Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * PCI Bus Services, see include/linux/pci.h for further explanation.
4 *
5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
6 * David Mosberger-Tang
7 *
8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
9 */
10
11#include <linux/acpi.h>
12#include <linux/kernel.h>
13#include <linux/delay.h>
14#include <linux/dmi.h>
15#include <linux/init.h>
16#include <linux/msi.h>
17#include <linux/of.h>
18#include <linux/pci.h>
19#include <linux/pm.h>
20#include <linux/slab.h>
21#include <linux/module.h>
22#include <linux/spinlock.h>
23#include <linux/string.h>
24#include <linux/log2.h>
25#include <linux/logic_pio.h>
26#include <linux/device.h>
27#include <linux/pm_runtime.h>
28#include <linux/pci_hotplug.h>
29#include <linux/vmalloc.h>
30#include <asm/dma.h>
31#include <linux/aer.h>
32#include <linux/bitfield.h>
33#include "pci.h"
34
35DEFINE_MUTEX(pci_slot_mutex);
36
37const char *pci_power_names[] = {
38 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
39};
40EXPORT_SYMBOL_GPL(pci_power_names);
41
42#ifdef CONFIG_X86_32
43int isa_dma_bridge_buggy;
44EXPORT_SYMBOL(isa_dma_bridge_buggy);
45#endif
46
47int pci_pci_problems;
48EXPORT_SYMBOL(pci_pci_problems);
49
50unsigned int pci_pm_d3hot_delay;
51
52static void pci_pme_list_scan(struct work_struct *work);
53
54static LIST_HEAD(pci_pme_list);
55static DEFINE_MUTEX(pci_pme_list_mutex);
56static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
57
58struct pci_pme_device {
59 struct list_head list;
60 struct pci_dev *dev;
61};
62
63#define PME_TIMEOUT 1000 /* How long between PME checks */
64
65/*
66 * Following exit from Conventional Reset, devices must be ready within 1 sec
67 * (PCIe r6.0 sec 6.6.1). A D3cold to D0 transition implies a Conventional
68 * Reset (PCIe r6.0 sec 5.8).
69 */
70#define PCI_RESET_WAIT 1000 /* msec */
71
72/*
73 * Devices may extend the 1 sec period through Request Retry Status
74 * completions (PCIe r6.0 sec 2.3.1). The spec does not provide an upper
75 * limit, but 60 sec ought to be enough for any device to become
76 * responsive.
77 */
78#define PCIE_RESET_READY_POLL_MS 60000 /* msec */
79
80static void pci_dev_d3_sleep(struct pci_dev *dev)
81{
82 unsigned int delay_ms = max(dev->d3hot_delay, pci_pm_d3hot_delay);
83 unsigned int upper;
84
85 if (delay_ms) {
86 /* Use a 20% upper bound, 1ms minimum */
87 upper = max(DIV_ROUND_CLOSEST(delay_ms, 5), 1U);
88 usleep_range(delay_ms * USEC_PER_MSEC,
89 (delay_ms + upper) * USEC_PER_MSEC);
90 }
91}
92
93bool pci_reset_supported(struct pci_dev *dev)
94{
95 return dev->reset_methods[0] != 0;
96}
97
98#ifdef CONFIG_PCI_DOMAINS
99int pci_domains_supported = 1;
100#endif
101
102#define DEFAULT_CARDBUS_IO_SIZE (256)
103#define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
104/* pci=cbmemsize=nnM,cbiosize=nn can override this */
105unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
106unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
107
108#define DEFAULT_HOTPLUG_IO_SIZE (256)
109#define DEFAULT_HOTPLUG_MMIO_SIZE (2*1024*1024)
110#define DEFAULT_HOTPLUG_MMIO_PREF_SIZE (2*1024*1024)
111/* hpiosize=nn can override this */
112unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
113/*
114 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
115 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
116 * pci=hpmemsize=nnM overrides both
117 */
118unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
119unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
120
121#define DEFAULT_HOTPLUG_BUS_SIZE 1
122unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
123
124
125/* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */
126#ifdef CONFIG_PCIE_BUS_TUNE_OFF
127enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
128#elif defined CONFIG_PCIE_BUS_SAFE
129enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE;
130#elif defined CONFIG_PCIE_BUS_PERFORMANCE
131enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE;
132#elif defined CONFIG_PCIE_BUS_PEER2PEER
133enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER;
134#else
135enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
136#endif
137
138/*
139 * The default CLS is used if arch didn't set CLS explicitly and not
140 * all pci devices agree on the same value. Arch can override either
141 * the dfl or actual value as it sees fit. Don't forget this is
142 * measured in 32-bit words, not bytes.
143 */
144u8 pci_dfl_cache_line_size __ro_after_init = L1_CACHE_BYTES >> 2;
145u8 pci_cache_line_size __ro_after_init ;
146
147/*
148 * If we set up a device for bus mastering, we need to check the latency
149 * timer as certain BIOSes forget to set it properly.
150 */
151unsigned int pcibios_max_latency = 255;
152
153/* If set, the PCIe ARI capability will not be used. */
154static bool pcie_ari_disabled;
155
156/* If set, the PCIe ATS capability will not be used. */
157static bool pcie_ats_disabled;
158
159/* If set, the PCI config space of each device is printed during boot. */
160bool pci_early_dump;
161
162bool pci_ats_disabled(void)
163{
164 return pcie_ats_disabled;
165}
166EXPORT_SYMBOL_GPL(pci_ats_disabled);
167
168/* Disable bridge_d3 for all PCIe ports */
169static bool pci_bridge_d3_disable;
170/* Force bridge_d3 for all PCIe ports */
171static bool pci_bridge_d3_force;
172
173static int __init pcie_port_pm_setup(char *str)
174{
175 if (!strcmp(str, "off"))
176 pci_bridge_d3_disable = true;
177 else if (!strcmp(str, "force"))
178 pci_bridge_d3_force = true;
179 return 1;
180}
181__setup("pcie_port_pm=", pcie_port_pm_setup);
182
183/**
184 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
185 * @bus: pointer to PCI bus structure to search
186 *
187 * Given a PCI bus, returns the highest PCI bus number present in the set
188 * including the given PCI bus and its list of child PCI buses.
189 */
190unsigned char pci_bus_max_busnr(struct pci_bus *bus)
191{
192 struct pci_bus *tmp;
193 unsigned char max, n;
194
195 max = bus->busn_res.end;
196 list_for_each_entry(tmp, &bus->children, node) {
197 n = pci_bus_max_busnr(tmp);
198 if (n > max)
199 max = n;
200 }
201 return max;
202}
203EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
204
205/**
206 * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
207 * @pdev: the PCI device
208 *
209 * Returns error bits set in PCI_STATUS and clears them.
210 */
211int pci_status_get_and_clear_errors(struct pci_dev *pdev)
212{
213 u16 status;
214 int ret;
215
216 ret = pci_read_config_word(pdev, PCI_STATUS, &status);
217 if (ret != PCIBIOS_SUCCESSFUL)
218 return -EIO;
219
220 status &= PCI_STATUS_ERROR_BITS;
221 if (status)
222 pci_write_config_word(pdev, PCI_STATUS, status);
223
224 return status;
225}
226EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors);
227
228#ifdef CONFIG_HAS_IOMEM
229static void __iomem *__pci_ioremap_resource(struct pci_dev *pdev, int bar,
230 bool write_combine)
231{
232 struct resource *res = &pdev->resource[bar];
233 resource_size_t start = res->start;
234 resource_size_t size = resource_size(res);
235
236 /*
237 * Make sure the BAR is actually a memory resource, not an IO resource
238 */
239 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
240 pci_err(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
241 return NULL;
242 }
243
244 if (write_combine)
245 return ioremap_wc(start, size);
246
247 return ioremap(start, size);
248}
249
250void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
251{
252 return __pci_ioremap_resource(pdev, bar, false);
253}
254EXPORT_SYMBOL_GPL(pci_ioremap_bar);
255
256void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
257{
258 return __pci_ioremap_resource(pdev, bar, true);
259}
260EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
261#endif
262
263/**
264 * pci_dev_str_match_path - test if a path string matches a device
265 * @dev: the PCI device to test
266 * @path: string to match the device against
267 * @endptr: pointer to the string after the match
268 *
269 * Test if a string (typically from a kernel parameter) formatted as a
270 * path of device/function addresses matches a PCI device. The string must
271 * be of the form:
272 *
273 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
274 *
275 * A path for a device can be obtained using 'lspci -t'. Using a path
276 * is more robust against bus renumbering than using only a single bus,
277 * device and function address.
278 *
279 * Returns 1 if the string matches the device, 0 if it does not and
280 * a negative error code if it fails to parse the string.
281 */
282static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
283 const char **endptr)
284{
285 int ret;
286 unsigned int seg, bus, slot, func;
287 char *wpath, *p;
288 char end;
289
290 *endptr = strchrnul(path, ';');
291
292 wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC);
293 if (!wpath)
294 return -ENOMEM;
295
296 while (1) {
297 p = strrchr(wpath, '/');
298 if (!p)
299 break;
300 ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
301 if (ret != 2) {
302 ret = -EINVAL;
303 goto free_and_exit;
304 }
305
306 if (dev->devfn != PCI_DEVFN(slot, func)) {
307 ret = 0;
308 goto free_and_exit;
309 }
310
311 /*
312 * Note: we don't need to get a reference to the upstream
313 * bridge because we hold a reference to the top level
314 * device which should hold a reference to the bridge,
315 * and so on.
316 */
317 dev = pci_upstream_bridge(dev);
318 if (!dev) {
319 ret = 0;
320 goto free_and_exit;
321 }
322
323 *p = 0;
324 }
325
326 ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
327 &func, &end);
328 if (ret != 4) {
329 seg = 0;
330 ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
331 if (ret != 3) {
332 ret = -EINVAL;
333 goto free_and_exit;
334 }
335 }
336
337 ret = (seg == pci_domain_nr(dev->bus) &&
338 bus == dev->bus->number &&
339 dev->devfn == PCI_DEVFN(slot, func));
340
341free_and_exit:
342 kfree(wpath);
343 return ret;
344}
345
346/**
347 * pci_dev_str_match - test if a string matches a device
348 * @dev: the PCI device to test
349 * @p: string to match the device against
350 * @endptr: pointer to the string after the match
351 *
352 * Test if a string (typically from a kernel parameter) matches a specified
353 * PCI device. The string may be of one of the following formats:
354 *
355 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
356 * pci:<vendor>:<device>[:<subvendor>:<subdevice>]
357 *
358 * The first format specifies a PCI bus/device/function address which
359 * may change if new hardware is inserted, if motherboard firmware changes,
360 * or due to changes caused in kernel parameters. If the domain is
361 * left unspecified, it is taken to be 0. In order to be robust against
362 * bus renumbering issues, a path of PCI device/function numbers may be used
363 * to address the specific device. The path for a device can be determined
364 * through the use of 'lspci -t'.
365 *
366 * The second format matches devices using IDs in the configuration
367 * space which may match multiple devices in the system. A value of 0
368 * for any field will match all devices. (Note: this differs from
369 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
370 * legacy reasons and convenience so users don't have to specify
371 * FFFFFFFFs on the command line.)
372 *
373 * Returns 1 if the string matches the device, 0 if it does not and
374 * a negative error code if the string cannot be parsed.
375 */
376static int pci_dev_str_match(struct pci_dev *dev, const char *p,
377 const char **endptr)
378{
379 int ret;
380 int count;
381 unsigned short vendor, device, subsystem_vendor, subsystem_device;
382
383 if (strncmp(p, "pci:", 4) == 0) {
384 /* PCI vendor/device (subvendor/subdevice) IDs are specified */
385 p += 4;
386 ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
387 &subsystem_vendor, &subsystem_device, &count);
388 if (ret != 4) {
389 ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
390 if (ret != 2)
391 return -EINVAL;
392
393 subsystem_vendor = 0;
394 subsystem_device = 0;
395 }
396
397 p += count;
398
399 if ((!vendor || vendor == dev->vendor) &&
400 (!device || device == dev->device) &&
401 (!subsystem_vendor ||
402 subsystem_vendor == dev->subsystem_vendor) &&
403 (!subsystem_device ||
404 subsystem_device == dev->subsystem_device))
405 goto found;
406 } else {
407 /*
408 * PCI Bus, Device, Function IDs are specified
409 * (optionally, may include a path of devfns following it)
410 */
411 ret = pci_dev_str_match_path(dev, p, &p);
412 if (ret < 0)
413 return ret;
414 else if (ret)
415 goto found;
416 }
417
418 *endptr = p;
419 return 0;
420
421found:
422 *endptr = p;
423 return 1;
424}
425
426static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
427 u8 pos, int cap)
428{
429 return PCI_FIND_NEXT_CAP(pci_bus_read_config, pos, cap, bus, devfn);
430}
431
432u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
433{
434 return __pci_find_next_cap(dev->bus, dev->devfn,
435 pos + PCI_CAP_LIST_NEXT, cap);
436}
437EXPORT_SYMBOL_GPL(pci_find_next_capability);
438
439static u8 __pci_bus_find_cap_start(struct pci_bus *bus,
440 unsigned int devfn, u8 hdr_type)
441{
442 u16 status;
443
444 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
445 if (!(status & PCI_STATUS_CAP_LIST))
446 return 0;
447
448 switch (hdr_type) {
449 case PCI_HEADER_TYPE_NORMAL:
450 case PCI_HEADER_TYPE_BRIDGE:
451 return PCI_CAPABILITY_LIST;
452 case PCI_HEADER_TYPE_CARDBUS:
453 return PCI_CB_CAPABILITY_LIST;
454 }
455
456 return 0;
457}
458
459/**
460 * pci_find_capability - query for devices' capabilities
461 * @dev: PCI device to query
462 * @cap: capability code
463 *
464 * Tell if a device supports a given PCI capability.
465 * Returns the address of the requested capability structure within the
466 * device's PCI configuration space or 0 in case the device does not
467 * support it. Possible values for @cap include:
468 *
469 * %PCI_CAP_ID_PM Power Management
470 * %PCI_CAP_ID_AGP Accelerated Graphics Port
471 * %PCI_CAP_ID_VPD Vital Product Data
472 * %PCI_CAP_ID_SLOTID Slot Identification
473 * %PCI_CAP_ID_MSI Message Signalled Interrupts
474 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
475 * %PCI_CAP_ID_PCIX PCI-X
476 * %PCI_CAP_ID_EXP PCI Express
477 */
478u8 pci_find_capability(struct pci_dev *dev, int cap)
479{
480 u8 pos;
481
482 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
483 if (pos)
484 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
485
486 return pos;
487}
488EXPORT_SYMBOL(pci_find_capability);
489
490/**
491 * pci_bus_find_capability - query for devices' capabilities
492 * @bus: the PCI bus to query
493 * @devfn: PCI device to query
494 * @cap: capability code
495 *
496 * Like pci_find_capability() but works for PCI devices that do not have a
497 * pci_dev structure set up yet.
498 *
499 * Returns the address of the requested capability structure within the
500 * device's PCI configuration space or 0 in case the device does not
501 * support it.
502 */
503u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
504{
505 u8 hdr_type, pos;
506
507 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
508
509 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & PCI_HEADER_TYPE_MASK);
510 if (pos)
511 pos = __pci_find_next_cap(bus, devfn, pos, cap);
512
513 return pos;
514}
515EXPORT_SYMBOL(pci_bus_find_capability);
516
517/**
518 * pci_find_next_ext_capability - Find an extended capability
519 * @dev: PCI device to query
520 * @start: address at which to start looking (0 to start at beginning of list)
521 * @cap: capability code
522 *
523 * Returns the address of the next matching extended capability structure
524 * within the device's PCI configuration space or 0 if the device does
525 * not support it. Some capabilities can occur several times, e.g., the
526 * vendor-specific capability, and this provides a way to find them all.
527 */
528u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap)
529{
530 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
531 return 0;
532
533 return PCI_FIND_NEXT_EXT_CAP(pci_bus_read_config, start, cap,
534 dev->bus, dev->devfn);
535}
536EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
537
538/**
539 * pci_find_ext_capability - Find an extended capability
540 * @dev: PCI device to query
541 * @cap: capability code
542 *
543 * Returns the address of the requested extended capability structure
544 * within the device's PCI configuration space or 0 if the device does
545 * not support it. Possible values for @cap include:
546 *
547 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
548 * %PCI_EXT_CAP_ID_VC Virtual Channel
549 * %PCI_EXT_CAP_ID_DSN Device Serial Number
550 * %PCI_EXT_CAP_ID_PWR Power Budgeting
551 */
552u16 pci_find_ext_capability(struct pci_dev *dev, int cap)
553{
554 return pci_find_next_ext_capability(dev, 0, cap);
555}
556EXPORT_SYMBOL_GPL(pci_find_ext_capability);
557
558/**
559 * pci_get_dsn - Read and return the 8-byte Device Serial Number
560 * @dev: PCI device to query
561 *
562 * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
563 * Number.
564 *
565 * Returns the DSN, or zero if the capability does not exist.
566 */
567u64 pci_get_dsn(struct pci_dev *dev)
568{
569 u32 dword;
570 u64 dsn;
571 int pos;
572
573 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN);
574 if (!pos)
575 return 0;
576
577 /*
578 * The Device Serial Number is two dwords offset 4 bytes from the
579 * capability position. The specification says that the first dword is
580 * the lower half, and the second dword is the upper half.
581 */
582 pos += 4;
583 pci_read_config_dword(dev, pos, &dword);
584 dsn = (u64)dword;
585 pci_read_config_dword(dev, pos + 4, &dword);
586 dsn |= ((u64)dword) << 32;
587
588 return dsn;
589}
590EXPORT_SYMBOL_GPL(pci_get_dsn);
591
592static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap)
593{
594 int rc;
595 u8 cap, mask;
596
597 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
598 mask = HT_3BIT_CAP_MASK;
599 else
600 mask = HT_5BIT_CAP_MASK;
601
602 pos = PCI_FIND_NEXT_CAP(pci_bus_read_config, pos,
603 PCI_CAP_ID_HT, dev->bus, dev->devfn);
604 while (pos) {
605 rc = pci_read_config_byte(dev, pos + 3, &cap);
606 if (rc != PCIBIOS_SUCCESSFUL)
607 return 0;
608
609 if ((cap & mask) == ht_cap)
610 return pos;
611
612 pos = PCI_FIND_NEXT_CAP(pci_bus_read_config,
613 pos + PCI_CAP_LIST_NEXT,
614 PCI_CAP_ID_HT, dev->bus,
615 dev->devfn);
616 }
617
618 return 0;
619}
620
621/**
622 * pci_find_next_ht_capability - query a device's HyperTransport capabilities
623 * @dev: PCI device to query
624 * @pos: Position from which to continue searching
625 * @ht_cap: HyperTransport capability code
626 *
627 * To be used in conjunction with pci_find_ht_capability() to search for
628 * all capabilities matching @ht_cap. @pos should always be a value returned
629 * from pci_find_ht_capability().
630 *
631 * NB. To be 100% safe against broken PCI devices, the caller should take
632 * steps to avoid an infinite loop.
633 */
634u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap)
635{
636 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
637}
638EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
639
640/**
641 * pci_find_ht_capability - query a device's HyperTransport capabilities
642 * @dev: PCI device to query
643 * @ht_cap: HyperTransport capability code
644 *
645 * Tell if a device supports a given HyperTransport capability.
646 * Returns an address within the device's PCI configuration space
647 * or 0 in case the device does not support the request capability.
648 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
649 * which has a HyperTransport capability matching @ht_cap.
650 */
651u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
652{
653 u8 pos;
654
655 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
656 if (pos)
657 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
658
659 return pos;
660}
661EXPORT_SYMBOL_GPL(pci_find_ht_capability);
662
663/**
664 * pci_find_vsec_capability - Find a vendor-specific extended capability
665 * @dev: PCI device to query
666 * @vendor: Vendor ID for which capability is defined
667 * @cap: Vendor-specific capability ID
668 *
669 * If @dev has Vendor ID @vendor, search for a VSEC capability with
670 * VSEC ID @cap. If found, return the capability offset in
671 * config space; otherwise return 0.
672 */
673u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap)
674{
675 u16 vsec = 0;
676 u32 header;
677 int ret;
678
679 if (vendor != dev->vendor)
680 return 0;
681
682 while ((vsec = pci_find_next_ext_capability(dev, vsec,
683 PCI_EXT_CAP_ID_VNDR))) {
684 ret = pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER, &header);
685 if (ret != PCIBIOS_SUCCESSFUL)
686 continue;
687
688 if (PCI_VNDR_HEADER_ID(header) == cap)
689 return vsec;
690 }
691
692 return 0;
693}
694EXPORT_SYMBOL_GPL(pci_find_vsec_capability);
695
696/**
697 * pci_find_dvsec_capability - Find DVSEC for vendor
698 * @dev: PCI device to query
699 * @vendor: Vendor ID to match for the DVSEC
700 * @dvsec: Designated Vendor-specific capability ID
701 *
702 * If DVSEC has Vendor ID @vendor and DVSEC ID @dvsec return the capability
703 * offset in config space; otherwise return 0.
704 */
705u16 pci_find_dvsec_capability(struct pci_dev *dev, u16 vendor, u16 dvsec)
706{
707 int pos;
708
709 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DVSEC);
710 if (!pos)
711 return 0;
712
713 while (pos) {
714 u16 v, id;
715
716 pci_read_config_word(dev, pos + PCI_DVSEC_HEADER1, &v);
717 pci_read_config_word(dev, pos + PCI_DVSEC_HEADER2, &id);
718 if (vendor == v && dvsec == id)
719 return pos;
720
721 pos = pci_find_next_ext_capability(dev, pos, PCI_EXT_CAP_ID_DVSEC);
722 }
723
724 return 0;
725}
726EXPORT_SYMBOL_GPL(pci_find_dvsec_capability);
727
728/**
729 * pci_find_parent_resource - return resource region of parent bus of given
730 * region
731 * @dev: PCI device structure contains resources to be searched
732 * @res: child resource record for which parent is sought
733 *
734 * For given resource region of given device, return the resource region of
735 * parent bus the given region is contained in.
736 */
737struct resource *pci_find_parent_resource(const struct pci_dev *dev,
738 struct resource *res)
739{
740 const struct pci_bus *bus = dev->bus;
741 struct resource *r;
742
743 pci_bus_for_each_resource(bus, r) {
744 if (!r)
745 continue;
746 if (resource_contains(r, res)) {
747
748 /*
749 * If the window is prefetchable but the BAR is
750 * not, the allocator made a mistake.
751 */
752 if (r->flags & IORESOURCE_PREFETCH &&
753 !(res->flags & IORESOURCE_PREFETCH))
754 return NULL;
755
756 /*
757 * If we're below a transparent bridge, there may
758 * be both a positively-decoded aperture and a
759 * subtractively-decoded region that contain the BAR.
760 * We want the positively-decoded one, so this depends
761 * on pci_bus_for_each_resource() giving us those
762 * first.
763 */
764 return r;
765 }
766 }
767 return NULL;
768}
769EXPORT_SYMBOL(pci_find_parent_resource);
770
771/**
772 * pci_find_resource - Return matching PCI device resource
773 * @dev: PCI device to query
774 * @res: Resource to look for
775 *
776 * Goes over standard PCI resources (BARs) and checks if the given resource
777 * is partially or fully contained in any of them. In that case the
778 * matching resource is returned, %NULL otherwise.
779 */
780struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
781{
782 int i;
783
784 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
785 struct resource *r = &dev->resource[i];
786
787 if (r->start && resource_contains(r, res))
788 return r;
789 }
790
791 return NULL;
792}
793EXPORT_SYMBOL(pci_find_resource);
794
795/**
796 * pci_resource_name - Return the name of the PCI resource
797 * @dev: PCI device to query
798 * @i: index of the resource
799 *
800 * Return the standard PCI resource (BAR) name according to their index.
801 */
802const char *pci_resource_name(struct pci_dev *dev, unsigned int i)
803{
804 static const char * const bar_name[] = {
805 "BAR 0",
806 "BAR 1",
807 "BAR 2",
808 "BAR 3",
809 "BAR 4",
810 "BAR 5",
811 "ROM",
812#ifdef CONFIG_PCI_IOV
813 "VF BAR 0",
814 "VF BAR 1",
815 "VF BAR 2",
816 "VF BAR 3",
817 "VF BAR 4",
818 "VF BAR 5",
819#endif
820 "bridge window", /* "io" included in %pR */
821 "bridge window", /* "mem" included in %pR */
822 "bridge window", /* "mem pref" included in %pR */
823 };
824 static const char * const cardbus_name[] = {
825 "BAR 1",
826 "unknown",
827 "unknown",
828 "unknown",
829 "unknown",
830 "unknown",
831#ifdef CONFIG_PCI_IOV
832 "unknown",
833 "unknown",
834 "unknown",
835 "unknown",
836 "unknown",
837 "unknown",
838#endif
839 "CardBus bridge window 0", /* I/O */
840 "CardBus bridge window 1", /* I/O */
841 "CardBus bridge window 0", /* mem */
842 "CardBus bridge window 1", /* mem */
843 };
844
845 if (dev->hdr_type == PCI_HEADER_TYPE_CARDBUS &&
846 i < ARRAY_SIZE(cardbus_name))
847 return cardbus_name[i];
848
849 if (i < ARRAY_SIZE(bar_name))
850 return bar_name[i];
851
852 return "unknown";
853}
854
855/**
856 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
857 * @dev: the PCI device to operate on
858 * @pos: config space offset of status word
859 * @mask: mask of bit(s) to care about in status word
860 *
861 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
862 */
863int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
864{
865 int i;
866
867 /* Wait for Transaction Pending bit clean */
868 for (i = 0; i < 4; i++) {
869 u16 status;
870 if (i)
871 msleep((1 << (i - 1)) * 100);
872
873 pci_read_config_word(dev, pos, &status);
874 if (!(status & mask))
875 return 1;
876 }
877
878 return 0;
879}
880
881static int pci_acs_enable;
882
883/**
884 * pci_request_acs - ask for ACS to be enabled if supported
885 */
886void pci_request_acs(void)
887{
888 pci_acs_enable = 1;
889}
890
891static const char *disable_acs_redir_param;
892static const char *config_acs_param;
893
894struct pci_acs {
895 u16 cap;
896 u16 ctrl;
897 u16 fw_ctrl;
898};
899
900static void __pci_config_acs(struct pci_dev *dev, struct pci_acs *caps,
901 const char *p, const u16 acs_mask, const u16 acs_flags)
902{
903 u16 flags = acs_flags;
904 u16 mask = acs_mask;
905 char *delimit;
906 int ret = 0;
907
908 if (!p)
909 return;
910
911 while (*p) {
912 if (!acs_mask) {
913 /* Check for ACS flags */
914 delimit = strstr(p, "@");
915 if (delimit) {
916 int end;
917 u32 shift = 0;
918
919 end = delimit - p - 1;
920 mask = 0;
921 flags = 0;
922
923 while (end > -1) {
924 if (*(p + end) == '0') {
925 mask |= 1 << shift;
926 shift++;
927 end--;
928 } else if (*(p + end) == '1') {
929 mask |= 1 << shift;
930 flags |= 1 << shift;
931 shift++;
932 end--;
933 } else if ((*(p + end) == 'x') || (*(p + end) == 'X')) {
934 shift++;
935 end--;
936 } else {
937 pci_err(dev, "Invalid ACS flags... Ignoring\n");
938 return;
939 }
940 }
941 p = delimit + 1;
942 } else {
943 pci_err(dev, "ACS Flags missing\n");
944 return;
945 }
946 }
947
948 if (mask & ~(PCI_ACS_SV | PCI_ACS_TB | PCI_ACS_RR | PCI_ACS_CR |
949 PCI_ACS_UF | PCI_ACS_EC | PCI_ACS_DT)) {
950 pci_err(dev, "Invalid ACS flags specified\n");
951 return;
952 }
953
954 ret = pci_dev_str_match(dev, p, &p);
955 if (ret < 0) {
956 pr_info_once("PCI: Can't parse ACS command line parameter\n");
957 break;
958 } else if (ret == 1) {
959 /* Found a match */
960 break;
961 }
962
963 if (*p != ';' && *p != ',') {
964 /* End of param or invalid format */
965 break;
966 }
967 p++;
968 }
969
970 if (ret != 1)
971 return;
972
973 if (!pci_dev_specific_disable_acs_redir(dev))
974 return;
975
976 pci_dbg(dev, "ACS mask = %#06x\n", mask);
977 pci_dbg(dev, "ACS flags = %#06x\n", flags);
978 pci_dbg(dev, "ACS control = %#06x\n", caps->ctrl);
979 pci_dbg(dev, "ACS fw_ctrl = %#06x\n", caps->fw_ctrl);
980
981 /*
982 * For mask bits that are 0, copy them from the firmware setting
983 * and apply flags for all the mask bits that are 1.
984 */
985 caps->ctrl = (caps->fw_ctrl & ~mask) | (flags & mask);
986
987 pci_info(dev, "Configured ACS to %#06x\n", caps->ctrl);
988}
989
990/**
991 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
992 * @dev: the PCI device
993 * @caps: default ACS controls
994 */
995static void pci_std_enable_acs(struct pci_dev *dev, struct pci_acs *caps)
996{
997 /* Source Validation */
998 caps->ctrl |= (caps->cap & PCI_ACS_SV);
999
1000 /* P2P Request Redirect */
1001 caps->ctrl |= (caps->cap & PCI_ACS_RR);
1002
1003 /* P2P Completion Redirect */
1004 caps->ctrl |= (caps->cap & PCI_ACS_CR);
1005
1006 /* Upstream Forwarding */
1007 caps->ctrl |= (caps->cap & PCI_ACS_UF);
1008
1009 /* Enable Translation Blocking for external devices and noats */
1010 if (pci_ats_disabled() || dev->external_facing || dev->untrusted)
1011 caps->ctrl |= (caps->cap & PCI_ACS_TB);
1012}
1013
1014/**
1015 * pci_enable_acs - enable ACS if hardware support it
1016 * @dev: the PCI device
1017 */
1018static void pci_enable_acs(struct pci_dev *dev)
1019{
1020 struct pci_acs caps;
1021 bool enable_acs = false;
1022 int pos;
1023
1024 /* If an iommu is present we start with kernel default caps */
1025 if (pci_acs_enable) {
1026 if (pci_dev_specific_enable_acs(dev))
1027 enable_acs = true;
1028 }
1029
1030 pos = dev->acs_cap;
1031 if (!pos)
1032 return;
1033
1034 pci_read_config_word(dev, pos + PCI_ACS_CAP, &caps.cap);
1035 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &caps.ctrl);
1036 caps.fw_ctrl = caps.ctrl;
1037
1038 if (enable_acs)
1039 pci_std_enable_acs(dev, &caps);
1040
1041 /*
1042 * Always apply caps from the command line, even if there is no iommu.
1043 * Trust that the admin has a reason to change the ACS settings.
1044 */
1045 __pci_config_acs(dev, &caps, disable_acs_redir_param,
1046 PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC,
1047 ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC));
1048 __pci_config_acs(dev, &caps, config_acs_param, 0, 0);
1049
1050 pci_write_config_word(dev, pos + PCI_ACS_CTRL, caps.ctrl);
1051}
1052
1053/**
1054 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
1055 * @dev: PCI device to have its BARs restored
1056 *
1057 * Restore the BAR values for a given device, so as to make it
1058 * accessible by its driver.
1059 */
1060static void pci_restore_bars(struct pci_dev *dev)
1061{
1062 int i;
1063
1064 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
1065 pci_update_resource(dev, i);
1066}
1067
1068static inline bool platform_pci_power_manageable(struct pci_dev *dev)
1069{
1070 if (pci_use_mid_pm())
1071 return true;
1072
1073 return acpi_pci_power_manageable(dev);
1074}
1075
1076static inline int platform_pci_set_power_state(struct pci_dev *dev,
1077 pci_power_t t)
1078{
1079 if (pci_use_mid_pm())
1080 return mid_pci_set_power_state(dev, t);
1081
1082 return acpi_pci_set_power_state(dev, t);
1083}
1084
1085static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
1086{
1087 if (pci_use_mid_pm())
1088 return mid_pci_get_power_state(dev);
1089
1090 return acpi_pci_get_power_state(dev);
1091}
1092
1093static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
1094{
1095 if (!pci_use_mid_pm())
1096 acpi_pci_refresh_power_state(dev);
1097}
1098
1099static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
1100{
1101 if (pci_use_mid_pm())
1102 return PCI_POWER_ERROR;
1103
1104 return acpi_pci_choose_state(dev);
1105}
1106
1107static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
1108{
1109 if (pci_use_mid_pm())
1110 return PCI_POWER_ERROR;
1111
1112 return acpi_pci_wakeup(dev, enable);
1113}
1114
1115static inline bool platform_pci_need_resume(struct pci_dev *dev)
1116{
1117 if (pci_use_mid_pm())
1118 return false;
1119
1120 return acpi_pci_need_resume(dev);
1121}
1122
1123static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
1124{
1125 if (pci_use_mid_pm())
1126 return false;
1127
1128 return acpi_pci_bridge_d3(dev);
1129}
1130
1131/**
1132 * pci_update_current_state - Read power state of given device and cache it
1133 * @dev: PCI device to handle.
1134 * @state: State to cache in case the device doesn't have the PM capability
1135 *
1136 * The power state is read from the PMCSR register, which however is
1137 * inaccessible in D3cold. The platform firmware is therefore queried first
1138 * to detect accessibility of the register. In case the platform firmware
1139 * reports an incorrect state or the device isn't power manageable by the
1140 * platform at all, we try to detect D3cold by testing accessibility of the
1141 * vendor ID in config space.
1142 */
1143void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
1144{
1145 if (platform_pci_get_power_state(dev) == PCI_D3cold) {
1146 dev->current_state = PCI_D3cold;
1147 } else if (dev->pm_cap) {
1148 u16 pmcsr;
1149
1150 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1151 if (PCI_POSSIBLE_ERROR(pmcsr)) {
1152 dev->current_state = PCI_D3cold;
1153 return;
1154 }
1155 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1156 } else {
1157 dev->current_state = state;
1158 }
1159}
1160
1161/**
1162 * pci_refresh_power_state - Refresh the given device's power state data
1163 * @dev: Target PCI device.
1164 *
1165 * Ask the platform to refresh the devices power state information and invoke
1166 * pci_update_current_state() to update its current PCI power state.
1167 */
1168void pci_refresh_power_state(struct pci_dev *dev)
1169{
1170 platform_pci_refresh_power_state(dev);
1171 pci_update_current_state(dev, dev->current_state);
1172}
1173
1174/**
1175 * pci_platform_power_transition - Use platform to change device power state
1176 * @dev: PCI device to handle.
1177 * @state: State to put the device into.
1178 */
1179int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
1180{
1181 int error;
1182
1183 error = platform_pci_set_power_state(dev, state);
1184 if (!error)
1185 pci_update_current_state(dev, state);
1186 else if (!dev->pm_cap) /* Fall back to PCI_D0 */
1187 dev->current_state = PCI_D0;
1188
1189 return error;
1190}
1191EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1192
1193static int pci_resume_one(struct pci_dev *pci_dev, void *ign)
1194{
1195 pm_request_resume(&pci_dev->dev);
1196 return 0;
1197}
1198
1199/**
1200 * pci_resume_bus - Walk given bus and runtime resume devices on it
1201 * @bus: Top bus of the subtree to walk.
1202 */
1203void pci_resume_bus(struct pci_bus *bus)
1204{
1205 if (bus)
1206 pci_walk_bus(bus, pci_resume_one, NULL);
1207}
1208
1209static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1210{
1211 int delay = 1;
1212 bool retrain = false;
1213 struct pci_dev *root, *bridge;
1214
1215 root = pcie_find_root_port(dev);
1216
1217 if (pci_is_pcie(dev)) {
1218 bridge = pci_upstream_bridge(dev);
1219 if (bridge)
1220 retrain = true;
1221 }
1222
1223 /*
1224 * The caller has already waited long enough after a reset that the
1225 * device should respond to config requests, but it may respond
1226 * with Request Retry Status (RRS) if it needs more time to
1227 * initialize.
1228 *
1229 * If the device is below a Root Port with Configuration RRS
1230 * Software Visibility enabled, reading the Vendor ID returns a
1231 * special data value if the device responded with RRS. Read the
1232 * Vendor ID until we get non-RRS status.
1233 *
1234 * If there's no Root Port or Configuration RRS Software Visibility
1235 * is not enabled, the device may still respond with RRS, but
1236 * hardware may retry the config request. If no retries receive
1237 * Successful Completion, hardware generally synthesizes ~0
1238 * (PCI_ERROR_RESPONSE) data to complete the read. Reading Vendor
1239 * ID for VFs and non-existent devices also returns ~0, so read the
1240 * Command register until it returns something other than ~0.
1241 */
1242 for (;;) {
1243 u32 id;
1244
1245 if (pci_dev_is_disconnected(dev)) {
1246 pci_dbg(dev, "disconnected; not waiting\n");
1247 return -ENOTTY;
1248 }
1249
1250 if (root && root->config_rrs_sv) {
1251 pci_read_config_dword(dev, PCI_VENDOR_ID, &id);
1252 if (!pci_bus_rrs_vendor_id(id))
1253 break;
1254 } else {
1255 pci_read_config_dword(dev, PCI_COMMAND, &id);
1256 if (!PCI_POSSIBLE_ERROR(id))
1257 break;
1258 }
1259
1260 if (delay > timeout) {
1261 pci_warn(dev, "not ready %dms after %s; giving up\n",
1262 delay - 1, reset_type);
1263 return -ENOTTY;
1264 }
1265
1266 if (delay > PCI_RESET_WAIT) {
1267 if (retrain) {
1268 retrain = false;
1269 if (pcie_failed_link_retrain(bridge) == 0) {
1270 delay = 1;
1271 continue;
1272 }
1273 }
1274 pci_info(dev, "not ready %dms after %s; waiting\n",
1275 delay - 1, reset_type);
1276 }
1277
1278 msleep(delay);
1279 delay *= 2;
1280 }
1281
1282 if (delay > PCI_RESET_WAIT)
1283 pci_info(dev, "ready %dms after %s\n", delay - 1,
1284 reset_type);
1285 else
1286 pci_dbg(dev, "ready %dms after %s\n", delay - 1,
1287 reset_type);
1288
1289 return 0;
1290}
1291
1292/**
1293 * pci_power_up - Put the given device into D0
1294 * @dev: PCI device to power up
1295 *
1296 * On success, return 0 or 1, depending on whether or not it is necessary to
1297 * restore the device's BARs subsequently (1 is returned in that case).
1298 *
1299 * On failure, return a negative error code. Always return failure if @dev
1300 * lacks a Power Management Capability, even if the platform was able to
1301 * put the device in D0 via non-PCI means.
1302 */
1303int pci_power_up(struct pci_dev *dev)
1304{
1305 bool need_restore;
1306 pci_power_t state;
1307 u16 pmcsr;
1308
1309 platform_pci_set_power_state(dev, PCI_D0);
1310
1311 if (!dev->pm_cap) {
1312 state = platform_pci_get_power_state(dev);
1313 if (state == PCI_UNKNOWN)
1314 dev->current_state = PCI_D0;
1315 else
1316 dev->current_state = state;
1317
1318 return -EIO;
1319 }
1320
1321 if (pci_dev_is_disconnected(dev)) {
1322 dev->current_state = PCI_D3cold;
1323 return -EIO;
1324 }
1325
1326 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1327 if (PCI_POSSIBLE_ERROR(pmcsr)) {
1328 pci_err(dev, "Unable to change power state from %s to D0, device inaccessible\n",
1329 pci_power_name(dev->current_state));
1330 dev->current_state = PCI_D3cold;
1331 return -EIO;
1332 }
1333
1334 state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1335
1336 need_restore = (state == PCI_D3hot || dev->current_state >= PCI_D3hot) &&
1337 !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET);
1338
1339 if (state == PCI_D0)
1340 goto end;
1341
1342 /*
1343 * Force the entire word to 0. This doesn't affect PME_Status, disables
1344 * PME_En, and sets PowerState to 0.
1345 */
1346 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, 0);
1347
1348 /* Mandatory transition delays; see PCI PM 1.2. */
1349 if (state == PCI_D3hot)
1350 pci_dev_d3_sleep(dev);
1351 else if (state == PCI_D2)
1352 udelay(PCI_PM_D2_DELAY);
1353
1354end:
1355 dev->current_state = PCI_D0;
1356 if (need_restore)
1357 return 1;
1358
1359 return 0;
1360}
1361
1362/**
1363 * pci_set_full_power_state - Put a PCI device into D0 and update its state
1364 * @dev: PCI device to power up
1365 * @locked: whether pci_bus_sem is held
1366 *
1367 * Call pci_power_up() to put @dev into D0, read from its PCI_PM_CTRL register
1368 * to confirm the state change, restore its BARs if they might be lost and
1369 * reconfigure ASPM in accordance with the new power state.
1370 *
1371 * If pci_restore_state() is going to be called right after a power state change
1372 * to D0, it is more efficient to use pci_power_up() directly instead of this
1373 * function.
1374 */
1375static int pci_set_full_power_state(struct pci_dev *dev, bool locked)
1376{
1377 u16 pmcsr;
1378 int ret;
1379
1380 ret = pci_power_up(dev);
1381 if (ret < 0) {
1382 if (dev->current_state == PCI_D0)
1383 return 0;
1384
1385 return ret;
1386 }
1387
1388 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1389 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1390 if (dev->current_state != PCI_D0) {
1391 pci_info_ratelimited(dev, "Refused to change power state from %s to D0\n",
1392 pci_power_name(dev->current_state));
1393 } else if (ret > 0) {
1394 /*
1395 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
1396 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
1397 * from D3hot to D0 _may_ perform an internal reset, thereby
1398 * going to "D0 Uninitialized" rather than "D0 Initialized".
1399 * For example, at least some versions of the 3c905B and the
1400 * 3c556B exhibit this behaviour.
1401 *
1402 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
1403 * devices in a D3hot state at boot. Consequently, we need to
1404 * restore at least the BARs so that the device will be
1405 * accessible to its driver.
1406 */
1407 pci_restore_bars(dev);
1408 }
1409
1410 if (dev->bus->self)
1411 pcie_aspm_pm_state_change(dev->bus->self, locked);
1412
1413 return 0;
1414}
1415
1416/**
1417 * __pci_dev_set_current_state - Set current state of a PCI device
1418 * @dev: Device to handle
1419 * @data: pointer to state to be set
1420 */
1421static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1422{
1423 pci_power_t state = *(pci_power_t *)data;
1424
1425 dev->current_state = state;
1426 return 0;
1427}
1428
1429/**
1430 * pci_bus_set_current_state - Walk given bus and set current state of devices
1431 * @bus: Top bus of the subtree to walk.
1432 * @state: state to be set
1433 */
1434void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1435{
1436 if (bus)
1437 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1438}
1439
1440static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state, bool locked)
1441{
1442 if (!bus)
1443 return;
1444
1445 if (locked)
1446 pci_walk_bus_locked(bus, __pci_dev_set_current_state, &state);
1447 else
1448 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1449}
1450
1451/**
1452 * pci_set_low_power_state - Put a PCI device into a low-power state.
1453 * @dev: PCI device to handle.
1454 * @state: PCI power state (D1, D2, D3hot) to put the device into.
1455 * @locked: whether pci_bus_sem is held
1456 *
1457 * Use the device's PCI_PM_CTRL register to put it into a low-power state.
1458 *
1459 * RETURN VALUE:
1460 * -EINVAL if the requested state is invalid.
1461 * -EIO if device does not support PCI PM or its PM capabilities register has a
1462 * wrong version, or device doesn't support the requested state.
1463 * 0 if device already is in the requested state.
1464 * 0 if device's power state has been successfully changed.
1465 */
1466static int pci_set_low_power_state(struct pci_dev *dev, pci_power_t state, bool locked)
1467{
1468 u16 pmcsr;
1469
1470 if (!dev->pm_cap)
1471 return -EIO;
1472
1473 /*
1474 * Validate transition: We can enter D0 from any state, but if
1475 * we're already in a low-power state, we can only go deeper. E.g.,
1476 * we can go from D1 to D3, but we can't go directly from D3 to D1;
1477 * we'd have to go from D3 to D0, then to D1.
1478 */
1479 if (dev->current_state <= PCI_D3cold && dev->current_state > state) {
1480 pci_dbg(dev, "Invalid power transition (from %s to %s)\n",
1481 pci_power_name(dev->current_state),
1482 pci_power_name(state));
1483 return -EINVAL;
1484 }
1485
1486 /* Check if this device supports the desired state */
1487 if ((state == PCI_D1 && !dev->d1_support)
1488 || (state == PCI_D2 && !dev->d2_support))
1489 return -EIO;
1490
1491 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1492 if (PCI_POSSIBLE_ERROR(pmcsr)) {
1493 pci_err(dev, "Unable to change power state from %s to %s, device inaccessible\n",
1494 pci_power_name(dev->current_state),
1495 pci_power_name(state));
1496 dev->current_state = PCI_D3cold;
1497 return -EIO;
1498 }
1499
1500 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
1501 pmcsr |= state;
1502
1503 /* Enter specified state */
1504 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1505
1506 /* Mandatory power management transition delays; see PCI PM 1.2. */
1507 if (state == PCI_D3hot)
1508 pci_dev_d3_sleep(dev);
1509 else if (state == PCI_D2)
1510 udelay(PCI_PM_D2_DELAY);
1511
1512 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1513 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1514 if (dev->current_state != state)
1515 pci_info_ratelimited(dev, "Refused to change power state from %s to %s\n",
1516 pci_power_name(dev->current_state),
1517 pci_power_name(state));
1518
1519 if (dev->bus->self)
1520 pcie_aspm_pm_state_change(dev->bus->self, locked);
1521
1522 return 0;
1523}
1524
1525static int __pci_set_power_state(struct pci_dev *dev, pci_power_t state, bool locked)
1526{
1527 int error;
1528
1529 /* Bound the state we're entering */
1530 if (state > PCI_D3cold)
1531 state = PCI_D3cold;
1532 else if (state < PCI_D0)
1533 state = PCI_D0;
1534 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1535
1536 /*
1537 * If the device or the parent bridge do not support PCI
1538 * PM, ignore the request if we're doing anything other
1539 * than putting it into D0 (which would only happen on
1540 * boot).
1541 */
1542 return 0;
1543
1544 /* Check if we're already there */
1545 if (dev->current_state == state)
1546 return 0;
1547
1548 if (state == PCI_D0)
1549 return pci_set_full_power_state(dev, locked);
1550
1551 /*
1552 * This device is quirked not to be put into D3, so don't put it in
1553 * D3
1554 */
1555 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1556 return 0;
1557
1558 if (state == PCI_D3cold) {
1559 /*
1560 * To put the device in D3cold, put it into D3hot in the native
1561 * way, then put it into D3cold using platform ops.
1562 */
1563 error = pci_set_low_power_state(dev, PCI_D3hot, locked);
1564
1565 if (pci_platform_power_transition(dev, PCI_D3cold))
1566 return error;
1567
1568 /* Powering off a bridge may power off the whole hierarchy */
1569 if (dev->current_state == PCI_D3cold)
1570 __pci_bus_set_current_state(dev->subordinate, PCI_D3cold, locked);
1571 } else {
1572 error = pci_set_low_power_state(dev, state, locked);
1573
1574 if (pci_platform_power_transition(dev, state))
1575 return error;
1576 }
1577
1578 return 0;
1579}
1580
1581/**
1582 * pci_set_power_state - Set the power state of a PCI device
1583 * @dev: PCI device to handle.
1584 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1585 *
1586 * Transition a device to a new power state, using the platform firmware and/or
1587 * the device's PCI PM registers.
1588 *
1589 * RETURN VALUE:
1590 * -EINVAL if the requested state is invalid.
1591 * -EIO if device does not support PCI PM or its PM capabilities register has a
1592 * wrong version, or device doesn't support the requested state.
1593 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1594 * 0 if device already is in the requested state.
1595 * 0 if the transition is to D3 but D3 is not supported.
1596 * 0 if device's power state has been successfully changed.
1597 */
1598int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1599{
1600 return __pci_set_power_state(dev, state, false);
1601}
1602EXPORT_SYMBOL(pci_set_power_state);
1603
1604int pci_set_power_state_locked(struct pci_dev *dev, pci_power_t state)
1605{
1606 lockdep_assert_held(&pci_bus_sem);
1607
1608 return __pci_set_power_state(dev, state, true);
1609}
1610EXPORT_SYMBOL(pci_set_power_state_locked);
1611
1612#define PCI_EXP_SAVE_REGS 7
1613
1614static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1615 u16 cap, bool extended)
1616{
1617 struct pci_cap_saved_state *tmp;
1618
1619 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1620 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1621 return tmp;
1622 }
1623 return NULL;
1624}
1625
1626struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1627{
1628 return _pci_find_saved_cap(dev, cap, false);
1629}
1630
1631struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1632{
1633 return _pci_find_saved_cap(dev, cap, true);
1634}
1635
1636static int pci_save_pcie_state(struct pci_dev *dev)
1637{
1638 int i = 0;
1639 struct pci_cap_saved_state *save_state;
1640 u16 *cap;
1641
1642 if (!pci_is_pcie(dev))
1643 return 0;
1644
1645 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1646 if (!save_state) {
1647 pci_err(dev, "buffer not found in %s\n", __func__);
1648 return -ENOMEM;
1649 }
1650
1651 cap = (u16 *)&save_state->cap.data[0];
1652 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1653 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1654 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1655 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]);
1656 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1657 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1658 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1659
1660 pci_save_aspm_l1ss_state(dev);
1661 pci_save_ltr_state(dev);
1662
1663 return 0;
1664}
1665
1666static void pci_restore_pcie_state(struct pci_dev *dev)
1667{
1668 int i = 0;
1669 struct pci_cap_saved_state *save_state;
1670 u16 *cap;
1671
1672 /*
1673 * Restore max latencies (in the LTR capability) before enabling
1674 * LTR itself in PCI_EXP_DEVCTL2.
1675 */
1676 pci_restore_ltr_state(dev);
1677 pci_restore_aspm_l1ss_state(dev);
1678
1679 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1680 if (!save_state)
1681 return;
1682
1683 /*
1684 * Downstream ports reset the LTR enable bit when link goes down.
1685 * Check and re-configure the bit here before restoring device.
1686 * PCIe r5.0, sec 7.5.3.16.
1687 */
1688 pci_bridge_reconfigure_ltr(dev);
1689
1690 cap = (u16 *)&save_state->cap.data[0];
1691 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1692 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1693 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1694 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1695 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1696 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1697 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1698}
1699
1700static int pci_save_pcix_state(struct pci_dev *dev)
1701{
1702 int pos;
1703 struct pci_cap_saved_state *save_state;
1704
1705 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1706 if (!pos)
1707 return 0;
1708
1709 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1710 if (!save_state) {
1711 pci_err(dev, "buffer not found in %s\n", __func__);
1712 return -ENOMEM;
1713 }
1714
1715 pci_read_config_word(dev, pos + PCI_X_CMD,
1716 (u16 *)save_state->cap.data);
1717
1718 return 0;
1719}
1720
1721static void pci_restore_pcix_state(struct pci_dev *dev)
1722{
1723 int i = 0, pos;
1724 struct pci_cap_saved_state *save_state;
1725 u16 *cap;
1726
1727 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1728 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1729 if (!save_state || !pos)
1730 return;
1731 cap = (u16 *)&save_state->cap.data[0];
1732
1733 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1734}
1735
1736/**
1737 * pci_save_state - save the PCI configuration space of a device before
1738 * suspending
1739 * @dev: PCI device that we're dealing with
1740 */
1741int pci_save_state(struct pci_dev *dev)
1742{
1743 int i;
1744 /* XXX: 100% dword access ok here? */
1745 for (i = 0; i < 16; i++) {
1746 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1747 pci_dbg(dev, "save config %#04x: %#010x\n",
1748 i * 4, dev->saved_config_space[i]);
1749 }
1750 dev->state_saved = true;
1751
1752 i = pci_save_pcie_state(dev);
1753 if (i != 0)
1754 return i;
1755
1756 i = pci_save_pcix_state(dev);
1757 if (i != 0)
1758 return i;
1759
1760 pci_save_dpc_state(dev);
1761 pci_save_aer_state(dev);
1762 pci_save_ptm_state(dev);
1763 pci_save_tph_state(dev);
1764 return pci_save_vc_state(dev);
1765}
1766EXPORT_SYMBOL(pci_save_state);
1767
1768static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1769 u32 saved_val, int retry, bool force)
1770{
1771 u32 val;
1772
1773 pci_read_config_dword(pdev, offset, &val);
1774 if (!force && val == saved_val)
1775 return;
1776
1777 for (;;) {
1778 pci_dbg(pdev, "restore config %#04x: %#010x -> %#010x\n",
1779 offset, val, saved_val);
1780 pci_write_config_dword(pdev, offset, saved_val);
1781 if (retry-- <= 0)
1782 return;
1783
1784 pci_read_config_dword(pdev, offset, &val);
1785 if (val == saved_val)
1786 return;
1787
1788 mdelay(1);
1789 }
1790}
1791
1792static void pci_restore_config_space_range(struct pci_dev *pdev,
1793 int start, int end, int retry,
1794 bool force)
1795{
1796 int index;
1797
1798 for (index = end; index >= start; index--)
1799 pci_restore_config_dword(pdev, 4 * index,
1800 pdev->saved_config_space[index],
1801 retry, force);
1802}
1803
1804static void pci_restore_config_space(struct pci_dev *pdev)
1805{
1806 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1807 pci_restore_config_space_range(pdev, 10, 15, 0, false);
1808 /* Restore BARs before the command register. */
1809 pci_restore_config_space_range(pdev, 4, 9, 10, false);
1810 pci_restore_config_space_range(pdev, 0, 3, 0, false);
1811 } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1812 pci_restore_config_space_range(pdev, 12, 15, 0, false);
1813
1814 /*
1815 * Force rewriting of prefetch registers to avoid S3 resume
1816 * issues on Intel PCI bridges that occur when these
1817 * registers are not explicitly written.
1818 */
1819 pci_restore_config_space_range(pdev, 9, 11, 0, true);
1820 pci_restore_config_space_range(pdev, 0, 8, 0, false);
1821 } else {
1822 pci_restore_config_space_range(pdev, 0, 15, 0, false);
1823 }
1824}
1825
1826/**
1827 * pci_restore_state - Restore the saved state of a PCI device
1828 * @dev: PCI device that we're dealing with
1829 */
1830void pci_restore_state(struct pci_dev *dev)
1831{
1832 pci_restore_pcie_state(dev);
1833 pci_restore_pasid_state(dev);
1834 pci_restore_pri_state(dev);
1835 pci_restore_ats_state(dev);
1836 pci_restore_vc_state(dev);
1837 pci_restore_rebar_state(dev);
1838 pci_restore_dpc_state(dev);
1839 pci_restore_ptm_state(dev);
1840 pci_restore_tph_state(dev);
1841
1842 pci_aer_clear_status(dev);
1843 pci_restore_aer_state(dev);
1844
1845 pci_restore_config_space(dev);
1846
1847 pci_restore_pcix_state(dev);
1848 pci_restore_msi_state(dev);
1849
1850 /* Restore ACS and IOV configuration state */
1851 pci_enable_acs(dev);
1852 pci_restore_iov_state(dev);
1853
1854 dev->state_saved = false;
1855}
1856EXPORT_SYMBOL(pci_restore_state);
1857
1858struct pci_saved_state {
1859 u32 config_space[16];
1860 struct pci_cap_saved_data cap[];
1861};
1862
1863/**
1864 * pci_store_saved_state - Allocate and return an opaque struct containing
1865 * the device saved state.
1866 * @dev: PCI device that we're dealing with
1867 *
1868 * Return NULL if no state or error.
1869 */
1870struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1871{
1872 struct pci_saved_state *state;
1873 struct pci_cap_saved_state *tmp;
1874 struct pci_cap_saved_data *cap;
1875 size_t size;
1876
1877 if (!dev->state_saved)
1878 return NULL;
1879
1880 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1881
1882 hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1883 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1884
1885 state = kzalloc(size, GFP_KERNEL);
1886 if (!state)
1887 return NULL;
1888
1889 memcpy(state->config_space, dev->saved_config_space,
1890 sizeof(state->config_space));
1891
1892 cap = state->cap;
1893 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1894 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1895 memcpy(cap, &tmp->cap, len);
1896 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1897 }
1898 /* Empty cap_save terminates list */
1899
1900 return state;
1901}
1902EXPORT_SYMBOL_GPL(pci_store_saved_state);
1903
1904/**
1905 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1906 * @dev: PCI device that we're dealing with
1907 * @state: Saved state returned from pci_store_saved_state()
1908 */
1909int pci_load_saved_state(struct pci_dev *dev,
1910 struct pci_saved_state *state)
1911{
1912 struct pci_cap_saved_data *cap;
1913
1914 dev->state_saved = false;
1915
1916 if (!state)
1917 return 0;
1918
1919 memcpy(dev->saved_config_space, state->config_space,
1920 sizeof(state->config_space));
1921
1922 cap = state->cap;
1923 while (cap->size) {
1924 struct pci_cap_saved_state *tmp;
1925
1926 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1927 if (!tmp || tmp->cap.size != cap->size)
1928 return -EINVAL;
1929
1930 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1931 cap = (struct pci_cap_saved_data *)((u8 *)cap +
1932 sizeof(struct pci_cap_saved_data) + cap->size);
1933 }
1934
1935 dev->state_saved = true;
1936 return 0;
1937}
1938EXPORT_SYMBOL_GPL(pci_load_saved_state);
1939
1940/**
1941 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1942 * and free the memory allocated for it.
1943 * @dev: PCI device that we're dealing with
1944 * @state: Pointer to saved state returned from pci_store_saved_state()
1945 */
1946int pci_load_and_free_saved_state(struct pci_dev *dev,
1947 struct pci_saved_state **state)
1948{
1949 int ret = pci_load_saved_state(dev, *state);
1950 kfree(*state);
1951 *state = NULL;
1952 return ret;
1953}
1954EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1955
1956int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1957{
1958 return pci_enable_resources(dev, bars);
1959}
1960
1961static int pci_host_bridge_enable_device(struct pci_dev *dev)
1962{
1963 struct pci_host_bridge *host_bridge = pci_find_host_bridge(dev->bus);
1964 int err;
1965
1966 if (host_bridge && host_bridge->enable_device) {
1967 err = host_bridge->enable_device(host_bridge, dev);
1968 if (err)
1969 return err;
1970 }
1971
1972 return 0;
1973}
1974
1975static void pci_host_bridge_disable_device(struct pci_dev *dev)
1976{
1977 struct pci_host_bridge *host_bridge = pci_find_host_bridge(dev->bus);
1978
1979 if (host_bridge && host_bridge->disable_device)
1980 host_bridge->disable_device(host_bridge, dev);
1981}
1982
1983static int do_pci_enable_device(struct pci_dev *dev, int bars)
1984{
1985 int err;
1986 struct pci_dev *bridge;
1987 u16 cmd;
1988 u8 pin;
1989
1990 err = pci_set_power_state(dev, PCI_D0);
1991 if (err < 0 && err != -EIO)
1992 return err;
1993
1994 bridge = pci_upstream_bridge(dev);
1995 if (bridge)
1996 pcie_aspm_powersave_config_link(bridge);
1997
1998 err = pci_host_bridge_enable_device(dev);
1999 if (err)
2000 return err;
2001
2002 err = pcibios_enable_device(dev, bars);
2003 if (err < 0)
2004 goto err_enable;
2005 pci_fixup_device(pci_fixup_enable, dev);
2006
2007 if (dev->msi_enabled || dev->msix_enabled)
2008 return 0;
2009
2010 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
2011 if (pin) {
2012 pci_read_config_word(dev, PCI_COMMAND, &cmd);
2013 if (cmd & PCI_COMMAND_INTX_DISABLE)
2014 pci_write_config_word(dev, PCI_COMMAND,
2015 cmd & ~PCI_COMMAND_INTX_DISABLE);
2016 }
2017
2018 return 0;
2019
2020err_enable:
2021 pci_host_bridge_disable_device(dev);
2022
2023 return err;
2024
2025}
2026
2027/**
2028 * pci_reenable_device - Resume abandoned device
2029 * @dev: PCI device to be resumed
2030 *
2031 * NOTE: This function is a backend of pci_default_resume() and is not supposed
2032 * to be called by normal code, write proper resume handler and use it instead.
2033 */
2034int pci_reenable_device(struct pci_dev *dev)
2035{
2036 if (pci_is_enabled(dev))
2037 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
2038 return 0;
2039}
2040EXPORT_SYMBOL(pci_reenable_device);
2041
2042static void pci_enable_bridge(struct pci_dev *dev)
2043{
2044 struct pci_dev *bridge;
2045 int retval;
2046
2047 bridge = pci_upstream_bridge(dev);
2048 if (bridge)
2049 pci_enable_bridge(bridge);
2050
2051 if (pci_is_enabled(dev)) {
2052 if (!dev->is_busmaster)
2053 pci_set_master(dev);
2054 return;
2055 }
2056
2057 retval = pci_enable_device(dev);
2058 if (retval)
2059 pci_err(dev, "Error enabling bridge (%d), continuing\n",
2060 retval);
2061 pci_set_master(dev);
2062}
2063
2064static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
2065{
2066 struct pci_dev *bridge;
2067 int err;
2068 int i, bars = 0;
2069
2070 /*
2071 * Power state could be unknown at this point, either due to a fresh
2072 * boot or a device removal call. So get the current power state
2073 * so that things like MSI message writing will behave as expected
2074 * (e.g. if the device really is in D0 at enable time).
2075 */
2076 pci_update_current_state(dev, dev->current_state);
2077
2078 if (atomic_inc_return(&dev->enable_cnt) > 1)
2079 return 0; /* already enabled */
2080
2081 bridge = pci_upstream_bridge(dev);
2082 if (bridge)
2083 pci_enable_bridge(bridge);
2084
2085 /* only skip sriov related */
2086 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
2087 if (dev->resource[i].flags & flags)
2088 bars |= (1 << i);
2089 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
2090 if (dev->resource[i].flags & flags)
2091 bars |= (1 << i);
2092
2093 err = do_pci_enable_device(dev, bars);
2094 if (err < 0)
2095 atomic_dec(&dev->enable_cnt);
2096 return err;
2097}
2098
2099/**
2100 * pci_enable_device_mem - Initialize a device for use with Memory space
2101 * @dev: PCI device to be initialized
2102 *
2103 * Initialize device before it's used by a driver. Ask low-level code
2104 * to enable Memory resources. Wake up the device if it was suspended.
2105 * Beware, this function can fail.
2106 */
2107int pci_enable_device_mem(struct pci_dev *dev)
2108{
2109 return pci_enable_device_flags(dev, IORESOURCE_MEM);
2110}
2111EXPORT_SYMBOL(pci_enable_device_mem);
2112
2113/**
2114 * pci_enable_device - Initialize device before it's used by a driver.
2115 * @dev: PCI device to be initialized
2116 *
2117 * Initialize device before it's used by a driver. Ask low-level code
2118 * to enable I/O and memory. Wake up the device if it was suspended.
2119 * Beware, this function can fail.
2120 *
2121 * Note we don't actually enable the device many times if we call
2122 * this function repeatedly (we just increment the count).
2123 */
2124int pci_enable_device(struct pci_dev *dev)
2125{
2126 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
2127}
2128EXPORT_SYMBOL(pci_enable_device);
2129
2130/*
2131 * pcibios_device_add - provide arch specific hooks when adding device dev
2132 * @dev: the PCI device being added
2133 *
2134 * Permits the platform to provide architecture specific functionality when
2135 * devices are added. This is the default implementation. Architecture
2136 * implementations can override this.
2137 */
2138int __weak pcibios_device_add(struct pci_dev *dev)
2139{
2140 return 0;
2141}
2142
2143/**
2144 * pcibios_release_device - provide arch specific hooks when releasing
2145 * device dev
2146 * @dev: the PCI device being released
2147 *
2148 * Permits the platform to provide architecture specific functionality when
2149 * devices are released. This is the default implementation. Architecture
2150 * implementations can override this.
2151 */
2152void __weak pcibios_release_device(struct pci_dev *dev) {}
2153
2154/**
2155 * pcibios_disable_device - disable arch specific PCI resources for device dev
2156 * @dev: the PCI device to disable
2157 *
2158 * Disables architecture specific PCI resources for the device. This
2159 * is the default implementation. Architecture implementations can
2160 * override this.
2161 */
2162void __weak pcibios_disable_device(struct pci_dev *dev) {}
2163
2164static void do_pci_disable_device(struct pci_dev *dev)
2165{
2166 u16 pci_command;
2167
2168 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
2169 if (pci_command & PCI_COMMAND_MASTER) {
2170 pci_command &= ~PCI_COMMAND_MASTER;
2171 pci_write_config_word(dev, PCI_COMMAND, pci_command);
2172 }
2173
2174 pcibios_disable_device(dev);
2175}
2176
2177/**
2178 * pci_disable_enabled_device - Disable device without updating enable_cnt
2179 * @dev: PCI device to disable
2180 *
2181 * NOTE: This function is a backend of PCI power management routines and is
2182 * not supposed to be called drivers.
2183 */
2184void pci_disable_enabled_device(struct pci_dev *dev)
2185{
2186 if (pci_is_enabled(dev))
2187 do_pci_disable_device(dev);
2188}
2189
2190/**
2191 * pci_disable_device - Disable PCI device after use
2192 * @dev: PCI device to be disabled
2193 *
2194 * Signal to the system that the PCI device is not in use by the system
2195 * anymore. This only involves disabling PCI bus-mastering, if active.
2196 *
2197 * Note we don't actually disable the device until all callers of
2198 * pci_enable_device() have called pci_disable_device().
2199 */
2200void pci_disable_device(struct pci_dev *dev)
2201{
2202 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
2203 "disabling already-disabled device");
2204
2205 if (atomic_dec_return(&dev->enable_cnt) != 0)
2206 return;
2207
2208 pci_host_bridge_disable_device(dev);
2209
2210 do_pci_disable_device(dev);
2211
2212 dev->is_busmaster = 0;
2213}
2214EXPORT_SYMBOL(pci_disable_device);
2215
2216/**
2217 * pcibios_set_pcie_reset_state - set reset state for device dev
2218 * @dev: the PCIe device reset
2219 * @state: Reset state to enter into
2220 *
2221 * Set the PCIe reset state for the device. This is the default
2222 * implementation. Architecture implementations can override this.
2223 */
2224int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
2225 enum pcie_reset_state state)
2226{
2227 return -EINVAL;
2228}
2229
2230/**
2231 * pci_set_pcie_reset_state - set reset state for device dev
2232 * @dev: the PCIe device reset
2233 * @state: Reset state to enter into
2234 *
2235 * Sets the PCI reset state for the device.
2236 */
2237int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2238{
2239 return pcibios_set_pcie_reset_state(dev, state);
2240}
2241EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2242
2243#ifdef CONFIG_PCIEAER
2244void pcie_clear_device_status(struct pci_dev *dev)
2245{
2246 u16 sta;
2247
2248 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta);
2249 pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta);
2250}
2251#endif
2252
2253/**
2254 * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2255 * @dev: PCIe root port or event collector.
2256 */
2257void pcie_clear_root_pme_status(struct pci_dev *dev)
2258{
2259 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2260}
2261
2262/**
2263 * pci_check_pme_status - Check if given device has generated PME.
2264 * @dev: Device to check.
2265 *
2266 * Check the PME status of the device and if set, clear it and clear PME enable
2267 * (if set). Return 'true' if PME status and PME enable were both set or
2268 * 'false' otherwise.
2269 */
2270bool pci_check_pme_status(struct pci_dev *dev)
2271{
2272 int pmcsr_pos;
2273 u16 pmcsr;
2274 bool ret = false;
2275
2276 if (!dev->pm_cap)
2277 return false;
2278
2279 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2280 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2281 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2282 return false;
2283
2284 /* Clear PME status. */
2285 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2286 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2287 /* Disable PME to avoid interrupt flood. */
2288 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2289 ret = true;
2290 }
2291
2292 pci_write_config_word(dev, pmcsr_pos, pmcsr);
2293
2294 return ret;
2295}
2296
2297/**
2298 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2299 * @dev: Device to handle.
2300 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2301 *
2302 * Check if @dev has generated PME and queue a resume request for it in that
2303 * case.
2304 */
2305static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2306{
2307 if (pme_poll_reset && dev->pme_poll)
2308 dev->pme_poll = false;
2309
2310 if (pci_check_pme_status(dev)) {
2311 pci_wakeup_event(dev);
2312 pm_request_resume(&dev->dev);
2313 }
2314 return 0;
2315}
2316
2317/**
2318 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2319 * @bus: Top bus of the subtree to walk.
2320 */
2321void pci_pme_wakeup_bus(struct pci_bus *bus)
2322{
2323 if (bus)
2324 pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2325}
2326
2327
2328/**
2329 * pci_pme_capable - check the capability of PCI device to generate PME#
2330 * @dev: PCI device to handle.
2331 * @state: PCI state from which device will issue PME#.
2332 */
2333bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2334{
2335 if (!dev->pm_cap)
2336 return false;
2337
2338 return !!(dev->pme_support & (1 << state));
2339}
2340EXPORT_SYMBOL(pci_pme_capable);
2341
2342static void pci_pme_list_scan(struct work_struct *work)
2343{
2344 struct pci_pme_device *pme_dev, *n;
2345
2346 mutex_lock(&pci_pme_list_mutex);
2347 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2348 struct pci_dev *pdev = pme_dev->dev;
2349
2350 if (pdev->pme_poll) {
2351 struct pci_dev *bridge = pdev->bus->self;
2352 struct device *dev = &pdev->dev;
2353 struct device *bdev = bridge ? &bridge->dev : NULL;
2354 int bref = 0;
2355
2356 /*
2357 * If we have a bridge, it should be in an active/D0
2358 * state or the configuration space of subordinate
2359 * devices may not be accessible or stable over the
2360 * course of the call.
2361 */
2362 if (bdev) {
2363 bref = pm_runtime_get_if_active(bdev);
2364 if (!bref)
2365 continue;
2366
2367 if (bridge->current_state != PCI_D0)
2368 goto put_bridge;
2369 }
2370
2371 /*
2372 * The device itself should be suspended but config
2373 * space must be accessible, therefore it cannot be in
2374 * D3cold.
2375 */
2376 if (pm_runtime_suspended(dev) &&
2377 pdev->current_state != PCI_D3cold)
2378 pci_pme_wakeup(pdev, NULL);
2379
2380put_bridge:
2381 if (bref > 0)
2382 pm_runtime_put(bdev);
2383 } else {
2384 list_del(&pme_dev->list);
2385 kfree(pme_dev);
2386 }
2387 }
2388 if (!list_empty(&pci_pme_list))
2389 queue_delayed_work(system_freezable_wq, &pci_pme_work,
2390 msecs_to_jiffies(PME_TIMEOUT));
2391 mutex_unlock(&pci_pme_list_mutex);
2392}
2393
2394static void __pci_pme_active(struct pci_dev *dev, bool enable)
2395{
2396 u16 pmcsr;
2397
2398 if (!dev->pme_support)
2399 return;
2400
2401 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2402 /* Clear PME_Status by writing 1 to it and enable PME# */
2403 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2404 if (!enable)
2405 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2406
2407 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2408}
2409
2410/**
2411 * pci_pme_restore - Restore PME configuration after config space restore.
2412 * @dev: PCI device to update.
2413 */
2414void pci_pme_restore(struct pci_dev *dev)
2415{
2416 u16 pmcsr;
2417
2418 if (!dev->pme_support)
2419 return;
2420
2421 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2422 if (dev->wakeup_prepared) {
2423 pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2424 pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2425 } else {
2426 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2427 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2428 }
2429 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2430}
2431
2432/**
2433 * pci_pme_active - enable or disable PCI device's PME# function
2434 * @dev: PCI device to handle.
2435 * @enable: 'true' to enable PME# generation; 'false' to disable it.
2436 *
2437 * The caller must verify that the device is capable of generating PME# before
2438 * calling this function with @enable equal to 'true'.
2439 */
2440void pci_pme_active(struct pci_dev *dev, bool enable)
2441{
2442 __pci_pme_active(dev, enable);
2443
2444 /*
2445 * PCI (as opposed to PCIe) PME requires that the device have
2446 * its PME# line hooked up correctly. Not all hardware vendors
2447 * do this, so the PME never gets delivered and the device
2448 * remains asleep. The easiest way around this is to
2449 * periodically walk the list of suspended devices and check
2450 * whether any have their PME flag set. The assumption is that
2451 * we'll wake up often enough anyway that this won't be a huge
2452 * hit, and the power savings from the devices will still be a
2453 * win.
2454 *
2455 * Although PCIe uses in-band PME message instead of PME# line
2456 * to report PME, PME does not work for some PCIe devices in
2457 * reality. For example, there are devices that set their PME
2458 * status bits, but don't really bother to send a PME message;
2459 * there are PCI Express Root Ports that don't bother to
2460 * trigger interrupts when they receive PME messages from the
2461 * devices below. So PME poll is used for PCIe devices too.
2462 */
2463
2464 if (dev->pme_poll) {
2465 struct pci_pme_device *pme_dev;
2466 if (enable) {
2467 pme_dev = kmalloc(sizeof(struct pci_pme_device),
2468 GFP_KERNEL);
2469 if (!pme_dev) {
2470 pci_warn(dev, "can't enable PME#\n");
2471 return;
2472 }
2473 pme_dev->dev = dev;
2474 mutex_lock(&pci_pme_list_mutex);
2475 list_add(&pme_dev->list, &pci_pme_list);
2476 if (list_is_singular(&pci_pme_list))
2477 queue_delayed_work(system_freezable_wq,
2478 &pci_pme_work,
2479 msecs_to_jiffies(PME_TIMEOUT));
2480 mutex_unlock(&pci_pme_list_mutex);
2481 } else {
2482 mutex_lock(&pci_pme_list_mutex);
2483 list_for_each_entry(pme_dev, &pci_pme_list, list) {
2484 if (pme_dev->dev == dev) {
2485 list_del(&pme_dev->list);
2486 kfree(pme_dev);
2487 break;
2488 }
2489 }
2490 mutex_unlock(&pci_pme_list_mutex);
2491 }
2492 }
2493
2494 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2495}
2496EXPORT_SYMBOL(pci_pme_active);
2497
2498/**
2499 * __pci_enable_wake - enable PCI device as wakeup event source
2500 * @dev: PCI device affected
2501 * @state: PCI state from which device will issue wakeup events
2502 * @enable: True to enable event generation; false to disable
2503 *
2504 * This enables the device as a wakeup event source, or disables it.
2505 * When such events involves platform-specific hooks, those hooks are
2506 * called automatically by this routine.
2507 *
2508 * Devices with legacy power management (no standard PCI PM capabilities)
2509 * always require such platform hooks.
2510 *
2511 * RETURN VALUE:
2512 * 0 is returned on success
2513 * -EINVAL is returned if device is not supposed to wake up the system
2514 * Error code depending on the platform is returned if both the platform and
2515 * the native mechanism fail to enable the generation of wake-up events
2516 */
2517static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2518{
2519 int ret = 0;
2520
2521 /*
2522 * Bridges that are not power-manageable directly only signal
2523 * wakeup on behalf of subordinate devices which is set up
2524 * elsewhere, so skip them. However, bridges that are
2525 * power-manageable may signal wakeup for themselves (for example,
2526 * on a hotplug event) and they need to be covered here.
2527 */
2528 if (!pci_power_manageable(dev))
2529 return 0;
2530
2531 /* Don't do the same thing twice in a row for one device. */
2532 if (!!enable == !!dev->wakeup_prepared)
2533 return 0;
2534
2535 /*
2536 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2537 * Anderson we should be doing PME# wake enable followed by ACPI wake
2538 * enable. To disable wake-up we call the platform first, for symmetry.
2539 */
2540
2541 if (enable) {
2542 int error;
2543
2544 /*
2545 * Enable PME signaling if the device can signal PME from
2546 * D3cold regardless of whether or not it can signal PME from
2547 * the current target state, because that will allow it to
2548 * signal PME when the hierarchy above it goes into D3cold and
2549 * the device itself ends up in D3cold as a result of that.
2550 */
2551 if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold))
2552 pci_pme_active(dev, true);
2553 else
2554 ret = 1;
2555 error = platform_pci_set_wakeup(dev, true);
2556 if (ret)
2557 ret = error;
2558 if (!ret)
2559 dev->wakeup_prepared = true;
2560 } else {
2561 platform_pci_set_wakeup(dev, false);
2562 pci_pme_active(dev, false);
2563 dev->wakeup_prepared = false;
2564 }
2565
2566 return ret;
2567}
2568
2569/**
2570 * pci_enable_wake - change wakeup settings for a PCI device
2571 * @pci_dev: Target device
2572 * @state: PCI state from which device will issue wakeup events
2573 * @enable: Whether or not to enable event generation
2574 *
2575 * If @enable is set, check device_may_wakeup() for the device before calling
2576 * __pci_enable_wake() for it.
2577 */
2578int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2579{
2580 if (enable && !device_may_wakeup(&pci_dev->dev))
2581 return -EINVAL;
2582
2583 return __pci_enable_wake(pci_dev, state, enable);
2584}
2585EXPORT_SYMBOL(pci_enable_wake);
2586
2587/**
2588 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2589 * @dev: PCI device to prepare
2590 * @enable: True to enable wake-up event generation; false to disable
2591 *
2592 * Many drivers want the device to wake up the system from D3_hot or D3_cold
2593 * and this function allows them to set that up cleanly - pci_enable_wake()
2594 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2595 * ordering constraints.
2596 *
2597 * This function only returns error code if the device is not allowed to wake
2598 * up the system from sleep or it is not capable of generating PME# from both
2599 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2600 */
2601int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2602{
2603 return pci_pme_capable(dev, PCI_D3cold) ?
2604 pci_enable_wake(dev, PCI_D3cold, enable) :
2605 pci_enable_wake(dev, PCI_D3hot, enable);
2606}
2607EXPORT_SYMBOL(pci_wake_from_d3);
2608
2609/**
2610 * pci_target_state - find an appropriate low power state for a given PCI dev
2611 * @dev: PCI device
2612 * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2613 *
2614 * Use underlying platform code to find a supported low power state for @dev.
2615 * If the platform can't manage @dev, return the deepest state from which it
2616 * can generate wake events, based on any available PME info.
2617 */
2618static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2619{
2620 if (platform_pci_power_manageable(dev)) {
2621 /*
2622 * Call the platform to find the target state for the device.
2623 */
2624 pci_power_t state = platform_pci_choose_state(dev);
2625
2626 switch (state) {
2627 case PCI_POWER_ERROR:
2628 case PCI_UNKNOWN:
2629 return PCI_D3hot;
2630
2631 case PCI_D1:
2632 case PCI_D2:
2633 if (pci_no_d1d2(dev))
2634 return PCI_D3hot;
2635 }
2636
2637 return state;
2638 }
2639
2640 /*
2641 * If the device is in D3cold even though it's not power-manageable by
2642 * the platform, it may have been powered down by non-standard means.
2643 * Best to let it slumber.
2644 */
2645 if (dev->current_state == PCI_D3cold)
2646 return PCI_D3cold;
2647 else if (!dev->pm_cap)
2648 return PCI_D0;
2649
2650 if (wakeup && dev->pme_support) {
2651 pci_power_t state = PCI_D3hot;
2652
2653 /*
2654 * Find the deepest state from which the device can generate
2655 * PME#.
2656 */
2657 while (state && !(dev->pme_support & (1 << state)))
2658 state--;
2659
2660 if (state)
2661 return state;
2662 else if (dev->pme_support & 1)
2663 return PCI_D0;
2664 }
2665
2666 return PCI_D3hot;
2667}
2668
2669/**
2670 * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2671 * into a sleep state
2672 * @dev: Device to handle.
2673 *
2674 * Choose the power state appropriate for the device depending on whether
2675 * it can wake up the system and/or is power manageable by the platform
2676 * (PCI_D3hot is the default) and put the device into that state.
2677 */
2678int pci_prepare_to_sleep(struct pci_dev *dev)
2679{
2680 bool wakeup = device_may_wakeup(&dev->dev);
2681 pci_power_t target_state = pci_target_state(dev, wakeup);
2682 int error;
2683
2684 if (target_state == PCI_POWER_ERROR)
2685 return -EIO;
2686
2687 pci_enable_wake(dev, target_state, wakeup);
2688
2689 error = pci_set_power_state(dev, target_state);
2690
2691 if (error)
2692 pci_enable_wake(dev, target_state, false);
2693
2694 return error;
2695}
2696EXPORT_SYMBOL(pci_prepare_to_sleep);
2697
2698/**
2699 * pci_back_from_sleep - turn PCI device on during system-wide transition
2700 * into working state
2701 * @dev: Device to handle.
2702 *
2703 * Disable device's system wake-up capability and put it into D0.
2704 */
2705int pci_back_from_sleep(struct pci_dev *dev)
2706{
2707 int ret = pci_set_power_state(dev, PCI_D0);
2708
2709 if (ret)
2710 return ret;
2711
2712 pci_enable_wake(dev, PCI_D0, false);
2713 return 0;
2714}
2715EXPORT_SYMBOL(pci_back_from_sleep);
2716
2717/**
2718 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2719 * @dev: PCI device being suspended.
2720 *
2721 * Prepare @dev to generate wake-up events at run time and put it into a low
2722 * power state.
2723 */
2724int pci_finish_runtime_suspend(struct pci_dev *dev)
2725{
2726 pci_power_t target_state;
2727 int error;
2728
2729 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2730 if (target_state == PCI_POWER_ERROR)
2731 return -EIO;
2732
2733 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2734
2735 error = pci_set_power_state(dev, target_state);
2736
2737 if (error)
2738 pci_enable_wake(dev, target_state, false);
2739
2740 return error;
2741}
2742
2743/**
2744 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2745 * @dev: Device to check.
2746 *
2747 * Return true if the device itself is capable of generating wake-up events
2748 * (through the platform or using the native PCIe PME) or if the device supports
2749 * PME and one of its upstream bridges can generate wake-up events.
2750 */
2751bool pci_dev_run_wake(struct pci_dev *dev)
2752{
2753 struct pci_bus *bus = dev->bus;
2754
2755 if (!dev->pme_support)
2756 return false;
2757
2758 /* PME-capable in principle, but not from the target power state */
2759 if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2760 return false;
2761
2762 if (device_can_wakeup(&dev->dev))
2763 return true;
2764
2765 while (bus->parent) {
2766 struct pci_dev *bridge = bus->self;
2767
2768 if (device_can_wakeup(&bridge->dev))
2769 return true;
2770
2771 bus = bus->parent;
2772 }
2773
2774 /* We have reached the root bus. */
2775 if (bus->bridge)
2776 return device_can_wakeup(bus->bridge);
2777
2778 return false;
2779}
2780EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2781
2782/**
2783 * pci_dev_need_resume - Check if it is necessary to resume the device.
2784 * @pci_dev: Device to check.
2785 *
2786 * Return 'true' if the device is not runtime-suspended or it has to be
2787 * reconfigured due to wakeup settings difference between system and runtime
2788 * suspend, or the current power state of it is not suitable for the upcoming
2789 * (system-wide) transition.
2790 */
2791bool pci_dev_need_resume(struct pci_dev *pci_dev)
2792{
2793 struct device *dev = &pci_dev->dev;
2794 pci_power_t target_state;
2795
2796 if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2797 return true;
2798
2799 target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2800
2801 /*
2802 * If the earlier platform check has not triggered, D3cold is just power
2803 * removal on top of D3hot, so no need to resume the device in that
2804 * case.
2805 */
2806 return target_state != pci_dev->current_state &&
2807 target_state != PCI_D3cold &&
2808 pci_dev->current_state != PCI_D3hot;
2809}
2810
2811/**
2812 * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2813 * @pci_dev: Device to check.
2814 *
2815 * If the device is suspended and it is not configured for system wakeup,
2816 * disable PME for it to prevent it from waking up the system unnecessarily.
2817 *
2818 * Note that if the device's power state is D3cold and the platform check in
2819 * pci_dev_need_resume() has not triggered, the device's configuration need not
2820 * be changed.
2821 */
2822void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2823{
2824 struct device *dev = &pci_dev->dev;
2825
2826 spin_lock_irq(&dev->power.lock);
2827
2828 if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2829 pci_dev->current_state < PCI_D3cold)
2830 __pci_pme_active(pci_dev, false);
2831
2832 spin_unlock_irq(&dev->power.lock);
2833}
2834
2835/**
2836 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2837 * @pci_dev: Device to handle.
2838 *
2839 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2840 * it might have been disabled during the prepare phase of system suspend if
2841 * the device was not configured for system wakeup.
2842 */
2843void pci_dev_complete_resume(struct pci_dev *pci_dev)
2844{
2845 struct device *dev = &pci_dev->dev;
2846
2847 if (!pci_dev_run_wake(pci_dev))
2848 return;
2849
2850 spin_lock_irq(&dev->power.lock);
2851
2852 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2853 __pci_pme_active(pci_dev, true);
2854
2855 spin_unlock_irq(&dev->power.lock);
2856}
2857
2858/**
2859 * pci_choose_state - Choose the power state of a PCI device.
2860 * @dev: Target PCI device.
2861 * @state: Target state for the whole system.
2862 *
2863 * Returns PCI power state suitable for @dev and @state.
2864 */
2865pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
2866{
2867 if (state.event == PM_EVENT_ON)
2868 return PCI_D0;
2869
2870 return pci_target_state(dev, false);
2871}
2872EXPORT_SYMBOL(pci_choose_state);
2873
2874void pci_config_pm_runtime_get(struct pci_dev *pdev)
2875{
2876 struct device *dev = &pdev->dev;
2877 struct device *parent = dev->parent;
2878
2879 if (parent)
2880 pm_runtime_get_sync(parent);
2881 pm_runtime_get_noresume(dev);
2882 /*
2883 * pdev->current_state is set to PCI_D3cold during suspending,
2884 * so wait until suspending completes
2885 */
2886 pm_runtime_barrier(dev);
2887 /*
2888 * Only need to resume devices in D3cold, because config
2889 * registers are still accessible for devices suspended but
2890 * not in D3cold.
2891 */
2892 if (pdev->current_state == PCI_D3cold)
2893 pm_runtime_resume(dev);
2894}
2895
2896void pci_config_pm_runtime_put(struct pci_dev *pdev)
2897{
2898 struct device *dev = &pdev->dev;
2899 struct device *parent = dev->parent;
2900
2901 pm_runtime_put(dev);
2902 if (parent)
2903 pm_runtime_put_sync(parent);
2904}
2905
2906static const struct dmi_system_id bridge_d3_blacklist[] = {
2907#ifdef CONFIG_X86
2908 {
2909 /*
2910 * Gigabyte X299 root port is not marked as hotplug capable
2911 * which allows Linux to power manage it. However, this
2912 * confuses the BIOS SMI handler so don't power manage root
2913 * ports on that system.
2914 */
2915 .ident = "X299 DESIGNARE EX-CF",
2916 .matches = {
2917 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2918 DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2919 },
2920 },
2921 {
2922 /*
2923 * Downstream device is not accessible after putting a root port
2924 * into D3cold and back into D0 on Elo Continental Z2 board
2925 */
2926 .ident = "Elo Continental Z2",
2927 .matches = {
2928 DMI_MATCH(DMI_BOARD_VENDOR, "Elo Touch Solutions"),
2929 DMI_MATCH(DMI_BOARD_NAME, "Geminilake"),
2930 DMI_MATCH(DMI_BOARD_VERSION, "Continental Z2"),
2931 },
2932 },
2933 {
2934 /*
2935 * Changing power state of root port dGPU is connected fails
2936 * https://gitlab.freedesktop.org/drm/amd/-/issues/3229
2937 */
2938 .ident = "Hewlett-Packard HP Pavilion 17 Notebook PC/1972",
2939 .matches = {
2940 DMI_MATCH(DMI_BOARD_VENDOR, "Hewlett-Packard"),
2941 DMI_MATCH(DMI_BOARD_NAME, "1972"),
2942 DMI_MATCH(DMI_BOARD_VERSION, "95.33"),
2943 },
2944 },
2945#endif
2946 { }
2947};
2948
2949/**
2950 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2951 * @bridge: Bridge to check
2952 *
2953 * Currently we only allow D3 for some PCIe ports and for Thunderbolt.
2954 *
2955 * Return: Whether it is possible to move the bridge to D3.
2956 *
2957 * The return value is guaranteed to be constant across the entire lifetime
2958 * of the bridge, including its hot-removal.
2959 */
2960bool pci_bridge_d3_possible(struct pci_dev *bridge)
2961{
2962 if (!pci_is_pcie(bridge))
2963 return false;
2964
2965 switch (pci_pcie_type(bridge)) {
2966 case PCI_EXP_TYPE_ROOT_PORT:
2967 case PCI_EXP_TYPE_UPSTREAM:
2968 case PCI_EXP_TYPE_DOWNSTREAM:
2969 if (pci_bridge_d3_disable)
2970 return false;
2971
2972 /*
2973 * Hotplug ports handled by platform firmware may not be put
2974 * into D3 by the OS, e.g. ACPI slots ...
2975 */
2976 if (bridge->is_hotplug_bridge && !bridge->is_pciehp)
2977 return false;
2978
2979 /* ... or PCIe hotplug ports not handled natively by the OS. */
2980 if (bridge->is_pciehp && !pciehp_is_native(bridge))
2981 return false;
2982
2983 if (pci_bridge_d3_force)
2984 return true;
2985
2986 /* Even the oldest 2010 Thunderbolt controller supports D3. */
2987 if (bridge->is_thunderbolt)
2988 return true;
2989
2990 /* Platform might know better if the bridge supports D3 */
2991 if (platform_pci_bridge_d3(bridge))
2992 return true;
2993
2994 /*
2995 * Hotplug ports handled natively by the OS were not validated
2996 * by vendors for runtime D3 at least until 2018 because there
2997 * was no OS support.
2998 */
2999 if (bridge->is_pciehp)
3000 return false;
3001
3002 if (dmi_check_system(bridge_d3_blacklist))
3003 return false;
3004
3005 /*
3006 * Out of caution, we only allow PCIe ports from 2015 or newer
3007 * into D3 on x86.
3008 */
3009 if (!IS_ENABLED(CONFIG_X86) || dmi_get_bios_year() >= 2015)
3010 return true;
3011 break;
3012 }
3013
3014 return false;
3015}
3016
3017static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
3018{
3019 bool *d3cold_ok = data;
3020
3021 if (/* The device needs to be allowed to go D3cold ... */
3022 dev->no_d3cold || !dev->d3cold_allowed ||
3023
3024 /* ... and if it is wakeup capable to do so from D3cold. */
3025 (device_may_wakeup(&dev->dev) &&
3026 !pci_pme_capable(dev, PCI_D3cold)) ||
3027
3028 /* If it is a bridge it must be allowed to go to D3. */
3029 !pci_power_manageable(dev))
3030
3031 *d3cold_ok = false;
3032
3033 return !*d3cold_ok;
3034}
3035
3036/*
3037 * pci_bridge_d3_update - Update bridge D3 capabilities
3038 * @dev: PCI device which is changed
3039 *
3040 * Update upstream bridge PM capabilities accordingly depending on if the
3041 * device PM configuration was changed or the device is being removed. The
3042 * change is also propagated upstream.
3043 */
3044void pci_bridge_d3_update(struct pci_dev *dev)
3045{
3046 bool remove = !device_is_registered(&dev->dev);
3047 struct pci_dev *bridge;
3048 bool d3cold_ok = true;
3049
3050 bridge = pci_upstream_bridge(dev);
3051 if (!bridge || !pci_bridge_d3_possible(bridge))
3052 return;
3053
3054 /*
3055 * If D3 is currently allowed for the bridge, removing one of its
3056 * children won't change that.
3057 */
3058 if (remove && bridge->bridge_d3)
3059 return;
3060
3061 /*
3062 * If D3 is currently allowed for the bridge and a child is added or
3063 * changed, disallowance of D3 can only be caused by that child, so
3064 * we only need to check that single device, not any of its siblings.
3065 *
3066 * If D3 is currently not allowed for the bridge, checking the device
3067 * first may allow us to skip checking its siblings.
3068 */
3069 if (!remove)
3070 pci_dev_check_d3cold(dev, &d3cold_ok);
3071
3072 /*
3073 * If D3 is currently not allowed for the bridge, this may be caused
3074 * either by the device being changed/removed or any of its siblings,
3075 * so we need to go through all children to find out if one of them
3076 * continues to block D3.
3077 */
3078 if (d3cold_ok && !bridge->bridge_d3)
3079 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
3080 &d3cold_ok);
3081
3082 if (bridge->bridge_d3 != d3cold_ok) {
3083 bridge->bridge_d3 = d3cold_ok;
3084 /* Propagate change to upstream bridges */
3085 pci_bridge_d3_update(bridge);
3086 }
3087}
3088
3089/**
3090 * pci_d3cold_enable - Enable D3cold for device
3091 * @dev: PCI device to handle
3092 *
3093 * This function can be used in drivers to enable D3cold from the device
3094 * they handle. It also updates upstream PCI bridge PM capabilities
3095 * accordingly.
3096 */
3097void pci_d3cold_enable(struct pci_dev *dev)
3098{
3099 if (dev->no_d3cold) {
3100 dev->no_d3cold = false;
3101 pci_bridge_d3_update(dev);
3102 }
3103}
3104EXPORT_SYMBOL_GPL(pci_d3cold_enable);
3105
3106/**
3107 * pci_d3cold_disable - Disable D3cold for device
3108 * @dev: PCI device to handle
3109 *
3110 * This function can be used in drivers to disable D3cold from the device
3111 * they handle. It also updates upstream PCI bridge PM capabilities
3112 * accordingly.
3113 */
3114void pci_d3cold_disable(struct pci_dev *dev)
3115{
3116 if (!dev->no_d3cold) {
3117 dev->no_d3cold = true;
3118 pci_bridge_d3_update(dev);
3119 }
3120}
3121EXPORT_SYMBOL_GPL(pci_d3cold_disable);
3122
3123void pci_pm_power_up_and_verify_state(struct pci_dev *pci_dev)
3124{
3125 pci_power_up(pci_dev);
3126 pci_update_current_state(pci_dev, PCI_D0);
3127}
3128
3129/**
3130 * pci_pm_init - Initialize PM functions of given PCI device
3131 * @dev: PCI device to handle.
3132 */
3133void pci_pm_init(struct pci_dev *dev)
3134{
3135 int pm;
3136 u16 pmc;
3137
3138 device_enable_async_suspend(&dev->dev);
3139 dev->wakeup_prepared = false;
3140
3141 dev->pm_cap = 0;
3142 dev->pme_support = 0;
3143
3144 /* find PCI PM capability in list */
3145 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
3146 if (!pm)
3147 goto poweron;
3148 /* Check device's ability to generate PME# */
3149 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
3150
3151 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
3152 pci_err(dev, "unsupported PM cap regs version (%u)\n",
3153 pmc & PCI_PM_CAP_VER_MASK);
3154 goto poweron;
3155 }
3156
3157 dev->pm_cap = pm;
3158 dev->d3hot_delay = PCI_PM_D3HOT_WAIT;
3159 dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
3160 dev->bridge_d3 = pci_bridge_d3_possible(dev);
3161 dev->d3cold_allowed = true;
3162
3163 dev->d1_support = false;
3164 dev->d2_support = false;
3165 if (!pci_no_d1d2(dev)) {
3166 if (pmc & PCI_PM_CAP_D1)
3167 dev->d1_support = true;
3168 if (pmc & PCI_PM_CAP_D2)
3169 dev->d2_support = true;
3170
3171 if (dev->d1_support || dev->d2_support)
3172 pci_info(dev, "supports%s%s\n",
3173 dev->d1_support ? " D1" : "",
3174 dev->d2_support ? " D2" : "");
3175 }
3176
3177 pmc &= PCI_PM_CAP_PME_MASK;
3178 if (pmc) {
3179 pci_info(dev, "PME# supported from%s%s%s%s%s\n",
3180 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
3181 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
3182 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
3183 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "",
3184 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
3185 dev->pme_support = FIELD_GET(PCI_PM_CAP_PME_MASK, pmc);
3186 dev->pme_poll = true;
3187 /*
3188 * Make device's PM flags reflect the wake-up capability, but
3189 * let the user space enable it to wake up the system as needed.
3190 */
3191 device_set_wakeup_capable(&dev->dev, true);
3192 /* Disable the PME# generation functionality */
3193 pci_pme_active(dev, false);
3194 }
3195
3196poweron:
3197 pci_pm_power_up_and_verify_state(dev);
3198 pm_runtime_forbid(&dev->dev);
3199 pm_runtime_set_active(&dev->dev);
3200 pm_runtime_enable(&dev->dev);
3201}
3202
3203static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
3204{
3205 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
3206
3207 switch (prop) {
3208 case PCI_EA_P_MEM:
3209 case PCI_EA_P_VF_MEM:
3210 flags |= IORESOURCE_MEM;
3211 break;
3212 case PCI_EA_P_MEM_PREFETCH:
3213 case PCI_EA_P_VF_MEM_PREFETCH:
3214 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
3215 break;
3216 case PCI_EA_P_IO:
3217 flags |= IORESOURCE_IO;
3218 break;
3219 default:
3220 return 0;
3221 }
3222
3223 return flags;
3224}
3225
3226static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
3227 u8 prop)
3228{
3229 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
3230 return &dev->resource[bei];
3231#ifdef CONFIG_PCI_IOV
3232 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
3233 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
3234 return &dev->resource[PCI_IOV_RESOURCES +
3235 bei - PCI_EA_BEI_VF_BAR0];
3236#endif
3237 else if (bei == PCI_EA_BEI_ROM)
3238 return &dev->resource[PCI_ROM_RESOURCE];
3239 else
3240 return NULL;
3241}
3242
3243/* Read an Enhanced Allocation (EA) entry */
3244static int pci_ea_read(struct pci_dev *dev, int offset)
3245{
3246 struct resource *res;
3247 const char *res_name;
3248 int ent_size, ent_offset = offset;
3249 resource_size_t start, end;
3250 unsigned long flags;
3251 u32 dw0, bei, base, max_offset;
3252 u8 prop;
3253 bool support_64 = (sizeof(resource_size_t) >= 8);
3254
3255 pci_read_config_dword(dev, ent_offset, &dw0);
3256 ent_offset += 4;
3257
3258 /* Entry size field indicates DWORDs after 1st */
3259 ent_size = (FIELD_GET(PCI_EA_ES, dw0) + 1) << 2;
3260
3261 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
3262 goto out;
3263
3264 bei = FIELD_GET(PCI_EA_BEI, dw0);
3265 prop = FIELD_GET(PCI_EA_PP, dw0);
3266
3267 /*
3268 * If the Property is in the reserved range, try the Secondary
3269 * Property instead.
3270 */
3271 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
3272 prop = FIELD_GET(PCI_EA_SP, dw0);
3273 if (prop > PCI_EA_P_BRIDGE_IO)
3274 goto out;
3275
3276 res = pci_ea_get_resource(dev, bei, prop);
3277 res_name = pci_resource_name(dev, bei);
3278 if (!res) {
3279 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
3280 goto out;
3281 }
3282
3283 flags = pci_ea_flags(dev, prop);
3284 if (!flags) {
3285 pci_err(dev, "Unsupported EA properties: %#x\n", prop);
3286 goto out;
3287 }
3288
3289 /* Read Base */
3290 pci_read_config_dword(dev, ent_offset, &base);
3291 start = (base & PCI_EA_FIELD_MASK);
3292 ent_offset += 4;
3293
3294 /* Read MaxOffset */
3295 pci_read_config_dword(dev, ent_offset, &max_offset);
3296 ent_offset += 4;
3297
3298 /* Read Base MSBs (if 64-bit entry) */
3299 if (base & PCI_EA_IS_64) {
3300 u32 base_upper;
3301
3302 pci_read_config_dword(dev, ent_offset, &base_upper);
3303 ent_offset += 4;
3304
3305 flags |= IORESOURCE_MEM_64;
3306
3307 /* entry starts above 32-bit boundary, can't use */
3308 if (!support_64 && base_upper)
3309 goto out;
3310
3311 if (support_64)
3312 start |= ((u64)base_upper << 32);
3313 }
3314
3315 end = start + (max_offset | 0x03);
3316
3317 /* Read MaxOffset MSBs (if 64-bit entry) */
3318 if (max_offset & PCI_EA_IS_64) {
3319 u32 max_offset_upper;
3320
3321 pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3322 ent_offset += 4;
3323
3324 flags |= IORESOURCE_MEM_64;
3325
3326 /* entry too big, can't use */
3327 if (!support_64 && max_offset_upper)
3328 goto out;
3329
3330 if (support_64)
3331 end += ((u64)max_offset_upper << 32);
3332 }
3333
3334 if (end < start) {
3335 pci_err(dev, "EA Entry crosses address boundary\n");
3336 goto out;
3337 }
3338
3339 if (ent_size != ent_offset - offset) {
3340 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3341 ent_size, ent_offset - offset);
3342 goto out;
3343 }
3344
3345 res->name = pci_name(dev);
3346 res->start = start;
3347 res->end = end;
3348 res->flags = flags;
3349
3350 if (bei <= PCI_EA_BEI_BAR5)
3351 pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n",
3352 res_name, res, prop);
3353 else if (bei == PCI_EA_BEI_ROM)
3354 pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n",
3355 res_name, res, prop);
3356 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3357 pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n",
3358 res_name, res, prop);
3359 else
3360 pci_info(dev, "BEI %d %pR: from Enhanced Allocation, properties %#02x\n",
3361 bei, res, prop);
3362
3363out:
3364 return offset + ent_size;
3365}
3366
3367/* Enhanced Allocation Initialization */
3368void pci_ea_init(struct pci_dev *dev)
3369{
3370 int ea;
3371 u8 num_ent;
3372 int offset;
3373 int i;
3374
3375 /* find PCI EA capability in list */
3376 ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3377 if (!ea)
3378 return;
3379
3380 /* determine the number of entries */
3381 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3382 &num_ent);
3383 num_ent &= PCI_EA_NUM_ENT_MASK;
3384
3385 offset = ea + PCI_EA_FIRST_ENT;
3386
3387 /* Skip DWORD 2 for type 1 functions */
3388 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3389 offset += 4;
3390
3391 /* parse each EA entry */
3392 for (i = 0; i < num_ent; ++i)
3393 offset = pci_ea_read(dev, offset);
3394}
3395
3396static void pci_add_saved_cap(struct pci_dev *pci_dev,
3397 struct pci_cap_saved_state *new_cap)
3398{
3399 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3400}
3401
3402/**
3403 * _pci_add_cap_save_buffer - allocate buffer for saving given
3404 * capability registers
3405 * @dev: the PCI device
3406 * @cap: the capability to allocate the buffer for
3407 * @extended: Standard or Extended capability ID
3408 * @size: requested size of the buffer
3409 */
3410static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3411 bool extended, unsigned int size)
3412{
3413 int pos;
3414 struct pci_cap_saved_state *save_state;
3415
3416 if (extended)
3417 pos = pci_find_ext_capability(dev, cap);
3418 else
3419 pos = pci_find_capability(dev, cap);
3420
3421 if (!pos)
3422 return 0;
3423
3424 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3425 if (!save_state)
3426 return -ENOMEM;
3427
3428 save_state->cap.cap_nr = cap;
3429 save_state->cap.cap_extended = extended;
3430 save_state->cap.size = size;
3431 pci_add_saved_cap(dev, save_state);
3432
3433 return 0;
3434}
3435
3436int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3437{
3438 return _pci_add_cap_save_buffer(dev, cap, false, size);
3439}
3440
3441int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3442{
3443 return _pci_add_cap_save_buffer(dev, cap, true, size);
3444}
3445
3446/**
3447 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3448 * @dev: the PCI device
3449 */
3450void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3451{
3452 int error;
3453
3454 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3455 PCI_EXP_SAVE_REGS * sizeof(u16));
3456 if (error)
3457 pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3458
3459 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3460 if (error)
3461 pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3462
3463 error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3464 2 * sizeof(u16));
3465 if (error)
3466 pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3467
3468 pci_allocate_vc_save_buffers(dev);
3469}
3470
3471void pci_free_cap_save_buffers(struct pci_dev *dev)
3472{
3473 struct pci_cap_saved_state *tmp;
3474 struct hlist_node *n;
3475
3476 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3477 kfree(tmp);
3478}
3479
3480/**
3481 * pci_configure_ari - enable or disable ARI forwarding
3482 * @dev: the PCI device
3483 *
3484 * If @dev and its upstream bridge both support ARI, enable ARI in the
3485 * bridge. Otherwise, disable ARI in the bridge.
3486 */
3487void pci_configure_ari(struct pci_dev *dev)
3488{
3489 u32 cap;
3490 struct pci_dev *bridge;
3491
3492 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3493 return;
3494
3495 bridge = dev->bus->self;
3496 if (!bridge)
3497 return;
3498
3499 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3500 if (!(cap & PCI_EXP_DEVCAP2_ARI))
3501 return;
3502
3503 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3504 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3505 PCI_EXP_DEVCTL2_ARI);
3506 bridge->ari_enabled = 1;
3507 } else {
3508 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3509 PCI_EXP_DEVCTL2_ARI);
3510 bridge->ari_enabled = 0;
3511 }
3512}
3513
3514static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3515{
3516 int pos;
3517 u16 cap, ctrl;
3518
3519 pos = pdev->acs_cap;
3520 if (!pos)
3521 return false;
3522
3523 /*
3524 * Except for egress control, capabilities are either required
3525 * or only required if controllable. Features missing from the
3526 * capability field can therefore be assumed as hard-wired enabled.
3527 */
3528 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3529 acs_flags &= (cap | PCI_ACS_EC);
3530
3531 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3532 return (ctrl & acs_flags) == acs_flags;
3533}
3534
3535/**
3536 * pci_acs_enabled - test ACS against required flags for a given device
3537 * @pdev: device to test
3538 * @acs_flags: required PCI ACS flags
3539 *
3540 * Return true if the device supports the provided flags. Automatically
3541 * filters out flags that are not implemented on multifunction devices.
3542 *
3543 * Note that this interface checks the effective ACS capabilities of the
3544 * device rather than the actual capabilities. For instance, most single
3545 * function endpoints are not required to support ACS because they have no
3546 * opportunity for peer-to-peer access. We therefore return 'true'
3547 * regardless of whether the device exposes an ACS capability. This makes
3548 * it much easier for callers of this function to ignore the actual type
3549 * or topology of the device when testing ACS support.
3550 */
3551bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3552{
3553 int ret;
3554
3555 ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3556 if (ret >= 0)
3557 return ret > 0;
3558
3559 /*
3560 * Conventional PCI and PCI-X devices never support ACS, either
3561 * effectively or actually. The shared bus topology implies that
3562 * any device on the bus can receive or snoop DMA.
3563 */
3564 if (!pci_is_pcie(pdev))
3565 return false;
3566
3567 switch (pci_pcie_type(pdev)) {
3568 /*
3569 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3570 * but since their primary interface is PCI/X, we conservatively
3571 * handle them as we would a non-PCIe device.
3572 */
3573 case PCI_EXP_TYPE_PCIE_BRIDGE:
3574 /*
3575 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
3576 * applicable... must never implement an ACS Extended Capability...".
3577 * This seems arbitrary, but we take a conservative interpretation
3578 * of this statement.
3579 */
3580 case PCI_EXP_TYPE_PCI_BRIDGE:
3581 case PCI_EXP_TYPE_RC_EC:
3582 return false;
3583 /*
3584 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3585 * implement ACS in order to indicate their peer-to-peer capabilities,
3586 * regardless of whether they are single- or multi-function devices.
3587 */
3588 case PCI_EXP_TYPE_DOWNSTREAM:
3589 case PCI_EXP_TYPE_ROOT_PORT:
3590 return pci_acs_flags_enabled(pdev, acs_flags);
3591 /*
3592 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3593 * implemented by the remaining PCIe types to indicate peer-to-peer
3594 * capabilities, but only when they are part of a multifunction
3595 * device. The footnote for section 6.12 indicates the specific
3596 * PCIe types included here.
3597 */
3598 case PCI_EXP_TYPE_ENDPOINT:
3599 case PCI_EXP_TYPE_UPSTREAM:
3600 case PCI_EXP_TYPE_LEG_END:
3601 case PCI_EXP_TYPE_RC_END:
3602 if (!pdev->multifunction)
3603 break;
3604
3605 return pci_acs_flags_enabled(pdev, acs_flags);
3606 }
3607
3608 /*
3609 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3610 * to single function devices with the exception of downstream ports.
3611 */
3612 return true;
3613}
3614
3615/**
3616 * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy
3617 * @start: starting downstream device
3618 * @end: ending upstream device or NULL to search to the root bus
3619 * @acs_flags: required flags
3620 *
3621 * Walk up a device tree from start to end testing PCI ACS support. If
3622 * any step along the way does not support the required flags, return false.
3623 */
3624bool pci_acs_path_enabled(struct pci_dev *start,
3625 struct pci_dev *end, u16 acs_flags)
3626{
3627 struct pci_dev *pdev, *parent = start;
3628
3629 do {
3630 pdev = parent;
3631
3632 if (!pci_acs_enabled(pdev, acs_flags))
3633 return false;
3634
3635 if (pci_is_root_bus(pdev->bus))
3636 return (end == NULL);
3637
3638 parent = pdev->bus->self;
3639 } while (pdev != end);
3640
3641 return true;
3642}
3643
3644/**
3645 * pci_acs_init - Initialize ACS if hardware supports it
3646 * @dev: the PCI device
3647 */
3648void pci_acs_init(struct pci_dev *dev)
3649{
3650 dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3651
3652 /*
3653 * Attempt to enable ACS regardless of capability because some Root
3654 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have
3655 * the standard ACS capability but still support ACS via those
3656 * quirks.
3657 */
3658 pci_enable_acs(dev);
3659}
3660
3661/**
3662 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3663 * @dev: the PCI device
3664 * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3665 * PCI_EXP_DEVCAP2_ATOMIC_COMP32
3666 * PCI_EXP_DEVCAP2_ATOMIC_COMP64
3667 * PCI_EXP_DEVCAP2_ATOMIC_COMP128
3668 *
3669 * Return 0 if all upstream bridges support AtomicOp routing, egress
3670 * blocking is disabled on all upstream ports, and the root port supports
3671 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3672 * AtomicOp completion), or negative otherwise.
3673 */
3674int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3675{
3676 struct pci_bus *bus = dev->bus;
3677 struct pci_dev *bridge;
3678 u32 cap, ctl2;
3679
3680 /*
3681 * Per PCIe r5.0, sec 9.3.5.10, the AtomicOp Requester Enable bit
3682 * in Device Control 2 is reserved in VFs and the PF value applies
3683 * to all associated VFs.
3684 */
3685 if (dev->is_virtfn)
3686 return -EINVAL;
3687
3688 if (!pci_is_pcie(dev))
3689 return -EINVAL;
3690
3691 /*
3692 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3693 * AtomicOp requesters. For now, we only support endpoints as
3694 * requesters and root ports as completers. No endpoints as
3695 * completers, and no peer-to-peer.
3696 */
3697
3698 switch (pci_pcie_type(dev)) {
3699 case PCI_EXP_TYPE_ENDPOINT:
3700 case PCI_EXP_TYPE_LEG_END:
3701 case PCI_EXP_TYPE_RC_END:
3702 break;
3703 default:
3704 return -EINVAL;
3705 }
3706
3707 while (bus->parent) {
3708 bridge = bus->self;
3709
3710 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3711
3712 switch (pci_pcie_type(bridge)) {
3713 /* Ensure switch ports support AtomicOp routing */
3714 case PCI_EXP_TYPE_UPSTREAM:
3715 case PCI_EXP_TYPE_DOWNSTREAM:
3716 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3717 return -EINVAL;
3718 break;
3719
3720 /* Ensure root port supports all the sizes we care about */
3721 case PCI_EXP_TYPE_ROOT_PORT:
3722 if ((cap & cap_mask) != cap_mask)
3723 return -EINVAL;
3724 break;
3725 }
3726
3727 /* Ensure upstream ports don't block AtomicOps on egress */
3728 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3729 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3730 &ctl2);
3731 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3732 return -EINVAL;
3733 }
3734
3735 bus = bus->parent;
3736 }
3737
3738 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3739 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3740 return 0;
3741}
3742EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3743
3744/**
3745 * pci_release_region - Release a PCI bar
3746 * @pdev: PCI device whose resources were previously reserved by
3747 * pci_request_region()
3748 * @bar: BAR to release
3749 *
3750 * Releases the PCI I/O and memory resources previously reserved by a
3751 * successful call to pci_request_region(). Call this function only
3752 * after all use of the PCI regions has ceased.
3753 */
3754void pci_release_region(struct pci_dev *pdev, int bar)
3755{
3756 if (!pci_bar_index_is_valid(bar))
3757 return;
3758
3759 if (pci_resource_len(pdev, bar) == 0)
3760 return;
3761 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3762 release_region(pci_resource_start(pdev, bar),
3763 pci_resource_len(pdev, bar));
3764 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3765 release_mem_region(pci_resource_start(pdev, bar),
3766 pci_resource_len(pdev, bar));
3767}
3768EXPORT_SYMBOL(pci_release_region);
3769
3770/**
3771 * __pci_request_region - Reserved PCI I/O and memory resource
3772 * @pdev: PCI device whose resources are to be reserved
3773 * @bar: BAR to be reserved
3774 * @name: name of the driver requesting the resource
3775 * @exclusive: whether the region access is exclusive or not
3776 *
3777 * Returns: 0 on success, negative error code on failure.
3778 *
3779 * Mark the PCI region associated with PCI device @pdev BAR @bar as being
3780 * reserved by owner @name. Do not access any address inside the PCI regions
3781 * unless this call returns successfully.
3782 *
3783 * If @exclusive is set, then the region is marked so that userspace
3784 * is explicitly not allowed to map the resource via /dev/mem or
3785 * sysfs MMIO access.
3786 *
3787 * Returns 0 on success, or %EBUSY on error. A warning
3788 * message is also printed on failure.
3789 */
3790static int __pci_request_region(struct pci_dev *pdev, int bar,
3791 const char *name, int exclusive)
3792{
3793 if (!pci_bar_index_is_valid(bar))
3794 return -EINVAL;
3795
3796 if (pci_resource_len(pdev, bar) == 0)
3797 return 0;
3798
3799 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3800 if (!request_region(pci_resource_start(pdev, bar),
3801 pci_resource_len(pdev, bar), name))
3802 goto err_out;
3803 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3804 if (!__request_mem_region(pci_resource_start(pdev, bar),
3805 pci_resource_len(pdev, bar), name,
3806 exclusive))
3807 goto err_out;
3808 }
3809
3810 return 0;
3811
3812err_out:
3813 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3814 &pdev->resource[bar]);
3815 return -EBUSY;
3816}
3817
3818/**
3819 * pci_request_region - Reserve PCI I/O and memory resource
3820 * @pdev: PCI device whose resources are to be reserved
3821 * @bar: BAR to be reserved
3822 * @name: name of the driver requesting the resource
3823 *
3824 * Returns: 0 on success, negative error code on failure.
3825 *
3826 * Mark the PCI region associated with PCI device @pdev BAR @bar as being
3827 * reserved by owner @name. Do not access any address inside the PCI regions
3828 * unless this call returns successfully.
3829 *
3830 * Returns 0 on success, or %EBUSY on error. A warning
3831 * message is also printed on failure.
3832 */
3833int pci_request_region(struct pci_dev *pdev, int bar, const char *name)
3834{
3835 return __pci_request_region(pdev, bar, name, 0);
3836}
3837EXPORT_SYMBOL(pci_request_region);
3838
3839/**
3840 * pci_release_selected_regions - Release selected PCI I/O and memory resources
3841 * @pdev: PCI device whose resources were previously reserved
3842 * @bars: Bitmask of BARs to be released
3843 *
3844 * Release selected PCI I/O and memory resources previously reserved.
3845 * Call this function only after all use of the PCI regions has ceased.
3846 */
3847void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3848{
3849 int i;
3850
3851 for (i = 0; i < PCI_STD_NUM_BARS; i++)
3852 if (bars & (1 << i))
3853 pci_release_region(pdev, i);
3854}
3855EXPORT_SYMBOL(pci_release_selected_regions);
3856
3857static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3858 const char *name, int excl)
3859{
3860 int i;
3861
3862 for (i = 0; i < PCI_STD_NUM_BARS; i++)
3863 if (bars & (1 << i))
3864 if (__pci_request_region(pdev, i, name, excl))
3865 goto err_out;
3866 return 0;
3867
3868err_out:
3869 while (--i >= 0)
3870 if (bars & (1 << i))
3871 pci_release_region(pdev, i);
3872
3873 return -EBUSY;
3874}
3875
3876
3877/**
3878 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3879 * @pdev: PCI device whose resources are to be reserved
3880 * @bars: Bitmask of BARs to be requested
3881 * @name: Name of the driver requesting the resources
3882 *
3883 * Returns: 0 on success, negative error code on failure.
3884 */
3885int pci_request_selected_regions(struct pci_dev *pdev, int bars,
3886 const char *name)
3887{
3888 return __pci_request_selected_regions(pdev, bars, name, 0);
3889}
3890EXPORT_SYMBOL(pci_request_selected_regions);
3891
3892/**
3893 * pci_request_selected_regions_exclusive - Request regions exclusively
3894 * @pdev: PCI device to request regions from
3895 * @bars: bit mask of BARs to request
3896 * @name: name of the driver requesting the resources
3897 *
3898 * Returns: 0 on success, negative error code on failure.
3899 */
3900int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
3901 const char *name)
3902{
3903 return __pci_request_selected_regions(pdev, bars, name,
3904 IORESOURCE_EXCLUSIVE);
3905}
3906EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3907
3908/**
3909 * pci_release_regions - Release reserved PCI I/O and memory resources
3910 * @pdev: PCI device whose resources were previously reserved by
3911 * pci_request_regions()
3912 *
3913 * Releases all PCI I/O and memory resources previously reserved by a
3914 * successful call to pci_request_regions(). Call this function only
3915 * after all use of the PCI regions has ceased.
3916 */
3917void pci_release_regions(struct pci_dev *pdev)
3918{
3919 pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
3920}
3921EXPORT_SYMBOL(pci_release_regions);
3922
3923/**
3924 * pci_request_regions - Reserve PCI I/O and memory resources
3925 * @pdev: PCI device whose resources are to be reserved
3926 * @name: name of the driver requesting the resources
3927 *
3928 * Mark all PCI regions associated with PCI device @pdev as being reserved by
3929 * owner @name. Do not access any address inside the PCI regions unless this
3930 * call returns successfully.
3931 *
3932 * Returns 0 on success, or %EBUSY on error. A warning
3933 * message is also printed on failure.
3934 */
3935int pci_request_regions(struct pci_dev *pdev, const char *name)
3936{
3937 return pci_request_selected_regions(pdev,
3938 ((1 << PCI_STD_NUM_BARS) - 1), name);
3939}
3940EXPORT_SYMBOL(pci_request_regions);
3941
3942/**
3943 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
3944 * @pdev: PCI device whose resources are to be reserved
3945 * @name: name of the driver requesting the resources
3946 *
3947 * Returns: 0 on success, negative error code on failure.
3948 *
3949 * Mark all PCI regions associated with PCI device @pdev as being reserved
3950 * by owner @name. Do not access any address inside the PCI regions
3951 * unless this call returns successfully.
3952 *
3953 * pci_request_regions_exclusive() will mark the region so that /dev/mem
3954 * and the sysfs MMIO access will not be allowed.
3955 *
3956 * Returns 0 on success, or %EBUSY on error. A warning message is also
3957 * printed on failure.
3958 */
3959int pci_request_regions_exclusive(struct pci_dev *pdev, const char *name)
3960{
3961 return pci_request_selected_regions_exclusive(pdev,
3962 ((1 << PCI_STD_NUM_BARS) - 1), name);
3963}
3964EXPORT_SYMBOL(pci_request_regions_exclusive);
3965
3966/*
3967 * Record the PCI IO range (expressed as CPU physical address + size).
3968 * Return a negative value if an error has occurred, zero otherwise
3969 */
3970int pci_register_io_range(const struct fwnode_handle *fwnode, phys_addr_t addr,
3971 resource_size_t size)
3972{
3973 int ret = 0;
3974#ifdef PCI_IOBASE
3975 struct logic_pio_hwaddr *range;
3976
3977 if (!size || addr + size < addr)
3978 return -EINVAL;
3979
3980 range = kzalloc(sizeof(*range), GFP_ATOMIC);
3981 if (!range)
3982 return -ENOMEM;
3983
3984 range->fwnode = fwnode;
3985 range->size = size;
3986 range->hw_start = addr;
3987 range->flags = LOGIC_PIO_CPU_MMIO;
3988
3989 ret = logic_pio_register_range(range);
3990 if (ret)
3991 kfree(range);
3992
3993 /* Ignore duplicates due to deferred probing */
3994 if (ret == -EEXIST)
3995 ret = 0;
3996#endif
3997
3998 return ret;
3999}
4000
4001phys_addr_t pci_pio_to_address(unsigned long pio)
4002{
4003#ifdef PCI_IOBASE
4004 if (pio < MMIO_UPPER_LIMIT)
4005 return logic_pio_to_hwaddr(pio);
4006#endif
4007
4008 return (phys_addr_t) OF_BAD_ADDR;
4009}
4010EXPORT_SYMBOL_GPL(pci_pio_to_address);
4011
4012unsigned long __weak pci_address_to_pio(phys_addr_t address)
4013{
4014#ifdef PCI_IOBASE
4015 return logic_pio_trans_cpuaddr(address);
4016#else
4017 if (address > IO_SPACE_LIMIT)
4018 return (unsigned long)-1;
4019
4020 return (unsigned long) address;
4021#endif
4022}
4023
4024/**
4025 * pci_remap_iospace - Remap the memory mapped I/O space
4026 * @res: Resource describing the I/O space
4027 * @phys_addr: physical address of range to be mapped
4028 *
4029 * Remap the memory mapped I/O space described by the @res and the CPU
4030 * physical address @phys_addr into virtual address space. Only
4031 * architectures that have memory mapped IO functions defined (and the
4032 * PCI_IOBASE value defined) should call this function.
4033 */
4034#ifndef pci_remap_iospace
4035int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
4036{
4037#if defined(PCI_IOBASE)
4038 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4039
4040 if (!(res->flags & IORESOURCE_IO))
4041 return -EINVAL;
4042
4043 if (res->end > IO_SPACE_LIMIT)
4044 return -EINVAL;
4045
4046 return vmap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
4047 pgprot_device(PAGE_KERNEL));
4048#else
4049 /*
4050 * This architecture does not have memory mapped I/O space,
4051 * so this function should never be called
4052 */
4053 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
4054 return -ENODEV;
4055#endif
4056}
4057EXPORT_SYMBOL(pci_remap_iospace);
4058#endif
4059
4060/**
4061 * pci_unmap_iospace - Unmap the memory mapped I/O space
4062 * @res: resource to be unmapped
4063 *
4064 * Unmap the CPU virtual address @res from virtual address space. Only
4065 * architectures that have memory mapped IO functions defined (and the
4066 * PCI_IOBASE value defined) should call this function.
4067 */
4068void pci_unmap_iospace(struct resource *res)
4069{
4070#if defined(PCI_IOBASE)
4071 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4072
4073 vunmap_range(vaddr, vaddr + resource_size(res));
4074#endif
4075}
4076EXPORT_SYMBOL(pci_unmap_iospace);
4077
4078static void __pci_set_master(struct pci_dev *dev, bool enable)
4079{
4080 u16 old_cmd, cmd;
4081
4082 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4083 if (enable)
4084 cmd = old_cmd | PCI_COMMAND_MASTER;
4085 else
4086 cmd = old_cmd & ~PCI_COMMAND_MASTER;
4087 if (cmd != old_cmd) {
4088 pci_dbg(dev, "%s bus mastering\n",
4089 enable ? "enabling" : "disabling");
4090 pci_write_config_word(dev, PCI_COMMAND, cmd);
4091 }
4092 dev->is_busmaster = enable;
4093}
4094
4095/**
4096 * pcibios_setup - process "pci=" kernel boot arguments
4097 * @str: string used to pass in "pci=" kernel boot arguments
4098 *
4099 * Process kernel boot arguments. This is the default implementation.
4100 * Architecture specific implementations can override this as necessary.
4101 */
4102char * __weak __init pcibios_setup(char *str)
4103{
4104 return str;
4105}
4106
4107/**
4108 * pcibios_set_master - enable PCI bus-mastering for device dev
4109 * @dev: the PCI device to enable
4110 *
4111 * Enables PCI bus-mastering for the device. This is the default
4112 * implementation. Architecture specific implementations can override
4113 * this if necessary.
4114 */
4115void __weak pcibios_set_master(struct pci_dev *dev)
4116{
4117 u8 lat;
4118
4119 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4120 if (pci_is_pcie(dev))
4121 return;
4122
4123 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4124 if (lat < 16)
4125 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4126 else if (lat > pcibios_max_latency)
4127 lat = pcibios_max_latency;
4128 else
4129 return;
4130
4131 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4132}
4133
4134/**
4135 * pci_set_master - enables bus-mastering for device dev
4136 * @dev: the PCI device to enable
4137 *
4138 * Enables bus-mastering on the device and calls pcibios_set_master()
4139 * to do the needed arch specific settings.
4140 */
4141void pci_set_master(struct pci_dev *dev)
4142{
4143 __pci_set_master(dev, true);
4144 pcibios_set_master(dev);
4145}
4146EXPORT_SYMBOL(pci_set_master);
4147
4148/**
4149 * pci_clear_master - disables bus-mastering for device dev
4150 * @dev: the PCI device to disable
4151 */
4152void pci_clear_master(struct pci_dev *dev)
4153{
4154 __pci_set_master(dev, false);
4155}
4156EXPORT_SYMBOL(pci_clear_master);
4157
4158/**
4159 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4160 * @dev: the PCI device for which MWI is to be enabled
4161 *
4162 * Helper function for pci_set_mwi.
4163 * Originally copied from drivers/net/acenic.c.
4164 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4165 *
4166 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4167 */
4168int pci_set_cacheline_size(struct pci_dev *dev)
4169{
4170 u8 cacheline_size;
4171
4172 if (!pci_cache_line_size)
4173 return -EINVAL;
4174
4175 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4176 equal to or multiple of the right value. */
4177 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4178 if (cacheline_size >= pci_cache_line_size &&
4179 (cacheline_size % pci_cache_line_size) == 0)
4180 return 0;
4181
4182 /* Write the correct value. */
4183 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4184 /* Read it back. */
4185 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4186 if (cacheline_size == pci_cache_line_size)
4187 return 0;
4188
4189 pci_dbg(dev, "cache line size of %d is not supported\n",
4190 pci_cache_line_size << 2);
4191
4192 return -EINVAL;
4193}
4194EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4195
4196/**
4197 * pci_set_mwi - enables memory-write-invalidate PCI transaction
4198 * @dev: the PCI device for which MWI is enabled
4199 *
4200 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4201 *
4202 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4203 */
4204int pci_set_mwi(struct pci_dev *dev)
4205{
4206#ifdef PCI_DISABLE_MWI
4207 return 0;
4208#else
4209 int rc;
4210 u16 cmd;
4211
4212 rc = pci_set_cacheline_size(dev);
4213 if (rc)
4214 return rc;
4215
4216 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4217 if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4218 pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4219 cmd |= PCI_COMMAND_INVALIDATE;
4220 pci_write_config_word(dev, PCI_COMMAND, cmd);
4221 }
4222 return 0;
4223#endif
4224}
4225EXPORT_SYMBOL(pci_set_mwi);
4226
4227/**
4228 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4229 * @dev: the PCI device for which MWI is enabled
4230 *
4231 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4232 * Callers are not required to check the return value.
4233 *
4234 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4235 */
4236int pci_try_set_mwi(struct pci_dev *dev)
4237{
4238#ifdef PCI_DISABLE_MWI
4239 return 0;
4240#else
4241 return pci_set_mwi(dev);
4242#endif
4243}
4244EXPORT_SYMBOL(pci_try_set_mwi);
4245
4246/**
4247 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4248 * @dev: the PCI device to disable
4249 *
4250 * Disables PCI Memory-Write-Invalidate transaction on the device
4251 */
4252void pci_clear_mwi(struct pci_dev *dev)
4253{
4254#ifndef PCI_DISABLE_MWI
4255 u16 cmd;
4256
4257 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4258 if (cmd & PCI_COMMAND_INVALIDATE) {
4259 cmd &= ~PCI_COMMAND_INVALIDATE;
4260 pci_write_config_word(dev, PCI_COMMAND, cmd);
4261 }
4262#endif
4263}
4264EXPORT_SYMBOL(pci_clear_mwi);
4265
4266/**
4267 * pci_disable_parity - disable parity checking for device
4268 * @dev: the PCI device to operate on
4269 *
4270 * Disable parity checking for device @dev
4271 */
4272void pci_disable_parity(struct pci_dev *dev)
4273{
4274 u16 cmd;
4275
4276 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4277 if (cmd & PCI_COMMAND_PARITY) {
4278 cmd &= ~PCI_COMMAND_PARITY;
4279 pci_write_config_word(dev, PCI_COMMAND, cmd);
4280 }
4281}
4282
4283/**
4284 * pci_intx - enables/disables PCI INTx for device dev
4285 * @pdev: the PCI device to operate on
4286 * @enable: boolean: whether to enable or disable PCI INTx
4287 *
4288 * Enables/disables PCI INTx for device @pdev
4289 */
4290void pci_intx(struct pci_dev *pdev, int enable)
4291{
4292 u16 pci_command, new;
4293
4294 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4295
4296 if (enable)
4297 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4298 else
4299 new = pci_command | PCI_COMMAND_INTX_DISABLE;
4300
4301 if (new == pci_command)
4302 return;
4303
4304 pci_write_config_word(pdev, PCI_COMMAND, new);
4305}
4306EXPORT_SYMBOL_GPL(pci_intx);
4307
4308/**
4309 * pci_wait_for_pending_transaction - wait for pending transaction
4310 * @dev: the PCI device to operate on
4311 *
4312 * Return 0 if transaction is pending 1 otherwise.
4313 */
4314int pci_wait_for_pending_transaction(struct pci_dev *dev)
4315{
4316 if (!pci_is_pcie(dev))
4317 return 1;
4318
4319 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4320 PCI_EXP_DEVSTA_TRPND);
4321}
4322EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4323
4324/**
4325 * pcie_flr - initiate a PCIe function level reset
4326 * @dev: device to reset
4327 *
4328 * Initiate a function level reset unconditionally on @dev without
4329 * checking any flags and DEVCAP
4330 */
4331int pcie_flr(struct pci_dev *dev)
4332{
4333 if (!pci_wait_for_pending_transaction(dev))
4334 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4335
4336 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4337
4338 if (dev->imm_ready)
4339 return 0;
4340
4341 /*
4342 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4343 * 100ms, but may silently discard requests while the FLR is in
4344 * progress. Wait 100ms before trying to access the device.
4345 */
4346 msleep(100);
4347
4348 return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4349}
4350EXPORT_SYMBOL_GPL(pcie_flr);
4351
4352/**
4353 * pcie_reset_flr - initiate a PCIe function level reset
4354 * @dev: device to reset
4355 * @probe: if true, return 0 if device can be reset this way
4356 *
4357 * Initiate a function level reset on @dev.
4358 */
4359int pcie_reset_flr(struct pci_dev *dev, bool probe)
4360{
4361 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4362 return -ENOTTY;
4363
4364 if (!(dev->devcap & PCI_EXP_DEVCAP_FLR))
4365 return -ENOTTY;
4366
4367 if (probe)
4368 return 0;
4369
4370 return pcie_flr(dev);
4371}
4372EXPORT_SYMBOL_GPL(pcie_reset_flr);
4373
4374static int pci_af_flr(struct pci_dev *dev, bool probe)
4375{
4376 int pos;
4377 u8 cap;
4378
4379 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4380 if (!pos)
4381 return -ENOTTY;
4382
4383 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4384 return -ENOTTY;
4385
4386 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4387 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4388 return -ENOTTY;
4389
4390 if (probe)
4391 return 0;
4392
4393 /*
4394 * Wait for Transaction Pending bit to clear. A word-aligned test
4395 * is used, so we use the control offset rather than status and shift
4396 * the test bit to match.
4397 */
4398 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4399 PCI_AF_STATUS_TP << 8))
4400 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4401
4402 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4403
4404 if (dev->imm_ready)
4405 return 0;
4406
4407 /*
4408 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4409 * updated 27 July 2006; a device must complete an FLR within
4410 * 100ms, but may silently discard requests while the FLR is in
4411 * progress. Wait 100ms before trying to access the device.
4412 */
4413 msleep(100);
4414
4415 return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4416}
4417
4418/**
4419 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4420 * @dev: Device to reset.
4421 * @probe: if true, return 0 if the device can be reset this way.
4422 *
4423 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4424 * unset, it will be reinitialized internally when going from PCI_D3hot to
4425 * PCI_D0. If that's the case and the device is not in a low-power state
4426 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4427 *
4428 * NOTE: This causes the caller to sleep for twice the device power transition
4429 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4430 * by default (i.e. unless the @dev's d3hot_delay field has a different value).
4431 * Moreover, only devices in D0 can be reset by this function.
4432 */
4433static int pci_pm_reset(struct pci_dev *dev, bool probe)
4434{
4435 u16 csr;
4436
4437 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4438 return -ENOTTY;
4439
4440 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4441 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4442 return -ENOTTY;
4443
4444 if (probe)
4445 return 0;
4446
4447 if (dev->current_state != PCI_D0)
4448 return -EINVAL;
4449
4450 csr &= ~PCI_PM_CTRL_STATE_MASK;
4451 csr |= PCI_D3hot;
4452 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4453 pci_dev_d3_sleep(dev);
4454
4455 csr &= ~PCI_PM_CTRL_STATE_MASK;
4456 csr |= PCI_D0;
4457 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4458 pci_dev_d3_sleep(dev);
4459
4460 return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4461}
4462
4463/**
4464 * pcie_wait_for_link_status - Wait for link status change
4465 * @pdev: Device whose link to wait for.
4466 * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE.
4467 * @active: Waiting for active or inactive?
4468 *
4469 * Return 0 if successful, or -ETIMEDOUT if status has not changed within
4470 * PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds.
4471 */
4472static int pcie_wait_for_link_status(struct pci_dev *pdev,
4473 bool use_lt, bool active)
4474{
4475 u16 lnksta_mask, lnksta_match;
4476 unsigned long end_jiffies;
4477 u16 lnksta;
4478
4479 lnksta_mask = use_lt ? PCI_EXP_LNKSTA_LT : PCI_EXP_LNKSTA_DLLLA;
4480 lnksta_match = active ? lnksta_mask : 0;
4481
4482 end_jiffies = jiffies + msecs_to_jiffies(PCIE_LINK_RETRAIN_TIMEOUT_MS);
4483 do {
4484 pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnksta);
4485 if ((lnksta & lnksta_mask) == lnksta_match)
4486 return 0;
4487 msleep(1);
4488 } while (time_before(jiffies, end_jiffies));
4489
4490 return -ETIMEDOUT;
4491}
4492
4493/**
4494 * pcie_retrain_link - Request a link retrain and wait for it to complete
4495 * @pdev: Device whose link to retrain.
4496 * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE, for status.
4497 *
4498 * Trigger retraining of the PCIe Link and wait for the completion of the
4499 * retraining. As link retraining is known to asserts LBMS and may change
4500 * the Link Speed, LBMS is cleared after the retraining and the Link Speed
4501 * of the subordinate bus is updated.
4502 *
4503 * Retrain completion status is retrieved from the Link Status Register
4504 * according to @use_lt. It is not verified whether the use of the DLLLA
4505 * bit is valid.
4506 *
4507 * Return 0 if successful, or -ETIMEDOUT if training has not completed
4508 * within PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds.
4509 */
4510int pcie_retrain_link(struct pci_dev *pdev, bool use_lt)
4511{
4512 int rc;
4513
4514 /*
4515 * Ensure the updated LNKCTL parameters are used during link
4516 * training by checking that there is no ongoing link training that
4517 * may have started before link parameters were changed, so as to
4518 * avoid LTSSM race as recommended in Implementation Note at the end
4519 * of PCIe r6.1 sec 7.5.3.7.
4520 */
4521 rc = pcie_wait_for_link_status(pdev, true, false);
4522 if (rc)
4523 return rc;
4524
4525 pcie_capability_set_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL);
4526 if (pdev->clear_retrain_link) {
4527 /*
4528 * Due to an erratum in some devices the Retrain Link bit
4529 * needs to be cleared again manually to allow the link
4530 * training to succeed.
4531 */
4532 pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL);
4533 }
4534
4535 rc = pcie_wait_for_link_status(pdev, use_lt, !use_lt);
4536
4537 /*
4538 * Clear LBMS after a manual retrain so that the bit can be used
4539 * to track link speed or width changes made by hardware itself
4540 * in attempt to correct unreliable link operation.
4541 */
4542 pcie_reset_lbms(pdev);
4543
4544 /*
4545 * Ensure the Link Speed updates after retraining in case the Link
4546 * Speed was changed because of the retraining. While the bwctrl's
4547 * IRQ handler normally picks up the new Link Speed, clearing LBMS
4548 * races with the IRQ handler reading the Link Status register and
4549 * can result in the handler returning early without updating the
4550 * Link Speed.
4551 */
4552 if (pdev->subordinate)
4553 pcie_update_link_speed(pdev->subordinate);
4554
4555 return rc;
4556}
4557
4558/**
4559 * pcie_wait_for_link_delay - Wait until link is active or inactive
4560 * @pdev: Bridge device
4561 * @active: waiting for active or inactive?
4562 * @delay: Delay to wait after link has become active (in ms)
4563 *
4564 * Use this to wait till link becomes active or inactive.
4565 */
4566static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
4567 int delay)
4568{
4569 int rc;
4570
4571 /*
4572 * Some controllers might not implement link active reporting. In this
4573 * case, we wait for 1000 ms + any delay requested by the caller.
4574 */
4575 if (!pdev->link_active_reporting) {
4576 msleep(PCIE_LINK_RETRAIN_TIMEOUT_MS + delay);
4577 return true;
4578 }
4579
4580 /*
4581 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4582 * after which we should expect the link to be active if the reset was
4583 * successful. If so, software must wait a minimum 100ms before sending
4584 * configuration requests to devices downstream this port.
4585 *
4586 * If the link fails to activate, either the device was physically
4587 * removed or the link is permanently failed.
4588 */
4589 if (active)
4590 msleep(20);
4591 rc = pcie_wait_for_link_status(pdev, false, active);
4592 if (active) {
4593 if (rc)
4594 rc = pcie_failed_link_retrain(pdev);
4595 if (rc)
4596 return false;
4597
4598 msleep(delay);
4599 return true;
4600 }
4601
4602 if (rc)
4603 return false;
4604
4605 return true;
4606}
4607
4608/**
4609 * pcie_wait_for_link - Wait until link is active or inactive
4610 * @pdev: Bridge device
4611 * @active: waiting for active or inactive?
4612 *
4613 * Use this to wait till link becomes active or inactive.
4614 */
4615bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4616{
4617 return pcie_wait_for_link_delay(pdev, active, 100);
4618}
4619
4620/*
4621 * Find maximum D3cold delay required by all the devices on the bus. The
4622 * spec says 100 ms, but firmware can lower it and we allow drivers to
4623 * increase it as well.
4624 *
4625 * Called with @pci_bus_sem locked for reading.
4626 */
4627static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
4628{
4629 const struct pci_dev *pdev;
4630 int min_delay = 100;
4631 int max_delay = 0;
4632
4633 list_for_each_entry(pdev, &bus->devices, bus_list) {
4634 if (pdev->d3cold_delay < min_delay)
4635 min_delay = pdev->d3cold_delay;
4636 if (pdev->d3cold_delay > max_delay)
4637 max_delay = pdev->d3cold_delay;
4638 }
4639
4640 return max(min_delay, max_delay);
4641}
4642
4643/**
4644 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
4645 * @dev: PCI bridge
4646 * @reset_type: reset type in human-readable form
4647 *
4648 * Handle necessary delays before access to the devices on the secondary
4649 * side of the bridge are permitted after D3cold to D0 transition
4650 * or Conventional Reset.
4651 *
4652 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
4653 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
4654 * 4.3.2.
4655 *
4656 * Return 0 on success or -ENOTTY if the first device on the secondary bus
4657 * failed to become accessible.
4658 */
4659int pci_bridge_wait_for_secondary_bus(struct pci_dev *dev, char *reset_type)
4660{
4661 struct pci_dev *child __free(pci_dev_put) = NULL;
4662 int delay;
4663
4664 if (pci_dev_is_disconnected(dev))
4665 return 0;
4666
4667 if (!pci_is_bridge(dev))
4668 return 0;
4669
4670 down_read(&pci_bus_sem);
4671
4672 /*
4673 * We only deal with devices that are present currently on the bus.
4674 * For any hot-added devices the access delay is handled in pciehp
4675 * board_added(). In case of ACPI hotplug the firmware is expected
4676 * to configure the devices before OS is notified.
4677 */
4678 if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
4679 up_read(&pci_bus_sem);
4680 return 0;
4681 }
4682
4683 /* Take d3cold_delay requirements into account */
4684 delay = pci_bus_max_d3cold_delay(dev->subordinate);
4685 if (!delay) {
4686 up_read(&pci_bus_sem);
4687 return 0;
4688 }
4689
4690 child = pci_dev_get(list_first_entry(&dev->subordinate->devices,
4691 struct pci_dev, bus_list));
4692 up_read(&pci_bus_sem);
4693
4694 /*
4695 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
4696 * accessing the device after reset (that is 1000 ms + 100 ms).
4697 */
4698 if (!pci_is_pcie(dev)) {
4699 pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
4700 msleep(1000 + delay);
4701 return 0;
4702 }
4703
4704 /*
4705 * For PCIe downstream and root ports that do not support speeds
4706 * greater than 5 GT/s need to wait minimum 100 ms. For higher
4707 * speeds (gen3) we need to wait first for the data link layer to
4708 * become active.
4709 *
4710 * However, 100 ms is the minimum and the PCIe spec says the
4711 * software must allow at least 1s before it can determine that the
4712 * device that did not respond is a broken device. Also device can
4713 * take longer than that to respond if it indicates so through Request
4714 * Retry Status completions.
4715 *
4716 * Therefore we wait for 100 ms and check for the device presence
4717 * until the timeout expires.
4718 */
4719 if (!pcie_downstream_port(dev))
4720 return 0;
4721
4722 if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
4723 u16 status;
4724
4725 pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
4726 msleep(delay);
4727
4728 if (!pci_dev_wait(child, reset_type, PCI_RESET_WAIT - delay))
4729 return 0;
4730
4731 /*
4732 * If the port supports active link reporting we now check
4733 * whether the link is active and if not bail out early with
4734 * the assumption that the device is not present anymore.
4735 */
4736 if (!dev->link_active_reporting)
4737 return -ENOTTY;
4738
4739 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &status);
4740 if (!(status & PCI_EXP_LNKSTA_DLLLA))
4741 return -ENOTTY;
4742
4743 return pci_dev_wait(child, reset_type,
4744 PCIE_RESET_READY_POLL_MS - PCI_RESET_WAIT);
4745 }
4746
4747 pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
4748 delay);
4749 if (!pcie_wait_for_link_delay(dev, true, delay)) {
4750 /* Did not train, no need to wait any further */
4751 pci_info(dev, "Data Link Layer Link Active not set in %d msec\n", delay);
4752 return -ENOTTY;
4753 }
4754
4755 return pci_dev_wait(child, reset_type,
4756 PCIE_RESET_READY_POLL_MS - delay);
4757}
4758
4759void pci_reset_secondary_bus(struct pci_dev *dev)
4760{
4761 u16 ctrl;
4762
4763 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
4764 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
4765 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4766
4767 /*
4768 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
4769 * this to 2ms to ensure that we meet the minimum requirement.
4770 */
4771 msleep(2);
4772
4773 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
4774 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4775}
4776
4777void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4778{
4779 pci_reset_secondary_bus(dev);
4780}
4781
4782/**
4783 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
4784 * @dev: Bridge device
4785 *
4786 * Use the bridge control register to assert reset on the secondary bus.
4787 * Devices on the secondary bus are left in power-on state.
4788 */
4789int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
4790{
4791 if (!dev->block_cfg_access)
4792 pci_warn_once(dev, "unlocked secondary bus reset via: %pS\n",
4793 __builtin_return_address(0));
4794 pcibios_reset_secondary_bus(dev);
4795
4796 return pci_bridge_wait_for_secondary_bus(dev, "bus reset");
4797}
4798EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
4799
4800static int pci_parent_bus_reset(struct pci_dev *dev, bool probe)
4801{
4802 struct pci_dev *pdev;
4803
4804 if (pci_is_root_bus(dev->bus) || dev->subordinate ||
4805 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4806 return -ENOTTY;
4807
4808 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4809 if (pdev != dev)
4810 return -ENOTTY;
4811
4812 if (probe)
4813 return 0;
4814
4815 return pci_bridge_secondary_bus_reset(dev->bus->self);
4816}
4817
4818static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, bool probe)
4819{
4820 int rc = -ENOTTY;
4821
4822 if (!hotplug || !try_module_get(hotplug->owner))
4823 return rc;
4824
4825 if (hotplug->ops->reset_slot)
4826 rc = hotplug->ops->reset_slot(hotplug, probe);
4827
4828 module_put(hotplug->owner);
4829
4830 return rc;
4831}
4832
4833static int pci_dev_reset_slot_function(struct pci_dev *dev, bool probe)
4834{
4835 if (dev->multifunction || dev->subordinate || !dev->slot ||
4836 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4837 return -ENOTTY;
4838
4839 return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
4840}
4841
4842static u16 cxl_port_dvsec(struct pci_dev *dev)
4843{
4844 return pci_find_dvsec_capability(dev, PCI_VENDOR_ID_CXL,
4845 PCI_DVSEC_CXL_PORT);
4846}
4847
4848static bool cxl_sbr_masked(struct pci_dev *dev)
4849{
4850 u16 dvsec, reg;
4851 int rc;
4852
4853 dvsec = cxl_port_dvsec(dev);
4854 if (!dvsec)
4855 return false;
4856
4857 rc = pci_read_config_word(dev, dvsec + PCI_DVSEC_CXL_PORT_CTL, ®);
4858 if (rc || PCI_POSSIBLE_ERROR(reg))
4859 return false;
4860
4861 /*
4862 * Per CXL spec r3.1, sec 8.1.5.2, when "Unmask SBR" is 0, the SBR
4863 * bit in Bridge Control has no effect. When 1, the Port generates
4864 * hot reset when the SBR bit is set to 1.
4865 */
4866 if (reg & PCI_DVSEC_CXL_PORT_CTL_UNMASK_SBR)
4867 return false;
4868
4869 return true;
4870}
4871
4872static int pci_reset_bus_function(struct pci_dev *dev, bool probe)
4873{
4874 struct pci_dev *bridge = pci_upstream_bridge(dev);
4875 int rc;
4876
4877 /*
4878 * If "dev" is below a CXL port that has SBR control masked, SBR
4879 * won't do anything, so return error.
4880 */
4881 if (bridge && cxl_sbr_masked(bridge)) {
4882 if (probe)
4883 return 0;
4884
4885 return -ENOTTY;
4886 }
4887
4888 rc = pci_dev_reset_slot_function(dev, probe);
4889 if (rc != -ENOTTY)
4890 return rc;
4891 return pci_parent_bus_reset(dev, probe);
4892}
4893
4894static int cxl_reset_bus_function(struct pci_dev *dev, bool probe)
4895{
4896 struct pci_dev *bridge;
4897 u16 dvsec, reg, val;
4898 int rc;
4899
4900 bridge = pci_upstream_bridge(dev);
4901 if (!bridge)
4902 return -ENOTTY;
4903
4904 dvsec = cxl_port_dvsec(bridge);
4905 if (!dvsec)
4906 return -ENOTTY;
4907
4908 if (probe)
4909 return 0;
4910
4911 rc = pci_read_config_word(bridge, dvsec + PCI_DVSEC_CXL_PORT_CTL, ®);
4912 if (rc)
4913 return -ENOTTY;
4914
4915 if (reg & PCI_DVSEC_CXL_PORT_CTL_UNMASK_SBR) {
4916 val = reg;
4917 } else {
4918 val = reg | PCI_DVSEC_CXL_PORT_CTL_UNMASK_SBR;
4919 pci_write_config_word(bridge, dvsec + PCI_DVSEC_CXL_PORT_CTL,
4920 val);
4921 }
4922
4923 rc = pci_reset_bus_function(dev, probe);
4924
4925 if (reg != val)
4926 pci_write_config_word(bridge, dvsec + PCI_DVSEC_CXL_PORT_CTL,
4927 reg);
4928
4929 return rc;
4930}
4931
4932void pci_dev_lock(struct pci_dev *dev)
4933{
4934 /* block PM suspend, driver probe, etc. */
4935 device_lock(&dev->dev);
4936 pci_cfg_access_lock(dev);
4937}
4938EXPORT_SYMBOL_GPL(pci_dev_lock);
4939
4940/* Return 1 on successful lock, 0 on contention */
4941int pci_dev_trylock(struct pci_dev *dev)
4942{
4943 if (device_trylock(&dev->dev)) {
4944 if (pci_cfg_access_trylock(dev))
4945 return 1;
4946 device_unlock(&dev->dev);
4947 }
4948
4949 return 0;
4950}
4951EXPORT_SYMBOL_GPL(pci_dev_trylock);
4952
4953void pci_dev_unlock(struct pci_dev *dev)
4954{
4955 pci_cfg_access_unlock(dev);
4956 device_unlock(&dev->dev);
4957}
4958EXPORT_SYMBOL_GPL(pci_dev_unlock);
4959
4960static void pci_dev_save_and_disable(struct pci_dev *dev)
4961{
4962 const struct pci_error_handlers *err_handler =
4963 dev->driver ? dev->driver->err_handler : NULL;
4964
4965 /*
4966 * dev->driver->err_handler->reset_prepare() is protected against
4967 * races with ->remove() by the device lock, which must be held by
4968 * the caller.
4969 */
4970 if (err_handler && err_handler->reset_prepare)
4971 err_handler->reset_prepare(dev);
4972 else if (dev->driver)
4973 pci_warn(dev, "resetting");
4974
4975 /*
4976 * Wake-up device prior to save. PM registers default to D0 after
4977 * reset and a simple register restore doesn't reliably return
4978 * to a non-D0 state anyway.
4979 */
4980 pci_set_power_state(dev, PCI_D0);
4981
4982 pci_save_state(dev);
4983 /*
4984 * Disable the device by clearing the Command register, except for
4985 * INTx-disable which is set. This not only disables MMIO and I/O port
4986 * BARs, but also prevents the device from being Bus Master, preventing
4987 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
4988 * compliant devices, INTx-disable prevents legacy interrupts.
4989 */
4990 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
4991}
4992
4993static void pci_dev_restore(struct pci_dev *dev)
4994{
4995 const struct pci_error_handlers *err_handler =
4996 dev->driver ? dev->driver->err_handler : NULL;
4997
4998 pci_restore_state(dev);
4999
5000 /*
5001 * dev->driver->err_handler->reset_done() is protected against
5002 * races with ->remove() by the device lock, which must be held by
5003 * the caller.
5004 */
5005 if (err_handler && err_handler->reset_done)
5006 err_handler->reset_done(dev);
5007 else if (dev->driver)
5008 pci_warn(dev, "reset done");
5009}
5010
5011/* dev->reset_methods[] is a 0-terminated list of indices into this array */
5012const struct pci_reset_fn_method pci_reset_fn_methods[] = {
5013 { },
5014 { pci_dev_specific_reset, .name = "device_specific" },
5015 { pci_dev_acpi_reset, .name = "acpi" },
5016 { pcie_reset_flr, .name = "flr" },
5017 { pci_af_flr, .name = "af_flr" },
5018 { pci_pm_reset, .name = "pm" },
5019 { pci_reset_bus_function, .name = "bus" },
5020 { cxl_reset_bus_function, .name = "cxl_bus" },
5021};
5022
5023/**
5024 * __pci_reset_function_locked - reset a PCI device function while holding
5025 * the @dev mutex lock.
5026 * @dev: PCI device to reset
5027 *
5028 * Some devices allow an individual function to be reset without affecting
5029 * other functions in the same device. The PCI device must be responsive
5030 * to PCI config space in order to use this function.
5031 *
5032 * The device function is presumed to be unused and the caller is holding
5033 * the device mutex lock when this function is called.
5034 *
5035 * Resetting the device will make the contents of PCI configuration space
5036 * random, so any caller of this must be prepared to reinitialise the
5037 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
5038 * etc.
5039 *
5040 * Returns 0 if the device function was successfully reset or negative if the
5041 * device doesn't support resetting a single function.
5042 */
5043int __pci_reset_function_locked(struct pci_dev *dev)
5044{
5045 int i, m, rc;
5046 const struct pci_reset_fn_method *method;
5047
5048 might_sleep();
5049
5050 /*
5051 * A reset method returns -ENOTTY if it doesn't support this device and
5052 * we should try the next method.
5053 *
5054 * If it returns 0 (success), we're finished. If it returns any other
5055 * error, we're also finished: this indicates that further reset
5056 * mechanisms might be broken on the device.
5057 */
5058 for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5059 m = dev->reset_methods[i];
5060 if (!m)
5061 return -ENOTTY;
5062
5063 method = &pci_reset_fn_methods[m];
5064 pci_dbg(dev, "reset via %s\n", method->name);
5065 rc = method->reset_fn(dev, PCI_RESET_DO_RESET);
5066 if (!rc)
5067 return 0;
5068
5069 pci_dbg(dev, "%s failed with %d\n", method->name, rc);
5070 if (rc != -ENOTTY)
5071 return rc;
5072 }
5073
5074 return -ENOTTY;
5075}
5076EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5077
5078/**
5079 * pci_init_reset_methods - check whether device can be safely reset
5080 * and store supported reset mechanisms.
5081 * @dev: PCI device to check for reset mechanisms
5082 *
5083 * Some devices allow an individual function to be reset without affecting
5084 * other functions in the same device. The PCI device must be in D0-D3hot
5085 * state.
5086 *
5087 * Stores reset mechanisms supported by device in reset_methods byte array
5088 * which is a member of struct pci_dev.
5089 */
5090void pci_init_reset_methods(struct pci_dev *dev)
5091{
5092 int m, i, rc;
5093
5094 BUILD_BUG_ON(ARRAY_SIZE(pci_reset_fn_methods) != PCI_NUM_RESET_METHODS);
5095
5096 might_sleep();
5097
5098 i = 0;
5099 for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5100 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_PROBE);
5101 if (!rc)
5102 dev->reset_methods[i++] = m;
5103 else if (rc != -ENOTTY)
5104 break;
5105 }
5106
5107 dev->reset_methods[i] = 0;
5108}
5109
5110/**
5111 * pci_reset_function - quiesce and reset a PCI device function
5112 * @dev: PCI device to reset
5113 *
5114 * Some devices allow an individual function to be reset without affecting
5115 * other functions in the same device. The PCI device must be responsive
5116 * to PCI config space in order to use this function.
5117 *
5118 * This function does not just reset the PCI portion of a device, but
5119 * clears all the state associated with the device. This function differs
5120 * from __pci_reset_function_locked() in that it saves and restores device state
5121 * over the reset and takes the PCI device lock.
5122 *
5123 * Returns 0 if the device function was successfully reset or negative if the
5124 * device doesn't support resetting a single function.
5125 */
5126int pci_reset_function(struct pci_dev *dev)
5127{
5128 struct pci_dev *bridge;
5129 int rc;
5130
5131 if (!pci_reset_supported(dev))
5132 return -ENOTTY;
5133
5134 /*
5135 * If there's no upstream bridge, no locking is needed since there is
5136 * no upstream bridge configuration to hold consistent.
5137 */
5138 bridge = pci_upstream_bridge(dev);
5139 if (bridge)
5140 pci_dev_lock(bridge);
5141
5142 pci_dev_lock(dev);
5143 pci_dev_save_and_disable(dev);
5144
5145 rc = __pci_reset_function_locked(dev);
5146
5147 pci_dev_restore(dev);
5148 pci_dev_unlock(dev);
5149
5150 if (bridge)
5151 pci_dev_unlock(bridge);
5152
5153 return rc;
5154}
5155EXPORT_SYMBOL_GPL(pci_reset_function);
5156
5157/**
5158 * pci_reset_function_locked - quiesce and reset a PCI device function
5159 * @dev: PCI device to reset
5160 *
5161 * Some devices allow an individual function to be reset without affecting
5162 * other functions in the same device. The PCI device must be responsive
5163 * to PCI config space in order to use this function.
5164 *
5165 * This function does not just reset the PCI portion of a device, but
5166 * clears all the state associated with the device. This function differs
5167 * from __pci_reset_function_locked() in that it saves and restores device state
5168 * over the reset. It also differs from pci_reset_function() in that it
5169 * requires the PCI device lock to be held.
5170 *
5171 * Returns 0 if the device function was successfully reset or negative if the
5172 * device doesn't support resetting a single function.
5173 */
5174int pci_reset_function_locked(struct pci_dev *dev)
5175{
5176 int rc;
5177
5178 if (!pci_reset_supported(dev))
5179 return -ENOTTY;
5180
5181 pci_dev_save_and_disable(dev);
5182
5183 rc = __pci_reset_function_locked(dev);
5184
5185 pci_dev_restore(dev);
5186
5187 return rc;
5188}
5189EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5190
5191/**
5192 * pci_try_reset_function - quiesce and reset a PCI device function
5193 * @dev: PCI device to reset
5194 *
5195 * Same as above, except return -EAGAIN if unable to lock device.
5196 */
5197int pci_try_reset_function(struct pci_dev *dev)
5198{
5199 int rc;
5200
5201 if (!pci_reset_supported(dev))
5202 return -ENOTTY;
5203
5204 if (!pci_dev_trylock(dev))
5205 return -EAGAIN;
5206
5207 pci_dev_save_and_disable(dev);
5208 rc = __pci_reset_function_locked(dev);
5209 pci_dev_restore(dev);
5210 pci_dev_unlock(dev);
5211
5212 return rc;
5213}
5214EXPORT_SYMBOL_GPL(pci_try_reset_function);
5215
5216/* Do any devices on or below this bus prevent a bus reset? */
5217static bool pci_bus_resettable(struct pci_bus *bus)
5218{
5219 struct pci_dev *dev;
5220
5221
5222 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5223 return false;
5224
5225 list_for_each_entry(dev, &bus->devices, bus_list) {
5226 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5227 (dev->subordinate && !pci_bus_resettable(dev->subordinate)))
5228 return false;
5229 }
5230
5231 return true;
5232}
5233
5234/* Lock devices from the top of the tree down */
5235static void pci_bus_lock(struct pci_bus *bus)
5236{
5237 struct pci_dev *dev;
5238
5239 pci_dev_lock(bus->self);
5240 list_for_each_entry(dev, &bus->devices, bus_list) {
5241 if (dev->subordinate)
5242 pci_bus_lock(dev->subordinate);
5243 else
5244 pci_dev_lock(dev);
5245 }
5246}
5247
5248/* Unlock devices from the bottom of the tree up */
5249static void pci_bus_unlock(struct pci_bus *bus)
5250{
5251 struct pci_dev *dev;
5252
5253 list_for_each_entry(dev, &bus->devices, bus_list) {
5254 if (dev->subordinate)
5255 pci_bus_unlock(dev->subordinate);
5256 else
5257 pci_dev_unlock(dev);
5258 }
5259 pci_dev_unlock(bus->self);
5260}
5261
5262/* Return 1 on successful lock, 0 on contention */
5263static int pci_bus_trylock(struct pci_bus *bus)
5264{
5265 struct pci_dev *dev;
5266
5267 if (!pci_dev_trylock(bus->self))
5268 return 0;
5269
5270 list_for_each_entry(dev, &bus->devices, bus_list) {
5271 if (dev->subordinate) {
5272 if (!pci_bus_trylock(dev->subordinate))
5273 goto unlock;
5274 } else if (!pci_dev_trylock(dev))
5275 goto unlock;
5276 }
5277 return 1;
5278
5279unlock:
5280 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5281 if (dev->subordinate)
5282 pci_bus_unlock(dev->subordinate);
5283 else
5284 pci_dev_unlock(dev);
5285 }
5286 pci_dev_unlock(bus->self);
5287 return 0;
5288}
5289
5290/* Do any devices on or below this slot prevent a bus reset? */
5291static bool pci_slot_resettable(struct pci_slot *slot)
5292{
5293 struct pci_dev *dev;
5294
5295 if (slot->bus->self &&
5296 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5297 return false;
5298
5299 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5300 if (!dev->slot || dev->slot != slot)
5301 continue;
5302 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5303 (dev->subordinate && !pci_bus_resettable(dev->subordinate)))
5304 return false;
5305 }
5306
5307 return true;
5308}
5309
5310/* Lock devices from the top of the tree down */
5311static void pci_slot_lock(struct pci_slot *slot)
5312{
5313 struct pci_dev *dev;
5314
5315 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5316 if (!dev->slot || dev->slot != slot)
5317 continue;
5318 if (dev->subordinate)
5319 pci_bus_lock(dev->subordinate);
5320 else
5321 pci_dev_lock(dev);
5322 }
5323}
5324
5325/* Unlock devices from the bottom of the tree up */
5326static void pci_slot_unlock(struct pci_slot *slot)
5327{
5328 struct pci_dev *dev;
5329
5330 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5331 if (!dev->slot || dev->slot != slot)
5332 continue;
5333 if (dev->subordinate)
5334 pci_bus_unlock(dev->subordinate);
5335 else
5336 pci_dev_unlock(dev);
5337 }
5338}
5339
5340/* Return 1 on successful lock, 0 on contention */
5341static int pci_slot_trylock(struct pci_slot *slot)
5342{
5343 struct pci_dev *dev;
5344
5345 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5346 if (!dev->slot || dev->slot != slot)
5347 continue;
5348 if (dev->subordinate) {
5349 if (!pci_bus_trylock(dev->subordinate)) {
5350 pci_dev_unlock(dev);
5351 goto unlock;
5352 }
5353 } else if (!pci_dev_trylock(dev))
5354 goto unlock;
5355 }
5356 return 1;
5357
5358unlock:
5359 list_for_each_entry_continue_reverse(dev,
5360 &slot->bus->devices, bus_list) {
5361 if (!dev->slot || dev->slot != slot)
5362 continue;
5363 if (dev->subordinate)
5364 pci_bus_unlock(dev->subordinate);
5365 else
5366 pci_dev_unlock(dev);
5367 }
5368 return 0;
5369}
5370
5371/*
5372 * Save and disable devices from the top of the tree down while holding
5373 * the @dev mutex lock for the entire tree.
5374 */
5375static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5376{
5377 struct pci_dev *dev;
5378
5379 list_for_each_entry(dev, &bus->devices, bus_list) {
5380 pci_dev_save_and_disable(dev);
5381 if (dev->subordinate)
5382 pci_bus_save_and_disable_locked(dev->subordinate);
5383 }
5384}
5385
5386/*
5387 * Restore devices from top of the tree down while holding @dev mutex lock
5388 * for the entire tree. Parent bridges need to be restored before we can
5389 * get to subordinate devices.
5390 */
5391static void pci_bus_restore_locked(struct pci_bus *bus)
5392{
5393 struct pci_dev *dev;
5394
5395 list_for_each_entry(dev, &bus->devices, bus_list) {
5396 pci_dev_restore(dev);
5397 if (dev->subordinate) {
5398 pci_bridge_wait_for_secondary_bus(dev, "bus reset");
5399 pci_bus_restore_locked(dev->subordinate);
5400 }
5401 }
5402}
5403
5404/*
5405 * Save and disable devices from the top of the tree down while holding
5406 * the @dev mutex lock for the entire tree.
5407 */
5408static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5409{
5410 struct pci_dev *dev;
5411
5412 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5413 if (!dev->slot || dev->slot != slot)
5414 continue;
5415 pci_dev_save_and_disable(dev);
5416 if (dev->subordinate)
5417 pci_bus_save_and_disable_locked(dev->subordinate);
5418 }
5419}
5420
5421/*
5422 * Restore devices from top of the tree down while holding @dev mutex lock
5423 * for the entire tree. Parent bridges need to be restored before we can
5424 * get to subordinate devices.
5425 */
5426static void pci_slot_restore_locked(struct pci_slot *slot)
5427{
5428 struct pci_dev *dev;
5429
5430 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5431 if (!dev->slot || dev->slot != slot)
5432 continue;
5433 pci_dev_restore(dev);
5434 if (dev->subordinate) {
5435 pci_bridge_wait_for_secondary_bus(dev, "slot reset");
5436 pci_bus_restore_locked(dev->subordinate);
5437 }
5438 }
5439}
5440
5441static int pci_slot_reset(struct pci_slot *slot, bool probe)
5442{
5443 int rc;
5444
5445 if (!slot || !pci_slot_resettable(slot))
5446 return -ENOTTY;
5447
5448 if (!probe)
5449 pci_slot_lock(slot);
5450
5451 might_sleep();
5452
5453 rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5454
5455 if (!probe)
5456 pci_slot_unlock(slot);
5457
5458 return rc;
5459}
5460
5461/**
5462 * pci_probe_reset_slot - probe whether a PCI slot can be reset
5463 * @slot: PCI slot to probe
5464 *
5465 * Return 0 if slot can be reset, negative if a slot reset is not supported.
5466 */
5467int pci_probe_reset_slot(struct pci_slot *slot)
5468{
5469 return pci_slot_reset(slot, PCI_RESET_PROBE);
5470}
5471EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5472
5473/**
5474 * __pci_reset_slot - Try to reset a PCI slot
5475 * @slot: PCI slot to reset
5476 *
5477 * A PCI bus may host multiple slots, each slot may support a reset mechanism
5478 * independent of other slots. For instance, some slots may support slot power
5479 * control. In the case of a 1:1 bus to slot architecture, this function may
5480 * wrap the bus reset to avoid spurious slot related events such as hotplug.
5481 * Generally a slot reset should be attempted before a bus reset. All of the
5482 * function of the slot and any subordinate buses behind the slot are reset
5483 * through this function. PCI config space of all devices in the slot and
5484 * behind the slot is saved before and restored after reset.
5485 *
5486 * Same as above except return -EAGAIN if the slot cannot be locked
5487 */
5488static int __pci_reset_slot(struct pci_slot *slot)
5489{
5490 int rc;
5491
5492 rc = pci_slot_reset(slot, PCI_RESET_PROBE);
5493 if (rc)
5494 return rc;
5495
5496 if (pci_slot_trylock(slot)) {
5497 pci_slot_save_and_disable_locked(slot);
5498 might_sleep();
5499 rc = pci_reset_hotplug_slot(slot->hotplug, PCI_RESET_DO_RESET);
5500 pci_slot_restore_locked(slot);
5501 pci_slot_unlock(slot);
5502 } else
5503 rc = -EAGAIN;
5504
5505 return rc;
5506}
5507
5508static int pci_bus_reset(struct pci_bus *bus, bool probe)
5509{
5510 int ret;
5511
5512 if (!bus->self || !pci_bus_resettable(bus))
5513 return -ENOTTY;
5514
5515 if (probe)
5516 return 0;
5517
5518 pci_bus_lock(bus);
5519
5520 might_sleep();
5521
5522 ret = pci_bridge_secondary_bus_reset(bus->self);
5523
5524 pci_bus_unlock(bus);
5525
5526 return ret;
5527}
5528
5529/**
5530 * pci_bus_error_reset - reset the bridge's subordinate bus
5531 * @bridge: The parent device that connects to the bus to reset
5532 *
5533 * This function will first try to reset the slots on this bus if the method is
5534 * available. If slot reset fails or is not available, this will fall back to a
5535 * secondary bus reset.
5536 */
5537int pci_bus_error_reset(struct pci_dev *bridge)
5538{
5539 struct pci_bus *bus = bridge->subordinate;
5540 struct pci_slot *slot;
5541
5542 if (!bus)
5543 return -ENOTTY;
5544
5545 mutex_lock(&pci_slot_mutex);
5546 if (list_empty(&bus->slots))
5547 goto bus_reset;
5548
5549 list_for_each_entry(slot, &bus->slots, list)
5550 if (pci_probe_reset_slot(slot))
5551 goto bus_reset;
5552
5553 list_for_each_entry(slot, &bus->slots, list)
5554 if (pci_slot_reset(slot, PCI_RESET_DO_RESET))
5555 goto bus_reset;
5556
5557 mutex_unlock(&pci_slot_mutex);
5558 return 0;
5559bus_reset:
5560 mutex_unlock(&pci_slot_mutex);
5561 return pci_bus_reset(bridge->subordinate, PCI_RESET_DO_RESET);
5562}
5563
5564/**
5565 * pci_probe_reset_bus - probe whether a PCI bus can be reset
5566 * @bus: PCI bus to probe
5567 *
5568 * Return 0 if bus can be reset, negative if a bus reset is not supported.
5569 */
5570int pci_probe_reset_bus(struct pci_bus *bus)
5571{
5572 return pci_bus_reset(bus, PCI_RESET_PROBE);
5573}
5574EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5575
5576/**
5577 * __pci_reset_bus - Try to reset a PCI bus
5578 * @bus: top level PCI bus to reset
5579 *
5580 * Same as above except return -EAGAIN if the bus cannot be locked
5581 */
5582int __pci_reset_bus(struct pci_bus *bus)
5583{
5584 int rc;
5585
5586 rc = pci_bus_reset(bus, PCI_RESET_PROBE);
5587 if (rc)
5588 return rc;
5589
5590 if (pci_bus_trylock(bus)) {
5591 pci_bus_save_and_disable_locked(bus);
5592 might_sleep();
5593 rc = pci_bridge_secondary_bus_reset(bus->self);
5594 pci_bus_restore_locked(bus);
5595 pci_bus_unlock(bus);
5596 } else
5597 rc = -EAGAIN;
5598
5599 return rc;
5600}
5601
5602/**
5603 * pci_reset_bus - Try to reset a PCI bus
5604 * @pdev: top level PCI device to reset via slot/bus
5605 *
5606 * Same as above except return -EAGAIN if the bus cannot be locked
5607 */
5608int pci_reset_bus(struct pci_dev *pdev)
5609{
5610 return (!pci_probe_reset_slot(pdev->slot)) ?
5611 __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
5612}
5613EXPORT_SYMBOL_GPL(pci_reset_bus);
5614
5615/**
5616 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5617 * @dev: PCI device to query
5618 *
5619 * Returns mmrbc: maximum designed memory read count in bytes or
5620 * appropriate error value.
5621 */
5622int pcix_get_max_mmrbc(struct pci_dev *dev)
5623{
5624 int cap;
5625 u32 stat;
5626
5627 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5628 if (!cap)
5629 return -EINVAL;
5630
5631 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5632 return -EINVAL;
5633
5634 return 512 << FIELD_GET(PCI_X_STATUS_MAX_READ, stat);
5635}
5636EXPORT_SYMBOL(pcix_get_max_mmrbc);
5637
5638/**
5639 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5640 * @dev: PCI device to query
5641 *
5642 * Returns mmrbc: maximum memory read count in bytes or appropriate error
5643 * value.
5644 */
5645int pcix_get_mmrbc(struct pci_dev *dev)
5646{
5647 int cap;
5648 u16 cmd;
5649
5650 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5651 if (!cap)
5652 return -EINVAL;
5653
5654 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5655 return -EINVAL;
5656
5657 return 512 << FIELD_GET(PCI_X_CMD_MAX_READ, cmd);
5658}
5659EXPORT_SYMBOL(pcix_get_mmrbc);
5660
5661/**
5662 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5663 * @dev: PCI device to query
5664 * @mmrbc: maximum memory read count in bytes
5665 * valid values are 512, 1024, 2048, 4096
5666 *
5667 * If possible sets maximum memory read byte count, some bridges have errata
5668 * that prevent this.
5669 */
5670int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5671{
5672 int cap;
5673 u32 stat, v, o;
5674 u16 cmd;
5675
5676 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
5677 return -EINVAL;
5678
5679 v = ffs(mmrbc) - 10;
5680
5681 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5682 if (!cap)
5683 return -EINVAL;
5684
5685 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5686 return -EINVAL;
5687
5688 if (v > FIELD_GET(PCI_X_STATUS_MAX_READ, stat))
5689 return -E2BIG;
5690
5691 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5692 return -EINVAL;
5693
5694 o = FIELD_GET(PCI_X_CMD_MAX_READ, cmd);
5695 if (o != v) {
5696 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
5697 return -EIO;
5698
5699 cmd &= ~PCI_X_CMD_MAX_READ;
5700 cmd |= FIELD_PREP(PCI_X_CMD_MAX_READ, v);
5701 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
5702 return -EIO;
5703 }
5704 return 0;
5705}
5706EXPORT_SYMBOL(pcix_set_mmrbc);
5707
5708/**
5709 * pcie_get_readrq - get PCI Express read request size
5710 * @dev: PCI device to query
5711 *
5712 * Returns maximum memory read request in bytes or appropriate error value.
5713 */
5714int pcie_get_readrq(struct pci_dev *dev)
5715{
5716 u16 ctl;
5717
5718 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5719
5720 return 128 << FIELD_GET(PCI_EXP_DEVCTL_READRQ, ctl);
5721}
5722EXPORT_SYMBOL(pcie_get_readrq);
5723
5724/**
5725 * pcie_set_readrq - set PCI Express maximum memory read request
5726 * @dev: PCI device to query
5727 * @rq: maximum memory read count in bytes
5728 * valid values are 128, 256, 512, 1024, 2048, 4096
5729 *
5730 * If possible sets maximum memory read request in bytes
5731 */
5732int pcie_set_readrq(struct pci_dev *dev, int rq)
5733{
5734 u16 v;
5735 int ret;
5736 unsigned int firstbit;
5737 struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
5738
5739 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
5740 return -EINVAL;
5741
5742 /*
5743 * If using the "performance" PCIe config, we clamp the read rq
5744 * size to the max packet size to keep the host bridge from
5745 * generating requests larger than we can cope with.
5746 */
5747 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
5748 int mps = pcie_get_mps(dev);
5749
5750 if (mps < rq)
5751 rq = mps;
5752 }
5753
5754 firstbit = ffs(rq);
5755 if (firstbit < 8)
5756 return -EINVAL;
5757 v = FIELD_PREP(PCI_EXP_DEVCTL_READRQ, firstbit - 8);
5758
5759 if (bridge->no_inc_mrrs) {
5760 int max_mrrs = pcie_get_readrq(dev);
5761
5762 if (rq > max_mrrs) {
5763 pci_info(dev, "can't set Max_Read_Request_Size to %d; max is %d\n", rq, max_mrrs);
5764 return -EINVAL;
5765 }
5766 }
5767
5768 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5769 PCI_EXP_DEVCTL_READRQ, v);
5770
5771 return pcibios_err_to_errno(ret);
5772}
5773EXPORT_SYMBOL(pcie_set_readrq);
5774
5775/**
5776 * pcie_get_mps - get PCI Express maximum payload size
5777 * @dev: PCI device to query
5778 *
5779 * Returns maximum payload size in bytes
5780 */
5781int pcie_get_mps(struct pci_dev *dev)
5782{
5783 u16 ctl;
5784
5785 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5786
5787 return 128 << FIELD_GET(PCI_EXP_DEVCTL_PAYLOAD, ctl);
5788}
5789EXPORT_SYMBOL(pcie_get_mps);
5790
5791/**
5792 * pcie_set_mps - set PCI Express maximum payload size
5793 * @dev: PCI device to query
5794 * @mps: maximum payload size in bytes
5795 * valid values are 128, 256, 512, 1024, 2048, 4096
5796 *
5797 * If possible sets maximum payload size
5798 */
5799int pcie_set_mps(struct pci_dev *dev, int mps)
5800{
5801 u16 v;
5802 int ret;
5803
5804 if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
5805 return -EINVAL;
5806
5807 v = ffs(mps) - 8;
5808 if (v > dev->pcie_mpss)
5809 return -EINVAL;
5810 v = FIELD_PREP(PCI_EXP_DEVCTL_PAYLOAD, v);
5811
5812 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5813 PCI_EXP_DEVCTL_PAYLOAD, v);
5814
5815 return pcibios_err_to_errno(ret);
5816}
5817EXPORT_SYMBOL(pcie_set_mps);
5818
5819static enum pci_bus_speed to_pcie_link_speed(u16 lnksta)
5820{
5821 return pcie_link_speed[FIELD_GET(PCI_EXP_LNKSTA_CLS, lnksta)];
5822}
5823
5824int pcie_link_speed_mbps(struct pci_dev *pdev)
5825{
5826 u16 lnksta;
5827 int err;
5828
5829 err = pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnksta);
5830 if (err)
5831 return err;
5832
5833 return pcie_dev_speed_mbps(to_pcie_link_speed(lnksta));
5834}
5835EXPORT_SYMBOL(pcie_link_speed_mbps);
5836
5837/**
5838 * pcie_bandwidth_available - determine minimum link settings of a PCIe
5839 * device and its bandwidth limitation
5840 * @dev: PCI device to query
5841 * @limiting_dev: storage for device causing the bandwidth limitation
5842 * @speed: storage for speed of limiting device
5843 * @width: storage for width of limiting device
5844 *
5845 * Walk up the PCI device chain and find the point where the minimum
5846 * bandwidth is available. Return the bandwidth available there and (if
5847 * limiting_dev, speed, and width pointers are supplied) information about
5848 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of
5849 * raw bandwidth.
5850 */
5851u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
5852 enum pci_bus_speed *speed,
5853 enum pcie_link_width *width)
5854{
5855 u16 lnksta;
5856 enum pci_bus_speed next_speed;
5857 enum pcie_link_width next_width;
5858 u32 bw, next_bw;
5859
5860 if (speed)
5861 *speed = PCI_SPEED_UNKNOWN;
5862 if (width)
5863 *width = PCIE_LNK_WIDTH_UNKNOWN;
5864
5865 bw = 0;
5866
5867 while (dev) {
5868 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
5869
5870 next_speed = to_pcie_link_speed(lnksta);
5871 next_width = FIELD_GET(PCI_EXP_LNKSTA_NLW, lnksta);
5872
5873 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
5874
5875 /* Check if current device limits the total bandwidth */
5876 if (!bw || next_bw <= bw) {
5877 bw = next_bw;
5878
5879 if (limiting_dev)
5880 *limiting_dev = dev;
5881 if (speed)
5882 *speed = next_speed;
5883 if (width)
5884 *width = next_width;
5885 }
5886
5887 dev = pci_upstream_bridge(dev);
5888 }
5889
5890 return bw;
5891}
5892EXPORT_SYMBOL(pcie_bandwidth_available);
5893
5894/**
5895 * pcie_get_supported_speeds - query Supported Link Speed Vector
5896 * @dev: PCI device to query
5897 *
5898 * Query @dev supported link speeds.
5899 *
5900 * Implementation Note in PCIe r6.0 sec 7.5.3.18 recommends determining
5901 * supported link speeds using the Supported Link Speeds Vector in the Link
5902 * Capabilities 2 Register (when available).
5903 *
5904 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18.
5905 *
5906 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, Supported Link
5907 * Speeds field in Link Capabilities is used and only 2.5 GT/s and 5.0 GT/s
5908 * speeds were defined.
5909 *
5910 * For @dev without Supported Link Speed Vector, the field is synthesized
5911 * from the Max Link Speed field in the Link Capabilities Register.
5912 *
5913 * Return: Supported Link Speeds Vector (+ reserved 0 at LSB).
5914 */
5915u8 pcie_get_supported_speeds(struct pci_dev *dev)
5916{
5917 u32 lnkcap2, lnkcap;
5918 u8 speeds;
5919
5920 /*
5921 * Speeds retain the reserved 0 at LSB before PCIe Supported Link
5922 * Speeds Vector to allow using SLS Vector bit defines directly.
5923 */
5924 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
5925 speeds = lnkcap2 & PCI_EXP_LNKCAP2_SLS;
5926
5927 /* Ignore speeds higher than Max Link Speed */
5928 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5929 speeds &= GENMASK(lnkcap & PCI_EXP_LNKCAP_SLS, 0);
5930
5931 /* PCIe r3.0-compliant */
5932 if (speeds)
5933 return speeds;
5934
5935 /* Synthesize from the Max Link Speed field */
5936 if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
5937 speeds = PCI_EXP_LNKCAP2_SLS_5_0GB | PCI_EXP_LNKCAP2_SLS_2_5GB;
5938 else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
5939 speeds = PCI_EXP_LNKCAP2_SLS_2_5GB;
5940
5941 return speeds;
5942}
5943
5944/**
5945 * pcie_get_speed_cap - query for the PCI device's link speed capability
5946 * @dev: PCI device to query
5947 *
5948 * Query the PCI device speed capability.
5949 *
5950 * Return: the maximum link speed supported by the device.
5951 */
5952enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
5953{
5954 return PCIE_LNKCAP2_SLS2SPEED(dev->supported_speeds);
5955}
5956EXPORT_SYMBOL(pcie_get_speed_cap);
5957
5958/**
5959 * pcie_get_width_cap - query for the PCI device's link width capability
5960 * @dev: PCI device to query
5961 *
5962 * Query the PCI device width capability. Return the maximum link width
5963 * supported by the device.
5964 */
5965enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
5966{
5967 u32 lnkcap;
5968
5969 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5970 if (lnkcap)
5971 return FIELD_GET(PCI_EXP_LNKCAP_MLW, lnkcap);
5972
5973 return PCIE_LNK_WIDTH_UNKNOWN;
5974}
5975EXPORT_SYMBOL(pcie_get_width_cap);
5976
5977/**
5978 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
5979 * @dev: PCI device
5980 * @speed: storage for link speed
5981 * @width: storage for link width
5982 *
5983 * Calculate a PCI device's link bandwidth by querying for its link speed
5984 * and width, multiplying them, and applying encoding overhead. The result
5985 * is in Mb/s, i.e., megabits/second of raw bandwidth.
5986 */
5987static u32 pcie_bandwidth_capable(struct pci_dev *dev,
5988 enum pci_bus_speed *speed,
5989 enum pcie_link_width *width)
5990{
5991 *speed = pcie_get_speed_cap(dev);
5992 *width = pcie_get_width_cap(dev);
5993
5994 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
5995 return 0;
5996
5997 return *width * PCIE_SPEED2MBS_ENC(*speed);
5998}
5999
6000/**
6001 * __pcie_print_link_status - Report the PCI device's link speed and width
6002 * @dev: PCI device to query
6003 * @verbose: Print info even when enough bandwidth is available
6004 *
6005 * If the available bandwidth at the device is less than the device is
6006 * capable of, report the device's maximum possible bandwidth and the
6007 * upstream link that limits its performance. If @verbose, always print
6008 * the available bandwidth, even if the device isn't constrained.
6009 */
6010void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
6011{
6012 enum pcie_link_width width, width_cap;
6013 enum pci_bus_speed speed, speed_cap;
6014 struct pci_dev *limiting_dev = NULL;
6015 u32 bw_avail, bw_cap;
6016 char *flit_mode = "";
6017
6018 bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
6019 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
6020
6021 if (dev->bus && dev->bus->flit_mode)
6022 flit_mode = ", in Flit mode";
6023
6024 if (bw_avail >= bw_cap && verbose)
6025 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)%s\n",
6026 bw_cap / 1000, bw_cap % 1000,
6027 pci_speed_string(speed_cap), width_cap, flit_mode);
6028 else if (bw_avail < bw_cap)
6029 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)%s\n",
6030 bw_avail / 1000, bw_avail % 1000,
6031 pci_speed_string(speed), width,
6032 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
6033 bw_cap / 1000, bw_cap % 1000,
6034 pci_speed_string(speed_cap), width_cap, flit_mode);
6035}
6036
6037/**
6038 * pcie_print_link_status - Report the PCI device's link speed and width
6039 * @dev: PCI device to query
6040 *
6041 * Report the available bandwidth at the device.
6042 */
6043void pcie_print_link_status(struct pci_dev *dev)
6044{
6045 __pcie_print_link_status(dev, true);
6046}
6047EXPORT_SYMBOL(pcie_print_link_status);
6048
6049/**
6050 * pci_select_bars - Make BAR mask from the type of resource
6051 * @dev: the PCI device for which BAR mask is made
6052 * @flags: resource type mask to be selected
6053 *
6054 * This helper routine makes bar mask from the type of resource.
6055 */
6056int pci_select_bars(struct pci_dev *dev, unsigned long flags)
6057{
6058 int i, bars = 0;
6059 for (i = 0; i < PCI_NUM_RESOURCES; i++)
6060 if (pci_resource_flags(dev, i) & flags)
6061 bars |= (1 << i);
6062 return bars;
6063}
6064EXPORT_SYMBOL(pci_select_bars);
6065
6066/* Some architectures require additional programming to enable VGA */
6067static arch_set_vga_state_t arch_set_vga_state;
6068
6069void __init pci_register_set_vga_state(arch_set_vga_state_t func)
6070{
6071 arch_set_vga_state = func; /* NULL disables */
6072}
6073
6074static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
6075 unsigned int command_bits, u32 flags)
6076{
6077 if (arch_set_vga_state)
6078 return arch_set_vga_state(dev, decode, command_bits,
6079 flags);
6080 return 0;
6081}
6082
6083/**
6084 * pci_set_vga_state - set VGA decode state on device and parents if requested
6085 * @dev: the PCI device
6086 * @decode: true = enable decoding, false = disable decoding
6087 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
6088 * @flags: traverse ancestors and change bridges
6089 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
6090 */
6091int pci_set_vga_state(struct pci_dev *dev, bool decode,
6092 unsigned int command_bits, u32 flags)
6093{
6094 struct pci_bus *bus;
6095 struct pci_dev *bridge;
6096 u16 cmd;
6097 int rc;
6098
6099 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
6100
6101 /* ARCH specific VGA enables */
6102 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
6103 if (rc)
6104 return rc;
6105
6106 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
6107 pci_read_config_word(dev, PCI_COMMAND, &cmd);
6108 if (decode)
6109 cmd |= command_bits;
6110 else
6111 cmd &= ~command_bits;
6112 pci_write_config_word(dev, PCI_COMMAND, cmd);
6113 }
6114
6115 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
6116 return 0;
6117
6118 bus = dev->bus;
6119 while (bus) {
6120 bridge = bus->self;
6121 if (bridge) {
6122 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
6123 &cmd);
6124 if (decode)
6125 cmd |= PCI_BRIDGE_CTL_VGA;
6126 else
6127 cmd &= ~PCI_BRIDGE_CTL_VGA;
6128 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
6129 cmd);
6130 }
6131 bus = bus->parent;
6132 }
6133 return 0;
6134}
6135
6136#ifdef CONFIG_ACPI
6137bool pci_pr3_present(struct pci_dev *pdev)
6138{
6139 struct acpi_device *adev;
6140
6141 if (acpi_disabled)
6142 return false;
6143
6144 adev = ACPI_COMPANION(&pdev->dev);
6145 if (!adev)
6146 return false;
6147
6148 return adev->power.flags.power_resources &&
6149 acpi_has_method(adev->handle, "_PR3");
6150}
6151EXPORT_SYMBOL_GPL(pci_pr3_present);
6152#endif
6153
6154/**
6155 * pci_add_dma_alias - Add a DMA devfn alias for a device
6156 * @dev: the PCI device for which alias is added
6157 * @devfn_from: alias slot and function
6158 * @nr_devfns: number of subsequent devfns to alias
6159 *
6160 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6161 * which is used to program permissible bus-devfn source addresses for DMA
6162 * requests in an IOMMU. These aliases factor into IOMMU group creation
6163 * and are useful for devices generating DMA requests beyond or different
6164 * from their logical bus-devfn. Examples include device quirks where the
6165 * device simply uses the wrong devfn, as well as non-transparent bridges
6166 * where the alias may be a proxy for devices in another domain.
6167 *
6168 * IOMMU group creation is performed during device discovery or addition,
6169 * prior to any potential DMA mapping and therefore prior to driver probing
6170 * (especially for userspace assigned devices where IOMMU group definition
6171 * cannot be left as a userspace activity). DMA aliases should therefore
6172 * be configured via quirks, such as the PCI fixup header quirk.
6173 */
6174void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from,
6175 unsigned int nr_devfns)
6176{
6177 int devfn_to;
6178
6179 nr_devfns = min(nr_devfns, (unsigned int)MAX_NR_DEVFNS - devfn_from);
6180 devfn_to = devfn_from + nr_devfns - 1;
6181
6182 if (!dev->dma_alias_mask)
6183 dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
6184 if (!dev->dma_alias_mask) {
6185 pci_warn(dev, "Unable to allocate DMA alias mask\n");
6186 return;
6187 }
6188
6189 bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
6190
6191 if (nr_devfns == 1)
6192 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6193 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6194 else if (nr_devfns > 1)
6195 pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6196 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6197 PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
6198}
6199
6200bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6201{
6202 return (dev1->dma_alias_mask &&
6203 test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6204 (dev2->dma_alias_mask &&
6205 test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6206 pci_real_dma_dev(dev1) == dev2 ||
6207 pci_real_dma_dev(dev2) == dev1;
6208}
6209
6210bool pci_device_is_present(struct pci_dev *pdev)
6211{
6212 u32 v;
6213
6214 /* Check PF if pdev is a VF, since VF Vendor/Device IDs are 0xffff */
6215 pdev = pci_physfn(pdev);
6216 if (pci_dev_is_disconnected(pdev))
6217 return false;
6218 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6219}
6220EXPORT_SYMBOL_GPL(pci_device_is_present);
6221
6222void pci_ignore_hotplug(struct pci_dev *dev)
6223{
6224 struct pci_dev *bridge = dev->bus->self;
6225
6226 dev->ignore_hotplug = 1;
6227 /* Propagate the "ignore hotplug" setting to the parent bridge. */
6228 if (bridge)
6229 bridge->ignore_hotplug = 1;
6230}
6231EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6232
6233/**
6234 * pci_real_dma_dev - Get PCI DMA device for PCI device
6235 * @dev: the PCI device that may have a PCI DMA alias
6236 *
6237 * Permits the platform to provide architecture-specific functionality to
6238 * devices needing to alias DMA to another PCI device on another PCI bus. If
6239 * the PCI device is on the same bus, it is recommended to use
6240 * pci_add_dma_alias(). This is the default implementation. Architecture
6241 * implementations can override this.
6242 */
6243struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6244{
6245 return dev;
6246}
6247
6248resource_size_t __weak pcibios_default_alignment(void)
6249{
6250 return 0;
6251}
6252
6253/*
6254 * Arches that don't want to expose struct resource to userland as-is in
6255 * sysfs and /proc can implement their own pci_resource_to_user().
6256 */
6257void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6258 const struct resource *rsrc,
6259 resource_size_t *start, resource_size_t *end)
6260{
6261 *start = rsrc->start;
6262 *end = rsrc->end;
6263}
6264
6265static char *resource_alignment_param;
6266static DEFINE_SPINLOCK(resource_alignment_lock);
6267
6268/**
6269 * pci_specified_resource_alignment - get resource alignment specified by user.
6270 * @dev: the PCI device to get
6271 * @resize: whether or not to change resources' size when reassigning alignment
6272 *
6273 * RETURNS: Resource alignment if it is specified.
6274 * Zero if it is not specified.
6275 */
6276static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6277 bool *resize)
6278{
6279 int align_order, count;
6280 resource_size_t align = pcibios_default_alignment();
6281 const char *p;
6282 int ret;
6283
6284 spin_lock(&resource_alignment_lock);
6285 p = resource_alignment_param;
6286 if (!p || !*p)
6287 goto out;
6288 if (pci_has_flag(PCI_PROBE_ONLY)) {
6289 align = 0;
6290 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6291 goto out;
6292 }
6293
6294 while (*p) {
6295 count = 0;
6296 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6297 p[count] == '@') {
6298 p += count + 1;
6299 if (align_order > 63) {
6300 pr_err("PCI: Invalid requested alignment (order %d)\n",
6301 align_order);
6302 align_order = PAGE_SHIFT;
6303 }
6304 } else {
6305 align_order = PAGE_SHIFT;
6306 }
6307
6308 ret = pci_dev_str_match(dev, p, &p);
6309 if (ret == 1) {
6310 *resize = true;
6311 align = 1ULL << align_order;
6312 break;
6313 } else if (ret < 0) {
6314 pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6315 p);
6316 break;
6317 }
6318
6319 if (*p != ';' && *p != ',') {
6320 /* End of param or invalid format */
6321 break;
6322 }
6323 p++;
6324 }
6325out:
6326 spin_unlock(&resource_alignment_lock);
6327 return align;
6328}
6329
6330static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6331 resource_size_t align, bool resize)
6332{
6333 struct resource *r = &dev->resource[bar];
6334 const char *r_name = pci_resource_name(dev, bar);
6335 resource_size_t size;
6336
6337 if (!(r->flags & IORESOURCE_MEM))
6338 return;
6339
6340 if (r->flags & IORESOURCE_PCI_FIXED) {
6341 pci_info(dev, "%s %pR: ignoring requested alignment %#llx\n",
6342 r_name, r, (unsigned long long)align);
6343 return;
6344 }
6345
6346 size = resource_size(r);
6347 if (size >= align)
6348 return;
6349
6350 /*
6351 * Increase the alignment of the resource. There are two ways we
6352 * can do this:
6353 *
6354 * 1) Increase the size of the resource. BARs are aligned on their
6355 * size, so when we reallocate space for this resource, we'll
6356 * allocate it with the larger alignment. This also prevents
6357 * assignment of any other BARs inside the alignment region, so
6358 * if we're requesting page alignment, this means no other BARs
6359 * will share the page.
6360 *
6361 * The disadvantage is that this makes the resource larger than
6362 * the hardware BAR, which may break drivers that compute things
6363 * based on the resource size, e.g., to find registers at a
6364 * fixed offset before the end of the BAR.
6365 *
6366 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6367 * set r->start to the desired alignment. By itself this
6368 * doesn't prevent other BARs being put inside the alignment
6369 * region, but if we realign *every* resource of every device in
6370 * the system, none of them will share an alignment region.
6371 *
6372 * When the user has requested alignment for only some devices via
6373 * the "pci=resource_alignment" argument, "resize" is true and we
6374 * use the first method. Otherwise we assume we're aligning all
6375 * devices and we use the second.
6376 */
6377
6378 pci_info(dev, "%s %pR: requesting alignment to %#llx\n",
6379 r_name, r, (unsigned long long)align);
6380
6381 if (resize) {
6382 r->start = 0;
6383 r->end = align - 1;
6384 } else {
6385 r->flags &= ~IORESOURCE_SIZEALIGN;
6386 r->flags |= IORESOURCE_STARTALIGN;
6387 resource_set_range(r, align, size);
6388 }
6389 r->flags |= IORESOURCE_UNSET;
6390}
6391
6392/*
6393 * This function disables memory decoding and releases memory resources
6394 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6395 * It also rounds up size to specified alignment.
6396 * Later on, the kernel will assign page-aligned memory resource back
6397 * to the device.
6398 */
6399void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6400{
6401 int i;
6402 struct resource *r;
6403 resource_size_t align;
6404 u16 command;
6405 bool resize = false;
6406
6407 /*
6408 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6409 * 3.4.1.11. Their resources are allocated from the space
6410 * described by the VF BARx register in the PF's SR-IOV capability.
6411 * We can't influence their alignment here.
6412 */
6413 if (dev->is_virtfn)
6414 return;
6415
6416 /* check if specified PCI is target device to reassign */
6417 align = pci_specified_resource_alignment(dev, &resize);
6418 if (!align)
6419 return;
6420
6421 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6422 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6423 pci_warn(dev, "Can't reassign resources to host bridge\n");
6424 return;
6425 }
6426
6427 pci_read_config_word(dev, PCI_COMMAND, &command);
6428 command &= ~PCI_COMMAND_MEMORY;
6429 pci_write_config_word(dev, PCI_COMMAND, command);
6430
6431 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6432 pci_request_resource_alignment(dev, i, align, resize);
6433
6434 /*
6435 * Need to disable bridge's resource window,
6436 * to enable the kernel to reassign new resource
6437 * window later on.
6438 */
6439 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6440 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6441 r = &dev->resource[i];
6442 if (!(r->flags & IORESOURCE_MEM))
6443 continue;
6444 r->flags |= IORESOURCE_UNSET;
6445 r->end = resource_size(r) - 1;
6446 r->start = 0;
6447 }
6448 pci_disable_bridge_window(dev);
6449 }
6450}
6451
6452static ssize_t resource_alignment_show(const struct bus_type *bus, char *buf)
6453{
6454 size_t count = 0;
6455
6456 spin_lock(&resource_alignment_lock);
6457 if (resource_alignment_param)
6458 count = sysfs_emit(buf, "%s\n", resource_alignment_param);
6459 spin_unlock(&resource_alignment_lock);
6460
6461 return count;
6462}
6463
6464static ssize_t resource_alignment_store(const struct bus_type *bus,
6465 const char *buf, size_t count)
6466{
6467 char *param, *old, *end;
6468
6469 if (count >= (PAGE_SIZE - 1))
6470 return -EINVAL;
6471
6472 param = kstrndup(buf, count, GFP_KERNEL);
6473 if (!param)
6474 return -ENOMEM;
6475
6476 end = strchr(param, '\n');
6477 if (end)
6478 *end = '\0';
6479
6480 spin_lock(&resource_alignment_lock);
6481 old = resource_alignment_param;
6482 if (strlen(param)) {
6483 resource_alignment_param = param;
6484 } else {
6485 kfree(param);
6486 resource_alignment_param = NULL;
6487 }
6488 spin_unlock(&resource_alignment_lock);
6489
6490 kfree(old);
6491
6492 return count;
6493}
6494
6495static BUS_ATTR_RW(resource_alignment);
6496
6497static int __init pci_resource_alignment_sysfs_init(void)
6498{
6499 return bus_create_file(&pci_bus_type,
6500 &bus_attr_resource_alignment);
6501}
6502late_initcall(pci_resource_alignment_sysfs_init);
6503
6504static void pci_no_domains(void)
6505{
6506#ifdef CONFIG_PCI_DOMAINS
6507 pci_domains_supported = 0;
6508#endif
6509}
6510
6511#ifdef CONFIG_PCI_DOMAINS
6512static DEFINE_IDA(pci_domain_nr_dynamic_ida);
6513
6514/**
6515 * pci_bus_find_emul_domain_nr() - allocate a PCI domain number per constraints
6516 * @hint: desired domain, 0 if any ID in the range of @min to @max is acceptable
6517 * @min: minimum allowable domain
6518 * @max: maximum allowable domain, no IDs higher than INT_MAX will be returned
6519 */
6520int pci_bus_find_emul_domain_nr(u32 hint, u32 min, u32 max)
6521{
6522 return ida_alloc_range(&pci_domain_nr_dynamic_ida, max(hint, min), max,
6523 GFP_KERNEL);
6524}
6525EXPORT_SYMBOL_GPL(pci_bus_find_emul_domain_nr);
6526
6527void pci_bus_release_emul_domain_nr(int domain_nr)
6528{
6529 ida_free(&pci_domain_nr_dynamic_ida, domain_nr);
6530}
6531EXPORT_SYMBOL_GPL(pci_bus_release_emul_domain_nr);
6532#endif
6533
6534#ifdef CONFIG_PCI_DOMAINS_GENERIC
6535static DEFINE_IDA(pci_domain_nr_static_ida);
6536
6537static void of_pci_reserve_static_domain_nr(void)
6538{
6539 struct device_node *np;
6540 int domain_nr;
6541
6542 for_each_node_by_type(np, "pci") {
6543 domain_nr = of_get_pci_domain_nr(np);
6544 if (domain_nr < 0)
6545 continue;
6546 /*
6547 * Permanently allocate domain_nr in dynamic_ida
6548 * to prevent it from dynamic allocation.
6549 */
6550 ida_alloc_range(&pci_domain_nr_dynamic_ida,
6551 domain_nr, domain_nr, GFP_KERNEL);
6552 }
6553}
6554
6555static int of_pci_bus_find_domain_nr(struct device *parent)
6556{
6557 static bool static_domains_reserved = false;
6558 int domain_nr;
6559
6560 /* On the first call scan device tree for static allocations. */
6561 if (!static_domains_reserved) {
6562 of_pci_reserve_static_domain_nr();
6563 static_domains_reserved = true;
6564 }
6565
6566 if (parent) {
6567 /*
6568 * If domain is in DT, allocate it in static IDA. This
6569 * prevents duplicate static allocations in case of errors
6570 * in DT.
6571 */
6572 domain_nr = of_get_pci_domain_nr(parent->of_node);
6573 if (domain_nr >= 0)
6574 return ida_alloc_range(&pci_domain_nr_static_ida,
6575 domain_nr, domain_nr,
6576 GFP_KERNEL);
6577 }
6578
6579 /*
6580 * If domain was not specified in DT, choose a free ID from dynamic
6581 * allocations. All domain numbers from DT are permanently in
6582 * dynamic allocations to prevent assigning them to other DT nodes
6583 * without static domain.
6584 */
6585 return ida_alloc(&pci_domain_nr_dynamic_ida, GFP_KERNEL);
6586}
6587
6588static void of_pci_bus_release_domain_nr(struct device *parent, int domain_nr)
6589{
6590 if (domain_nr < 0)
6591 return;
6592
6593 /* Release domain from IDA where it was allocated. */
6594 if (of_get_pci_domain_nr(parent->of_node) == domain_nr)
6595 ida_free(&pci_domain_nr_static_ida, domain_nr);
6596 else
6597 ida_free(&pci_domain_nr_dynamic_ida, domain_nr);
6598}
6599
6600int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6601{
6602 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6603 acpi_pci_bus_find_domain_nr(bus);
6604}
6605
6606void pci_bus_release_domain_nr(struct device *parent, int domain_nr)
6607{
6608 if (!acpi_disabled)
6609 return;
6610 of_pci_bus_release_domain_nr(parent, domain_nr);
6611}
6612#endif
6613
6614/**
6615 * pci_ext_cfg_avail - can we access extended PCI config space?
6616 *
6617 * Returns 1 if we can access PCI extended config space (offsets
6618 * greater than 0xff). This is the default implementation. Architecture
6619 * implementations can override this.
6620 */
6621int __weak pci_ext_cfg_avail(void)
6622{
6623 return 1;
6624}
6625
6626static int __init pci_setup(char *str)
6627{
6628 while (str) {
6629 char *k = strchr(str, ',');
6630 if (k)
6631 *k++ = 0;
6632 if (*str && (str = pcibios_setup(str)) && *str) {
6633 if (!strcmp(str, "nomsi")) {
6634 pci_no_msi();
6635 } else if (!strncmp(str, "noats", 5)) {
6636 pr_info("PCIe: ATS is disabled\n");
6637 pcie_ats_disabled = true;
6638 } else if (!strcmp(str, "noaer")) {
6639 pci_no_aer();
6640 } else if (!strcmp(str, "earlydump")) {
6641 pci_early_dump = true;
6642 } else if (!strncmp(str, "realloc=", 8)) {
6643 pci_realloc_get_opt(str + 8);
6644 } else if (!strncmp(str, "realloc", 7)) {
6645 pci_realloc_get_opt("on");
6646 } else if (!strcmp(str, "nodomains")) {
6647 pci_no_domains();
6648 } else if (!strncmp(str, "noari", 5)) {
6649 pcie_ari_disabled = true;
6650 } else if (!strncmp(str, "notph", 5)) {
6651 pci_no_tph();
6652 } else if (!strncmp(str, "cbiosize=", 9)) {
6653 pci_cardbus_io_size = memparse(str + 9, &str);
6654 } else if (!strncmp(str, "cbmemsize=", 10)) {
6655 pci_cardbus_mem_size = memparse(str + 10, &str);
6656 } else if (!strncmp(str, "resource_alignment=", 19)) {
6657 resource_alignment_param = str + 19;
6658 } else if (!strncmp(str, "ecrc=", 5)) {
6659 pcie_ecrc_get_policy(str + 5);
6660 } else if (!strncmp(str, "hpiosize=", 9)) {
6661 pci_hotplug_io_size = memparse(str + 9, &str);
6662 } else if (!strncmp(str, "hpmmiosize=", 11)) {
6663 pci_hotplug_mmio_size = memparse(str + 11, &str);
6664 } else if (!strncmp(str, "hpmmioprefsize=", 15)) {
6665 pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
6666 } else if (!strncmp(str, "hpmemsize=", 10)) {
6667 pci_hotplug_mmio_size = memparse(str + 10, &str);
6668 pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
6669 } else if (!strncmp(str, "hpbussize=", 10)) {
6670 pci_hotplug_bus_size =
6671 simple_strtoul(str + 10, &str, 0);
6672 if (pci_hotplug_bus_size > 0xff)
6673 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
6674 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6675 pcie_bus_config = PCIE_BUS_TUNE_OFF;
6676 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
6677 pcie_bus_config = PCIE_BUS_SAFE;
6678 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
6679 pcie_bus_config = PCIE_BUS_PERFORMANCE;
6680 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6681 pcie_bus_config = PCIE_BUS_PEER2PEER;
6682 } else if (!strncmp(str, "pcie_scan_all", 13)) {
6683 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
6684 } else if (!strncmp(str, "disable_acs_redir=", 18)) {
6685 disable_acs_redir_param = str + 18;
6686 } else if (!strncmp(str, "config_acs=", 11)) {
6687 config_acs_param = str + 11;
6688 } else {
6689 pr_err("PCI: Unknown option `%s'\n", str);
6690 }
6691 }
6692 str = k;
6693 }
6694 return 0;
6695}
6696early_param("pci", pci_setup);
6697
6698/*
6699 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
6700 * in pci_setup(), above, to point to data in the __initdata section which
6701 * will be freed after the init sequence is complete. We can't allocate memory
6702 * in pci_setup() because some architectures do not have any memory allocation
6703 * service available during an early_param() call. So we allocate memory and
6704 * copy the variable here before the init section is freed.
6705 *
6706 */
6707static int __init pci_realloc_setup_params(void)
6708{
6709 resource_alignment_param = kstrdup(resource_alignment_param,
6710 GFP_KERNEL);
6711 disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
6712 config_acs_param = kstrdup(config_acs_param, GFP_KERNEL);
6713
6714 return 0;
6715}
6716pure_initcall(pci_realloc_setup_params);