Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * drivers/of/property.c - Procedures for accessing and interpreting
4 * Devicetree properties and graphs.
5 *
6 * Initially created by copying procedures from drivers/of/base.c. This
7 * file contains the OF property as well as the OF graph interface
8 * functions.
9 *
10 * Paul Mackerras August 1996.
11 * Copyright (C) 1996-2005 Paul Mackerras.
12 *
13 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
14 * {engebret|bergner}@us.ibm.com
15 *
16 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
17 *
18 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
19 * Grant Likely.
20 */
21
22#define pr_fmt(fmt) "OF: " fmt
23
24#include <linux/of.h>
25#include <linux/of_address.h>
26#include <linux/of_device.h>
27#include <linux/of_graph.h>
28#include <linux/of_irq.h>
29#include <linux/string.h>
30#include <linux/moduleparam.h>
31
32#include "of_private.h"
33
34/**
35 * of_property_read_bool - Find a property
36 * @np: device node from which the property value is to be read.
37 * @propname: name of the property to be searched.
38 *
39 * Search for a boolean property in a device node. Usage on non-boolean
40 * property types is deprecated.
41 *
42 * Return: true if the property exists false otherwise.
43 */
44bool of_property_read_bool(const struct device_node *np, const char *propname)
45{
46 struct property *prop = of_find_property(np, propname, NULL);
47
48 /*
49 * Boolean properties should not have a value. Testing for property
50 * presence should either use of_property_present() or just read the
51 * property value and check the returned error code.
52 */
53 if (prop && prop->length)
54 pr_warn("%pOF: Read of boolean property '%s' with a value.\n", np, propname);
55
56 return prop ? true : false;
57}
58EXPORT_SYMBOL(of_property_read_bool);
59
60/**
61 * of_graph_is_present() - check graph's presence
62 * @node: pointer to device_node containing graph port
63 *
64 * Return: True if @node has a port or ports (with a port) sub-node,
65 * false otherwise.
66 */
67bool of_graph_is_present(const struct device_node *node)
68{
69 struct device_node *ports __free(device_node) = of_get_child_by_name(node, "ports");
70
71 if (ports)
72 node = ports;
73
74 struct device_node *port __free(device_node) = of_get_child_by_name(node, "port");
75
76 return !!port;
77}
78EXPORT_SYMBOL(of_graph_is_present);
79
80/**
81 * of_property_count_elems_of_size - Count the number of elements in a property
82 *
83 * @np: device node from which the property value is to be read.
84 * @propname: name of the property to be searched.
85 * @elem_size: size of the individual element
86 *
87 * Search for a property in a device node and count the number of elements of
88 * size elem_size in it.
89 *
90 * Return: The number of elements on sucess, -EINVAL if the property does not
91 * exist or its length does not match a multiple of elem_size and -ENODATA if
92 * the property does not have a value.
93 */
94int of_property_count_elems_of_size(const struct device_node *np,
95 const char *propname, int elem_size)
96{
97 const struct property *prop = of_find_property(np, propname, NULL);
98
99 if (!prop)
100 return -EINVAL;
101 if (!prop->value)
102 return -ENODATA;
103
104 if (prop->length % elem_size != 0) {
105 pr_err("size of %s in node %pOF is not a multiple of %d\n",
106 propname, np, elem_size);
107 return -EINVAL;
108 }
109
110 return prop->length / elem_size;
111}
112EXPORT_SYMBOL_GPL(of_property_count_elems_of_size);
113
114/**
115 * of_find_property_value_of_size
116 *
117 * @np: device node from which the property value is to be read.
118 * @propname: name of the property to be searched.
119 * @min: minimum allowed length of property value
120 * @max: maximum allowed length of property value (0 means unlimited)
121 * @len: if !=NULL, actual length is written to here
122 *
123 * Search for a property in a device node and valid the requested size.
124 *
125 * Return: The property value on success, -EINVAL if the property does not
126 * exist, -ENODATA if property does not have a value, and -EOVERFLOW if the
127 * property data is too small or too large.
128 *
129 */
130static void *of_find_property_value_of_size(const struct device_node *np,
131 const char *propname, u32 min, u32 max, size_t *len)
132{
133 const struct property *prop = of_find_property(np, propname, NULL);
134
135 if (!prop)
136 return ERR_PTR(-EINVAL);
137 if (!prop->value)
138 return ERR_PTR(-ENODATA);
139 if (prop->length < min)
140 return ERR_PTR(-EOVERFLOW);
141 if (max && prop->length > max)
142 return ERR_PTR(-EOVERFLOW);
143
144 if (len)
145 *len = prop->length;
146
147 return prop->value;
148}
149
150/**
151 * of_property_read_u8_index - Find and read a u8 from a multi-value property.
152 *
153 * @np: device node from which the property value is to be read.
154 * @propname: name of the property to be searched.
155 * @index: index of the u8 in the list of values
156 * @out_value: pointer to return value, modified only if no error.
157 *
158 * Search for a property in a device node and read nth 8-bit value from
159 * it.
160 *
161 * Return: 0 on success, -EINVAL if the property does not exist,
162 * -ENODATA if property does not have a value, and -EOVERFLOW if the
163 * property data isn't large enough.
164 *
165 * The out_value is modified only if a valid u8 value can be decoded.
166 */
167int of_property_read_u8_index(const struct device_node *np,
168 const char *propname,
169 u32 index, u8 *out_value)
170{
171 const u8 *val = of_find_property_value_of_size(np, propname,
172 ((index + 1) * sizeof(*out_value)),
173 0, NULL);
174
175 if (IS_ERR(val))
176 return PTR_ERR(val);
177
178 *out_value = val[index];
179 return 0;
180}
181EXPORT_SYMBOL_GPL(of_property_read_u8_index);
182
183/**
184 * of_property_read_u16_index - Find and read a u16 from a multi-value property.
185 *
186 * @np: device node from which the property value is to be read.
187 * @propname: name of the property to be searched.
188 * @index: index of the u16 in the list of values
189 * @out_value: pointer to return value, modified only if no error.
190 *
191 * Search for a property in a device node and read nth 16-bit value from
192 * it.
193 *
194 * Return: 0 on success, -EINVAL if the property does not exist,
195 * -ENODATA if property does not have a value, and -EOVERFLOW if the
196 * property data isn't large enough.
197 *
198 * The out_value is modified only if a valid u16 value can be decoded.
199 */
200int of_property_read_u16_index(const struct device_node *np,
201 const char *propname,
202 u32 index, u16 *out_value)
203{
204 const u16 *val = of_find_property_value_of_size(np, propname,
205 ((index + 1) * sizeof(*out_value)),
206 0, NULL);
207
208 if (IS_ERR(val))
209 return PTR_ERR(val);
210
211 *out_value = be16_to_cpup(((__be16 *)val) + index);
212 return 0;
213}
214EXPORT_SYMBOL_GPL(of_property_read_u16_index);
215
216/**
217 * of_property_read_u32_index - Find and read a u32 from a multi-value property.
218 *
219 * @np: device node from which the property value is to be read.
220 * @propname: name of the property to be searched.
221 * @index: index of the u32 in the list of values
222 * @out_value: pointer to return value, modified only if no error.
223 *
224 * Search for a property in a device node and read nth 32-bit value from
225 * it.
226 *
227 * Return: 0 on success, -EINVAL if the property does not exist,
228 * -ENODATA if property does not have a value, and -EOVERFLOW if the
229 * property data isn't large enough.
230 *
231 * The out_value is modified only if a valid u32 value can be decoded.
232 */
233int of_property_read_u32_index(const struct device_node *np,
234 const char *propname,
235 u32 index, u32 *out_value)
236{
237 const u32 *val = of_find_property_value_of_size(np, propname,
238 ((index + 1) * sizeof(*out_value)),
239 0,
240 NULL);
241
242 if (IS_ERR(val))
243 return PTR_ERR(val);
244
245 *out_value = be32_to_cpup(((__be32 *)val) + index);
246 return 0;
247}
248EXPORT_SYMBOL_GPL(of_property_read_u32_index);
249
250/**
251 * of_property_read_u64_index - Find and read a u64 from a multi-value property.
252 *
253 * @np: device node from which the property value is to be read.
254 * @propname: name of the property to be searched.
255 * @index: index of the u64 in the list of values
256 * @out_value: pointer to return value, modified only if no error.
257 *
258 * Search for a property in a device node and read nth 64-bit value from
259 * it.
260 *
261 * Return: 0 on success, -EINVAL if the property does not exist,
262 * -ENODATA if property does not have a value, and -EOVERFLOW if the
263 * property data isn't large enough.
264 *
265 * The out_value is modified only if a valid u64 value can be decoded.
266 */
267int of_property_read_u64_index(const struct device_node *np,
268 const char *propname,
269 u32 index, u64 *out_value)
270{
271 const u64 *val = of_find_property_value_of_size(np, propname,
272 ((index + 1) * sizeof(*out_value)),
273 0, NULL);
274
275 if (IS_ERR(val))
276 return PTR_ERR(val);
277
278 *out_value = be64_to_cpup(((__be64 *)val) + index);
279 return 0;
280}
281EXPORT_SYMBOL_GPL(of_property_read_u64_index);
282
283/**
284 * of_property_read_variable_u8_array - Find and read an array of u8 from a
285 * property, with bounds on the minimum and maximum array size.
286 *
287 * @np: device node from which the property value is to be read.
288 * @propname: name of the property to be searched.
289 * @out_values: pointer to found values.
290 * @sz_min: minimum number of array elements to read
291 * @sz_max: maximum number of array elements to read, if zero there is no
292 * upper limit on the number of elements in the dts entry but only
293 * sz_min will be read.
294 *
295 * Search for a property in a device node and read 8-bit value(s) from
296 * it.
297 *
298 * dts entry of array should be like:
299 * ``property = /bits/ 8 <0x50 0x60 0x70>;``
300 *
301 * Return: The number of elements read on success, -EINVAL if the property
302 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
303 * if the property data is smaller than sz_min or longer than sz_max.
304 *
305 * The out_values is modified only if a valid u8 value can be decoded.
306 */
307int of_property_read_variable_u8_array(const struct device_node *np,
308 const char *propname, u8 *out_values,
309 size_t sz_min, size_t sz_max)
310{
311 size_t sz, count;
312 const u8 *val = of_find_property_value_of_size(np, propname,
313 (sz_min * sizeof(*out_values)),
314 (sz_max * sizeof(*out_values)),
315 &sz);
316
317 if (IS_ERR(val))
318 return PTR_ERR(val);
319
320 if (!sz_max)
321 sz = sz_min;
322 else
323 sz /= sizeof(*out_values);
324
325 count = sz;
326 while (count--)
327 *out_values++ = *val++;
328
329 return sz;
330}
331EXPORT_SYMBOL_GPL(of_property_read_variable_u8_array);
332
333/**
334 * of_property_read_variable_u16_array - Find and read an array of u16 from a
335 * property, with bounds on the minimum and maximum array size.
336 *
337 * @np: device node from which the property value is to be read.
338 * @propname: name of the property to be searched.
339 * @out_values: pointer to found values.
340 * @sz_min: minimum number of array elements to read
341 * @sz_max: maximum number of array elements to read, if zero there is no
342 * upper limit on the number of elements in the dts entry but only
343 * sz_min will be read.
344 *
345 * Search for a property in a device node and read 16-bit value(s) from
346 * it.
347 *
348 * dts entry of array should be like:
349 * ``property = /bits/ 16 <0x5000 0x6000 0x7000>;``
350 *
351 * Return: The number of elements read on success, -EINVAL if the property
352 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
353 * if the property data is smaller than sz_min or longer than sz_max.
354 *
355 * The out_values is modified only if a valid u16 value can be decoded.
356 */
357int of_property_read_variable_u16_array(const struct device_node *np,
358 const char *propname, u16 *out_values,
359 size_t sz_min, size_t sz_max)
360{
361 size_t sz, count;
362 const __be16 *val = of_find_property_value_of_size(np, propname,
363 (sz_min * sizeof(*out_values)),
364 (sz_max * sizeof(*out_values)),
365 &sz);
366
367 if (IS_ERR(val))
368 return PTR_ERR(val);
369
370 if (!sz_max)
371 sz = sz_min;
372 else
373 sz /= sizeof(*out_values);
374
375 count = sz;
376 while (count--)
377 *out_values++ = be16_to_cpup(val++);
378
379 return sz;
380}
381EXPORT_SYMBOL_GPL(of_property_read_variable_u16_array);
382
383/**
384 * of_property_read_variable_u32_array - Find and read an array of 32 bit
385 * integers from a property, with bounds on the minimum and maximum array size.
386 *
387 * @np: device node from which the property value is to be read.
388 * @propname: name of the property to be searched.
389 * @out_values: pointer to return found values.
390 * @sz_min: minimum number of array elements to read
391 * @sz_max: maximum number of array elements to read, if zero there is no
392 * upper limit on the number of elements in the dts entry but only
393 * sz_min will be read.
394 *
395 * Search for a property in a device node and read 32-bit value(s) from
396 * it.
397 *
398 * Return: The number of elements read on success, -EINVAL if the property
399 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
400 * if the property data is smaller than sz_min or longer than sz_max.
401 *
402 * The out_values is modified only if a valid u32 value can be decoded.
403 */
404int of_property_read_variable_u32_array(const struct device_node *np,
405 const char *propname, u32 *out_values,
406 size_t sz_min, size_t sz_max)
407{
408 size_t sz, count;
409 const __be32 *val = of_find_property_value_of_size(np, propname,
410 (sz_min * sizeof(*out_values)),
411 (sz_max * sizeof(*out_values)),
412 &sz);
413
414 if (IS_ERR(val))
415 return PTR_ERR(val);
416
417 if (!sz_max)
418 sz = sz_min;
419 else
420 sz /= sizeof(*out_values);
421
422 count = sz;
423 while (count--)
424 *out_values++ = be32_to_cpup(val++);
425
426 return sz;
427}
428EXPORT_SYMBOL_GPL(of_property_read_variable_u32_array);
429
430/**
431 * of_property_read_u64 - Find and read a 64 bit integer from a property
432 * @np: device node from which the property value is to be read.
433 * @propname: name of the property to be searched.
434 * @out_value: pointer to return value, modified only if return value is 0.
435 *
436 * Search for a property in a device node and read a 64-bit value from
437 * it.
438 *
439 * Return: 0 on success, -EINVAL if the property does not exist,
440 * -ENODATA if property does not have a value, and -EOVERFLOW if the
441 * property data isn't large enough.
442 *
443 * The out_value is modified only if a valid u64 value can be decoded.
444 */
445int of_property_read_u64(const struct device_node *np, const char *propname,
446 u64 *out_value)
447{
448 const __be32 *val = of_find_property_value_of_size(np, propname,
449 sizeof(*out_value),
450 0,
451 NULL);
452
453 if (IS_ERR(val))
454 return PTR_ERR(val);
455
456 *out_value = of_read_number(val, 2);
457 return 0;
458}
459EXPORT_SYMBOL_GPL(of_property_read_u64);
460
461/**
462 * of_property_read_variable_u64_array - Find and read an array of 64 bit
463 * integers from a property, with bounds on the minimum and maximum array size.
464 *
465 * @np: device node from which the property value is to be read.
466 * @propname: name of the property to be searched.
467 * @out_values: pointer to found values.
468 * @sz_min: minimum number of array elements to read
469 * @sz_max: maximum number of array elements to read, if zero there is no
470 * upper limit on the number of elements in the dts entry but only
471 * sz_min will be read.
472 *
473 * Search for a property in a device node and read 64-bit value(s) from
474 * it.
475 *
476 * Return: The number of elements read on success, -EINVAL if the property
477 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
478 * if the property data is smaller than sz_min or longer than sz_max.
479 *
480 * The out_values is modified only if a valid u64 value can be decoded.
481 */
482int of_property_read_variable_u64_array(const struct device_node *np,
483 const char *propname, u64 *out_values,
484 size_t sz_min, size_t sz_max)
485{
486 size_t sz, count;
487 const __be32 *val = of_find_property_value_of_size(np, propname,
488 (sz_min * sizeof(*out_values)),
489 (sz_max * sizeof(*out_values)),
490 &sz);
491
492 if (IS_ERR(val))
493 return PTR_ERR(val);
494
495 if (!sz_max)
496 sz = sz_min;
497 else
498 sz /= sizeof(*out_values);
499
500 count = sz;
501 while (count--) {
502 *out_values++ = of_read_number(val, 2);
503 val += 2;
504 }
505
506 return sz;
507}
508EXPORT_SYMBOL_GPL(of_property_read_variable_u64_array);
509
510/**
511 * of_property_read_string - Find and read a string from a property
512 * @np: device node from which the property value is to be read.
513 * @propname: name of the property to be searched.
514 * @out_string: pointer to null terminated return string, modified only if
515 * return value is 0.
516 *
517 * Search for a property in a device tree node and retrieve a null
518 * terminated string value (pointer to data, not a copy).
519 *
520 * Return: 0 on success, -EINVAL if the property does not exist, -ENODATA if
521 * property does not have a value, and -EILSEQ if the string is not
522 * null-terminated within the length of the property data.
523 *
524 * Note that the empty string "" has length of 1, thus -ENODATA cannot
525 * be interpreted as an empty string.
526 *
527 * The out_string pointer is modified only if a valid string can be decoded.
528 */
529int of_property_read_string(const struct device_node *np, const char *propname,
530 const char **out_string)
531{
532 const struct property *prop = of_find_property(np, propname, NULL);
533
534 if (!prop)
535 return -EINVAL;
536 if (!prop->length)
537 return -ENODATA;
538 if (strnlen(prop->value, prop->length) >= prop->length)
539 return -EILSEQ;
540 *out_string = prop->value;
541 return 0;
542}
543EXPORT_SYMBOL_GPL(of_property_read_string);
544
545/**
546 * of_property_match_string() - Find string in a list and return index
547 * @np: pointer to the node containing the string list property
548 * @propname: string list property name
549 * @string: pointer to the string to search for in the string list
550 *
551 * Search for an exact match of string in a device node property which is a
552 * string of lists.
553 *
554 * Return: the index of the first occurrence of the string on success, -EINVAL
555 * if the property does not exist, -ENODATA if the property does not have a
556 * value, and -EILSEQ if the string is not null-terminated within the length of
557 * the property data.
558 */
559int of_property_match_string(const struct device_node *np, const char *propname,
560 const char *string)
561{
562 const struct property *prop = of_find_property(np, propname, NULL);
563 size_t l;
564 int i;
565 const char *p, *end;
566
567 if (!prop)
568 return -EINVAL;
569 if (!prop->value)
570 return -ENODATA;
571
572 p = prop->value;
573 end = p + prop->length;
574
575 for (i = 0; p < end; i++, p += l) {
576 l = strnlen(p, end - p) + 1;
577 if (p + l > end)
578 return -EILSEQ;
579 pr_debug("comparing %s with %s\n", string, p);
580 if (strcmp(string, p) == 0)
581 return i; /* Found it; return index */
582 }
583 return -ENODATA;
584}
585EXPORT_SYMBOL_GPL(of_property_match_string);
586
587/**
588 * of_property_read_string_helper() - Utility helper for parsing string properties
589 * @np: device node from which the property value is to be read.
590 * @propname: name of the property to be searched.
591 * @out_strs: output array of string pointers.
592 * @sz: number of array elements to read.
593 * @skip: Number of strings to skip over at beginning of list.
594 *
595 * Don't call this function directly. It is a utility helper for the
596 * of_property_read_string*() family of functions.
597 */
598int of_property_read_string_helper(const struct device_node *np,
599 const char *propname, const char **out_strs,
600 size_t sz, int skip)
601{
602 const struct property *prop = of_find_property(np, propname, NULL);
603 int l = 0, i = 0;
604 const char *p, *end;
605
606 if (!prop)
607 return -EINVAL;
608 if (!prop->value)
609 return -ENODATA;
610 p = prop->value;
611 end = p + prop->length;
612
613 for (i = 0; p < end && (!out_strs || i < skip + sz); i++, p += l) {
614 l = strnlen(p, end - p) + 1;
615 if (p + l > end)
616 return -EILSEQ;
617 if (out_strs && i >= skip)
618 *out_strs++ = p;
619 }
620 i -= skip;
621 return i <= 0 ? -ENODATA : i;
622}
623EXPORT_SYMBOL_GPL(of_property_read_string_helper);
624
625const __be32 *of_prop_next_u32(const struct property *prop, const __be32 *cur,
626 u32 *pu)
627{
628 const void *curv = cur;
629
630 if (!prop)
631 return NULL;
632
633 if (!cur) {
634 curv = prop->value;
635 goto out_val;
636 }
637
638 curv += sizeof(*cur);
639 if (curv >= prop->value + prop->length)
640 return NULL;
641
642out_val:
643 *pu = be32_to_cpup(curv);
644 return curv;
645}
646EXPORT_SYMBOL_GPL(of_prop_next_u32);
647
648const char *of_prop_next_string(const struct property *prop, const char *cur)
649{
650 const void *curv = cur;
651
652 if (!prop)
653 return NULL;
654
655 if (!cur)
656 return prop->value;
657
658 curv += strlen(cur) + 1;
659 if (curv >= prop->value + prop->length)
660 return NULL;
661
662 return curv;
663}
664EXPORT_SYMBOL_GPL(of_prop_next_string);
665
666/**
667 * of_graph_parse_endpoint() - parse common endpoint node properties
668 * @node: pointer to endpoint device_node
669 * @endpoint: pointer to the OF endpoint data structure
670 *
671 * The caller should hold a reference to @node.
672 */
673int of_graph_parse_endpoint(const struct device_node *node,
674 struct of_endpoint *endpoint)
675{
676 struct device_node *port_node __free(device_node) =
677 of_get_parent(node);
678
679 WARN_ONCE(!port_node, "%s(): endpoint %pOF has no parent node\n",
680 __func__, node);
681
682 memset(endpoint, 0, sizeof(*endpoint));
683
684 endpoint->local_node = node;
685 /*
686 * It doesn't matter whether the two calls below succeed.
687 * If they don't then the default value 0 is used.
688 */
689 of_property_read_u32(port_node, "reg", &endpoint->port);
690 of_property_read_u32(node, "reg", &endpoint->id);
691
692 return 0;
693}
694EXPORT_SYMBOL(of_graph_parse_endpoint);
695
696/**
697 * of_graph_get_port_by_id() - get the port matching a given id
698 * @parent: pointer to the parent device node
699 * @id: id of the port
700 *
701 * Return: A 'port' node pointer with refcount incremented. The caller
702 * has to use of_node_put() on it when done.
703 */
704struct device_node *of_graph_get_port_by_id(struct device_node *parent, u32 id)
705{
706 struct device_node *node __free(device_node) = of_get_child_by_name(parent, "ports");
707
708 if (node)
709 parent = node;
710
711 for_each_child_of_node_scoped(parent, port) {
712 u32 port_id = 0;
713
714 if (!of_node_name_eq(port, "port"))
715 continue;
716 of_property_read_u32(port, "reg", &port_id);
717 if (id == port_id)
718 return_ptr(port);
719 }
720
721 return NULL;
722}
723EXPORT_SYMBOL(of_graph_get_port_by_id);
724
725/**
726 * of_graph_get_next_port() - get next port node.
727 * @parent: pointer to the parent device node, or parent ports node
728 * @prev: previous port node, or NULL to get first
729 *
730 * Parent device node can be used as @parent whether device node has ports node
731 * or not. It will work same as ports@0 node.
732 *
733 * Return: A 'port' node pointer with refcount incremented. Refcount
734 * of the passed @prev node is decremented.
735 */
736struct device_node *of_graph_get_next_port(const struct device_node *parent,
737 struct device_node *prev)
738{
739 if (!parent)
740 return NULL;
741
742 if (!prev) {
743 struct device_node *node __free(device_node) =
744 of_get_child_by_name(parent, "ports");
745
746 if (node)
747 parent = node;
748
749 return of_get_child_by_name(parent, "port");
750 }
751
752 do {
753 prev = of_get_next_child(parent, prev);
754 if (!prev)
755 break;
756 } while (!of_node_name_eq(prev, "port"));
757
758 return prev;
759}
760EXPORT_SYMBOL(of_graph_get_next_port);
761
762/**
763 * of_graph_get_next_port_endpoint() - get next endpoint node in port.
764 * If it reached to end of the port, it will return NULL.
765 * @port: pointer to the target port node
766 * @prev: previous endpoint node, or NULL to get first
767 *
768 * Return: An 'endpoint' node pointer with refcount incremented. Refcount
769 * of the passed @prev node is decremented.
770 */
771struct device_node *of_graph_get_next_port_endpoint(const struct device_node *port,
772 struct device_node *prev)
773{
774 while (1) {
775 prev = of_get_next_child(port, prev);
776 if (!prev)
777 break;
778 if (WARN(!of_node_name_eq(prev, "endpoint"),
779 "non endpoint node is used (%pOF)", prev))
780 continue;
781
782 break;
783 }
784
785 return prev;
786}
787EXPORT_SYMBOL(of_graph_get_next_port_endpoint);
788
789/**
790 * of_graph_get_next_endpoint() - get next endpoint node
791 * @parent: pointer to the parent device node
792 * @prev: previous endpoint node, or NULL to get first
793 *
794 * Return: An 'endpoint' node pointer with refcount incremented. Refcount
795 * of the passed @prev node is decremented.
796 */
797struct device_node *of_graph_get_next_endpoint(const struct device_node *parent,
798 struct device_node *prev)
799{
800 struct device_node *endpoint;
801 struct device_node *port;
802
803 if (!parent)
804 return NULL;
805
806 /*
807 * Start by locating the port node. If no previous endpoint is specified
808 * search for the first port node, otherwise get the previous endpoint
809 * parent port node.
810 */
811 if (!prev) {
812 port = of_graph_get_next_port(parent, NULL);
813 if (!port) {
814 pr_debug("graph: no port node found in %pOF\n", parent);
815 return NULL;
816 }
817 } else {
818 port = of_get_parent(prev);
819 if (WARN_ONCE(!port, "%s(): endpoint %pOF has no parent node\n",
820 __func__, prev))
821 return NULL;
822 }
823
824 while (1) {
825 /*
826 * Now that we have a port node, get the next endpoint by
827 * getting the next child. If the previous endpoint is NULL this
828 * will return the first child.
829 */
830 endpoint = of_graph_get_next_port_endpoint(port, prev);
831 if (endpoint) {
832 of_node_put(port);
833 return endpoint;
834 }
835
836 /* No more endpoints under this port, try the next one. */
837 prev = NULL;
838
839 port = of_graph_get_next_port(parent, port);
840 if (!port)
841 return NULL;
842 }
843}
844EXPORT_SYMBOL(of_graph_get_next_endpoint);
845
846/**
847 * of_graph_get_endpoint_by_regs() - get endpoint node of specific identifiers
848 * @parent: pointer to the parent device node
849 * @port_reg: identifier (value of reg property) of the parent port node
850 * @reg: identifier (value of reg property) of the endpoint node
851 *
852 * Return: An 'endpoint' node pointer which is identified by reg and at the same
853 * is the child of a port node identified by port_reg. reg and port_reg are
854 * ignored when they are -1. Use of_node_put() on the pointer when done.
855 */
856struct device_node *of_graph_get_endpoint_by_regs(
857 const struct device_node *parent, int port_reg, int reg)
858{
859 struct of_endpoint endpoint;
860 struct device_node *node = NULL;
861
862 for_each_endpoint_of_node(parent, node) {
863 of_graph_parse_endpoint(node, &endpoint);
864 if (((port_reg == -1) || (endpoint.port == port_reg)) &&
865 ((reg == -1) || (endpoint.id == reg)))
866 return node;
867 }
868
869 return NULL;
870}
871EXPORT_SYMBOL(of_graph_get_endpoint_by_regs);
872
873/**
874 * of_graph_get_remote_endpoint() - get remote endpoint node
875 * @node: pointer to a local endpoint device_node
876 *
877 * Return: Remote endpoint node associated with remote endpoint node linked
878 * to @node. Use of_node_put() on it when done.
879 */
880struct device_node *of_graph_get_remote_endpoint(const struct device_node *node)
881{
882 /* Get remote endpoint node. */
883 return of_parse_phandle(node, "remote-endpoint", 0);
884}
885EXPORT_SYMBOL(of_graph_get_remote_endpoint);
886
887/**
888 * of_graph_get_port_parent() - get port's parent node
889 * @node: pointer to a local endpoint device_node
890 *
891 * Return: device node associated with endpoint node linked
892 * to @node. Use of_node_put() on it when done.
893 */
894struct device_node *of_graph_get_port_parent(struct device_node *node)
895{
896 unsigned int depth;
897
898 if (!node)
899 return NULL;
900
901 /*
902 * Preserve usecount for passed in node as of_get_next_parent()
903 * will do of_node_put() on it.
904 */
905 of_node_get(node);
906
907 /* Walk 3 levels up only if there is 'ports' node. */
908 for (depth = 3; depth && node; depth--) {
909 node = of_get_next_parent(node);
910 if (depth == 2 && !of_node_name_eq(node, "ports") &&
911 !of_node_name_eq(node, "in-ports") &&
912 !of_node_name_eq(node, "out-ports"))
913 break;
914 }
915 return node;
916}
917EXPORT_SYMBOL(of_graph_get_port_parent);
918
919/**
920 * of_graph_get_remote_port_parent() - get remote port's parent node
921 * @node: pointer to a local endpoint device_node
922 *
923 * Return: Remote device node associated with remote endpoint node linked
924 * to @node. Use of_node_put() on it when done.
925 */
926struct device_node *of_graph_get_remote_port_parent(
927 const struct device_node *node)
928{
929 /* Get remote endpoint node. */
930 struct device_node *np __free(device_node) =
931 of_graph_get_remote_endpoint(node);
932
933 return of_graph_get_port_parent(np);
934}
935EXPORT_SYMBOL(of_graph_get_remote_port_parent);
936
937/**
938 * of_graph_get_remote_port() - get remote port node
939 * @node: pointer to a local endpoint device_node
940 *
941 * Return: Remote port node associated with remote endpoint node linked
942 * to @node. Use of_node_put() on it when done.
943 */
944struct device_node *of_graph_get_remote_port(const struct device_node *node)
945{
946 struct device_node *np;
947
948 /* Get remote endpoint node. */
949 np = of_graph_get_remote_endpoint(node);
950 if (!np)
951 return NULL;
952 return of_get_next_parent(np);
953}
954EXPORT_SYMBOL(of_graph_get_remote_port);
955
956/**
957 * of_graph_get_endpoint_count() - get the number of endpoints in a device node
958 * @np: parent device node containing ports and endpoints
959 *
960 * Return: count of endpoint of this device node
961 */
962unsigned int of_graph_get_endpoint_count(const struct device_node *np)
963{
964 struct device_node *endpoint;
965 unsigned int num = 0;
966
967 for_each_endpoint_of_node(np, endpoint)
968 num++;
969
970 return num;
971}
972EXPORT_SYMBOL(of_graph_get_endpoint_count);
973
974/**
975 * of_graph_get_port_count() - get the number of port in a device or ports node
976 * @np: pointer to the device or ports node
977 *
978 * Return: count of port of this device or ports node
979 */
980unsigned int of_graph_get_port_count(struct device_node *np)
981{
982 unsigned int num = 0;
983
984 for_each_of_graph_port(np, port)
985 num++;
986
987 return num;
988}
989EXPORT_SYMBOL(of_graph_get_port_count);
990
991/**
992 * of_graph_get_remote_node() - get remote parent device_node for given port/endpoint
993 * @node: pointer to parent device_node containing graph port/endpoint
994 * @port: identifier (value of reg property) of the parent port node
995 * @endpoint: identifier (value of reg property) of the endpoint node
996 *
997 * Return: Remote device node associated with remote endpoint node linked
998 * to @node. Use of_node_put() on it when done.
999 */
1000struct device_node *of_graph_get_remote_node(const struct device_node *node,
1001 u32 port, u32 endpoint)
1002{
1003 struct device_node *endpoint_node, *remote;
1004
1005 endpoint_node = of_graph_get_endpoint_by_regs(node, port, endpoint);
1006 if (!endpoint_node) {
1007 pr_debug("no valid endpoint (%d, %d) for node %pOF\n",
1008 port, endpoint, node);
1009 return NULL;
1010 }
1011
1012 remote = of_graph_get_remote_port_parent(endpoint_node);
1013 of_node_put(endpoint_node);
1014 if (!remote) {
1015 pr_debug("no valid remote node\n");
1016 return NULL;
1017 }
1018
1019 if (!of_device_is_available(remote)) {
1020 pr_debug("not available for remote node\n");
1021 of_node_put(remote);
1022 return NULL;
1023 }
1024
1025 return remote;
1026}
1027EXPORT_SYMBOL(of_graph_get_remote_node);
1028
1029static struct fwnode_handle *of_fwnode_get(struct fwnode_handle *fwnode)
1030{
1031 return of_fwnode_handle(of_node_get(to_of_node(fwnode)));
1032}
1033
1034static void of_fwnode_put(struct fwnode_handle *fwnode)
1035{
1036 of_node_put(to_of_node(fwnode));
1037}
1038
1039static bool of_fwnode_device_is_available(const struct fwnode_handle *fwnode)
1040{
1041 return of_device_is_available(to_of_node(fwnode));
1042}
1043
1044static bool of_fwnode_device_dma_supported(const struct fwnode_handle *fwnode)
1045{
1046 return true;
1047}
1048
1049static enum dev_dma_attr
1050of_fwnode_device_get_dma_attr(const struct fwnode_handle *fwnode)
1051{
1052 if (of_dma_is_coherent(to_of_node(fwnode)))
1053 return DEV_DMA_COHERENT;
1054 else
1055 return DEV_DMA_NON_COHERENT;
1056}
1057
1058static bool of_fwnode_property_present(const struct fwnode_handle *fwnode,
1059 const char *propname)
1060{
1061 return of_property_present(to_of_node(fwnode), propname);
1062}
1063
1064static bool of_fwnode_property_read_bool(const struct fwnode_handle *fwnode,
1065 const char *propname)
1066{
1067 return of_property_read_bool(to_of_node(fwnode), propname);
1068}
1069
1070static int of_fwnode_property_read_int_array(const struct fwnode_handle *fwnode,
1071 const char *propname,
1072 unsigned int elem_size, void *val,
1073 size_t nval)
1074{
1075 const struct device_node *node = to_of_node(fwnode);
1076
1077 if (!val)
1078 return of_property_count_elems_of_size(node, propname,
1079 elem_size);
1080
1081 switch (elem_size) {
1082 case sizeof(u8):
1083 return of_property_read_u8_array(node, propname, val, nval);
1084 case sizeof(u16):
1085 return of_property_read_u16_array(node, propname, val, nval);
1086 case sizeof(u32):
1087 return of_property_read_u32_array(node, propname, val, nval);
1088 case sizeof(u64):
1089 return of_property_read_u64_array(node, propname, val, nval);
1090 }
1091
1092 return -ENXIO;
1093}
1094
1095static int
1096of_fwnode_property_read_string_array(const struct fwnode_handle *fwnode,
1097 const char *propname, const char **val,
1098 size_t nval)
1099{
1100 const struct device_node *node = to_of_node(fwnode);
1101
1102 return val ?
1103 of_property_read_string_array(node, propname, val, nval) :
1104 of_property_count_strings(node, propname);
1105}
1106
1107static const char *of_fwnode_get_name(const struct fwnode_handle *fwnode)
1108{
1109 return kbasename(to_of_node(fwnode)->full_name);
1110}
1111
1112static const char *of_fwnode_get_name_prefix(const struct fwnode_handle *fwnode)
1113{
1114 /* Root needs no prefix here (its name is "/"). */
1115 if (!to_of_node(fwnode)->parent)
1116 return "";
1117
1118 return "/";
1119}
1120
1121static struct fwnode_handle *
1122of_fwnode_get_parent(const struct fwnode_handle *fwnode)
1123{
1124 return of_fwnode_handle(of_get_parent(to_of_node(fwnode)));
1125}
1126
1127static struct fwnode_handle *
1128of_fwnode_get_next_child_node(const struct fwnode_handle *fwnode,
1129 struct fwnode_handle *child)
1130{
1131 return of_fwnode_handle(of_get_next_available_child(to_of_node(fwnode),
1132 to_of_node(child)));
1133}
1134
1135static struct fwnode_handle *
1136of_fwnode_get_named_child_node(const struct fwnode_handle *fwnode,
1137 const char *childname)
1138{
1139 const struct device_node *node = to_of_node(fwnode);
1140 struct device_node *child;
1141
1142 for_each_available_child_of_node(node, child)
1143 if (of_node_name_eq(child, childname))
1144 return of_fwnode_handle(child);
1145
1146 return NULL;
1147}
1148
1149static int
1150of_fwnode_get_reference_args(const struct fwnode_handle *fwnode,
1151 const char *prop, const char *nargs_prop,
1152 unsigned int nargs, unsigned int index,
1153 struct fwnode_reference_args *args)
1154{
1155 struct of_phandle_args of_args;
1156 unsigned int i;
1157 int ret;
1158
1159 if (nargs_prop)
1160 ret = of_parse_phandle_with_args(to_of_node(fwnode), prop,
1161 nargs_prop, index, &of_args);
1162 else
1163 ret = of_parse_phandle_with_fixed_args(to_of_node(fwnode), prop,
1164 nargs, index, &of_args);
1165 if (ret < 0)
1166 return ret;
1167 if (!args) {
1168 of_node_put(of_args.np);
1169 return 0;
1170 }
1171
1172 args->nargs = of_args.args_count;
1173 args->fwnode = of_fwnode_handle(of_args.np);
1174
1175 for (i = 0; i < NR_FWNODE_REFERENCE_ARGS; i++)
1176 args->args[i] = i < of_args.args_count ? of_args.args[i] : 0;
1177
1178 return 0;
1179}
1180
1181static struct fwnode_handle *
1182of_fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode,
1183 struct fwnode_handle *prev)
1184{
1185 return of_fwnode_handle(of_graph_get_next_endpoint(to_of_node(fwnode),
1186 to_of_node(prev)));
1187}
1188
1189static struct fwnode_handle *
1190of_fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode)
1191{
1192 return of_fwnode_handle(
1193 of_graph_get_remote_endpoint(to_of_node(fwnode)));
1194}
1195
1196static struct fwnode_handle *
1197of_fwnode_graph_get_port_parent(struct fwnode_handle *fwnode)
1198{
1199 struct device_node *np;
1200
1201 /* Get the parent of the port */
1202 np = of_get_parent(to_of_node(fwnode));
1203 if (!np)
1204 return NULL;
1205
1206 /* Is this the "ports" node? If not, it's the port parent. */
1207 if (!of_node_name_eq(np, "ports"))
1208 return of_fwnode_handle(np);
1209
1210 return of_fwnode_handle(of_get_next_parent(np));
1211}
1212
1213static int of_fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode,
1214 struct fwnode_endpoint *endpoint)
1215{
1216 const struct device_node *node = to_of_node(fwnode);
1217 struct device_node *port_node __free(device_node) = of_get_parent(node);
1218
1219 endpoint->local_fwnode = fwnode;
1220
1221 of_property_read_u32(port_node, "reg", &endpoint->port);
1222 of_property_read_u32(node, "reg", &endpoint->id);
1223
1224 return 0;
1225}
1226
1227static const void *
1228of_fwnode_device_get_match_data(const struct fwnode_handle *fwnode,
1229 const struct device *dev)
1230{
1231 return of_device_get_match_data(dev);
1232}
1233
1234static void of_link_to_phandle(struct device_node *con_np,
1235 struct device_node *sup_np,
1236 u8 flags)
1237{
1238 struct device_node *tmp_np __free(device_node) = of_node_get(sup_np);
1239
1240 /* Check that sup_np and its ancestors are available. */
1241 while (tmp_np) {
1242 if (of_fwnode_handle(tmp_np)->dev)
1243 break;
1244
1245 if (!of_device_is_available(tmp_np))
1246 return;
1247
1248 tmp_np = of_get_next_parent(tmp_np);
1249 }
1250
1251 fwnode_link_add(of_fwnode_handle(con_np), of_fwnode_handle(sup_np), flags);
1252}
1253
1254/**
1255 * parse_prop_cells - Property parsing function for suppliers
1256 *
1257 * @np: Pointer to device tree node containing a list
1258 * @prop_name: Name of property to be parsed. Expected to hold phandle values
1259 * @index: For properties holding a list of phandles, this is the index
1260 * into the list.
1261 * @list_name: Property name that is known to contain list of phandle(s) to
1262 * supplier(s)
1263 * @cells_name: property name that specifies phandles' arguments count
1264 *
1265 * This is a helper function to parse properties that have a known fixed name
1266 * and are a list of phandles and phandle arguments.
1267 *
1268 * Returns:
1269 * - phandle node pointer with refcount incremented. Caller must of_node_put()
1270 * on it when done.
1271 * - NULL if no phandle found at index
1272 */
1273static struct device_node *parse_prop_cells(struct device_node *np,
1274 const char *prop_name, int index,
1275 const char *list_name,
1276 const char *cells_name)
1277{
1278 struct of_phandle_args sup_args;
1279
1280 if (strcmp(prop_name, list_name))
1281 return NULL;
1282
1283 if (__of_parse_phandle_with_args(np, list_name, cells_name, 0, index,
1284 &sup_args))
1285 return NULL;
1286
1287 return sup_args.np;
1288}
1289
1290#define DEFINE_SIMPLE_PROP(fname, name, cells) \
1291static struct device_node *parse_##fname(struct device_node *np, \
1292 const char *prop_name, int index) \
1293{ \
1294 return parse_prop_cells(np, prop_name, index, name, cells); \
1295}
1296
1297static int strcmp_suffix(const char *str, const char *suffix)
1298{
1299 unsigned int len, suffix_len;
1300
1301 len = strlen(str);
1302 suffix_len = strlen(suffix);
1303 if (len <= suffix_len)
1304 return -1;
1305 return strcmp(str + len - suffix_len, suffix);
1306}
1307
1308/**
1309 * parse_suffix_prop_cells - Suffix property parsing function for suppliers
1310 *
1311 * @np: Pointer to device tree node containing a list
1312 * @prop_name: Name of property to be parsed. Expected to hold phandle values
1313 * @index: For properties holding a list of phandles, this is the index
1314 * into the list.
1315 * @suffix: Property suffix that is known to contain list of phandle(s) to
1316 * supplier(s)
1317 * @cells_name: property name that specifies phandles' arguments count
1318 *
1319 * This is a helper function to parse properties that have a known fixed suffix
1320 * and are a list of phandles and phandle arguments.
1321 *
1322 * Returns:
1323 * - phandle node pointer with refcount incremented. Caller must of_node_put()
1324 * on it when done.
1325 * - NULL if no phandle found at index
1326 */
1327static struct device_node *parse_suffix_prop_cells(struct device_node *np,
1328 const char *prop_name, int index,
1329 const char *suffix,
1330 const char *cells_name)
1331{
1332 struct of_phandle_args sup_args;
1333
1334 if (strcmp_suffix(prop_name, suffix))
1335 return NULL;
1336
1337 if (of_parse_phandle_with_args(np, prop_name, cells_name, index,
1338 &sup_args))
1339 return NULL;
1340
1341 return sup_args.np;
1342}
1343
1344#define DEFINE_SUFFIX_PROP(fname, suffix, cells) \
1345static struct device_node *parse_##fname(struct device_node *np, \
1346 const char *prop_name, int index) \
1347{ \
1348 return parse_suffix_prop_cells(np, prop_name, index, suffix, cells); \
1349}
1350
1351/**
1352 * struct supplier_bindings - Property parsing functions for suppliers
1353 *
1354 * @parse_prop: function name
1355 * parse_prop() finds the node corresponding to a supplier phandle
1356 * parse_prop.np: Pointer to device node holding supplier phandle property
1357 * parse_prop.prop_name: Name of property holding a phandle value
1358 * parse_prop.index: For properties holding a list of phandles, this is the
1359 * index into the list
1360 * @get_con_dev: If the consumer node containing the property is never converted
1361 * to a struct device, implement this ops so fw_devlink can use it
1362 * to find the true consumer.
1363 * @optional: Describes whether a supplier is mandatory or not
1364 * @fwlink_flags: Optional fwnode link flags to use when creating a fwnode link
1365 * for this property.
1366 *
1367 * Returns:
1368 * parse_prop() return values are
1369 * - phandle node pointer with refcount incremented. Caller must of_node_put()
1370 * on it when done.
1371 * - NULL if no phandle found at index
1372 */
1373struct supplier_bindings {
1374 struct device_node *(*parse_prop)(struct device_node *np,
1375 const char *prop_name, int index);
1376 struct device_node *(*get_con_dev)(struct device_node *np);
1377 bool optional;
1378 u8 fwlink_flags;
1379};
1380
1381DEFINE_SIMPLE_PROP(clocks, "clocks", "#clock-cells")
1382DEFINE_SIMPLE_PROP(interconnects, "interconnects", "#interconnect-cells")
1383DEFINE_SIMPLE_PROP(iommus, "iommus", "#iommu-cells")
1384DEFINE_SIMPLE_PROP(mboxes, "mboxes", "#mbox-cells")
1385DEFINE_SIMPLE_PROP(io_channels, "io-channels", "#io-channel-cells")
1386DEFINE_SIMPLE_PROP(io_backends, "io-backends", "#io-backend-cells")
1387DEFINE_SIMPLE_PROP(dmas, "dmas", "#dma-cells")
1388DEFINE_SIMPLE_PROP(power_domains, "power-domains", "#power-domain-cells")
1389DEFINE_SIMPLE_PROP(hwlocks, "hwlocks", "#hwlock-cells")
1390DEFINE_SIMPLE_PROP(extcon, "extcon", NULL)
1391DEFINE_SIMPLE_PROP(nvmem_cells, "nvmem-cells", "#nvmem-cell-cells")
1392DEFINE_SIMPLE_PROP(phys, "phys", "#phy-cells")
1393DEFINE_SIMPLE_PROP(wakeup_parent, "wakeup-parent", NULL)
1394DEFINE_SIMPLE_PROP(pinctrl0, "pinctrl-0", NULL)
1395DEFINE_SIMPLE_PROP(pinctrl1, "pinctrl-1", NULL)
1396DEFINE_SIMPLE_PROP(pinctrl2, "pinctrl-2", NULL)
1397DEFINE_SIMPLE_PROP(pinctrl3, "pinctrl-3", NULL)
1398DEFINE_SIMPLE_PROP(pinctrl4, "pinctrl-4", NULL)
1399DEFINE_SIMPLE_PROP(pinctrl5, "pinctrl-5", NULL)
1400DEFINE_SIMPLE_PROP(pinctrl6, "pinctrl-6", NULL)
1401DEFINE_SIMPLE_PROP(pinctrl7, "pinctrl-7", NULL)
1402DEFINE_SIMPLE_PROP(pinctrl8, "pinctrl-8", NULL)
1403DEFINE_SIMPLE_PROP(pwms, "pwms", "#pwm-cells")
1404DEFINE_SIMPLE_PROP(resets, "resets", "#reset-cells")
1405DEFINE_SIMPLE_PROP(leds, "leds", NULL)
1406DEFINE_SIMPLE_PROP(backlight, "backlight", NULL)
1407DEFINE_SIMPLE_PROP(panel, "panel", NULL)
1408DEFINE_SIMPLE_PROP(msi_parent, "msi-parent", "#msi-cells")
1409DEFINE_SIMPLE_PROP(post_init_providers, "post-init-providers", NULL)
1410DEFINE_SIMPLE_PROP(access_controllers, "access-controllers", "#access-controller-cells")
1411DEFINE_SIMPLE_PROP(pses, "pses", "#pse-cells")
1412DEFINE_SIMPLE_PROP(power_supplies, "power-supplies", NULL)
1413DEFINE_SUFFIX_PROP(regulators, "-supply", NULL)
1414DEFINE_SUFFIX_PROP(gpio, "-gpio", "#gpio-cells")
1415
1416static struct device_node *parse_gpios(struct device_node *np,
1417 const char *prop_name, int index)
1418{
1419 if (!strcmp_suffix(prop_name, ",nr-gpios"))
1420 return NULL;
1421
1422 return parse_suffix_prop_cells(np, prop_name, index, "-gpios",
1423 "#gpio-cells");
1424}
1425
1426static struct device_node *parse_iommu_maps(struct device_node *np,
1427 const char *prop_name, int index)
1428{
1429 if (strcmp(prop_name, "iommu-map"))
1430 return NULL;
1431
1432 return of_parse_phandle(np, prop_name, (index * 4) + 1);
1433}
1434
1435static struct device_node *parse_gpio_compat(struct device_node *np,
1436 const char *prop_name, int index)
1437{
1438 struct of_phandle_args sup_args;
1439
1440 if (strcmp(prop_name, "gpio") && strcmp(prop_name, "gpios"))
1441 return NULL;
1442
1443 /*
1444 * Ignore node with gpio-hog property since its gpios are all provided
1445 * by its parent.
1446 */
1447 if (of_property_read_bool(np, "gpio-hog"))
1448 return NULL;
1449
1450 if (of_parse_phandle_with_args(np, prop_name, "#gpio-cells", index,
1451 &sup_args))
1452 return NULL;
1453
1454 return sup_args.np;
1455}
1456
1457static struct device_node *parse_interrupts(struct device_node *np,
1458 const char *prop_name, int index)
1459{
1460 struct of_phandle_args sup_args;
1461
1462 if (!IS_ENABLED(CONFIG_OF_IRQ) || IS_ENABLED(CONFIG_PPC))
1463 return NULL;
1464
1465 if (strcmp(prop_name, "interrupts") &&
1466 strcmp(prop_name, "interrupts-extended"))
1467 return NULL;
1468
1469 return of_irq_parse_one(np, index, &sup_args) ? NULL : sup_args.np;
1470}
1471
1472static struct device_node *parse_interrupt_map(struct device_node *np,
1473 const char *prop_name, int index)
1474{
1475 const __be32 *imap, *imap_end;
1476 struct of_phandle_args sup_args;
1477 u32 addrcells, intcells;
1478 int imaplen;
1479
1480 if (!IS_ENABLED(CONFIG_OF_IRQ))
1481 return NULL;
1482
1483 if (strcmp(prop_name, "interrupt-map"))
1484 return NULL;
1485
1486 if (of_property_read_u32(np, "#interrupt-cells", &intcells))
1487 return NULL;
1488 addrcells = of_bus_n_addr_cells(np);
1489
1490 imap = of_get_property(np, "interrupt-map", &imaplen);
1491 if (!imap)
1492 return NULL;
1493 imaplen /= sizeof(*imap);
1494
1495 imap_end = imap + imaplen;
1496
1497 for (int i = 0; imap + addrcells + intcells + 1 < imap_end; i++) {
1498 imap += addrcells + intcells;
1499
1500 imap = of_irq_parse_imap_parent(imap, imap_end - imap, &sup_args);
1501 if (!imap)
1502 return NULL;
1503
1504 if (i == index)
1505 return sup_args.np;
1506
1507 of_node_put(sup_args.np);
1508 }
1509
1510 return NULL;
1511}
1512
1513static struct device_node *parse_remote_endpoint(struct device_node *np,
1514 const char *prop_name,
1515 int index)
1516{
1517 /* Return NULL for index > 0 to signify end of remote-endpoints. */
1518 if (index > 0 || strcmp(prop_name, "remote-endpoint"))
1519 return NULL;
1520
1521 return of_graph_get_remote_port_parent(np);
1522}
1523
1524static const struct supplier_bindings of_supplier_bindings[] = {
1525 { .parse_prop = parse_clocks, },
1526 { .parse_prop = parse_interconnects, },
1527 { .parse_prop = parse_iommus, .optional = true, },
1528 { .parse_prop = parse_iommu_maps, .optional = true, },
1529 { .parse_prop = parse_mboxes, },
1530 { .parse_prop = parse_io_channels, },
1531 { .parse_prop = parse_io_backends, },
1532 { .parse_prop = parse_dmas, .optional = true, },
1533 { .parse_prop = parse_power_domains, },
1534 { .parse_prop = parse_hwlocks, },
1535 { .parse_prop = parse_extcon, },
1536 { .parse_prop = parse_nvmem_cells, },
1537 { .parse_prop = parse_phys, },
1538 { .parse_prop = parse_wakeup_parent, },
1539 { .parse_prop = parse_pinctrl0, },
1540 { .parse_prop = parse_pinctrl1, },
1541 { .parse_prop = parse_pinctrl2, },
1542 { .parse_prop = parse_pinctrl3, },
1543 { .parse_prop = parse_pinctrl4, },
1544 { .parse_prop = parse_pinctrl5, },
1545 { .parse_prop = parse_pinctrl6, },
1546 { .parse_prop = parse_pinctrl7, },
1547 { .parse_prop = parse_pinctrl8, },
1548 {
1549 .parse_prop = parse_remote_endpoint,
1550 .get_con_dev = of_graph_get_port_parent,
1551 },
1552 { .parse_prop = parse_pwms, },
1553 { .parse_prop = parse_resets, },
1554 { .parse_prop = parse_leds, },
1555 { .parse_prop = parse_backlight, },
1556 { .parse_prop = parse_panel, },
1557 { .parse_prop = parse_msi_parent, },
1558 { .parse_prop = parse_pses, },
1559 { .parse_prop = parse_power_supplies, },
1560 { .parse_prop = parse_gpio_compat, },
1561 { .parse_prop = parse_interrupts, },
1562 { .parse_prop = parse_interrupt_map, },
1563 { .parse_prop = parse_access_controllers, },
1564 { .parse_prop = parse_regulators, },
1565 { .parse_prop = parse_gpio, },
1566 { .parse_prop = parse_gpios, },
1567 {
1568 .parse_prop = parse_post_init_providers,
1569 .fwlink_flags = FWLINK_FLAG_IGNORE,
1570 },
1571 {}
1572};
1573
1574/**
1575 * of_link_property - Create device links to suppliers listed in a property
1576 * @con_np: The consumer device tree node which contains the property
1577 * @prop_name: Name of property to be parsed
1578 *
1579 * This function checks if the property @prop_name that is present in the
1580 * @con_np device tree node is one of the known common device tree bindings
1581 * that list phandles to suppliers. If @prop_name isn't one, this function
1582 * doesn't do anything.
1583 *
1584 * If @prop_name is one, this function attempts to create fwnode links from the
1585 * consumer device tree node @con_np to all the suppliers device tree nodes
1586 * listed in @prop_name.
1587 *
1588 * Any failed attempt to create a fwnode link will NOT result in an immediate
1589 * return. of_link_property() must create links to all the available supplier
1590 * device tree nodes even when attempts to create a link to one or more
1591 * suppliers fail.
1592 */
1593static int of_link_property(struct device_node *con_np, const char *prop_name)
1594{
1595 struct device_node *phandle;
1596 const struct supplier_bindings *s = of_supplier_bindings;
1597 unsigned int i = 0;
1598 bool matched = false;
1599
1600 /* Do not stop at first failed link, link all available suppliers. */
1601 while (!matched && s->parse_prop) {
1602 if (s->optional && !fw_devlink_is_strict()) {
1603 s++;
1604 continue;
1605 }
1606
1607 while ((phandle = s->parse_prop(con_np, prop_name, i))) {
1608 struct device_node *con_dev_np __free(device_node) =
1609 s->get_con_dev ? s->get_con_dev(con_np) : of_node_get(con_np);
1610
1611 matched = true;
1612 i++;
1613 of_link_to_phandle(con_dev_np, phandle, s->fwlink_flags);
1614 of_node_put(phandle);
1615 }
1616 s++;
1617 }
1618 return 0;
1619}
1620
1621static void __iomem *of_fwnode_iomap(struct fwnode_handle *fwnode, int index)
1622{
1623#ifdef CONFIG_OF_ADDRESS
1624 return of_iomap(to_of_node(fwnode), index);
1625#else
1626 return NULL;
1627#endif
1628}
1629
1630static int of_fwnode_irq_get(const struct fwnode_handle *fwnode,
1631 unsigned int index)
1632{
1633 return of_irq_get(to_of_node(fwnode), index);
1634}
1635
1636static int of_fwnode_add_links(struct fwnode_handle *fwnode)
1637{
1638 const struct property *p;
1639 struct device_node *con_np = to_of_node(fwnode);
1640
1641 if (IS_ENABLED(CONFIG_X86))
1642 return 0;
1643
1644 if (!con_np)
1645 return -EINVAL;
1646
1647 for_each_property_of_node(con_np, p)
1648 of_link_property(con_np, p->name);
1649
1650 return 0;
1651}
1652
1653const struct fwnode_operations of_fwnode_ops = {
1654 .get = of_fwnode_get,
1655 .put = of_fwnode_put,
1656 .device_is_available = of_fwnode_device_is_available,
1657 .device_get_match_data = of_fwnode_device_get_match_data,
1658 .device_dma_supported = of_fwnode_device_dma_supported,
1659 .device_get_dma_attr = of_fwnode_device_get_dma_attr,
1660 .property_present = of_fwnode_property_present,
1661 .property_read_bool = of_fwnode_property_read_bool,
1662 .property_read_int_array = of_fwnode_property_read_int_array,
1663 .property_read_string_array = of_fwnode_property_read_string_array,
1664 .get_name = of_fwnode_get_name,
1665 .get_name_prefix = of_fwnode_get_name_prefix,
1666 .get_parent = of_fwnode_get_parent,
1667 .get_next_child_node = of_fwnode_get_next_child_node,
1668 .get_named_child_node = of_fwnode_get_named_child_node,
1669 .get_reference_args = of_fwnode_get_reference_args,
1670 .graph_get_next_endpoint = of_fwnode_graph_get_next_endpoint,
1671 .graph_get_remote_endpoint = of_fwnode_graph_get_remote_endpoint,
1672 .graph_get_port_parent = of_fwnode_graph_get_port_parent,
1673 .graph_parse_endpoint = of_fwnode_graph_parse_endpoint,
1674 .iomap = of_fwnode_iomap,
1675 .irq_get = of_fwnode_irq_get,
1676 .add_links = of_fwnode_add_links,
1677};
1678EXPORT_SYMBOL_GPL(of_fwnode_ops);