to the list
1002 *
1003 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
1004 */
1005static int add_inline_refs(struct btrfs_backref_walk_ctx *ctx,
1006 struct btrfs_path *path,
1007 int *info_level, struct preftrees *preftrees,
1008 struct share_check *sc)
1009{
1010 int ret = 0;
1011 int slot;
1012 struct extent_buffer *leaf;
1013 struct btrfs_key key;
1014 struct btrfs_key found_key;
1015 unsigned long ptr;
1016 unsigned long end;
1017 struct btrfs_extent_item *ei;
1018 u64 flags;
1019 u64 item_size;
1020
1021 /*
1022 * enumerate all inline refs
1023 */
1024 leaf = path->nodes[0];
1025 slot = path->slots[0];
1026
1027 item_size = btrfs_item_size(leaf, slot);
1028 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
1029
1030 if (ctx->check_extent_item) {
1031 ret = ctx->check_extent_item(ctx->bytenr, ei, leaf, ctx->user_ctx);
1032 if (ret)
1033 return ret;
1034 }
1035
1036 flags = btrfs_extent_flags(leaf, ei);
1037 btrfs_item_key_to_cpu(leaf, &found_key, slot);
1038
1039 ptr = (unsigned long)(ei + 1);
1040 end = (unsigned long)ei + item_size;
1041
1042 if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
1043 flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1044 struct btrfs_tree_block_info *info;
1045
1046 info = (struct btrfs_tree_block_info *)ptr;
1047 *info_level = btrfs_tree_block_level(leaf, info);
1048 ptr += sizeof(struct btrfs_tree_block_info);
1049 BUG_ON(ptr > end);
1050 } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
1051 *info_level = found_key.offset;
1052 } else {
1053 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
1054 }
1055
1056 while (ptr < end) {
1057 struct btrfs_extent_inline_ref *iref;
1058 u64 offset;
1059 int type;
1060
1061 iref = (struct btrfs_extent_inline_ref *)ptr;
1062 type = btrfs_get_extent_inline_ref_type(leaf, iref,
1063 BTRFS_REF_TYPE_ANY);
1064 if (unlikely(type == BTRFS_REF_TYPE_INVALID))
1065 return -EUCLEAN;
1066
1067 offset = btrfs_extent_inline_ref_offset(leaf, iref);
1068
1069 switch (type) {
1070 case BTRFS_SHARED_BLOCK_REF_KEY:
1071 ret = add_direct_ref(ctx->fs_info, preftrees,
1072 *info_level + 1, offset,
1073 ctx->bytenr, 1, NULL, GFP_NOFS);
1074 break;
1075 case BTRFS_SHARED_DATA_REF_KEY: {
1076 struct btrfs_shared_data_ref *sdref;
1077 int count;
1078
1079 sdref = (struct btrfs_shared_data_ref *)(iref + 1);
1080 count = btrfs_shared_data_ref_count(leaf, sdref);
1081
1082 ret = add_direct_ref(ctx->fs_info, preftrees, 0, offset,
1083 ctx->bytenr, count, sc, GFP_NOFS);
1084 break;
1085 }
1086 case BTRFS_TREE_BLOCK_REF_KEY:
1087 ret = add_indirect_ref(ctx->fs_info, preftrees, offset,
1088 NULL, *info_level + 1,
1089 ctx->bytenr, 1, NULL, GFP_NOFS);
1090 break;
1091 case BTRFS_EXTENT_DATA_REF_KEY: {
1092 struct btrfs_extent_data_ref *dref;
1093 int count;
1094 u64 root;
1095
1096 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1097 count = btrfs_extent_data_ref_count(leaf, dref);
1098 key.objectid = btrfs_extent_data_ref_objectid(leaf,
1099 dref);
1100 key.type = BTRFS_EXTENT_DATA_KEY;
1101 key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1102
1103 if (sc && key.objectid != sc->inum &&
1104 !sc->have_delayed_delete_refs) {
1105 ret = BACKREF_FOUND_SHARED;
1106 break;
1107 }
1108
1109 root = btrfs_extent_data_ref_root(leaf, dref);
1110
1111 if (!ctx->skip_data_ref ||
1112 !ctx->skip_data_ref(root, key.objectid, key.offset,
1113 ctx->user_ctx))
1114 ret = add_indirect_ref(ctx->fs_info, preftrees,
1115 root, &key, 0, ctx->bytenr,
1116 count, sc, GFP_NOFS);
1117 break;
1118 }
1119 case BTRFS_EXTENT_OWNER_REF_KEY:
1120 ASSERT(btrfs_fs_incompat(ctx->fs_info, SIMPLE_QUOTA));
1121 break;
1122 default:
1123 WARN_ON(1);
1124 }
1125 if (ret)
1126 return ret;
1127 ptr += btrfs_extent_inline_ref_size(type);
1128 }
1129
1130 return 0;
1131}
1132
1133/*
1134 * add all non-inline backrefs for bytenr to the list
1135 *
1136 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
1137 */
1138static int add_keyed_refs(struct btrfs_backref_walk_ctx *ctx,
1139 struct btrfs_root *extent_root,
1140 struct btrfs_path *path,
1141 int info_level, struct preftrees *preftrees,
1142 struct share_check *sc)
1143{
1144 struct btrfs_fs_info *fs_info = extent_root->fs_info;
1145 int ret;
1146 int slot;
1147 struct extent_buffer *leaf;
1148 struct btrfs_key key;
1149
1150 while (1) {
1151 ret = btrfs_next_item(extent_root, path);
1152 if (ret < 0)
1153 break;
1154 if (ret) {
1155 ret = 0;
1156 break;
1157 }
1158
1159 slot = path->slots[0];
1160 leaf = path->nodes[0];
1161 btrfs_item_key_to_cpu(leaf, &key, slot);
1162
1163 if (key.objectid != ctx->bytenr)
1164 break;
1165 if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
1166 continue;
1167 if (key.type > BTRFS_SHARED_DATA_REF_KEY)
1168 break;
1169
1170 switch (key.type) {
1171 case BTRFS_SHARED_BLOCK_REF_KEY:
1172 /* SHARED DIRECT METADATA backref */
1173 ret = add_direct_ref(fs_info, preftrees,
1174 info_level + 1, key.offset,
1175 ctx->bytenr, 1, NULL, GFP_NOFS);
1176 break;
1177 case BTRFS_SHARED_DATA_REF_KEY: {
1178 /* SHARED DIRECT FULL backref */
1179 struct btrfs_shared_data_ref *sdref;
1180 int count;
1181
1182 sdref = btrfs_item_ptr(leaf, slot,
1183 struct btrfs_shared_data_ref);
1184 count = btrfs_shared_data_ref_count(leaf, sdref);
1185 ret = add_direct_ref(fs_info, preftrees, 0,
1186 key.offset, ctx->bytenr, count,
1187 sc, GFP_NOFS);
1188 break;
1189 }
1190 case BTRFS_TREE_BLOCK_REF_KEY:
1191 /* NORMAL INDIRECT METADATA backref */
1192 ret = add_indirect_ref(fs_info, preftrees, key.offset,
1193 NULL, info_level + 1, ctx->bytenr,
1194 1, NULL, GFP_NOFS);
1195 break;
1196 case BTRFS_EXTENT_DATA_REF_KEY: {
1197 /* NORMAL INDIRECT DATA backref */
1198 struct btrfs_extent_data_ref *dref;
1199 int count;
1200 u64 root;
1201
1202 dref = btrfs_item_ptr(leaf, slot,
1203 struct btrfs_extent_data_ref);
1204 count = btrfs_extent_data_ref_count(leaf, dref);
1205 key.objectid = btrfs_extent_data_ref_objectid(leaf,
1206 dref);
1207 key.type = BTRFS_EXTENT_DATA_KEY;
1208 key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1209
1210 if (sc && key.objectid != sc->inum &&
1211 !sc->have_delayed_delete_refs) {
1212 ret = BACKREF_FOUND_SHARED;
1213 break;
1214 }
1215
1216 root = btrfs_extent_data_ref_root(leaf, dref);
1217
1218 if (!ctx->skip_data_ref ||
1219 !ctx->skip_data_ref(root, key.objectid, key.offset,
1220 ctx->user_ctx))
1221 ret = add_indirect_ref(fs_info, preftrees, root,
1222 &key, 0, ctx->bytenr,
1223 count, sc, GFP_NOFS);
1224 break;
1225 }
1226 default:
1227 WARN_ON(1);
1228 }
1229 if (ret)
1230 return ret;
1231
1232 }
1233
1234 return ret;
1235}
1236
1237/*
1238 * The caller has joined a transaction or is holding a read lock on the
1239 * fs_info->commit_root_sem semaphore, so no need to worry about the root's last
1240 * snapshot field changing while updating or checking the cache.
1241 */
1242static bool lookup_backref_shared_cache(struct btrfs_backref_share_check_ctx *ctx,
1243 struct btrfs_root *root,
1244 u64 bytenr, int level, bool *is_shared)
1245{
1246 const struct btrfs_fs_info *fs_info = root->fs_info;
1247 struct btrfs_backref_shared_cache_entry *entry;
1248
1249 if (!current->journal_info)
1250 lockdep_assert_held(&fs_info->commit_root_sem);
1251
1252 if (!ctx->use_path_cache)
1253 return false;
1254
1255 if (WARN_ON_ONCE(level >= BTRFS_MAX_LEVEL))
1256 return false;
1257
1258 /*
1259 * Level -1 is used for the data extent, which is not reliable to cache
1260 * because its reference count can increase or decrease without us
1261 * realizing. We cache results only for extent buffers that lead from
1262 * the root node down to the leaf with the file extent item.
1263 */
1264 ASSERT(level >= 0);
1265
1266 entry = &ctx->path_cache_entries[level];
1267
1268 /* Unused cache entry or being used for some other extent buffer. */
1269 if (entry->bytenr != bytenr)
1270 return false;
1271
1272 /*
1273 * We cached a false result, but the last snapshot generation of the
1274 * root changed, so we now have a snapshot. Don't trust the result.
1275 */
1276 if (!entry->is_shared &&
1277 entry->gen != btrfs_root_last_snapshot(&root->root_item))
1278 return false;
1279
1280 /*
1281 * If we cached a true result and the last generation used for dropping
1282 * a root changed, we can not trust the result, because the dropped root
1283 * could be a snapshot sharing this extent buffer.
1284 */
1285 if (entry->is_shared &&
1286 entry->gen != btrfs_get_last_root_drop_gen(fs_info))
1287 return false;
1288
1289 *is_shared = entry->is_shared;
1290 /*
1291 * If the node at this level is shared, than all nodes below are also
1292 * shared. Currently some of the nodes below may be marked as not shared
1293 * because we have just switched from one leaf to another, and switched
1294 * also other nodes above the leaf and below the current level, so mark
1295 * them as shared.
1296 */
1297 if (*is_shared) {
1298 for (int i = 0; i < level; i++) {
1299 ctx->path_cache_entries[i].is_shared = true;
1300 ctx->path_cache_entries[i].gen = entry->gen;
1301 }
1302 }
1303
1304 return true;
1305}
1306
1307/*
1308 * The caller has joined a transaction or is holding a read lock on the
1309 * fs_info->commit_root_sem semaphore, so no need to worry about the root's last
1310 * snapshot field changing while updating or checking the cache.
1311 */
1312static void store_backref_shared_cache(struct btrfs_backref_share_check_ctx *ctx,
1313 struct btrfs_root *root,
1314 u64 bytenr, int level, bool is_shared)
1315{
1316 const struct btrfs_fs_info *fs_info = root->fs_info;
1317 struct btrfs_backref_shared_cache_entry *entry;
1318 u64 gen;
1319
1320 if (!current->journal_info)
1321 lockdep_assert_held(&fs_info->commit_root_sem);
1322
1323 if (!ctx->use_path_cache)
1324 return;
1325
1326 if (WARN_ON_ONCE(level >= BTRFS_MAX_LEVEL))
1327 return;
1328
1329 /*
1330 * Level -1 is used for the data extent, which is not reliable to cache
1331 * because its reference count can increase or decrease without us
1332 * realizing. We cache results only for extent buffers that lead from
1333 * the root node down to the leaf with the file extent item.
1334 */
1335 ASSERT(level >= 0);
1336
1337 if (is_shared)
1338 gen = btrfs_get_last_root_drop_gen(fs_info);
1339 else
1340 gen = btrfs_root_last_snapshot(&root->root_item);
1341
1342 entry = &ctx->path_cache_entries[level];
1343 entry->bytenr = bytenr;
1344 entry->is_shared = is_shared;
1345 entry->gen = gen;
1346
1347 /*
1348 * If we found an extent buffer is shared, set the cache result for all
1349 * extent buffers below it to true. As nodes in the path are COWed,
1350 * their sharedness is moved to their children, and if a leaf is COWed,
1351 * then the sharedness of a data extent becomes direct, the refcount of
1352 * data extent is increased in the extent item at the extent tree.
1353 */
1354 if (is_shared) {
1355 for (int i = 0; i < level; i++) {
1356 entry = &ctx->path_cache_entries[i];
1357 entry->is_shared = is_shared;
1358 entry->gen = gen;
1359 }
1360 }
1361}
1362
1363/*
1364 * this adds all existing backrefs (inline backrefs, backrefs and delayed
1365 * refs) for the given bytenr to the refs list, merges duplicates and resolves
1366 * indirect refs to their parent bytenr.
1367 * When roots are found, they're added to the roots list
1368 *
1369 * @ctx: Backref walking context object, must be not NULL.
1370 * @sc: If !NULL, then immediately return BACKREF_FOUND_SHARED when a
1371 * shared extent is detected.
1372 *
1373 * Otherwise this returns 0 for success and <0 for an error.
1374 *
1375 * FIXME some caching might speed things up
1376 */
1377static int find_parent_nodes(struct btrfs_backref_walk_ctx *ctx,
1378 struct share_check *sc)
1379{
1380 struct btrfs_root *root = btrfs_extent_root(ctx->fs_info, ctx->bytenr);
1381 struct btrfs_key key;
1382 struct btrfs_path *path;
1383 struct btrfs_delayed_ref_root *delayed_refs = NULL;
1384 struct btrfs_delayed_ref_head *head;
1385 int info_level = 0;
1386 int ret;
1387 struct prelim_ref *ref;
1388 struct rb_node *node;
1389 struct extent_inode_elem *eie = NULL;
1390 struct preftrees preftrees = {
1391 .direct = PREFTREE_INIT,
1392 .indirect = PREFTREE_INIT,
1393 .indirect_missing_keys = PREFTREE_INIT
1394 };
1395
1396 /* Roots ulist is not needed when using a sharedness check context. */
1397 if (sc)
1398 ASSERT(ctx->roots == NULL);
1399
1400 key.objectid = ctx->bytenr;
1401 if (btrfs_fs_incompat(ctx->fs_info, SKINNY_METADATA))
1402 key.type = BTRFS_METADATA_ITEM_KEY;
1403 else
1404 key.type = BTRFS_EXTENT_ITEM_KEY;
1405 key.offset = (u64)-1;
1406
1407 path = btrfs_alloc_path();
1408 if (!path)
1409 return -ENOMEM;
1410 if (!ctx->trans) {
1411 path->search_commit_root = true;
1412 path->skip_locking = true;
1413 }
1414
1415 if (ctx->time_seq == BTRFS_SEQ_LAST)
1416 path->skip_locking = true;
1417
1418again:
1419 head = NULL;
1420
1421 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1422 if (ret < 0)
1423 goto out;
1424 if (unlikely(ret == 0)) {
1425 /*
1426 * Key with offset -1 found, there would have to exist an extent
1427 * item with such offset, but this is out of the valid range.
1428 */
1429 ret = -EUCLEAN;
1430 goto out;
1431 }
1432
1433 if (ctx->trans && likely(ctx->trans->type != __TRANS_DUMMY) &&
1434 ctx->time_seq != BTRFS_SEQ_LAST) {
1435 /*
1436 * We have a specific time_seq we care about and trans which
1437 * means we have the path lock, we need to grab the ref head and
1438 * lock it so we have a consistent view of the refs at the given
1439 * time.
1440 */
1441 delayed_refs = &ctx->trans->transaction->delayed_refs;
1442 spin_lock(&delayed_refs->lock);
1443 head = btrfs_find_delayed_ref_head(ctx->fs_info, delayed_refs,
1444 ctx->bytenr);
1445 if (head) {
1446 if (!mutex_trylock(&head->mutex)) {
1447 refcount_inc(&head->refs);
1448 spin_unlock(&delayed_refs->lock);
1449
1450 btrfs_release_path(path);
1451
1452 /*
1453 * Mutex was contended, block until it's
1454 * released and try again
1455 */
1456 mutex_lock(&head->mutex);
1457 mutex_unlock(&head->mutex);
1458 btrfs_put_delayed_ref_head(head);
1459 goto again;
1460 }
1461 spin_unlock(&delayed_refs->lock);
1462 ret = add_delayed_refs(ctx->fs_info, head, ctx->time_seq,
1463 &preftrees, sc);
1464 mutex_unlock(&head->mutex);
1465 if (ret)
1466 goto out;
1467 } else {
1468 spin_unlock(&delayed_refs->lock);
1469 }
1470 }
1471
1472 if (path->slots[0]) {
1473 struct extent_buffer *leaf;
1474 int slot;
1475
1476 path->slots[0]--;
1477 leaf = path->nodes[0];
1478 slot = path->slots[0];
1479 btrfs_item_key_to_cpu(leaf, &key, slot);
1480 if (key.objectid == ctx->bytenr &&
1481 (key.type == BTRFS_EXTENT_ITEM_KEY ||
1482 key.type == BTRFS_METADATA_ITEM_KEY)) {
1483 ret = add_inline_refs(ctx, path, &info_level,
1484 &preftrees, sc);
1485 if (ret)
1486 goto out;
1487 ret = add_keyed_refs(ctx, root, path, info_level,
1488 &preftrees, sc);
1489 if (ret)
1490 goto out;
1491 }
1492 }
1493
1494 /*
1495 * If we have a share context and we reached here, it means the extent
1496 * is not directly shared (no multiple reference items for it),
1497 * otherwise we would have exited earlier with a return value of
1498 * BACKREF_FOUND_SHARED after processing delayed references or while
1499 * processing inline or keyed references from the extent tree.
1500 * The extent may however be indirectly shared through shared subtrees
1501 * as a result from creating snapshots, so we determine below what is
1502 * its parent node, in case we are dealing with a metadata extent, or
1503 * what's the leaf (or leaves), from a fs tree, that has a file extent
1504 * item pointing to it in case we are dealing with a data extent.
1505 */
1506 ASSERT(extent_is_shared(sc) == 0);
1507
1508 /*
1509 * If we are here for a data extent and we have a share_check structure
1510 * it means the data extent is not directly shared (does not have
1511 * multiple reference items), so we have to check if a path in the fs
1512 * tree (going from the root node down to the leaf that has the file
1513 * extent item pointing to the data extent) is shared, that is, if any
1514 * of the extent buffers in the path is referenced by other trees.
1515 */
1516 if (sc && ctx->bytenr == sc->data_bytenr) {
1517 /*
1518 * If our data extent is from a generation more recent than the
1519 * last generation used to snapshot the root, then we know that
1520 * it can not be shared through subtrees, so we can skip
1521 * resolving indirect references, there's no point in
1522 * determining the extent buffers for the path from the fs tree
1523 * root node down to the leaf that has the file extent item that
1524 * points to the data extent.
1525 */
1526 if (sc->data_extent_gen >
1527 btrfs_root_last_snapshot(&sc->root->root_item)) {
1528 ret = BACKREF_FOUND_NOT_SHARED;
1529 goto out;
1530 }
1531
1532 /*
1533 * If we are only determining if a data extent is shared or not
1534 * and the corresponding file extent item is located in the same
1535 * leaf as the previous file extent item, we can skip resolving
1536 * indirect references for a data extent, since the fs tree path
1537 * is the same (same leaf, so same path). We skip as long as the
1538 * cached result for the leaf is valid and only if there's only
1539 * one file extent item pointing to the data extent, because in
1540 * the case of multiple file extent items, they may be located
1541 * in different leaves and therefore we have multiple paths.
1542 */
1543 if (sc->ctx->curr_leaf_bytenr == sc->ctx->prev_leaf_bytenr &&
1544 sc->self_ref_count == 1) {
1545 bool cached;
1546 bool is_shared;
1547
1548 cached = lookup_backref_shared_cache(sc->ctx, sc->root,
1549 sc->ctx->curr_leaf_bytenr,
1550 0, &is_shared);
1551 if (cached) {
1552 if (is_shared)
1553 ret = BACKREF_FOUND_SHARED;
1554 else
1555 ret = BACKREF_FOUND_NOT_SHARED;
1556 goto out;
1557 }
1558 }
1559 }
1560
1561 btrfs_release_path(path);
1562
1563 ret = add_missing_keys(ctx->fs_info, &preftrees, !path->skip_locking);
1564 if (ret)
1565 goto out;
1566
1567 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root.rb_root));
1568
1569 ret = resolve_indirect_refs(ctx, path, &preftrees, sc);
1570 if (ret)
1571 goto out;
1572
1573 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root.rb_root));
1574
1575 /*
1576 * This walks the tree of merged and resolved refs. Tree blocks are
1577 * read in as needed. Unique entries are added to the ulist, and
1578 * the list of found roots is updated.
1579 *
1580 * We release the entire tree in one go before returning.
1581 */
1582 node = rb_first_cached(&preftrees.direct.root);
1583 while (node) {
1584 ref = rb_entry(node, struct prelim_ref, rbnode);
1585 node = rb_next(&ref->rbnode);
1586 /*
1587 * ref->count < 0 can happen here if there are delayed
1588 * refs with a node->action of BTRFS_DROP_DELAYED_REF.
1589 * prelim_ref_insert() relies on this when merging
1590 * identical refs to keep the overall count correct.
1591 * prelim_ref_insert() will merge only those refs
1592 * which compare identically. Any refs having
1593 * e.g. different offsets would not be merged,
1594 * and would retain their original ref->count < 0.
1595 */
1596 if (ctx->roots && ref->count && ref->root_id && ref->parent == 0) {
1597 /* no parent == root of tree */
1598 ret = ulist_add(ctx->roots, ref->root_id, 0, GFP_NOFS);
1599 if (ret < 0)
1600 goto out;
1601 }
1602 if (ref->count && ref->parent) {
1603 if (!ctx->skip_inode_ref_list && !ref->inode_list &&
1604 ref->level == 0) {
1605 struct btrfs_tree_parent_check check = { 0 };
1606 struct extent_buffer *eb;
1607
1608 check.level = ref->level;
1609
1610 eb = read_tree_block(ctx->fs_info, ref->parent,
1611 &check);
1612 if (IS_ERR(eb)) {
1613 ret = PTR_ERR(eb);
1614 goto out;
1615 }
1616 if (unlikely(!extent_buffer_uptodate(eb))) {
1617 free_extent_buffer(eb);
1618 ret = -EIO;
1619 goto out;
1620 }
1621
1622 if (!path->skip_locking)
1623 btrfs_tree_read_lock(eb);
1624 ret = find_extent_in_eb(ctx, eb, &eie);
1625 if (!path->skip_locking)
1626 btrfs_tree_read_unlock(eb);
1627 free_extent_buffer(eb);
1628 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP ||
1629 ret < 0)
1630 goto out;
1631 ref->inode_list = eie;
1632 /*
1633 * We transferred the list ownership to the ref,
1634 * so set to NULL to avoid a double free in case
1635 * an error happens after this.
1636 */
1637 eie = NULL;
1638 }
1639 ret = ulist_add_merge_ptr(ctx->refs, ref->parent,
1640 ref->inode_list,
1641 (void **)&eie, GFP_NOFS);
1642 if (ret < 0)
1643 goto out;
1644 if (!ret && !ctx->skip_inode_ref_list) {
1645 /*
1646 * We've recorded that parent, so we must extend
1647 * its inode list here.
1648 *
1649 * However if there was corruption we may not
1650 * have found an eie, return an error in this
1651 * case.
1652 */
1653 ASSERT(eie);
1654 if (unlikely(!eie)) {
1655 ret = -EUCLEAN;
1656 goto out;
1657 }
1658 while (eie->next)
1659 eie = eie->next;
1660 eie->next = ref->inode_list;
1661 }
1662 eie = NULL;
1663 /*
1664 * We have transferred the inode list ownership from
1665 * this ref to the ref we added to the 'refs' ulist.
1666 * So set this ref's inode list to NULL to avoid
1667 * use-after-free when our caller uses it or double
1668 * frees in case an error happens before we return.
1669 */
1670 ref->inode_list = NULL;
1671 }
1672 cond_resched();
1673 }
1674
1675out:
1676 btrfs_free_path(path);
1677
1678 prelim_release(&preftrees.direct);
1679 prelim_release(&preftrees.indirect);
1680 prelim_release(&preftrees.indirect_missing_keys);
1681
1682 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || ret < 0)
1683 free_inode_elem_list(eie);
1684 return ret;
1685}
1686
1687/*
1688 * Finds all leaves with a reference to the specified combination of
1689 * @ctx->bytenr and @ctx->extent_item_pos. The bytenr of the found leaves are
1690 * added to the ulist at @ctx->refs, and that ulist is allocated by this
1691 * function. The caller should free the ulist with free_leaf_list() if
1692 * @ctx->ignore_extent_item_pos is false, otherwise a simple ulist_free() is
1693 * enough.
1694 *
1695 * Returns 0 on success and < 0 on error. On error @ctx->refs is not allocated.
1696 */
1697int btrfs_find_all_leafs(struct btrfs_backref_walk_ctx *ctx)
1698{
1699 int ret;
1700
1701 ASSERT(ctx->refs == NULL);
1702
1703 ctx->refs = ulist_alloc(GFP_NOFS);
1704 if (!ctx->refs)
1705 return -ENOMEM;
1706
1707 ret = find_parent_nodes(ctx, NULL);
1708 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP ||
1709 (ret < 0 && ret != -ENOENT)) {
1710 free_leaf_list(ctx->refs);
1711 ctx->refs = NULL;
1712 return ret;
1713 }
1714
1715 return 0;
1716}
1717
1718/*
1719 * Walk all backrefs for a given extent to find all roots that reference this
1720 * extent. Walking a backref means finding all extents that reference this
1721 * extent and in turn walk the backrefs of those, too. Naturally this is a
1722 * recursive process, but here it is implemented in an iterative fashion: We
1723 * find all referencing extents for the extent in question and put them on a
1724 * list. In turn, we find all referencing extents for those, further appending
1725 * to the list. The way we iterate the list allows adding more elements after
1726 * the current while iterating. The process stops when we reach the end of the
1727 * list.
1728 *
1729 * Found roots are added to @ctx->roots, which is allocated by this function if
1730 * it points to NULL, in which case the caller is responsible for freeing it
1731 * after it's not needed anymore.
1732 * This function requires @ctx->refs to be NULL, as it uses it for allocating a
1733 * ulist to do temporary work, and frees it before returning.
1734 *
1735 * Returns 0 on success, < 0 on error.
1736 */
1737static int btrfs_find_all_roots_safe(struct btrfs_backref_walk_ctx *ctx)
1738{
1739 const u64 orig_bytenr = ctx->bytenr;
1740 const bool orig_skip_inode_ref_list = ctx->skip_inode_ref_list;
1741 bool roots_ulist_allocated = false;
1742 struct ulist_iterator uiter;
1743 int ret = 0;
1744
1745 ASSERT(ctx->refs == NULL);
1746
1747 ctx->refs = ulist_alloc(GFP_NOFS);
1748 if (!ctx->refs)
1749 return -ENOMEM;
1750
1751 if (!ctx->roots) {
1752 ctx->roots = ulist_alloc(GFP_NOFS);
1753 if (!ctx->roots) {
1754 ulist_free(ctx->refs);
1755 ctx->refs = NULL;
1756 return -ENOMEM;
1757 }
1758 roots_ulist_allocated = true;
1759 }
1760
1761 ctx->skip_inode_ref_list = true;
1762
1763 ULIST_ITER_INIT(&uiter);
1764 while (1) {
1765 struct ulist_node *node;
1766
1767 ret = find_parent_nodes(ctx, NULL);
1768 if (ret < 0 && ret != -ENOENT) {
1769 if (roots_ulist_allocated) {
1770 ulist_free(ctx->roots);
1771 ctx->roots = NULL;
1772 }
1773 break;
1774 }
1775 ret = 0;
1776 node = ulist_next(ctx->refs, &uiter);
1777 if (!node)
1778 break;
1779 ctx->bytenr = node->val;
1780 cond_resched();
1781 }
1782
1783 ulist_free(ctx->refs);
1784 ctx->refs = NULL;
1785 ctx->bytenr = orig_bytenr;
1786 ctx->skip_inode_ref_list = orig_skip_inode_ref_list;
1787
1788 return ret;
1789}
1790
1791int btrfs_find_all_roots(struct btrfs_backref_walk_ctx *ctx,
1792 bool skip_commit_root_sem)
1793{
1794 int ret;
1795
1796 if (!ctx->trans && !skip_commit_root_sem)
1797 down_read(&ctx->fs_info->commit_root_sem);
1798 ret = btrfs_find_all_roots_safe(ctx);
1799 if (!ctx->trans && !skip_commit_root_sem)
1800 up_read(&ctx->fs_info->commit_root_sem);
1801 return ret;
1802}
1803
1804struct btrfs_backref_share_check_ctx *btrfs_alloc_backref_share_check_ctx(void)
1805{
1806 struct btrfs_backref_share_check_ctx *ctx;
1807
1808 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1809 if (!ctx)
1810 return NULL;
1811
1812 ulist_init(&ctx->refs);
1813
1814 return ctx;
1815}
1816
1817void btrfs_free_backref_share_ctx(struct btrfs_backref_share_check_ctx *ctx)
1818{
1819 if (!ctx)
1820 return;
1821
1822 ulist_release(&ctx->refs);
1823 kfree(ctx);
1824}
1825
1826/*
1827 * Check if a data extent is shared or not.
1828 *
1829 * @inode: The inode whose extent we are checking.
1830 * @bytenr: Logical bytenr of the extent we are checking.
1831 * @extent_gen: Generation of the extent (file extent item) or 0 if it is
1832 * not known.
1833 * @ctx: A backref sharedness check context.
1834 *
1835 * btrfs_is_data_extent_shared uses the backref walking code but will short
1836 * circuit as soon as it finds a root or inode that doesn't match the
1837 * one passed in. This provides a significant performance benefit for
1838 * callers (such as fiemap) which want to know whether the extent is
1839 * shared but do not need a ref count.
1840 *
1841 * This attempts to attach to the running transaction in order to account for
1842 * delayed refs, but continues on even when no running transaction exists.
1843 *
1844 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
1845 */
1846int btrfs_is_data_extent_shared(struct btrfs_inode *inode, u64 bytenr,
1847 u64 extent_gen,
1848 struct btrfs_backref_share_check_ctx *ctx)
1849{
1850 struct btrfs_backref_walk_ctx walk_ctx = { 0 };
1851 struct btrfs_root *root = inode->root;
1852 struct btrfs_fs_info *fs_info = root->fs_info;
1853 struct btrfs_trans_handle *trans;
1854 struct ulist_iterator uiter;
1855 struct ulist_node *node;
1856 struct btrfs_seq_list elem = BTRFS_SEQ_LIST_INIT(elem);
1857 int ret = 0;
1858 struct share_check shared = {
1859 .ctx = ctx,
1860 .root = root,
1861 .inum = btrfs_ino(inode),
1862 .data_bytenr = bytenr,
1863 .data_extent_gen = extent_gen,
1864 .share_count = 0,
1865 .self_ref_count = 0,
1866 .have_delayed_delete_refs = false,
1867 };
1868 int level;
1869 bool leaf_cached;
1870 bool leaf_is_shared;
1871
1872 for (int i = 0; i < BTRFS_BACKREF_CTX_PREV_EXTENTS_SIZE; i++) {
1873 if (ctx->prev_extents_cache[i].bytenr == bytenr)
1874 return ctx->prev_extents_cache[i].is_shared;
1875 }
1876
1877 ulist_init(&ctx->refs);
1878
1879 trans = btrfs_join_transaction_nostart(root);
1880 if (IS_ERR(trans)) {
1881 if (PTR_ERR(trans) != -ENOENT && PTR_ERR(trans) != -EROFS) {
1882 ret = PTR_ERR(trans);
1883 goto out;
1884 }
1885 trans = NULL;
1886 down_read(&fs_info->commit_root_sem);
1887 } else {
1888 btrfs_get_tree_mod_seq(fs_info, &elem);
1889 walk_ctx.time_seq = elem.seq;
1890 }
1891
1892 ctx->use_path_cache = true;
1893
1894 /*
1895 * We may have previously determined that the current leaf is shared.
1896 * If it is, then we have a data extent that is shared due to a shared
1897 * subtree (caused by snapshotting) and we don't need to check for data
1898 * backrefs. If the leaf is not shared, then we must do backref walking
1899 * to determine if the data extent is shared through reflinks.
1900 */
1901 leaf_cached = lookup_backref_shared_cache(ctx, root,
1902 ctx->curr_leaf_bytenr, 0,
1903 &leaf_is_shared);
1904 if (leaf_cached && leaf_is_shared) {
1905 ret = 1;
1906 goto out_trans;
1907 }
1908
1909 walk_ctx.skip_inode_ref_list = true;
1910 walk_ctx.trans = trans;
1911 walk_ctx.fs_info = fs_info;
1912 walk_ctx.refs = &ctx->refs;
1913
1914 /* -1 means we are in the bytenr of the data extent. */
1915 level = -1;
1916 ULIST_ITER_INIT(&uiter);
1917 while (1) {
1918 const unsigned long prev_ref_count = ctx->refs.nnodes;
1919
1920 walk_ctx.bytenr = bytenr;
1921 ret = find_parent_nodes(&walk_ctx, &shared);
1922 if (ret == BACKREF_FOUND_SHARED ||
1923 ret == BACKREF_FOUND_NOT_SHARED) {
1924 /* If shared must return 1, otherwise return 0. */
1925 ret = (ret == BACKREF_FOUND_SHARED) ? 1 : 0;
1926 if (level >= 0)
1927 store_backref_shared_cache(ctx, root, bytenr,
1928 level, ret == 1);
1929 break;
1930 }
1931 if (ret < 0 && ret != -ENOENT)
1932 break;
1933 ret = 0;
1934
1935 /*
1936 * More than one extent buffer (bytenr) may have been added to
1937 * the ctx->refs ulist, in which case we have to check multiple
1938 * tree paths in case the first one is not shared, so we can not
1939 * use the path cache which is made for a single path. Multiple
1940 * extent buffers at the current level happen when:
1941 *
1942 * 1) level -1, the data extent: If our data extent was not
1943 * directly shared (without multiple reference items), then
1944 * it might have a single reference item with a count > 1 for
1945 * the same offset, which means there are 2 (or more) file
1946 * extent items that point to the data extent - this happens
1947 * when a file extent item needs to be split and then one
1948 * item gets moved to another leaf due to a b+tree leaf split
1949 * when inserting some item. In this case the file extent
1950 * items may be located in different leaves and therefore
1951 * some of the leaves may be referenced through shared
1952 * subtrees while others are not. Since our extent buffer
1953 * cache only works for a single path (by far the most common
1954 * case and simpler to deal with), we can not use it if we
1955 * have multiple leaves (which implies multiple paths).
1956 *
1957 * 2) level >= 0, a tree node/leaf: We can have a mix of direct
1958 * and indirect references on a b+tree node/leaf, so we have
1959 * to check multiple paths, and the extent buffer (the
1960 * current bytenr) may be shared or not. One example is
1961 * during relocation as we may get a shared tree block ref
1962 * (direct ref) and a non-shared tree block ref (indirect
1963 * ref) for the same node/leaf.
1964 */
1965 if ((ctx->refs.nnodes - prev_ref_count) > 1)
1966 ctx->use_path_cache = false;
1967
1968 if (level >= 0)
1969 store_backref_shared_cache(ctx, root, bytenr,
1970 level, false);
1971 node = ulist_next(&ctx->refs, &uiter);
1972 if (!node)
1973 break;
1974 bytenr = node->val;
1975 if (ctx->use_path_cache) {
1976 bool is_shared;
1977 bool cached;
1978
1979 level++;
1980 cached = lookup_backref_shared_cache(ctx, root, bytenr,
1981 level, &is_shared);
1982 if (cached) {
1983 ret = (is_shared ? 1 : 0);
1984 break;
1985 }
1986 }
1987 shared.share_count = 0;
1988 shared.have_delayed_delete_refs = false;
1989 cond_resched();
1990 }
1991
1992 /*
1993 * If the path cache is disabled, then it means at some tree level we
1994 * got multiple parents due to a mix of direct and indirect backrefs or
1995 * multiple leaves with file extent items pointing to the same data
1996 * extent. We have to invalidate the cache and cache only the sharedness
1997 * result for the levels where we got only one node/reference.
1998 */
1999 if (!ctx->use_path_cache) {
2000 int i = 0;
2001
2002 level--;
2003 if (ret >= 0 && level >= 0) {
2004 bytenr = ctx->path_cache_entries[level].bytenr;
2005 ctx->use_path_cache = true;
2006 store_backref_shared_cache(ctx, root, bytenr, level, ret);
2007 i = level + 1;
2008 }
2009
2010 for ( ; i < BTRFS_MAX_LEVEL; i++)
2011 ctx->path_cache_entries[i].bytenr = 0;
2012 }
2013
2014 /*
2015 * Cache the sharedness result for the data extent if we know our inode
2016 * has more than 1 file extent item that refers to the data extent.
2017 */
2018 if (ret >= 0 && shared.self_ref_count > 1) {
2019 int slot = ctx->prev_extents_cache_slot;
2020
2021 ctx->prev_extents_cache[slot].bytenr = shared.data_bytenr;
2022 ctx->prev_extents_cache[slot].is_shared = (ret == 1);
2023
2024 slot = (slot + 1) % BTRFS_BACKREF_CTX_PREV_EXTENTS_SIZE;
2025 ctx->prev_extents_cache_slot = slot;
2026 }
2027
2028out_trans:
2029 if (trans) {
2030 btrfs_put_tree_mod_seq(fs_info, &elem);
2031 btrfs_end_transaction(trans);
2032 } else {
2033 up_read(&fs_info->commit_root_sem);
2034 }
2035out:
2036 ulist_release(&ctx->refs);
2037 ctx->prev_leaf_bytenr = ctx->curr_leaf_bytenr;
2038
2039 return ret;
2040}
2041
2042int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
2043 u64 start_off, struct btrfs_path *path,
2044 struct btrfs_inode_extref **ret_extref,
2045 u64 *found_off)
2046{
2047 int ret, slot;
2048 struct btrfs_key key;
2049 struct btrfs_key found_key;
2050 struct btrfs_inode_extref *extref;
2051 const struct extent_buffer *leaf;
2052 unsigned long ptr;
2053
2054 key.objectid = inode_objectid;
2055 key.type = BTRFS_INODE_EXTREF_KEY;
2056 key.offset = start_off;
2057
2058 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2059 if (ret < 0)
2060 return ret;
2061
2062 while (1) {
2063 leaf = path->nodes[0];
2064 slot = path->slots[0];
2065 if (slot >= btrfs_header_nritems(leaf)) {
2066 /*
2067 * If the item at offset is not found,
2068 * btrfs_search_slot will point us to the slot
2069 * where it should be inserted. In our case
2070 * that will be the slot directly before the
2071 * next INODE_REF_KEY_V2 item. In the case
2072 * that we're pointing to the last slot in a
2073 * leaf, we must move one leaf over.
2074 */
2075 ret = btrfs_next_leaf(root, path);
2076 if (ret) {
2077 if (ret >= 1)
2078 ret = -ENOENT;
2079 break;
2080 }
2081 continue;
2082 }
2083
2084 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2085
2086 /*
2087 * Check that we're still looking at an extended ref key for
2088 * this particular objectid. If we have different
2089 * objectid or type then there are no more to be found
2090 * in the tree and we can exit.
2091 */
2092 ret = -ENOENT;
2093 if (found_key.objectid != inode_objectid)
2094 break;
2095 if (found_key.type != BTRFS_INODE_EXTREF_KEY)
2096 break;
2097
2098 ret = 0;
2099 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
2100 extref = (struct btrfs_inode_extref *)ptr;
2101 *ret_extref = extref;
2102 if (found_off)
2103 *found_off = found_key.offset;
2104 break;
2105 }
2106
2107 return ret;
2108}
2109
2110/*
2111 * this iterates to turn a name (from iref/extref) into a full filesystem path.
2112 * Elements of the path are separated by '/' and the path is guaranteed to be
2113 * 0-terminated. the path is only given within the current file system.
2114 * Therefore, it never starts with a '/'. the caller is responsible to provide
2115 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
2116 * the start point of the resulting string is returned. this pointer is within
2117 * dest, normally.
2118 * in case the path buffer would overflow, the pointer is decremented further
2119 * as if output was written to the buffer, though no more output is actually
2120 * generated. that way, the caller can determine how much space would be
2121 * required for the path to fit into the buffer. in that case, the returned
2122 * value will be smaller than dest. callers must check this!
2123 */
2124char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
2125 u32 name_len, unsigned long name_off,
2126 struct extent_buffer *eb_in, u64 parent,
2127 char *dest, u32 size)
2128{
2129 int slot;
2130 u64 next_inum;
2131 int ret;
2132 s64 bytes_left = ((s64)size) - 1;
2133 struct extent_buffer *eb = eb_in;
2134 struct btrfs_key found_key;
2135 struct btrfs_inode_ref *iref;
2136
2137 if (bytes_left >= 0)
2138 dest[bytes_left] = '\0';
2139
2140 while (1) {
2141 bytes_left -= name_len;
2142 if (bytes_left >= 0)
2143 read_extent_buffer(eb, dest + bytes_left,
2144 name_off, name_len);
2145 if (eb != eb_in) {
2146 if (!path->skip_locking)
2147 btrfs_tree_read_unlock(eb);
2148 free_extent_buffer(eb);
2149 }
2150 ret = btrfs_find_item(fs_root, path, parent, 0,
2151 BTRFS_INODE_REF_KEY, &found_key);
2152 if (ret > 0)
2153 ret = -ENOENT;
2154 if (ret)
2155 break;
2156
2157 next_inum = found_key.offset;
2158
2159 /* regular exit ahead */
2160 if (parent == next_inum)
2161 break;
2162
2163 slot = path->slots[0];
2164 eb = path->nodes[0];
2165 /* make sure we can use eb after releasing the path */
2166 if (eb != eb_in) {
2167 path->nodes[0] = NULL;
2168 path->locks[0] = 0;
2169 }
2170 btrfs_release_path(path);
2171 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
2172
2173 name_len = btrfs_inode_ref_name_len(eb, iref);
2174 name_off = (unsigned long)(iref + 1);
2175
2176 parent = next_inum;
2177 --bytes_left;
2178 if (bytes_left >= 0)
2179 dest[bytes_left] = '/';
2180 }
2181
2182 btrfs_release_path(path);
2183
2184 if (ret)
2185 return ERR_PTR(ret);
2186
2187 return dest + bytes_left;
2188}
2189
2190/*
2191 * this makes the path point to (logical EXTENT_ITEM *)
2192 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
2193 * tree blocks and <0 on error.
2194 */
2195int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
2196 struct btrfs_path *path, struct btrfs_key *found_key,
2197 u64 *flags_ret)
2198{
2199 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, logical);
2200 int ret;
2201 u64 flags;
2202 u64 size = 0;
2203 const struct extent_buffer *eb;
2204 struct btrfs_extent_item *ei;
2205 struct btrfs_key key;
2206
2207 key.objectid = logical;
2208 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2209 key.type = BTRFS_METADATA_ITEM_KEY;
2210 else
2211 key.type = BTRFS_EXTENT_ITEM_KEY;
2212 key.offset = (u64)-1;
2213
2214 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2215 if (ret < 0)
2216 return ret;
2217 if (unlikely(ret == 0)) {
2218 /*
2219 * Key with offset -1 found, there would have to exist an extent
2220 * item with such offset, but this is out of the valid range.
2221 */
2222 return -EUCLEAN;
2223 }
2224
2225 ret = btrfs_previous_extent_item(extent_root, path, 0);
2226 if (ret) {
2227 if (ret > 0)
2228 ret = -ENOENT;
2229 return ret;
2230 }
2231 btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
2232 if (found_key->type == BTRFS_METADATA_ITEM_KEY)
2233 size = fs_info->nodesize;
2234 else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
2235 size = found_key->offset;
2236
2237 if (found_key->objectid > logical ||
2238 found_key->objectid + size <= logical) {
2239 btrfs_debug(fs_info,
2240 "logical %llu is not within any extent", logical);
2241 return -ENOENT;
2242 }
2243
2244 eb = path->nodes[0];
2245
2246 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
2247 flags = btrfs_extent_flags(eb, ei);
2248
2249 btrfs_debug(fs_info,
2250 "logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u",
2251 logical, logical - found_key->objectid, found_key->objectid,
2252 found_key->offset, flags, btrfs_item_size(eb, path->slots[0]));
2253
2254 WARN_ON(!flags_ret);
2255 if (flags_ret) {
2256 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
2257 *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
2258 else if (flags & BTRFS_EXTENT_FLAG_DATA)
2259 *flags_ret = BTRFS_EXTENT_FLAG_DATA;
2260 else
2261 BUG();
2262 return 0;
2263 }
2264
2265 return -EIO;
2266}
2267
2268/*
2269 * helper function to iterate extent inline refs. ptr must point to a 0 value
2270 * for the first call and may be modified. it is used to track state.
2271 * if more refs exist, 0 is returned and the next call to
2272 * get_extent_inline_ref must pass the modified ptr parameter to get the
2273 * next ref. after the last ref was processed, 1 is returned.
2274 * returns <0 on error
2275 */
2276static int get_extent_inline_ref(unsigned long *ptr,
2277 const struct extent_buffer *eb,
2278 const struct btrfs_key *key,
2279 const struct btrfs_extent_item *ei,
2280 u32 item_size,
2281 struct btrfs_extent_inline_ref **out_eiref,
2282 int *out_type)
2283{
2284 unsigned long end;
2285 u64 flags;
2286 struct btrfs_tree_block_info *info;
2287
2288 if (!*ptr) {
2289 /* first call */
2290 flags = btrfs_extent_flags(eb, ei);
2291 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2292 if (key->type == BTRFS_METADATA_ITEM_KEY) {
2293 /* a skinny metadata extent */
2294 *out_eiref =
2295 (struct btrfs_extent_inline_ref *)(ei + 1);
2296 } else {
2297 WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
2298 info = (struct btrfs_tree_block_info *)(ei + 1);
2299 *out_eiref =
2300 (struct btrfs_extent_inline_ref *)(info + 1);
2301 }
2302 } else {
2303 *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
2304 }
2305 *ptr = (unsigned long)*out_eiref;
2306 if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
2307 return -ENOENT;
2308 }
2309
2310 end = (unsigned long)ei + item_size;
2311 *out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
2312 *out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref,
2313 BTRFS_REF_TYPE_ANY);
2314 if (unlikely(*out_type == BTRFS_REF_TYPE_INVALID))
2315 return -EUCLEAN;
2316
2317 *ptr += btrfs_extent_inline_ref_size(*out_type);
2318 WARN_ON(*ptr > end);
2319 if (*ptr == end)
2320 return 1; /* last */
2321
2322 return 0;
2323}
2324
2325/*
2326 * reads the tree block backref for an extent. tree level and root are returned
2327 * through out_level and out_root. ptr must point to a 0 value for the first
2328 * call and may be modified (see get_extent_inline_ref comment).
2329 * returns 0 if data was provided, 1 if there was no more data to provide or
2330 * <0 on error.
2331 */
2332int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
2333 struct btrfs_key *key, struct btrfs_extent_item *ei,
2334 u32 item_size, u64 *out_root, u8 *out_level)
2335{
2336 int ret;
2337 int type;
2338 struct btrfs_extent_inline_ref *eiref;
2339
2340 if (*ptr == (unsigned long)-1)
2341 return 1;
2342
2343 while (1) {
2344 ret = get_extent_inline_ref(ptr, eb, key, ei, item_size,
2345 &eiref, &type);
2346 if (ret < 0)
2347 return ret;
2348
2349 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
2350 type == BTRFS_SHARED_BLOCK_REF_KEY)
2351 break;
2352
2353 if (ret == 1)
2354 return 1;
2355 }
2356
2357 /* we can treat both ref types equally here */
2358 *out_root = btrfs_extent_inline_ref_offset(eb, eiref);
2359
2360 if (key->type == BTRFS_EXTENT_ITEM_KEY) {
2361 struct btrfs_tree_block_info *info;
2362
2363 info = (struct btrfs_tree_block_info *)(ei + 1);
2364 *out_level = btrfs_tree_block_level(eb, info);
2365 } else {
2366 ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
2367 *out_level = (u8)key->offset;
2368 }
2369
2370 if (ret == 1)
2371 *ptr = (unsigned long)-1;
2372
2373 return 0;
2374}
2375
2376static int iterate_leaf_refs(struct btrfs_fs_info *fs_info,
2377 struct extent_inode_elem *inode_list,
2378 u64 root, u64 extent_item_objectid,
2379 iterate_extent_inodes_t *iterate, void *ctx)
2380{
2381 struct extent_inode_elem *eie;
2382 int ret = 0;
2383
2384 for (eie = inode_list; eie; eie = eie->next) {
2385 btrfs_debug(fs_info,
2386 "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu",
2387 extent_item_objectid, eie->inum,
2388 eie->offset, root);
2389 ret = iterate(eie->inum, eie->offset, eie->num_bytes, root, ctx);
2390 if (ret) {
2391 btrfs_debug(fs_info,
2392 "stopping iteration for %llu due to ret=%d",
2393 extent_item_objectid, ret);
2394 break;
2395 }
2396 }
2397
2398 return ret;
2399}
2400
2401/*
2402 * calls iterate() for every inode that references the extent identified by
2403 * the given parameters.
2404 * when the iterator function returns a non-zero value, iteration stops.
2405 */
2406int iterate_extent_inodes(struct btrfs_backref_walk_ctx *ctx,
2407 bool search_commit_root,
2408 iterate_extent_inodes_t *iterate, void *user_ctx)
2409{
2410 int ret;
2411 struct ulist *refs;
2412 struct ulist_node *ref_node;
2413 struct btrfs_seq_list seq_elem = BTRFS_SEQ_LIST_INIT(seq_elem);
2414 struct ulist_iterator ref_uiter;
2415
2416 btrfs_debug(ctx->fs_info, "resolving all inodes for extent %llu",
2417 ctx->bytenr);
2418
2419 ASSERT(ctx->trans == NULL);
2420 ASSERT(ctx->roots == NULL);
2421
2422 if (!search_commit_root) {
2423 struct btrfs_trans_handle *trans;
2424
2425 trans = btrfs_attach_transaction(ctx->fs_info->tree_root);
2426 if (IS_ERR(trans)) {
2427 if (PTR_ERR(trans) != -ENOENT &&
2428 PTR_ERR(trans) != -EROFS)
2429 return PTR_ERR(trans);
2430 trans = NULL;
2431 }
2432 ctx->trans = trans;
2433 }
2434
2435 if (ctx->trans) {
2436 btrfs_get_tree_mod_seq(ctx->fs_info, &seq_elem);
2437 ctx->time_seq = seq_elem.seq;
2438 } else {
2439 down_read(&ctx->fs_info->commit_root_sem);
2440 }
2441
2442 ret = btrfs_find_all_leafs(ctx);
2443 if (ret)
2444 goto out;
2445 refs = ctx->refs;
2446 ctx->refs = NULL;
2447
2448 ULIST_ITER_INIT(&ref_uiter);
2449 while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
2450 const u64 leaf_bytenr = ref_node->val;
2451 struct ulist_node *root_node;
2452 struct ulist_iterator root_uiter;
2453 struct extent_inode_elem *inode_list;
2454
2455 inode_list = (struct extent_inode_elem *)(uintptr_t)ref_node->aux;
2456
2457 if (ctx->cache_lookup) {
2458 const u64 *root_ids;
2459 int root_count;
2460 bool cached;
2461
2462 cached = ctx->cache_lookup(leaf_bytenr, ctx->user_ctx,
2463 &root_ids, &root_count);
2464 if (cached) {
2465 for (int i = 0; i < root_count; i++) {
2466 ret = iterate_leaf_refs(ctx->fs_info,
2467 inode_list,
2468 root_ids[i],
2469 leaf_bytenr,
2470 iterate,
2471 user_ctx);
2472 if (ret)
2473 break;
2474 }
2475 continue;
2476 }
2477 }
2478
2479 if (!ctx->roots) {
2480 ctx->roots = ulist_alloc(GFP_NOFS);
2481 if (!ctx->roots) {
2482 ret = -ENOMEM;
2483 break;
2484 }
2485 }
2486
2487 ctx->bytenr = leaf_bytenr;
2488 ret = btrfs_find_all_roots_safe(ctx);
2489 if (ret)
2490 break;
2491
2492 if (ctx->cache_store)
2493 ctx->cache_store(leaf_bytenr, ctx->roots, ctx->user_ctx);
2494
2495 ULIST_ITER_INIT(&root_uiter);
2496 while (!ret && (root_node = ulist_next(ctx->roots, &root_uiter))) {
2497 btrfs_debug(ctx->fs_info,
2498 "root %llu references leaf %llu, data list %#llx",
2499 root_node->val, ref_node->val,
2500 ref_node->aux);
2501 ret = iterate_leaf_refs(ctx->fs_info, inode_list,
2502 root_node->val, ctx->bytenr,
2503 iterate, user_ctx);
2504 }
2505 ulist_reinit(ctx->roots);
2506 }
2507
2508 free_leaf_list(refs);
2509out:
2510 if (ctx->trans) {
2511 btrfs_put_tree_mod_seq(ctx->fs_info, &seq_elem);
2512 btrfs_end_transaction(ctx->trans);
2513 ctx->trans = NULL;
2514 } else {
2515 up_read(&ctx->fs_info->commit_root_sem);
2516 }
2517
2518 ulist_free(ctx->roots);
2519 ctx->roots = NULL;
2520
2521 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP)
2522 ret = 0;
2523
2524 return ret;
2525}
2526
2527static int build_ino_list(u64 inum, u64 offset, u64 num_bytes, u64 root, void *ctx)
2528{
2529 struct btrfs_data_container *inodes = ctx;
2530 const size_t c = 3 * sizeof(u64);
2531
2532 if (inodes->bytes_left >= c) {
2533 inodes->bytes_left -= c;
2534 inodes->val[inodes->elem_cnt] = inum;
2535 inodes->val[inodes->elem_cnt + 1] = offset;
2536 inodes->val[inodes->elem_cnt + 2] = root;
2537 inodes->elem_cnt += 3;
2538 } else {
2539 inodes->bytes_missing += c - inodes->bytes_left;
2540 inodes->bytes_left = 0;
2541 inodes->elem_missed += 3;
2542 }
2543
2544 return 0;
2545}
2546
2547int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
2548 void *ctx, bool ignore_offset)
2549{
2550 struct btrfs_backref_walk_ctx walk_ctx = { 0 };
2551 int ret;
2552 u64 flags = 0;
2553 struct btrfs_key found_key;
2554 struct btrfs_path *path;
2555
2556 path = btrfs_alloc_path();
2557 if (!path)
2558 return -ENOMEM;
2559
2560 ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
2561 btrfs_free_path(path);
2562 if (ret < 0)
2563 return ret;
2564 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
2565 return -EINVAL;
2566
2567 walk_ctx.bytenr = found_key.objectid;
2568 if (ignore_offset)
2569 walk_ctx.ignore_extent_item_pos = true;
2570 else
2571 walk_ctx.extent_item_pos = logical - found_key.objectid;
2572 walk_ctx.fs_info = fs_info;
2573
2574 return iterate_extent_inodes(&walk_ctx, false, build_ino_list, ctx);
2575}
2576
2577static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
2578 struct extent_buffer *eb, struct inode_fs_paths *ipath);
2579
2580static int iterate_inode_refs(u64 inum, struct inode_fs_paths *ipath)
2581{
2582 int ret = 0;
2583 int slot;
2584 u32 cur;
2585 u32 len;
2586 u32 name_len;
2587 u64 parent = 0;
2588 int found = 0;
2589 struct btrfs_root *fs_root = ipath->fs_root;
2590 struct btrfs_path *path = ipath->btrfs_path;
2591 struct extent_buffer *eb;
2592 struct btrfs_inode_ref *iref;
2593 struct btrfs_key found_key;
2594
2595 while (!ret) {
2596 ret = btrfs_find_item(fs_root, path, inum,
2597 parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
2598 &found_key);
2599
2600 if (ret < 0)
2601 break;
2602 if (ret) {
2603 ret = found ? 0 : -ENOENT;
2604 break;
2605 }
2606 ++found;
2607
2608 parent = found_key.offset;
2609 slot = path->slots[0];
2610 eb = btrfs_clone_extent_buffer(path->nodes[0]);
2611 if (!eb) {
2612 ret = -ENOMEM;
2613 break;
2614 }
2615 btrfs_release_path(path);
2616
2617 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
2618
2619 for (cur = 0; cur < btrfs_item_size(eb, slot); cur += len) {
2620 name_len = btrfs_inode_ref_name_len(eb, iref);
2621 /* path must be released before calling iterate()! */
2622 btrfs_debug(fs_root->fs_info,
2623 "following ref at offset %u for inode %llu in tree %llu",
2624 cur, found_key.objectid,
2625 btrfs_root_id(fs_root));
2626 ret = inode_to_path(parent, name_len,
2627 (unsigned long)(iref + 1), eb, ipath);
2628 if (ret)
2629 break;
2630 len = sizeof(*iref) + name_len;
2631 iref = (struct btrfs_inode_ref *)((char *)iref + len);
2632 }
2633 free_extent_buffer(eb);
2634 }
2635
2636 btrfs_release_path(path);
2637
2638 return ret;
2639}
2640
2641static int iterate_inode_extrefs(u64 inum, struct inode_fs_paths *ipath)
2642{
2643 int ret;
2644 int slot;
2645 u64 offset = 0;
2646 u64 parent;
2647 int found = 0;
2648 struct btrfs_root *fs_root = ipath->fs_root;
2649 struct btrfs_path *path = ipath->btrfs_path;
2650 struct extent_buffer *eb;
2651 struct btrfs_inode_extref *extref;
2652 u32 item_size;
2653 u32 cur_offset;
2654 unsigned long ptr;
2655
2656 while (1) {
2657 ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
2658 &offset);
2659 if (ret < 0)
2660 break;
2661 if (ret) {
2662 ret = found ? 0 : -ENOENT;
2663 break;
2664 }
2665 ++found;
2666
2667 slot = path->slots[0];
2668 eb = btrfs_clone_extent_buffer(path->nodes[0]);
2669 if (!eb) {
2670 ret = -ENOMEM;
2671 break;
2672 }
2673 btrfs_release_path(path);
2674
2675 item_size = btrfs_item_size(eb, slot);
2676 ptr = btrfs_item_ptr_offset(eb, slot);
2677 cur_offset = 0;
2678
2679 while (cur_offset < item_size) {
2680 u32 name_len;
2681
2682 extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
2683 parent = btrfs_inode_extref_parent(eb, extref);
2684 name_len = btrfs_inode_extref_name_len(eb, extref);
2685 ret = inode_to_path(parent, name_len,
2686 (unsigned long)&extref->name, eb, ipath);
2687 if (ret)
2688 break;
2689
2690 cur_offset += btrfs_inode_extref_name_len(eb, extref);
2691 cur_offset += sizeof(*extref);
2692 }
2693 free_extent_buffer(eb);
2694
2695 offset++;
2696 }
2697
2698 btrfs_release_path(path);
2699
2700 return ret;
2701}
2702
2703/*
2704 * returns 0 if the path could be dumped (probably truncated)
2705 * returns <0 in case of an error
2706 */
2707static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
2708 struct extent_buffer *eb, struct inode_fs_paths *ipath)
2709{
2710 char *fspath;
2711 char *fspath_min;
2712 int i = ipath->fspath->elem_cnt;
2713 const int s_ptr = sizeof(char *);
2714 u32 bytes_left;
2715
2716 bytes_left = ipath->fspath->bytes_left > s_ptr ?
2717 ipath->fspath->bytes_left - s_ptr : 0;
2718
2719 fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
2720 fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
2721 name_off, eb, inum, fspath_min, bytes_left);
2722 if (IS_ERR(fspath))
2723 return PTR_ERR(fspath);
2724
2725 if (fspath > fspath_min) {
2726 ipath->fspath->val[i] = (u64)(unsigned long)fspath;
2727 ++ipath->fspath->elem_cnt;
2728 ipath->fspath->bytes_left = fspath - fspath_min;
2729 } else {
2730 ++ipath->fspath->elem_missed;
2731 ipath->fspath->bytes_missing += fspath_min - fspath;
2732 ipath->fspath->bytes_left = 0;
2733 }
2734
2735 return 0;
2736}
2737
2738/*
2739 * this dumps all file system paths to the inode into the ipath struct, provided
2740 * is has been created large enough. each path is zero-terminated and accessed
2741 * from ipath->fspath->val[i].
2742 * when it returns, there are ipath->fspath->elem_cnt number of paths available
2743 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
2744 * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise,
2745 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
2746 * have been needed to return all paths.
2747 */
2748int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
2749{
2750 int ret;
2751 int found_refs = 0;
2752
2753 ret = iterate_inode_refs(inum, ipath);
2754 if (!ret)
2755 ++found_refs;
2756 else if (ret != -ENOENT)
2757 return ret;
2758
2759 ret = iterate_inode_extrefs(inum, ipath);
2760 if (ret == -ENOENT && found_refs)
2761 return 0;
2762
2763 return ret;
2764}
2765
2766struct btrfs_data_container *init_data_container(u32 total_bytes)
2767{
2768 struct btrfs_data_container *data;
2769 size_t alloc_bytes;
2770
2771 alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
2772 data = kvzalloc(alloc_bytes, GFP_KERNEL);
2773 if (!data)
2774 return ERR_PTR(-ENOMEM);
2775
2776 if (total_bytes >= sizeof(*data))
2777 data->bytes_left = total_bytes - sizeof(*data);
2778 else
2779 data->bytes_missing = sizeof(*data) - total_bytes;
2780
2781 return data;
2782}
2783
2784/*
2785 * allocates space to return multiple file system paths for an inode.
2786 * total_bytes to allocate are passed, note that space usable for actual path
2787 * information will be total_bytes - sizeof(struct inode_fs_paths).
2788 * the returned pointer must be freed with __free_inode_fs_paths() in the end.
2789 */
2790struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
2791 struct btrfs_path *path)
2792{
2793 struct inode_fs_paths *ifp;
2794 struct btrfs_data_container *fspath;
2795
2796 fspath = init_data_container(total_bytes);
2797 if (IS_ERR(fspath))
2798 return ERR_CAST(fspath);
2799
2800 ifp = kmalloc(sizeof(*ifp), GFP_KERNEL);
2801 if (!ifp) {
2802 kvfree(fspath);
2803 return ERR_PTR(-ENOMEM);
2804 }
2805
2806 ifp->btrfs_path = path;
2807 ifp->fspath = fspath;
2808 ifp->fs_root = fs_root;
2809
2810 return ifp;
2811}
2812
2813struct btrfs_backref_iter *btrfs_backref_iter_alloc(struct btrfs_fs_info *fs_info)
2814{
2815 struct btrfs_backref_iter *ret;
2816
2817 ret = kzalloc(sizeof(*ret), GFP_NOFS);
2818 if (!ret)
2819 return NULL;
2820
2821 ret->path = btrfs_alloc_path();
2822 if (!ret->path) {
2823 kfree(ret);
2824 return NULL;
2825 }
2826
2827 /* Current backref iterator only supports iteration in commit root */
2828 ret->path->search_commit_root = true;
2829 ret->path->skip_locking = true;
2830 ret->fs_info = fs_info;
2831
2832 return ret;
2833}
2834
2835static void btrfs_backref_iter_release(struct btrfs_backref_iter *iter)
2836{
2837 iter->bytenr = 0;
2838 iter->item_ptr = 0;
2839 iter->cur_ptr = 0;
2840 iter->end_ptr = 0;
2841 btrfs_release_path(iter->path);
2842 memset(&iter->cur_key, 0, sizeof(iter->cur_key));
2843}
2844
2845int btrfs_backref_iter_start(struct btrfs_backref_iter *iter, u64 bytenr)
2846{
2847 struct btrfs_fs_info *fs_info = iter->fs_info;
2848 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr);
2849 struct btrfs_path *path = iter->path;
2850 struct btrfs_extent_item *ei;
2851 struct btrfs_key key;
2852 int ret;
2853
2854 key.objectid = bytenr;
2855 key.type = BTRFS_METADATA_ITEM_KEY;
2856 key.offset = (u64)-1;
2857 iter->bytenr = bytenr;
2858
2859 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2860 if (ret < 0)
2861 return ret;
2862 if (unlikely(ret == 0)) {
2863 /*
2864 * Key with offset -1 found, there would have to exist an extent
2865 * item with such offset, but this is out of the valid range.
2866 */
2867 ret = -EUCLEAN;
2868 goto release;
2869 }
2870 if (unlikely(path->slots[0] == 0)) {
2871 DEBUG_WARN();
2872 ret = -EUCLEAN;
2873 goto release;
2874 }
2875 path->slots[0]--;
2876
2877 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2878 if ((key.type != BTRFS_EXTENT_ITEM_KEY &&
2879 key.type != BTRFS_METADATA_ITEM_KEY) || key.objectid != bytenr) {
2880 ret = -ENOENT;
2881 goto release;
2882 }
2883 memcpy(&iter->cur_key, &key, sizeof(key));
2884 iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2885 path->slots[0]);
2886 iter->end_ptr = (u32)(iter->item_ptr +
2887 btrfs_item_size(path->nodes[0], path->slots[0]));
2888 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
2889 struct btrfs_extent_item);
2890
2891 /*
2892 * Only support iteration on tree backref yet.
2893 *
2894 * This is an extra precaution for non skinny-metadata, where
2895 * EXTENT_ITEM is also used for tree blocks, that we can only use
2896 * extent flags to determine if it's a tree block.
2897 */
2898 if (btrfs_extent_flags(path->nodes[0], ei) & BTRFS_EXTENT_FLAG_DATA) {
2899 ret = -ENOTSUPP;
2900 goto release;
2901 }
2902 iter->cur_ptr = (u32)(iter->item_ptr + sizeof(*ei));
2903
2904 /* If there is no inline backref, go search for keyed backref */
2905 if (iter->cur_ptr >= iter->end_ptr) {
2906 ret = btrfs_next_item(extent_root, path);
2907
2908 /* No inline nor keyed ref */
2909 if (ret > 0) {
2910 ret = -ENOENT;
2911 goto release;
2912 }
2913 if (ret < 0)
2914 goto release;
2915
2916 btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key,
2917 path->slots[0]);
2918 if (iter->cur_key.objectid != bytenr ||
2919 (iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY &&
2920 iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY)) {
2921 ret = -ENOENT;
2922 goto release;
2923 }
2924 iter->cur_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2925 path->slots[0]);
2926 iter->item_ptr = iter->cur_ptr;
2927 iter->end_ptr = (u32)(iter->item_ptr + btrfs_item_size(
2928 path->nodes[0], path->slots[0]));
2929 }
2930
2931 return 0;
2932release:
2933 btrfs_backref_iter_release(iter);
2934 return ret;
2935}
2936
2937static bool btrfs_backref_iter_is_inline_ref(struct btrfs_backref_iter *iter)
2938{
2939 if (iter->cur_key.type == BTRFS_EXTENT_ITEM_KEY ||
2940 iter->cur_key.type == BTRFS_METADATA_ITEM_KEY)
2941 return true;
2942 return false;
2943}
2944
2945/*
2946 * Go to the next backref item of current bytenr, can be either inlined or
2947 * keyed.
2948 *
2949 * Caller needs to check whether it's inline ref or not by iter->cur_key.
2950 *
2951 * Return 0 if we get next backref without problem.
2952 * Return >0 if there is no extra backref for this bytenr.
2953 * Return <0 if there is something wrong happened.
2954 */
2955int btrfs_backref_iter_next(struct btrfs_backref_iter *iter)
2956{
2957 struct extent_buffer *eb = iter->path->nodes[0];
2958 struct btrfs_root *extent_root;
2959 struct btrfs_path *path = iter->path;
2960 struct btrfs_extent_inline_ref *iref;
2961 int ret;
2962 u32 size;
2963
2964 if (btrfs_backref_iter_is_inline_ref(iter)) {
2965 /* We're still inside the inline refs */
2966 ASSERT(iter->cur_ptr < iter->end_ptr);
2967
2968 if (btrfs_backref_has_tree_block_info(iter)) {
2969 /* First tree block info */
2970 size = sizeof(struct btrfs_tree_block_info);
2971 } else {
2972 /* Use inline ref type to determine the size */
2973 int type;
2974
2975 iref = (struct btrfs_extent_inline_ref *)
2976 ((unsigned long)iter->cur_ptr);
2977 type = btrfs_extent_inline_ref_type(eb, iref);
2978
2979 size = btrfs_extent_inline_ref_size(type);
2980 }
2981 iter->cur_ptr += size;
2982 if (iter->cur_ptr < iter->end_ptr)
2983 return 0;
2984
2985 /* All inline items iterated, fall through */
2986 }
2987
2988 /* We're at keyed items, there is no inline item, go to the next one */
2989 extent_root = btrfs_extent_root(iter->fs_info, iter->bytenr);
2990 ret = btrfs_next_item(extent_root, iter->path);
2991 if (ret)
2992 return ret;
2993
2994 btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key, path->slots[0]);
2995 if (iter->cur_key.objectid != iter->bytenr ||
2996 (iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY &&
2997 iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY))
2998 return 1;
2999 iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
3000 path->slots[0]);
3001 iter->cur_ptr = iter->item_ptr;
3002 iter->end_ptr = iter->item_ptr + (u32)btrfs_item_size(path->nodes[0],
3003 path->slots[0]);
3004 return 0;
3005}
3006
3007void btrfs_backref_init_cache(struct btrfs_fs_info *fs_info,
3008 struct btrfs_backref_cache *cache, bool is_reloc)
3009{
3010 int i;
3011
3012 cache->rb_root = RB_ROOT;
3013 for (i = 0; i < BTRFS_MAX_LEVEL; i++)
3014 INIT_LIST_HEAD(&cache->pending[i]);
3015 INIT_LIST_HEAD(&cache->pending_edge);
3016 INIT_LIST_HEAD(&cache->useless_node);
3017 cache->fs_info = fs_info;
3018 cache->is_reloc = is_reloc;
3019}
3020
3021struct btrfs_backref_node *btrfs_backref_alloc_node(
3022 struct btrfs_backref_cache *cache, u64 bytenr, int level)
3023{
3024 struct btrfs_backref_node *node;
3025
3026 ASSERT(level >= 0 && level < BTRFS_MAX_LEVEL);
3027 node = kzalloc(sizeof(*node), GFP_NOFS);
3028 if (!node)
3029 return node;
3030
3031 INIT_LIST_HEAD(&node->list);
3032 INIT_LIST_HEAD(&node->upper);
3033 INIT_LIST_HEAD(&node->lower);
3034 RB_CLEAR_NODE(&node->rb_node);
3035 cache->nr_nodes++;
3036 node->level = level;
3037 node->bytenr = bytenr;
3038
3039 return node;
3040}
3041
3042void btrfs_backref_free_node(struct btrfs_backref_cache *cache,
3043 struct btrfs_backref_node *node)
3044{
3045 if (node) {
3046 ASSERT(list_empty(&node->list));
3047 ASSERT(list_empty(&node->lower));
3048 ASSERT(node->eb == NULL);
3049 cache->nr_nodes--;
3050 btrfs_put_root(node->root);
3051 kfree(node);
3052 }
3053}
3054
3055struct btrfs_backref_edge *btrfs_backref_alloc_edge(
3056 struct btrfs_backref_cache *cache)
3057{
3058 struct btrfs_backref_edge *edge;
3059
3060 edge = kzalloc(sizeof(*edge), GFP_NOFS);
3061 if (edge)
3062 cache->nr_edges++;
3063 return edge;
3064}
3065
3066void btrfs_backref_free_edge(struct btrfs_backref_cache *cache,
3067 struct btrfs_backref_edge *edge)
3068{
3069 if (edge) {
3070 cache->nr_edges--;
3071 kfree(edge);
3072 }
3073}
3074
3075void btrfs_backref_unlock_node_buffer(struct btrfs_backref_node *node)
3076{
3077 if (node->locked) {
3078 btrfs_tree_unlock(node->eb);
3079 node->locked = 0;
3080 }
3081}
3082
3083void btrfs_backref_drop_node_buffer(struct btrfs_backref_node *node)
3084{
3085 if (node->eb) {
3086 btrfs_backref_unlock_node_buffer(node);
3087 free_extent_buffer(node->eb);
3088 node->eb = NULL;
3089 }
3090}
3091
3092/*
3093 * Drop the backref node from cache without cleaning up its children
3094 * edges.
3095 *
3096 * This can only be called on node without parent edges.
3097 * The children edges are still kept as is.
3098 */
3099void btrfs_backref_drop_node(struct btrfs_backref_cache *tree,
3100 struct btrfs_backref_node *node)
3101{
3102 ASSERT(list_empty(&node->upper));
3103
3104 btrfs_backref_drop_node_buffer(node);
3105 list_del_init(&node->list);
3106 list_del_init(&node->lower);
3107 if (!RB_EMPTY_NODE(&node->rb_node))
3108 rb_erase(&node->rb_node, &tree->rb_root);
3109 btrfs_backref_free_node(tree, node);
3110}
3111
3112/*
3113 * Drop the backref node from cache, also cleaning up all its
3114 * upper edges and any uncached nodes in the path.
3115 *
3116 * This cleanup happens bottom up, thus the node should either
3117 * be the lowest node in the cache or a detached node.
3118 */
3119void btrfs_backref_cleanup_node(struct btrfs_backref_cache *cache,
3120 struct btrfs_backref_node *node)
3121{
3122 struct btrfs_backref_edge *edge;
3123
3124 if (!node)
3125 return;
3126
3127 while (!list_empty(&node->upper)) {
3128 edge = list_first_entry(&node->upper, struct btrfs_backref_edge,
3129 list[LOWER]);
3130 list_del(&edge->list[LOWER]);
3131 list_del(&edge->list[UPPER]);
3132 btrfs_backref_free_edge(cache, edge);
3133 }
3134
3135 btrfs_backref_drop_node(cache, node);
3136}
3137
3138/*
3139 * Release all nodes/edges from current cache
3140 */
3141void btrfs_backref_release_cache(struct btrfs_backref_cache *cache)
3142{
3143 struct btrfs_backref_node *node;
3144
3145 while ((node = rb_entry_safe(rb_first(&cache->rb_root),
3146 struct btrfs_backref_node, rb_node)))
3147 btrfs_backref_cleanup_node(cache, node);
3148
3149 ASSERT(list_empty(&cache->pending_edge));
3150 ASSERT(list_empty(&cache->useless_node));
3151 ASSERT(!cache->nr_nodes);
3152 ASSERT(!cache->nr_edges);
3153}
3154
3155static void btrfs_backref_link_edge(struct btrfs_backref_edge *edge,
3156 struct btrfs_backref_node *lower,
3157 struct btrfs_backref_node *upper)
3158{
3159 ASSERT(upper && lower && upper->level == lower->level + 1);
3160 edge->node[LOWER] = lower;
3161 edge->node[UPPER] = upper;
3162 list_add_tail(&edge->list[LOWER], &lower->upper);
3163}
3164/*
3165 * Handle direct tree backref
3166 *
3167 * Direct tree backref means, the backref item shows its parent bytenr
3168 * directly. This is for SHARED_BLOCK_REF backref (keyed or inlined).
3169 *
3170 * @ref_key: The converted backref key.
3171 * For keyed backref, it's the item key.
3172 * For inlined backref, objectid is the bytenr,
3173 * type is btrfs_inline_ref_type, offset is
3174 * btrfs_inline_ref_offset.
3175 */
3176static int handle_direct_tree_backref(struct btrfs_backref_cache *cache,
3177 struct btrfs_key *ref_key,
3178 struct btrfs_backref_node *cur)
3179{
3180 struct btrfs_backref_edge *edge;
3181 struct btrfs_backref_node *upper;
3182 struct rb_node *rb_node;
3183
3184 ASSERT(ref_key->type == BTRFS_SHARED_BLOCK_REF_KEY);
3185
3186 /* Only reloc root uses backref pointing to itself */
3187 if (ref_key->objectid == ref_key->offset) {
3188 struct btrfs_root *root;
3189
3190 cur->is_reloc_root = 1;
3191 /* Only reloc backref cache cares about a specific root */
3192 if (cache->is_reloc) {
3193 root = find_reloc_root(cache->fs_info, cur->bytenr);
3194 if (!root)
3195 return -ENOENT;
3196 cur->root = root;
3197 } else {
3198 /*
3199 * For generic purpose backref cache, reloc root node
3200 * is useless.
3201 */
3202 list_add(&cur->list, &cache->useless_node);
3203 }
3204 return 0;
3205 }
3206
3207 edge = btrfs_backref_alloc_edge(cache);
3208 if (!edge)
3209 return -ENOMEM;
3210
3211 rb_node = rb_simple_search(&cache->rb_root, ref_key->offset);
3212 if (!rb_node) {
3213 /* Parent node not yet cached */
3214 upper = btrfs_backref_alloc_node(cache, ref_key->offset,
3215 cur->level + 1);
3216 if (!upper) {
3217 btrfs_backref_free_edge(cache, edge);
3218 return -ENOMEM;
3219 }
3220
3221 /*
3222 * Backrefs for the upper level block isn't cached, add the
3223 * block to pending list
3224 */
3225 list_add_tail(&edge->list[UPPER], &cache->pending_edge);
3226 } else {
3227 /* Parent node already cached */
3228 upper = rb_entry(rb_node, struct btrfs_backref_node, rb_node);
3229 ASSERT(upper->checked);
3230 INIT_LIST_HEAD(&edge->list[UPPER]);
3231 }
3232 btrfs_backref_link_edge(edge, cur, upper);
3233 return 0;
3234}
3235
3236/*
3237 * Handle indirect tree backref
3238 *
3239 * Indirect tree backref means, we only know which tree the node belongs to.
3240 * We still need to do a tree search to find out the parents. This is for
3241 * TREE_BLOCK_REF backref (keyed or inlined).
3242 *
3243 * @trans: Transaction handle.
3244 * @ref_key: The same as @ref_key in handle_direct_tree_backref()
3245 * @tree_key: The first key of this tree block.
3246 * @path: A clean (released) path, to avoid allocating path every time
3247 * the function get called.
3248 */
3249static int handle_indirect_tree_backref(struct btrfs_trans_handle *trans,
3250 struct btrfs_backref_cache *cache,
3251 struct btrfs_path *path,
3252 struct btrfs_key *ref_key,
3253 struct btrfs_key *tree_key,
3254 struct btrfs_backref_node *cur)
3255{
3256 struct btrfs_fs_info *fs_info = cache->fs_info;
3257 struct btrfs_backref_node *upper;
3258 struct btrfs_backref_node *lower;
3259 struct btrfs_backref_edge *edge;
3260 struct extent_buffer *eb;
3261 struct btrfs_root *root;
3262 struct rb_node *rb_node;
3263 int level;
3264 bool need_check = true;
3265 int ret;
3266
3267 root = btrfs_get_fs_root(fs_info, ref_key->offset, false);
3268 if (IS_ERR(root))
3269 return PTR_ERR(root);
3270
3271 /* We shouldn't be using backref cache for non-shareable roots. */
3272 if (unlikely(!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))) {
3273 btrfs_put_root(root);
3274 return -EUCLEAN;
3275 }
3276
3277 if (btrfs_root_level(&root->root_item) == cur->level) {
3278 /* Tree root */
3279 ASSERT(btrfs_root_bytenr(&root->root_item) == cur->bytenr);
3280 /*
3281 * For reloc backref cache, we may ignore reloc root. But for
3282 * general purpose backref cache, we can't rely on
3283 * btrfs_should_ignore_reloc_root() as it may conflict with
3284 * current running relocation and lead to missing root.
3285 *
3286 * For general purpose backref cache, reloc root detection is
3287 * completely relying on direct backref (key->offset is parent
3288 * bytenr), thus only do such check for reloc cache.
3289 */
3290 if (btrfs_should_ignore_reloc_root(root) && cache->is_reloc) {
3291 btrfs_put_root(root);
3292 list_add(&cur->list, &cache->useless_node);
3293 } else {
3294 cur->root = root;
3295 }
3296 return 0;
3297 }
3298
3299 level = cur->level + 1;
3300
3301 /* Search the tree to find parent blocks referring to the block */
3302 path->search_commit_root = true;
3303 path->skip_locking = true;
3304 path->lowest_level = level;
3305 ret = btrfs_search_slot(NULL, root, tree_key, path, 0, 0);
3306 path->lowest_level = 0;
3307 if (ret < 0) {
3308 btrfs_put_root(root);
3309 return ret;
3310 }
3311 if (ret > 0 && path->slots[level] > 0)
3312 path->slots[level]--;
3313
3314 eb = path->nodes[level];
3315 if (btrfs_node_blockptr(eb, path->slots[level]) != cur->bytenr) {
3316 btrfs_err(fs_info,
3317"couldn't find block (%llu) (level %d) in tree (%llu) with key " BTRFS_KEY_FMT,
3318 cur->bytenr, level - 1, btrfs_root_id(root),
3319 BTRFS_KEY_FMT_VALUE(tree_key));
3320 btrfs_put_root(root);
3321 ret = -ENOENT;
3322 goto out;
3323 }
3324 lower = cur;
3325
3326 /* Add all nodes and edges in the path */
3327 for (; level < BTRFS_MAX_LEVEL; level++) {
3328 if (!path->nodes[level]) {
3329 ASSERT(btrfs_root_bytenr(&root->root_item) ==
3330 lower->bytenr);
3331 /* Same as previous should_ignore_reloc_root() call */
3332 if (btrfs_should_ignore_reloc_root(root) &&
3333 cache->is_reloc) {
3334 btrfs_put_root(root);
3335 list_add(&lower->list, &cache->useless_node);
3336 } else {
3337 lower->root = root;
3338 }
3339 break;
3340 }
3341
3342 edge = btrfs_backref_alloc_edge(cache);
3343 if (!edge) {
3344 btrfs_put_root(root);
3345 ret = -ENOMEM;
3346 goto out;
3347 }
3348
3349 eb = path->nodes[level];
3350 rb_node = rb_simple_search(&cache->rb_root, eb->start);
3351 if (!rb_node) {
3352 upper = btrfs_backref_alloc_node(cache, eb->start,
3353 lower->level + 1);
3354 if (!upper) {
3355 btrfs_put_root(root);
3356 btrfs_backref_free_edge(cache, edge);
3357 ret = -ENOMEM;
3358 goto out;
3359 }
3360 upper->owner = btrfs_header_owner(eb);
3361
3362 /* We shouldn't be using backref cache for non shareable roots. */
3363 if (unlikely(!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))) {
3364 btrfs_put_root(root);
3365 btrfs_backref_free_edge(cache, edge);
3366 btrfs_backref_free_node(cache, upper);
3367 ret = -EUCLEAN;
3368 goto out;
3369 }
3370
3371 /*
3372 * If we know the block isn't shared we can avoid
3373 * checking its backrefs.
3374 */
3375 if (btrfs_block_can_be_shared(trans, root, eb))
3376 upper->checked = 0;
3377 else
3378 upper->checked = 1;
3379
3380 /*
3381 * Add the block to pending list if we need to check its
3382 * backrefs, we only do this once while walking up a
3383 * tree as we will catch anything else later on.
3384 */
3385 if (!upper->checked && need_check) {
3386 need_check = false;
3387 list_add_tail(&edge->list[UPPER],
3388 &cache->pending_edge);
3389 } else {
3390 if (upper->checked)
3391 need_check = true;
3392 INIT_LIST_HEAD(&edge->list[UPPER]);
3393 }
3394 } else {
3395 upper = rb_entry(rb_node, struct btrfs_backref_node,
3396 rb_node);
3397 ASSERT(upper->checked);
3398 INIT_LIST_HEAD(&edge->list[UPPER]);
3399 if (!upper->owner)
3400 upper->owner = btrfs_header_owner(eb);
3401 }
3402 btrfs_backref_link_edge(edge, lower, upper);
3403
3404 if (rb_node) {
3405 btrfs_put_root(root);
3406 break;
3407 }
3408 lower = upper;
3409 upper = NULL;
3410 }
3411out:
3412 btrfs_release_path(path);
3413 return ret;
3414}
3415
3416/*
3417 * Add backref node @cur into @cache.
3418 *
3419 * NOTE: Even if the function returned 0, @cur is not yet cached as its upper
3420 * links aren't yet bi-directional. Needs to finish such links.
3421 * Use btrfs_backref_finish_upper_links() to finish such linkage.
3422 *
3423 * @trans: Transaction handle.
3424 * @path: Released path for indirect tree backref lookup
3425 * @iter: Released backref iter for extent tree search
3426 * @node_key: The first key of the tree block
3427 */
3428int btrfs_backref_add_tree_node(struct btrfs_trans_handle *trans,
3429 struct btrfs_backref_cache *cache,
3430 struct btrfs_path *path,
3431 struct btrfs_backref_iter *iter,
3432 struct btrfs_key *node_key,
3433 struct btrfs_backref_node *cur)
3434{
3435 struct btrfs_backref_edge *edge;
3436 struct btrfs_backref_node *exist;
3437 int ret;
3438
3439 ret = btrfs_backref_iter_start(iter, cur->bytenr);
3440 if (ret < 0)
3441 return ret;
3442 /*
3443 * We skip the first btrfs_tree_block_info, as we don't use the key
3444 * stored in it, but fetch it from the tree block
3445 */
3446 if (btrfs_backref_has_tree_block_info(iter)) {
3447 ret = btrfs_backref_iter_next(iter);
3448 if (ret < 0)
3449 goto out;
3450 /* No extra backref? This means the tree block is corrupted */
3451 if (unlikely(ret > 0)) {
3452 ret = -EUCLEAN;
3453 goto out;
3454 }
3455 }
3456 WARN_ON(cur->checked);
3457 if (!list_empty(&cur->upper)) {
3458 /*
3459 * The backref was added previously when processing backref of
3460 * type BTRFS_TREE_BLOCK_REF_KEY
3461 */
3462 ASSERT(list_is_singular(&cur->upper));
3463 edge = list_first_entry(&cur->upper, struct btrfs_backref_edge,
3464 list[LOWER]);
3465 ASSERT(list_empty(&edge->list[UPPER]));
3466 exist = edge->node[UPPER];
3467 /*
3468 * Add the upper level block to pending list if we need check
3469 * its backrefs
3470 */
3471 if (!exist->checked)
3472 list_add_tail(&edge->list[UPPER], &cache->pending_edge);
3473 } else {
3474 exist = NULL;
3475 }
3476
3477 for (; ret == 0; ret = btrfs_backref_iter_next(iter)) {
3478 struct extent_buffer *eb;
3479 struct btrfs_key key;
3480 int type;
3481
3482 cond_resched();
3483 eb = iter->path->nodes[0];
3484
3485 key.objectid = iter->bytenr;
3486 if (btrfs_backref_iter_is_inline_ref(iter)) {
3487 struct btrfs_extent_inline_ref *iref;
3488
3489 /* Update key for inline backref */
3490 iref = (struct btrfs_extent_inline_ref *)
3491 ((unsigned long)iter->cur_ptr);
3492 type = btrfs_get_extent_inline_ref_type(eb, iref,
3493 BTRFS_REF_TYPE_BLOCK);
3494 if (unlikely(type == BTRFS_REF_TYPE_INVALID)) {
3495 ret = -EUCLEAN;
3496 goto out;
3497 }
3498 key.type = type;
3499 key.offset = btrfs_extent_inline_ref_offset(eb, iref);
3500 } else {
3501 key.type = iter->cur_key.type;
3502 key.offset = iter->cur_key.offset;
3503 }
3504
3505 /*
3506 * Parent node found and matches current inline ref, no need to
3507 * rebuild this node for this inline ref
3508 */
3509 if (exist &&
3510 ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
3511 exist->owner == key.offset) ||
3512 (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
3513 exist->bytenr == key.offset))) {
3514 exist = NULL;
3515 continue;
3516 }
3517
3518 /* SHARED_BLOCK_REF means key.offset is the parent bytenr */
3519 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
3520 ret = handle_direct_tree_backref(cache, &key, cur);
3521 if (ret < 0)
3522 goto out;
3523 } else if (key.type == BTRFS_TREE_BLOCK_REF_KEY) {
3524 /*
3525 * key.type == BTRFS_TREE_BLOCK_REF_KEY, inline ref
3526 * offset means the root objectid. We need to search
3527 * the tree to get its parent bytenr.
3528 */
3529 ret = handle_indirect_tree_backref(trans, cache, path,
3530 &key, node_key, cur);
3531 if (ret < 0)
3532 goto out;
3533 }
3534 /*
3535 * Unrecognized tree backref items (if it can pass tree-checker)
3536 * would be ignored.
3537 */
3538 }
3539 ret = 0;
3540 cur->checked = 1;
3541 WARN_ON(exist);
3542out:
3543 btrfs_backref_iter_release(iter);
3544 return ret;
3545}
3546
3547/*
3548 * Finish the upwards linkage created by btrfs_backref_add_tree_node()
3549 */
3550int btrfs_backref_finish_upper_links(struct btrfs_backref_cache *cache,
3551 struct btrfs_backref_node *start)
3552{
3553 struct list_head *useless_node = &cache->useless_node;
3554 struct btrfs_backref_edge *edge;
3555 struct rb_node *rb_node;
3556 LIST_HEAD(pending_edge);
3557
3558 ASSERT(start->checked);
3559
3560 rb_node = rb_simple_insert(&cache->rb_root, &start->simple_node);
3561 if (rb_node)
3562 btrfs_backref_panic(cache->fs_info, start->bytenr, -EEXIST);
3563
3564 /*
3565 * Use breadth first search to iterate all related edges.
3566 *
3567 * The starting points are all the edges of this node
3568 */
3569 list_for_each_entry(edge, &start->upper, list[LOWER])
3570 list_add_tail(&edge->list[UPPER], &pending_edge);
3571
3572 while (!list_empty(&pending_edge)) {
3573 struct btrfs_backref_node *upper;
3574 struct btrfs_backref_node *lower;
3575
3576 edge = list_first_entry(&pending_edge,
3577 struct btrfs_backref_edge, list[UPPER]);
3578 list_del_init(&edge->list[UPPER]);
3579 upper = edge->node[UPPER];
3580 lower = edge->node[LOWER];
3581
3582 /* Parent is detached, no need to keep any edges */
3583 if (upper->detached) {
3584 list_del(&edge->list[LOWER]);
3585 btrfs_backref_free_edge(cache, edge);
3586
3587 /* Lower node is orphan, queue for cleanup */
3588 if (list_empty(&lower->upper))
3589 list_add(&lower->list, useless_node);
3590 continue;
3591 }
3592
3593 /*
3594 * All new nodes added in current build_backref_tree() haven't
3595 * been linked to the cache rb tree.
3596 * So if we have upper->rb_node populated, this means a cache
3597 * hit. We only need to link the edge, as @upper and all its
3598 * parents have already been linked.
3599 */
3600 if (!RB_EMPTY_NODE(&upper->rb_node)) {
3601 list_add_tail(&edge->list[UPPER], &upper->lower);
3602 continue;
3603 }
3604
3605 /* Sanity check, we shouldn't have any unchecked nodes */
3606 if (unlikely(!upper->checked)) {
3607 DEBUG_WARN("we should not have any unchecked nodes");
3608 return -EUCLEAN;
3609 }
3610
3611 rb_node = rb_simple_insert(&cache->rb_root, &upper->simple_node);
3612 if (unlikely(rb_node)) {
3613 btrfs_backref_panic(cache->fs_info, upper->bytenr, -EEXIST);
3614 return -EUCLEAN;
3615 }
3616
3617 list_add_tail(&edge->list[UPPER], &upper->lower);
3618
3619 /*
3620 * Also queue all the parent edges of this uncached node
3621 * to finish the upper linkage
3622 */
3623 list_for_each_entry(edge, &upper->upper, list[LOWER])
3624 list_add_tail(&edge->list[UPPER], &pending_edge);
3625 }
3626 return 0;
3627}
3628
3629void btrfs_backref_error_cleanup(struct btrfs_backref_cache *cache,
3630 struct btrfs_backref_node *node)
3631{
3632 struct btrfs_backref_node *lower;
3633 struct btrfs_backref_node *upper;
3634 struct btrfs_backref_edge *edge;
3635
3636 while (!list_empty(&cache->useless_node)) {
3637 lower = list_first_entry(&cache->useless_node,
3638 struct btrfs_backref_node, list);
3639 list_del_init(&lower->list);
3640 }
3641 while (!list_empty(&cache->pending_edge)) {
3642 edge = list_first_entry(&cache->pending_edge,
3643 struct btrfs_backref_edge, list[UPPER]);
3644 list_del(&edge->list[UPPER]);
3645 list_del(&edge->list[LOWER]);
3646 lower = edge->node[LOWER];
3647 upper = edge->node[UPPER];
3648 btrfs_backref_free_edge(cache, edge);
3649
3650 /*
3651 * Lower is no longer linked to any upper backref nodes and
3652 * isn't in the cache, we can free it ourselves.
3653 */
3654 if (list_empty(&lower->upper) &&
3655 RB_EMPTY_NODE(&lower->rb_node))
3656 list_add(&lower->list, &cache->useless_node);
3657
3658 if (!RB_EMPTY_NODE(&upper->rb_node))
3659 continue;
3660
3661 /* Add this guy's upper edges to the list to process */
3662 list_for_each_entry(edge, &upper->upper, list[LOWER])
3663 list_add_tail(&edge->list[UPPER],
3664 &cache->pending_edge);
3665 if (list_empty(&upper->upper))
3666 list_add(&upper->list, &cache->useless_node);
3667 }
3668
3669 while (!list_empty(&cache->useless_node)) {
3670 lower = list_first_entry(&cache->useless_node,
3671 struct btrfs_backref_node, list);
3672 list_del_init(&lower->list);
3673 if (lower == node)
3674 node = NULL;
3675 btrfs_backref_drop_node(cache, lower);
3676 }
3677
3678 btrfs_backref_cleanup_node(cache, node);
3679 ASSERT(list_empty(&cache->useless_node) &&
3680 list_empty(&cache->pending_edge));
3681}