at master 2993 lines 79 kB view raw
1// SPDX-License-Identifier: GPL-2.0 2/* Copyright(c) 2009 - 2018 Intel Corporation. */ 3 4#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 5 6#include <linux/bitfield.h> 7#include <linux/delay.h> 8#include <linux/ethtool.h> 9#include <linux/if_vlan.h> 10#include <linux/init.h> 11#include <linux/ipv6.h> 12#include <linux/mii.h> 13#include <linux/module.h> 14#include <linux/netdevice.h> 15#include <linux/pagemap.h> 16#include <linux/pci.h> 17#include <linux/prefetch.h> 18#include <linux/sctp.h> 19#include <linux/slab.h> 20#include <linux/tcp.h> 21#include <linux/types.h> 22#include <linux/vmalloc.h> 23#include <net/checksum.h> 24#include <net/ip6_checksum.h> 25#include "igbvf.h" 26 27char igbvf_driver_name[] = "igbvf"; 28static const char igbvf_driver_string[] = 29 "Intel(R) Gigabit Virtual Function Network Driver"; 30static const char igbvf_copyright[] = 31 "Copyright (c) 2009 - 2012 Intel Corporation."; 32 33#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK) 34static int debug = -1; 35module_param(debug, int, 0); 36MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 37 38static int igbvf_poll(struct napi_struct *napi, int budget); 39static void igbvf_reset(struct igbvf_adapter *); 40static void igbvf_set_interrupt_capability(struct igbvf_adapter *); 41static void igbvf_reset_interrupt_capability(struct igbvf_adapter *); 42 43static struct igbvf_info igbvf_vf_info = { 44 .mac = e1000_vfadapt, 45 .flags = 0, 46 .pba = 10, 47 .init_ops = e1000_init_function_pointers_vf, 48}; 49 50static struct igbvf_info igbvf_i350_vf_info = { 51 .mac = e1000_vfadapt_i350, 52 .flags = 0, 53 .pba = 10, 54 .init_ops = e1000_init_function_pointers_vf, 55}; 56 57static const struct igbvf_info *igbvf_info_tbl[] = { 58 [board_vf] = &igbvf_vf_info, 59 [board_i350_vf] = &igbvf_i350_vf_info, 60}; 61 62/** 63 * igbvf_desc_unused - calculate if we have unused descriptors 64 * @ring: address of receive ring structure 65 **/ 66static int igbvf_desc_unused(struct igbvf_ring *ring) 67{ 68 if (ring->next_to_clean > ring->next_to_use) 69 return ring->next_to_clean - ring->next_to_use - 1; 70 71 return ring->count + ring->next_to_clean - ring->next_to_use - 1; 72} 73 74/** 75 * igbvf_receive_skb - helper function to handle Rx indications 76 * @adapter: board private structure 77 * @netdev: pointer to netdev struct 78 * @skb: skb to indicate to stack 79 * @status: descriptor status field as written by hardware 80 * @vlan: descriptor vlan field as written by hardware (no le/be conversion) 81 * @skb: pointer to sk_buff to be indicated to stack 82 **/ 83static void igbvf_receive_skb(struct igbvf_adapter *adapter, 84 struct net_device *netdev, 85 struct sk_buff *skb, 86 u32 status, __le16 vlan) 87{ 88 u16 vid; 89 90 if (status & E1000_RXD_STAT_VP) { 91 if ((adapter->flags & IGBVF_FLAG_RX_LB_VLAN_BSWAP) && 92 (status & E1000_RXDEXT_STATERR_LB)) 93 vid = be16_to_cpu((__force __be16)vlan) & E1000_RXD_SPC_VLAN_MASK; 94 else 95 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK; 96 if (test_bit(vid, adapter->active_vlans)) 97 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); 98 } 99 100 napi_gro_receive(&adapter->rx_ring->napi, skb); 101} 102 103static inline void igbvf_rx_checksum_adv(struct igbvf_adapter *adapter, 104 u32 status_err, struct sk_buff *skb) 105{ 106 skb_checksum_none_assert(skb); 107 108 /* Ignore Checksum bit is set or checksum is disabled through ethtool */ 109 if ((status_err & E1000_RXD_STAT_IXSM) || 110 (adapter->flags & IGBVF_FLAG_RX_CSUM_DISABLED)) 111 return; 112 113 /* TCP/UDP checksum error bit is set */ 114 if (status_err & 115 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) { 116 /* let the stack verify checksum errors */ 117 adapter->hw_csum_err++; 118 return; 119 } 120 121 /* It must be a TCP or UDP packet with a valid checksum */ 122 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)) 123 skb->ip_summed = CHECKSUM_UNNECESSARY; 124 125 adapter->hw_csum_good++; 126} 127 128/** 129 * igbvf_alloc_rx_buffers - Replace used receive buffers; packet split 130 * @rx_ring: address of ring structure to repopulate 131 * @cleaned_count: number of buffers to repopulate 132 **/ 133static void igbvf_alloc_rx_buffers(struct igbvf_ring *rx_ring, 134 int cleaned_count) 135{ 136 struct igbvf_adapter *adapter = rx_ring->adapter; 137 struct net_device *netdev = adapter->netdev; 138 struct pci_dev *pdev = adapter->pdev; 139 union e1000_adv_rx_desc *rx_desc; 140 struct igbvf_buffer *buffer_info; 141 struct sk_buff *skb; 142 unsigned int i; 143 int bufsz; 144 145 i = rx_ring->next_to_use; 146 buffer_info = &rx_ring->buffer_info[i]; 147 148 if (adapter->rx_ps_hdr_size) 149 bufsz = adapter->rx_ps_hdr_size; 150 else 151 bufsz = adapter->rx_buffer_len; 152 153 while (cleaned_count--) { 154 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i); 155 156 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) { 157 if (!buffer_info->page) { 158 buffer_info->page = alloc_page(GFP_ATOMIC); 159 if (!buffer_info->page) { 160 adapter->alloc_rx_buff_failed++; 161 goto no_buffers; 162 } 163 buffer_info->page_offset = 0; 164 } else { 165 buffer_info->page_offset ^= PAGE_SIZE / 2; 166 } 167 buffer_info->page_dma = 168 dma_map_page(&pdev->dev, buffer_info->page, 169 buffer_info->page_offset, 170 PAGE_SIZE / 2, 171 DMA_FROM_DEVICE); 172 if (dma_mapping_error(&pdev->dev, 173 buffer_info->page_dma)) { 174 __free_page(buffer_info->page); 175 buffer_info->page = NULL; 176 dev_err(&pdev->dev, "RX DMA map failed\n"); 177 break; 178 } 179 } 180 181 if (!buffer_info->skb) { 182 skb = netdev_alloc_skb_ip_align(netdev, bufsz); 183 if (!skb) { 184 adapter->alloc_rx_buff_failed++; 185 goto no_buffers; 186 } 187 188 buffer_info->skb = skb; 189 buffer_info->dma = dma_map_single(&pdev->dev, skb->data, 190 bufsz, 191 DMA_FROM_DEVICE); 192 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) { 193 dev_kfree_skb(buffer_info->skb); 194 buffer_info->skb = NULL; 195 dev_err(&pdev->dev, "RX DMA map failed\n"); 196 goto no_buffers; 197 } 198 } 199 /* Refresh the desc even if buffer_addrs didn't change because 200 * each write-back erases this info. 201 */ 202 if (adapter->rx_ps_hdr_size) { 203 rx_desc->read.pkt_addr = 204 cpu_to_le64(buffer_info->page_dma); 205 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma); 206 } else { 207 rx_desc->read.pkt_addr = cpu_to_le64(buffer_info->dma); 208 rx_desc->read.hdr_addr = 0; 209 } 210 211 i++; 212 if (i == rx_ring->count) 213 i = 0; 214 buffer_info = &rx_ring->buffer_info[i]; 215 } 216 217no_buffers: 218 if (rx_ring->next_to_use != i) { 219 rx_ring->next_to_use = i; 220 if (i == 0) 221 i = (rx_ring->count - 1); 222 else 223 i--; 224 225 /* Force memory writes to complete before letting h/w 226 * know there are new descriptors to fetch. (Only 227 * applicable for weak-ordered memory model archs, 228 * such as IA-64). 229 */ 230 wmb(); 231 writel(i, adapter->hw.hw_addr + rx_ring->tail); 232 } 233} 234 235/** 236 * igbvf_clean_rx_irq - Send received data up the network stack; legacy 237 * @adapter: board private structure 238 * @work_done: output parameter used to indicate completed work 239 * @work_to_do: input parameter setting limit of work 240 * 241 * the return value indicates whether actual cleaning was done, there 242 * is no guarantee that everything was cleaned 243 **/ 244static bool igbvf_clean_rx_irq(struct igbvf_adapter *adapter, 245 int *work_done, int work_to_do) 246{ 247 struct igbvf_ring *rx_ring = adapter->rx_ring; 248 struct net_device *netdev = adapter->netdev; 249 struct pci_dev *pdev = adapter->pdev; 250 union e1000_adv_rx_desc *rx_desc, *next_rxd; 251 struct igbvf_buffer *buffer_info, *next_buffer; 252 struct sk_buff *skb; 253 bool cleaned = false; 254 int cleaned_count = 0; 255 unsigned int total_bytes = 0, total_packets = 0; 256 unsigned int i; 257 u32 length, hlen, staterr; 258 259 i = rx_ring->next_to_clean; 260 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i); 261 staterr = le32_to_cpu(rx_desc->wb.upper.status_error); 262 263 while (staterr & E1000_RXD_STAT_DD) { 264 if (*work_done >= work_to_do) 265 break; 266 (*work_done)++; 267 rmb(); /* read descriptor and rx_buffer_info after status DD */ 268 269 buffer_info = &rx_ring->buffer_info[i]; 270 271 /* HW will not DMA in data larger than the given buffer, even 272 * if it parses the (NFS, of course) header to be larger. In 273 * that case, it fills the header buffer and spills the rest 274 * into the page. 275 */ 276 hlen = le16_get_bits(rx_desc->wb.lower.lo_dword.hs_rss.hdr_info, 277 E1000_RXDADV_HDRBUFLEN_MASK); 278 if (hlen > adapter->rx_ps_hdr_size) 279 hlen = adapter->rx_ps_hdr_size; 280 281 length = le16_to_cpu(rx_desc->wb.upper.length); 282 cleaned = true; 283 cleaned_count++; 284 285 skb = buffer_info->skb; 286 prefetch(skb->data - NET_IP_ALIGN); 287 buffer_info->skb = NULL; 288 if (!adapter->rx_ps_hdr_size) { 289 dma_unmap_single(&pdev->dev, buffer_info->dma, 290 adapter->rx_buffer_len, 291 DMA_FROM_DEVICE); 292 buffer_info->dma = 0; 293 skb_put(skb, length); 294 goto send_up; 295 } 296 297 if (!skb_shinfo(skb)->nr_frags) { 298 dma_unmap_single(&pdev->dev, buffer_info->dma, 299 adapter->rx_ps_hdr_size, 300 DMA_FROM_DEVICE); 301 buffer_info->dma = 0; 302 skb_put(skb, hlen); 303 } 304 305 if (length) { 306 dma_unmap_page(&pdev->dev, buffer_info->page_dma, 307 PAGE_SIZE / 2, 308 DMA_FROM_DEVICE); 309 buffer_info->page_dma = 0; 310 311 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags, 312 buffer_info->page, 313 buffer_info->page_offset, 314 length); 315 316 if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) || 317 (page_count(buffer_info->page) != 1)) 318 buffer_info->page = NULL; 319 else 320 get_page(buffer_info->page); 321 322 skb->len += length; 323 skb->data_len += length; 324 skb->truesize += PAGE_SIZE / 2; 325 } 326send_up: 327 i++; 328 if (i == rx_ring->count) 329 i = 0; 330 next_rxd = IGBVF_RX_DESC_ADV(*rx_ring, i); 331 prefetch(next_rxd); 332 next_buffer = &rx_ring->buffer_info[i]; 333 334 if (!(staterr & E1000_RXD_STAT_EOP)) { 335 buffer_info->skb = next_buffer->skb; 336 buffer_info->dma = next_buffer->dma; 337 next_buffer->skb = skb; 338 next_buffer->dma = 0; 339 goto next_desc; 340 } 341 342 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) { 343 dev_kfree_skb_irq(skb); 344 goto next_desc; 345 } 346 347 total_bytes += skb->len; 348 total_packets++; 349 350 igbvf_rx_checksum_adv(adapter, staterr, skb); 351 352 skb->protocol = eth_type_trans(skb, netdev); 353 354 igbvf_receive_skb(adapter, netdev, skb, staterr, 355 rx_desc->wb.upper.vlan); 356 357next_desc: 358 rx_desc->wb.upper.status_error = 0; 359 360 /* return some buffers to hardware, one at a time is too slow */ 361 if (cleaned_count >= IGBVF_RX_BUFFER_WRITE) { 362 igbvf_alloc_rx_buffers(rx_ring, cleaned_count); 363 cleaned_count = 0; 364 } 365 366 /* use prefetched values */ 367 rx_desc = next_rxd; 368 buffer_info = next_buffer; 369 370 staterr = le32_to_cpu(rx_desc->wb.upper.status_error); 371 } 372 373 rx_ring->next_to_clean = i; 374 cleaned_count = igbvf_desc_unused(rx_ring); 375 376 if (cleaned_count) 377 igbvf_alloc_rx_buffers(rx_ring, cleaned_count); 378 379 adapter->total_rx_packets += total_packets; 380 adapter->total_rx_bytes += total_bytes; 381 netdev->stats.rx_bytes += total_bytes; 382 netdev->stats.rx_packets += total_packets; 383 return cleaned; 384} 385 386static void igbvf_put_txbuf(struct igbvf_adapter *adapter, 387 struct igbvf_buffer *buffer_info) 388{ 389 if (buffer_info->dma) { 390 if (buffer_info->mapped_as_page) 391 dma_unmap_page(&adapter->pdev->dev, 392 buffer_info->dma, 393 buffer_info->length, 394 DMA_TO_DEVICE); 395 else 396 dma_unmap_single(&adapter->pdev->dev, 397 buffer_info->dma, 398 buffer_info->length, 399 DMA_TO_DEVICE); 400 buffer_info->dma = 0; 401 } 402 if (buffer_info->skb) { 403 dev_kfree_skb_any(buffer_info->skb); 404 buffer_info->skb = NULL; 405 } 406 buffer_info->time_stamp = 0; 407} 408 409/** 410 * igbvf_setup_tx_resources - allocate Tx resources (Descriptors) 411 * @adapter: board private structure 412 * @tx_ring: ring being initialized 413 * 414 * Return 0 on success, negative on failure 415 **/ 416int igbvf_setup_tx_resources(struct igbvf_adapter *adapter, 417 struct igbvf_ring *tx_ring) 418{ 419 struct pci_dev *pdev = adapter->pdev; 420 int size; 421 422 size = sizeof(struct igbvf_buffer) * tx_ring->count; 423 tx_ring->buffer_info = vzalloc(size); 424 if (!tx_ring->buffer_info) 425 goto err; 426 427 /* round up to nearest 4K */ 428 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc); 429 tx_ring->size = ALIGN(tx_ring->size, 4096); 430 431 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size, 432 &tx_ring->dma, GFP_KERNEL); 433 if (!tx_ring->desc) 434 goto err; 435 436 tx_ring->adapter = adapter; 437 tx_ring->next_to_use = 0; 438 tx_ring->next_to_clean = 0; 439 440 return 0; 441err: 442 vfree(tx_ring->buffer_info); 443 dev_err(&adapter->pdev->dev, 444 "Unable to allocate memory for the transmit descriptor ring\n"); 445 return -ENOMEM; 446} 447 448/** 449 * igbvf_setup_rx_resources - allocate Rx resources (Descriptors) 450 * @adapter: board private structure 451 * @rx_ring: ring being initialized 452 * 453 * Returns 0 on success, negative on failure 454 **/ 455int igbvf_setup_rx_resources(struct igbvf_adapter *adapter, 456 struct igbvf_ring *rx_ring) 457{ 458 struct pci_dev *pdev = adapter->pdev; 459 int size, desc_len; 460 461 size = sizeof(struct igbvf_buffer) * rx_ring->count; 462 rx_ring->buffer_info = vzalloc(size); 463 if (!rx_ring->buffer_info) 464 goto err; 465 466 desc_len = sizeof(union e1000_adv_rx_desc); 467 468 /* Round up to nearest 4K */ 469 rx_ring->size = rx_ring->count * desc_len; 470 rx_ring->size = ALIGN(rx_ring->size, 4096); 471 472 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size, 473 &rx_ring->dma, GFP_KERNEL); 474 if (!rx_ring->desc) 475 goto err; 476 477 rx_ring->next_to_clean = 0; 478 rx_ring->next_to_use = 0; 479 480 rx_ring->adapter = adapter; 481 482 return 0; 483 484err: 485 vfree(rx_ring->buffer_info); 486 rx_ring->buffer_info = NULL; 487 dev_err(&adapter->pdev->dev, 488 "Unable to allocate memory for the receive descriptor ring\n"); 489 return -ENOMEM; 490} 491 492/** 493 * igbvf_clean_tx_ring - Free Tx Buffers 494 * @tx_ring: ring to be cleaned 495 **/ 496static void igbvf_clean_tx_ring(struct igbvf_ring *tx_ring) 497{ 498 struct igbvf_adapter *adapter = tx_ring->adapter; 499 struct igbvf_buffer *buffer_info; 500 unsigned long size; 501 unsigned int i; 502 503 if (!tx_ring->buffer_info) 504 return; 505 506 /* Free all the Tx ring sk_buffs */ 507 for (i = 0; i < tx_ring->count; i++) { 508 buffer_info = &tx_ring->buffer_info[i]; 509 igbvf_put_txbuf(adapter, buffer_info); 510 } 511 512 size = sizeof(struct igbvf_buffer) * tx_ring->count; 513 memset(tx_ring->buffer_info, 0, size); 514 515 /* Zero out the descriptor ring */ 516 memset(tx_ring->desc, 0, tx_ring->size); 517 518 tx_ring->next_to_use = 0; 519 tx_ring->next_to_clean = 0; 520 521 writel(0, adapter->hw.hw_addr + tx_ring->head); 522 writel(0, adapter->hw.hw_addr + tx_ring->tail); 523} 524 525/** 526 * igbvf_free_tx_resources - Free Tx Resources per Queue 527 * @tx_ring: ring to free resources from 528 * 529 * Free all transmit software resources 530 **/ 531void igbvf_free_tx_resources(struct igbvf_ring *tx_ring) 532{ 533 struct pci_dev *pdev = tx_ring->adapter->pdev; 534 535 igbvf_clean_tx_ring(tx_ring); 536 537 vfree(tx_ring->buffer_info); 538 tx_ring->buffer_info = NULL; 539 540 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc, 541 tx_ring->dma); 542 543 tx_ring->desc = NULL; 544} 545 546/** 547 * igbvf_clean_rx_ring - Free Rx Buffers per Queue 548 * @rx_ring: ring structure pointer to free buffers from 549 **/ 550static void igbvf_clean_rx_ring(struct igbvf_ring *rx_ring) 551{ 552 struct igbvf_adapter *adapter = rx_ring->adapter; 553 struct igbvf_buffer *buffer_info; 554 struct pci_dev *pdev = adapter->pdev; 555 unsigned long size; 556 unsigned int i; 557 558 if (!rx_ring->buffer_info) 559 return; 560 561 /* Free all the Rx ring sk_buffs */ 562 for (i = 0; i < rx_ring->count; i++) { 563 buffer_info = &rx_ring->buffer_info[i]; 564 if (buffer_info->dma) { 565 if (adapter->rx_ps_hdr_size) { 566 dma_unmap_single(&pdev->dev, buffer_info->dma, 567 adapter->rx_ps_hdr_size, 568 DMA_FROM_DEVICE); 569 } else { 570 dma_unmap_single(&pdev->dev, buffer_info->dma, 571 adapter->rx_buffer_len, 572 DMA_FROM_DEVICE); 573 } 574 buffer_info->dma = 0; 575 } 576 577 if (buffer_info->skb) { 578 dev_kfree_skb(buffer_info->skb); 579 buffer_info->skb = NULL; 580 } 581 582 if (buffer_info->page) { 583 if (buffer_info->page_dma) 584 dma_unmap_page(&pdev->dev, 585 buffer_info->page_dma, 586 PAGE_SIZE / 2, 587 DMA_FROM_DEVICE); 588 put_page(buffer_info->page); 589 buffer_info->page = NULL; 590 buffer_info->page_dma = 0; 591 buffer_info->page_offset = 0; 592 } 593 } 594 595 size = sizeof(struct igbvf_buffer) * rx_ring->count; 596 memset(rx_ring->buffer_info, 0, size); 597 598 /* Zero out the descriptor ring */ 599 memset(rx_ring->desc, 0, rx_ring->size); 600 601 rx_ring->next_to_clean = 0; 602 rx_ring->next_to_use = 0; 603 604 writel(0, adapter->hw.hw_addr + rx_ring->head); 605 writel(0, adapter->hw.hw_addr + rx_ring->tail); 606} 607 608/** 609 * igbvf_free_rx_resources - Free Rx Resources 610 * @rx_ring: ring to clean the resources from 611 * 612 * Free all receive software resources 613 **/ 614 615void igbvf_free_rx_resources(struct igbvf_ring *rx_ring) 616{ 617 struct pci_dev *pdev = rx_ring->adapter->pdev; 618 619 igbvf_clean_rx_ring(rx_ring); 620 621 vfree(rx_ring->buffer_info); 622 rx_ring->buffer_info = NULL; 623 624 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc, 625 rx_ring->dma); 626 rx_ring->desc = NULL; 627} 628 629/** 630 * igbvf_update_itr - update the dynamic ITR value based on statistics 631 * @adapter: pointer to adapter 632 * @itr_setting: current adapter->itr 633 * @packets: the number of packets during this measurement interval 634 * @bytes: the number of bytes during this measurement interval 635 * 636 * Stores a new ITR value based on packets and byte counts during the last 637 * interrupt. The advantage of per interrupt computation is faster updates 638 * and more accurate ITR for the current traffic pattern. Constants in this 639 * function were computed based on theoretical maximum wire speed and thresholds 640 * were set based on testing data as well as attempting to minimize response 641 * time while increasing bulk throughput. 642 **/ 643static enum latency_range igbvf_update_itr(struct igbvf_adapter *adapter, 644 enum latency_range itr_setting, 645 int packets, int bytes) 646{ 647 enum latency_range retval = itr_setting; 648 649 if (packets == 0) 650 goto update_itr_done; 651 652 switch (itr_setting) { 653 case lowest_latency: 654 /* handle TSO and jumbo frames */ 655 if (bytes/packets > 8000) 656 retval = bulk_latency; 657 else if ((packets < 5) && (bytes > 512)) 658 retval = low_latency; 659 break; 660 case low_latency: /* 50 usec aka 20000 ints/s */ 661 if (bytes > 10000) { 662 /* this if handles the TSO accounting */ 663 if (bytes/packets > 8000) 664 retval = bulk_latency; 665 else if ((packets < 10) || ((bytes/packets) > 1200)) 666 retval = bulk_latency; 667 else if ((packets > 35)) 668 retval = lowest_latency; 669 } else if (bytes/packets > 2000) { 670 retval = bulk_latency; 671 } else if (packets <= 2 && bytes < 512) { 672 retval = lowest_latency; 673 } 674 break; 675 case bulk_latency: /* 250 usec aka 4000 ints/s */ 676 if (bytes > 25000) { 677 if (packets > 35) 678 retval = low_latency; 679 } else if (bytes < 6000) { 680 retval = low_latency; 681 } 682 break; 683 default: 684 break; 685 } 686 687update_itr_done: 688 return retval; 689} 690 691static int igbvf_range_to_itr(enum latency_range current_range) 692{ 693 int new_itr; 694 695 switch (current_range) { 696 /* counts and packets in update_itr are dependent on these numbers */ 697 case lowest_latency: 698 new_itr = IGBVF_70K_ITR; 699 break; 700 case low_latency: 701 new_itr = IGBVF_20K_ITR; 702 break; 703 case bulk_latency: 704 new_itr = IGBVF_4K_ITR; 705 break; 706 default: 707 new_itr = IGBVF_START_ITR; 708 break; 709 } 710 return new_itr; 711} 712 713static void igbvf_set_itr(struct igbvf_adapter *adapter) 714{ 715 u32 new_itr; 716 717 adapter->tx_ring->itr_range = 718 igbvf_update_itr(adapter, 719 adapter->tx_ring->itr_val, 720 adapter->total_tx_packets, 721 adapter->total_tx_bytes); 722 723 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 724 if (adapter->requested_itr == 3 && 725 adapter->tx_ring->itr_range == lowest_latency) 726 adapter->tx_ring->itr_range = low_latency; 727 728 new_itr = igbvf_range_to_itr(adapter->tx_ring->itr_range); 729 730 if (new_itr != adapter->tx_ring->itr_val) { 731 u32 current_itr = adapter->tx_ring->itr_val; 732 /* this attempts to bias the interrupt rate towards Bulk 733 * by adding intermediate steps when interrupt rate is 734 * increasing 735 */ 736 new_itr = new_itr > current_itr ? 737 min(current_itr + (new_itr >> 2), new_itr) : 738 new_itr; 739 adapter->tx_ring->itr_val = new_itr; 740 741 adapter->tx_ring->set_itr = 1; 742 } 743 744 adapter->rx_ring->itr_range = 745 igbvf_update_itr(adapter, adapter->rx_ring->itr_val, 746 adapter->total_rx_packets, 747 adapter->total_rx_bytes); 748 if (adapter->requested_itr == 3 && 749 adapter->rx_ring->itr_range == lowest_latency) 750 adapter->rx_ring->itr_range = low_latency; 751 752 new_itr = igbvf_range_to_itr(adapter->rx_ring->itr_range); 753 754 if (new_itr != adapter->rx_ring->itr_val) { 755 u32 current_itr = adapter->rx_ring->itr_val; 756 757 new_itr = new_itr > current_itr ? 758 min(current_itr + (new_itr >> 2), new_itr) : 759 new_itr; 760 adapter->rx_ring->itr_val = new_itr; 761 762 adapter->rx_ring->set_itr = 1; 763 } 764} 765 766/** 767 * igbvf_clean_tx_irq - Reclaim resources after transmit completes 768 * @tx_ring: ring structure to clean descriptors from 769 * 770 * returns true if ring is completely cleaned 771 **/ 772static bool igbvf_clean_tx_irq(struct igbvf_ring *tx_ring) 773{ 774 struct igbvf_adapter *adapter = tx_ring->adapter; 775 struct net_device *netdev = adapter->netdev; 776 struct igbvf_buffer *buffer_info; 777 struct sk_buff *skb; 778 union e1000_adv_tx_desc *tx_desc, *eop_desc; 779 unsigned int total_bytes = 0, total_packets = 0; 780 unsigned int i, count = 0; 781 bool cleaned = false; 782 783 i = tx_ring->next_to_clean; 784 buffer_info = &tx_ring->buffer_info[i]; 785 eop_desc = buffer_info->next_to_watch; 786 787 do { 788 /* if next_to_watch is not set then there is no work pending */ 789 if (!eop_desc) 790 break; 791 792 /* prevent any other reads prior to eop_desc */ 793 smp_rmb(); 794 795 /* if DD is not set pending work has not been completed */ 796 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD))) 797 break; 798 799 /* clear next_to_watch to prevent false hangs */ 800 buffer_info->next_to_watch = NULL; 801 802 for (cleaned = false; !cleaned; count++) { 803 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i); 804 cleaned = (tx_desc == eop_desc); 805 skb = buffer_info->skb; 806 807 if (skb) { 808 unsigned int segs, bytecount; 809 810 /* gso_segs is currently only valid for tcp */ 811 segs = skb_shinfo(skb)->gso_segs ?: 1; 812 /* multiply data chunks by size of headers */ 813 bytecount = ((segs - 1) * skb_headlen(skb)) + 814 skb->len; 815 total_packets += segs; 816 total_bytes += bytecount; 817 } 818 819 igbvf_put_txbuf(adapter, buffer_info); 820 tx_desc->wb.status = 0; 821 822 i++; 823 if (i == tx_ring->count) 824 i = 0; 825 826 buffer_info = &tx_ring->buffer_info[i]; 827 } 828 829 eop_desc = buffer_info->next_to_watch; 830 } while (count < tx_ring->count); 831 832 tx_ring->next_to_clean = i; 833 834 if (unlikely(count && netif_carrier_ok(netdev) && 835 igbvf_desc_unused(tx_ring) >= IGBVF_TX_QUEUE_WAKE)) { 836 /* Make sure that anybody stopping the queue after this 837 * sees the new next_to_clean. 838 */ 839 smp_mb(); 840 if (netif_queue_stopped(netdev) && 841 !(test_bit(__IGBVF_DOWN, &adapter->state))) { 842 netif_wake_queue(netdev); 843 ++adapter->restart_queue; 844 } 845 } 846 847 netdev->stats.tx_bytes += total_bytes; 848 netdev->stats.tx_packets += total_packets; 849 return count < tx_ring->count; 850} 851 852static irqreturn_t igbvf_msix_other(int irq, void *data) 853{ 854 struct net_device *netdev = data; 855 struct igbvf_adapter *adapter = netdev_priv(netdev); 856 struct e1000_hw *hw = &adapter->hw; 857 858 hw->mac.get_link_status = 1; 859 if (!test_bit(__IGBVF_DOWN, &adapter->state)) 860 mod_timer(&adapter->watchdog_timer, jiffies + 1); 861 862 ew32(EIMS, adapter->eims_other); 863 864 return IRQ_HANDLED; 865} 866 867static irqreturn_t igbvf_intr_msix_tx(int irq, void *data) 868{ 869 struct net_device *netdev = data; 870 struct igbvf_adapter *adapter = netdev_priv(netdev); 871 struct e1000_hw *hw = &adapter->hw; 872 struct igbvf_ring *tx_ring = adapter->tx_ring; 873 874 if (tx_ring->set_itr) { 875 writel(tx_ring->itr_val, 876 adapter->hw.hw_addr + tx_ring->itr_register); 877 adapter->tx_ring->set_itr = 0; 878 } 879 880 adapter->total_tx_bytes = 0; 881 adapter->total_tx_packets = 0; 882 883 /* auto mask will automatically re-enable the interrupt when we write 884 * EICS 885 */ 886 if (!igbvf_clean_tx_irq(tx_ring)) 887 /* Ring was not completely cleaned, so fire another interrupt */ 888 ew32(EICS, tx_ring->eims_value); 889 else 890 ew32(EIMS, tx_ring->eims_value); 891 892 return IRQ_HANDLED; 893} 894 895static irqreturn_t igbvf_intr_msix_rx(int irq, void *data) 896{ 897 struct net_device *netdev = data; 898 struct igbvf_adapter *adapter = netdev_priv(netdev); 899 900 /* Write the ITR value calculated at the end of the 901 * previous interrupt. 902 */ 903 if (adapter->rx_ring->set_itr) { 904 writel(adapter->rx_ring->itr_val, 905 adapter->hw.hw_addr + adapter->rx_ring->itr_register); 906 adapter->rx_ring->set_itr = 0; 907 } 908 909 if (napi_schedule_prep(&adapter->rx_ring->napi)) { 910 adapter->total_rx_bytes = 0; 911 adapter->total_rx_packets = 0; 912 __napi_schedule(&adapter->rx_ring->napi); 913 } 914 915 return IRQ_HANDLED; 916} 917 918#define IGBVF_NO_QUEUE -1 919 920static void igbvf_assign_vector(struct igbvf_adapter *adapter, int rx_queue, 921 int tx_queue, int msix_vector) 922{ 923 struct e1000_hw *hw = &adapter->hw; 924 u32 ivar, index; 925 926 /* 82576 uses a table-based method for assigning vectors. 927 * Each queue has a single entry in the table to which we write 928 * a vector number along with a "valid" bit. Sadly, the layout 929 * of the table is somewhat counterintuitive. 930 */ 931 if (rx_queue > IGBVF_NO_QUEUE) { 932 index = (rx_queue >> 1); 933 ivar = array_er32(IVAR0, index); 934 if (rx_queue & 0x1) { 935 /* vector goes into third byte of register */ 936 ivar = ivar & 0xFF00FFFF; 937 ivar |= (msix_vector | E1000_IVAR_VALID) << 16; 938 } else { 939 /* vector goes into low byte of register */ 940 ivar = ivar & 0xFFFFFF00; 941 ivar |= msix_vector | E1000_IVAR_VALID; 942 } 943 adapter->rx_ring[rx_queue].eims_value = BIT(msix_vector); 944 array_ew32(IVAR0, index, ivar); 945 } 946 if (tx_queue > IGBVF_NO_QUEUE) { 947 index = (tx_queue >> 1); 948 ivar = array_er32(IVAR0, index); 949 if (tx_queue & 0x1) { 950 /* vector goes into high byte of register */ 951 ivar = ivar & 0x00FFFFFF; 952 ivar |= (msix_vector | E1000_IVAR_VALID) << 24; 953 } else { 954 /* vector goes into second byte of register */ 955 ivar = ivar & 0xFFFF00FF; 956 ivar |= (msix_vector | E1000_IVAR_VALID) << 8; 957 } 958 adapter->tx_ring[tx_queue].eims_value = BIT(msix_vector); 959 array_ew32(IVAR0, index, ivar); 960 } 961} 962 963/** 964 * igbvf_configure_msix - Configure MSI-X hardware 965 * @adapter: board private structure 966 * 967 * igbvf_configure_msix sets up the hardware to properly 968 * generate MSI-X interrupts. 969 **/ 970static void igbvf_configure_msix(struct igbvf_adapter *adapter) 971{ 972 u32 tmp; 973 struct e1000_hw *hw = &adapter->hw; 974 struct igbvf_ring *tx_ring = adapter->tx_ring; 975 struct igbvf_ring *rx_ring = adapter->rx_ring; 976 int vector = 0; 977 978 adapter->eims_enable_mask = 0; 979 980 igbvf_assign_vector(adapter, IGBVF_NO_QUEUE, 0, vector++); 981 adapter->eims_enable_mask |= tx_ring->eims_value; 982 writel(tx_ring->itr_val, hw->hw_addr + tx_ring->itr_register); 983 igbvf_assign_vector(adapter, 0, IGBVF_NO_QUEUE, vector++); 984 adapter->eims_enable_mask |= rx_ring->eims_value; 985 writel(rx_ring->itr_val, hw->hw_addr + rx_ring->itr_register); 986 987 /* set vector for other causes, i.e. link changes */ 988 989 tmp = (vector++ | E1000_IVAR_VALID); 990 991 ew32(IVAR_MISC, tmp); 992 993 adapter->eims_enable_mask = GENMASK(vector - 1, 0); 994 adapter->eims_other = BIT(vector - 1); 995 e1e_flush(); 996} 997 998static void igbvf_reset_interrupt_capability(struct igbvf_adapter *adapter) 999{ 1000 if (adapter->msix_entries) { 1001 pci_disable_msix(adapter->pdev); 1002 kfree(adapter->msix_entries); 1003 adapter->msix_entries = NULL; 1004 } 1005} 1006 1007/** 1008 * igbvf_set_interrupt_capability - set MSI or MSI-X if supported 1009 * @adapter: board private structure 1010 * 1011 * Attempt to configure interrupts using the best available 1012 * capabilities of the hardware and kernel. 1013 **/ 1014static void igbvf_set_interrupt_capability(struct igbvf_adapter *adapter) 1015{ 1016 int err = -ENOMEM; 1017 int i; 1018 1019 /* we allocate 3 vectors, 1 for Tx, 1 for Rx, one for PF messages */ 1020 adapter->msix_entries = kzalloc_objs(struct msix_entry, 3); 1021 if (adapter->msix_entries) { 1022 for (i = 0; i < 3; i++) 1023 adapter->msix_entries[i].entry = i; 1024 1025 err = pci_enable_msix_range(adapter->pdev, 1026 adapter->msix_entries, 3, 3); 1027 } 1028 1029 if (err < 0) { 1030 /* MSI-X failed */ 1031 dev_err(&adapter->pdev->dev, 1032 "Failed to initialize MSI-X interrupts.\n"); 1033 igbvf_reset_interrupt_capability(adapter); 1034 } 1035} 1036 1037/** 1038 * igbvf_request_msix - Initialize MSI-X interrupts 1039 * @adapter: board private structure 1040 * 1041 * igbvf_request_msix allocates MSI-X vectors and requests interrupts from the 1042 * kernel. 1043 **/ 1044static int igbvf_request_msix(struct igbvf_adapter *adapter) 1045{ 1046 struct net_device *netdev = adapter->netdev; 1047 int err = 0, vector = 0; 1048 1049 if (strlen(netdev->name) < (IFNAMSIZ - 5)) { 1050 sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name); 1051 sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name); 1052 } else { 1053 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ); 1054 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ); 1055 } 1056 1057 err = request_irq(adapter->msix_entries[vector].vector, 1058 igbvf_intr_msix_tx, 0, adapter->tx_ring->name, 1059 netdev); 1060 if (err) 1061 goto out; 1062 1063 adapter->tx_ring->itr_register = E1000_EITR(vector); 1064 adapter->tx_ring->itr_val = adapter->current_itr; 1065 vector++; 1066 1067 err = request_irq(adapter->msix_entries[vector].vector, 1068 igbvf_intr_msix_rx, 0, adapter->rx_ring->name, 1069 netdev); 1070 if (err) 1071 goto free_irq_tx; 1072 1073 adapter->rx_ring->itr_register = E1000_EITR(vector); 1074 adapter->rx_ring->itr_val = adapter->current_itr; 1075 vector++; 1076 1077 err = request_irq(adapter->msix_entries[vector].vector, 1078 igbvf_msix_other, 0, netdev->name, netdev); 1079 if (err) 1080 goto free_irq_rx; 1081 1082 igbvf_configure_msix(adapter); 1083 return 0; 1084free_irq_rx: 1085 free_irq(adapter->msix_entries[--vector].vector, netdev); 1086free_irq_tx: 1087 free_irq(adapter->msix_entries[--vector].vector, netdev); 1088out: 1089 return err; 1090} 1091 1092/** 1093 * igbvf_alloc_queues - Allocate memory for all rings 1094 * @adapter: board private structure to initialize 1095 **/ 1096static int igbvf_alloc_queues(struct igbvf_adapter *adapter) 1097{ 1098 struct net_device *netdev = adapter->netdev; 1099 1100 adapter->tx_ring = kzalloc_obj(struct igbvf_ring); 1101 if (!adapter->tx_ring) 1102 return -ENOMEM; 1103 1104 adapter->rx_ring = kzalloc_obj(struct igbvf_ring); 1105 if (!adapter->rx_ring) { 1106 kfree(adapter->tx_ring); 1107 return -ENOMEM; 1108 } 1109 1110 netif_napi_add(netdev, &adapter->rx_ring->napi, igbvf_poll); 1111 1112 return 0; 1113} 1114 1115/** 1116 * igbvf_request_irq - initialize interrupts 1117 * @adapter: board private structure 1118 * 1119 * Attempts to configure interrupts using the best available 1120 * capabilities of the hardware and kernel. 1121 **/ 1122static int igbvf_request_irq(struct igbvf_adapter *adapter) 1123{ 1124 int err = -1; 1125 1126 /* igbvf supports msi-x only */ 1127 if (adapter->msix_entries) 1128 err = igbvf_request_msix(adapter); 1129 1130 if (!err) 1131 return err; 1132 1133 dev_err(&adapter->pdev->dev, 1134 "Unable to allocate interrupt, Error: %d\n", err); 1135 1136 return err; 1137} 1138 1139static void igbvf_free_irq(struct igbvf_adapter *adapter) 1140{ 1141 struct net_device *netdev = adapter->netdev; 1142 int vector; 1143 1144 if (adapter->msix_entries) { 1145 for (vector = 0; vector < 3; vector++) 1146 free_irq(adapter->msix_entries[vector].vector, netdev); 1147 } 1148} 1149 1150/** 1151 * igbvf_irq_disable - Mask off interrupt generation on the NIC 1152 * @adapter: board private structure 1153 **/ 1154static void igbvf_irq_disable(struct igbvf_adapter *adapter) 1155{ 1156 struct e1000_hw *hw = &adapter->hw; 1157 1158 ew32(EIMC, ~0); 1159 1160 if (adapter->msix_entries) 1161 ew32(EIAC, 0); 1162} 1163 1164/** 1165 * igbvf_irq_enable - Enable default interrupt generation settings 1166 * @adapter: board private structure 1167 **/ 1168static void igbvf_irq_enable(struct igbvf_adapter *adapter) 1169{ 1170 struct e1000_hw *hw = &adapter->hw; 1171 1172 ew32(EIAC, adapter->eims_enable_mask); 1173 ew32(EIAM, adapter->eims_enable_mask); 1174 ew32(EIMS, adapter->eims_enable_mask); 1175} 1176 1177/** 1178 * igbvf_poll - NAPI Rx polling callback 1179 * @napi: struct associated with this polling callback 1180 * @budget: amount of packets driver is allowed to process this poll 1181 **/ 1182static int igbvf_poll(struct napi_struct *napi, int budget) 1183{ 1184 struct igbvf_ring *rx_ring = container_of(napi, struct igbvf_ring, napi); 1185 struct igbvf_adapter *adapter = rx_ring->adapter; 1186 struct e1000_hw *hw = &adapter->hw; 1187 int work_done = 0; 1188 1189 igbvf_clean_rx_irq(adapter, &work_done, budget); 1190 1191 if (work_done == budget) 1192 return budget; 1193 1194 /* Exit the polling mode, but don't re-enable interrupts if stack might 1195 * poll us due to busy-polling 1196 */ 1197 if (likely(napi_complete_done(napi, work_done))) { 1198 if (adapter->requested_itr & 3) 1199 igbvf_set_itr(adapter); 1200 1201 if (!test_bit(__IGBVF_DOWN, &adapter->state)) 1202 ew32(EIMS, adapter->rx_ring->eims_value); 1203 } 1204 1205 return work_done; 1206} 1207 1208/** 1209 * igbvf_set_rlpml - set receive large packet maximum length 1210 * @adapter: board private structure 1211 * 1212 * Configure the maximum size of packets that will be received 1213 */ 1214static void igbvf_set_rlpml(struct igbvf_adapter *adapter) 1215{ 1216 int max_frame_size; 1217 struct e1000_hw *hw = &adapter->hw; 1218 1219 max_frame_size = adapter->max_frame_size + VLAN_TAG_SIZE; 1220 1221 spin_lock_bh(&hw->mbx_lock); 1222 1223 e1000_rlpml_set_vf(hw, max_frame_size); 1224 1225 spin_unlock_bh(&hw->mbx_lock); 1226} 1227 1228static int igbvf_vlan_rx_add_vid(struct net_device *netdev, 1229 __be16 proto, u16 vid) 1230{ 1231 struct igbvf_adapter *adapter = netdev_priv(netdev); 1232 struct e1000_hw *hw = &adapter->hw; 1233 1234 spin_lock_bh(&hw->mbx_lock); 1235 1236 if (hw->mac.ops.set_vfta(hw, vid, true)) { 1237 dev_warn(&adapter->pdev->dev, "Vlan id %d is not added\n", vid); 1238 spin_unlock_bh(&hw->mbx_lock); 1239 return -EINVAL; 1240 } 1241 1242 spin_unlock_bh(&hw->mbx_lock); 1243 1244 set_bit(vid, adapter->active_vlans); 1245 return 0; 1246} 1247 1248static int igbvf_vlan_rx_kill_vid(struct net_device *netdev, 1249 __be16 proto, u16 vid) 1250{ 1251 struct igbvf_adapter *adapter = netdev_priv(netdev); 1252 struct e1000_hw *hw = &adapter->hw; 1253 1254 spin_lock_bh(&hw->mbx_lock); 1255 1256 if (hw->mac.ops.set_vfta(hw, vid, false)) { 1257 dev_err(&adapter->pdev->dev, 1258 "Failed to remove vlan id %d\n", vid); 1259 spin_unlock_bh(&hw->mbx_lock); 1260 return -EINVAL; 1261 } 1262 1263 spin_unlock_bh(&hw->mbx_lock); 1264 1265 clear_bit(vid, adapter->active_vlans); 1266 return 0; 1267} 1268 1269static void igbvf_restore_vlan(struct igbvf_adapter *adapter) 1270{ 1271 u16 vid; 1272 1273 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID) 1274 igbvf_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid); 1275} 1276 1277/** 1278 * igbvf_configure_tx - Configure Transmit Unit after Reset 1279 * @adapter: board private structure 1280 * 1281 * Configure the Tx unit of the MAC after a reset. 1282 **/ 1283static void igbvf_configure_tx(struct igbvf_adapter *adapter) 1284{ 1285 struct e1000_hw *hw = &adapter->hw; 1286 struct igbvf_ring *tx_ring = adapter->tx_ring; 1287 u64 tdba; 1288 u32 txdctl, dca_txctrl; 1289 1290 /* disable transmits */ 1291 txdctl = er32(TXDCTL(0)); 1292 ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE); 1293 e1e_flush(); 1294 msleep(10); 1295 1296 /* Setup the HW Tx Head and Tail descriptor pointers */ 1297 ew32(TDLEN(0), tx_ring->count * sizeof(union e1000_adv_tx_desc)); 1298 tdba = tx_ring->dma; 1299 ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32))); 1300 ew32(TDBAH(0), (tdba >> 32)); 1301 ew32(TDH(0), 0); 1302 ew32(TDT(0), 0); 1303 tx_ring->head = E1000_TDH(0); 1304 tx_ring->tail = E1000_TDT(0); 1305 1306 /* Turn off Relaxed Ordering on head write-backs. The writebacks 1307 * MUST be delivered in order or it will completely screw up 1308 * our bookkeeping. 1309 */ 1310 dca_txctrl = er32(DCA_TXCTRL(0)); 1311 dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN; 1312 ew32(DCA_TXCTRL(0), dca_txctrl); 1313 1314 /* enable transmits */ 1315 txdctl |= E1000_TXDCTL_QUEUE_ENABLE; 1316 ew32(TXDCTL(0), txdctl); 1317 1318 /* Setup Transmit Descriptor Settings for eop descriptor */ 1319 adapter->txd_cmd = E1000_ADVTXD_DCMD_EOP | E1000_ADVTXD_DCMD_IFCS; 1320 1321 /* enable Report Status bit */ 1322 adapter->txd_cmd |= E1000_ADVTXD_DCMD_RS; 1323} 1324 1325/** 1326 * igbvf_setup_srrctl - configure the receive control registers 1327 * @adapter: Board private structure 1328 **/ 1329static void igbvf_setup_srrctl(struct igbvf_adapter *adapter) 1330{ 1331 struct e1000_hw *hw = &adapter->hw; 1332 u32 srrctl = 0; 1333 1334 srrctl &= ~(E1000_SRRCTL_DESCTYPE_MASK | 1335 E1000_SRRCTL_BSIZEHDR_MASK | 1336 E1000_SRRCTL_BSIZEPKT_MASK); 1337 1338 /* Enable queue drop to avoid head of line blocking */ 1339 srrctl |= E1000_SRRCTL_DROP_EN; 1340 1341 /* Setup buffer sizes */ 1342 srrctl |= ALIGN(adapter->rx_buffer_len, 1024) >> 1343 E1000_SRRCTL_BSIZEPKT_SHIFT; 1344 1345 if (adapter->rx_buffer_len < 2048) { 1346 adapter->rx_ps_hdr_size = 0; 1347 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF; 1348 } else { 1349 adapter->rx_ps_hdr_size = 128; 1350 srrctl |= adapter->rx_ps_hdr_size << 1351 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT; 1352 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS; 1353 } 1354 1355 ew32(SRRCTL(0), srrctl); 1356} 1357 1358/** 1359 * igbvf_configure_rx - Configure Receive Unit after Reset 1360 * @adapter: board private structure 1361 * 1362 * Configure the Rx unit of the MAC after a reset. 1363 **/ 1364static void igbvf_configure_rx(struct igbvf_adapter *adapter) 1365{ 1366 struct e1000_hw *hw = &adapter->hw; 1367 struct igbvf_ring *rx_ring = adapter->rx_ring; 1368 u64 rdba; 1369 u32 rxdctl; 1370 1371 /* disable receives */ 1372 rxdctl = er32(RXDCTL(0)); 1373 ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE); 1374 e1e_flush(); 1375 msleep(10); 1376 1377 /* Setup the HW Rx Head and Tail Descriptor Pointers and 1378 * the Base and Length of the Rx Descriptor Ring 1379 */ 1380 rdba = rx_ring->dma; 1381 ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32))); 1382 ew32(RDBAH(0), (rdba >> 32)); 1383 ew32(RDLEN(0), rx_ring->count * sizeof(union e1000_adv_rx_desc)); 1384 rx_ring->head = E1000_RDH(0); 1385 rx_ring->tail = E1000_RDT(0); 1386 ew32(RDH(0), 0); 1387 ew32(RDT(0), 0); 1388 1389 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE; 1390 rxdctl &= 0xFFF00000; 1391 rxdctl |= IGBVF_RX_PTHRESH; 1392 rxdctl |= IGBVF_RX_HTHRESH << 8; 1393 rxdctl |= IGBVF_RX_WTHRESH << 16; 1394 1395 igbvf_set_rlpml(adapter); 1396 1397 /* enable receives */ 1398 ew32(RXDCTL(0), rxdctl); 1399} 1400 1401/** 1402 * igbvf_set_multi - Multicast and Promiscuous mode set 1403 * @netdev: network interface device structure 1404 * 1405 * The set_multi entry point is called whenever the multicast address 1406 * list or the network interface flags are updated. This routine is 1407 * responsible for configuring the hardware for proper multicast, 1408 * promiscuous mode, and all-multi behavior. 1409 **/ 1410static void igbvf_set_multi(struct net_device *netdev) 1411{ 1412 struct igbvf_adapter *adapter = netdev_priv(netdev); 1413 struct e1000_hw *hw = &adapter->hw; 1414 struct netdev_hw_addr *ha; 1415 u8 *mta_list = NULL; 1416 int i; 1417 1418 if (!netdev_mc_empty(netdev)) { 1419 mta_list = kmalloc_array(netdev_mc_count(netdev), ETH_ALEN, 1420 GFP_ATOMIC); 1421 if (!mta_list) 1422 return; 1423 } 1424 1425 /* prepare a packed array of only addresses. */ 1426 i = 0; 1427 netdev_for_each_mc_addr(ha, netdev) 1428 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN); 1429 1430 spin_lock_bh(&hw->mbx_lock); 1431 1432 hw->mac.ops.update_mc_addr_list(hw, mta_list, i, 0, 0); 1433 1434 spin_unlock_bh(&hw->mbx_lock); 1435 kfree(mta_list); 1436} 1437 1438/** 1439 * igbvf_set_uni - Configure unicast MAC filters 1440 * @netdev: network interface device structure 1441 * 1442 * This routine is responsible for configuring the hardware for proper 1443 * unicast filters. 1444 **/ 1445static int igbvf_set_uni(struct net_device *netdev) 1446{ 1447 struct igbvf_adapter *adapter = netdev_priv(netdev); 1448 struct e1000_hw *hw = &adapter->hw; 1449 1450 if (netdev_uc_count(netdev) > IGBVF_MAX_MAC_FILTERS) { 1451 pr_err("Too many unicast filters - No Space\n"); 1452 return -ENOSPC; 1453 } 1454 1455 spin_lock_bh(&hw->mbx_lock); 1456 1457 /* Clear all unicast MAC filters */ 1458 hw->mac.ops.set_uc_addr(hw, E1000_VF_MAC_FILTER_CLR, NULL); 1459 1460 spin_unlock_bh(&hw->mbx_lock); 1461 1462 if (!netdev_uc_empty(netdev)) { 1463 struct netdev_hw_addr *ha; 1464 1465 /* Add MAC filters one by one */ 1466 netdev_for_each_uc_addr(ha, netdev) { 1467 spin_lock_bh(&hw->mbx_lock); 1468 1469 hw->mac.ops.set_uc_addr(hw, E1000_VF_MAC_FILTER_ADD, 1470 ha->addr); 1471 1472 spin_unlock_bh(&hw->mbx_lock); 1473 udelay(200); 1474 } 1475 } 1476 1477 return 0; 1478} 1479 1480static void igbvf_set_rx_mode(struct net_device *netdev) 1481{ 1482 igbvf_set_multi(netdev); 1483 igbvf_set_uni(netdev); 1484} 1485 1486/** 1487 * igbvf_configure - configure the hardware for Rx and Tx 1488 * @adapter: private board structure 1489 **/ 1490static void igbvf_configure(struct igbvf_adapter *adapter) 1491{ 1492 igbvf_set_rx_mode(adapter->netdev); 1493 1494 igbvf_restore_vlan(adapter); 1495 1496 igbvf_configure_tx(adapter); 1497 igbvf_setup_srrctl(adapter); 1498 igbvf_configure_rx(adapter); 1499 igbvf_alloc_rx_buffers(adapter->rx_ring, 1500 igbvf_desc_unused(adapter->rx_ring)); 1501} 1502 1503/* igbvf_reset - bring the hardware into a known good state 1504 * @adapter: private board structure 1505 * 1506 * This function boots the hardware and enables some settings that 1507 * require a configuration cycle of the hardware - those cannot be 1508 * set/changed during runtime. After reset the device needs to be 1509 * properly configured for Rx, Tx etc. 1510 */ 1511static void igbvf_reset(struct igbvf_adapter *adapter) 1512{ 1513 struct e1000_mac_info *mac = &adapter->hw.mac; 1514 struct net_device *netdev = adapter->netdev; 1515 struct e1000_hw *hw = &adapter->hw; 1516 1517 spin_lock_bh(&hw->mbx_lock); 1518 1519 /* Allow time for pending master requests to run */ 1520 if (mac->ops.reset_hw(hw)) 1521 dev_info(&adapter->pdev->dev, "PF still resetting\n"); 1522 1523 mac->ops.init_hw(hw); 1524 1525 spin_unlock_bh(&hw->mbx_lock); 1526 1527 if (is_valid_ether_addr(adapter->hw.mac.addr)) { 1528 eth_hw_addr_set(netdev, adapter->hw.mac.addr); 1529 memcpy(netdev->perm_addr, adapter->hw.mac.addr, 1530 netdev->addr_len); 1531 } 1532 1533 adapter->last_reset = jiffies; 1534} 1535 1536int igbvf_up(struct igbvf_adapter *adapter) 1537{ 1538 struct e1000_hw *hw = &adapter->hw; 1539 1540 /* hardware has been reset, we need to reload some things */ 1541 igbvf_configure(adapter); 1542 1543 clear_bit(__IGBVF_DOWN, &adapter->state); 1544 1545 napi_enable(&adapter->rx_ring->napi); 1546 if (adapter->msix_entries) 1547 igbvf_configure_msix(adapter); 1548 1549 /* Clear any pending interrupts. */ 1550 er32(EICR); 1551 igbvf_irq_enable(adapter); 1552 1553 /* start the watchdog */ 1554 hw->mac.get_link_status = 1; 1555 mod_timer(&adapter->watchdog_timer, jiffies + 1); 1556 1557 return 0; 1558} 1559 1560void igbvf_down(struct igbvf_adapter *adapter) 1561{ 1562 struct net_device *netdev = adapter->netdev; 1563 struct e1000_hw *hw = &adapter->hw; 1564 u32 rxdctl, txdctl; 1565 1566 /* signal that we're down so the interrupt handler does not 1567 * reschedule our watchdog timer 1568 */ 1569 set_bit(__IGBVF_DOWN, &adapter->state); 1570 1571 /* disable receives in the hardware */ 1572 rxdctl = er32(RXDCTL(0)); 1573 ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE); 1574 1575 netif_carrier_off(netdev); 1576 netif_stop_queue(netdev); 1577 1578 /* disable transmits in the hardware */ 1579 txdctl = er32(TXDCTL(0)); 1580 ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE); 1581 1582 /* flush both disables and wait for them to finish */ 1583 e1e_flush(); 1584 msleep(10); 1585 1586 napi_disable(&adapter->rx_ring->napi); 1587 1588 igbvf_irq_disable(adapter); 1589 1590 timer_delete_sync(&adapter->watchdog_timer); 1591 1592 /* record the stats before reset*/ 1593 igbvf_update_stats(adapter); 1594 1595 adapter->link_speed = 0; 1596 adapter->link_duplex = 0; 1597 1598 igbvf_reset(adapter); 1599 igbvf_clean_tx_ring(adapter->tx_ring); 1600 igbvf_clean_rx_ring(adapter->rx_ring); 1601} 1602 1603void igbvf_reinit_locked(struct igbvf_adapter *adapter) 1604{ 1605 might_sleep(); 1606 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state)) 1607 usleep_range(1000, 2000); 1608 igbvf_down(adapter); 1609 igbvf_up(adapter); 1610 clear_bit(__IGBVF_RESETTING, &adapter->state); 1611} 1612 1613/** 1614 * igbvf_sw_init - Initialize general software structures (struct igbvf_adapter) 1615 * @adapter: board private structure to initialize 1616 * 1617 * igbvf_sw_init initializes the Adapter private data structure. 1618 * Fields are initialized based on PCI device information and 1619 * OS network device settings (MTU size). 1620 **/ 1621static int igbvf_sw_init(struct igbvf_adapter *adapter) 1622{ 1623 struct net_device *netdev = adapter->netdev; 1624 s32 rc; 1625 1626 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN; 1627 adapter->rx_ps_hdr_size = 0; 1628 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN; 1629 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN; 1630 1631 adapter->requested_itr = 3; 1632 adapter->current_itr = IGBVF_START_ITR; 1633 1634 /* Set various function pointers */ 1635 adapter->ei->init_ops(&adapter->hw); 1636 1637 rc = adapter->hw.mac.ops.init_params(&adapter->hw); 1638 if (rc) 1639 return rc; 1640 1641 rc = adapter->hw.mbx.ops.init_params(&adapter->hw); 1642 if (rc) 1643 return rc; 1644 1645 igbvf_set_interrupt_capability(adapter); 1646 1647 if (igbvf_alloc_queues(adapter)) 1648 return -ENOMEM; 1649 1650 /* Explicitly disable IRQ since the NIC can be in any state. */ 1651 igbvf_irq_disable(adapter); 1652 1653 spin_lock_init(&adapter->hw.mbx_lock); 1654 1655 set_bit(__IGBVF_DOWN, &adapter->state); 1656 return 0; 1657} 1658 1659static void igbvf_initialize_last_counter_stats(struct igbvf_adapter *adapter) 1660{ 1661 struct e1000_hw *hw = &adapter->hw; 1662 1663 adapter->stats.last_gprc = er32(VFGPRC); 1664 adapter->stats.last_gorc = er32(VFGORC); 1665 adapter->stats.last_gptc = er32(VFGPTC); 1666 adapter->stats.last_gotc = er32(VFGOTC); 1667 adapter->stats.last_mprc = er32(VFMPRC); 1668 adapter->stats.last_gotlbc = er32(VFGOTLBC); 1669 adapter->stats.last_gptlbc = er32(VFGPTLBC); 1670 adapter->stats.last_gorlbc = er32(VFGORLBC); 1671 adapter->stats.last_gprlbc = er32(VFGPRLBC); 1672 1673 adapter->stats.base_gprc = er32(VFGPRC); 1674 adapter->stats.base_gorc = er32(VFGORC); 1675 adapter->stats.base_gptc = er32(VFGPTC); 1676 adapter->stats.base_gotc = er32(VFGOTC); 1677 adapter->stats.base_mprc = er32(VFMPRC); 1678 adapter->stats.base_gotlbc = er32(VFGOTLBC); 1679 adapter->stats.base_gptlbc = er32(VFGPTLBC); 1680 adapter->stats.base_gorlbc = er32(VFGORLBC); 1681 adapter->stats.base_gprlbc = er32(VFGPRLBC); 1682} 1683 1684/** 1685 * igbvf_open - Called when a network interface is made active 1686 * @netdev: network interface device structure 1687 * 1688 * Returns 0 on success, negative value on failure 1689 * 1690 * The open entry point is called when a network interface is made 1691 * active by the system (IFF_UP). At this point all resources needed 1692 * for transmit and receive operations are allocated, the interrupt 1693 * handler is registered with the OS, the watchdog timer is started, 1694 * and the stack is notified that the interface is ready. 1695 **/ 1696static int igbvf_open(struct net_device *netdev) 1697{ 1698 struct igbvf_adapter *adapter = netdev_priv(netdev); 1699 struct e1000_hw *hw = &adapter->hw; 1700 int err; 1701 1702 /* disallow open during test */ 1703 if (test_bit(__IGBVF_TESTING, &adapter->state)) 1704 return -EBUSY; 1705 1706 /* allocate transmit descriptors */ 1707 err = igbvf_setup_tx_resources(adapter, adapter->tx_ring); 1708 if (err) 1709 goto err_setup_tx; 1710 1711 /* allocate receive descriptors */ 1712 err = igbvf_setup_rx_resources(adapter, adapter->rx_ring); 1713 if (err) 1714 goto err_setup_rx; 1715 1716 /* before we allocate an interrupt, we must be ready to handle it. 1717 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt 1718 * as soon as we call pci_request_irq, so we have to setup our 1719 * clean_rx handler before we do so. 1720 */ 1721 igbvf_configure(adapter); 1722 1723 err = igbvf_request_irq(adapter); 1724 if (err) 1725 goto err_req_irq; 1726 1727 /* From here on the code is the same as igbvf_up() */ 1728 clear_bit(__IGBVF_DOWN, &adapter->state); 1729 1730 napi_enable(&adapter->rx_ring->napi); 1731 1732 /* clear any pending interrupts */ 1733 er32(EICR); 1734 1735 igbvf_irq_enable(adapter); 1736 1737 /* start the watchdog */ 1738 hw->mac.get_link_status = 1; 1739 mod_timer(&adapter->watchdog_timer, jiffies + 1); 1740 1741 return 0; 1742 1743err_req_irq: 1744 igbvf_free_rx_resources(adapter->rx_ring); 1745err_setup_rx: 1746 igbvf_free_tx_resources(adapter->tx_ring); 1747err_setup_tx: 1748 igbvf_reset(adapter); 1749 1750 return err; 1751} 1752 1753/** 1754 * igbvf_close - Disables a network interface 1755 * @netdev: network interface device structure 1756 * 1757 * Returns 0, this is not allowed to fail 1758 * 1759 * The close entry point is called when an interface is de-activated 1760 * by the OS. The hardware is still under the drivers control, but 1761 * needs to be disabled. A global MAC reset is issued to stop the 1762 * hardware, and all transmit and receive resources are freed. 1763 **/ 1764static int igbvf_close(struct net_device *netdev) 1765{ 1766 struct igbvf_adapter *adapter = netdev_priv(netdev); 1767 1768 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state)); 1769 igbvf_down(adapter); 1770 1771 igbvf_free_irq(adapter); 1772 1773 igbvf_free_tx_resources(adapter->tx_ring); 1774 igbvf_free_rx_resources(adapter->rx_ring); 1775 1776 return 0; 1777} 1778 1779/** 1780 * igbvf_set_mac - Change the Ethernet Address of the NIC 1781 * @netdev: network interface device structure 1782 * @p: pointer to an address structure 1783 * 1784 * Returns 0 on success, negative on failure 1785 **/ 1786static int igbvf_set_mac(struct net_device *netdev, void *p) 1787{ 1788 struct igbvf_adapter *adapter = netdev_priv(netdev); 1789 struct e1000_hw *hw = &adapter->hw; 1790 struct sockaddr *addr = p; 1791 1792 if (!is_valid_ether_addr(addr->sa_data)) 1793 return -EADDRNOTAVAIL; 1794 1795 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len); 1796 1797 spin_lock_bh(&hw->mbx_lock); 1798 1799 hw->mac.ops.rar_set(hw, hw->mac.addr, 0); 1800 1801 spin_unlock_bh(&hw->mbx_lock); 1802 1803 if (!ether_addr_equal(addr->sa_data, hw->mac.addr)) 1804 return -EADDRNOTAVAIL; 1805 1806 eth_hw_addr_set(netdev, addr->sa_data); 1807 1808 return 0; 1809} 1810 1811#define UPDATE_VF_COUNTER(reg, name) \ 1812{ \ 1813 u32 current_counter = er32(reg); \ 1814 if (current_counter < adapter->stats.last_##name) \ 1815 adapter->stats.name += 0x100000000LL; \ 1816 adapter->stats.last_##name = current_counter; \ 1817 adapter->stats.name &= 0xFFFFFFFF00000000LL; \ 1818 adapter->stats.name |= current_counter; \ 1819} 1820 1821/** 1822 * igbvf_update_stats - Update the board statistics counters 1823 * @adapter: board private structure 1824**/ 1825void igbvf_update_stats(struct igbvf_adapter *adapter) 1826{ 1827 struct e1000_hw *hw = &adapter->hw; 1828 struct pci_dev *pdev = adapter->pdev; 1829 1830 /* Prevent stats update while adapter is being reset, link is down 1831 * or if the pci connection is down. 1832 */ 1833 if (adapter->link_speed == 0) 1834 return; 1835 1836 if (test_bit(__IGBVF_RESETTING, &adapter->state)) 1837 return; 1838 1839 if (pci_channel_offline(pdev)) 1840 return; 1841 1842 UPDATE_VF_COUNTER(VFGPRC, gprc); 1843 UPDATE_VF_COUNTER(VFGORC, gorc); 1844 UPDATE_VF_COUNTER(VFGPTC, gptc); 1845 UPDATE_VF_COUNTER(VFGOTC, gotc); 1846 UPDATE_VF_COUNTER(VFMPRC, mprc); 1847 UPDATE_VF_COUNTER(VFGOTLBC, gotlbc); 1848 UPDATE_VF_COUNTER(VFGPTLBC, gptlbc); 1849 UPDATE_VF_COUNTER(VFGORLBC, gorlbc); 1850 UPDATE_VF_COUNTER(VFGPRLBC, gprlbc); 1851 1852 /* Fill out the OS statistics structure */ 1853 adapter->netdev->stats.multicast = adapter->stats.mprc; 1854} 1855 1856static void igbvf_print_link_info(struct igbvf_adapter *adapter) 1857{ 1858 dev_info(&adapter->pdev->dev, "Link is Up %d Mbps %s Duplex\n", 1859 adapter->link_speed, 1860 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half"); 1861} 1862 1863static bool igbvf_has_link(struct igbvf_adapter *adapter) 1864{ 1865 struct e1000_hw *hw = &adapter->hw; 1866 s32 ret_val = E1000_SUCCESS; 1867 bool link_active; 1868 1869 /* If interface is down, stay link down */ 1870 if (test_bit(__IGBVF_DOWN, &adapter->state)) 1871 return false; 1872 1873 spin_lock_bh(&hw->mbx_lock); 1874 1875 ret_val = hw->mac.ops.check_for_link(hw); 1876 1877 spin_unlock_bh(&hw->mbx_lock); 1878 1879 link_active = !hw->mac.get_link_status; 1880 1881 /* if check for link returns error we will need to reset */ 1882 if (ret_val && time_after(jiffies, adapter->last_reset + (10 * HZ))) 1883 schedule_work(&adapter->reset_task); 1884 1885 return link_active; 1886} 1887 1888/** 1889 * igbvf_watchdog - Timer Call-back 1890 * @t: timer list pointer containing private struct 1891 **/ 1892static void igbvf_watchdog(struct timer_list *t) 1893{ 1894 struct igbvf_adapter *adapter = timer_container_of(adapter, t, 1895 watchdog_timer); 1896 1897 /* Do the rest outside of interrupt context */ 1898 schedule_work(&adapter->watchdog_task); 1899} 1900 1901static void igbvf_watchdog_task(struct work_struct *work) 1902{ 1903 struct igbvf_adapter *adapter = container_of(work, 1904 struct igbvf_adapter, 1905 watchdog_task); 1906 struct net_device *netdev = adapter->netdev; 1907 struct e1000_mac_info *mac = &adapter->hw.mac; 1908 struct igbvf_ring *tx_ring = adapter->tx_ring; 1909 struct e1000_hw *hw = &adapter->hw; 1910 u32 link; 1911 int tx_pending = 0; 1912 1913 link = igbvf_has_link(adapter); 1914 1915 if (link) { 1916 if (!netif_carrier_ok(netdev)) { 1917 mac->ops.get_link_up_info(&adapter->hw, 1918 &adapter->link_speed, 1919 &adapter->link_duplex); 1920 igbvf_print_link_info(adapter); 1921 1922 netif_carrier_on(netdev); 1923 netif_wake_queue(netdev); 1924 } 1925 } else { 1926 if (netif_carrier_ok(netdev)) { 1927 adapter->link_speed = 0; 1928 adapter->link_duplex = 0; 1929 dev_info(&adapter->pdev->dev, "Link is Down\n"); 1930 netif_carrier_off(netdev); 1931 netif_stop_queue(netdev); 1932 } 1933 } 1934 1935 if (netif_carrier_ok(netdev)) { 1936 igbvf_update_stats(adapter); 1937 } else { 1938 tx_pending = (igbvf_desc_unused(tx_ring) + 1 < 1939 tx_ring->count); 1940 if (tx_pending) { 1941 /* We've lost link, so the controller stops DMA, 1942 * but we've got queued Tx work that's never going 1943 * to get done, so reset controller to flush Tx. 1944 * (Do the reset outside of interrupt context). 1945 */ 1946 adapter->tx_timeout_count++; 1947 schedule_work(&adapter->reset_task); 1948 } 1949 } 1950 1951 /* Cause software interrupt to ensure Rx ring is cleaned */ 1952 ew32(EICS, adapter->rx_ring->eims_value); 1953 1954 /* Reset the timer */ 1955 if (!test_bit(__IGBVF_DOWN, &adapter->state)) 1956 mod_timer(&adapter->watchdog_timer, 1957 round_jiffies(jiffies + (2 * HZ))); 1958} 1959 1960#define IGBVF_TX_FLAGS_CSUM 0x00000001 1961#define IGBVF_TX_FLAGS_VLAN 0x00000002 1962#define IGBVF_TX_FLAGS_TSO 0x00000004 1963#define IGBVF_TX_FLAGS_IPV4 0x00000008 1964#define IGBVF_TX_FLAGS_VLAN_MASK 0xffff0000 1965#define IGBVF_TX_FLAGS_VLAN_SHIFT 16 1966 1967static void igbvf_tx_ctxtdesc(struct igbvf_ring *tx_ring, u32 vlan_macip_lens, 1968 u32 type_tucmd, u32 mss_l4len_idx) 1969{ 1970 struct e1000_adv_tx_context_desc *context_desc; 1971 struct igbvf_buffer *buffer_info; 1972 u16 i = tx_ring->next_to_use; 1973 1974 context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i); 1975 buffer_info = &tx_ring->buffer_info[i]; 1976 1977 i++; 1978 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 1979 1980 /* set bits to identify this as an advanced context descriptor */ 1981 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT; 1982 1983 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens); 1984 context_desc->seqnum_seed = 0; 1985 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd); 1986 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx); 1987 1988 buffer_info->time_stamp = jiffies; 1989 buffer_info->dma = 0; 1990} 1991 1992static int igbvf_tso(struct igbvf_ring *tx_ring, 1993 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len) 1994{ 1995 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx; 1996 union { 1997 struct iphdr *v4; 1998 struct ipv6hdr *v6; 1999 unsigned char *hdr; 2000 } ip; 2001 union { 2002 struct tcphdr *tcp; 2003 unsigned char *hdr; 2004 } l4; 2005 u32 paylen, l4_offset; 2006 int err; 2007 2008 if (skb->ip_summed != CHECKSUM_PARTIAL) 2009 return 0; 2010 2011 if (!skb_is_gso(skb)) 2012 return 0; 2013 2014 err = skb_cow_head(skb, 0); 2015 if (err < 0) 2016 return err; 2017 2018 ip.hdr = skb_network_header(skb); 2019 l4.hdr = skb_checksum_start(skb); 2020 2021 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */ 2022 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP; 2023 2024 /* initialize outer IP header fields */ 2025 if (ip.v4->version == 4) { 2026 unsigned char *csum_start = skb_checksum_start(skb); 2027 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4); 2028 2029 /* IP header will have to cancel out any data that 2030 * is not a part of the outer IP header 2031 */ 2032 ip.v4->check = csum_fold(csum_partial(trans_start, 2033 csum_start - trans_start, 2034 0)); 2035 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4; 2036 2037 ip.v4->tot_len = 0; 2038 } else { 2039 ip.v6->payload_len = 0; 2040 } 2041 2042 /* determine offset of inner transport header */ 2043 l4_offset = l4.hdr - skb->data; 2044 2045 /* compute length of segmentation header */ 2046 *hdr_len = (l4.tcp->doff * 4) + l4_offset; 2047 2048 /* remove payload length from inner checksum */ 2049 paylen = skb->len - l4_offset; 2050 csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen)); 2051 2052 /* MSS L4LEN IDX */ 2053 mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT; 2054 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT; 2055 2056 /* VLAN MACLEN IPLEN */ 2057 vlan_macip_lens = l4.hdr - ip.hdr; 2058 vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT; 2059 vlan_macip_lens |= tx_flags & IGBVF_TX_FLAGS_VLAN_MASK; 2060 2061 igbvf_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx); 2062 2063 return 1; 2064} 2065 2066static bool igbvf_tx_csum(struct igbvf_ring *tx_ring, struct sk_buff *skb, 2067 u32 tx_flags, __be16 protocol) 2068{ 2069 u32 vlan_macip_lens = 0; 2070 u32 type_tucmd = 0; 2071 2072 if (skb->ip_summed != CHECKSUM_PARTIAL) { 2073csum_failed: 2074 if (!(tx_flags & IGBVF_TX_FLAGS_VLAN)) 2075 return false; 2076 goto no_csum; 2077 } 2078 2079 switch (skb->csum_offset) { 2080 case offsetof(struct tcphdr, check): 2081 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP; 2082 fallthrough; 2083 case offsetof(struct udphdr, check): 2084 break; 2085 case offsetof(struct sctphdr, checksum): 2086 /* validate that this is actually an SCTP request */ 2087 if (skb_csum_is_sctp(skb)) { 2088 type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP; 2089 break; 2090 } 2091 fallthrough; 2092 default: 2093 skb_checksum_help(skb); 2094 goto csum_failed; 2095 } 2096 2097 vlan_macip_lens = skb_checksum_start_offset(skb) - 2098 skb_network_offset(skb); 2099no_csum: 2100 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT; 2101 vlan_macip_lens |= tx_flags & IGBVF_TX_FLAGS_VLAN_MASK; 2102 2103 igbvf_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, 0); 2104 return true; 2105} 2106 2107static int igbvf_maybe_stop_tx(struct net_device *netdev, int size) 2108{ 2109 struct igbvf_adapter *adapter = netdev_priv(netdev); 2110 2111 /* there is enough descriptors then we don't need to worry */ 2112 if (igbvf_desc_unused(adapter->tx_ring) >= size) 2113 return 0; 2114 2115 netif_stop_queue(netdev); 2116 2117 /* Herbert's original patch had: 2118 * smp_mb__after_netif_stop_queue(); 2119 * but since that doesn't exist yet, just open code it. 2120 */ 2121 smp_mb(); 2122 2123 /* We need to check again just in case room has been made available */ 2124 if (igbvf_desc_unused(adapter->tx_ring) < size) 2125 return -EBUSY; 2126 2127 netif_wake_queue(netdev); 2128 2129 ++adapter->restart_queue; 2130 return 0; 2131} 2132 2133#define IGBVF_MAX_TXD_PWR 16 2134#define IGBVF_MAX_DATA_PER_TXD (1u << IGBVF_MAX_TXD_PWR) 2135 2136static inline int igbvf_tx_map_adv(struct igbvf_adapter *adapter, 2137 struct igbvf_ring *tx_ring, 2138 struct sk_buff *skb) 2139{ 2140 struct igbvf_buffer *buffer_info; 2141 struct pci_dev *pdev = adapter->pdev; 2142 unsigned int len = skb_headlen(skb); 2143 unsigned int count = 0, i; 2144 unsigned int f; 2145 2146 i = tx_ring->next_to_use; 2147 2148 buffer_info = &tx_ring->buffer_info[i]; 2149 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD); 2150 buffer_info->length = len; 2151 /* set time_stamp *before* dma to help avoid a possible race */ 2152 buffer_info->time_stamp = jiffies; 2153 buffer_info->mapped_as_page = false; 2154 buffer_info->dma = dma_map_single(&pdev->dev, skb->data, len, 2155 DMA_TO_DEVICE); 2156 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) 2157 goto dma_error; 2158 2159 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) { 2160 const skb_frag_t *frag; 2161 2162 count++; 2163 i++; 2164 if (i == tx_ring->count) 2165 i = 0; 2166 2167 frag = &skb_shinfo(skb)->frags[f]; 2168 len = skb_frag_size(frag); 2169 2170 buffer_info = &tx_ring->buffer_info[i]; 2171 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD); 2172 buffer_info->length = len; 2173 buffer_info->time_stamp = jiffies; 2174 buffer_info->mapped_as_page = true; 2175 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag, 0, len, 2176 DMA_TO_DEVICE); 2177 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) 2178 goto dma_error; 2179 } 2180 2181 tx_ring->buffer_info[i].skb = skb; 2182 2183 return ++count; 2184 2185dma_error: 2186 dev_err(&pdev->dev, "TX DMA map failed\n"); 2187 2188 /* clear timestamp and dma mappings for failed buffer_info mapping */ 2189 buffer_info->dma = 0; 2190 buffer_info->time_stamp = 0; 2191 buffer_info->length = 0; 2192 buffer_info->mapped_as_page = false; 2193 if (count) 2194 count--; 2195 2196 /* clear timestamp and dma mappings for remaining portion of packet */ 2197 while (count--) { 2198 if (i == 0) 2199 i += tx_ring->count; 2200 i--; 2201 buffer_info = &tx_ring->buffer_info[i]; 2202 igbvf_put_txbuf(adapter, buffer_info); 2203 } 2204 2205 return 0; 2206} 2207 2208static inline void igbvf_tx_queue_adv(struct igbvf_adapter *adapter, 2209 struct igbvf_ring *tx_ring, 2210 int tx_flags, int count, 2211 unsigned int first, u32 paylen, 2212 u8 hdr_len) 2213{ 2214 union e1000_adv_tx_desc *tx_desc = NULL; 2215 struct igbvf_buffer *buffer_info; 2216 u32 olinfo_status = 0, cmd_type_len; 2217 unsigned int i; 2218 2219 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS | 2220 E1000_ADVTXD_DCMD_DEXT); 2221 2222 if (tx_flags & IGBVF_TX_FLAGS_VLAN) 2223 cmd_type_len |= E1000_ADVTXD_DCMD_VLE; 2224 2225 if (tx_flags & IGBVF_TX_FLAGS_TSO) { 2226 cmd_type_len |= E1000_ADVTXD_DCMD_TSE; 2227 2228 /* insert tcp checksum */ 2229 olinfo_status |= E1000_TXD_POPTS_TXSM << 8; 2230 2231 /* insert ip checksum */ 2232 if (tx_flags & IGBVF_TX_FLAGS_IPV4) 2233 olinfo_status |= E1000_TXD_POPTS_IXSM << 8; 2234 2235 } else if (tx_flags & IGBVF_TX_FLAGS_CSUM) { 2236 olinfo_status |= E1000_TXD_POPTS_TXSM << 8; 2237 } 2238 2239 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT); 2240 2241 i = tx_ring->next_to_use; 2242 while (count--) { 2243 buffer_info = &tx_ring->buffer_info[i]; 2244 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i); 2245 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma); 2246 tx_desc->read.cmd_type_len = 2247 cpu_to_le32(cmd_type_len | buffer_info->length); 2248 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status); 2249 i++; 2250 if (i == tx_ring->count) 2251 i = 0; 2252 } 2253 2254 tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd); 2255 /* Force memory writes to complete before letting h/w 2256 * know there are new descriptors to fetch. (Only 2257 * applicable for weak-ordered memory model archs, 2258 * such as IA-64). 2259 */ 2260 wmb(); 2261 2262 tx_ring->buffer_info[first].next_to_watch = tx_desc; 2263 tx_ring->next_to_use = i; 2264 writel(i, adapter->hw.hw_addr + tx_ring->tail); 2265} 2266 2267static netdev_tx_t igbvf_xmit_frame_ring_adv(struct sk_buff *skb, 2268 struct net_device *netdev, 2269 struct igbvf_ring *tx_ring) 2270{ 2271 struct igbvf_adapter *adapter = netdev_priv(netdev); 2272 unsigned int first, tx_flags = 0; 2273 u8 hdr_len = 0; 2274 int count = 0; 2275 int tso = 0; 2276 __be16 protocol = vlan_get_protocol(skb); 2277 2278 if (test_bit(__IGBVF_DOWN, &adapter->state)) { 2279 dev_kfree_skb_any(skb); 2280 return NETDEV_TX_OK; 2281 } 2282 2283 if (skb->len <= 0) { 2284 dev_kfree_skb_any(skb); 2285 return NETDEV_TX_OK; 2286 } 2287 2288 /* need: count + 4 desc gap to keep tail from touching 2289 * + 2 desc gap to keep tail from touching head, 2290 * + 1 desc for skb->data, 2291 * + 1 desc for context descriptor, 2292 * head, otherwise try next time 2293 */ 2294 if (igbvf_maybe_stop_tx(netdev, skb_shinfo(skb)->nr_frags + 4)) { 2295 /* this is a hard error */ 2296 return NETDEV_TX_BUSY; 2297 } 2298 2299 if (skb_vlan_tag_present(skb)) { 2300 tx_flags |= IGBVF_TX_FLAGS_VLAN; 2301 tx_flags |= (skb_vlan_tag_get(skb) << 2302 IGBVF_TX_FLAGS_VLAN_SHIFT); 2303 } 2304 2305 if (protocol == htons(ETH_P_IP)) 2306 tx_flags |= IGBVF_TX_FLAGS_IPV4; 2307 2308 first = tx_ring->next_to_use; 2309 2310 tso = igbvf_tso(tx_ring, skb, tx_flags, &hdr_len); 2311 if (unlikely(tso < 0)) { 2312 dev_kfree_skb_any(skb); 2313 return NETDEV_TX_OK; 2314 } 2315 2316 if (tso) 2317 tx_flags |= IGBVF_TX_FLAGS_TSO; 2318 else if (igbvf_tx_csum(tx_ring, skb, tx_flags, protocol) && 2319 (skb->ip_summed == CHECKSUM_PARTIAL)) 2320 tx_flags |= IGBVF_TX_FLAGS_CSUM; 2321 2322 /* count reflects descriptors mapped, if 0 then mapping error 2323 * has occurred and we need to rewind the descriptor queue 2324 */ 2325 count = igbvf_tx_map_adv(adapter, tx_ring, skb); 2326 2327 if (count) { 2328 igbvf_tx_queue_adv(adapter, tx_ring, tx_flags, count, 2329 first, skb->len, hdr_len); 2330 /* Make sure there is space in the ring for the next send. */ 2331 igbvf_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 4); 2332 } else { 2333 dev_kfree_skb_any(skb); 2334 tx_ring->buffer_info[first].time_stamp = 0; 2335 tx_ring->next_to_use = first; 2336 } 2337 2338 return NETDEV_TX_OK; 2339} 2340 2341static netdev_tx_t igbvf_xmit_frame(struct sk_buff *skb, 2342 struct net_device *netdev) 2343{ 2344 struct igbvf_adapter *adapter = netdev_priv(netdev); 2345 struct igbvf_ring *tx_ring; 2346 2347 if (test_bit(__IGBVF_DOWN, &adapter->state)) { 2348 dev_kfree_skb_any(skb); 2349 return NETDEV_TX_OK; 2350 } 2351 2352 tx_ring = &adapter->tx_ring[0]; 2353 2354 return igbvf_xmit_frame_ring_adv(skb, netdev, tx_ring); 2355} 2356 2357/** 2358 * igbvf_tx_timeout - Respond to a Tx Hang 2359 * @netdev: network interface device structure 2360 * @txqueue: queue timing out (unused) 2361 **/ 2362static void igbvf_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue) 2363{ 2364 struct igbvf_adapter *adapter = netdev_priv(netdev); 2365 2366 /* Do the reset outside of interrupt context */ 2367 adapter->tx_timeout_count++; 2368 schedule_work(&adapter->reset_task); 2369} 2370 2371static void igbvf_reset_task(struct work_struct *work) 2372{ 2373 struct igbvf_adapter *adapter; 2374 2375 adapter = container_of(work, struct igbvf_adapter, reset_task); 2376 2377 igbvf_reinit_locked(adapter); 2378} 2379 2380/** 2381 * igbvf_change_mtu - Change the Maximum Transfer Unit 2382 * @netdev: network interface device structure 2383 * @new_mtu: new value for maximum frame size 2384 * 2385 * Returns 0 on success, negative on failure 2386 **/ 2387static int igbvf_change_mtu(struct net_device *netdev, int new_mtu) 2388{ 2389 struct igbvf_adapter *adapter = netdev_priv(netdev); 2390 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN; 2391 2392 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state)) 2393 usleep_range(1000, 2000); 2394 /* igbvf_down has a dependency on max_frame_size */ 2395 adapter->max_frame_size = max_frame; 2396 if (netif_running(netdev)) 2397 igbvf_down(adapter); 2398 2399 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN 2400 * means we reserve 2 more, this pushes us to allocate from the next 2401 * larger slab size. 2402 * i.e. RXBUFFER_2048 --> size-4096 slab 2403 * However with the new *_jumbo_rx* routines, jumbo receives will use 2404 * fragmented skbs 2405 */ 2406 2407 if (max_frame <= 1024) 2408 adapter->rx_buffer_len = 1024; 2409 else if (max_frame <= 2048) 2410 adapter->rx_buffer_len = 2048; 2411 else 2412#if (PAGE_SIZE / 2) > 16384 2413 adapter->rx_buffer_len = 16384; 2414#else 2415 adapter->rx_buffer_len = PAGE_SIZE / 2; 2416#endif 2417 2418 /* adjust allocation if LPE protects us, and we aren't using SBP */ 2419 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) || 2420 (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN)) 2421 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + 2422 ETH_FCS_LEN; 2423 2424 netdev_dbg(netdev, "changing MTU from %d to %d\n", 2425 netdev->mtu, new_mtu); 2426 WRITE_ONCE(netdev->mtu, new_mtu); 2427 2428 if (netif_running(netdev)) 2429 igbvf_up(adapter); 2430 else 2431 igbvf_reset(adapter); 2432 2433 clear_bit(__IGBVF_RESETTING, &adapter->state); 2434 2435 return 0; 2436} 2437 2438static int igbvf_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 2439{ 2440 switch (cmd) { 2441 default: 2442 return -EOPNOTSUPP; 2443 } 2444} 2445 2446static int igbvf_suspend(struct device *dev_d) 2447{ 2448 struct net_device *netdev = dev_get_drvdata(dev_d); 2449 struct igbvf_adapter *adapter = netdev_priv(netdev); 2450 2451 netif_device_detach(netdev); 2452 2453 if (netif_running(netdev)) { 2454 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state)); 2455 igbvf_down(adapter); 2456 igbvf_free_irq(adapter); 2457 } 2458 2459 return 0; 2460} 2461 2462static int igbvf_resume(struct device *dev_d) 2463{ 2464 struct pci_dev *pdev = to_pci_dev(dev_d); 2465 struct net_device *netdev = pci_get_drvdata(pdev); 2466 struct igbvf_adapter *adapter = netdev_priv(netdev); 2467 u32 err; 2468 2469 pci_set_master(pdev); 2470 2471 if (netif_running(netdev)) { 2472 err = igbvf_request_irq(adapter); 2473 if (err) 2474 return err; 2475 } 2476 2477 igbvf_reset(adapter); 2478 2479 if (netif_running(netdev)) 2480 igbvf_up(adapter); 2481 2482 netif_device_attach(netdev); 2483 2484 return 0; 2485} 2486 2487static void igbvf_shutdown(struct pci_dev *pdev) 2488{ 2489 igbvf_suspend(&pdev->dev); 2490} 2491 2492#ifdef CONFIG_NET_POLL_CONTROLLER 2493/* Polling 'interrupt' - used by things like netconsole to send skbs 2494 * without having to re-enable interrupts. It's not called while 2495 * the interrupt routine is executing. 2496 */ 2497static void igbvf_netpoll(struct net_device *netdev) 2498{ 2499 struct igbvf_adapter *adapter = netdev_priv(netdev); 2500 2501 disable_irq(adapter->pdev->irq); 2502 2503 igbvf_clean_tx_irq(adapter->tx_ring); 2504 2505 enable_irq(adapter->pdev->irq); 2506} 2507#endif 2508 2509/** 2510 * igbvf_io_error_detected - called when PCI error is detected 2511 * @pdev: Pointer to PCI device 2512 * @state: The current pci connection state 2513 * 2514 * This function is called after a PCI bus error affecting 2515 * this device has been detected. 2516 */ 2517static pci_ers_result_t igbvf_io_error_detected(struct pci_dev *pdev, 2518 pci_channel_state_t state) 2519{ 2520 struct net_device *netdev = pci_get_drvdata(pdev); 2521 struct igbvf_adapter *adapter = netdev_priv(netdev); 2522 2523 netif_device_detach(netdev); 2524 2525 if (state == pci_channel_io_perm_failure) 2526 return PCI_ERS_RESULT_DISCONNECT; 2527 2528 if (netif_running(netdev)) 2529 igbvf_down(adapter); 2530 pci_disable_device(pdev); 2531 2532 /* Request a slot reset. */ 2533 return PCI_ERS_RESULT_NEED_RESET; 2534} 2535 2536/** 2537 * igbvf_io_slot_reset - called after the pci bus has been reset. 2538 * @pdev: Pointer to PCI device 2539 * 2540 * Restart the card from scratch, as if from a cold-boot. Implementation 2541 * resembles the first-half of the igbvf_resume routine. 2542 */ 2543static pci_ers_result_t igbvf_io_slot_reset(struct pci_dev *pdev) 2544{ 2545 struct net_device *netdev = pci_get_drvdata(pdev); 2546 struct igbvf_adapter *adapter = netdev_priv(netdev); 2547 2548 if (pci_enable_device_mem(pdev)) { 2549 dev_err(&pdev->dev, 2550 "Cannot re-enable PCI device after reset.\n"); 2551 return PCI_ERS_RESULT_DISCONNECT; 2552 } 2553 pci_set_master(pdev); 2554 2555 igbvf_reset(adapter); 2556 2557 return PCI_ERS_RESULT_RECOVERED; 2558} 2559 2560/** 2561 * igbvf_io_resume - called when traffic can start flowing again. 2562 * @pdev: Pointer to PCI device 2563 * 2564 * This callback is called when the error recovery driver tells us that 2565 * its OK to resume normal operation. Implementation resembles the 2566 * second-half of the igbvf_resume routine. 2567 */ 2568static void igbvf_io_resume(struct pci_dev *pdev) 2569{ 2570 struct net_device *netdev = pci_get_drvdata(pdev); 2571 struct igbvf_adapter *adapter = netdev_priv(netdev); 2572 2573 if (netif_running(netdev)) { 2574 if (igbvf_up(adapter)) { 2575 dev_err(&pdev->dev, 2576 "can't bring device back up after reset\n"); 2577 return; 2578 } 2579 } 2580 2581 netif_device_attach(netdev); 2582} 2583 2584/** 2585 * igbvf_io_prepare - prepare device driver for PCI reset 2586 * @pdev: PCI device information struct 2587 */ 2588static void igbvf_io_prepare(struct pci_dev *pdev) 2589{ 2590 struct net_device *netdev = pci_get_drvdata(pdev); 2591 struct igbvf_adapter *adapter = netdev_priv(netdev); 2592 2593 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state)) 2594 usleep_range(1000, 2000); 2595 igbvf_down(adapter); 2596} 2597 2598/** 2599 * igbvf_io_reset_done - PCI reset done, device driver reset can begin 2600 * @pdev: PCI device information struct 2601 */ 2602static void igbvf_io_reset_done(struct pci_dev *pdev) 2603{ 2604 struct net_device *netdev = pci_get_drvdata(pdev); 2605 struct igbvf_adapter *adapter = netdev_priv(netdev); 2606 2607 igbvf_up(adapter); 2608 clear_bit(__IGBVF_RESETTING, &adapter->state); 2609} 2610 2611static void igbvf_print_device_info(struct igbvf_adapter *adapter) 2612{ 2613 struct e1000_hw *hw = &adapter->hw; 2614 struct net_device *netdev = adapter->netdev; 2615 struct pci_dev *pdev = adapter->pdev; 2616 2617 if (hw->mac.type == e1000_vfadapt_i350) 2618 dev_info(&pdev->dev, "Intel(R) I350 Virtual Function\n"); 2619 else 2620 dev_info(&pdev->dev, "Intel(R) 82576 Virtual Function\n"); 2621 dev_info(&pdev->dev, "Address: %pM\n", netdev->dev_addr); 2622} 2623 2624static int igbvf_set_features(struct net_device *netdev, 2625 netdev_features_t features) 2626{ 2627 struct igbvf_adapter *adapter = netdev_priv(netdev); 2628 2629 if (features & NETIF_F_RXCSUM) 2630 adapter->flags &= ~IGBVF_FLAG_RX_CSUM_DISABLED; 2631 else 2632 adapter->flags |= IGBVF_FLAG_RX_CSUM_DISABLED; 2633 2634 return 0; 2635} 2636 2637#define IGBVF_MAX_MAC_HDR_LEN 127 2638#define IGBVF_MAX_NETWORK_HDR_LEN 511 2639 2640static netdev_features_t 2641igbvf_features_check(struct sk_buff *skb, struct net_device *dev, 2642 netdev_features_t features) 2643{ 2644 unsigned int network_hdr_len, mac_hdr_len; 2645 2646 /* Make certain the headers can be described by a context descriptor */ 2647 mac_hdr_len = skb_network_offset(skb); 2648 if (unlikely(mac_hdr_len > IGBVF_MAX_MAC_HDR_LEN)) 2649 return features & ~(NETIF_F_HW_CSUM | 2650 NETIF_F_SCTP_CRC | 2651 NETIF_F_HW_VLAN_CTAG_TX | 2652 NETIF_F_TSO | 2653 NETIF_F_TSO6); 2654 2655 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb); 2656 if (unlikely(network_hdr_len > IGBVF_MAX_NETWORK_HDR_LEN)) 2657 return features & ~(NETIF_F_HW_CSUM | 2658 NETIF_F_SCTP_CRC | 2659 NETIF_F_TSO | 2660 NETIF_F_TSO6); 2661 2662 /* We can only support IPV4 TSO in tunnels if we can mangle the 2663 * inner IP ID field, so strip TSO if MANGLEID is not supported. 2664 */ 2665 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID)) 2666 features &= ~NETIF_F_TSO; 2667 2668 return features; 2669} 2670 2671static const struct net_device_ops igbvf_netdev_ops = { 2672 .ndo_open = igbvf_open, 2673 .ndo_stop = igbvf_close, 2674 .ndo_start_xmit = igbvf_xmit_frame, 2675 .ndo_set_rx_mode = igbvf_set_rx_mode, 2676 .ndo_set_mac_address = igbvf_set_mac, 2677 .ndo_change_mtu = igbvf_change_mtu, 2678 .ndo_eth_ioctl = igbvf_ioctl, 2679 .ndo_tx_timeout = igbvf_tx_timeout, 2680 .ndo_vlan_rx_add_vid = igbvf_vlan_rx_add_vid, 2681 .ndo_vlan_rx_kill_vid = igbvf_vlan_rx_kill_vid, 2682#ifdef CONFIG_NET_POLL_CONTROLLER 2683 .ndo_poll_controller = igbvf_netpoll, 2684#endif 2685 .ndo_set_features = igbvf_set_features, 2686 .ndo_features_check = igbvf_features_check, 2687}; 2688 2689/** 2690 * igbvf_probe - Device Initialization Routine 2691 * @pdev: PCI device information struct 2692 * @ent: entry in igbvf_pci_tbl 2693 * 2694 * Returns 0 on success, negative on failure 2695 * 2696 * igbvf_probe initializes an adapter identified by a pci_dev structure. 2697 * The OS initialization, configuring of the adapter private structure, 2698 * and a hardware reset occur. 2699 **/ 2700static int igbvf_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 2701{ 2702 struct net_device *netdev; 2703 struct igbvf_adapter *adapter; 2704 struct e1000_hw *hw; 2705 const struct igbvf_info *ei = igbvf_info_tbl[ent->driver_data]; 2706 int err; 2707 2708 err = pci_enable_device_mem(pdev); 2709 if (err) 2710 return err; 2711 2712 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 2713 if (err) { 2714 dev_err(&pdev->dev, 2715 "No usable DMA configuration, aborting\n"); 2716 goto err_dma; 2717 } 2718 2719 err = pci_request_regions(pdev, igbvf_driver_name); 2720 if (err) 2721 goto err_pci_reg; 2722 2723 pci_set_master(pdev); 2724 2725 err = -ENOMEM; 2726 netdev = alloc_etherdev(sizeof(struct igbvf_adapter)); 2727 if (!netdev) 2728 goto err_alloc_etherdev; 2729 2730 SET_NETDEV_DEV(netdev, &pdev->dev); 2731 2732 pci_set_drvdata(pdev, netdev); 2733 adapter = netdev_priv(netdev); 2734 hw = &adapter->hw; 2735 adapter->netdev = netdev; 2736 adapter->pdev = pdev; 2737 adapter->ei = ei; 2738 adapter->pba = ei->pba; 2739 adapter->flags = ei->flags; 2740 adapter->hw.back = adapter; 2741 adapter->hw.mac.type = ei->mac; 2742 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE); 2743 2744 /* PCI config space info */ 2745 2746 hw->vendor_id = pdev->vendor; 2747 hw->device_id = pdev->device; 2748 hw->subsystem_vendor_id = pdev->subsystem_vendor; 2749 hw->subsystem_device_id = pdev->subsystem_device; 2750 hw->revision_id = pdev->revision; 2751 2752 err = -EIO; 2753 adapter->hw.hw_addr = ioremap(pci_resource_start(pdev, 0), 2754 pci_resource_len(pdev, 0)); 2755 2756 if (!adapter->hw.hw_addr) 2757 goto err_ioremap; 2758 2759 if (ei->get_variants) { 2760 err = ei->get_variants(adapter); 2761 if (err) 2762 goto err_get_variants; 2763 } 2764 2765 /* setup adapter struct */ 2766 err = igbvf_sw_init(adapter); 2767 if (err) 2768 goto err_sw_init; 2769 2770 /* construct the net_device struct */ 2771 netdev->netdev_ops = &igbvf_netdev_ops; 2772 2773 igbvf_set_ethtool_ops(netdev); 2774 netdev->watchdog_timeo = 5 * HZ; 2775 strscpy(netdev->name, pci_name(pdev), sizeof(netdev->name)); 2776 2777 netdev->hw_features = NETIF_F_SG | 2778 NETIF_F_TSO | 2779 NETIF_F_TSO6 | 2780 NETIF_F_RXCSUM | 2781 NETIF_F_HW_CSUM | 2782 NETIF_F_SCTP_CRC; 2783 2784#define IGBVF_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \ 2785 NETIF_F_GSO_GRE_CSUM | \ 2786 NETIF_F_GSO_IPXIP4 | \ 2787 NETIF_F_GSO_IPXIP6 | \ 2788 NETIF_F_GSO_UDP_TUNNEL | \ 2789 NETIF_F_GSO_UDP_TUNNEL_CSUM) 2790 2791 netdev->gso_partial_features = IGBVF_GSO_PARTIAL_FEATURES; 2792 netdev->hw_features |= NETIF_F_GSO_PARTIAL | 2793 IGBVF_GSO_PARTIAL_FEATURES; 2794 2795 netdev->features = netdev->hw_features | NETIF_F_HIGHDMA; 2796 2797 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID; 2798 netdev->mpls_features |= NETIF_F_HW_CSUM; 2799 netdev->hw_enc_features |= netdev->vlan_features; 2800 2801 /* set this bit last since it cannot be part of vlan_features */ 2802 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | 2803 NETIF_F_HW_VLAN_CTAG_RX | 2804 NETIF_F_HW_VLAN_CTAG_TX; 2805 2806 /* MTU range: 68 - 9216 */ 2807 netdev->min_mtu = ETH_MIN_MTU; 2808 netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE; 2809 2810 spin_lock_bh(&hw->mbx_lock); 2811 2812 /*reset the controller to put the device in a known good state */ 2813 err = hw->mac.ops.reset_hw(hw); 2814 if (err) { 2815 dev_info(&pdev->dev, 2816 "PF still in reset state. Is the PF interface up?\n"); 2817 } else { 2818 err = hw->mac.ops.read_mac_addr(hw); 2819 if (err) 2820 dev_info(&pdev->dev, "Error reading MAC address.\n"); 2821 else if (is_zero_ether_addr(adapter->hw.mac.addr)) 2822 dev_info(&pdev->dev, 2823 "MAC address not assigned by administrator.\n"); 2824 eth_hw_addr_set(netdev, adapter->hw.mac.addr); 2825 } 2826 2827 spin_unlock_bh(&hw->mbx_lock); 2828 2829 if (!is_valid_ether_addr(netdev->dev_addr)) { 2830 dev_info(&pdev->dev, "Assigning random MAC address.\n"); 2831 eth_hw_addr_random(netdev); 2832 memcpy(adapter->hw.mac.addr, netdev->dev_addr, 2833 netdev->addr_len); 2834 } 2835 2836 timer_setup(&adapter->watchdog_timer, igbvf_watchdog, 0); 2837 2838 INIT_WORK(&adapter->reset_task, igbvf_reset_task); 2839 INIT_WORK(&adapter->watchdog_task, igbvf_watchdog_task); 2840 2841 /* ring size defaults */ 2842 adapter->rx_ring->count = 1024; 2843 adapter->tx_ring->count = 1024; 2844 2845 /* reset the hardware with the new settings */ 2846 igbvf_reset(adapter); 2847 2848 /* set hardware-specific flags */ 2849 if (adapter->hw.mac.type == e1000_vfadapt_i350) 2850 adapter->flags |= IGBVF_FLAG_RX_LB_VLAN_BSWAP; 2851 2852 strcpy(netdev->name, "eth%d"); 2853 err = register_netdev(netdev); 2854 if (err) 2855 goto err_hw_init; 2856 2857 /* tell the stack to leave us alone until igbvf_open() is called */ 2858 netif_carrier_off(netdev); 2859 netif_stop_queue(netdev); 2860 2861 igbvf_print_device_info(adapter); 2862 2863 igbvf_initialize_last_counter_stats(adapter); 2864 2865 return 0; 2866 2867err_hw_init: 2868 netif_napi_del(&adapter->rx_ring->napi); 2869 kfree(adapter->tx_ring); 2870 kfree(adapter->rx_ring); 2871err_sw_init: 2872 igbvf_reset_interrupt_capability(adapter); 2873err_get_variants: 2874 iounmap(adapter->hw.hw_addr); 2875err_ioremap: 2876 free_netdev(netdev); 2877err_alloc_etherdev: 2878 pci_release_regions(pdev); 2879err_pci_reg: 2880err_dma: 2881 pci_disable_device(pdev); 2882 return err; 2883} 2884 2885/** 2886 * igbvf_remove - Device Removal Routine 2887 * @pdev: PCI device information struct 2888 * 2889 * igbvf_remove is called by the PCI subsystem to alert the driver 2890 * that it should release a PCI device. The could be caused by a 2891 * Hot-Plug event, or because the driver is going to be removed from 2892 * memory. 2893 **/ 2894static void igbvf_remove(struct pci_dev *pdev) 2895{ 2896 struct net_device *netdev = pci_get_drvdata(pdev); 2897 struct igbvf_adapter *adapter = netdev_priv(netdev); 2898 struct e1000_hw *hw = &adapter->hw; 2899 2900 /* The watchdog timer may be rescheduled, so explicitly 2901 * disable it from being rescheduled. 2902 */ 2903 set_bit(__IGBVF_DOWN, &adapter->state); 2904 timer_delete_sync(&adapter->watchdog_timer); 2905 2906 cancel_work_sync(&adapter->reset_task); 2907 cancel_work_sync(&adapter->watchdog_task); 2908 2909 unregister_netdev(netdev); 2910 2911 igbvf_reset_interrupt_capability(adapter); 2912 2913 /* it is important to delete the NAPI struct prior to freeing the 2914 * Rx ring so that you do not end up with null pointer refs 2915 */ 2916 netif_napi_del(&adapter->rx_ring->napi); 2917 kfree(adapter->tx_ring); 2918 kfree(adapter->rx_ring); 2919 2920 iounmap(hw->hw_addr); 2921 if (hw->flash_address) 2922 iounmap(hw->flash_address); 2923 pci_release_regions(pdev); 2924 2925 free_netdev(netdev); 2926 2927 pci_disable_device(pdev); 2928} 2929 2930/* PCI Error Recovery (ERS) */ 2931static const struct pci_error_handlers igbvf_err_handler = { 2932 .error_detected = igbvf_io_error_detected, 2933 .slot_reset = igbvf_io_slot_reset, 2934 .resume = igbvf_io_resume, 2935 .reset_prepare = igbvf_io_prepare, 2936 .reset_done = igbvf_io_reset_done, 2937}; 2938 2939static const struct pci_device_id igbvf_pci_tbl[] = { 2940 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_VF), board_vf }, 2941 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_VF), board_i350_vf }, 2942 { } /* terminate list */ 2943}; 2944MODULE_DEVICE_TABLE(pci, igbvf_pci_tbl); 2945 2946static DEFINE_SIMPLE_DEV_PM_OPS(igbvf_pm_ops, igbvf_suspend, igbvf_resume); 2947 2948/* PCI Device API Driver */ 2949static struct pci_driver igbvf_driver = { 2950 .name = igbvf_driver_name, 2951 .id_table = igbvf_pci_tbl, 2952 .probe = igbvf_probe, 2953 .remove = igbvf_remove, 2954 .driver.pm = pm_sleep_ptr(&igbvf_pm_ops), 2955 .shutdown = igbvf_shutdown, 2956 .err_handler = &igbvf_err_handler 2957}; 2958 2959/** 2960 * igbvf_init_module - Driver Registration Routine 2961 * 2962 * igbvf_init_module is the first routine called when the driver is 2963 * loaded. All it does is register with the PCI subsystem. 2964 **/ 2965static int __init igbvf_init_module(void) 2966{ 2967 int ret; 2968 2969 pr_info("%s\n", igbvf_driver_string); 2970 pr_info("%s\n", igbvf_copyright); 2971 2972 ret = pci_register_driver(&igbvf_driver); 2973 2974 return ret; 2975} 2976module_init(igbvf_init_module); 2977 2978/** 2979 * igbvf_exit_module - Driver Exit Cleanup Routine 2980 * 2981 * igbvf_exit_module is called just before the driver is removed 2982 * from memory. 2983 **/ 2984static void __exit igbvf_exit_module(void) 2985{ 2986 pci_unregister_driver(&igbvf_driver); 2987} 2988module_exit(igbvf_exit_module); 2989 2990MODULE_DESCRIPTION("Intel(R) Gigabit Virtual Function Network Driver"); 2991MODULE_LICENSE("GPL v2"); 2992 2993/* netdev.c */