Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2#undef DEBUG
3
4/*
5 * ARM performance counter support.
6 *
7 * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
8 * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
9 *
10 * This code is based on the sparc64 perf event code, which is in turn based
11 * on the x86 code.
12 */
13#define pr_fmt(fmt) "hw perfevents: " fmt
14
15#include <linux/bitmap.h>
16#include <linux/cpumask.h>
17#include <linux/cpu_pm.h>
18#include <linux/export.h>
19#include <linux/kernel.h>
20#include <linux/perf/arm_pmu.h>
21#include <linux/slab.h>
22#include <linux/sched/clock.h>
23#include <linux/spinlock.h>
24#include <linux/irq.h>
25#include <linux/irqdesc.h>
26
27#include <asm/irq_regs.h>
28
29static int armpmu_count_irq_users(const struct cpumask *affinity,
30 const int irq);
31
32struct pmu_irq_ops {
33 void (*enable_pmuirq)(unsigned int irq);
34 void (*disable_pmuirq)(unsigned int irq);
35 void (*free_pmuirq)(unsigned int irq, int cpu, void __percpu *devid);
36};
37
38static void armpmu_free_pmuirq(unsigned int irq, int cpu, void __percpu *devid)
39{
40 free_irq(irq, per_cpu_ptr(devid, cpu));
41}
42
43static const struct pmu_irq_ops pmuirq_ops = {
44 .enable_pmuirq = enable_irq,
45 .disable_pmuirq = disable_irq_nosync,
46 .free_pmuirq = armpmu_free_pmuirq
47};
48
49static void armpmu_free_pmunmi(unsigned int irq, int cpu, void __percpu *devid)
50{
51 free_nmi(irq, per_cpu_ptr(devid, cpu));
52}
53
54static const struct pmu_irq_ops pmunmi_ops = {
55 .enable_pmuirq = enable_nmi,
56 .disable_pmuirq = disable_nmi_nosync,
57 .free_pmuirq = armpmu_free_pmunmi
58};
59
60static void armpmu_enable_percpu_pmuirq(unsigned int irq)
61{
62 enable_percpu_irq(irq, IRQ_TYPE_NONE);
63}
64
65static void armpmu_free_percpu_pmuirq(unsigned int irq, int cpu,
66 void __percpu *devid)
67{
68 struct arm_pmu *armpmu = *per_cpu_ptr((void * __percpu *)devid, cpu);
69
70 if (armpmu_count_irq_users(&armpmu->supported_cpus, irq) == 1)
71 free_percpu_irq(irq, devid);
72}
73
74static const struct pmu_irq_ops percpu_pmuirq_ops = {
75 .enable_pmuirq = armpmu_enable_percpu_pmuirq,
76 .disable_pmuirq = disable_percpu_irq,
77 .free_pmuirq = armpmu_free_percpu_pmuirq
78};
79
80static void armpmu_enable_percpu_pmunmi(unsigned int irq)
81{
82 if (!prepare_percpu_nmi(irq))
83 enable_percpu_nmi(irq, IRQ_TYPE_NONE);
84}
85
86static void armpmu_disable_percpu_pmunmi(unsigned int irq)
87{
88 disable_percpu_nmi(irq);
89 teardown_percpu_nmi(irq);
90}
91
92static void armpmu_free_percpu_pmunmi(unsigned int irq, int cpu,
93 void __percpu *devid)
94{
95 struct arm_pmu *armpmu = *per_cpu_ptr((void * __percpu *)devid, cpu);
96
97 if (armpmu_count_irq_users(&armpmu->supported_cpus, irq) == 1)
98 free_percpu_nmi(irq, devid);
99}
100
101static const struct pmu_irq_ops percpu_pmunmi_ops = {
102 .enable_pmuirq = armpmu_enable_percpu_pmunmi,
103 .disable_pmuirq = armpmu_disable_percpu_pmunmi,
104 .free_pmuirq = armpmu_free_percpu_pmunmi
105};
106
107static DEFINE_PER_CPU(int, cpu_irq);
108static DEFINE_PER_CPU(const struct pmu_irq_ops *, cpu_irq_ops);
109
110static bool has_nmi;
111
112static inline u64 arm_pmu_event_max_period(struct perf_event *event)
113{
114 if (event->hw.flags & ARMPMU_EVT_64BIT)
115 return GENMASK_ULL(63, 0);
116 else if (event->hw.flags & ARMPMU_EVT_63BIT)
117 return GENMASK_ULL(62, 0);
118 else if (event->hw.flags & ARMPMU_EVT_47BIT)
119 return GENMASK_ULL(46, 0);
120 else
121 return GENMASK_ULL(31, 0);
122}
123
124static int
125armpmu_map_cache_event(const unsigned (*cache_map)
126 [PERF_COUNT_HW_CACHE_MAX]
127 [PERF_COUNT_HW_CACHE_OP_MAX]
128 [PERF_COUNT_HW_CACHE_RESULT_MAX],
129 u64 config)
130{
131 unsigned int cache_type, cache_op, cache_result, ret;
132
133 cache_type = (config >> 0) & 0xff;
134 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
135 return -EINVAL;
136
137 cache_op = (config >> 8) & 0xff;
138 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
139 return -EINVAL;
140
141 cache_result = (config >> 16) & 0xff;
142 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
143 return -EINVAL;
144
145 if (!cache_map)
146 return -ENOENT;
147
148 ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
149
150 if (ret == CACHE_OP_UNSUPPORTED)
151 return -ENOENT;
152
153 return ret;
154}
155
156static int
157armpmu_map_hw_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
158{
159 int mapping;
160
161 if (config >= PERF_COUNT_HW_MAX)
162 return -EINVAL;
163
164 if (!event_map)
165 return -ENOENT;
166
167 mapping = (*event_map)[config];
168 return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
169}
170
171static int
172armpmu_map_raw_event(u32 raw_event_mask, u64 config)
173{
174 return (int)(config & raw_event_mask);
175}
176
177int
178armpmu_map_event(struct perf_event *event,
179 const unsigned (*event_map)[PERF_COUNT_HW_MAX],
180 const unsigned (*cache_map)
181 [PERF_COUNT_HW_CACHE_MAX]
182 [PERF_COUNT_HW_CACHE_OP_MAX]
183 [PERF_COUNT_HW_CACHE_RESULT_MAX],
184 u32 raw_event_mask)
185{
186 u64 config = event->attr.config;
187 int type = event->attr.type;
188
189 if (type == event->pmu->type)
190 return armpmu_map_raw_event(raw_event_mask, config);
191
192 switch (type) {
193 case PERF_TYPE_HARDWARE:
194 return armpmu_map_hw_event(event_map, config);
195 case PERF_TYPE_HW_CACHE:
196 return armpmu_map_cache_event(cache_map, config);
197 case PERF_TYPE_RAW:
198 return armpmu_map_raw_event(raw_event_mask, config);
199 }
200
201 return -ENOENT;
202}
203
204int armpmu_event_set_period(struct perf_event *event)
205{
206 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
207 struct hw_perf_event *hwc = &event->hw;
208 s64 left = local64_read(&hwc->period_left);
209 s64 period = hwc->sample_period;
210 u64 max_period;
211 int ret = 0;
212
213 max_period = arm_pmu_event_max_period(event);
214 if (unlikely(left <= -period)) {
215 left = period;
216 local64_set(&hwc->period_left, left);
217 hwc->last_period = period;
218 ret = 1;
219 }
220
221 if (unlikely(left <= 0)) {
222 left += period;
223 local64_set(&hwc->period_left, left);
224 hwc->last_period = period;
225 ret = 1;
226 }
227
228 /*
229 * Limit the maximum period to prevent the counter value
230 * from overtaking the one we are about to program. In
231 * effect we are reducing max_period to account for
232 * interrupt latency (and we are being very conservative).
233 */
234 if (left > (max_period >> 1))
235 left = (max_period >> 1);
236
237 local64_set(&hwc->prev_count, (u64)-left);
238
239 armpmu->write_counter(event, (u64)(-left) & max_period);
240
241 perf_event_update_userpage(event);
242
243 return ret;
244}
245
246u64 armpmu_event_update(struct perf_event *event)
247{
248 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
249 struct hw_perf_event *hwc = &event->hw;
250 u64 delta, prev_raw_count, new_raw_count;
251 u64 max_period = arm_pmu_event_max_period(event);
252
253again:
254 prev_raw_count = local64_read(&hwc->prev_count);
255 new_raw_count = armpmu->read_counter(event);
256
257 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
258 new_raw_count) != prev_raw_count)
259 goto again;
260
261 delta = (new_raw_count - prev_raw_count) & max_period;
262
263 local64_add(delta, &event->count);
264 local64_sub(delta, &hwc->period_left);
265
266 return new_raw_count;
267}
268
269static void
270armpmu_read(struct perf_event *event)
271{
272 armpmu_event_update(event);
273}
274
275static void
276armpmu_stop(struct perf_event *event, int flags)
277{
278 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
279 struct hw_perf_event *hwc = &event->hw;
280
281 /*
282 * ARM pmu always has to update the counter, so ignore
283 * PERF_EF_UPDATE, see comments in armpmu_start().
284 */
285 if (!(hwc->state & PERF_HES_STOPPED)) {
286 armpmu->disable(event);
287 armpmu_event_update(event);
288 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
289 }
290}
291
292static void armpmu_start(struct perf_event *event, int flags)
293{
294 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
295 struct hw_perf_event *hwc = &event->hw;
296
297 /*
298 * ARM pmu always has to reprogram the period, so ignore
299 * PERF_EF_RELOAD, see the comment below.
300 */
301 if (flags & PERF_EF_RELOAD)
302 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
303
304 hwc->state = 0;
305 /*
306 * Set the period again. Some counters can't be stopped, so when we
307 * were stopped we simply disabled the IRQ source and the counter
308 * may have been left counting. If we don't do this step then we may
309 * get an interrupt too soon or *way* too late if the overflow has
310 * happened since disabling.
311 */
312 armpmu_event_set_period(event);
313 armpmu->enable(event);
314}
315
316static void
317armpmu_del(struct perf_event *event, int flags)
318{
319 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
320 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
321 struct hw_perf_event *hwc = &event->hw;
322 int idx = hwc->idx;
323
324 armpmu_stop(event, PERF_EF_UPDATE);
325
326 if (has_branch_stack(event)) {
327 hw_events->branch_users--;
328 perf_sched_cb_dec(event->pmu);
329 }
330
331 hw_events->events[idx] = NULL;
332 armpmu->clear_event_idx(hw_events, event);
333 perf_event_update_userpage(event);
334 /* Clear the allocated counter */
335 hwc->idx = -1;
336}
337
338static int
339armpmu_add(struct perf_event *event, int flags)
340{
341 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
342 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
343 struct hw_perf_event *hwc = &event->hw;
344 int idx;
345
346 /* An event following a process won't be stopped earlier */
347 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
348 return -ENOENT;
349
350 /* If we don't have a space for the counter then finish early. */
351 idx = armpmu->get_event_idx(hw_events, event);
352 if (idx < 0)
353 return idx;
354
355 /* The newly-allocated counter should be empty */
356 WARN_ON_ONCE(hw_events->events[idx]);
357
358 if (has_branch_stack(event)) {
359 hw_events->branch_users++;
360 perf_sched_cb_inc(event->pmu);
361 }
362
363 event->hw.idx = idx;
364 hw_events->events[idx] = event;
365
366 hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
367 if (flags & PERF_EF_START)
368 armpmu_start(event, PERF_EF_RELOAD);
369
370 /* Propagate our changes to the userspace mapping. */
371 perf_event_update_userpage(event);
372
373 return 0;
374}
375
376static int
377validate_event(struct pmu *pmu, struct pmu_hw_events *hw_events,
378 struct perf_event *event)
379{
380 struct arm_pmu *armpmu;
381
382 if (is_software_event(event))
383 return 1;
384
385 /*
386 * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The
387 * core perf code won't check that the pmu->ctx == leader->ctx
388 * until after pmu->event_init(event).
389 */
390 if (event->pmu != pmu)
391 return 0;
392
393 if (event->state < PERF_EVENT_STATE_OFF)
394 return 1;
395
396 if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
397 return 1;
398
399 armpmu = to_arm_pmu(event->pmu);
400 return armpmu->get_event_idx(hw_events, event) >= 0;
401}
402
403static int
404validate_group(struct perf_event *event)
405{
406 struct perf_event *sibling, *leader = event->group_leader;
407 struct pmu_hw_events fake_pmu;
408
409 /*
410 * Initialise the fake PMU. We only need to populate the
411 * used_mask for the purposes of validation.
412 */
413 memset(&fake_pmu.used_mask, 0, sizeof(fake_pmu.used_mask));
414
415 if (!validate_event(event->pmu, &fake_pmu, leader))
416 return -EINVAL;
417
418 if (event == leader)
419 return 0;
420
421 for_each_sibling_event(sibling, leader) {
422 if (!validate_event(event->pmu, &fake_pmu, sibling))
423 return -EINVAL;
424 }
425
426 if (!validate_event(event->pmu, &fake_pmu, event))
427 return -EINVAL;
428
429 return 0;
430}
431
432static irqreturn_t armpmu_dispatch_irq(int irq, void *dev)
433{
434 struct arm_pmu *armpmu;
435 int ret;
436 u64 start_clock, finish_clock;
437
438 /*
439 * we request the IRQ with a (possibly percpu) struct arm_pmu**, but
440 * the handlers expect a struct arm_pmu*. The percpu_irq framework will
441 * do any necessary shifting, we just need to perform the first
442 * dereference.
443 */
444 armpmu = *(void **)dev;
445 if (WARN_ON_ONCE(!armpmu))
446 return IRQ_NONE;
447
448 start_clock = sched_clock();
449 ret = armpmu->handle_irq(armpmu);
450 finish_clock = sched_clock();
451
452 perf_sample_event_took(finish_clock - start_clock);
453 return ret;
454}
455
456static int
457__hw_perf_event_init(struct perf_event *event)
458{
459 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
460 struct hw_perf_event *hwc = &event->hw;
461 int mapping, ret;
462
463 hwc->flags = 0;
464 mapping = armpmu->map_event(event);
465
466 if (mapping < 0) {
467 pr_debug("event %x:%llx not supported\n", event->attr.type,
468 event->attr.config);
469 return mapping;
470 }
471
472 /*
473 * We don't assign an index until we actually place the event onto
474 * hardware. Use -1 to signify that we haven't decided where to put it
475 * yet. For SMP systems, each core has it's own PMU so we can't do any
476 * clever allocation or constraints checking at this point.
477 */
478 hwc->idx = -1;
479 hwc->config_base = 0;
480 hwc->config = 0;
481 hwc->event_base = 0;
482
483 /*
484 * Check whether we need to exclude the counter from certain modes.
485 */
486 if (armpmu->set_event_filter) {
487 ret = armpmu->set_event_filter(hwc, &event->attr);
488 if (ret)
489 return ret;
490 }
491
492 /*
493 * Store the event encoding into the config_base field.
494 */
495 hwc->config_base |= (unsigned long)mapping;
496
497 if (!is_sampling_event(event)) {
498 /*
499 * For non-sampling runs, limit the sample_period to half
500 * of the counter width. That way, the new counter value
501 * is far less likely to overtake the previous one unless
502 * you have some serious IRQ latency issues.
503 */
504 hwc->sample_period = arm_pmu_event_max_period(event) >> 1;
505 hwc->last_period = hwc->sample_period;
506 local64_set(&hwc->period_left, hwc->sample_period);
507 }
508
509 return validate_group(event);
510}
511
512static int armpmu_event_init(struct perf_event *event)
513{
514 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
515
516 /*
517 * Reject CPU-affine events for CPUs that are of a different class to
518 * that which this PMU handles. Process-following events (where
519 * event->cpu == -1) can be migrated between CPUs, and thus we have to
520 * reject them later (in armpmu_add) if they're scheduled on a
521 * different class of CPU.
522 */
523 if (event->cpu != -1 &&
524 !cpumask_test_cpu(event->cpu, &armpmu->supported_cpus))
525 return -ENOENT;
526
527 if (has_branch_stack(event) && !armpmu->reg_brbidr)
528 return -EOPNOTSUPP;
529
530 return __hw_perf_event_init(event);
531}
532
533static void armpmu_enable(struct pmu *pmu)
534{
535 struct arm_pmu *armpmu = to_arm_pmu(pmu);
536 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
537 bool enabled = !bitmap_empty(hw_events->used_mask, ARMPMU_MAX_HWEVENTS);
538
539 /* For task-bound events we may be called on other CPUs */
540 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
541 return;
542
543 if (enabled)
544 armpmu->start(armpmu);
545}
546
547static void armpmu_disable(struct pmu *pmu)
548{
549 struct arm_pmu *armpmu = to_arm_pmu(pmu);
550
551 /* For task-bound events we may be called on other CPUs */
552 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
553 return;
554
555 armpmu->stop(armpmu);
556}
557
558/*
559 * In heterogeneous systems, events are specific to a particular
560 * microarchitecture, and aren't suitable for another. Thus, only match CPUs of
561 * the same microarchitecture.
562 */
563static bool armpmu_filter(struct pmu *pmu, int cpu)
564{
565 struct arm_pmu *armpmu = to_arm_pmu(pmu);
566 return !cpumask_test_cpu(cpu, &armpmu->supported_cpus);
567}
568
569static ssize_t cpus_show(struct device *dev,
570 struct device_attribute *attr, char *buf)
571{
572 struct arm_pmu *armpmu = to_arm_pmu(dev_get_drvdata(dev));
573 return cpumap_print_to_pagebuf(true, buf, &armpmu->supported_cpus);
574}
575
576static DEVICE_ATTR_RO(cpus);
577
578static struct attribute *armpmu_common_attrs[] = {
579 &dev_attr_cpus.attr,
580 NULL,
581};
582
583static const struct attribute_group armpmu_common_attr_group = {
584 .attrs = armpmu_common_attrs,
585};
586
587static int armpmu_count_irq_users(const struct cpumask *affinity, const int irq)
588{
589 int cpu, count = 0;
590
591 for_each_cpu(cpu, affinity) {
592 if (per_cpu(cpu_irq, cpu) == irq)
593 count++;
594 }
595
596 return count;
597}
598
599static const struct pmu_irq_ops *
600armpmu_find_irq_ops(const struct cpumask *affinity, int irq)
601{
602 const struct pmu_irq_ops *ops = NULL;
603 int cpu;
604
605 for_each_cpu(cpu, affinity) {
606 if (per_cpu(cpu_irq, cpu) != irq)
607 continue;
608
609 ops = per_cpu(cpu_irq_ops, cpu);
610 if (ops)
611 break;
612 }
613
614 return ops;
615}
616
617void armpmu_free_irq(struct arm_pmu * __percpu *armpmu, int irq, int cpu)
618{
619 if (per_cpu(cpu_irq, cpu) == 0)
620 return;
621 if (WARN_ON(irq != per_cpu(cpu_irq, cpu)))
622 return;
623
624 per_cpu(cpu_irq_ops, cpu)->free_pmuirq(irq, cpu, armpmu);
625
626 per_cpu(cpu_irq, cpu) = 0;
627 per_cpu(cpu_irq_ops, cpu) = NULL;
628}
629
630int armpmu_request_irq(struct arm_pmu * __percpu *pcpu_armpmu, int irq, int cpu)
631{
632 int err = 0;
633 struct arm_pmu **armpmu = per_cpu_ptr(pcpu_armpmu, cpu);
634 const struct cpumask *affinity = *armpmu ? &(*armpmu)->supported_cpus :
635 cpu_possible_mask; /* ACPI */
636 const irq_handler_t handler = armpmu_dispatch_irq;
637 const struct pmu_irq_ops *irq_ops;
638
639 if (!irq)
640 return 0;
641
642 if (!irq_is_percpu_devid(irq)) {
643 unsigned long irq_flags;
644
645 err = irq_force_affinity(irq, cpumask_of(cpu));
646
647 if (err && num_possible_cpus() > 1) {
648 pr_warn("unable to set irq affinity (irq=%d, cpu=%u)\n",
649 irq, cpu);
650 goto err_out;
651 }
652
653 irq_flags = IRQF_PERCPU |
654 IRQF_NOBALANCING | IRQF_NO_AUTOEN |
655 IRQF_NO_THREAD;
656
657 err = request_nmi(irq, handler, irq_flags, "arm-pmu", armpmu);
658
659 /* If cannot get an NMI, get a normal interrupt */
660 if (err) {
661 err = request_irq(irq, handler, irq_flags, "arm-pmu",
662 armpmu);
663 irq_ops = &pmuirq_ops;
664 } else {
665 has_nmi = true;
666 irq_ops = &pmunmi_ops;
667 }
668 } else if (armpmu_count_irq_users(affinity, irq) == 0) {
669 err = request_percpu_nmi(irq, handler, "arm-pmu", affinity, pcpu_armpmu);
670
671 /* If cannot get an NMI, get a normal interrupt */
672 if (err) {
673 err = request_percpu_irq_affinity(irq, handler, "arm-pmu",
674 affinity, pcpu_armpmu);
675 irq_ops = &percpu_pmuirq_ops;
676 } else {
677 has_nmi = true;
678 irq_ops = &percpu_pmunmi_ops;
679 }
680 } else {
681 /* Per cpudevid irq was already requested by another CPU */
682 irq_ops = armpmu_find_irq_ops(affinity, irq);
683
684 if (WARN_ON(!irq_ops))
685 err = -EINVAL;
686 }
687
688 if (err)
689 goto err_out;
690
691 per_cpu(cpu_irq, cpu) = irq;
692 per_cpu(cpu_irq_ops, cpu) = irq_ops;
693 return 0;
694
695err_out:
696 pr_err("unable to request IRQ%d for ARM PMU counters\n", irq);
697 return err;
698}
699
700static int armpmu_get_cpu_irq(struct arm_pmu *pmu, int cpu)
701{
702 struct pmu_hw_events __percpu *hw_events = pmu->hw_events;
703 return per_cpu(hw_events->irq, cpu);
704}
705
706bool arm_pmu_irq_is_nmi(void)
707{
708 return has_nmi;
709}
710
711/*
712 * PMU hardware loses all context when a CPU goes offline.
713 * When a CPU is hotplugged back in, since some hardware registers are
714 * UNKNOWN at reset, the PMU must be explicitly reset to avoid reading
715 * junk values out of them.
716 */
717static int arm_perf_starting_cpu(unsigned int cpu, struct hlist_node *node)
718{
719 struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
720 int irq;
721
722 if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
723 return 0;
724 if (pmu->reset)
725 pmu->reset(pmu);
726
727 irq = armpmu_get_cpu_irq(pmu, cpu);
728 if (irq)
729 per_cpu(cpu_irq_ops, cpu)->enable_pmuirq(irq);
730
731 return 0;
732}
733
734static int arm_perf_teardown_cpu(unsigned int cpu, struct hlist_node *node)
735{
736 struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
737 int irq;
738
739 if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
740 return 0;
741
742 irq = armpmu_get_cpu_irq(pmu, cpu);
743 if (irq)
744 per_cpu(cpu_irq_ops, cpu)->disable_pmuirq(irq);
745
746 return 0;
747}
748
749#ifdef CONFIG_CPU_PM
750static void cpu_pm_pmu_setup(struct arm_pmu *armpmu, unsigned long cmd)
751{
752 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
753 struct perf_event *event;
754 int idx;
755
756 for_each_set_bit(idx, armpmu->cntr_mask, ARMPMU_MAX_HWEVENTS) {
757 event = hw_events->events[idx];
758 if (!event)
759 continue;
760
761 switch (cmd) {
762 case CPU_PM_ENTER:
763 /*
764 * Stop and update the counter
765 */
766 armpmu_stop(event, PERF_EF_UPDATE);
767 break;
768 case CPU_PM_EXIT:
769 case CPU_PM_ENTER_FAILED:
770 /*
771 * Restore and enable the counter.
772 */
773 armpmu_start(event, PERF_EF_RELOAD);
774 break;
775 default:
776 break;
777 }
778 }
779}
780
781static int cpu_pm_pmu_notify(struct notifier_block *b, unsigned long cmd,
782 void *v)
783{
784 struct arm_pmu *armpmu = container_of(b, struct arm_pmu, cpu_pm_nb);
785 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
786 bool enabled = !bitmap_empty(hw_events->used_mask, ARMPMU_MAX_HWEVENTS);
787
788 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
789 return NOTIFY_DONE;
790
791 /*
792 * Always reset the PMU registers on power-up even if
793 * there are no events running.
794 */
795 if (cmd == CPU_PM_EXIT && armpmu->reset)
796 armpmu->reset(armpmu);
797
798 if (!enabled)
799 return NOTIFY_OK;
800
801 switch (cmd) {
802 case CPU_PM_ENTER:
803 armpmu->stop(armpmu);
804 cpu_pm_pmu_setup(armpmu, cmd);
805 break;
806 case CPU_PM_EXIT:
807 case CPU_PM_ENTER_FAILED:
808 cpu_pm_pmu_setup(armpmu, cmd);
809 armpmu->start(armpmu);
810 break;
811 default:
812 return NOTIFY_DONE;
813 }
814
815 return NOTIFY_OK;
816}
817
818static int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu)
819{
820 cpu_pmu->cpu_pm_nb.notifier_call = cpu_pm_pmu_notify;
821 return cpu_pm_register_notifier(&cpu_pmu->cpu_pm_nb);
822}
823
824static void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu)
825{
826 cpu_pm_unregister_notifier(&cpu_pmu->cpu_pm_nb);
827}
828#else
829static inline int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu) { return 0; }
830static inline void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu) { }
831#endif
832
833static int cpu_pmu_init(struct arm_pmu *cpu_pmu)
834{
835 int err;
836
837 err = cpuhp_state_add_instance(CPUHP_AP_PERF_ARM_STARTING,
838 &cpu_pmu->node);
839 if (err)
840 goto out;
841
842 err = cpu_pm_pmu_register(cpu_pmu);
843 if (err)
844 goto out_unregister;
845
846 return 0;
847
848out_unregister:
849 cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
850 &cpu_pmu->node);
851out:
852 return err;
853}
854
855static void cpu_pmu_destroy(struct arm_pmu *cpu_pmu)
856{
857 cpu_pm_pmu_unregister(cpu_pmu);
858 cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
859 &cpu_pmu->node);
860}
861
862struct arm_pmu *armpmu_alloc(void)
863{
864 struct arm_pmu *pmu;
865 int cpu;
866
867 pmu = kzalloc(sizeof(*pmu), GFP_KERNEL);
868 if (!pmu)
869 goto out;
870
871 pmu->hw_events = alloc_percpu_gfp(struct pmu_hw_events, GFP_KERNEL);
872 if (!pmu->hw_events) {
873 pr_info("failed to allocate per-cpu PMU data.\n");
874 goto out_free_pmu;
875 }
876
877 pmu->pmu = (struct pmu) {
878 .pmu_enable = armpmu_enable,
879 .pmu_disable = armpmu_disable,
880 .event_init = armpmu_event_init,
881 .add = armpmu_add,
882 .del = armpmu_del,
883 .start = armpmu_start,
884 .stop = armpmu_stop,
885 .read = armpmu_read,
886 .filter = armpmu_filter,
887 .attr_groups = pmu->attr_groups,
888 /*
889 * This is a CPU PMU potentially in a heterogeneous
890 * configuration (e.g. big.LITTLE) so
891 * PERF_PMU_CAP_EXTENDED_HW_TYPE is required to open
892 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE events on a
893 * specific PMU.
894 */
895 .capabilities = PERF_PMU_CAP_EXTENDED_REGS |
896 PERF_PMU_CAP_EXTENDED_HW_TYPE,
897 };
898
899 pmu->attr_groups[ARMPMU_ATTR_GROUP_COMMON] =
900 &armpmu_common_attr_group;
901
902 for_each_possible_cpu(cpu) {
903 struct pmu_hw_events *events;
904
905 events = per_cpu_ptr(pmu->hw_events, cpu);
906 events->percpu_pmu = pmu;
907 }
908
909 return pmu;
910
911out_free_pmu:
912 kfree(pmu);
913out:
914 return NULL;
915}
916
917void armpmu_free(struct arm_pmu *pmu)
918{
919 free_percpu(pmu->hw_events);
920 kfree(pmu);
921}
922
923int armpmu_register(struct arm_pmu *pmu)
924{
925 int ret;
926
927 ret = cpu_pmu_init(pmu);
928 if (ret)
929 return ret;
930
931 /*
932 * By this stage we know our supported CPUs on either DT/ACPI platforms,
933 * detect the SMT implementation.
934 */
935 pmu->has_smt = topology_core_has_smt(cpumask_first(&pmu->supported_cpus));
936
937 if (!pmu->set_event_filter)
938 pmu->pmu.capabilities |= PERF_PMU_CAP_NO_EXCLUDE;
939
940 ret = perf_pmu_register(&pmu->pmu, pmu->name, -1);
941 if (ret)
942 goto out_destroy;
943
944 pr_info("enabled with %s PMU driver, %d (%*pb) counters available%s\n",
945 pmu->name, bitmap_weight(pmu->cntr_mask, ARMPMU_MAX_HWEVENTS),
946 ARMPMU_MAX_HWEVENTS, &pmu->cntr_mask,
947 has_nmi ? ", using NMIs" : "");
948
949 kvm_host_pmu_init(pmu);
950
951 return 0;
952
953out_destroy:
954 cpu_pmu_destroy(pmu);
955 return ret;
956}
957
958static int arm_pmu_hp_init(void)
959{
960 int ret;
961
962 ret = cpuhp_setup_state_multi(CPUHP_AP_PERF_ARM_STARTING,
963 "perf/arm/pmu:starting",
964 arm_perf_starting_cpu,
965 arm_perf_teardown_cpu);
966 if (ret)
967 pr_err("CPU hotplug notifier for ARM PMU could not be registered: %d\n",
968 ret);
969 return ret;
970}
971subsys_initcall(arm_pmu_hp_init);