Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*******************************************************************************
3 * Filename: target_core_transport.c
4 *
5 * This file contains the Generic Target Engine Core.
6 *
7 * (c) Copyright 2002-2013 Datera, Inc.
8 *
9 * Nicholas A. Bellinger <nab@kernel.org>
10 *
11 ******************************************************************************/
12
13#include <linux/net.h>
14#include <linux/delay.h>
15#include <linux/string.h>
16#include <linux/timer.h>
17#include <linux/slab.h>
18#include <linux/spinlock.h>
19#include <linux/kthread.h>
20#include <linux/in.h>
21#include <linux/cdrom.h>
22#include <linux/module.h>
23#include <linux/ratelimit.h>
24#include <linux/vmalloc.h>
25#include <linux/unaligned.h>
26#include <net/sock.h>
27#include <net/tcp.h>
28#include <scsi/scsi_proto.h>
29#include <scsi/scsi_common.h>
30
31#include <target/target_core_base.h>
32#include <target/target_core_backend.h>
33#include <target/target_core_fabric.h>
34
35#include "target_core_internal.h"
36#include "target_core_alua.h"
37#include "target_core_pr.h"
38#include "target_core_ua.h"
39
40#define CREATE_TRACE_POINTS
41#include <trace/events/target.h>
42
43static struct workqueue_struct *target_completion_wq;
44static struct workqueue_struct *target_submission_wq;
45static struct kmem_cache *se_sess_cache;
46struct kmem_cache *se_ua_cache;
47struct kmem_cache *t10_pr_reg_cache;
48struct kmem_cache *t10_alua_lu_gp_cache;
49struct kmem_cache *t10_alua_lu_gp_mem_cache;
50struct kmem_cache *t10_alua_tg_pt_gp_cache;
51struct kmem_cache *t10_alua_lba_map_cache;
52struct kmem_cache *t10_alua_lba_map_mem_cache;
53
54static void transport_complete_task_attr(struct se_cmd *cmd);
55static void translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason);
56static void transport_handle_queue_full(struct se_cmd *cmd,
57 struct se_device *dev, int err, bool write_pending);
58static void target_complete_ok_work(struct work_struct *work);
59
60int init_se_kmem_caches(void)
61{
62 se_sess_cache = kmem_cache_create("se_sess_cache",
63 sizeof(struct se_session), __alignof__(struct se_session),
64 0, NULL);
65 if (!se_sess_cache) {
66 pr_err("kmem_cache_create() for struct se_session"
67 " failed\n");
68 goto out;
69 }
70 se_ua_cache = kmem_cache_create("se_ua_cache",
71 sizeof(struct se_ua), __alignof__(struct se_ua),
72 0, NULL);
73 if (!se_ua_cache) {
74 pr_err("kmem_cache_create() for struct se_ua failed\n");
75 goto out_free_sess_cache;
76 }
77 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
78 sizeof(struct t10_pr_registration),
79 __alignof__(struct t10_pr_registration), 0, NULL);
80 if (!t10_pr_reg_cache) {
81 pr_err("kmem_cache_create() for struct t10_pr_registration"
82 " failed\n");
83 goto out_free_ua_cache;
84 }
85 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
86 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
87 0, NULL);
88 if (!t10_alua_lu_gp_cache) {
89 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
90 " failed\n");
91 goto out_free_pr_reg_cache;
92 }
93 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
94 sizeof(struct t10_alua_lu_gp_member),
95 __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
96 if (!t10_alua_lu_gp_mem_cache) {
97 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
98 "cache failed\n");
99 goto out_free_lu_gp_cache;
100 }
101 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
102 sizeof(struct t10_alua_tg_pt_gp),
103 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
104 if (!t10_alua_tg_pt_gp_cache) {
105 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
106 "cache failed\n");
107 goto out_free_lu_gp_mem_cache;
108 }
109 t10_alua_lba_map_cache = kmem_cache_create(
110 "t10_alua_lba_map_cache",
111 sizeof(struct t10_alua_lba_map),
112 __alignof__(struct t10_alua_lba_map), 0, NULL);
113 if (!t10_alua_lba_map_cache) {
114 pr_err("kmem_cache_create() for t10_alua_lba_map_"
115 "cache failed\n");
116 goto out_free_tg_pt_gp_cache;
117 }
118 t10_alua_lba_map_mem_cache = kmem_cache_create(
119 "t10_alua_lba_map_mem_cache",
120 sizeof(struct t10_alua_lba_map_member),
121 __alignof__(struct t10_alua_lba_map_member), 0, NULL);
122 if (!t10_alua_lba_map_mem_cache) {
123 pr_err("kmem_cache_create() for t10_alua_lba_map_mem_"
124 "cache failed\n");
125 goto out_free_lba_map_cache;
126 }
127
128 target_completion_wq = alloc_workqueue("target_completion",
129 WQ_MEM_RECLAIM | WQ_PERCPU, 0);
130 if (!target_completion_wq)
131 goto out_free_lba_map_mem_cache;
132
133 target_submission_wq = alloc_workqueue("target_submission",
134 WQ_MEM_RECLAIM | WQ_PERCPU, 0);
135 if (!target_submission_wq)
136 goto out_free_completion_wq;
137
138 return 0;
139
140out_free_completion_wq:
141 destroy_workqueue(target_completion_wq);
142out_free_lba_map_mem_cache:
143 kmem_cache_destroy(t10_alua_lba_map_mem_cache);
144out_free_lba_map_cache:
145 kmem_cache_destroy(t10_alua_lba_map_cache);
146out_free_tg_pt_gp_cache:
147 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
148out_free_lu_gp_mem_cache:
149 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
150out_free_lu_gp_cache:
151 kmem_cache_destroy(t10_alua_lu_gp_cache);
152out_free_pr_reg_cache:
153 kmem_cache_destroy(t10_pr_reg_cache);
154out_free_ua_cache:
155 kmem_cache_destroy(se_ua_cache);
156out_free_sess_cache:
157 kmem_cache_destroy(se_sess_cache);
158out:
159 return -ENOMEM;
160}
161
162void release_se_kmem_caches(void)
163{
164 destroy_workqueue(target_submission_wq);
165 destroy_workqueue(target_completion_wq);
166 kmem_cache_destroy(se_sess_cache);
167 kmem_cache_destroy(se_ua_cache);
168 kmem_cache_destroy(t10_pr_reg_cache);
169 kmem_cache_destroy(t10_alua_lu_gp_cache);
170 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
171 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
172 kmem_cache_destroy(t10_alua_lba_map_cache);
173 kmem_cache_destroy(t10_alua_lba_map_mem_cache);
174}
175
176/* This code ensures unique mib indexes are handed out. */
177static DEFINE_SPINLOCK(scsi_mib_index_lock);
178static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
179
180/*
181 * Allocate a new row index for the entry type specified
182 */
183u32 scsi_get_new_index(scsi_index_t type)
184{
185 u32 new_index;
186
187 BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
188
189 spin_lock(&scsi_mib_index_lock);
190 new_index = ++scsi_mib_index[type];
191 spin_unlock(&scsi_mib_index_lock);
192
193 return new_index;
194}
195
196void transport_subsystem_check_init(void)
197{
198 int ret;
199 static int sub_api_initialized;
200
201 if (sub_api_initialized)
202 return;
203
204 ret = IS_ENABLED(CONFIG_TCM_IBLOCK) && request_module("target_core_iblock");
205 if (ret != 0)
206 pr_err("Unable to load target_core_iblock\n");
207
208 ret = IS_ENABLED(CONFIG_TCM_FILEIO) && request_module("target_core_file");
209 if (ret != 0)
210 pr_err("Unable to load target_core_file\n");
211
212 ret = IS_ENABLED(CONFIG_TCM_PSCSI) && request_module("target_core_pscsi");
213 if (ret != 0)
214 pr_err("Unable to load target_core_pscsi\n");
215
216 ret = IS_ENABLED(CONFIG_TCM_USER2) && request_module("target_core_user");
217 if (ret != 0)
218 pr_err("Unable to load target_core_user\n");
219
220 sub_api_initialized = 1;
221}
222
223static void target_release_cmd_refcnt(struct percpu_ref *ref)
224{
225 struct target_cmd_counter *cmd_cnt = container_of(ref,
226 typeof(*cmd_cnt),
227 refcnt);
228 wake_up(&cmd_cnt->refcnt_wq);
229}
230
231struct target_cmd_counter *target_alloc_cmd_counter(void)
232{
233 struct target_cmd_counter *cmd_cnt;
234 int rc;
235
236 cmd_cnt = kzalloc(sizeof(*cmd_cnt), GFP_KERNEL);
237 if (!cmd_cnt)
238 return NULL;
239
240 init_completion(&cmd_cnt->stop_done);
241 init_waitqueue_head(&cmd_cnt->refcnt_wq);
242 atomic_set(&cmd_cnt->stopped, 0);
243
244 rc = percpu_ref_init(&cmd_cnt->refcnt, target_release_cmd_refcnt, 0,
245 GFP_KERNEL);
246 if (rc)
247 goto free_cmd_cnt;
248
249 return cmd_cnt;
250
251free_cmd_cnt:
252 kfree(cmd_cnt);
253 return NULL;
254}
255EXPORT_SYMBOL_GPL(target_alloc_cmd_counter);
256
257void target_free_cmd_counter(struct target_cmd_counter *cmd_cnt)
258{
259 /*
260 * Drivers like loop do not call target_stop_session during session
261 * shutdown so we have to drop the ref taken at init time here.
262 */
263 if (!atomic_read(&cmd_cnt->stopped))
264 percpu_ref_put(&cmd_cnt->refcnt);
265
266 percpu_ref_exit(&cmd_cnt->refcnt);
267 kfree(cmd_cnt);
268}
269EXPORT_SYMBOL_GPL(target_free_cmd_counter);
270
271/**
272 * transport_init_session - initialize a session object
273 * @se_sess: Session object pointer.
274 *
275 * The caller must have zero-initialized @se_sess before calling this function.
276 */
277void transport_init_session(struct se_session *se_sess)
278{
279 INIT_LIST_HEAD(&se_sess->sess_list);
280 INIT_LIST_HEAD(&se_sess->sess_acl_list);
281 spin_lock_init(&se_sess->sess_cmd_lock);
282}
283EXPORT_SYMBOL(transport_init_session);
284
285/**
286 * transport_alloc_session - allocate a session object and initialize it
287 * @sup_prot_ops: bitmask that defines which T10-PI modes are supported.
288 */
289struct se_session *transport_alloc_session(enum target_prot_op sup_prot_ops)
290{
291 struct se_session *se_sess;
292
293 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
294 if (!se_sess) {
295 pr_err("Unable to allocate struct se_session from"
296 " se_sess_cache\n");
297 return ERR_PTR(-ENOMEM);
298 }
299 transport_init_session(se_sess);
300 se_sess->sup_prot_ops = sup_prot_ops;
301
302 return se_sess;
303}
304EXPORT_SYMBOL(transport_alloc_session);
305
306/**
307 * transport_alloc_session_tags - allocate target driver private data
308 * @se_sess: Session pointer.
309 * @tag_num: Maximum number of in-flight commands between initiator and target.
310 * @tag_size: Size in bytes of the private data a target driver associates with
311 * each command.
312 */
313int transport_alloc_session_tags(struct se_session *se_sess,
314 unsigned int tag_num, unsigned int tag_size)
315{
316 int rc;
317
318 se_sess->sess_cmd_map = kvcalloc(tag_size, tag_num,
319 GFP_KERNEL | __GFP_RETRY_MAYFAIL);
320 if (!se_sess->sess_cmd_map) {
321 pr_err("Unable to allocate se_sess->sess_cmd_map\n");
322 return -ENOMEM;
323 }
324
325 rc = sbitmap_queue_init_node(&se_sess->sess_tag_pool, tag_num, -1,
326 false, GFP_KERNEL, NUMA_NO_NODE);
327 if (rc < 0) {
328 pr_err("Unable to init se_sess->sess_tag_pool,"
329 " tag_num: %u\n", tag_num);
330 kvfree(se_sess->sess_cmd_map);
331 se_sess->sess_cmd_map = NULL;
332 return -ENOMEM;
333 }
334
335 return 0;
336}
337EXPORT_SYMBOL(transport_alloc_session_tags);
338
339/**
340 * transport_init_session_tags - allocate a session and target driver private data
341 * @tag_num: Maximum number of in-flight commands between initiator and target.
342 * @tag_size: Size in bytes of the private data a target driver associates with
343 * each command.
344 * @sup_prot_ops: bitmask that defines which T10-PI modes are supported.
345 */
346static struct se_session *
347transport_init_session_tags(unsigned int tag_num, unsigned int tag_size,
348 enum target_prot_op sup_prot_ops)
349{
350 struct se_session *se_sess;
351 int rc;
352
353 if (tag_num != 0 && !tag_size) {
354 pr_err("init_session_tags called with percpu-ida tag_num:"
355 " %u, but zero tag_size\n", tag_num);
356 return ERR_PTR(-EINVAL);
357 }
358 if (!tag_num && tag_size) {
359 pr_err("init_session_tags called with percpu-ida tag_size:"
360 " %u, but zero tag_num\n", tag_size);
361 return ERR_PTR(-EINVAL);
362 }
363
364 se_sess = transport_alloc_session(sup_prot_ops);
365 if (IS_ERR(se_sess))
366 return se_sess;
367
368 rc = transport_alloc_session_tags(se_sess, tag_num, tag_size);
369 if (rc < 0) {
370 transport_free_session(se_sess);
371 return ERR_PTR(-ENOMEM);
372 }
373
374 return se_sess;
375}
376
377/*
378 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
379 */
380void __transport_register_session(
381 struct se_portal_group *se_tpg,
382 struct se_node_acl *se_nacl,
383 struct se_session *se_sess,
384 void *fabric_sess_ptr)
385{
386 const struct target_core_fabric_ops *tfo = se_tpg->se_tpg_tfo;
387 unsigned char buf[PR_REG_ISID_LEN];
388 unsigned long flags;
389
390 se_sess->se_tpg = se_tpg;
391 se_sess->fabric_sess_ptr = fabric_sess_ptr;
392 /*
393 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
394 *
395 * Only set for struct se_session's that will actually be moving I/O.
396 * eg: *NOT* discovery sessions.
397 */
398 if (se_nacl) {
399 /*
400 *
401 * Determine if fabric allows for T10-PI feature bits exposed to
402 * initiators for device backends with !dev->dev_attrib.pi_prot_type.
403 *
404 * If so, then always save prot_type on a per se_node_acl node
405 * basis and re-instate the previous sess_prot_type to avoid
406 * disabling PI from below any previously initiator side
407 * registered LUNs.
408 */
409 if (se_nacl->saved_prot_type)
410 se_sess->sess_prot_type = se_nacl->saved_prot_type;
411 else if (tfo->tpg_check_prot_fabric_only)
412 se_sess->sess_prot_type = se_nacl->saved_prot_type =
413 tfo->tpg_check_prot_fabric_only(se_tpg);
414 /*
415 * If the fabric module supports an ISID based TransportID,
416 * save this value in binary from the fabric I_T Nexus now.
417 */
418 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
419 memset(&buf[0], 0, PR_REG_ISID_LEN);
420 se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
421 &buf[0], PR_REG_ISID_LEN);
422 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
423 }
424
425 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
426 /*
427 * The se_nacl->nacl_sess pointer will be set to the
428 * last active I_T Nexus for each struct se_node_acl.
429 */
430 se_nacl->nacl_sess = se_sess;
431
432 list_add_tail(&se_sess->sess_acl_list,
433 &se_nacl->acl_sess_list);
434 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
435 }
436 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
437
438 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
439 se_tpg->se_tpg_tfo->fabric_name, se_sess->fabric_sess_ptr);
440}
441EXPORT_SYMBOL(__transport_register_session);
442
443void transport_register_session(
444 struct se_portal_group *se_tpg,
445 struct se_node_acl *se_nacl,
446 struct se_session *se_sess,
447 void *fabric_sess_ptr)
448{
449 unsigned long flags;
450
451 spin_lock_irqsave(&se_tpg->session_lock, flags);
452 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
453 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
454}
455EXPORT_SYMBOL(transport_register_session);
456
457struct se_session *
458target_setup_session(struct se_portal_group *tpg,
459 unsigned int tag_num, unsigned int tag_size,
460 enum target_prot_op prot_op,
461 const char *initiatorname, void *private,
462 int (*callback)(struct se_portal_group *,
463 struct se_session *, void *))
464{
465 struct target_cmd_counter *cmd_cnt;
466 struct se_session *sess;
467 int rc;
468
469 cmd_cnt = target_alloc_cmd_counter();
470 if (!cmd_cnt)
471 return ERR_PTR(-ENOMEM);
472 /*
473 * If the fabric driver is using percpu-ida based pre allocation
474 * of I/O descriptor tags, go ahead and perform that setup now..
475 */
476 if (tag_num != 0)
477 sess = transport_init_session_tags(tag_num, tag_size, prot_op);
478 else
479 sess = transport_alloc_session(prot_op);
480
481 if (IS_ERR(sess)) {
482 rc = PTR_ERR(sess);
483 goto free_cnt;
484 }
485 sess->cmd_cnt = cmd_cnt;
486
487 sess->se_node_acl = core_tpg_check_initiator_node_acl(tpg,
488 (unsigned char *)initiatorname);
489 if (!sess->se_node_acl) {
490 rc = -EACCES;
491 goto free_sess;
492 }
493 /*
494 * Go ahead and perform any remaining fabric setup that is
495 * required before transport_register_session().
496 */
497 if (callback != NULL) {
498 rc = callback(tpg, sess, private);
499 if (rc)
500 goto free_sess;
501 }
502
503 transport_register_session(tpg, sess->se_node_acl, sess, private);
504 return sess;
505
506free_sess:
507 transport_free_session(sess);
508 return ERR_PTR(rc);
509
510free_cnt:
511 target_free_cmd_counter(cmd_cnt);
512 return ERR_PTR(rc);
513}
514EXPORT_SYMBOL(target_setup_session);
515
516ssize_t target_show_dynamic_sessions(struct se_portal_group *se_tpg, char *page)
517{
518 struct se_session *se_sess;
519 ssize_t len = 0;
520
521 spin_lock_bh(&se_tpg->session_lock);
522 list_for_each_entry(se_sess, &se_tpg->tpg_sess_list, sess_list) {
523 if (!se_sess->se_node_acl)
524 continue;
525 if (!se_sess->se_node_acl->dynamic_node_acl)
526 continue;
527 if (strlen(se_sess->se_node_acl->initiatorname) + 1 + len > PAGE_SIZE)
528 break;
529
530 len += snprintf(page + len, PAGE_SIZE - len, "%s\n",
531 se_sess->se_node_acl->initiatorname);
532 len += 1; /* Include NULL terminator */
533 }
534 spin_unlock_bh(&se_tpg->session_lock);
535
536 return len;
537}
538EXPORT_SYMBOL(target_show_dynamic_sessions);
539
540static void target_complete_nacl(struct kref *kref)
541{
542 struct se_node_acl *nacl = container_of(kref,
543 struct se_node_acl, acl_kref);
544 struct se_portal_group *se_tpg = nacl->se_tpg;
545
546 if (!nacl->dynamic_stop) {
547 complete(&nacl->acl_free_comp);
548 return;
549 }
550
551 mutex_lock(&se_tpg->acl_node_mutex);
552 list_del_init(&nacl->acl_list);
553 mutex_unlock(&se_tpg->acl_node_mutex);
554
555 core_tpg_wait_for_nacl_pr_ref(nacl);
556 core_free_device_list_for_node(nacl, se_tpg);
557 kfree(nacl);
558}
559
560void target_put_nacl(struct se_node_acl *nacl)
561{
562 kref_put(&nacl->acl_kref, target_complete_nacl);
563}
564EXPORT_SYMBOL(target_put_nacl);
565
566void transport_deregister_session_configfs(struct se_session *se_sess)
567{
568 struct se_node_acl *se_nacl;
569 unsigned long flags;
570 /*
571 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
572 */
573 se_nacl = se_sess->se_node_acl;
574 if (se_nacl) {
575 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
576 if (!list_empty(&se_sess->sess_acl_list))
577 list_del_init(&se_sess->sess_acl_list);
578 /*
579 * If the session list is empty, then clear the pointer.
580 * Otherwise, set the struct se_session pointer from the tail
581 * element of the per struct se_node_acl active session list.
582 */
583 if (list_empty(&se_nacl->acl_sess_list))
584 se_nacl->nacl_sess = NULL;
585 else {
586 se_nacl->nacl_sess = container_of(
587 se_nacl->acl_sess_list.prev,
588 struct se_session, sess_acl_list);
589 }
590 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
591 }
592}
593EXPORT_SYMBOL(transport_deregister_session_configfs);
594
595void transport_free_session(struct se_session *se_sess)
596{
597 struct se_node_acl *se_nacl = se_sess->se_node_acl;
598
599 /*
600 * Drop the se_node_acl->nacl_kref obtained from within
601 * core_tpg_get_initiator_node_acl().
602 */
603 if (se_nacl) {
604 struct se_portal_group *se_tpg = se_nacl->se_tpg;
605 const struct target_core_fabric_ops *se_tfo = se_tpg->se_tpg_tfo;
606 unsigned long flags;
607
608 se_sess->se_node_acl = NULL;
609
610 /*
611 * Also determine if we need to drop the extra ->cmd_kref if
612 * it had been previously dynamically generated, and
613 * the endpoint is not caching dynamic ACLs.
614 */
615 mutex_lock(&se_tpg->acl_node_mutex);
616 if (se_nacl->dynamic_node_acl &&
617 !se_tfo->tpg_check_demo_mode_cache(se_tpg)) {
618 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
619 if (list_empty(&se_nacl->acl_sess_list))
620 se_nacl->dynamic_stop = true;
621 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
622
623 if (se_nacl->dynamic_stop)
624 list_del_init(&se_nacl->acl_list);
625 }
626 mutex_unlock(&se_tpg->acl_node_mutex);
627
628 if (se_nacl->dynamic_stop)
629 target_put_nacl(se_nacl);
630
631 target_put_nacl(se_nacl);
632 }
633 if (se_sess->sess_cmd_map) {
634 sbitmap_queue_free(&se_sess->sess_tag_pool);
635 kvfree(se_sess->sess_cmd_map);
636 }
637 if (se_sess->cmd_cnt)
638 target_free_cmd_counter(se_sess->cmd_cnt);
639 kmem_cache_free(se_sess_cache, se_sess);
640}
641EXPORT_SYMBOL(transport_free_session);
642
643static int target_release_res(struct se_device *dev, void *data)
644{
645 struct se_session *sess = data;
646
647 if (dev->reservation_holder == sess)
648 target_release_reservation(dev);
649 return 0;
650}
651
652void transport_deregister_session(struct se_session *se_sess)
653{
654 struct se_portal_group *se_tpg = se_sess->se_tpg;
655 unsigned long flags;
656
657 if (!se_tpg) {
658 transport_free_session(se_sess);
659 return;
660 }
661
662 spin_lock_irqsave(&se_tpg->session_lock, flags);
663 list_del(&se_sess->sess_list);
664 se_sess->se_tpg = NULL;
665 se_sess->fabric_sess_ptr = NULL;
666 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
667
668 /*
669 * Since the session is being removed, release SPC-2
670 * reservations held by the session that is disappearing.
671 */
672 target_for_each_device(target_release_res, se_sess);
673
674 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
675 se_tpg->se_tpg_tfo->fabric_name);
676 /*
677 * If last kref is dropping now for an explicit NodeACL, awake sleeping
678 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
679 * removal context from within transport_free_session() code.
680 *
681 * For dynamic ACL, target_put_nacl() uses target_complete_nacl()
682 * to release all remaining generate_node_acl=1 created ACL resources.
683 */
684
685 transport_free_session(se_sess);
686}
687EXPORT_SYMBOL(transport_deregister_session);
688
689void target_remove_session(struct se_session *se_sess)
690{
691 transport_deregister_session_configfs(se_sess);
692 transport_deregister_session(se_sess);
693}
694EXPORT_SYMBOL(target_remove_session);
695
696static void target_remove_from_state_list(struct se_cmd *cmd)
697{
698 struct se_device *dev = cmd->se_dev;
699 unsigned long flags;
700
701 if (!dev)
702 return;
703
704 spin_lock_irqsave(&dev->queues[cmd->cpuid].lock, flags);
705 if (cmd->state_active) {
706 list_del(&cmd->state_list);
707 cmd->state_active = false;
708 }
709 spin_unlock_irqrestore(&dev->queues[cmd->cpuid].lock, flags);
710}
711
712static void target_remove_from_tmr_list(struct se_cmd *cmd)
713{
714 struct se_device *dev = NULL;
715 unsigned long flags;
716
717 if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
718 dev = cmd->se_tmr_req->tmr_dev;
719
720 if (dev) {
721 spin_lock_irqsave(&dev->se_tmr_lock, flags);
722 if (cmd->se_tmr_req->tmr_dev)
723 list_del_init(&cmd->se_tmr_req->tmr_list);
724 spin_unlock_irqrestore(&dev->se_tmr_lock, flags);
725 }
726}
727/*
728 * This function is called by the target core after the target core has
729 * finished processing a SCSI command or SCSI TMF. Both the regular command
730 * processing code and the code for aborting commands can call this
731 * function. CMD_T_STOP is set if and only if another thread is waiting
732 * inside transport_wait_for_tasks() for t_transport_stop_comp.
733 */
734static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
735{
736 unsigned long flags;
737
738 spin_lock_irqsave(&cmd->t_state_lock, flags);
739 /*
740 * Determine if frontend context caller is requesting the stopping of
741 * this command for frontend exceptions.
742 */
743 if (cmd->transport_state & CMD_T_STOP) {
744 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
745 __func__, __LINE__, cmd->tag);
746
747 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
748
749 complete_all(&cmd->t_transport_stop_comp);
750 return 1;
751 }
752 cmd->transport_state &= ~CMD_T_ACTIVE;
753 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
754
755 /*
756 * Some fabric modules like tcm_loop can release their internally
757 * allocated I/O reference and struct se_cmd now.
758 *
759 * Fabric modules are expected to return '1' here if the se_cmd being
760 * passed is released at this point, or zero if not being released.
761 */
762 return cmd->se_tfo->check_stop_free(cmd);
763}
764
765static void transport_lun_remove_cmd(struct se_cmd *cmd)
766{
767 struct se_lun *lun = cmd->se_lun;
768
769 if (!lun)
770 return;
771
772 target_remove_from_state_list(cmd);
773 target_remove_from_tmr_list(cmd);
774
775 if (cmpxchg(&cmd->lun_ref_active, true, false))
776 percpu_ref_put(&lun->lun_ref);
777
778 /*
779 * Clear struct se_cmd->se_lun before the handoff to FE.
780 */
781 cmd->se_lun = NULL;
782}
783
784static void target_complete_failure_work(struct work_struct *work)
785{
786 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
787
788 transport_generic_request_failure(cmd, cmd->sense_reason);
789}
790
791/*
792 * Used when asking transport to copy Sense Data from the underlying
793 * Linux/SCSI struct scsi_cmnd
794 */
795static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd)
796{
797 struct se_device *dev = cmd->se_dev;
798
799 WARN_ON(!cmd->se_lun);
800
801 if (!dev)
802 return NULL;
803
804 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION)
805 return NULL;
806
807 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
808
809 pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
810 dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status);
811 return cmd->sense_buffer;
812}
813
814void transport_copy_sense_to_cmd(struct se_cmd *cmd, unsigned char *sense)
815{
816 unsigned char *cmd_sense_buf;
817 unsigned long flags;
818
819 spin_lock_irqsave(&cmd->t_state_lock, flags);
820 cmd_sense_buf = transport_get_sense_buffer(cmd);
821 if (!cmd_sense_buf) {
822 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
823 return;
824 }
825
826 cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
827 memcpy(cmd_sense_buf, sense, cmd->scsi_sense_length);
828 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
829}
830EXPORT_SYMBOL(transport_copy_sense_to_cmd);
831
832static void target_handle_abort(struct se_cmd *cmd)
833{
834 bool tas = cmd->transport_state & CMD_T_TAS;
835 bool ack_kref = cmd->se_cmd_flags & SCF_ACK_KREF;
836 int ret;
837
838 pr_debug("tag %#llx: send_abort_response = %d\n", cmd->tag, tas);
839
840 if (tas) {
841 if (!(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
842 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
843 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x, ITT: 0x%08llx\n",
844 cmd->t_task_cdb[0], cmd->tag);
845 trace_target_cmd_complete(cmd);
846 ret = cmd->se_tfo->queue_status(cmd);
847 if (ret) {
848 transport_handle_queue_full(cmd, cmd->se_dev,
849 ret, false);
850 return;
851 }
852 } else {
853 cmd->se_tmr_req->response = TMR_FUNCTION_REJECTED;
854 cmd->se_tfo->queue_tm_rsp(cmd);
855 }
856 } else {
857 /*
858 * Allow the fabric driver to unmap any resources before
859 * releasing the descriptor via TFO->release_cmd().
860 */
861 cmd->se_tfo->aborted_task(cmd);
862 if (ack_kref)
863 WARN_ON_ONCE(target_put_sess_cmd(cmd) != 0);
864 /*
865 * To do: establish a unit attention condition on the I_T
866 * nexus associated with cmd. See also the paragraph "Aborting
867 * commands" in SAM.
868 */
869 }
870
871 WARN_ON_ONCE(kref_read(&cmd->cmd_kref) == 0);
872
873 transport_lun_remove_cmd(cmd);
874
875 transport_cmd_check_stop_to_fabric(cmd);
876}
877
878static void target_abort_work(struct work_struct *work)
879{
880 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
881
882 target_handle_abort(cmd);
883}
884
885static bool target_cmd_interrupted(struct se_cmd *cmd)
886{
887 int post_ret;
888
889 if (cmd->transport_state & CMD_T_ABORTED) {
890 if (cmd->transport_complete_callback)
891 cmd->transport_complete_callback(cmd, false, &post_ret);
892 INIT_WORK(&cmd->work, target_abort_work);
893 queue_work(target_completion_wq, &cmd->work);
894 return true;
895 } else if (cmd->transport_state & CMD_T_STOP) {
896 if (cmd->transport_complete_callback)
897 cmd->transport_complete_callback(cmd, false, &post_ret);
898 complete_all(&cmd->t_transport_stop_comp);
899 return true;
900 }
901
902 return false;
903}
904
905/* May be called from interrupt context so must not sleep. */
906void target_complete_cmd_with_sense(struct se_cmd *cmd, u8 scsi_status,
907 sense_reason_t sense_reason)
908{
909 struct se_wwn *wwn = cmd->se_sess->se_tpg->se_tpg_wwn;
910 int success, cpu;
911 unsigned long flags;
912
913 if (target_cmd_interrupted(cmd))
914 return;
915
916 cmd->scsi_status = scsi_status;
917 cmd->sense_reason = sense_reason;
918
919 spin_lock_irqsave(&cmd->t_state_lock, flags);
920 switch (cmd->scsi_status) {
921 case SAM_STAT_CHECK_CONDITION:
922 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
923 success = 1;
924 else
925 success = 0;
926 break;
927 default:
928 success = 1;
929 break;
930 }
931
932 cmd->t_state = TRANSPORT_COMPLETE;
933 cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
934 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
935
936 INIT_WORK(&cmd->work, success ? target_complete_ok_work :
937 target_complete_failure_work);
938
939 if (!wwn || wwn->cmd_compl_affinity == SE_COMPL_AFFINITY_CPUID)
940 cpu = cmd->cpuid;
941 else
942 cpu = wwn->cmd_compl_affinity;
943
944 queue_work_on(cpu, target_completion_wq, &cmd->work);
945}
946EXPORT_SYMBOL(target_complete_cmd_with_sense);
947
948void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status)
949{
950 target_complete_cmd_with_sense(cmd, scsi_status, scsi_status ?
951 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE :
952 TCM_NO_SENSE);
953}
954EXPORT_SYMBOL(target_complete_cmd);
955
956void target_set_cmd_data_length(struct se_cmd *cmd, int length)
957{
958 if (length < cmd->data_length) {
959 if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
960 cmd->residual_count += cmd->data_length - length;
961 } else {
962 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
963 cmd->residual_count = cmd->data_length - length;
964 }
965
966 cmd->data_length = length;
967 }
968}
969EXPORT_SYMBOL(target_set_cmd_data_length);
970
971void target_complete_cmd_with_length(struct se_cmd *cmd, u8 scsi_status, int length)
972{
973 if (scsi_status == SAM_STAT_GOOD ||
974 cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) {
975 target_set_cmd_data_length(cmd, length);
976 }
977
978 target_complete_cmd(cmd, scsi_status);
979}
980EXPORT_SYMBOL(target_complete_cmd_with_length);
981
982static void target_add_to_state_list(struct se_cmd *cmd)
983{
984 struct se_device *dev = cmd->se_dev;
985 unsigned long flags;
986
987 spin_lock_irqsave(&dev->queues[cmd->cpuid].lock, flags);
988 if (!cmd->state_active) {
989 list_add_tail(&cmd->state_list,
990 &dev->queues[cmd->cpuid].state_list);
991 cmd->state_active = true;
992 }
993 spin_unlock_irqrestore(&dev->queues[cmd->cpuid].lock, flags);
994}
995
996/*
997 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
998 */
999static void transport_write_pending_qf(struct se_cmd *cmd);
1000static void transport_complete_qf(struct se_cmd *cmd);
1001
1002void target_qf_do_work(struct work_struct *work)
1003{
1004 struct se_device *dev = container_of(work, struct se_device,
1005 qf_work_queue);
1006 LIST_HEAD(qf_cmd_list);
1007 struct se_cmd *cmd, *cmd_tmp;
1008
1009 spin_lock_irq(&dev->qf_cmd_lock);
1010 list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
1011 spin_unlock_irq(&dev->qf_cmd_lock);
1012
1013 list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
1014 list_del(&cmd->se_qf_node);
1015 atomic_dec_mb(&dev->dev_qf_count);
1016
1017 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
1018 " context: %s\n", cmd->se_tfo->fabric_name, cmd,
1019 (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
1020 (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
1021 : "UNKNOWN");
1022
1023 if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP)
1024 transport_write_pending_qf(cmd);
1025 else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK ||
1026 cmd->t_state == TRANSPORT_COMPLETE_QF_ERR)
1027 transport_complete_qf(cmd);
1028 }
1029}
1030
1031unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
1032{
1033 switch (cmd->data_direction) {
1034 case DMA_NONE:
1035 return "NONE";
1036 case DMA_FROM_DEVICE:
1037 return "READ";
1038 case DMA_TO_DEVICE:
1039 return "WRITE";
1040 case DMA_BIDIRECTIONAL:
1041 return "BIDI";
1042 default:
1043 break;
1044 }
1045
1046 return "UNKNOWN";
1047}
1048
1049void transport_dump_dev_state(
1050 struct se_device *dev,
1051 char *b,
1052 int *bl)
1053{
1054 *bl += sprintf(b + *bl, "Status: ");
1055 if (dev->export_count)
1056 *bl += sprintf(b + *bl, "ACTIVATED");
1057 else
1058 *bl += sprintf(b + *bl, "DEACTIVATED");
1059
1060 *bl += sprintf(b + *bl, " Max Queue Depth: %d", dev->queue_depth);
1061 *bl += sprintf(b + *bl, " SectorSize: %u HwMaxSectors: %u\n",
1062 dev->dev_attrib.block_size,
1063 dev->dev_attrib.hw_max_sectors);
1064 *bl += sprintf(b + *bl, " ");
1065}
1066
1067void transport_dump_vpd_proto_id(
1068 struct t10_vpd *vpd,
1069 unsigned char *p_buf,
1070 int p_buf_len)
1071{
1072 unsigned char buf[VPD_TMP_BUF_SIZE];
1073 int len;
1074
1075 memset(buf, 0, VPD_TMP_BUF_SIZE);
1076 len = sprintf(buf, "T10 VPD Protocol Identifier: ");
1077
1078 switch (vpd->protocol_identifier) {
1079 case 0x00:
1080 sprintf(buf+len, "Fibre Channel\n");
1081 break;
1082 case 0x10:
1083 sprintf(buf+len, "Parallel SCSI\n");
1084 break;
1085 case 0x20:
1086 sprintf(buf+len, "SSA\n");
1087 break;
1088 case 0x30:
1089 sprintf(buf+len, "IEEE 1394\n");
1090 break;
1091 case 0x40:
1092 sprintf(buf+len, "SCSI Remote Direct Memory Access"
1093 " Protocol\n");
1094 break;
1095 case 0x50:
1096 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
1097 break;
1098 case 0x60:
1099 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
1100 break;
1101 case 0x70:
1102 sprintf(buf+len, "Automation/Drive Interface Transport"
1103 " Protocol\n");
1104 break;
1105 case 0x80:
1106 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
1107 break;
1108 default:
1109 sprintf(buf+len, "Unknown 0x%02x\n",
1110 vpd->protocol_identifier);
1111 break;
1112 }
1113
1114 if (p_buf)
1115 strncpy(p_buf, buf, p_buf_len);
1116 else
1117 pr_debug("%s", buf);
1118}
1119
1120void
1121transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
1122{
1123 /*
1124 * Check if the Protocol Identifier Valid (PIV) bit is set..
1125 *
1126 * from spc3r23.pdf section 7.5.1
1127 */
1128 if (page_83[1] & 0x80) {
1129 vpd->protocol_identifier = (page_83[0] & 0xf0);
1130 vpd->protocol_identifier_set = 1;
1131 transport_dump_vpd_proto_id(vpd, NULL, 0);
1132 }
1133}
1134EXPORT_SYMBOL(transport_set_vpd_proto_id);
1135
1136int transport_dump_vpd_assoc(
1137 struct t10_vpd *vpd,
1138 unsigned char *p_buf,
1139 int p_buf_len)
1140{
1141 unsigned char buf[VPD_TMP_BUF_SIZE];
1142 int ret = 0;
1143 int len;
1144
1145 memset(buf, 0, VPD_TMP_BUF_SIZE);
1146 len = sprintf(buf, "T10 VPD Identifier Association: ");
1147
1148 switch (vpd->association) {
1149 case 0x00:
1150 sprintf(buf+len, "addressed logical unit\n");
1151 break;
1152 case 0x10:
1153 sprintf(buf+len, "target port\n");
1154 break;
1155 case 0x20:
1156 sprintf(buf+len, "SCSI target device\n");
1157 break;
1158 default:
1159 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
1160 ret = -EINVAL;
1161 break;
1162 }
1163
1164 if (p_buf)
1165 strncpy(p_buf, buf, p_buf_len);
1166 else
1167 pr_debug("%s", buf);
1168
1169 return ret;
1170}
1171
1172int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
1173{
1174 /*
1175 * The VPD identification association..
1176 *
1177 * from spc3r23.pdf Section 7.6.3.1 Table 297
1178 */
1179 vpd->association = (page_83[1] & 0x30);
1180 return transport_dump_vpd_assoc(vpd, NULL, 0);
1181}
1182EXPORT_SYMBOL(transport_set_vpd_assoc);
1183
1184int transport_dump_vpd_ident_type(
1185 struct t10_vpd *vpd,
1186 unsigned char *p_buf,
1187 int p_buf_len)
1188{
1189 unsigned char buf[VPD_TMP_BUF_SIZE];
1190 int ret = 0;
1191 int len;
1192
1193 memset(buf, 0, VPD_TMP_BUF_SIZE);
1194 len = sprintf(buf, "T10 VPD Identifier Type: ");
1195
1196 switch (vpd->device_identifier_type) {
1197 case 0x00:
1198 sprintf(buf+len, "Vendor specific\n");
1199 break;
1200 case 0x01:
1201 sprintf(buf+len, "T10 Vendor ID based\n");
1202 break;
1203 case 0x02:
1204 sprintf(buf+len, "EUI-64 based\n");
1205 break;
1206 case 0x03:
1207 sprintf(buf+len, "NAA\n");
1208 break;
1209 case 0x04:
1210 sprintf(buf+len, "Relative target port identifier\n");
1211 break;
1212 case 0x08:
1213 sprintf(buf+len, "SCSI name string\n");
1214 break;
1215 default:
1216 sprintf(buf+len, "Unsupported: 0x%02x\n",
1217 vpd->device_identifier_type);
1218 ret = -EINVAL;
1219 break;
1220 }
1221
1222 if (p_buf) {
1223 if (p_buf_len < strlen(buf)+1)
1224 return -EINVAL;
1225 strncpy(p_buf, buf, p_buf_len);
1226 } else {
1227 pr_debug("%s", buf);
1228 }
1229
1230 return ret;
1231}
1232
1233int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1234{
1235 /*
1236 * The VPD identifier type..
1237 *
1238 * from spc3r23.pdf Section 7.6.3.1 Table 298
1239 */
1240 vpd->device_identifier_type = (page_83[1] & 0x0f);
1241 return transport_dump_vpd_ident_type(vpd, NULL, 0);
1242}
1243EXPORT_SYMBOL(transport_set_vpd_ident_type);
1244
1245int transport_dump_vpd_ident(
1246 struct t10_vpd *vpd,
1247 unsigned char *p_buf,
1248 int p_buf_len)
1249{
1250 unsigned char buf[VPD_TMP_BUF_SIZE];
1251 int ret = 0;
1252
1253 memset(buf, 0, VPD_TMP_BUF_SIZE);
1254
1255 switch (vpd->device_identifier_code_set) {
1256 case 0x01: /* Binary */
1257 snprintf(buf, sizeof(buf),
1258 "T10 VPD Binary Device Identifier: %s\n",
1259 &vpd->device_identifier[0]);
1260 break;
1261 case 0x02: /* ASCII */
1262 snprintf(buf, sizeof(buf),
1263 "T10 VPD ASCII Device Identifier: %s\n",
1264 &vpd->device_identifier[0]);
1265 break;
1266 case 0x03: /* UTF-8 */
1267 snprintf(buf, sizeof(buf),
1268 "T10 VPD UTF-8 Device Identifier: %s\n",
1269 &vpd->device_identifier[0]);
1270 break;
1271 default:
1272 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1273 " 0x%02x", vpd->device_identifier_code_set);
1274 ret = -EINVAL;
1275 break;
1276 }
1277
1278 if (p_buf)
1279 strncpy(p_buf, buf, p_buf_len);
1280 else
1281 pr_debug("%s", buf);
1282
1283 return ret;
1284}
1285
1286int
1287transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1288{
1289 static const char hex_str[] = "0123456789abcdef";
1290 int j = 0, i = 4; /* offset to start of the identifier */
1291
1292 /*
1293 * The VPD Code Set (encoding)
1294 *
1295 * from spc3r23.pdf Section 7.6.3.1 Table 296
1296 */
1297 vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1298 switch (vpd->device_identifier_code_set) {
1299 case 0x01: /* Binary */
1300 vpd->device_identifier[j++] =
1301 hex_str[vpd->device_identifier_type];
1302 while (i < (4 + page_83[3])) {
1303 vpd->device_identifier[j++] =
1304 hex_str[(page_83[i] & 0xf0) >> 4];
1305 vpd->device_identifier[j++] =
1306 hex_str[page_83[i] & 0x0f];
1307 i++;
1308 }
1309 break;
1310 case 0x02: /* ASCII */
1311 case 0x03: /* UTF-8 */
1312 while (i < (4 + page_83[3]))
1313 vpd->device_identifier[j++] = page_83[i++];
1314 break;
1315 default:
1316 break;
1317 }
1318
1319 return transport_dump_vpd_ident(vpd, NULL, 0);
1320}
1321EXPORT_SYMBOL(transport_set_vpd_ident);
1322
1323static sense_reason_t
1324target_check_max_data_sg_nents(struct se_cmd *cmd, struct se_device *dev,
1325 unsigned int size)
1326{
1327 u32 mtl;
1328
1329 if (!cmd->se_tfo->max_data_sg_nents)
1330 return TCM_NO_SENSE;
1331 /*
1332 * Check if fabric enforced maximum SGL entries per I/O descriptor
1333 * exceeds se_cmd->data_length. If true, set SCF_UNDERFLOW_BIT +
1334 * residual_count and reduce original cmd->data_length to maximum
1335 * length based on single PAGE_SIZE entry scatter-lists.
1336 */
1337 mtl = (cmd->se_tfo->max_data_sg_nents * PAGE_SIZE);
1338 if (cmd->data_length > mtl) {
1339 /*
1340 * If an existing CDB overflow is present, calculate new residual
1341 * based on CDB size minus fabric maximum transfer length.
1342 *
1343 * If an existing CDB underflow is present, calculate new residual
1344 * based on original cmd->data_length minus fabric maximum transfer
1345 * length.
1346 *
1347 * Otherwise, set the underflow residual based on cmd->data_length
1348 * minus fabric maximum transfer length.
1349 */
1350 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1351 cmd->residual_count = (size - mtl);
1352 } else if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
1353 u32 orig_dl = size + cmd->residual_count;
1354 cmd->residual_count = (orig_dl - mtl);
1355 } else {
1356 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1357 cmd->residual_count = (cmd->data_length - mtl);
1358 }
1359 cmd->data_length = mtl;
1360 /*
1361 * Reset sbc_check_prot() calculated protection payload
1362 * length based upon the new smaller MTL.
1363 */
1364 if (cmd->prot_length) {
1365 u32 sectors = (mtl / dev->dev_attrib.block_size);
1366 cmd->prot_length = dev->prot_length * sectors;
1367 }
1368 }
1369 return TCM_NO_SENSE;
1370}
1371
1372/**
1373 * target_cmd_size_check - Check whether there will be a residual.
1374 * @cmd: SCSI command.
1375 * @size: Data buffer size derived from CDB. The data buffer size provided by
1376 * the SCSI transport driver is available in @cmd->data_length.
1377 *
1378 * Compare the data buffer size from the CDB with the data buffer limit from the transport
1379 * header. Set @cmd->residual_count and SCF_OVERFLOW_BIT or SCF_UNDERFLOW_BIT if necessary.
1380 *
1381 * Note: target drivers set @cmd->data_length by calling __target_init_cmd().
1382 *
1383 * Return: TCM_NO_SENSE
1384 */
1385sense_reason_t
1386target_cmd_size_check(struct se_cmd *cmd, unsigned int size)
1387{
1388 struct se_device *dev = cmd->se_dev;
1389
1390 if (cmd->unknown_data_length) {
1391 cmd->data_length = size;
1392 } else if (size != cmd->data_length) {
1393 pr_warn_ratelimited("TARGET_CORE[%s]: Expected Transfer Length:"
1394 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
1395 " 0x%02x\n", cmd->se_tfo->fabric_name,
1396 cmd->data_length, size, cmd->t_task_cdb[0]);
1397 /*
1398 * For READ command for the overflow case keep the existing
1399 * fabric provided ->data_length. Otherwise for the underflow
1400 * case, reset ->data_length to the smaller SCSI expected data
1401 * transfer length.
1402 */
1403 if (size > cmd->data_length) {
1404 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
1405 cmd->residual_count = (size - cmd->data_length);
1406 } else {
1407 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1408 cmd->residual_count = (cmd->data_length - size);
1409 /*
1410 * Do not truncate ->data_length for WRITE command to
1411 * dump all payload
1412 */
1413 if (cmd->data_direction == DMA_FROM_DEVICE) {
1414 cmd->data_length = size;
1415 }
1416 }
1417
1418 if (cmd->data_direction == DMA_TO_DEVICE) {
1419 if (cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) {
1420 pr_err_ratelimited("Rejecting underflow/overflow"
1421 " for WRITE data CDB\n");
1422 return TCM_INVALID_FIELD_IN_COMMAND_IU;
1423 }
1424 /*
1425 * Some fabric drivers like iscsi-target still expect to
1426 * always reject overflow writes. Reject this case until
1427 * full fabric driver level support for overflow writes
1428 * is introduced tree-wide.
1429 */
1430 if (size > cmd->data_length) {
1431 pr_err_ratelimited("Rejecting overflow for"
1432 " WRITE control CDB\n");
1433 return TCM_INVALID_CDB_FIELD;
1434 }
1435 }
1436 }
1437
1438 return target_check_max_data_sg_nents(cmd, dev, size);
1439
1440}
1441
1442/*
1443 * Used by fabric modules containing a local struct se_cmd within their
1444 * fabric dependent per I/O descriptor.
1445 *
1446 * Preserves the value of @cmd->tag.
1447 */
1448void __target_init_cmd(struct se_cmd *cmd,
1449 const struct target_core_fabric_ops *tfo,
1450 struct se_session *se_sess, u32 data_length,
1451 int data_direction, int task_attr,
1452 unsigned char *sense_buffer, u64 unpacked_lun,
1453 struct target_cmd_counter *cmd_cnt)
1454{
1455 INIT_LIST_HEAD(&cmd->se_delayed_node);
1456 INIT_LIST_HEAD(&cmd->se_qf_node);
1457 INIT_LIST_HEAD(&cmd->state_list);
1458 init_completion(&cmd->t_transport_stop_comp);
1459 cmd->free_compl = NULL;
1460 cmd->abrt_compl = NULL;
1461 spin_lock_init(&cmd->t_state_lock);
1462 INIT_WORK(&cmd->work, NULL);
1463 kref_init(&cmd->cmd_kref);
1464
1465 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1466 cmd->se_tfo = tfo;
1467 cmd->se_sess = se_sess;
1468 cmd->data_length = data_length;
1469 cmd->data_direction = data_direction;
1470 cmd->sam_task_attr = task_attr;
1471 cmd->sense_buffer = sense_buffer;
1472 cmd->orig_fe_lun = unpacked_lun;
1473 cmd->cmd_cnt = cmd_cnt;
1474
1475 if (!(cmd->se_cmd_flags & SCF_USE_CPUID))
1476 cmd->cpuid = raw_smp_processor_id();
1477
1478 cmd->state_active = false;
1479}
1480EXPORT_SYMBOL(__target_init_cmd);
1481
1482static sense_reason_t
1483transport_check_alloc_task_attr(struct se_cmd *cmd)
1484{
1485 struct se_device *dev = cmd->se_dev;
1486
1487 /*
1488 * Check if SAM Task Attribute emulation is enabled for this
1489 * struct se_device storage object
1490 */
1491 if (dev->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1492 return 0;
1493
1494 if (cmd->sam_task_attr == TCM_ACA_TAG) {
1495 pr_debug("SAM Task Attribute ACA"
1496 " emulation is not supported\n");
1497 return TCM_INVALID_CDB_FIELD;
1498 }
1499
1500 return 0;
1501}
1502
1503sense_reason_t
1504target_cmd_init_cdb(struct se_cmd *cmd, unsigned char *cdb, gfp_t gfp)
1505{
1506 sense_reason_t ret;
1507
1508 /*
1509 * Ensure that the received CDB is less than the max (252 + 8) bytes
1510 * for VARIABLE_LENGTH_CMD
1511 */
1512 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1513 pr_err("Received SCSI CDB with command_size: %d that"
1514 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1515 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1516 ret = TCM_INVALID_CDB_FIELD;
1517 goto err;
1518 }
1519 /*
1520 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1521 * allocate the additional extended CDB buffer now.. Otherwise
1522 * setup the pointer from __t_task_cdb to t_task_cdb.
1523 */
1524 if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1525 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb), gfp);
1526 if (!cmd->t_task_cdb) {
1527 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1528 pr_err("Unable to allocate cmd->t_task_cdb"
1529 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1530 scsi_command_size(cdb),
1531 (unsigned long)sizeof(cmd->__t_task_cdb));
1532 ret = TCM_OUT_OF_RESOURCES;
1533 goto err;
1534 }
1535 }
1536 /*
1537 * Copy the original CDB into cmd->
1538 */
1539 memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1540
1541 trace_target_sequencer_start(cmd);
1542 return 0;
1543
1544err:
1545 /*
1546 * Copy the CDB here to allow trace_target_cmd_complete() to
1547 * print the cdb to the trace buffers.
1548 */
1549 memcpy(cmd->t_task_cdb, cdb, min(scsi_command_size(cdb),
1550 (unsigned int)TCM_MAX_COMMAND_SIZE));
1551 return ret;
1552}
1553EXPORT_SYMBOL(target_cmd_init_cdb);
1554
1555sense_reason_t
1556target_cmd_parse_cdb(struct se_cmd *cmd)
1557{
1558 struct se_device *dev = cmd->se_dev;
1559 sense_reason_t ret;
1560
1561 ret = dev->transport->parse_cdb(cmd);
1562 if (ret == TCM_UNSUPPORTED_SCSI_OPCODE)
1563 pr_debug_ratelimited("%s/%s: Unsupported SCSI Opcode 0x%02x, sending CHECK_CONDITION.\n",
1564 cmd->se_tfo->fabric_name,
1565 cmd->se_sess->se_node_acl->initiatorname,
1566 cmd->t_task_cdb[0]);
1567 if (ret)
1568 return ret;
1569
1570 ret = transport_check_alloc_task_attr(cmd);
1571 if (ret)
1572 return ret;
1573
1574 cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1575 /*
1576 * If this is the xcopy_lun then we won't have lun_stats since we
1577 * can't export them.
1578 */
1579 if (cmd->se_lun->lun_stats)
1580 this_cpu_inc(cmd->se_lun->lun_stats->cmd_pdus);
1581 return 0;
1582}
1583EXPORT_SYMBOL(target_cmd_parse_cdb);
1584
1585static int __target_submit(struct se_cmd *cmd)
1586{
1587 sense_reason_t ret;
1588
1589 might_sleep();
1590
1591 /*
1592 * Check if we need to delay processing because of ALUA
1593 * Active/NonOptimized primary access state..
1594 */
1595 core_alua_check_nonop_delay(cmd);
1596
1597 if (cmd->t_data_nents != 0) {
1598 /*
1599 * This is primarily a hack for udev and tcm loop which sends
1600 * INQUIRYs with a single page and expects the data to be
1601 * cleared.
1602 */
1603 if (!(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) &&
1604 cmd->data_direction == DMA_FROM_DEVICE) {
1605 struct scatterlist *sgl = cmd->t_data_sg;
1606 unsigned char *buf = NULL;
1607
1608 BUG_ON(!sgl);
1609
1610 buf = kmap_local_page(sg_page(sgl));
1611 if (buf) {
1612 memset(buf + sgl->offset, 0, sgl->length);
1613 kunmap_local(buf);
1614 }
1615 }
1616 }
1617
1618 if (!cmd->se_lun) {
1619 dump_stack();
1620 pr_err("cmd->se_lun is NULL\n");
1621 return -EINVAL;
1622 }
1623
1624 /*
1625 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
1626 * outstanding descriptors are handled correctly during shutdown via
1627 * transport_wait_for_tasks()
1628 *
1629 * Also, we don't take cmd->t_state_lock here as we only expect
1630 * this to be called for initial descriptor submission.
1631 */
1632 cmd->t_state = TRANSPORT_NEW_CMD;
1633 cmd->transport_state |= CMD_T_ACTIVE;
1634
1635 /*
1636 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1637 * so follow TRANSPORT_NEW_CMD processing thread context usage
1638 * and call transport_generic_request_failure() if necessary..
1639 */
1640 ret = transport_generic_new_cmd(cmd);
1641 if (ret)
1642 transport_generic_request_failure(cmd, ret);
1643 return 0;
1644}
1645
1646sense_reason_t
1647transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl,
1648 u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count)
1649{
1650 if (!sgl || !sgl_count)
1651 return 0;
1652
1653 /*
1654 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
1655 * scatterlists already have been set to follow what the fabric
1656 * passes for the original expected data transfer length.
1657 */
1658 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1659 pr_warn("Rejecting SCSI DATA overflow for fabric using"
1660 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
1661 return TCM_INVALID_CDB_FIELD;
1662 }
1663
1664 cmd->t_data_sg = sgl;
1665 cmd->t_data_nents = sgl_count;
1666 cmd->t_bidi_data_sg = sgl_bidi;
1667 cmd->t_bidi_data_nents = sgl_bidi_count;
1668
1669 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
1670 return 0;
1671}
1672
1673/**
1674 * target_init_cmd - initialize se_cmd
1675 * @se_cmd: command descriptor to init
1676 * @se_sess: associated se_sess for endpoint
1677 * @sense: pointer to SCSI sense buffer
1678 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1679 * @data_length: fabric expected data transfer length
1680 * @task_attr: SAM task attribute
1681 * @data_dir: DMA data direction
1682 * @flags: flags for command submission from target_sc_flags_tables
1683 *
1684 * Task tags are supported if the caller has set @se_cmd->tag.
1685 *
1686 * Returns:
1687 * - less than zero to signal active I/O shutdown failure.
1688 * - zero on success.
1689 *
1690 * If the fabric driver calls target_stop_session, then it must check the
1691 * return code and handle failures. This will never fail for other drivers,
1692 * and the return code can be ignored.
1693 */
1694int target_init_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1695 unsigned char *sense, u64 unpacked_lun,
1696 u32 data_length, int task_attr, int data_dir, int flags)
1697{
1698 struct se_portal_group *se_tpg;
1699
1700 se_tpg = se_sess->se_tpg;
1701 BUG_ON(!se_tpg);
1702 BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1703
1704 if (flags & TARGET_SCF_USE_CPUID)
1705 se_cmd->se_cmd_flags |= SCF_USE_CPUID;
1706 /*
1707 * Signal bidirectional data payloads to target-core
1708 */
1709 if (flags & TARGET_SCF_BIDI_OP)
1710 se_cmd->se_cmd_flags |= SCF_BIDI;
1711
1712 if (flags & TARGET_SCF_UNKNOWN_SIZE)
1713 se_cmd->unknown_data_length = 1;
1714 /*
1715 * Initialize se_cmd for target operation. From this point
1716 * exceptions are handled by sending exception status via
1717 * target_core_fabric_ops->queue_status() callback
1718 */
1719 __target_init_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess, data_length,
1720 data_dir, task_attr, sense, unpacked_lun,
1721 se_sess->cmd_cnt);
1722
1723 /*
1724 * Obtain struct se_cmd->cmd_kref reference. A second kref_get here is
1725 * necessary for fabrics using TARGET_SCF_ACK_KREF that expect a second
1726 * kref_put() to happen during fabric packet acknowledgement.
1727 */
1728 return target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1729}
1730EXPORT_SYMBOL_GPL(target_init_cmd);
1731
1732/**
1733 * target_submit_prep - prepare cmd for submission
1734 * @se_cmd: command descriptor to prep
1735 * @cdb: pointer to SCSI CDB
1736 * @sgl: struct scatterlist memory for unidirectional mapping
1737 * @sgl_count: scatterlist count for unidirectional mapping
1738 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
1739 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1740 * @sgl_prot: struct scatterlist memory protection information
1741 * @sgl_prot_count: scatterlist count for protection information
1742 * @gfp: gfp allocation type
1743 *
1744 * Returns:
1745 * - less than zero to signal failure.
1746 * - zero on success.
1747 *
1748 * If failure is returned, lio will the callers queue_status to complete
1749 * the cmd.
1750 */
1751int target_submit_prep(struct se_cmd *se_cmd, unsigned char *cdb,
1752 struct scatterlist *sgl, u32 sgl_count,
1753 struct scatterlist *sgl_bidi, u32 sgl_bidi_count,
1754 struct scatterlist *sgl_prot, u32 sgl_prot_count,
1755 gfp_t gfp)
1756{
1757 sense_reason_t rc;
1758
1759 rc = target_cmd_init_cdb(se_cmd, cdb, gfp);
1760 if (rc)
1761 goto send_cc_direct;
1762
1763 /*
1764 * Locate se_lun pointer and attach it to struct se_cmd
1765 */
1766 rc = transport_lookup_cmd_lun(se_cmd);
1767 if (rc)
1768 goto send_cc_direct;
1769
1770 rc = target_cmd_parse_cdb(se_cmd);
1771 if (rc != 0)
1772 goto generic_fail;
1773
1774 /*
1775 * Save pointers for SGLs containing protection information,
1776 * if present.
1777 */
1778 if (sgl_prot_count) {
1779 se_cmd->t_prot_sg = sgl_prot;
1780 se_cmd->t_prot_nents = sgl_prot_count;
1781 se_cmd->se_cmd_flags |= SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC;
1782 }
1783
1784 /*
1785 * When a non zero sgl_count has been passed perform SGL passthrough
1786 * mapping for pre-allocated fabric memory instead of having target
1787 * core perform an internal SGL allocation..
1788 */
1789 if (sgl_count != 0) {
1790 BUG_ON(!sgl);
1791
1792 rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count,
1793 sgl_bidi, sgl_bidi_count);
1794 if (rc != 0)
1795 goto generic_fail;
1796 }
1797
1798 return 0;
1799
1800send_cc_direct:
1801 transport_send_check_condition_and_sense(se_cmd, rc, 0);
1802 target_put_sess_cmd(se_cmd);
1803 return -EIO;
1804
1805generic_fail:
1806 transport_generic_request_failure(se_cmd, rc);
1807 return -EIO;
1808}
1809EXPORT_SYMBOL_GPL(target_submit_prep);
1810
1811/**
1812 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1813 *
1814 * @se_cmd: command descriptor to submit
1815 * @se_sess: associated se_sess for endpoint
1816 * @cdb: pointer to SCSI CDB
1817 * @sense: pointer to SCSI sense buffer
1818 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1819 * @data_length: fabric expected data transfer length
1820 * @task_attr: SAM task attribute
1821 * @data_dir: DMA data direction
1822 * @flags: flags for command submission from target_sc_flags_tables
1823 *
1824 * Task tags are supported if the caller has set @se_cmd->tag.
1825 *
1826 * This may only be called from process context, and also currently
1827 * assumes internal allocation of fabric payload buffer by target-core.
1828 *
1829 * It also assumes interal target core SGL memory allocation.
1830 *
1831 * This function must only be used by drivers that do their own
1832 * sync during shutdown and does not use target_stop_session. If there
1833 * is a failure this function will call into the fabric driver's
1834 * queue_status with a CHECK_CONDITION.
1835 */
1836void target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1837 unsigned char *cdb, unsigned char *sense, u64 unpacked_lun,
1838 u32 data_length, int task_attr, int data_dir, int flags)
1839{
1840 int rc;
1841
1842 rc = target_init_cmd(se_cmd, se_sess, sense, unpacked_lun, data_length,
1843 task_attr, data_dir, flags);
1844 WARN(rc, "Invalid target_submit_cmd use. Driver must not use target_stop_session or call target_init_cmd directly.\n");
1845 if (rc)
1846 return;
1847
1848 if (target_submit_prep(se_cmd, cdb, NULL, 0, NULL, 0, NULL, 0,
1849 GFP_KERNEL))
1850 return;
1851
1852 target_submit(se_cmd);
1853}
1854EXPORT_SYMBOL(target_submit_cmd);
1855
1856
1857static struct se_dev_plug *target_plug_device(struct se_device *se_dev)
1858{
1859 struct se_dev_plug *se_plug;
1860
1861 if (!se_dev->transport->plug_device)
1862 return NULL;
1863
1864 se_plug = se_dev->transport->plug_device(se_dev);
1865 if (!se_plug)
1866 return NULL;
1867
1868 se_plug->se_dev = se_dev;
1869 /*
1870 * We have a ref to the lun at this point, but the cmds could
1871 * complete before we unplug, so grab a ref to the se_device so we
1872 * can call back into the backend.
1873 */
1874 config_group_get(&se_dev->dev_group);
1875 return se_plug;
1876}
1877
1878static void target_unplug_device(struct se_dev_plug *se_plug)
1879{
1880 struct se_device *se_dev = se_plug->se_dev;
1881
1882 se_dev->transport->unplug_device(se_plug);
1883 config_group_put(&se_dev->dev_group);
1884}
1885
1886void target_queued_submit_work(struct work_struct *work)
1887{
1888 struct se_cmd_queue *sq = container_of(work, struct se_cmd_queue, work);
1889 struct se_cmd *se_cmd, *next_cmd;
1890 struct se_dev_plug *se_plug = NULL;
1891 struct se_device *se_dev = NULL;
1892 struct llist_node *cmd_list;
1893
1894 cmd_list = llist_del_all(&sq->cmd_list);
1895 if (!cmd_list)
1896 /* Previous call took what we were queued to submit */
1897 return;
1898
1899 cmd_list = llist_reverse_order(cmd_list);
1900 llist_for_each_entry_safe(se_cmd, next_cmd, cmd_list, se_cmd_list) {
1901 if (!se_dev) {
1902 se_dev = se_cmd->se_dev;
1903 se_plug = target_plug_device(se_dev);
1904 }
1905
1906 __target_submit(se_cmd);
1907 }
1908
1909 if (se_plug)
1910 target_unplug_device(se_plug);
1911}
1912
1913/**
1914 * target_queue_submission - queue the cmd to run on the LIO workqueue
1915 * @se_cmd: command descriptor to submit
1916 */
1917static void target_queue_submission(struct se_cmd *se_cmd)
1918{
1919 struct se_device *se_dev = se_cmd->se_dev;
1920 int cpu = se_cmd->cpuid;
1921 struct se_cmd_queue *sq;
1922
1923 sq = &se_dev->queues[cpu].sq;
1924 llist_add(&se_cmd->se_cmd_list, &sq->cmd_list);
1925 queue_work_on(cpu, target_submission_wq, &sq->work);
1926}
1927
1928/**
1929 * target_submit - perform final initialization and submit cmd to LIO core
1930 * @se_cmd: command descriptor to submit
1931 *
1932 * target_submit_prep or something similar must have been called on the cmd,
1933 * and this must be called from process context.
1934 */
1935int target_submit(struct se_cmd *se_cmd)
1936{
1937 const struct target_core_fabric_ops *tfo = se_cmd->se_sess->se_tpg->se_tpg_tfo;
1938 struct se_dev_attrib *da = &se_cmd->se_dev->dev_attrib;
1939 u8 submit_type;
1940
1941 if (da->submit_type == TARGET_FABRIC_DEFAULT_SUBMIT)
1942 submit_type = tfo->default_submit_type;
1943 else if (da->submit_type == TARGET_DIRECT_SUBMIT &&
1944 tfo->direct_submit_supp)
1945 submit_type = TARGET_DIRECT_SUBMIT;
1946 else
1947 submit_type = TARGET_QUEUE_SUBMIT;
1948
1949 if (submit_type == TARGET_DIRECT_SUBMIT)
1950 return __target_submit(se_cmd);
1951
1952 target_queue_submission(se_cmd);
1953 return 0;
1954}
1955EXPORT_SYMBOL_GPL(target_submit);
1956
1957static void target_complete_tmr_failure(struct work_struct *work)
1958{
1959 struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);
1960
1961 se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
1962 se_cmd->se_tfo->queue_tm_rsp(se_cmd);
1963
1964 transport_lun_remove_cmd(se_cmd);
1965 transport_cmd_check_stop_to_fabric(se_cmd);
1966}
1967
1968/**
1969 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1970 * for TMR CDBs
1971 *
1972 * @se_cmd: command descriptor to submit
1973 * @se_sess: associated se_sess for endpoint
1974 * @sense: pointer to SCSI sense buffer
1975 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1976 * @fabric_tmr_ptr: fabric context for TMR req
1977 * @tm_type: Type of TM request
1978 * @gfp: gfp type for caller
1979 * @tag: referenced task tag for TMR_ABORT_TASK
1980 * @flags: submit cmd flags
1981 *
1982 * Callable from all contexts.
1983 **/
1984
1985int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
1986 unsigned char *sense, u64 unpacked_lun,
1987 void *fabric_tmr_ptr, unsigned char tm_type,
1988 gfp_t gfp, u64 tag, int flags)
1989{
1990 struct se_portal_group *se_tpg;
1991 int ret;
1992
1993 se_tpg = se_sess->se_tpg;
1994 BUG_ON(!se_tpg);
1995
1996 __target_init_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1997 0, DMA_NONE, TCM_SIMPLE_TAG, sense, unpacked_lun,
1998 se_sess->cmd_cnt);
1999 /*
2000 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
2001 * allocation failure.
2002 */
2003 ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
2004 if (ret < 0)
2005 return -ENOMEM;
2006
2007 if (tm_type == TMR_ABORT_TASK)
2008 se_cmd->se_tmr_req->ref_task_tag = tag;
2009
2010 /* See target_submit_cmd for commentary */
2011 ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
2012 if (ret) {
2013 core_tmr_release_req(se_cmd->se_tmr_req);
2014 return ret;
2015 }
2016
2017 ret = transport_lookup_tmr_lun(se_cmd);
2018 if (ret)
2019 goto failure;
2020
2021 transport_generic_handle_tmr(se_cmd);
2022 return 0;
2023
2024 /*
2025 * For callback during failure handling, push this work off
2026 * to process context with TMR_LUN_DOES_NOT_EXIST status.
2027 */
2028failure:
2029 INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
2030 schedule_work(&se_cmd->work);
2031 return 0;
2032}
2033EXPORT_SYMBOL(target_submit_tmr);
2034
2035/*
2036 * Handle SAM-esque emulation for generic transport request failures.
2037 */
2038void transport_generic_request_failure(struct se_cmd *cmd,
2039 sense_reason_t sense_reason)
2040{
2041 int ret = 0, post_ret;
2042
2043 pr_debug("-----[ Storage Engine Exception; sense_reason %d\n",
2044 sense_reason);
2045 target_show_cmd("-----[ ", cmd);
2046
2047 /*
2048 * For SAM Task Attribute emulation for failed struct se_cmd
2049 */
2050 transport_complete_task_attr(cmd);
2051
2052 if (cmd->transport_complete_callback)
2053 cmd->transport_complete_callback(cmd, false, &post_ret);
2054
2055 if (cmd->transport_state & CMD_T_ABORTED) {
2056 INIT_WORK(&cmd->work, target_abort_work);
2057 queue_work(target_completion_wq, &cmd->work);
2058 return;
2059 }
2060
2061 switch (sense_reason) {
2062 case TCM_NON_EXISTENT_LUN:
2063 case TCM_UNSUPPORTED_SCSI_OPCODE:
2064 case TCM_INVALID_CDB_FIELD:
2065 case TCM_INVALID_PARAMETER_LIST:
2066 case TCM_PARAMETER_LIST_LENGTH_ERROR:
2067 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
2068 case TCM_UNKNOWN_MODE_PAGE:
2069 case TCM_WRITE_PROTECTED:
2070 case TCM_ADDRESS_OUT_OF_RANGE:
2071 case TCM_CHECK_CONDITION_ABORT_CMD:
2072 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
2073 case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED:
2074 case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED:
2075 case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED:
2076 case TCM_COPY_TARGET_DEVICE_NOT_REACHABLE:
2077 case TCM_TOO_MANY_TARGET_DESCS:
2078 case TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE:
2079 case TCM_TOO_MANY_SEGMENT_DESCS:
2080 case TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE:
2081 case TCM_INVALID_FIELD_IN_COMMAND_IU:
2082 case TCM_ALUA_TG_PT_STANDBY:
2083 case TCM_ALUA_TG_PT_UNAVAILABLE:
2084 case TCM_ALUA_STATE_TRANSITION:
2085 case TCM_ALUA_OFFLINE:
2086 break;
2087 case TCM_OUT_OF_RESOURCES:
2088 cmd->scsi_status = SAM_STAT_TASK_SET_FULL;
2089 goto queue_status;
2090 case TCM_LUN_BUSY:
2091 cmd->scsi_status = SAM_STAT_BUSY;
2092 goto queue_status;
2093 case TCM_RESERVATION_CONFLICT:
2094 /*
2095 * No SENSE Data payload for this case, set SCSI Status
2096 * and queue the response to $FABRIC_MOD.
2097 *
2098 * Uses linux/include/scsi/scsi.h SAM status codes defs
2099 */
2100 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
2101 /*
2102 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
2103 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
2104 * CONFLICT STATUS.
2105 *
2106 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
2107 */
2108 if (cmd->se_sess &&
2109 cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl
2110 == TARGET_UA_INTLCK_CTRL_ESTABLISH_UA) {
2111 target_ua_allocate_lun(cmd->se_sess->se_node_acl,
2112 cmd->orig_fe_lun, 0x2C,
2113 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
2114 }
2115
2116 goto queue_status;
2117 default:
2118 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
2119 cmd->t_task_cdb[0], sense_reason);
2120 sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
2121 break;
2122 }
2123
2124 ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0);
2125 if (ret)
2126 goto queue_full;
2127
2128check_stop:
2129 transport_lun_remove_cmd(cmd);
2130 transport_cmd_check_stop_to_fabric(cmd);
2131 return;
2132
2133queue_status:
2134 trace_target_cmd_complete(cmd);
2135 ret = cmd->se_tfo->queue_status(cmd);
2136 if (!ret)
2137 goto check_stop;
2138queue_full:
2139 transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
2140}
2141EXPORT_SYMBOL(transport_generic_request_failure);
2142
2143void __target_execute_cmd(struct se_cmd *cmd, bool do_checks)
2144{
2145 sense_reason_t ret;
2146
2147 if (!cmd->execute_cmd) {
2148 ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2149 goto err;
2150 }
2151 if (do_checks) {
2152 /*
2153 * Check for an existing UNIT ATTENTION condition after
2154 * target_handle_task_attr() has done SAM task attr
2155 * checking, and possibly have already defered execution
2156 * out to target_restart_delayed_cmds() context.
2157 */
2158 ret = target_scsi3_ua_check(cmd);
2159 if (ret)
2160 goto err;
2161
2162 ret = target_alua_state_check(cmd);
2163 if (ret)
2164 goto err;
2165
2166 ret = target_check_reservation(cmd);
2167 if (ret) {
2168 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
2169 goto err;
2170 }
2171 }
2172
2173 ret = cmd->execute_cmd(cmd);
2174 if (!ret)
2175 return;
2176err:
2177 spin_lock_irq(&cmd->t_state_lock);
2178 cmd->transport_state &= ~CMD_T_SENT;
2179 spin_unlock_irq(&cmd->t_state_lock);
2180
2181 transport_generic_request_failure(cmd, ret);
2182}
2183
2184static int target_write_prot_action(struct se_cmd *cmd)
2185{
2186 u32 sectors;
2187 /*
2188 * Perform WRITE_INSERT of PI using software emulation when backend
2189 * device has PI enabled, if the transport has not already generated
2190 * PI using hardware WRITE_INSERT offload.
2191 */
2192 switch (cmd->prot_op) {
2193 case TARGET_PROT_DOUT_INSERT:
2194 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_INSERT))
2195 sbc_dif_generate(cmd);
2196 break;
2197 case TARGET_PROT_DOUT_STRIP:
2198 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_STRIP)
2199 break;
2200
2201 sectors = cmd->data_length >> ilog2(cmd->se_dev->dev_attrib.block_size);
2202 cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
2203 sectors, 0, cmd->t_prot_sg, 0);
2204 if (unlikely(cmd->pi_err)) {
2205 spin_lock_irq(&cmd->t_state_lock);
2206 cmd->transport_state &= ~CMD_T_SENT;
2207 spin_unlock_irq(&cmd->t_state_lock);
2208 transport_generic_request_failure(cmd, cmd->pi_err);
2209 return -1;
2210 }
2211 break;
2212 default:
2213 break;
2214 }
2215
2216 return 0;
2217}
2218
2219static bool target_handle_task_attr(struct se_cmd *cmd)
2220{
2221 struct se_device *dev = cmd->se_dev;
2222 unsigned long flags;
2223
2224 if (dev->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
2225 return false;
2226
2227 cmd->se_cmd_flags |= SCF_TASK_ATTR_SET;
2228
2229 /*
2230 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
2231 * to allow the passed struct se_cmd list of tasks to the front of the list.
2232 */
2233 switch (cmd->sam_task_attr) {
2234 case TCM_HEAD_TAG:
2235 pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x\n",
2236 cmd->t_task_cdb[0]);
2237 return false;
2238 case TCM_ORDERED_TAG:
2239 pr_debug("Added ORDERED for CDB: 0x%02x to ordered list\n",
2240 cmd->t_task_cdb[0]);
2241 break;
2242 default:
2243 /*
2244 * For SIMPLE and UNTAGGED Task Attribute commands
2245 */
2246retry:
2247 if (percpu_ref_tryget_live(&dev->non_ordered))
2248 return false;
2249
2250 break;
2251 }
2252
2253 spin_lock_irqsave(&dev->delayed_cmd_lock, flags);
2254 if (cmd->sam_task_attr == TCM_SIMPLE_TAG &&
2255 !percpu_ref_is_dying(&dev->non_ordered)) {
2256 spin_unlock_irqrestore(&dev->delayed_cmd_lock, flags);
2257 /* We raced with the last ordered completion so retry. */
2258 goto retry;
2259 } else if (!percpu_ref_is_dying(&dev->non_ordered)) {
2260 percpu_ref_kill(&dev->non_ordered);
2261 }
2262
2263 spin_lock(&cmd->t_state_lock);
2264 cmd->transport_state &= ~CMD_T_SENT;
2265 spin_unlock(&cmd->t_state_lock);
2266
2267 list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list);
2268 spin_unlock_irqrestore(&dev->delayed_cmd_lock, flags);
2269
2270 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to delayed CMD listn",
2271 cmd->t_task_cdb[0], cmd->sam_task_attr);
2272 /*
2273 * We may have no non ordered cmds when this function started or we
2274 * could have raced with the last simple/head cmd completing, so kick
2275 * the delayed handler here.
2276 */
2277 schedule_work(&dev->delayed_cmd_work);
2278 return true;
2279}
2280
2281void target_execute_cmd(struct se_cmd *cmd)
2282{
2283 /*
2284 * Determine if frontend context caller is requesting the stopping of
2285 * this command for frontend exceptions.
2286 *
2287 * If the received CDB has already been aborted stop processing it here.
2288 */
2289 if (target_cmd_interrupted(cmd))
2290 return;
2291
2292 spin_lock_irq(&cmd->t_state_lock);
2293 cmd->t_state = TRANSPORT_PROCESSING;
2294 cmd->transport_state |= CMD_T_ACTIVE | CMD_T_SENT;
2295 spin_unlock_irq(&cmd->t_state_lock);
2296
2297 if (target_write_prot_action(cmd))
2298 return;
2299
2300 if (target_handle_task_attr(cmd))
2301 return;
2302
2303 __target_execute_cmd(cmd, true);
2304}
2305EXPORT_SYMBOL(target_execute_cmd);
2306
2307/*
2308 * Process all commands up to the last received ORDERED task attribute which
2309 * requires another blocking boundary
2310 */
2311void target_do_delayed_work(struct work_struct *work)
2312{
2313 struct se_device *dev = container_of(work, struct se_device,
2314 delayed_cmd_work);
2315
2316 spin_lock(&dev->delayed_cmd_lock);
2317 while (!dev->ordered_sync_in_progress) {
2318 struct se_cmd *cmd;
2319
2320 /*
2321 * We can be woken up early/late due to races or the
2322 * extra wake up we do when adding commands to the list.
2323 * We check for both cases here.
2324 */
2325 if (list_empty(&dev->delayed_cmd_list) ||
2326 !percpu_ref_is_zero(&dev->non_ordered))
2327 break;
2328
2329 cmd = list_entry(dev->delayed_cmd_list.next,
2330 struct se_cmd, se_delayed_node);
2331 cmd->se_cmd_flags |= SCF_TASK_ORDERED_SYNC;
2332 cmd->transport_state |= CMD_T_SENT;
2333
2334 dev->ordered_sync_in_progress = true;
2335
2336 list_del(&cmd->se_delayed_node);
2337 spin_unlock(&dev->delayed_cmd_lock);
2338
2339 __target_execute_cmd(cmd, true);
2340 spin_lock(&dev->delayed_cmd_lock);
2341 }
2342 spin_unlock(&dev->delayed_cmd_lock);
2343}
2344
2345static void transport_complete_ordered_sync(struct se_cmd *cmd)
2346{
2347 struct se_device *dev = cmd->se_dev;
2348 unsigned long flags;
2349
2350 spin_lock_irqsave(&dev->delayed_cmd_lock, flags);
2351 dev->dev_cur_ordered_id++;
2352
2353 pr_debug("Incremented dev_cur_ordered_id: %u for type %d\n",
2354 dev->dev_cur_ordered_id, cmd->sam_task_attr);
2355
2356 dev->ordered_sync_in_progress = false;
2357
2358 if (list_empty(&dev->delayed_cmd_list))
2359 percpu_ref_resurrect(&dev->non_ordered);
2360 else
2361 schedule_work(&dev->delayed_cmd_work);
2362
2363 spin_unlock_irqrestore(&dev->delayed_cmd_lock, flags);
2364}
2365
2366/*
2367 * Called from I/O completion to determine which dormant/delayed
2368 * and ordered cmds need to have their tasks added to the execution queue.
2369 */
2370static void transport_complete_task_attr(struct se_cmd *cmd)
2371{
2372 struct se_device *dev = cmd->se_dev;
2373
2374 if (dev->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
2375 return;
2376
2377 if (!(cmd->se_cmd_flags & SCF_TASK_ATTR_SET))
2378 return;
2379
2380 cmd->se_cmd_flags &= ~SCF_TASK_ATTR_SET;
2381
2382 if (cmd->se_cmd_flags & SCF_TASK_ORDERED_SYNC) {
2383 transport_complete_ordered_sync(cmd);
2384 return;
2385 }
2386
2387 switch (cmd->sam_task_attr) {
2388 case TCM_SIMPLE_TAG:
2389 percpu_ref_put(&dev->non_ordered);
2390 break;
2391 case TCM_ORDERED_TAG:
2392 /* All ordered should have been executed as sync */
2393 WARN_ON(1);
2394 break;
2395 }
2396}
2397
2398static void transport_complete_qf(struct se_cmd *cmd)
2399{
2400 int ret = 0;
2401
2402 transport_complete_task_attr(cmd);
2403 /*
2404 * If a fabric driver ->write_pending() or ->queue_data_in() callback
2405 * has returned neither -ENOMEM or -EAGAIN, assume it's fatal and
2406 * the same callbacks should not be retried. Return CHECK_CONDITION
2407 * if a scsi_status is not already set.
2408 *
2409 * If a fabric driver ->queue_status() has returned non zero, always
2410 * keep retrying no matter what..
2411 */
2412 if (cmd->t_state == TRANSPORT_COMPLETE_QF_ERR) {
2413 if (cmd->scsi_status)
2414 goto queue_status;
2415
2416 translate_sense_reason(cmd, TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
2417 goto queue_status;
2418 }
2419
2420 /*
2421 * Check if we need to send a sense buffer from
2422 * the struct se_cmd in question. We do NOT want
2423 * to take this path of the IO has been marked as
2424 * needing to be treated like a "normal read". This
2425 * is the case if it's a tape read, and either the
2426 * FM, EOM, or ILI bits are set, but there is no
2427 * sense data.
2428 */
2429 if (!(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) &&
2430 cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
2431 goto queue_status;
2432
2433 switch (cmd->data_direction) {
2434 case DMA_FROM_DEVICE:
2435 /* queue status if not treating this as a normal read */
2436 if (cmd->scsi_status &&
2437 !(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL))
2438 goto queue_status;
2439
2440 trace_target_cmd_complete(cmd);
2441 ret = cmd->se_tfo->queue_data_in(cmd);
2442 break;
2443 case DMA_TO_DEVICE:
2444 if (cmd->se_cmd_flags & SCF_BIDI) {
2445 ret = cmd->se_tfo->queue_data_in(cmd);
2446 break;
2447 }
2448 fallthrough;
2449 case DMA_NONE:
2450queue_status:
2451 trace_target_cmd_complete(cmd);
2452 ret = cmd->se_tfo->queue_status(cmd);
2453 break;
2454 default:
2455 break;
2456 }
2457
2458 if (ret < 0) {
2459 transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
2460 return;
2461 }
2462 transport_lun_remove_cmd(cmd);
2463 transport_cmd_check_stop_to_fabric(cmd);
2464}
2465
2466static void transport_handle_queue_full(struct se_cmd *cmd, struct se_device *dev,
2467 int err, bool write_pending)
2468{
2469 /*
2470 * -EAGAIN or -ENOMEM signals retry of ->write_pending() and/or
2471 * ->queue_data_in() callbacks from new process context.
2472 *
2473 * Otherwise for other errors, transport_complete_qf() will send
2474 * CHECK_CONDITION via ->queue_status() instead of attempting to
2475 * retry associated fabric driver data-transfer callbacks.
2476 */
2477 if (err == -EAGAIN || err == -ENOMEM) {
2478 cmd->t_state = (write_pending) ? TRANSPORT_COMPLETE_QF_WP :
2479 TRANSPORT_COMPLETE_QF_OK;
2480 } else {
2481 pr_warn_ratelimited("Got unknown fabric queue status: %d\n", err);
2482 cmd->t_state = TRANSPORT_COMPLETE_QF_ERR;
2483 }
2484
2485 spin_lock_irq(&dev->qf_cmd_lock);
2486 list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
2487 atomic_inc_mb(&dev->dev_qf_count);
2488 spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
2489
2490 schedule_work(&cmd->se_dev->qf_work_queue);
2491}
2492
2493static bool target_read_prot_action(struct se_cmd *cmd)
2494{
2495 switch (cmd->prot_op) {
2496 case TARGET_PROT_DIN_STRIP:
2497 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_STRIP)) {
2498 u32 sectors = cmd->data_length >>
2499 ilog2(cmd->se_dev->dev_attrib.block_size);
2500
2501 cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
2502 sectors, 0, cmd->t_prot_sg,
2503 0);
2504 if (cmd->pi_err)
2505 return true;
2506 }
2507 break;
2508 case TARGET_PROT_DIN_INSERT:
2509 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_INSERT)
2510 break;
2511
2512 sbc_dif_generate(cmd);
2513 break;
2514 default:
2515 break;
2516 }
2517
2518 return false;
2519}
2520
2521static void target_complete_ok_work(struct work_struct *work)
2522{
2523 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
2524 int ret;
2525
2526 /*
2527 * Check if we need to move delayed/dormant tasks from cmds on the
2528 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
2529 * Attribute.
2530 */
2531 transport_complete_task_attr(cmd);
2532
2533 /*
2534 * Check to schedule QUEUE_FULL work, or execute an existing
2535 * cmd->transport_qf_callback()
2536 */
2537 if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
2538 schedule_work(&cmd->se_dev->qf_work_queue);
2539
2540 /*
2541 * Check if we need to send a sense buffer from
2542 * the struct se_cmd in question. We do NOT want
2543 * to take this path of the IO has been marked as
2544 * needing to be treated like a "normal read". This
2545 * is the case if it's a tape read, and either the
2546 * FM, EOM, or ILI bits are set, but there is no
2547 * sense data.
2548 */
2549 if (!(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) &&
2550 cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
2551 WARN_ON(!cmd->scsi_status);
2552 ret = transport_send_check_condition_and_sense(
2553 cmd, 0, 1);
2554 if (ret)
2555 goto queue_full;
2556
2557 transport_lun_remove_cmd(cmd);
2558 transport_cmd_check_stop_to_fabric(cmd);
2559 return;
2560 }
2561 /*
2562 * Check for a callback, used by amongst other things
2563 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation.
2564 */
2565 if (cmd->transport_complete_callback) {
2566 sense_reason_t rc;
2567 bool caw = (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE);
2568 bool zero_dl = !(cmd->data_length);
2569 int post_ret = 0;
2570
2571 rc = cmd->transport_complete_callback(cmd, true, &post_ret);
2572 if (!rc && !post_ret) {
2573 if (caw && zero_dl)
2574 goto queue_rsp;
2575
2576 return;
2577 } else if (rc) {
2578 ret = transport_send_check_condition_and_sense(cmd,
2579 rc, 0);
2580 if (ret)
2581 goto queue_full;
2582
2583 transport_lun_remove_cmd(cmd);
2584 transport_cmd_check_stop_to_fabric(cmd);
2585 return;
2586 }
2587 }
2588
2589queue_rsp:
2590 switch (cmd->data_direction) {
2591 case DMA_FROM_DEVICE:
2592 /*
2593 * if this is a READ-type IO, but SCSI status
2594 * is set, then skip returning data and just
2595 * return the status -- unless this IO is marked
2596 * as needing to be treated as a normal read,
2597 * in which case we want to go ahead and return
2598 * the data. This happens, for example, for tape
2599 * reads with the FM, EOM, or ILI bits set, with
2600 * no sense data.
2601 */
2602 if (cmd->scsi_status &&
2603 !(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL))
2604 goto queue_status;
2605
2606 if (cmd->se_lun->lun_stats)
2607 this_cpu_add(cmd->se_lun->lun_stats->tx_data_octets,
2608 cmd->data_length);
2609 /*
2610 * Perform READ_STRIP of PI using software emulation when
2611 * backend had PI enabled, if the transport will not be
2612 * performing hardware READ_STRIP offload.
2613 */
2614 if (target_read_prot_action(cmd)) {
2615 ret = transport_send_check_condition_and_sense(cmd,
2616 cmd->pi_err, 0);
2617 if (ret)
2618 goto queue_full;
2619
2620 transport_lun_remove_cmd(cmd);
2621 transport_cmd_check_stop_to_fabric(cmd);
2622 return;
2623 }
2624
2625 trace_target_cmd_complete(cmd);
2626 ret = cmd->se_tfo->queue_data_in(cmd);
2627 if (ret)
2628 goto queue_full;
2629 break;
2630 case DMA_TO_DEVICE:
2631 if (cmd->se_lun->lun_stats)
2632 this_cpu_add(cmd->se_lun->lun_stats->rx_data_octets,
2633 cmd->data_length);
2634 /*
2635 * Check if we need to send READ payload for BIDI-COMMAND
2636 */
2637 if (cmd->se_cmd_flags & SCF_BIDI) {
2638 if (cmd->se_lun->lun_stats)
2639 this_cpu_add(cmd->se_lun->lun_stats->tx_data_octets,
2640 cmd->data_length);
2641 ret = cmd->se_tfo->queue_data_in(cmd);
2642 if (ret)
2643 goto queue_full;
2644 break;
2645 }
2646 fallthrough;
2647 case DMA_NONE:
2648queue_status:
2649 trace_target_cmd_complete(cmd);
2650 ret = cmd->se_tfo->queue_status(cmd);
2651 if (ret)
2652 goto queue_full;
2653 break;
2654 default:
2655 break;
2656 }
2657
2658 transport_lun_remove_cmd(cmd);
2659 transport_cmd_check_stop_to_fabric(cmd);
2660 return;
2661
2662queue_full:
2663 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
2664 " data_direction: %d\n", cmd, cmd->data_direction);
2665
2666 transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
2667}
2668
2669void target_free_sgl(struct scatterlist *sgl, int nents)
2670{
2671 sgl_free_n_order(sgl, nents, 0);
2672}
2673EXPORT_SYMBOL(target_free_sgl);
2674
2675static inline void transport_reset_sgl_orig(struct se_cmd *cmd)
2676{
2677 /*
2678 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE
2679 * emulation, and free + reset pointers if necessary..
2680 */
2681 if (!cmd->t_data_sg_orig)
2682 return;
2683
2684 kfree(cmd->t_data_sg);
2685 cmd->t_data_sg = cmd->t_data_sg_orig;
2686 cmd->t_data_sg_orig = NULL;
2687 cmd->t_data_nents = cmd->t_data_nents_orig;
2688 cmd->t_data_nents_orig = 0;
2689}
2690
2691static inline void transport_free_pages(struct se_cmd *cmd)
2692{
2693 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
2694 target_free_sgl(cmd->t_prot_sg, cmd->t_prot_nents);
2695 cmd->t_prot_sg = NULL;
2696 cmd->t_prot_nents = 0;
2697 }
2698
2699 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) {
2700 /*
2701 * Release special case READ buffer payload required for
2702 * SG_TO_MEM_NOALLOC to function with COMPARE_AND_WRITE
2703 */
2704 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) {
2705 target_free_sgl(cmd->t_bidi_data_sg,
2706 cmd->t_bidi_data_nents);
2707 cmd->t_bidi_data_sg = NULL;
2708 cmd->t_bidi_data_nents = 0;
2709 }
2710 transport_reset_sgl_orig(cmd);
2711 return;
2712 }
2713 transport_reset_sgl_orig(cmd);
2714
2715 target_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
2716 cmd->t_data_sg = NULL;
2717 cmd->t_data_nents = 0;
2718
2719 target_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
2720 cmd->t_bidi_data_sg = NULL;
2721 cmd->t_bidi_data_nents = 0;
2722}
2723
2724void *transport_kmap_data_sg(struct se_cmd *cmd)
2725{
2726 struct scatterlist *sg = cmd->t_data_sg;
2727 struct page **pages;
2728 int i;
2729
2730 /*
2731 * We need to take into account a possible offset here for fabrics like
2732 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
2733 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2734 */
2735 if (!cmd->t_data_nents)
2736 return NULL;
2737
2738 BUG_ON(!sg);
2739 if (cmd->t_data_nents == 1)
2740 return kmap(sg_page(sg)) + sg->offset;
2741
2742 /* >1 page. use vmap */
2743 pages = kmalloc_array(cmd->t_data_nents, sizeof(*pages), GFP_KERNEL);
2744 if (!pages)
2745 return NULL;
2746
2747 /* convert sg[] to pages[] */
2748 for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
2749 pages[i] = sg_page(sg);
2750 }
2751
2752 cmd->t_data_vmap = vmap(pages, cmd->t_data_nents, VM_MAP, PAGE_KERNEL);
2753 kfree(pages);
2754 if (!cmd->t_data_vmap)
2755 return NULL;
2756
2757 return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
2758}
2759EXPORT_SYMBOL(transport_kmap_data_sg);
2760
2761void transport_kunmap_data_sg(struct se_cmd *cmd)
2762{
2763 if (!cmd->t_data_nents) {
2764 return;
2765 } else if (cmd->t_data_nents == 1) {
2766 kunmap(sg_page(cmd->t_data_sg));
2767 return;
2768 }
2769
2770 vunmap(cmd->t_data_vmap);
2771 cmd->t_data_vmap = NULL;
2772}
2773EXPORT_SYMBOL(transport_kunmap_data_sg);
2774
2775int
2776target_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length,
2777 bool zero_page, bool chainable)
2778{
2779 gfp_t gfp = GFP_KERNEL | (zero_page ? __GFP_ZERO : 0);
2780
2781 *sgl = sgl_alloc_order(length, 0, chainable, gfp, nents);
2782 return *sgl ? 0 : -ENOMEM;
2783}
2784EXPORT_SYMBOL(target_alloc_sgl);
2785
2786/*
2787 * Allocate any required resources to execute the command. For writes we
2788 * might not have the payload yet, so notify the fabric via a call to
2789 * ->write_pending instead. Otherwise place it on the execution queue.
2790 */
2791sense_reason_t
2792transport_generic_new_cmd(struct se_cmd *cmd)
2793{
2794 unsigned long flags;
2795 int ret = 0;
2796 bool zero_flag = !(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB);
2797
2798 if (cmd->prot_op != TARGET_PROT_NORMAL &&
2799 !(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
2800 ret = target_alloc_sgl(&cmd->t_prot_sg, &cmd->t_prot_nents,
2801 cmd->prot_length, true, false);
2802 if (ret < 0)
2803 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2804 }
2805
2806 /*
2807 * Determine if the TCM fabric module has already allocated physical
2808 * memory, and is directly calling transport_generic_map_mem_to_cmd()
2809 * beforehand.
2810 */
2811 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
2812 cmd->data_length) {
2813
2814 if ((cmd->se_cmd_flags & SCF_BIDI) ||
2815 (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)) {
2816 u32 bidi_length;
2817
2818 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)
2819 bidi_length = cmd->t_task_nolb *
2820 cmd->se_dev->dev_attrib.block_size;
2821 else
2822 bidi_length = cmd->data_length;
2823
2824 ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2825 &cmd->t_bidi_data_nents,
2826 bidi_length, zero_flag, false);
2827 if (ret < 0)
2828 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2829 }
2830
2831 ret = target_alloc_sgl(&cmd->t_data_sg, &cmd->t_data_nents,
2832 cmd->data_length, zero_flag, false);
2833 if (ret < 0)
2834 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2835 } else if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
2836 cmd->data_length) {
2837 /*
2838 * Special case for COMPARE_AND_WRITE with fabrics
2839 * using SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC.
2840 */
2841 u32 caw_length = cmd->t_task_nolb *
2842 cmd->se_dev->dev_attrib.block_size;
2843
2844 ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2845 &cmd->t_bidi_data_nents,
2846 caw_length, zero_flag, false);
2847 if (ret < 0)
2848 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2849 }
2850 /*
2851 * If this command is not a write we can execute it right here,
2852 * for write buffers we need to notify the fabric driver first
2853 * and let it call back once the write buffers are ready.
2854 */
2855 target_add_to_state_list(cmd);
2856 if (cmd->data_direction != DMA_TO_DEVICE || cmd->data_length == 0) {
2857 target_execute_cmd(cmd);
2858 return 0;
2859 }
2860
2861 spin_lock_irqsave(&cmd->t_state_lock, flags);
2862 cmd->t_state = TRANSPORT_WRITE_PENDING;
2863 /*
2864 * Determine if frontend context caller is requesting the stopping of
2865 * this command for frontend exceptions.
2866 */
2867 if (cmd->transport_state & CMD_T_STOP &&
2868 !cmd->se_tfo->write_pending_must_be_called) {
2869 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
2870 __func__, __LINE__, cmd->tag);
2871
2872 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2873
2874 complete_all(&cmd->t_transport_stop_comp);
2875 return 0;
2876 }
2877 cmd->transport_state &= ~CMD_T_ACTIVE;
2878 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2879
2880 ret = cmd->se_tfo->write_pending(cmd);
2881 if (ret)
2882 goto queue_full;
2883
2884 return 0;
2885
2886queue_full:
2887 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
2888 transport_handle_queue_full(cmd, cmd->se_dev, ret, true);
2889 return 0;
2890}
2891EXPORT_SYMBOL(transport_generic_new_cmd);
2892
2893static void transport_write_pending_qf(struct se_cmd *cmd)
2894{
2895 unsigned long flags;
2896 int ret;
2897 bool stop;
2898
2899 spin_lock_irqsave(&cmd->t_state_lock, flags);
2900 stop = (cmd->transport_state & (CMD_T_STOP | CMD_T_ABORTED));
2901 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2902
2903 if (stop) {
2904 pr_debug("%s:%d CMD_T_STOP|CMD_T_ABORTED for ITT: 0x%08llx\n",
2905 __func__, __LINE__, cmd->tag);
2906 complete_all(&cmd->t_transport_stop_comp);
2907 return;
2908 }
2909
2910 ret = cmd->se_tfo->write_pending(cmd);
2911 if (ret) {
2912 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
2913 cmd);
2914 transport_handle_queue_full(cmd, cmd->se_dev, ret, true);
2915 }
2916}
2917
2918static bool
2919__transport_wait_for_tasks(struct se_cmd *, bool, bool *, bool *,
2920 unsigned long *flags);
2921
2922static void target_wait_free_cmd(struct se_cmd *cmd, bool *aborted, bool *tas)
2923{
2924 unsigned long flags;
2925
2926 spin_lock_irqsave(&cmd->t_state_lock, flags);
2927 __transport_wait_for_tasks(cmd, true, aborted, tas, &flags);
2928 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2929}
2930
2931/*
2932 * Call target_put_sess_cmd() and wait until target_release_cmd_kref(@cmd) has
2933 * finished.
2934 */
2935void target_put_cmd_and_wait(struct se_cmd *cmd)
2936{
2937 DECLARE_COMPLETION_ONSTACK(compl);
2938
2939 WARN_ON_ONCE(cmd->abrt_compl);
2940 cmd->abrt_compl = &compl;
2941 target_put_sess_cmd(cmd);
2942 wait_for_completion(&compl);
2943}
2944
2945/*
2946 * This function is called by frontend drivers after processing of a command
2947 * has finished.
2948 *
2949 * The protocol for ensuring that either the regular frontend command
2950 * processing flow or target_handle_abort() code drops one reference is as
2951 * follows:
2952 * - Calling .queue_data_in(), .queue_status() or queue_tm_rsp() will cause
2953 * the frontend driver to call this function synchronously or asynchronously.
2954 * That will cause one reference to be dropped.
2955 * - During regular command processing the target core sets CMD_T_COMPLETE
2956 * before invoking one of the .queue_*() functions.
2957 * - The code that aborts commands skips commands and TMFs for which
2958 * CMD_T_COMPLETE has been set.
2959 * - CMD_T_ABORTED is set atomically after the CMD_T_COMPLETE check for
2960 * commands that will be aborted.
2961 * - If the CMD_T_ABORTED flag is set but CMD_T_TAS has not been set
2962 * transport_generic_free_cmd() skips its call to target_put_sess_cmd().
2963 * - For aborted commands for which CMD_T_TAS has been set .queue_status() will
2964 * be called and will drop a reference.
2965 * - For aborted commands for which CMD_T_TAS has not been set .aborted_task()
2966 * will be called. target_handle_abort() will drop the final reference.
2967 */
2968int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
2969{
2970 DECLARE_COMPLETION_ONSTACK(compl);
2971 int ret = 0;
2972 bool aborted = false, tas = false;
2973
2974 if (wait_for_tasks)
2975 target_wait_free_cmd(cmd, &aborted, &tas);
2976
2977 if (cmd->se_cmd_flags & SCF_SE_LUN_CMD) {
2978 /*
2979 * Handle WRITE failure case where transport_generic_new_cmd()
2980 * has already added se_cmd to state_list, but fabric has
2981 * failed command before I/O submission.
2982 */
2983 if (cmd->state_active)
2984 target_remove_from_state_list(cmd);
2985
2986 if (cmd->se_lun)
2987 transport_lun_remove_cmd(cmd);
2988 }
2989 if (aborted)
2990 cmd->free_compl = &compl;
2991 ret = target_put_sess_cmd(cmd);
2992 if (aborted) {
2993 pr_debug("Detected CMD_T_ABORTED for ITT: %llu\n", cmd->tag);
2994 wait_for_completion(&compl);
2995 ret = 1;
2996 }
2997 return ret;
2998}
2999EXPORT_SYMBOL(transport_generic_free_cmd);
3000
3001/**
3002 * target_get_sess_cmd - Verify the session is accepting cmds and take ref
3003 * @se_cmd: command descriptor to add
3004 * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd()
3005 */
3006int target_get_sess_cmd(struct se_cmd *se_cmd, bool ack_kref)
3007{
3008 int ret = 0;
3009
3010 /*
3011 * Add a second kref if the fabric caller is expecting to handle
3012 * fabric acknowledgement that requires two target_put_sess_cmd()
3013 * invocations before se_cmd descriptor release.
3014 */
3015 if (ack_kref) {
3016 kref_get(&se_cmd->cmd_kref);
3017 se_cmd->se_cmd_flags |= SCF_ACK_KREF;
3018 }
3019
3020 /*
3021 * Users like xcopy do not use counters since they never do a stop
3022 * and wait.
3023 */
3024 if (se_cmd->cmd_cnt) {
3025 if (!percpu_ref_tryget_live(&se_cmd->cmd_cnt->refcnt))
3026 ret = -ESHUTDOWN;
3027 }
3028 if (ret && ack_kref)
3029 target_put_sess_cmd(se_cmd);
3030
3031 return ret;
3032}
3033EXPORT_SYMBOL(target_get_sess_cmd);
3034
3035static void target_free_cmd_mem(struct se_cmd *cmd)
3036{
3037 transport_free_pages(cmd);
3038
3039 if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
3040 core_tmr_release_req(cmd->se_tmr_req);
3041 if (cmd->t_task_cdb != cmd->__t_task_cdb)
3042 kfree(cmd->t_task_cdb);
3043}
3044
3045static void target_release_cmd_kref(struct kref *kref)
3046{
3047 struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
3048 struct target_cmd_counter *cmd_cnt = se_cmd->cmd_cnt;
3049 struct completion *free_compl = se_cmd->free_compl;
3050 struct completion *abrt_compl = se_cmd->abrt_compl;
3051
3052 target_free_cmd_mem(se_cmd);
3053 se_cmd->se_tfo->release_cmd(se_cmd);
3054 if (free_compl)
3055 complete(free_compl);
3056 if (abrt_compl)
3057 complete(abrt_compl);
3058
3059 if (cmd_cnt)
3060 percpu_ref_put(&cmd_cnt->refcnt);
3061}
3062
3063/**
3064 * target_put_sess_cmd - decrease the command reference count
3065 * @se_cmd: command to drop a reference from
3066 *
3067 * Returns 1 if and only if this target_put_sess_cmd() call caused the
3068 * refcount to drop to zero. Returns zero otherwise.
3069 */
3070int target_put_sess_cmd(struct se_cmd *se_cmd)
3071{
3072 return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref);
3073}
3074EXPORT_SYMBOL(target_put_sess_cmd);
3075
3076static const char *data_dir_name(enum dma_data_direction d)
3077{
3078 switch (d) {
3079 case DMA_BIDIRECTIONAL: return "BIDI";
3080 case DMA_TO_DEVICE: return "WRITE";
3081 case DMA_FROM_DEVICE: return "READ";
3082 case DMA_NONE: return "NONE";
3083 }
3084
3085 return "(?)";
3086}
3087
3088static const char *cmd_state_name(enum transport_state_table t)
3089{
3090 switch (t) {
3091 case TRANSPORT_NO_STATE: return "NO_STATE";
3092 case TRANSPORT_NEW_CMD: return "NEW_CMD";
3093 case TRANSPORT_WRITE_PENDING: return "WRITE_PENDING";
3094 case TRANSPORT_PROCESSING: return "PROCESSING";
3095 case TRANSPORT_COMPLETE: return "COMPLETE";
3096 case TRANSPORT_ISTATE_PROCESSING:
3097 return "ISTATE_PROCESSING";
3098 case TRANSPORT_COMPLETE_QF_WP: return "COMPLETE_QF_WP";
3099 case TRANSPORT_COMPLETE_QF_OK: return "COMPLETE_QF_OK";
3100 case TRANSPORT_COMPLETE_QF_ERR: return "COMPLETE_QF_ERR";
3101 }
3102
3103 return "(?)";
3104}
3105
3106static void target_append_str(char **str, const char *txt)
3107{
3108 char *prev = *str;
3109
3110 *str = *str ? kasprintf(GFP_ATOMIC, "%s,%s", *str, txt) :
3111 kstrdup(txt, GFP_ATOMIC);
3112 kfree(prev);
3113}
3114
3115/*
3116 * Convert a transport state bitmask into a string. The caller is
3117 * responsible for freeing the returned pointer.
3118 */
3119static char *target_ts_to_str(u32 ts)
3120{
3121 char *str = NULL;
3122
3123 if (ts & CMD_T_ABORTED)
3124 target_append_str(&str, "aborted");
3125 if (ts & CMD_T_ACTIVE)
3126 target_append_str(&str, "active");
3127 if (ts & CMD_T_COMPLETE)
3128 target_append_str(&str, "complete");
3129 if (ts & CMD_T_SENT)
3130 target_append_str(&str, "sent");
3131 if (ts & CMD_T_STOP)
3132 target_append_str(&str, "stop");
3133 if (ts & CMD_T_FABRIC_STOP)
3134 target_append_str(&str, "fabric_stop");
3135
3136 return str;
3137}
3138
3139static const char *target_tmf_name(enum tcm_tmreq_table tmf)
3140{
3141 switch (tmf) {
3142 case TMR_ABORT_TASK: return "ABORT_TASK";
3143 case TMR_ABORT_TASK_SET: return "ABORT_TASK_SET";
3144 case TMR_CLEAR_ACA: return "CLEAR_ACA";
3145 case TMR_CLEAR_TASK_SET: return "CLEAR_TASK_SET";
3146 case TMR_LUN_RESET: return "LUN_RESET";
3147 case TMR_TARGET_WARM_RESET: return "TARGET_WARM_RESET";
3148 case TMR_TARGET_COLD_RESET: return "TARGET_COLD_RESET";
3149 case TMR_LUN_RESET_PRO: return "LUN_RESET_PRO";
3150 case TMR_UNKNOWN: break;
3151 }
3152 return "(?)";
3153}
3154
3155void target_show_cmd(const char *pfx, struct se_cmd *cmd)
3156{
3157 char *ts_str = target_ts_to_str(cmd->transport_state);
3158 const u8 *cdb = cmd->t_task_cdb;
3159 struct se_tmr_req *tmf = cmd->se_tmr_req;
3160
3161 if (!(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
3162 pr_debug("%scmd %#02x:%#02x with tag %#llx dir %s i_state %d t_state %s len %d refcnt %d transport_state %s\n",
3163 pfx, cdb[0], cdb[1], cmd->tag,
3164 data_dir_name(cmd->data_direction),
3165 cmd->se_tfo->get_cmd_state(cmd),
3166 cmd_state_name(cmd->t_state), cmd->data_length,
3167 kref_read(&cmd->cmd_kref), ts_str);
3168 } else {
3169 pr_debug("%stmf %s with tag %#llx ref_task_tag %#llx i_state %d t_state %s refcnt %d transport_state %s\n",
3170 pfx, target_tmf_name(tmf->function), cmd->tag,
3171 tmf->ref_task_tag, cmd->se_tfo->get_cmd_state(cmd),
3172 cmd_state_name(cmd->t_state),
3173 kref_read(&cmd->cmd_kref), ts_str);
3174 }
3175 kfree(ts_str);
3176}
3177EXPORT_SYMBOL(target_show_cmd);
3178
3179static void target_stop_cmd_counter_confirm(struct percpu_ref *ref)
3180{
3181 struct target_cmd_counter *cmd_cnt = container_of(ref,
3182 struct target_cmd_counter,
3183 refcnt);
3184 complete_all(&cmd_cnt->stop_done);
3185}
3186
3187/**
3188 * target_stop_cmd_counter - Stop new IO from being added to the counter.
3189 * @cmd_cnt: counter to stop
3190 */
3191void target_stop_cmd_counter(struct target_cmd_counter *cmd_cnt)
3192{
3193 pr_debug("Stopping command counter.\n");
3194 if (!atomic_cmpxchg(&cmd_cnt->stopped, 0, 1))
3195 percpu_ref_kill_and_confirm(&cmd_cnt->refcnt,
3196 target_stop_cmd_counter_confirm);
3197}
3198EXPORT_SYMBOL_GPL(target_stop_cmd_counter);
3199
3200/**
3201 * target_stop_session - Stop new IO from being queued on the session.
3202 * @se_sess: session to stop
3203 */
3204void target_stop_session(struct se_session *se_sess)
3205{
3206 target_stop_cmd_counter(se_sess->cmd_cnt);
3207}
3208EXPORT_SYMBOL(target_stop_session);
3209
3210/**
3211 * target_wait_for_cmds - Wait for outstanding cmds.
3212 * @cmd_cnt: counter to wait for active I/O for.
3213 */
3214void target_wait_for_cmds(struct target_cmd_counter *cmd_cnt)
3215{
3216 int ret;
3217
3218 WARN_ON_ONCE(!atomic_read(&cmd_cnt->stopped));
3219
3220 do {
3221 pr_debug("Waiting for running cmds to complete.\n");
3222 ret = wait_event_timeout(cmd_cnt->refcnt_wq,
3223 percpu_ref_is_zero(&cmd_cnt->refcnt),
3224 180 * HZ);
3225 } while (ret <= 0);
3226
3227 wait_for_completion(&cmd_cnt->stop_done);
3228 pr_debug("Waiting for cmds done.\n");
3229}
3230EXPORT_SYMBOL_GPL(target_wait_for_cmds);
3231
3232/**
3233 * target_wait_for_sess_cmds - Wait for outstanding commands
3234 * @se_sess: session to wait for active I/O
3235 */
3236void target_wait_for_sess_cmds(struct se_session *se_sess)
3237{
3238 target_wait_for_cmds(se_sess->cmd_cnt);
3239}
3240EXPORT_SYMBOL(target_wait_for_sess_cmds);
3241
3242/*
3243 * Prevent that new percpu_ref_tryget_live() calls succeed and wait until
3244 * all references to the LUN have been released. Called during LUN shutdown.
3245 */
3246void transport_clear_lun_ref(struct se_lun *lun)
3247{
3248 percpu_ref_kill(&lun->lun_ref);
3249 wait_for_completion(&lun->lun_shutdown_comp);
3250}
3251
3252static bool
3253__transport_wait_for_tasks(struct se_cmd *cmd, bool fabric_stop,
3254 bool *aborted, bool *tas, unsigned long *flags)
3255 __releases(&cmd->t_state_lock)
3256 __acquires(&cmd->t_state_lock)
3257{
3258 lockdep_assert_held(&cmd->t_state_lock);
3259
3260 if (fabric_stop)
3261 cmd->transport_state |= CMD_T_FABRIC_STOP;
3262
3263 if (cmd->transport_state & CMD_T_ABORTED)
3264 *aborted = true;
3265
3266 if (cmd->transport_state & CMD_T_TAS)
3267 *tas = true;
3268
3269 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
3270 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
3271 return false;
3272
3273 if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
3274 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
3275 return false;
3276
3277 if (!(cmd->transport_state & CMD_T_ACTIVE))
3278 return false;
3279
3280 if (fabric_stop && *aborted)
3281 return false;
3282
3283 cmd->transport_state |= CMD_T_STOP;
3284
3285 target_show_cmd("wait_for_tasks: Stopping ", cmd);
3286
3287 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
3288
3289 while (!wait_for_completion_timeout(&cmd->t_transport_stop_comp,
3290 180 * HZ))
3291 target_show_cmd("wait for tasks: ", cmd);
3292
3293 spin_lock_irqsave(&cmd->t_state_lock, *flags);
3294 cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
3295
3296 pr_debug("wait_for_tasks: Stopped wait_for_completion(&cmd->"
3297 "t_transport_stop_comp) for ITT: 0x%08llx\n", cmd->tag);
3298
3299 return true;
3300}
3301
3302/**
3303 * transport_wait_for_tasks - set CMD_T_STOP and wait for t_transport_stop_comp
3304 * @cmd: command to wait on
3305 */
3306bool transport_wait_for_tasks(struct se_cmd *cmd)
3307{
3308 unsigned long flags;
3309 bool ret, aborted = false, tas = false;
3310
3311 spin_lock_irqsave(&cmd->t_state_lock, flags);
3312 ret = __transport_wait_for_tasks(cmd, false, &aborted, &tas, &flags);
3313 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3314
3315 return ret;
3316}
3317EXPORT_SYMBOL(transport_wait_for_tasks);
3318
3319struct sense_detail {
3320 u8 key;
3321 u8 asc;
3322 u8 ascq;
3323 bool add_sense_info;
3324};
3325
3326static const struct sense_detail sense_detail_table[] = {
3327 [TCM_NO_SENSE] = {
3328 .key = NOT_READY
3329 },
3330 [TCM_NON_EXISTENT_LUN] = {
3331 .key = ILLEGAL_REQUEST,
3332 .asc = 0x25 /* LOGICAL UNIT NOT SUPPORTED */
3333 },
3334 [TCM_UNSUPPORTED_SCSI_OPCODE] = {
3335 .key = ILLEGAL_REQUEST,
3336 .asc = 0x20, /* INVALID COMMAND OPERATION CODE */
3337 },
3338 [TCM_SECTOR_COUNT_TOO_MANY] = {
3339 .key = ILLEGAL_REQUEST,
3340 .asc = 0x20, /* INVALID COMMAND OPERATION CODE */
3341 },
3342 [TCM_UNKNOWN_MODE_PAGE] = {
3343 .key = ILLEGAL_REQUEST,
3344 .asc = 0x24, /* INVALID FIELD IN CDB */
3345 },
3346 [TCM_CHECK_CONDITION_ABORT_CMD] = {
3347 .key = ABORTED_COMMAND,
3348 .asc = 0x29, /* BUS DEVICE RESET FUNCTION OCCURRED */
3349 .ascq = 0x03,
3350 },
3351 [TCM_INCORRECT_AMOUNT_OF_DATA] = {
3352 .key = ABORTED_COMMAND,
3353 .asc = 0x0c, /* WRITE ERROR */
3354 .ascq = 0x0d, /* NOT ENOUGH UNSOLICITED DATA */
3355 },
3356 [TCM_INVALID_CDB_FIELD] = {
3357 .key = ILLEGAL_REQUEST,
3358 .asc = 0x24, /* INVALID FIELD IN CDB */
3359 },
3360 [TCM_INVALID_PARAMETER_LIST] = {
3361 .key = ILLEGAL_REQUEST,
3362 .asc = 0x26, /* INVALID FIELD IN PARAMETER LIST */
3363 },
3364 [TCM_TOO_MANY_TARGET_DESCS] = {
3365 .key = ILLEGAL_REQUEST,
3366 .asc = 0x26,
3367 .ascq = 0x06, /* TOO MANY TARGET DESCRIPTORS */
3368 },
3369 [TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE] = {
3370 .key = ILLEGAL_REQUEST,
3371 .asc = 0x26,
3372 .ascq = 0x07, /* UNSUPPORTED TARGET DESCRIPTOR TYPE CODE */
3373 },
3374 [TCM_TOO_MANY_SEGMENT_DESCS] = {
3375 .key = ILLEGAL_REQUEST,
3376 .asc = 0x26,
3377 .ascq = 0x08, /* TOO MANY SEGMENT DESCRIPTORS */
3378 },
3379 [TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE] = {
3380 .key = ILLEGAL_REQUEST,
3381 .asc = 0x26,
3382 .ascq = 0x09, /* UNSUPPORTED SEGMENT DESCRIPTOR TYPE CODE */
3383 },
3384 [TCM_PARAMETER_LIST_LENGTH_ERROR] = {
3385 .key = ILLEGAL_REQUEST,
3386 .asc = 0x1a, /* PARAMETER LIST LENGTH ERROR */
3387 },
3388 [TCM_UNEXPECTED_UNSOLICITED_DATA] = {
3389 .key = ILLEGAL_REQUEST,
3390 .asc = 0x0c, /* WRITE ERROR */
3391 .ascq = 0x0c, /* UNEXPECTED_UNSOLICITED_DATA */
3392 },
3393 [TCM_SERVICE_CRC_ERROR] = {
3394 .key = ABORTED_COMMAND,
3395 .asc = 0x47, /* PROTOCOL SERVICE CRC ERROR */
3396 .ascq = 0x05, /* N/A */
3397 },
3398 [TCM_SNACK_REJECTED] = {
3399 .key = ABORTED_COMMAND,
3400 .asc = 0x11, /* READ ERROR */
3401 .ascq = 0x13, /* FAILED RETRANSMISSION REQUEST */
3402 },
3403 [TCM_WRITE_PROTECTED] = {
3404 .key = DATA_PROTECT,
3405 .asc = 0x27, /* WRITE PROTECTED */
3406 },
3407 [TCM_ADDRESS_OUT_OF_RANGE] = {
3408 .key = ILLEGAL_REQUEST,
3409 .asc = 0x21, /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
3410 },
3411 [TCM_CHECK_CONDITION_UNIT_ATTENTION] = {
3412 .key = UNIT_ATTENTION,
3413 },
3414 [TCM_MISCOMPARE_VERIFY] = {
3415 .key = MISCOMPARE,
3416 .asc = 0x1d, /* MISCOMPARE DURING VERIFY OPERATION */
3417 .ascq = 0x00,
3418 .add_sense_info = true,
3419 },
3420 [TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED] = {
3421 .key = ABORTED_COMMAND,
3422 .asc = 0x10,
3423 .ascq = 0x01, /* LOGICAL BLOCK GUARD CHECK FAILED */
3424 .add_sense_info = true,
3425 },
3426 [TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED] = {
3427 .key = ABORTED_COMMAND,
3428 .asc = 0x10,
3429 .ascq = 0x02, /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */
3430 .add_sense_info = true,
3431 },
3432 [TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED] = {
3433 .key = ABORTED_COMMAND,
3434 .asc = 0x10,
3435 .ascq = 0x03, /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */
3436 .add_sense_info = true,
3437 },
3438 [TCM_COPY_TARGET_DEVICE_NOT_REACHABLE] = {
3439 .key = COPY_ABORTED,
3440 .asc = 0x0d,
3441 .ascq = 0x02, /* COPY TARGET DEVICE NOT REACHABLE */
3442
3443 },
3444 [TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE] = {
3445 /*
3446 * Returning ILLEGAL REQUEST would cause immediate IO errors on
3447 * Solaris initiators. Returning NOT READY instead means the
3448 * operations will be retried a finite number of times and we
3449 * can survive intermittent errors.
3450 */
3451 .key = NOT_READY,
3452 .asc = 0x08, /* LOGICAL UNIT COMMUNICATION FAILURE */
3453 },
3454 [TCM_INSUFFICIENT_REGISTRATION_RESOURCES] = {
3455 /*
3456 * From spc4r22 section5.7.7,5.7.8
3457 * If a PERSISTENT RESERVE OUT command with a REGISTER service action
3458 * or a REGISTER AND IGNORE EXISTING KEY service action or
3459 * REGISTER AND MOVE service actionis attempted,
3460 * but there are insufficient device server resources to complete the
3461 * operation, then the command shall be terminated with CHECK CONDITION
3462 * status, with the sense key set to ILLEGAL REQUEST,and the additonal
3463 * sense code set to INSUFFICIENT REGISTRATION RESOURCES.
3464 */
3465 .key = ILLEGAL_REQUEST,
3466 .asc = 0x55,
3467 .ascq = 0x04, /* INSUFFICIENT REGISTRATION RESOURCES */
3468 },
3469 [TCM_INVALID_FIELD_IN_COMMAND_IU] = {
3470 .key = ILLEGAL_REQUEST,
3471 .asc = 0x0e,
3472 .ascq = 0x03, /* INVALID FIELD IN COMMAND INFORMATION UNIT */
3473 },
3474 [TCM_ALUA_TG_PT_STANDBY] = {
3475 .key = NOT_READY,
3476 .asc = 0x04,
3477 .ascq = ASCQ_04H_ALUA_TG_PT_STANDBY,
3478 },
3479 [TCM_ALUA_TG_PT_UNAVAILABLE] = {
3480 .key = NOT_READY,
3481 .asc = 0x04,
3482 .ascq = ASCQ_04H_ALUA_TG_PT_UNAVAILABLE,
3483 },
3484 [TCM_ALUA_STATE_TRANSITION] = {
3485 .key = NOT_READY,
3486 .asc = 0x04,
3487 .ascq = ASCQ_04H_ALUA_STATE_TRANSITION,
3488 },
3489 [TCM_ALUA_OFFLINE] = {
3490 .key = NOT_READY,
3491 .asc = 0x04,
3492 .ascq = ASCQ_04H_ALUA_OFFLINE,
3493 },
3494};
3495
3496/**
3497 * translate_sense_reason - translate a sense reason into T10 key, asc and ascq
3498 * @cmd: SCSI command in which the resulting sense buffer or SCSI status will
3499 * be stored.
3500 * @reason: LIO sense reason code. If this argument has the value
3501 * TCM_CHECK_CONDITION_UNIT_ATTENTION, try to dequeue a unit attention. If
3502 * dequeuing a unit attention fails due to multiple commands being processed
3503 * concurrently, set the command status to BUSY.
3504 *
3505 * Return: 0 upon success or -EINVAL if the sense buffer is too small.
3506 */
3507static void translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason)
3508{
3509 const struct sense_detail *sd;
3510 u8 *buffer = cmd->sense_buffer;
3511 int r = (__force int)reason;
3512 u8 key, asc, ascq;
3513 bool desc_format = target_sense_desc_format(cmd->se_dev);
3514
3515 if (r < ARRAY_SIZE(sense_detail_table) && sense_detail_table[r].key)
3516 sd = &sense_detail_table[r];
3517 else
3518 sd = &sense_detail_table[(__force int)
3519 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE];
3520
3521 key = sd->key;
3522 if (reason == TCM_CHECK_CONDITION_UNIT_ATTENTION) {
3523 if (!core_scsi3_ua_for_check_condition(cmd, &key, &asc,
3524 &ascq)) {
3525 cmd->scsi_status = SAM_STAT_BUSY;
3526 return;
3527 }
3528 } else {
3529 WARN_ON_ONCE(sd->asc == 0);
3530 asc = sd->asc;
3531 ascq = sd->ascq;
3532 }
3533
3534 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
3535 cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
3536 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
3537 scsi_build_sense_buffer(desc_format, buffer, key, asc, ascq);
3538 if (sd->add_sense_info)
3539 WARN_ON_ONCE(scsi_set_sense_information(buffer,
3540 cmd->scsi_sense_length,
3541 cmd->sense_info) < 0);
3542}
3543
3544int
3545transport_send_check_condition_and_sense(struct se_cmd *cmd,
3546 sense_reason_t reason, int from_transport)
3547{
3548 unsigned long flags;
3549
3550 WARN_ON_ONCE(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB);
3551
3552 spin_lock_irqsave(&cmd->t_state_lock, flags);
3553 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
3554 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3555 return 0;
3556 }
3557 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
3558 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3559
3560 if (!from_transport)
3561 translate_sense_reason(cmd, reason);
3562
3563 trace_target_cmd_complete(cmd);
3564 return cmd->se_tfo->queue_status(cmd);
3565}
3566EXPORT_SYMBOL(transport_send_check_condition_and_sense);
3567
3568/**
3569 * target_send_busy - Send SCSI BUSY status back to the initiator
3570 * @cmd: SCSI command for which to send a BUSY reply.
3571 *
3572 * Note: Only call this function if target_submit_cmd*() failed.
3573 */
3574int target_send_busy(struct se_cmd *cmd)
3575{
3576 WARN_ON_ONCE(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB);
3577
3578 cmd->scsi_status = SAM_STAT_BUSY;
3579 trace_target_cmd_complete(cmd);
3580 return cmd->se_tfo->queue_status(cmd);
3581}
3582EXPORT_SYMBOL(target_send_busy);
3583
3584static void target_tmr_work(struct work_struct *work)
3585{
3586 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
3587 struct se_device *dev = cmd->se_dev;
3588 struct se_tmr_req *tmr = cmd->se_tmr_req;
3589 int ret;
3590
3591 if (cmd->transport_state & CMD_T_ABORTED)
3592 goto aborted;
3593
3594 switch (tmr->function) {
3595 case TMR_ABORT_TASK:
3596 core_tmr_abort_task(dev, tmr, cmd->se_sess);
3597 break;
3598 case TMR_ABORT_TASK_SET:
3599 case TMR_CLEAR_ACA:
3600 case TMR_CLEAR_TASK_SET:
3601 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
3602 break;
3603 case TMR_LUN_RESET:
3604 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
3605 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
3606 TMR_FUNCTION_REJECTED;
3607 if (tmr->response == TMR_FUNCTION_COMPLETE) {
3608 target_dev_ua_allocate(dev, 0x29,
3609 ASCQ_29H_BUS_DEVICE_RESET_FUNCTION_OCCURRED);
3610 }
3611 break;
3612 case TMR_TARGET_WARM_RESET:
3613 tmr->response = TMR_FUNCTION_REJECTED;
3614 break;
3615 case TMR_TARGET_COLD_RESET:
3616 tmr->response = TMR_FUNCTION_REJECTED;
3617 break;
3618 default:
3619 pr_err("Unknown TMR function: 0x%02x.\n",
3620 tmr->function);
3621 tmr->response = TMR_FUNCTION_REJECTED;
3622 break;
3623 }
3624
3625 if (cmd->transport_state & CMD_T_ABORTED)
3626 goto aborted;
3627
3628 cmd->se_tfo->queue_tm_rsp(cmd);
3629
3630 transport_lun_remove_cmd(cmd);
3631 transport_cmd_check_stop_to_fabric(cmd);
3632 return;
3633
3634aborted:
3635 target_handle_abort(cmd);
3636}
3637
3638int transport_generic_handle_tmr(
3639 struct se_cmd *cmd)
3640{
3641 unsigned long flags;
3642 bool aborted = false;
3643
3644 spin_lock_irqsave(&cmd->se_dev->se_tmr_lock, flags);
3645 list_add_tail(&cmd->se_tmr_req->tmr_list, &cmd->se_dev->dev_tmr_list);
3646 spin_unlock_irqrestore(&cmd->se_dev->se_tmr_lock, flags);
3647
3648 spin_lock_irqsave(&cmd->t_state_lock, flags);
3649 if (cmd->transport_state & CMD_T_ABORTED) {
3650 aborted = true;
3651 } else {
3652 cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
3653 cmd->transport_state |= CMD_T_ACTIVE;
3654 }
3655 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3656
3657 if (aborted) {
3658 pr_warn_ratelimited("handle_tmr caught CMD_T_ABORTED TMR %d ref_tag: %llu tag: %llu\n",
3659 cmd->se_tmr_req->function,
3660 cmd->se_tmr_req->ref_task_tag, cmd->tag);
3661 target_handle_abort(cmd);
3662 return 0;
3663 }
3664
3665 INIT_WORK(&cmd->work, target_tmr_work);
3666 schedule_work(&cmd->work);
3667 return 0;
3668}
3669EXPORT_SYMBOL(transport_generic_handle_tmr);
3670
3671bool
3672target_check_wce(struct se_device *dev)
3673{
3674 bool wce = false;
3675
3676 if (dev->transport->get_write_cache)
3677 wce = dev->transport->get_write_cache(dev);
3678 else if (dev->dev_attrib.emulate_write_cache > 0)
3679 wce = true;
3680
3681 return wce;
3682}
3683
3684bool
3685target_check_fua(struct se_device *dev)
3686{
3687 return target_check_wce(dev) && dev->dev_attrib.emulate_fua_write > 0;
3688}