Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Perf support for the Statistical Profiling Extension, introduced as
4 * part of ARMv8.2.
5 *
6 * Copyright (C) 2016 ARM Limited
7 *
8 * Author: Will Deacon <will.deacon@arm.com>
9 */
10
11#define PMUNAME "arm_spe"
12#define DRVNAME PMUNAME "_pmu"
13#define pr_fmt(fmt) DRVNAME ": " fmt
14
15#include <linux/bitfield.h>
16#include <linux/bitops.h>
17#include <linux/bug.h>
18#include <linux/capability.h>
19#include <linux/cpuhotplug.h>
20#include <linux/cpumask.h>
21#include <linux/device.h>
22#include <linux/errno.h>
23#include <linux/interrupt.h>
24#include <linux/irq.h>
25#include <linux/kernel.h>
26#include <linux/list.h>
27#include <linux/module.h>
28#include <linux/of.h>
29#include <linux/perf_event.h>
30#include <linux/perf/arm_pmu.h>
31#include <linux/platform_device.h>
32#include <linux/printk.h>
33#include <linux/slab.h>
34#include <linux/smp.h>
35#include <linux/vmalloc.h>
36
37#include <asm/barrier.h>
38#include <asm/cpufeature.h>
39#include <asm/mmu.h>
40#include <asm/sysreg.h>
41
42/*
43 * Cache if the event is allowed to trace Context information.
44 * This allows us to perform the check, i.e, perf_allow_kernel(),
45 * in the context of the event owner, once, during the event_init().
46 */
47#define SPE_PMU_HW_FLAGS_CX 0x00001
48
49static_assert((PERF_EVENT_FLAG_ARCH & SPE_PMU_HW_FLAGS_CX) == SPE_PMU_HW_FLAGS_CX);
50
51static void set_spe_event_has_cx(struct perf_event *event)
52{
53 if (IS_ENABLED(CONFIG_PID_IN_CONTEXTIDR) && !perf_allow_kernel())
54 event->hw.flags |= SPE_PMU_HW_FLAGS_CX;
55}
56
57static bool get_spe_event_has_cx(struct perf_event *event)
58{
59 return !!(event->hw.flags & SPE_PMU_HW_FLAGS_CX);
60}
61
62#define ARM_SPE_BUF_PAD_BYTE 0
63
64struct arm_spe_pmu_buf {
65 int nr_pages;
66 bool snapshot;
67 void *base;
68};
69
70struct arm_spe_pmu {
71 struct pmu pmu;
72 struct platform_device *pdev;
73 cpumask_t supported_cpus;
74 struct hlist_node hotplug_node;
75
76 int irq; /* PPI */
77 u16 pmsver;
78 u16 min_period;
79 u16 counter_sz;
80
81#define SPE_PMU_FEAT_FILT_EVT (1UL << 0)
82#define SPE_PMU_FEAT_FILT_TYP (1UL << 1)
83#define SPE_PMU_FEAT_FILT_LAT (1UL << 2)
84#define SPE_PMU_FEAT_ARCH_INST (1UL << 3)
85#define SPE_PMU_FEAT_LDS (1UL << 4)
86#define SPE_PMU_FEAT_ERND (1UL << 5)
87#define SPE_PMU_FEAT_INV_FILT_EVT (1UL << 6)
88#define SPE_PMU_FEAT_DISCARD (1UL << 7)
89#define SPE_PMU_FEAT_EFT (1UL << 8)
90#define SPE_PMU_FEAT_FDS (1UL << 9)
91#define SPE_PMU_FEAT_DEV_PROBED (1UL << 63)
92 u64 features;
93
94 u64 pmsevfr_res0;
95 u16 max_record_sz;
96 u16 align;
97 struct perf_output_handle __percpu *handle;
98};
99
100#define to_spe_pmu(p) (container_of(p, struct arm_spe_pmu, pmu))
101
102/* Convert a free-running index from perf into an SPE buffer offset */
103#define PERF_IDX2OFF(idx, buf) \
104 ((idx) % ((unsigned long)(buf)->nr_pages << PAGE_SHIFT))
105
106/* Keep track of our dynamic hotplug state */
107static enum cpuhp_state arm_spe_pmu_online;
108
109enum arm_spe_pmu_buf_fault_action {
110 SPE_PMU_BUF_FAULT_ACT_SPURIOUS,
111 SPE_PMU_BUF_FAULT_ACT_FATAL,
112 SPE_PMU_BUF_FAULT_ACT_OK,
113};
114
115/* This sysfs gunk was really good fun to write. */
116enum arm_spe_pmu_capabilities {
117 SPE_PMU_CAP_ARCH_INST = 0,
118 SPE_PMU_CAP_ERND,
119 SPE_PMU_CAP_FEAT_MAX,
120 SPE_PMU_CAP_CNT_SZ = SPE_PMU_CAP_FEAT_MAX,
121 SPE_PMU_CAP_MIN_IVAL,
122 SPE_PMU_CAP_EVENT_FILTER,
123};
124
125static int arm_spe_pmu_feat_caps[SPE_PMU_CAP_FEAT_MAX] = {
126 [SPE_PMU_CAP_ARCH_INST] = SPE_PMU_FEAT_ARCH_INST,
127 [SPE_PMU_CAP_ERND] = SPE_PMU_FEAT_ERND,
128};
129
130static u64 arm_spe_pmu_cap_get(struct arm_spe_pmu *spe_pmu, int cap)
131{
132 if (cap < SPE_PMU_CAP_FEAT_MAX)
133 return !!(spe_pmu->features & arm_spe_pmu_feat_caps[cap]);
134
135 switch (cap) {
136 case SPE_PMU_CAP_CNT_SZ:
137 return spe_pmu->counter_sz;
138 case SPE_PMU_CAP_MIN_IVAL:
139 return spe_pmu->min_period;
140 case SPE_PMU_CAP_EVENT_FILTER:
141 return ~spe_pmu->pmsevfr_res0;
142 default:
143 WARN(1, "unknown cap %d\n", cap);
144 }
145
146 return 0;
147}
148
149static ssize_t arm_spe_pmu_cap_show(struct device *dev,
150 struct device_attribute *attr,
151 char *buf)
152{
153 struct arm_spe_pmu *spe_pmu = dev_get_drvdata(dev);
154 struct dev_ext_attribute *ea =
155 container_of(attr, struct dev_ext_attribute, attr);
156 int cap = (long)ea->var;
157
158 return sysfs_emit(buf, "%llu\n", arm_spe_pmu_cap_get(spe_pmu, cap));
159}
160
161static ssize_t arm_spe_pmu_cap_show_hex(struct device *dev,
162 struct device_attribute *attr,
163 char *buf)
164{
165 struct arm_spe_pmu *spe_pmu = dev_get_drvdata(dev);
166 struct dev_ext_attribute *ea =
167 container_of(attr, struct dev_ext_attribute, attr);
168 int cap = (long)ea->var;
169
170 return sysfs_emit(buf, "0x%llx\n", arm_spe_pmu_cap_get(spe_pmu, cap));
171}
172
173#define SPE_EXT_ATTR_ENTRY(_name, _func, _var) \
174 &((struct dev_ext_attribute[]) { \
175 { __ATTR(_name, S_IRUGO, _func, NULL), (void *)_var } \
176 })[0].attr.attr
177
178#define SPE_CAP_EXT_ATTR_ENTRY(_name, _var) \
179 SPE_EXT_ATTR_ENTRY(_name, arm_spe_pmu_cap_show, _var)
180#define SPE_CAP_EXT_ATTR_ENTRY_HEX(_name, _var) \
181 SPE_EXT_ATTR_ENTRY(_name, arm_spe_pmu_cap_show_hex, _var)
182
183static struct attribute *arm_spe_pmu_cap_attr[] = {
184 SPE_CAP_EXT_ATTR_ENTRY(arch_inst, SPE_PMU_CAP_ARCH_INST),
185 SPE_CAP_EXT_ATTR_ENTRY(ernd, SPE_PMU_CAP_ERND),
186 SPE_CAP_EXT_ATTR_ENTRY(count_size, SPE_PMU_CAP_CNT_SZ),
187 SPE_CAP_EXT_ATTR_ENTRY(min_interval, SPE_PMU_CAP_MIN_IVAL),
188 SPE_CAP_EXT_ATTR_ENTRY_HEX(event_filter, SPE_PMU_CAP_EVENT_FILTER),
189 NULL,
190};
191
192static const struct attribute_group arm_spe_pmu_cap_group = {
193 .name = "caps",
194 .attrs = arm_spe_pmu_cap_attr,
195};
196
197/* User ABI */
198#define ATTR_CFG_FLD_ts_enable_CFG config /* PMSCR_EL1.TS */
199#define ATTR_CFG_FLD_ts_enable_LO 0
200#define ATTR_CFG_FLD_ts_enable_HI 0
201#define ATTR_CFG_FLD_pa_enable_CFG config /* PMSCR_EL1.PA */
202#define ATTR_CFG_FLD_pa_enable_LO 1
203#define ATTR_CFG_FLD_pa_enable_HI 1
204#define ATTR_CFG_FLD_pct_enable_CFG config /* PMSCR_EL1.PCT */
205#define ATTR_CFG_FLD_pct_enable_LO 2
206#define ATTR_CFG_FLD_pct_enable_HI 2
207#define ATTR_CFG_FLD_jitter_CFG config /* PMSIRR_EL1.RND */
208#define ATTR_CFG_FLD_jitter_LO 16
209#define ATTR_CFG_FLD_jitter_HI 16
210#define ATTR_CFG_FLD_branch_filter_CFG config /* PMSFCR_EL1.B */
211#define ATTR_CFG_FLD_branch_filter_LO 32
212#define ATTR_CFG_FLD_branch_filter_HI 32
213#define ATTR_CFG_FLD_load_filter_CFG config /* PMSFCR_EL1.LD */
214#define ATTR_CFG_FLD_load_filter_LO 33
215#define ATTR_CFG_FLD_load_filter_HI 33
216#define ATTR_CFG_FLD_store_filter_CFG config /* PMSFCR_EL1.ST */
217#define ATTR_CFG_FLD_store_filter_LO 34
218#define ATTR_CFG_FLD_store_filter_HI 34
219#define ATTR_CFG_FLD_discard_CFG config /* PMBLIMITR_EL1.FM = DISCARD */
220#define ATTR_CFG_FLD_discard_LO 35
221#define ATTR_CFG_FLD_discard_HI 35
222#define ATTR_CFG_FLD_branch_filter_mask_CFG config /* PMSFCR_EL1.Bm */
223#define ATTR_CFG_FLD_branch_filter_mask_LO 36
224#define ATTR_CFG_FLD_branch_filter_mask_HI 36
225#define ATTR_CFG_FLD_load_filter_mask_CFG config /* PMSFCR_EL1.LDm */
226#define ATTR_CFG_FLD_load_filter_mask_LO 37
227#define ATTR_CFG_FLD_load_filter_mask_HI 37
228#define ATTR_CFG_FLD_store_filter_mask_CFG config /* PMSFCR_EL1.STm */
229#define ATTR_CFG_FLD_store_filter_mask_LO 38
230#define ATTR_CFG_FLD_store_filter_mask_HI 38
231#define ATTR_CFG_FLD_simd_filter_CFG config /* PMSFCR_EL1.SIMD */
232#define ATTR_CFG_FLD_simd_filter_LO 39
233#define ATTR_CFG_FLD_simd_filter_HI 39
234#define ATTR_CFG_FLD_simd_filter_mask_CFG config /* PMSFCR_EL1.SIMDm */
235#define ATTR_CFG_FLD_simd_filter_mask_LO 40
236#define ATTR_CFG_FLD_simd_filter_mask_HI 40
237#define ATTR_CFG_FLD_float_filter_CFG config /* PMSFCR_EL1.FP */
238#define ATTR_CFG_FLD_float_filter_LO 41
239#define ATTR_CFG_FLD_float_filter_HI 41
240#define ATTR_CFG_FLD_float_filter_mask_CFG config /* PMSFCR_EL1.FPm */
241#define ATTR_CFG_FLD_float_filter_mask_LO 42
242#define ATTR_CFG_FLD_float_filter_mask_HI 42
243
244#define ATTR_CFG_FLD_event_filter_CFG config1 /* PMSEVFR_EL1 */
245#define ATTR_CFG_FLD_event_filter_LO 0
246#define ATTR_CFG_FLD_event_filter_HI 63
247
248#define ATTR_CFG_FLD_min_latency_CFG config2 /* PMSLATFR_EL1.MINLAT */
249#define ATTR_CFG_FLD_min_latency_LO 0
250#define ATTR_CFG_FLD_min_latency_HI 11
251
252#define ATTR_CFG_FLD_inv_event_filter_CFG config3 /* PMSNEVFR_EL1 */
253#define ATTR_CFG_FLD_inv_event_filter_LO 0
254#define ATTR_CFG_FLD_inv_event_filter_HI 63
255
256#define ATTR_CFG_FLD_inv_data_src_filter_CFG config4 /* inverse of PMSDSFR_EL1 */
257#define ATTR_CFG_FLD_inv_data_src_filter_LO 0
258#define ATTR_CFG_FLD_inv_data_src_filter_HI 63
259
260GEN_PMU_FORMAT_ATTR(ts_enable);
261GEN_PMU_FORMAT_ATTR(pa_enable);
262GEN_PMU_FORMAT_ATTR(pct_enable);
263GEN_PMU_FORMAT_ATTR(jitter);
264GEN_PMU_FORMAT_ATTR(branch_filter);
265GEN_PMU_FORMAT_ATTR(branch_filter_mask);
266GEN_PMU_FORMAT_ATTR(load_filter);
267GEN_PMU_FORMAT_ATTR(load_filter_mask);
268GEN_PMU_FORMAT_ATTR(store_filter);
269GEN_PMU_FORMAT_ATTR(store_filter_mask);
270GEN_PMU_FORMAT_ATTR(simd_filter);
271GEN_PMU_FORMAT_ATTR(simd_filter_mask);
272GEN_PMU_FORMAT_ATTR(float_filter);
273GEN_PMU_FORMAT_ATTR(float_filter_mask);
274GEN_PMU_FORMAT_ATTR(event_filter);
275GEN_PMU_FORMAT_ATTR(inv_event_filter);
276GEN_PMU_FORMAT_ATTR(inv_data_src_filter);
277GEN_PMU_FORMAT_ATTR(min_latency);
278GEN_PMU_FORMAT_ATTR(discard);
279
280static struct attribute *arm_spe_pmu_formats_attr[] = {
281 &format_attr_ts_enable.attr,
282 &format_attr_pa_enable.attr,
283 &format_attr_pct_enable.attr,
284 &format_attr_jitter.attr,
285 &format_attr_branch_filter.attr,
286 &format_attr_branch_filter_mask.attr,
287 &format_attr_load_filter.attr,
288 &format_attr_load_filter_mask.attr,
289 &format_attr_store_filter.attr,
290 &format_attr_store_filter_mask.attr,
291 &format_attr_simd_filter.attr,
292 &format_attr_simd_filter_mask.attr,
293 &format_attr_float_filter.attr,
294 &format_attr_float_filter_mask.attr,
295 &format_attr_event_filter.attr,
296 &format_attr_inv_event_filter.attr,
297 &format_attr_inv_data_src_filter.attr,
298 &format_attr_min_latency.attr,
299 &format_attr_discard.attr,
300 NULL,
301};
302
303static umode_t arm_spe_pmu_format_attr_is_visible(struct kobject *kobj,
304 struct attribute *attr,
305 int unused)
306 {
307 struct device *dev = kobj_to_dev(kobj);
308 struct arm_spe_pmu *spe_pmu = dev_get_drvdata(dev);
309
310 if (attr == &format_attr_discard.attr && !(spe_pmu->features & SPE_PMU_FEAT_DISCARD))
311 return 0;
312
313 if (attr == &format_attr_inv_event_filter.attr && !(spe_pmu->features & SPE_PMU_FEAT_INV_FILT_EVT))
314 return 0;
315
316 if (attr == &format_attr_inv_data_src_filter.attr &&
317 !(spe_pmu->features & SPE_PMU_FEAT_FDS))
318 return 0;
319
320 if ((attr == &format_attr_branch_filter_mask.attr ||
321 attr == &format_attr_load_filter_mask.attr ||
322 attr == &format_attr_store_filter_mask.attr ||
323 attr == &format_attr_simd_filter.attr ||
324 attr == &format_attr_simd_filter_mask.attr ||
325 attr == &format_attr_float_filter.attr ||
326 attr == &format_attr_float_filter_mask.attr) &&
327 !(spe_pmu->features & SPE_PMU_FEAT_EFT))
328 return 0;
329
330 return attr->mode;
331}
332
333static const struct attribute_group arm_spe_pmu_format_group = {
334 .name = "format",
335 .is_visible = arm_spe_pmu_format_attr_is_visible,
336 .attrs = arm_spe_pmu_formats_attr,
337};
338
339static ssize_t cpumask_show(struct device *dev,
340 struct device_attribute *attr, char *buf)
341{
342 struct arm_spe_pmu *spe_pmu = dev_get_drvdata(dev);
343
344 return cpumap_print_to_pagebuf(true, buf, &spe_pmu->supported_cpus);
345}
346static DEVICE_ATTR_RO(cpumask);
347
348static struct attribute *arm_spe_pmu_attrs[] = {
349 &dev_attr_cpumask.attr,
350 NULL,
351};
352
353static const struct attribute_group arm_spe_pmu_group = {
354 .attrs = arm_spe_pmu_attrs,
355};
356
357static const struct attribute_group *arm_spe_pmu_attr_groups[] = {
358 &arm_spe_pmu_group,
359 &arm_spe_pmu_cap_group,
360 &arm_spe_pmu_format_group,
361 NULL,
362};
363
364/* Convert between user ABI and register values */
365static u64 arm_spe_event_to_pmscr(struct perf_event *event)
366{
367 struct perf_event_attr *attr = &event->attr;
368 u64 reg = 0;
369
370 reg |= FIELD_PREP(PMSCR_EL1_TS, ATTR_CFG_GET_FLD(attr, ts_enable));
371 reg |= FIELD_PREP(PMSCR_EL1_PA, ATTR_CFG_GET_FLD(attr, pa_enable));
372 reg |= FIELD_PREP(PMSCR_EL1_PCT, ATTR_CFG_GET_FLD(attr, pct_enable));
373
374 if (!attr->exclude_user)
375 reg |= PMSCR_EL1_E0SPE;
376
377 if (!attr->exclude_kernel)
378 reg |= PMSCR_EL1_E1SPE;
379
380 if (get_spe_event_has_cx(event))
381 reg |= PMSCR_EL1_CX;
382
383 return reg;
384}
385
386static void arm_spe_event_sanitise_period(struct perf_event *event)
387{
388 u64 period = event->hw.sample_period;
389 u64 max_period = PMSIRR_EL1_INTERVAL_MASK;
390
391 /*
392 * The PMSIDR_EL1.Interval field (stored in spe_pmu->min_period) is a
393 * recommendation for the minimum interval, not a hardware limitation.
394 *
395 * According to the Arm ARM (DDI 0487 L.a), section D24.7.12 PMSIRR_EL1,
396 * Sampling Interval Reload Register, the INTERVAL field (bits [31:8])
397 * states: "Software must set this to a nonzero value". Use 1 as the
398 * minimum value.
399 */
400 u64 min_period = FIELD_PREP(PMSIRR_EL1_INTERVAL_MASK, 1);
401
402 period = clamp_t(u64, period, min_period, max_period) & max_period;
403 event->hw.sample_period = period;
404}
405
406static u64 arm_spe_event_to_pmsirr(struct perf_event *event)
407{
408 struct perf_event_attr *attr = &event->attr;
409 u64 reg = 0;
410
411 arm_spe_event_sanitise_period(event);
412
413 reg |= FIELD_PREP(PMSIRR_EL1_RND, ATTR_CFG_GET_FLD(attr, jitter));
414 reg |= event->hw.sample_period;
415
416 return reg;
417}
418
419static u64 arm_spe_event_to_pmsfcr(struct perf_event *event)
420{
421 struct perf_event_attr *attr = &event->attr;
422 u64 reg = 0;
423
424 reg |= FIELD_PREP(PMSFCR_EL1_LD, ATTR_CFG_GET_FLD(attr, load_filter));
425 reg |= FIELD_PREP(PMSFCR_EL1_LDm, ATTR_CFG_GET_FLD(attr, load_filter_mask));
426 reg |= FIELD_PREP(PMSFCR_EL1_ST, ATTR_CFG_GET_FLD(attr, store_filter));
427 reg |= FIELD_PREP(PMSFCR_EL1_STm, ATTR_CFG_GET_FLD(attr, store_filter_mask));
428 reg |= FIELD_PREP(PMSFCR_EL1_B, ATTR_CFG_GET_FLD(attr, branch_filter));
429 reg |= FIELD_PREP(PMSFCR_EL1_Bm, ATTR_CFG_GET_FLD(attr, branch_filter_mask));
430 reg |= FIELD_PREP(PMSFCR_EL1_SIMD, ATTR_CFG_GET_FLD(attr, simd_filter));
431 reg |= FIELD_PREP(PMSFCR_EL1_SIMDm, ATTR_CFG_GET_FLD(attr, simd_filter_mask));
432 reg |= FIELD_PREP(PMSFCR_EL1_FP, ATTR_CFG_GET_FLD(attr, float_filter));
433 reg |= FIELD_PREP(PMSFCR_EL1_FPm, ATTR_CFG_GET_FLD(attr, float_filter_mask));
434
435 if (reg)
436 reg |= PMSFCR_EL1_FT;
437
438 if (ATTR_CFG_GET_FLD(attr, event_filter))
439 reg |= PMSFCR_EL1_FE;
440
441 if (ATTR_CFG_GET_FLD(attr, inv_event_filter))
442 reg |= PMSFCR_EL1_FnE;
443
444 if (ATTR_CFG_GET_FLD(attr, inv_data_src_filter))
445 reg |= PMSFCR_EL1_FDS;
446
447 if (ATTR_CFG_GET_FLD(attr, min_latency))
448 reg |= PMSFCR_EL1_FL;
449
450 return reg;
451}
452
453static u64 arm_spe_event_to_pmsevfr(struct perf_event *event)
454{
455 struct perf_event_attr *attr = &event->attr;
456 return ATTR_CFG_GET_FLD(attr, event_filter);
457}
458
459static u64 arm_spe_event_to_pmsnevfr(struct perf_event *event)
460{
461 struct perf_event_attr *attr = &event->attr;
462 return ATTR_CFG_GET_FLD(attr, inv_event_filter);
463}
464
465static u64 arm_spe_event_to_pmslatfr(struct perf_event *event)
466{
467 struct perf_event_attr *attr = &event->attr;
468 return FIELD_PREP(PMSLATFR_EL1_MINLAT, ATTR_CFG_GET_FLD(attr, min_latency));
469}
470
471static u64 arm_spe_event_to_pmsdsfr(struct perf_event *event)
472{
473 struct perf_event_attr *attr = &event->attr;
474
475 /*
476 * Data src filter is inverted so that the default value of 0 is
477 * equivalent to no filtering.
478 */
479 return ~ATTR_CFG_GET_FLD(attr, inv_data_src_filter);
480}
481
482static void arm_spe_pmu_pad_buf(struct perf_output_handle *handle, int len)
483{
484 struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
485 u64 head = PERF_IDX2OFF(handle->head, buf);
486
487 memset(buf->base + head, ARM_SPE_BUF_PAD_BYTE, len);
488 if (!buf->snapshot)
489 perf_aux_output_skip(handle, len);
490}
491
492static u64 arm_spe_pmu_next_snapshot_off(struct perf_output_handle *handle)
493{
494 struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
495 struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
496 u64 head = PERF_IDX2OFF(handle->head, buf);
497 u64 limit = buf->nr_pages * PAGE_SIZE;
498
499 /*
500 * The trace format isn't parseable in reverse, so clamp
501 * the limit to half of the buffer size in snapshot mode
502 * so that the worst case is half a buffer of records, as
503 * opposed to a single record.
504 */
505 if (head < limit >> 1)
506 limit >>= 1;
507
508 /*
509 * If we're within max_record_sz of the limit, we must
510 * pad, move the head index and recompute the limit.
511 */
512 if (limit - head < spe_pmu->max_record_sz) {
513 arm_spe_pmu_pad_buf(handle, limit - head);
514 handle->head = PERF_IDX2OFF(limit, buf);
515 limit = ((buf->nr_pages * PAGE_SIZE) >> 1) + handle->head;
516 }
517
518 return limit;
519}
520
521static u64 __arm_spe_pmu_next_off(struct perf_output_handle *handle)
522{
523 struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
524 struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
525 const u64 bufsize = buf->nr_pages * PAGE_SIZE;
526 u64 limit = bufsize;
527 u64 head, tail, wakeup;
528
529 /*
530 * The head can be misaligned for two reasons:
531 *
532 * 1. The hardware left PMBPTR pointing to the first byte after
533 * a record when generating a buffer management event.
534 *
535 * 2. We used perf_aux_output_skip to consume handle->size bytes
536 * and CIRC_SPACE was used to compute the size, which always
537 * leaves one entry free.
538 *
539 * Deal with this by padding to the next alignment boundary and
540 * moving the head index. If we run out of buffer space, we'll
541 * reduce handle->size to zero and end up reporting truncation.
542 */
543 head = PERF_IDX2OFF(handle->head, buf);
544 if (!IS_ALIGNED(head, spe_pmu->align)) {
545 unsigned long delta = roundup(head, spe_pmu->align) - head;
546
547 delta = min(delta, handle->size);
548 arm_spe_pmu_pad_buf(handle, delta);
549 head = PERF_IDX2OFF(handle->head, buf);
550 }
551
552 /* If we've run out of free space, then nothing more to do */
553 if (!handle->size)
554 goto no_space;
555
556 /* Compute the tail and wakeup indices now that we've aligned head */
557 tail = PERF_IDX2OFF(handle->head + handle->size, buf);
558 wakeup = PERF_IDX2OFF(handle->wakeup, buf);
559
560 /*
561 * Avoid clobbering unconsumed data. We know we have space, so
562 * if we see head == tail we know that the buffer is empty. If
563 * head > tail, then there's nothing to clobber prior to
564 * wrapping.
565 */
566 if (head < tail)
567 limit = round_down(tail, PAGE_SIZE);
568
569 /*
570 * Wakeup may be arbitrarily far into the future. If it's not in
571 * the current generation, either we'll wrap before hitting it,
572 * or it's in the past and has been handled already.
573 *
574 * If there's a wakeup before we wrap, arrange to be woken up by
575 * the page boundary following it. Keep the tail boundary if
576 * that's lower.
577 */
578 if (handle->wakeup < (handle->head + handle->size) && head <= wakeup)
579 limit = min(limit, round_up(wakeup, PAGE_SIZE));
580
581 if (limit > head)
582 return limit;
583
584 arm_spe_pmu_pad_buf(handle, handle->size);
585no_space:
586 perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED);
587 perf_aux_output_end(handle, 0);
588 return 0;
589}
590
591static u64 arm_spe_pmu_next_off(struct perf_output_handle *handle)
592{
593 struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
594 struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
595 u64 limit = __arm_spe_pmu_next_off(handle);
596 u64 head = PERF_IDX2OFF(handle->head, buf);
597
598 /*
599 * If the head has come too close to the end of the buffer,
600 * then pad to the end and recompute the limit.
601 */
602 if (limit && (limit - head < spe_pmu->max_record_sz)) {
603 arm_spe_pmu_pad_buf(handle, limit - head);
604 limit = __arm_spe_pmu_next_off(handle);
605 }
606
607 return limit;
608}
609
610static void arm_spe_perf_aux_output_begin(struct perf_output_handle *handle,
611 struct perf_event *event)
612{
613 u64 base, limit;
614 struct arm_spe_pmu_buf *buf;
615
616 if (ATTR_CFG_GET_FLD(&event->attr, discard)) {
617 limit = FIELD_PREP(PMBLIMITR_EL1_FM, PMBLIMITR_EL1_FM_DISCARD);
618 limit |= PMBLIMITR_EL1_E;
619 goto out_write_limit;
620 }
621
622 /* Start a new aux session */
623 buf = perf_aux_output_begin(handle, event);
624 if (!buf) {
625 event->hw.state |= PERF_HES_STOPPED;
626 /*
627 * We still need to clear the limit pointer, since the
628 * profiler might only be disabled by virtue of a fault.
629 */
630 limit = 0;
631 goto out_write_limit;
632 }
633
634 limit = buf->snapshot ? arm_spe_pmu_next_snapshot_off(handle)
635 : arm_spe_pmu_next_off(handle);
636 if (limit)
637 limit |= PMBLIMITR_EL1_E;
638
639 limit += (u64)buf->base;
640 base = (u64)buf->base + PERF_IDX2OFF(handle->head, buf);
641 write_sysreg_s(base, SYS_PMBPTR_EL1);
642
643out_write_limit:
644 write_sysreg_s(limit, SYS_PMBLIMITR_EL1);
645}
646
647static void arm_spe_perf_aux_output_end(struct perf_output_handle *handle)
648{
649 struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
650 u64 offset, size;
651
652 offset = read_sysreg_s(SYS_PMBPTR_EL1) - (u64)buf->base;
653 size = offset - PERF_IDX2OFF(handle->head, buf);
654
655 if (buf->snapshot)
656 handle->head = offset;
657
658 perf_aux_output_end(handle, size);
659}
660
661static void arm_spe_pmu_disable_and_drain_local(void)
662{
663 /* Disable profiling at EL0 and EL1 */
664 write_sysreg_s(0, SYS_PMSCR_EL1);
665 isb();
666
667 /* Drain any buffered data */
668 psb_csync();
669 dsb(nsh);
670
671 /* Disable the profiling buffer */
672 write_sysreg_s(0, SYS_PMBLIMITR_EL1);
673 isb();
674}
675
676/* IRQ handling */
677static enum arm_spe_pmu_buf_fault_action
678arm_spe_pmu_buf_get_fault_act(struct perf_output_handle *handle)
679{
680 const char *err_str;
681 u64 pmbsr;
682 enum arm_spe_pmu_buf_fault_action ret;
683
684 /*
685 * Ensure new profiling data is visible to the CPU and any external
686 * aborts have been resolved.
687 */
688 psb_csync();
689 dsb(nsh);
690
691 /* Ensure hardware updates to PMBPTR_EL1 are visible */
692 isb();
693
694 /* Service required? */
695 pmbsr = read_sysreg_s(SYS_PMBSR_EL1);
696 if (!FIELD_GET(PMBSR_EL1_S, pmbsr))
697 return SPE_PMU_BUF_FAULT_ACT_SPURIOUS;
698
699 /*
700 * If we've lost data, disable profiling and also set the PARTIAL
701 * flag to indicate that the last record is corrupted.
702 */
703 if (FIELD_GET(PMBSR_EL1_DL, pmbsr))
704 perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED |
705 PERF_AUX_FLAG_PARTIAL);
706
707 /* Report collisions to userspace so that it can up the period */
708 if (FIELD_GET(PMBSR_EL1_COLL, pmbsr))
709 perf_aux_output_flag(handle, PERF_AUX_FLAG_COLLISION);
710
711 /* We only expect buffer management events */
712 switch (FIELD_GET(PMBSR_EL1_EC, pmbsr)) {
713 case PMBSR_EL1_EC_BUF:
714 /* Handled below */
715 break;
716 case PMBSR_EL1_EC_FAULT_S1:
717 case PMBSR_EL1_EC_FAULT_S2:
718 err_str = "Unexpected buffer fault";
719 goto out_err;
720 default:
721 err_str = "Unknown error code";
722 goto out_err;
723 }
724
725 /* Buffer management event */
726 switch (FIELD_GET(PMBSR_EL1_BUF_BSC_MASK, pmbsr)) {
727 case PMBSR_EL1_BUF_BSC_FULL:
728 ret = SPE_PMU_BUF_FAULT_ACT_OK;
729 goto out_stop;
730 default:
731 err_str = "Unknown buffer status code";
732 }
733
734out_err:
735 pr_err_ratelimited("%s on CPU %d [PMBSR=0x%016llx, PMBPTR=0x%016llx, PMBLIMITR=0x%016llx]\n",
736 err_str, smp_processor_id(), pmbsr,
737 read_sysreg_s(SYS_PMBPTR_EL1),
738 read_sysreg_s(SYS_PMBLIMITR_EL1));
739 ret = SPE_PMU_BUF_FAULT_ACT_FATAL;
740
741out_stop:
742 arm_spe_perf_aux_output_end(handle);
743 return ret;
744}
745
746static irqreturn_t arm_spe_pmu_irq_handler(int irq, void *dev)
747{
748 struct perf_output_handle *handle = dev;
749 struct perf_event *event = handle->event;
750 enum arm_spe_pmu_buf_fault_action act;
751
752 if (!perf_get_aux(handle))
753 return IRQ_NONE;
754
755 act = arm_spe_pmu_buf_get_fault_act(handle);
756 if (act == SPE_PMU_BUF_FAULT_ACT_SPURIOUS)
757 return IRQ_NONE;
758
759 /*
760 * Ensure perf callbacks have completed, which may disable the
761 * profiling buffer in response to a TRUNCATION flag.
762 */
763 irq_work_run();
764
765 switch (act) {
766 case SPE_PMU_BUF_FAULT_ACT_FATAL:
767 /*
768 * If a fatal exception occurred then leaving the profiling
769 * buffer enabled is a recipe waiting to happen. Since
770 * fatal faults don't always imply truncation, make sure
771 * that the profiling buffer is disabled explicitly before
772 * clearing the syndrome register.
773 */
774 arm_spe_pmu_disable_and_drain_local();
775 break;
776 case SPE_PMU_BUF_FAULT_ACT_OK:
777 /*
778 * We handled the fault (the buffer was full), so resume
779 * profiling as long as we didn't detect truncation.
780 * PMBPTR might be misaligned, but we'll burn that bridge
781 * when we get to it.
782 */
783 if (!(handle->aux_flags & PERF_AUX_FLAG_TRUNCATED)) {
784 arm_spe_perf_aux_output_begin(handle, event);
785 isb();
786 }
787 break;
788 case SPE_PMU_BUF_FAULT_ACT_SPURIOUS:
789 /* We've seen you before, but GCC has the memory of a sieve. */
790 break;
791 }
792
793 /* The buffer pointers are now sane, so resume profiling. */
794 write_sysreg_s(0, SYS_PMBSR_EL1);
795 return IRQ_HANDLED;
796}
797
798/* Perf callbacks */
799static int arm_spe_pmu_event_init(struct perf_event *event)
800{
801 u64 reg;
802 struct perf_event_attr *attr = &event->attr;
803 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
804
805 /* This is, of course, deeply driver-specific */
806 if (attr->type != event->pmu->type)
807 return -ENOENT;
808
809 if (event->cpu >= 0 &&
810 !cpumask_test_cpu(event->cpu, &spe_pmu->supported_cpus))
811 return -ENOENT;
812
813 if (arm_spe_event_to_pmsevfr(event) & spe_pmu->pmsevfr_res0)
814 return -EOPNOTSUPP;
815
816 if (arm_spe_event_to_pmsnevfr(event) & spe_pmu->pmsevfr_res0)
817 return -EOPNOTSUPP;
818
819 if (arm_spe_event_to_pmsdsfr(event) != U64_MAX &&
820 !(spe_pmu->features & SPE_PMU_FEAT_FDS))
821 return -EOPNOTSUPP;
822
823 if (attr->exclude_idle)
824 return -EOPNOTSUPP;
825
826 /*
827 * Feedback-directed frequency throttling doesn't work when we
828 * have a buffer of samples. We'd need to manually count the
829 * samples in the buffer when it fills up and adjust the event
830 * count to reflect that. Instead, just force the user to specify
831 * a sample period.
832 */
833 if (attr->freq)
834 return -EINVAL;
835
836 reg = arm_spe_event_to_pmsfcr(event);
837 if ((FIELD_GET(PMSFCR_EL1_FE, reg)) &&
838 !(spe_pmu->features & SPE_PMU_FEAT_FILT_EVT))
839 return -EOPNOTSUPP;
840
841 if ((FIELD_GET(PMSFCR_EL1_FnE, reg)) &&
842 !(spe_pmu->features & SPE_PMU_FEAT_INV_FILT_EVT))
843 return -EOPNOTSUPP;
844
845 if ((FIELD_GET(PMSFCR_EL1_FT, reg)) &&
846 !(spe_pmu->features & SPE_PMU_FEAT_FILT_TYP))
847 return -EOPNOTSUPP;
848
849 if ((FIELD_GET(PMSFCR_EL1_FL, reg)) &&
850 !(spe_pmu->features & SPE_PMU_FEAT_FILT_LAT))
851 return -EOPNOTSUPP;
852
853 if ((FIELD_GET(PMSFCR_EL1_LDm, reg) ||
854 FIELD_GET(PMSFCR_EL1_STm, reg) ||
855 FIELD_GET(PMSFCR_EL1_Bm, reg) ||
856 FIELD_GET(PMSFCR_EL1_SIMD, reg) ||
857 FIELD_GET(PMSFCR_EL1_SIMDm, reg) ||
858 FIELD_GET(PMSFCR_EL1_FP, reg) ||
859 FIELD_GET(PMSFCR_EL1_FPm, reg)) &&
860 !(spe_pmu->features & SPE_PMU_FEAT_EFT))
861 return -EOPNOTSUPP;
862
863 if (ATTR_CFG_GET_FLD(&event->attr, discard) &&
864 !(spe_pmu->features & SPE_PMU_FEAT_DISCARD))
865 return -EOPNOTSUPP;
866
867 set_spe_event_has_cx(event);
868 reg = arm_spe_event_to_pmscr(event);
869 if (reg & (PMSCR_EL1_PA | PMSCR_EL1_PCT))
870 return perf_allow_kernel();
871
872 return 0;
873}
874
875static void arm_spe_pmu_start(struct perf_event *event, int flags)
876{
877 u64 reg;
878 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
879 struct hw_perf_event *hwc = &event->hw;
880 struct perf_output_handle *handle = this_cpu_ptr(spe_pmu->handle);
881
882 hwc->state = 0;
883 arm_spe_perf_aux_output_begin(handle, event);
884 if (hwc->state)
885 return;
886
887 reg = arm_spe_event_to_pmsfcr(event);
888 write_sysreg_s(reg, SYS_PMSFCR_EL1);
889
890 reg = arm_spe_event_to_pmsevfr(event);
891 write_sysreg_s(reg, SYS_PMSEVFR_EL1);
892
893 if (spe_pmu->features & SPE_PMU_FEAT_INV_FILT_EVT) {
894 reg = arm_spe_event_to_pmsnevfr(event);
895 write_sysreg_s(reg, SYS_PMSNEVFR_EL1);
896 }
897
898 if (spe_pmu->features & SPE_PMU_FEAT_FDS) {
899 reg = arm_spe_event_to_pmsdsfr(event);
900 write_sysreg_s(reg, SYS_PMSDSFR_EL1);
901 }
902
903 reg = arm_spe_event_to_pmslatfr(event);
904 write_sysreg_s(reg, SYS_PMSLATFR_EL1);
905
906 if (flags & PERF_EF_RELOAD) {
907 reg = arm_spe_event_to_pmsirr(event);
908 write_sysreg_s(reg, SYS_PMSIRR_EL1);
909 isb();
910 reg = local64_read(&hwc->period_left);
911 write_sysreg_s(reg, SYS_PMSICR_EL1);
912 }
913
914 reg = arm_spe_event_to_pmscr(event);
915 isb();
916 write_sysreg_s(reg, SYS_PMSCR_EL1);
917}
918
919static void arm_spe_pmu_stop(struct perf_event *event, int flags)
920{
921 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
922 struct hw_perf_event *hwc = &event->hw;
923 struct perf_output_handle *handle = this_cpu_ptr(spe_pmu->handle);
924
925 /* If we're already stopped, then nothing to do */
926 if (hwc->state & PERF_HES_STOPPED)
927 return;
928
929 /* Stop all trace generation */
930 arm_spe_pmu_disable_and_drain_local();
931
932 if (flags & PERF_EF_UPDATE) {
933 /*
934 * If there's a fault pending then ensure we contain it
935 * to this buffer, since we might be on the context-switch
936 * path.
937 */
938 if (perf_get_aux(handle)) {
939 enum arm_spe_pmu_buf_fault_action act;
940
941 act = arm_spe_pmu_buf_get_fault_act(handle);
942 if (act == SPE_PMU_BUF_FAULT_ACT_SPURIOUS)
943 arm_spe_perf_aux_output_end(handle);
944 else
945 write_sysreg_s(0, SYS_PMBSR_EL1);
946 }
947
948 /*
949 * This may also contain ECOUNT, but nobody else should
950 * be looking at period_left, since we forbid frequency
951 * based sampling.
952 */
953 local64_set(&hwc->period_left, read_sysreg_s(SYS_PMSICR_EL1));
954 hwc->state |= PERF_HES_UPTODATE;
955 }
956
957 hwc->state |= PERF_HES_STOPPED;
958}
959
960static int arm_spe_pmu_add(struct perf_event *event, int flags)
961{
962 int ret = 0;
963 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
964 struct hw_perf_event *hwc = &event->hw;
965 int cpu = event->cpu == -1 ? smp_processor_id() : event->cpu;
966
967 if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
968 return -ENOENT;
969
970 hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
971
972 if (flags & PERF_EF_START) {
973 arm_spe_pmu_start(event, PERF_EF_RELOAD);
974 if (hwc->state & PERF_HES_STOPPED)
975 ret = -EINVAL;
976 }
977
978 return ret;
979}
980
981static void arm_spe_pmu_del(struct perf_event *event, int flags)
982{
983 arm_spe_pmu_stop(event, PERF_EF_UPDATE);
984}
985
986static void arm_spe_pmu_read(struct perf_event *event)
987{
988}
989
990static void *arm_spe_pmu_setup_aux(struct perf_event *event, void **pages,
991 int nr_pages, bool snapshot)
992{
993 int i, cpu = event->cpu;
994 struct page **pglist;
995 struct arm_spe_pmu_buf *buf;
996
997 /* We need at least two pages for this to work. */
998 if (nr_pages < 2)
999 return NULL;
1000
1001 /*
1002 * We require an even number of pages for snapshot mode, so that
1003 * we can effectively treat the buffer as consisting of two equal
1004 * parts and give userspace a fighting chance of getting some
1005 * useful data out of it.
1006 */
1007 if (snapshot && (nr_pages & 1))
1008 return NULL;
1009
1010 if (cpu == -1)
1011 cpu = raw_smp_processor_id();
1012
1013 buf = kzalloc_node(sizeof(*buf), GFP_KERNEL, cpu_to_node(cpu));
1014 if (!buf)
1015 return NULL;
1016
1017 pglist = kcalloc(nr_pages, sizeof(*pglist), GFP_KERNEL);
1018 if (!pglist)
1019 goto out_free_buf;
1020
1021 for (i = 0; i < nr_pages; ++i)
1022 pglist[i] = virt_to_page(pages[i]);
1023
1024 buf->base = vmap(pglist, nr_pages, VM_MAP, PAGE_KERNEL);
1025 if (!buf->base)
1026 goto out_free_pglist;
1027
1028 buf->nr_pages = nr_pages;
1029 buf->snapshot = snapshot;
1030
1031 kfree(pglist);
1032 return buf;
1033
1034out_free_pglist:
1035 kfree(pglist);
1036out_free_buf:
1037 kfree(buf);
1038 return NULL;
1039}
1040
1041static void arm_spe_pmu_free_aux(void *aux)
1042{
1043 struct arm_spe_pmu_buf *buf = aux;
1044
1045 vunmap(buf->base);
1046 kfree(buf);
1047}
1048
1049/* Initialisation and teardown functions */
1050static int arm_spe_pmu_perf_init(struct arm_spe_pmu *spe_pmu)
1051{
1052 static atomic_t pmu_idx = ATOMIC_INIT(-1);
1053
1054 int idx;
1055 char *name;
1056 struct device *dev = &spe_pmu->pdev->dev;
1057
1058 spe_pmu->pmu = (struct pmu) {
1059 .module = THIS_MODULE,
1060 .parent = &spe_pmu->pdev->dev,
1061 .capabilities = PERF_PMU_CAP_EXCLUSIVE | PERF_PMU_CAP_ITRACE,
1062 .attr_groups = arm_spe_pmu_attr_groups,
1063 /*
1064 * We hitch a ride on the software context here, so that
1065 * we can support per-task profiling (which is not possible
1066 * with the invalid context as it doesn't get sched callbacks).
1067 * This requires that userspace either uses a dummy event for
1068 * perf_event_open, since the aux buffer is not setup until
1069 * a subsequent mmap, or creates the profiling event in a
1070 * disabled state and explicitly PERF_EVENT_IOC_ENABLEs it
1071 * once the buffer has been created.
1072 */
1073 .task_ctx_nr = perf_sw_context,
1074 .event_init = arm_spe_pmu_event_init,
1075 .add = arm_spe_pmu_add,
1076 .del = arm_spe_pmu_del,
1077 .start = arm_spe_pmu_start,
1078 .stop = arm_spe_pmu_stop,
1079 .read = arm_spe_pmu_read,
1080 .setup_aux = arm_spe_pmu_setup_aux,
1081 .free_aux = arm_spe_pmu_free_aux,
1082 };
1083
1084 idx = atomic_inc_return(&pmu_idx);
1085 name = devm_kasprintf(dev, GFP_KERNEL, "%s_%d", PMUNAME, idx);
1086 if (!name) {
1087 dev_err(dev, "failed to allocate name for pmu %d\n", idx);
1088 return -ENOMEM;
1089 }
1090
1091 return perf_pmu_register(&spe_pmu->pmu, name, -1);
1092}
1093
1094static void arm_spe_pmu_perf_destroy(struct arm_spe_pmu *spe_pmu)
1095{
1096 perf_pmu_unregister(&spe_pmu->pmu);
1097}
1098
1099static void __arm_spe_pmu_dev_probe(void *info)
1100{
1101 int fld;
1102 u64 reg;
1103 struct arm_spe_pmu *spe_pmu = info;
1104 struct device *dev = &spe_pmu->pdev->dev;
1105
1106 fld = cpuid_feature_extract_unsigned_field(read_cpuid(ID_AA64DFR0_EL1),
1107 ID_AA64DFR0_EL1_PMSVer_SHIFT);
1108 if (!fld) {
1109 dev_err(dev,
1110 "unsupported ID_AA64DFR0_EL1.PMSVer [%d] on CPU %d\n",
1111 fld, smp_processor_id());
1112 return;
1113 }
1114 spe_pmu->pmsver = (u16)fld;
1115
1116 /* Read PMBIDR first to determine whether or not we have access */
1117 reg = read_sysreg_s(SYS_PMBIDR_EL1);
1118 if (FIELD_GET(PMBIDR_EL1_P, reg)) {
1119 dev_err(dev,
1120 "profiling buffer owned by higher exception level\n");
1121 return;
1122 }
1123
1124 /* Minimum alignment. If it's out-of-range, then fail the probe */
1125 fld = FIELD_GET(PMBIDR_EL1_ALIGN, reg);
1126 spe_pmu->align = 1 << fld;
1127 if (spe_pmu->align > SZ_2K) {
1128 dev_err(dev, "unsupported PMBIDR.Align [%d] on CPU %d\n",
1129 fld, smp_processor_id());
1130 return;
1131 }
1132
1133 /* It's now safe to read PMSIDR and figure out what we've got */
1134 reg = read_sysreg_s(SYS_PMSIDR_EL1);
1135 if (FIELD_GET(PMSIDR_EL1_FE, reg))
1136 spe_pmu->features |= SPE_PMU_FEAT_FILT_EVT;
1137
1138 if (FIELD_GET(PMSIDR_EL1_FnE, reg))
1139 spe_pmu->features |= SPE_PMU_FEAT_INV_FILT_EVT;
1140
1141 if (FIELD_GET(PMSIDR_EL1_FT, reg))
1142 spe_pmu->features |= SPE_PMU_FEAT_FILT_TYP;
1143
1144 if (FIELD_GET(PMSIDR_EL1_FL, reg))
1145 spe_pmu->features |= SPE_PMU_FEAT_FILT_LAT;
1146
1147 if (FIELD_GET(PMSIDR_EL1_ARCHINST, reg))
1148 spe_pmu->features |= SPE_PMU_FEAT_ARCH_INST;
1149
1150 if (FIELD_GET(PMSIDR_EL1_LDS, reg))
1151 spe_pmu->features |= SPE_PMU_FEAT_LDS;
1152
1153 if (FIELD_GET(PMSIDR_EL1_ERND, reg))
1154 spe_pmu->features |= SPE_PMU_FEAT_ERND;
1155
1156 if (spe_pmu->pmsver >= ID_AA64DFR0_EL1_PMSVer_V1P2)
1157 spe_pmu->features |= SPE_PMU_FEAT_DISCARD;
1158
1159 if (FIELD_GET(PMSIDR_EL1_EFT, reg))
1160 spe_pmu->features |= SPE_PMU_FEAT_EFT;
1161
1162 if (FIELD_GET(PMSIDR_EL1_FDS, reg))
1163 spe_pmu->features |= SPE_PMU_FEAT_FDS;
1164
1165 /* This field has a spaced out encoding, so just use a look-up */
1166 fld = FIELD_GET(PMSIDR_EL1_INTERVAL, reg);
1167 switch (fld) {
1168 case PMSIDR_EL1_INTERVAL_256:
1169 spe_pmu->min_period = 256;
1170 break;
1171 case PMSIDR_EL1_INTERVAL_512:
1172 spe_pmu->min_period = 512;
1173 break;
1174 case PMSIDR_EL1_INTERVAL_768:
1175 spe_pmu->min_period = 768;
1176 break;
1177 case PMSIDR_EL1_INTERVAL_1024:
1178 spe_pmu->min_period = 1024;
1179 break;
1180 case PMSIDR_EL1_INTERVAL_1536:
1181 spe_pmu->min_period = 1536;
1182 break;
1183 case PMSIDR_EL1_INTERVAL_2048:
1184 spe_pmu->min_period = 2048;
1185 break;
1186 case PMSIDR_EL1_INTERVAL_3072:
1187 spe_pmu->min_period = 3072;
1188 break;
1189 default:
1190 dev_warn(dev, "unknown PMSIDR_EL1.Interval [%d]; assuming 8\n",
1191 fld);
1192 fallthrough;
1193 case PMSIDR_EL1_INTERVAL_4096:
1194 spe_pmu->min_period = 4096;
1195 }
1196
1197 /* Maximum record size. If it's out-of-range, then fail the probe */
1198 fld = FIELD_GET(PMSIDR_EL1_MAXSIZE, reg);
1199 spe_pmu->max_record_sz = 1 << fld;
1200 if (spe_pmu->max_record_sz > SZ_2K || spe_pmu->max_record_sz < 16) {
1201 dev_err(dev, "unsupported PMSIDR_EL1.MaxSize [%d] on CPU %d\n",
1202 fld, smp_processor_id());
1203 return;
1204 }
1205
1206 fld = FIELD_GET(PMSIDR_EL1_COUNTSIZE, reg);
1207 switch (fld) {
1208 default:
1209 dev_warn(dev, "unknown PMSIDR_EL1.CountSize [%d]; assuming 2\n",
1210 fld);
1211 fallthrough;
1212 case PMSIDR_EL1_COUNTSIZE_12_BIT_SAT:
1213 spe_pmu->counter_sz = 12;
1214 break;
1215 case PMSIDR_EL1_COUNTSIZE_16_BIT_SAT:
1216 spe_pmu->counter_sz = 16;
1217 }
1218
1219 /* Write all 1s and then read back. Unsupported filter bits are RAZ/WI. */
1220 write_sysreg_s(U64_MAX, SYS_PMSEVFR_EL1);
1221 spe_pmu->pmsevfr_res0 = ~read_sysreg_s(SYS_PMSEVFR_EL1);
1222
1223 dev_info(dev,
1224 "probed SPEv1.%d for CPUs %*pbl [max_record_sz %u, align %u, features 0x%llx]\n",
1225 spe_pmu->pmsver - 1, cpumask_pr_args(&spe_pmu->supported_cpus),
1226 spe_pmu->max_record_sz, spe_pmu->align, spe_pmu->features);
1227
1228 spe_pmu->features |= SPE_PMU_FEAT_DEV_PROBED;
1229}
1230
1231static void __arm_spe_pmu_reset_local(void)
1232{
1233 /*
1234 * This is probably overkill, as we have no idea where we're
1235 * draining any buffered data to...
1236 */
1237 arm_spe_pmu_disable_and_drain_local();
1238
1239 /* Reset the buffer base pointer */
1240 write_sysreg_s(0, SYS_PMBPTR_EL1);
1241 isb();
1242
1243 /* Clear any pending management interrupts */
1244 write_sysreg_s(0, SYS_PMBSR_EL1);
1245 isb();
1246}
1247
1248static void __arm_spe_pmu_setup_one(void *info)
1249{
1250 struct arm_spe_pmu *spe_pmu = info;
1251
1252 __arm_spe_pmu_reset_local();
1253 enable_percpu_irq(spe_pmu->irq, IRQ_TYPE_NONE);
1254}
1255
1256static void __arm_spe_pmu_stop_one(void *info)
1257{
1258 struct arm_spe_pmu *spe_pmu = info;
1259
1260 disable_percpu_irq(spe_pmu->irq);
1261 __arm_spe_pmu_reset_local();
1262}
1263
1264static int arm_spe_pmu_cpu_startup(unsigned int cpu, struct hlist_node *node)
1265{
1266 struct arm_spe_pmu *spe_pmu;
1267
1268 spe_pmu = hlist_entry_safe(node, struct arm_spe_pmu, hotplug_node);
1269 if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
1270 return 0;
1271
1272 __arm_spe_pmu_setup_one(spe_pmu);
1273 return 0;
1274}
1275
1276static int arm_spe_pmu_cpu_teardown(unsigned int cpu, struct hlist_node *node)
1277{
1278 struct arm_spe_pmu *spe_pmu;
1279
1280 spe_pmu = hlist_entry_safe(node, struct arm_spe_pmu, hotplug_node);
1281 if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
1282 return 0;
1283
1284 __arm_spe_pmu_stop_one(spe_pmu);
1285 return 0;
1286}
1287
1288static int arm_spe_pmu_dev_init(struct arm_spe_pmu *spe_pmu)
1289{
1290 int ret;
1291 cpumask_t *mask = &spe_pmu->supported_cpus;
1292
1293 /* Make sure we probe the hardware on a relevant CPU */
1294 ret = smp_call_function_any(mask, __arm_spe_pmu_dev_probe, spe_pmu, 1);
1295 if (ret || !(spe_pmu->features & SPE_PMU_FEAT_DEV_PROBED))
1296 return -ENXIO;
1297
1298 /* Request our PPIs (note that the IRQ is still disabled) */
1299 ret = request_percpu_irq_affinity(spe_pmu->irq, arm_spe_pmu_irq_handler,
1300 DRVNAME, mask, spe_pmu->handle);
1301 if (ret)
1302 return ret;
1303
1304 /*
1305 * Register our hotplug notifier now so we don't miss any events.
1306 * This will enable the IRQ for any supported CPUs that are already
1307 * up.
1308 */
1309 ret = cpuhp_state_add_instance(arm_spe_pmu_online,
1310 &spe_pmu->hotplug_node);
1311 if (ret)
1312 free_percpu_irq(spe_pmu->irq, spe_pmu->handle);
1313
1314 return ret;
1315}
1316
1317static void arm_spe_pmu_dev_teardown(struct arm_spe_pmu *spe_pmu)
1318{
1319 cpuhp_state_remove_instance(arm_spe_pmu_online, &spe_pmu->hotplug_node);
1320 free_percpu_irq(spe_pmu->irq, spe_pmu->handle);
1321}
1322
1323/* Driver and device probing */
1324static int arm_spe_pmu_irq_probe(struct arm_spe_pmu *spe_pmu)
1325{
1326 struct platform_device *pdev = spe_pmu->pdev;
1327 const struct cpumask *affinity;
1328 int irq;
1329
1330 irq = platform_get_irq_affinity(pdev, 0, &affinity);
1331 if (irq < 0)
1332 return -ENXIO;
1333
1334 if (!irq_is_percpu(irq)) {
1335 dev_err(&pdev->dev, "expected PPI but got SPI (%d)\n", irq);
1336 return -EINVAL;
1337 }
1338
1339 cpumask_copy(&spe_pmu->supported_cpus, affinity);
1340
1341 spe_pmu->irq = irq;
1342 return 0;
1343}
1344
1345static const struct of_device_id arm_spe_pmu_of_match[] = {
1346 { .compatible = "arm,statistical-profiling-extension-v1", .data = (void *)1 },
1347 { /* Sentinel */ },
1348};
1349MODULE_DEVICE_TABLE(of, arm_spe_pmu_of_match);
1350
1351static const struct platform_device_id arm_spe_match[] = {
1352 { ARMV8_SPE_PDEV_NAME, 0},
1353 { }
1354};
1355MODULE_DEVICE_TABLE(platform, arm_spe_match);
1356
1357static int arm_spe_pmu_device_probe(struct platform_device *pdev)
1358{
1359 int ret;
1360 struct arm_spe_pmu *spe_pmu;
1361 struct device *dev = &pdev->dev;
1362
1363 /*
1364 * If kernelspace is unmapped when running at EL0, then the SPE
1365 * buffer will fault and prematurely terminate the AUX session.
1366 */
1367 if (arm64_kernel_unmapped_at_el0()) {
1368 dev_warn_once(dev, "profiling buffer inaccessible. Try passing \"kpti=off\" on the kernel command line\n");
1369 return -EPERM;
1370 }
1371
1372 spe_pmu = devm_kzalloc(dev, sizeof(*spe_pmu), GFP_KERNEL);
1373 if (!spe_pmu)
1374 return -ENOMEM;
1375
1376 spe_pmu->handle = alloc_percpu(typeof(*spe_pmu->handle));
1377 if (!spe_pmu->handle)
1378 return -ENOMEM;
1379
1380 spe_pmu->pdev = pdev;
1381 platform_set_drvdata(pdev, spe_pmu);
1382
1383 ret = arm_spe_pmu_irq_probe(spe_pmu);
1384 if (ret)
1385 goto out_free_handle;
1386
1387 ret = arm_spe_pmu_dev_init(spe_pmu);
1388 if (ret)
1389 goto out_free_handle;
1390
1391 ret = arm_spe_pmu_perf_init(spe_pmu);
1392 if (ret)
1393 goto out_teardown_dev;
1394
1395 return 0;
1396
1397out_teardown_dev:
1398 arm_spe_pmu_dev_teardown(spe_pmu);
1399out_free_handle:
1400 free_percpu(spe_pmu->handle);
1401 return ret;
1402}
1403
1404static void arm_spe_pmu_device_remove(struct platform_device *pdev)
1405{
1406 struct arm_spe_pmu *spe_pmu = platform_get_drvdata(pdev);
1407
1408 arm_spe_pmu_perf_destroy(spe_pmu);
1409 arm_spe_pmu_dev_teardown(spe_pmu);
1410 free_percpu(spe_pmu->handle);
1411}
1412
1413static struct platform_driver arm_spe_pmu_driver = {
1414 .id_table = arm_spe_match,
1415 .driver = {
1416 .name = DRVNAME,
1417 .of_match_table = of_match_ptr(arm_spe_pmu_of_match),
1418 .suppress_bind_attrs = true,
1419 },
1420 .probe = arm_spe_pmu_device_probe,
1421 .remove = arm_spe_pmu_device_remove,
1422};
1423
1424static int __init arm_spe_pmu_init(void)
1425{
1426 int ret;
1427
1428 ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, DRVNAME,
1429 arm_spe_pmu_cpu_startup,
1430 arm_spe_pmu_cpu_teardown);
1431 if (ret < 0)
1432 return ret;
1433 arm_spe_pmu_online = ret;
1434
1435 ret = platform_driver_register(&arm_spe_pmu_driver);
1436 if (ret)
1437 cpuhp_remove_multi_state(arm_spe_pmu_online);
1438
1439 return ret;
1440}
1441
1442static void __exit arm_spe_pmu_exit(void)
1443{
1444 platform_driver_unregister(&arm_spe_pmu_driver);
1445 cpuhp_remove_multi_state(arm_spe_pmu_online);
1446}
1447
1448module_init(arm_spe_pmu_init);
1449module_exit(arm_spe_pmu_exit);
1450
1451MODULE_DESCRIPTION("Perf driver for the ARMv8.2 Statistical Profiling Extension");
1452MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
1453MODULE_LICENSE("GPL v2");