Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (c) 2020, Intel Corporation. */
3
4#include <linux/vmalloc.h>
5
6#include "ice.h"
7#include "ice_lib.h"
8#include "devlink.h"
9#include "port.h"
10#include "ice_eswitch.h"
11#include "ice_fw_update.h"
12#include "ice_dcb_lib.h"
13#include "ice_sf_eth.h"
14
15/* context for devlink info version reporting */
16struct ice_info_ctx {
17 char buf[128];
18 struct ice_orom_info pending_orom;
19 struct ice_nvm_info pending_nvm;
20 struct ice_netlist_info pending_netlist;
21 struct ice_hw_dev_caps dev_caps;
22};
23
24/* The following functions are used to format specific strings for various
25 * devlink info versions. The ctx parameter is used to provide the storage
26 * buffer, as well as any ancillary information calculated when the info
27 * request was made.
28 *
29 * If a version does not exist, for example when attempting to get the
30 * inactive version of flash when there is no pending update, the function
31 * should leave the buffer in the ctx structure empty.
32 */
33
34static void ice_info_get_dsn(struct ice_pf *pf, struct ice_info_ctx *ctx)
35{
36 u8 dsn[8];
37
38 /* Copy the DSN into an array in Big Endian format */
39 put_unaligned_be64(pci_get_dsn(pf->pdev), dsn);
40
41 snprintf(ctx->buf, sizeof(ctx->buf), "%8phD", dsn);
42}
43
44static void ice_info_pba(struct ice_pf *pf, struct ice_info_ctx *ctx)
45{
46 struct ice_hw *hw = &pf->hw;
47 int status;
48
49 status = ice_read_pba_string(hw, (u8 *)ctx->buf, sizeof(ctx->buf));
50 if (status)
51 /* We failed to locate the PBA, so just skip this entry */
52 dev_dbg(ice_pf_to_dev(pf), "Failed to read Product Board Assembly string, status %d\n",
53 status);
54}
55
56static void ice_info_fw_mgmt(struct ice_pf *pf, struct ice_info_ctx *ctx)
57{
58 struct ice_hw *hw = &pf->hw;
59
60 snprintf(ctx->buf, sizeof(ctx->buf), "%u.%u.%u",
61 hw->fw_maj_ver, hw->fw_min_ver, hw->fw_patch);
62}
63
64static void ice_info_fw_api(struct ice_pf *pf, struct ice_info_ctx *ctx)
65{
66 struct ice_hw *hw = &pf->hw;
67
68 snprintf(ctx->buf, sizeof(ctx->buf), "%u.%u.%u", hw->api_maj_ver,
69 hw->api_min_ver, hw->api_patch);
70}
71
72static void ice_info_fw_build(struct ice_pf *pf, struct ice_info_ctx *ctx)
73{
74 struct ice_hw *hw = &pf->hw;
75
76 snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", hw->fw_build);
77}
78
79static void ice_info_orom_ver(struct ice_pf *pf, struct ice_info_ctx *ctx)
80{
81 struct ice_orom_info *orom = &pf->hw.flash.orom;
82
83 snprintf(ctx->buf, sizeof(ctx->buf), "%u.%u.%u",
84 orom->major, orom->build, orom->patch);
85}
86
87static void
88ice_info_pending_orom_ver(struct ice_pf __always_unused *pf,
89 struct ice_info_ctx *ctx)
90{
91 struct ice_orom_info *orom = &ctx->pending_orom;
92
93 if (ctx->dev_caps.common_cap.nvm_update_pending_orom)
94 snprintf(ctx->buf, sizeof(ctx->buf), "%u.%u.%u",
95 orom->major, orom->build, orom->patch);
96}
97
98static void ice_info_nvm_ver(struct ice_pf *pf, struct ice_info_ctx *ctx)
99{
100 struct ice_nvm_info *nvm = &pf->hw.flash.nvm;
101
102 snprintf(ctx->buf, sizeof(ctx->buf), "%x.%02x", nvm->major, nvm->minor);
103}
104
105static void
106ice_info_pending_nvm_ver(struct ice_pf __always_unused *pf,
107 struct ice_info_ctx *ctx)
108{
109 struct ice_nvm_info *nvm = &ctx->pending_nvm;
110
111 if (ctx->dev_caps.common_cap.nvm_update_pending_nvm)
112 snprintf(ctx->buf, sizeof(ctx->buf), "%x.%02x",
113 nvm->major, nvm->minor);
114}
115
116static void ice_info_eetrack(struct ice_pf *pf, struct ice_info_ctx *ctx)
117{
118 struct ice_nvm_info *nvm = &pf->hw.flash.nvm;
119
120 snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", nvm->eetrack);
121}
122
123static void
124ice_info_pending_eetrack(struct ice_pf *pf, struct ice_info_ctx *ctx)
125{
126 struct ice_nvm_info *nvm = &ctx->pending_nvm;
127
128 if (ctx->dev_caps.common_cap.nvm_update_pending_nvm)
129 snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", nvm->eetrack);
130}
131
132static void ice_info_ddp_pkg_name(struct ice_pf *pf, struct ice_info_ctx *ctx)
133{
134 struct ice_hw *hw = &pf->hw;
135
136 snprintf(ctx->buf, sizeof(ctx->buf), "%s", hw->active_pkg_name);
137}
138
139static void
140ice_info_ddp_pkg_version(struct ice_pf *pf, struct ice_info_ctx *ctx)
141{
142 struct ice_pkg_ver *pkg = &pf->hw.active_pkg_ver;
143
144 snprintf(ctx->buf, sizeof(ctx->buf), "%u.%u.%u.%u",
145 pkg->major, pkg->minor, pkg->update, pkg->draft);
146}
147
148static void
149ice_info_ddp_pkg_bundle_id(struct ice_pf *pf, struct ice_info_ctx *ctx)
150{
151 snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", pf->hw.active_track_id);
152}
153
154static void ice_info_netlist_ver(struct ice_pf *pf, struct ice_info_ctx *ctx)
155{
156 struct ice_netlist_info *netlist = &pf->hw.flash.netlist;
157
158 /* The netlist version fields are BCD formatted */
159 snprintf(ctx->buf, sizeof(ctx->buf), "%x.%x.%x-%x.%x.%x",
160 netlist->major, netlist->minor,
161 netlist->type >> 16, netlist->type & 0xFFFF,
162 netlist->rev, netlist->cust_ver);
163}
164
165static void ice_info_netlist_build(struct ice_pf *pf, struct ice_info_ctx *ctx)
166{
167 struct ice_netlist_info *netlist = &pf->hw.flash.netlist;
168
169 snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", netlist->hash);
170}
171
172static void
173ice_info_pending_netlist_ver(struct ice_pf __always_unused *pf,
174 struct ice_info_ctx *ctx)
175{
176 struct ice_netlist_info *netlist = &ctx->pending_netlist;
177
178 /* The netlist version fields are BCD formatted */
179 if (ctx->dev_caps.common_cap.nvm_update_pending_netlist)
180 snprintf(ctx->buf, sizeof(ctx->buf), "%x.%x.%x-%x.%x.%x",
181 netlist->major, netlist->minor,
182 netlist->type >> 16, netlist->type & 0xFFFF,
183 netlist->rev, netlist->cust_ver);
184}
185
186static void
187ice_info_pending_netlist_build(struct ice_pf __always_unused *pf,
188 struct ice_info_ctx *ctx)
189{
190 struct ice_netlist_info *netlist = &ctx->pending_netlist;
191
192 if (ctx->dev_caps.common_cap.nvm_update_pending_netlist)
193 snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", netlist->hash);
194}
195
196static void ice_info_cgu_fw_build(struct ice_pf *pf, struct ice_info_ctx *ctx)
197{
198 u32 id, cfg_ver, fw_ver;
199
200 if (!ice_is_feature_supported(pf, ICE_F_CGU))
201 return;
202 if (ice_aq_get_cgu_info(&pf->hw, &id, &cfg_ver, &fw_ver))
203 return;
204 snprintf(ctx->buf, sizeof(ctx->buf), "%u.%u.%u", id, cfg_ver, fw_ver);
205}
206
207static void ice_info_cgu_id(struct ice_pf *pf, struct ice_info_ctx *ctx)
208{
209 if (!ice_is_feature_supported(pf, ICE_F_CGU))
210 return;
211 snprintf(ctx->buf, sizeof(ctx->buf), "%u", pf->hw.cgu_part_number);
212}
213
214#define fixed(key, getter) { ICE_VERSION_FIXED, key, getter, NULL }
215#define running(key, getter) { ICE_VERSION_RUNNING, key, getter, NULL }
216#define stored(key, getter, fallback) { ICE_VERSION_STORED, key, getter, fallback }
217
218/* The combined() macro inserts both the running entry as well as a stored
219 * entry. The running entry will always report the version from the active
220 * handler. The stored entry will first try the pending handler, and fallback
221 * to the active handler if the pending function does not report a version.
222 * The pending handler should check the status of a pending update for the
223 * relevant flash component. It should only fill in the buffer in the case
224 * where a valid pending version is available. This ensures that the related
225 * stored and running versions remain in sync, and that stored versions are
226 * correctly reported as expected.
227 */
228#define combined(key, active, pending) \
229 running(key, active), \
230 stored(key, pending, active)
231
232enum ice_version_type {
233 ICE_VERSION_FIXED,
234 ICE_VERSION_RUNNING,
235 ICE_VERSION_STORED,
236};
237
238static const struct ice_devlink_version {
239 enum ice_version_type type;
240 const char *key;
241 void (*getter)(struct ice_pf *pf, struct ice_info_ctx *ctx);
242 void (*fallback)(struct ice_pf *pf, struct ice_info_ctx *ctx);
243} ice_devlink_versions[] = {
244 fixed(DEVLINK_INFO_VERSION_GENERIC_BOARD_ID, ice_info_pba),
245 running(DEVLINK_INFO_VERSION_GENERIC_FW_MGMT, ice_info_fw_mgmt),
246 running("fw.mgmt.api", ice_info_fw_api),
247 running("fw.mgmt.build", ice_info_fw_build),
248 combined(DEVLINK_INFO_VERSION_GENERIC_FW_UNDI, ice_info_orom_ver, ice_info_pending_orom_ver),
249 combined("fw.psid.api", ice_info_nvm_ver, ice_info_pending_nvm_ver),
250 combined(DEVLINK_INFO_VERSION_GENERIC_FW_BUNDLE_ID, ice_info_eetrack, ice_info_pending_eetrack),
251 running("fw.app.name", ice_info_ddp_pkg_name),
252 running(DEVLINK_INFO_VERSION_GENERIC_FW_APP, ice_info_ddp_pkg_version),
253 running("fw.app.bundle_id", ice_info_ddp_pkg_bundle_id),
254 combined("fw.netlist", ice_info_netlist_ver, ice_info_pending_netlist_ver),
255 combined("fw.netlist.build", ice_info_netlist_build, ice_info_pending_netlist_build),
256 fixed("cgu.id", ice_info_cgu_id),
257 running("fw.cgu", ice_info_cgu_fw_build),
258};
259
260/**
261 * ice_devlink_info_get - .info_get devlink handler
262 * @devlink: devlink instance structure
263 * @req: the devlink info request
264 * @extack: extended netdev ack structure
265 *
266 * Callback for the devlink .info_get operation. Reports information about the
267 * device.
268 *
269 * Return: zero on success or an error code on failure.
270 */
271static int ice_devlink_info_get(struct devlink *devlink,
272 struct devlink_info_req *req,
273 struct netlink_ext_ack *extack)
274{
275 struct ice_pf *pf = devlink_priv(devlink);
276 struct device *dev = ice_pf_to_dev(pf);
277 struct ice_hw *hw = &pf->hw;
278 struct ice_info_ctx *ctx;
279 size_t i;
280 int err;
281
282 err = ice_wait_for_reset(pf, 10 * HZ);
283 if (err) {
284 NL_SET_ERR_MSG_MOD(extack, "Device is busy resetting");
285 return err;
286 }
287
288 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
289 if (!ctx)
290 return -ENOMEM;
291
292 /* discover capabilities first */
293 err = ice_discover_dev_caps(hw, &ctx->dev_caps);
294 if (err) {
295 dev_dbg(dev, "Failed to discover device capabilities, status %d aq_err %s\n",
296 err, libie_aq_str(hw->adminq.sq_last_status));
297 NL_SET_ERR_MSG_MOD(extack, "Unable to discover device capabilities");
298 goto out_free_ctx;
299 }
300
301 if (ctx->dev_caps.common_cap.nvm_update_pending_orom) {
302 err = ice_get_inactive_orom_ver(hw, &ctx->pending_orom);
303 if (err) {
304 dev_dbg(dev, "Unable to read inactive Option ROM version data, status %d aq_err %s\n",
305 err, libie_aq_str(hw->adminq.sq_last_status));
306
307 /* disable display of pending Option ROM */
308 ctx->dev_caps.common_cap.nvm_update_pending_orom = false;
309 }
310 }
311
312 if (ctx->dev_caps.common_cap.nvm_update_pending_nvm) {
313 err = ice_get_inactive_nvm_ver(hw, &ctx->pending_nvm);
314 if (err) {
315 dev_dbg(dev, "Unable to read inactive NVM version data, status %d aq_err %s\n",
316 err, libie_aq_str(hw->adminq.sq_last_status));
317
318 /* disable display of pending Option ROM */
319 ctx->dev_caps.common_cap.nvm_update_pending_nvm = false;
320 }
321 }
322
323 if (ctx->dev_caps.common_cap.nvm_update_pending_netlist) {
324 err = ice_get_inactive_netlist_ver(hw, &ctx->pending_netlist);
325 if (err) {
326 dev_dbg(dev, "Unable to read inactive Netlist version data, status %d aq_err %s\n",
327 err, libie_aq_str(hw->adminq.sq_last_status));
328
329 /* disable display of pending Option ROM */
330 ctx->dev_caps.common_cap.nvm_update_pending_netlist = false;
331 }
332 }
333
334 ice_info_get_dsn(pf, ctx);
335
336 err = devlink_info_serial_number_put(req, ctx->buf);
337 if (err) {
338 NL_SET_ERR_MSG_MOD(extack, "Unable to set serial number");
339 goto out_free_ctx;
340 }
341
342 for (i = 0; i < ARRAY_SIZE(ice_devlink_versions); i++) {
343 enum ice_version_type type = ice_devlink_versions[i].type;
344 const char *key = ice_devlink_versions[i].key;
345
346 memset(ctx->buf, 0, sizeof(ctx->buf));
347
348 ice_devlink_versions[i].getter(pf, ctx);
349
350 /* If the default getter doesn't report a version, use the
351 * fallback function. This is primarily useful in the case of
352 * "stored" versions that want to report the same value as the
353 * running version in the normal case of no pending update.
354 */
355 if (ctx->buf[0] == '\0' && ice_devlink_versions[i].fallback)
356 ice_devlink_versions[i].fallback(pf, ctx);
357
358 /* Do not report missing versions */
359 if (ctx->buf[0] == '\0')
360 continue;
361
362 switch (type) {
363 case ICE_VERSION_FIXED:
364 err = devlink_info_version_fixed_put(req, key, ctx->buf);
365 if (err) {
366 NL_SET_ERR_MSG_MOD(extack, "Unable to set fixed version");
367 goto out_free_ctx;
368 }
369 break;
370 case ICE_VERSION_RUNNING:
371 err = devlink_info_version_running_put_ext(req, key,
372 ctx->buf,
373 DEVLINK_INFO_VERSION_TYPE_COMPONENT);
374 if (err) {
375 NL_SET_ERR_MSG_MOD(extack, "Unable to set running version");
376 goto out_free_ctx;
377 }
378 break;
379 case ICE_VERSION_STORED:
380 err = devlink_info_version_stored_put_ext(req, key,
381 ctx->buf,
382 DEVLINK_INFO_VERSION_TYPE_COMPONENT);
383 if (err) {
384 NL_SET_ERR_MSG_MOD(extack, "Unable to set stored version");
385 goto out_free_ctx;
386 }
387 break;
388 }
389 }
390
391out_free_ctx:
392 kfree(ctx);
393 return err;
394}
395
396/**
397 * ice_devlink_reload_empr_start - Start EMP reset to activate new firmware
398 * @pf: pointer to the pf instance
399 * @extack: netlink extended ACK structure
400 *
401 * Allow user to activate new Embedded Management Processor firmware by
402 * issuing device specific EMP reset. Called in response to
403 * a DEVLINK_CMD_RELOAD with the DEVLINK_RELOAD_ACTION_FW_ACTIVATE.
404 *
405 * Note that teardown and rebuild of the driver state happens automatically as
406 * part of an interrupt and watchdog task. This is because all physical
407 * functions on the device must be able to reset when an EMP reset occurs from
408 * any source.
409 */
410static int
411ice_devlink_reload_empr_start(struct ice_pf *pf,
412 struct netlink_ext_ack *extack)
413{
414 struct device *dev = ice_pf_to_dev(pf);
415 struct ice_hw *hw = &pf->hw;
416 u8 pending;
417 int err;
418
419 err = ice_get_pending_updates(pf, &pending, extack);
420 if (err)
421 return err;
422
423 /* pending is a bitmask of which flash banks have a pending update,
424 * including the main NVM bank, the Option ROM bank, and the netlist
425 * bank. If any of these bits are set, then there is a pending update
426 * waiting to be activated.
427 */
428 if (!pending) {
429 NL_SET_ERR_MSG_MOD(extack, "No pending firmware update");
430 return -ECANCELED;
431 }
432
433 if (pf->fw_emp_reset_disabled) {
434 NL_SET_ERR_MSG_MOD(extack, "EMP reset is not available. To activate firmware, a reboot or power cycle is needed");
435 return -ECANCELED;
436 }
437
438 dev_dbg(dev, "Issuing device EMP reset to activate firmware\n");
439
440 err = ice_aq_nvm_update_empr(hw);
441 if (err) {
442 dev_err(dev, "Failed to trigger EMP device reset to reload firmware, err %d aq_err %s\n",
443 err, libie_aq_str(hw->adminq.sq_last_status));
444 NL_SET_ERR_MSG_MOD(extack, "Failed to trigger EMP device reset to reload firmware");
445 return err;
446 }
447
448 return 0;
449}
450
451/**
452 * ice_devlink_reinit_down - unload given PF
453 * @pf: pointer to the PF struct
454 */
455static void ice_devlink_reinit_down(struct ice_pf *pf)
456{
457 /* No need to take devl_lock, it's already taken by devlink API */
458 ice_unload(pf);
459 rtnl_lock();
460 ice_vsi_decfg(ice_get_main_vsi(pf));
461 rtnl_unlock();
462 ice_deinit_pf(pf);
463 ice_deinit_hw(&pf->hw);
464 ice_deinit_dev(pf);
465}
466
467/**
468 * ice_devlink_reload_down - prepare for reload
469 * @devlink: pointer to the devlink instance to reload
470 * @netns_change: if true, the network namespace is changing
471 * @action: the action to perform
472 * @limit: limits on what reload should do, such as not resetting
473 * @extack: netlink extended ACK structure
474 */
475static int
476ice_devlink_reload_down(struct devlink *devlink, bool netns_change,
477 enum devlink_reload_action action,
478 enum devlink_reload_limit limit,
479 struct netlink_ext_ack *extack)
480{
481 struct ice_pf *pf = devlink_priv(devlink);
482
483 switch (action) {
484 case DEVLINK_RELOAD_ACTION_DRIVER_REINIT:
485 if (ice_is_eswitch_mode_switchdev(pf)) {
486 NL_SET_ERR_MSG_MOD(extack,
487 "Go to legacy mode before doing reinit");
488 return -EOPNOTSUPP;
489 }
490 if (ice_is_adq_active(pf)) {
491 NL_SET_ERR_MSG_MOD(extack,
492 "Turn off ADQ before doing reinit");
493 return -EOPNOTSUPP;
494 }
495 if (ice_has_vfs(pf)) {
496 NL_SET_ERR_MSG_MOD(extack,
497 "Remove all VFs before doing reinit");
498 return -EOPNOTSUPP;
499 }
500 ice_devlink_reinit_down(pf);
501 return 0;
502 case DEVLINK_RELOAD_ACTION_FW_ACTIVATE:
503 return ice_devlink_reload_empr_start(pf, extack);
504 default:
505 WARN_ON(1);
506 return -EOPNOTSUPP;
507 }
508}
509
510/**
511 * ice_devlink_reload_empr_finish - Wait for EMP reset to finish
512 * @pf: pointer to the pf instance
513 * @extack: netlink extended ACK structure
514 *
515 * Wait for driver to finish rebuilding after EMP reset is completed. This
516 * includes time to wait for both the actual device reset as well as the time
517 * for the driver's rebuild to complete.
518 */
519static int
520ice_devlink_reload_empr_finish(struct ice_pf *pf,
521 struct netlink_ext_ack *extack)
522{
523 int err;
524
525 err = ice_wait_for_reset(pf, 60 * HZ);
526 if (err) {
527 NL_SET_ERR_MSG_MOD(extack, "Device still resetting after 1 minute");
528 return err;
529 }
530
531 return 0;
532}
533
534/**
535 * ice_get_tx_topo_user_sel - Read user's choice from flash
536 * @pf: pointer to pf structure
537 * @layers: value read from flash will be saved here
538 *
539 * Reads user's preference for Tx Scheduler Topology Tree from PFA TLV.
540 *
541 * Return: zero when read was successful, negative values otherwise.
542 */
543static int ice_get_tx_topo_user_sel(struct ice_pf *pf, uint8_t *layers)
544{
545 struct ice_aqc_nvm_tx_topo_user_sel usr_sel = {};
546 struct ice_hw *hw = &pf->hw;
547 int err;
548
549 err = ice_acquire_nvm(hw, ICE_RES_READ);
550 if (err)
551 return err;
552
553 err = ice_aq_read_nvm(hw, ICE_AQC_NVM_TX_TOPO_MOD_ID, 0,
554 sizeof(usr_sel), &usr_sel, true, true, NULL);
555 if (err)
556 goto exit_release_res;
557
558 if (usr_sel.data & ICE_AQC_NVM_TX_TOPO_USER_SEL)
559 *layers = ICE_SCHED_5_LAYERS;
560 else
561 *layers = ICE_SCHED_9_LAYERS;
562
563exit_release_res:
564 ice_release_nvm(hw);
565
566 return err;
567}
568
569/**
570 * ice_update_tx_topo_user_sel - Save user's preference in flash
571 * @pf: pointer to pf structure
572 * @layers: value to be saved in flash
573 *
574 * Variable "layers" defines user's preference about number of layers in Tx
575 * Scheduler Topology Tree. This choice should be stored in PFA TLV field
576 * and be picked up by driver, next time during init.
577 *
578 * Return: zero when save was successful, negative values otherwise.
579 */
580static int ice_update_tx_topo_user_sel(struct ice_pf *pf, int layers)
581{
582 struct ice_aqc_nvm_tx_topo_user_sel usr_sel = {};
583 struct ice_hw *hw = &pf->hw;
584 int err;
585
586 err = ice_acquire_nvm(hw, ICE_RES_WRITE);
587 if (err)
588 return err;
589
590 err = ice_aq_read_nvm(hw, ICE_AQC_NVM_TX_TOPO_MOD_ID, 0,
591 sizeof(usr_sel), &usr_sel, true, true, NULL);
592 if (err)
593 goto exit_release_res;
594
595 if (layers == ICE_SCHED_5_LAYERS)
596 usr_sel.data |= ICE_AQC_NVM_TX_TOPO_USER_SEL;
597 else
598 usr_sel.data &= ~ICE_AQC_NVM_TX_TOPO_USER_SEL;
599
600 err = ice_write_one_nvm_block(pf, ICE_AQC_NVM_TX_TOPO_MOD_ID, 2,
601 sizeof(usr_sel.data), &usr_sel.data,
602 true, NULL, NULL);
603exit_release_res:
604 ice_release_nvm(hw);
605
606 return err;
607}
608
609/**
610 * ice_devlink_tx_sched_layers_get - Get tx_scheduling_layers parameter
611 * @devlink: pointer to the devlink instance
612 * @id: the parameter ID to set
613 * @ctx: context to store the parameter value
614 * @extack: netlink extended ACK structure
615 *
616 * Return: zero on success and negative value on failure.
617 */
618static int ice_devlink_tx_sched_layers_get(struct devlink *devlink, u32 id,
619 struct devlink_param_gset_ctx *ctx,
620 struct netlink_ext_ack *extack)
621{
622 struct ice_pf *pf = devlink_priv(devlink);
623 int err;
624
625 err = ice_get_tx_topo_user_sel(pf, &ctx->val.vu8);
626 if (err)
627 return err;
628
629 return 0;
630}
631
632/**
633 * ice_devlink_tx_sched_layers_set - Set tx_scheduling_layers parameter
634 * @devlink: pointer to the devlink instance
635 * @id: the parameter ID to set
636 * @ctx: context to get the parameter value
637 * @extack: netlink extended ACK structure
638 *
639 * Return: zero on success and negative value on failure.
640 */
641static int ice_devlink_tx_sched_layers_set(struct devlink *devlink, u32 id,
642 struct devlink_param_gset_ctx *ctx,
643 struct netlink_ext_ack *extack)
644{
645 struct ice_pf *pf = devlink_priv(devlink);
646 int err;
647
648 err = ice_update_tx_topo_user_sel(pf, ctx->val.vu8);
649 if (err)
650 return err;
651
652 NL_SET_ERR_MSG_MOD(extack,
653 "Tx scheduling layers have been changed on this device. You must do the PCI slot powercycle for the change to take effect.");
654
655 return 0;
656}
657
658/**
659 * ice_devlink_tx_sched_layers_validate - Validate passed tx_scheduling_layers
660 * parameter value
661 * @devlink: unused pointer to devlink instance
662 * @id: the parameter ID to validate
663 * @val: value to validate
664 * @extack: netlink extended ACK structure
665 *
666 * Supported values are:
667 * - 5 - five layers Tx Scheduler Topology Tree
668 * - 9 - nine layers Tx Scheduler Topology Tree
669 *
670 * Return: zero when passed parameter value is supported. Negative value on
671 * error.
672 */
673static int ice_devlink_tx_sched_layers_validate(struct devlink *devlink, u32 id,
674 union devlink_param_value val,
675 struct netlink_ext_ack *extack)
676{
677 if (val.vu8 != ICE_SCHED_5_LAYERS && val.vu8 != ICE_SCHED_9_LAYERS) {
678 NL_SET_ERR_MSG_MOD(extack,
679 "Wrong number of tx scheduler layers provided.");
680 return -EINVAL;
681 }
682
683 return 0;
684}
685
686/**
687 * ice_tear_down_devlink_rate_tree - removes devlink-rate exported tree
688 * @pf: pf struct
689 *
690 * This function tears down tree exported during VF's creation.
691 */
692void ice_tear_down_devlink_rate_tree(struct ice_pf *pf)
693{
694 struct devlink *devlink;
695 struct ice_vf *vf;
696 unsigned int bkt;
697
698 devlink = priv_to_devlink(pf);
699
700 devl_lock(devlink);
701 mutex_lock(&pf->vfs.table_lock);
702 ice_for_each_vf(pf, bkt, vf) {
703 if (vf->devlink_port.devlink_rate)
704 devl_rate_leaf_destroy(&vf->devlink_port);
705 }
706 mutex_unlock(&pf->vfs.table_lock);
707
708 devl_rate_nodes_destroy(devlink);
709 devl_unlock(devlink);
710}
711
712/**
713 * ice_enable_custom_tx - try to enable custom Tx feature
714 * @pf: pf struct
715 *
716 * This function tries to enable custom Tx feature,
717 * it's not possible to enable it, if DCB or ADQ is active.
718 */
719static bool ice_enable_custom_tx(struct ice_pf *pf)
720{
721 struct ice_port_info *pi = ice_get_main_vsi(pf)->port_info;
722 struct device *dev = ice_pf_to_dev(pf);
723
724 if (pi->is_custom_tx_enabled)
725 /* already enabled, return true */
726 return true;
727
728 if (ice_is_adq_active(pf)) {
729 dev_err(dev, "ADQ active, can't modify Tx scheduler tree\n");
730 return false;
731 }
732
733 if (ice_is_dcb_active(pf)) {
734 dev_err(dev, "DCB active, can't modify Tx scheduler tree\n");
735 return false;
736 }
737
738 pi->is_custom_tx_enabled = true;
739
740 return true;
741}
742
743/**
744 * ice_traverse_tx_tree - traverse Tx scheduler tree
745 * @devlink: devlink struct
746 * @node: current node, used for recursion
747 * @tc_node: tc_node struct, that is treated as a root
748 * @pf: pf struct
749 *
750 * This function traverses Tx scheduler tree and exports
751 * entire structure to the devlink-rate.
752 */
753static void ice_traverse_tx_tree(struct devlink *devlink, struct ice_sched_node *node,
754 struct ice_sched_node *tc_node, struct ice_pf *pf)
755{
756 struct devlink_rate *rate_node = NULL;
757 struct ice_dynamic_port *sf;
758 struct ice_vf *vf;
759 int i;
760
761 if (node->rate_node)
762 /* already added, skip to the next */
763 goto traverse_children;
764
765 if (node->parent == tc_node) {
766 /* create root node */
767 rate_node = devl_rate_node_create(devlink, node, node->name, NULL);
768 } else if (node->vsi_handle &&
769 pf->vsi[node->vsi_handle]->type == ICE_VSI_VF &&
770 pf->vsi[node->vsi_handle]->vf) {
771 vf = pf->vsi[node->vsi_handle]->vf;
772 if (!vf->devlink_port.devlink_rate)
773 /* leaf nodes doesn't have children
774 * so we don't set rate_node
775 */
776 devl_rate_leaf_create(&vf->devlink_port, node,
777 node->parent->rate_node);
778 } else if (node->vsi_handle &&
779 pf->vsi[node->vsi_handle]->type == ICE_VSI_SF &&
780 pf->vsi[node->vsi_handle]->sf) {
781 sf = pf->vsi[node->vsi_handle]->sf;
782 if (!sf->devlink_port.devlink_rate)
783 /* leaf nodes doesn't have children
784 * so we don't set rate_node
785 */
786 devl_rate_leaf_create(&sf->devlink_port, node,
787 node->parent->rate_node);
788 } else if (node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF &&
789 node->parent->rate_node) {
790 rate_node = devl_rate_node_create(devlink, node, node->name,
791 node->parent->rate_node);
792 }
793
794 if (rate_node && !IS_ERR(rate_node))
795 node->rate_node = rate_node;
796
797traverse_children:
798 for (i = 0; i < node->num_children; i++)
799 ice_traverse_tx_tree(devlink, node->children[i], tc_node, pf);
800}
801
802/**
803 * ice_devlink_rate_init_tx_topology - export Tx scheduler tree to devlink rate
804 * @devlink: devlink struct
805 * @vsi: main vsi struct
806 *
807 * This function finds a root node, then calls ice_traverse_tx tree, which
808 * traverses the tree and exports it's contents to devlink rate.
809 */
810int ice_devlink_rate_init_tx_topology(struct devlink *devlink, struct ice_vsi *vsi)
811{
812 struct ice_port_info *pi = vsi->port_info;
813 struct ice_sched_node *tc_node;
814 struct ice_pf *pf = vsi->back;
815 int i;
816
817 tc_node = pi->root->children[0];
818 mutex_lock(&pi->sched_lock);
819 for (i = 0; i < tc_node->num_children; i++)
820 ice_traverse_tx_tree(devlink, tc_node->children[i], tc_node, pf);
821 mutex_unlock(&pi->sched_lock);
822
823 return 0;
824}
825
826static void ice_clear_rate_nodes(struct ice_sched_node *node)
827{
828 node->rate_node = NULL;
829
830 for (int i = 0; i < node->num_children; i++)
831 ice_clear_rate_nodes(node->children[i]);
832}
833
834/**
835 * ice_devlink_rate_clear_tx_topology - clear node->rate_node
836 * @vsi: main vsi struct
837 *
838 * Clear rate_node to cleanup creation of Tx topology.
839 *
840 */
841void ice_devlink_rate_clear_tx_topology(struct ice_vsi *vsi)
842{
843 struct ice_port_info *pi = vsi->port_info;
844
845 mutex_lock(&pi->sched_lock);
846 ice_clear_rate_nodes(pi->root->children[0]);
847 mutex_unlock(&pi->sched_lock);
848}
849
850/**
851 * ice_set_object_tx_share - sets node scheduling parameter
852 * @pi: devlink struct instance
853 * @node: node struct instance
854 * @bw: bandwidth in bytes per second
855 * @extack: extended netdev ack structure
856 *
857 * This function sets ICE_MIN_BW scheduling BW limit.
858 */
859static int ice_set_object_tx_share(struct ice_port_info *pi, struct ice_sched_node *node,
860 u64 bw, struct netlink_ext_ack *extack)
861{
862 int status;
863
864 mutex_lock(&pi->sched_lock);
865 /* converts bytes per second to kilo bits per second */
866 node->tx_share = div_u64(bw, 125);
867 status = ice_sched_set_node_bw_lmt(pi, node, ICE_MIN_BW, node->tx_share);
868 mutex_unlock(&pi->sched_lock);
869
870 if (status)
871 NL_SET_ERR_MSG_MOD(extack, "Can't set scheduling node tx_share");
872
873 return status;
874}
875
876/**
877 * ice_set_object_tx_max - sets node scheduling parameter
878 * @pi: devlink struct instance
879 * @node: node struct instance
880 * @bw: bandwidth in bytes per second
881 * @extack: extended netdev ack structure
882 *
883 * This function sets ICE_MAX_BW scheduling BW limit.
884 */
885static int ice_set_object_tx_max(struct ice_port_info *pi, struct ice_sched_node *node,
886 u64 bw, struct netlink_ext_ack *extack)
887{
888 int status;
889
890 mutex_lock(&pi->sched_lock);
891 /* converts bytes per second value to kilo bits per second */
892 node->tx_max = div_u64(bw, 125);
893 status = ice_sched_set_node_bw_lmt(pi, node, ICE_MAX_BW, node->tx_max);
894 mutex_unlock(&pi->sched_lock);
895
896 if (status)
897 NL_SET_ERR_MSG_MOD(extack, "Can't set scheduling node tx_max");
898
899 return status;
900}
901
902/**
903 * ice_set_object_tx_priority - sets node scheduling parameter
904 * @pi: devlink struct instance
905 * @node: node struct instance
906 * @priority: value representing priority for strict priority arbitration
907 * @extack: extended netdev ack structure
908 *
909 * This function sets priority of node among siblings.
910 */
911static int ice_set_object_tx_priority(struct ice_port_info *pi, struct ice_sched_node *node,
912 u32 priority, struct netlink_ext_ack *extack)
913{
914 int status;
915
916 if (priority >= 8) {
917 NL_SET_ERR_MSG_MOD(extack, "Priority should be less than 8");
918 return -EINVAL;
919 }
920
921 mutex_lock(&pi->sched_lock);
922 node->tx_priority = priority;
923 status = ice_sched_set_node_priority(pi, node, node->tx_priority);
924 mutex_unlock(&pi->sched_lock);
925
926 if (status)
927 NL_SET_ERR_MSG_MOD(extack, "Can't set scheduling node tx_priority");
928
929 return status;
930}
931
932/**
933 * ice_set_object_tx_weight - sets node scheduling parameter
934 * @pi: devlink struct instance
935 * @node: node struct instance
936 * @weight: value represeting relative weight for WFQ arbitration
937 * @extack: extended netdev ack structure
938 *
939 * This function sets node weight for WFQ algorithm.
940 */
941static int ice_set_object_tx_weight(struct ice_port_info *pi, struct ice_sched_node *node,
942 u32 weight, struct netlink_ext_ack *extack)
943{
944 int status;
945
946 if (weight > 200 || weight < 1) {
947 NL_SET_ERR_MSG_MOD(extack, "Weight must be between 1 and 200");
948 return -EINVAL;
949 }
950
951 mutex_lock(&pi->sched_lock);
952 node->tx_weight = weight;
953 status = ice_sched_set_node_weight(pi, node, node->tx_weight);
954 mutex_unlock(&pi->sched_lock);
955
956 if (status)
957 NL_SET_ERR_MSG_MOD(extack, "Can't set scheduling node tx_weight");
958
959 return status;
960}
961
962/**
963 * ice_get_pi_from_dev_rate - get port info from devlink_rate
964 * @rate_node: devlink struct instance
965 *
966 * This function returns corresponding port_info struct of devlink_rate
967 */
968static struct ice_port_info *ice_get_pi_from_dev_rate(struct devlink_rate *rate_node)
969{
970 struct ice_pf *pf = devlink_priv(rate_node->devlink);
971
972 return ice_get_main_vsi(pf)->port_info;
973}
974
975static int ice_devlink_rate_node_new(struct devlink_rate *rate_node, void **priv,
976 struct netlink_ext_ack *extack)
977{
978 struct ice_sched_node *node;
979 struct ice_port_info *pi;
980
981 pi = ice_get_pi_from_dev_rate(rate_node);
982
983 if (!ice_enable_custom_tx(devlink_priv(rate_node->devlink)))
984 return -EBUSY;
985
986 /* preallocate memory for ice_sched_node */
987 node = devm_kzalloc(ice_hw_to_dev(pi->hw), sizeof(*node), GFP_KERNEL);
988 if (!node)
989 return -ENOMEM;
990
991 *priv = node;
992
993 return 0;
994}
995
996static int ice_devlink_rate_node_del(struct devlink_rate *rate_node, void *priv,
997 struct netlink_ext_ack *extack)
998{
999 struct ice_sched_node *node, *tc_node;
1000 struct ice_port_info *pi;
1001
1002 pi = ice_get_pi_from_dev_rate(rate_node);
1003 tc_node = pi->root->children[0];
1004 node = priv;
1005
1006 if (!rate_node->parent || !node || tc_node == node || !extack)
1007 return 0;
1008
1009 if (!ice_enable_custom_tx(devlink_priv(rate_node->devlink)))
1010 return -EBUSY;
1011
1012 /* can't allow to delete a node with children */
1013 if (node->num_children)
1014 return -EINVAL;
1015
1016 mutex_lock(&pi->sched_lock);
1017 ice_free_sched_node(pi, node);
1018 mutex_unlock(&pi->sched_lock);
1019
1020 return 0;
1021}
1022
1023static int ice_devlink_rate_leaf_tx_max_set(struct devlink_rate *rate_leaf, void *priv,
1024 u64 tx_max, struct netlink_ext_ack *extack)
1025{
1026 struct ice_sched_node *node = priv;
1027
1028 if (!ice_enable_custom_tx(devlink_priv(rate_leaf->devlink)))
1029 return -EBUSY;
1030
1031 if (!node)
1032 return 0;
1033
1034 return ice_set_object_tx_max(ice_get_pi_from_dev_rate(rate_leaf),
1035 node, tx_max, extack);
1036}
1037
1038static int ice_devlink_rate_leaf_tx_share_set(struct devlink_rate *rate_leaf, void *priv,
1039 u64 tx_share, struct netlink_ext_ack *extack)
1040{
1041 struct ice_sched_node *node = priv;
1042
1043 if (!ice_enable_custom_tx(devlink_priv(rate_leaf->devlink)))
1044 return -EBUSY;
1045
1046 if (!node)
1047 return 0;
1048
1049 return ice_set_object_tx_share(ice_get_pi_from_dev_rate(rate_leaf), node,
1050 tx_share, extack);
1051}
1052
1053static int ice_devlink_rate_leaf_tx_priority_set(struct devlink_rate *rate_leaf, void *priv,
1054 u32 tx_priority, struct netlink_ext_ack *extack)
1055{
1056 struct ice_sched_node *node = priv;
1057
1058 if (!ice_enable_custom_tx(devlink_priv(rate_leaf->devlink)))
1059 return -EBUSY;
1060
1061 if (!node)
1062 return 0;
1063
1064 return ice_set_object_tx_priority(ice_get_pi_from_dev_rate(rate_leaf), node,
1065 tx_priority, extack);
1066}
1067
1068static int ice_devlink_rate_leaf_tx_weight_set(struct devlink_rate *rate_leaf, void *priv,
1069 u32 tx_weight, struct netlink_ext_ack *extack)
1070{
1071 struct ice_sched_node *node = priv;
1072
1073 if (!ice_enable_custom_tx(devlink_priv(rate_leaf->devlink)))
1074 return -EBUSY;
1075
1076 if (!node)
1077 return 0;
1078
1079 return ice_set_object_tx_weight(ice_get_pi_from_dev_rate(rate_leaf), node,
1080 tx_weight, extack);
1081}
1082
1083static int ice_devlink_rate_node_tx_max_set(struct devlink_rate *rate_node, void *priv,
1084 u64 tx_max, struct netlink_ext_ack *extack)
1085{
1086 struct ice_sched_node *node = priv;
1087
1088 if (!ice_enable_custom_tx(devlink_priv(rate_node->devlink)))
1089 return -EBUSY;
1090
1091 if (!node)
1092 return 0;
1093
1094 return ice_set_object_tx_max(ice_get_pi_from_dev_rate(rate_node),
1095 node, tx_max, extack);
1096}
1097
1098static int ice_devlink_rate_node_tx_share_set(struct devlink_rate *rate_node, void *priv,
1099 u64 tx_share, struct netlink_ext_ack *extack)
1100{
1101 struct ice_sched_node *node = priv;
1102
1103 if (!ice_enable_custom_tx(devlink_priv(rate_node->devlink)))
1104 return -EBUSY;
1105
1106 if (!node)
1107 return 0;
1108
1109 return ice_set_object_tx_share(ice_get_pi_from_dev_rate(rate_node),
1110 node, tx_share, extack);
1111}
1112
1113static int ice_devlink_rate_node_tx_priority_set(struct devlink_rate *rate_node, void *priv,
1114 u32 tx_priority, struct netlink_ext_ack *extack)
1115{
1116 struct ice_sched_node *node = priv;
1117
1118 if (!ice_enable_custom_tx(devlink_priv(rate_node->devlink)))
1119 return -EBUSY;
1120
1121 if (!node)
1122 return 0;
1123
1124 return ice_set_object_tx_priority(ice_get_pi_from_dev_rate(rate_node),
1125 node, tx_priority, extack);
1126}
1127
1128static int ice_devlink_rate_node_tx_weight_set(struct devlink_rate *rate_node, void *priv,
1129 u32 tx_weight, struct netlink_ext_ack *extack)
1130{
1131 struct ice_sched_node *node = priv;
1132
1133 if (!ice_enable_custom_tx(devlink_priv(rate_node->devlink)))
1134 return -EBUSY;
1135
1136 if (!node)
1137 return 0;
1138
1139 return ice_set_object_tx_weight(ice_get_pi_from_dev_rate(rate_node),
1140 node, tx_weight, extack);
1141}
1142
1143static int ice_devlink_set_parent(struct devlink_rate *devlink_rate,
1144 struct devlink_rate *parent,
1145 void *priv, void *parent_priv,
1146 struct netlink_ext_ack *extack)
1147{
1148 struct ice_port_info *pi = ice_get_pi_from_dev_rate(devlink_rate);
1149 struct ice_sched_node *tc_node, *node, *parent_node;
1150 u16 num_nodes_added;
1151 u32 first_node_teid;
1152 u32 node_teid;
1153 int status;
1154
1155 tc_node = pi->root->children[0];
1156 node = priv;
1157
1158 if (!extack)
1159 return 0;
1160
1161 if (!ice_enable_custom_tx(devlink_priv(devlink_rate->devlink)))
1162 return -EBUSY;
1163
1164 if (!parent) {
1165 if (!node || tc_node == node || node->num_children)
1166 return -EINVAL;
1167
1168 mutex_lock(&pi->sched_lock);
1169 ice_free_sched_node(pi, node);
1170 mutex_unlock(&pi->sched_lock);
1171
1172 return 0;
1173 }
1174
1175 parent_node = parent_priv;
1176
1177 /* if the node doesn't exist, create it */
1178 if (!node->parent) {
1179 mutex_lock(&pi->sched_lock);
1180 status = ice_sched_add_elems(pi, tc_node, parent_node,
1181 parent_node->tx_sched_layer + 1,
1182 1, &num_nodes_added, &first_node_teid,
1183 &node);
1184 mutex_unlock(&pi->sched_lock);
1185
1186 if (status) {
1187 NL_SET_ERR_MSG_MOD(extack, "Can't add a new node");
1188 return status;
1189 }
1190
1191 if (devlink_rate->tx_share)
1192 ice_set_object_tx_share(pi, node, devlink_rate->tx_share, extack);
1193 if (devlink_rate->tx_max)
1194 ice_set_object_tx_max(pi, node, devlink_rate->tx_max, extack);
1195 if (devlink_rate->tx_priority)
1196 ice_set_object_tx_priority(pi, node, devlink_rate->tx_priority, extack);
1197 if (devlink_rate->tx_weight)
1198 ice_set_object_tx_weight(pi, node, devlink_rate->tx_weight, extack);
1199 } else {
1200 node_teid = le32_to_cpu(node->info.node_teid);
1201 mutex_lock(&pi->sched_lock);
1202 status = ice_sched_move_nodes(pi, parent_node, 1, &node_teid);
1203 mutex_unlock(&pi->sched_lock);
1204
1205 if (status)
1206 NL_SET_ERR_MSG_MOD(extack, "Can't move existing node to a new parent");
1207 }
1208
1209 return status;
1210}
1211
1212static void ice_set_min_max_msix(struct ice_pf *pf)
1213{
1214 struct devlink *devlink = priv_to_devlink(pf);
1215 union devlink_param_value val;
1216 int err;
1217
1218 err = devl_param_driverinit_value_get(devlink,
1219 DEVLINK_PARAM_GENERIC_ID_MSIX_VEC_PER_PF_MIN,
1220 &val);
1221 if (!err)
1222 pf->msix.min = val.vu32;
1223
1224 err = devl_param_driverinit_value_get(devlink,
1225 DEVLINK_PARAM_GENERIC_ID_MSIX_VEC_PER_PF_MAX,
1226 &val);
1227 if (!err)
1228 pf->msix.max = val.vu32;
1229}
1230
1231/**
1232 * ice_devlink_reinit_up - do reinit of the given PF
1233 * @pf: pointer to the PF struct
1234 */
1235static int ice_devlink_reinit_up(struct ice_pf *pf)
1236{
1237 struct ice_vsi *vsi = ice_get_main_vsi(pf);
1238 struct device *dev = ice_pf_to_dev(pf);
1239 bool need_dev_deinit = false;
1240 int err;
1241
1242 err = ice_init_hw(&pf->hw);
1243 if (err) {
1244 dev_err(dev, "ice_init_hw failed: %d\n", err);
1245 return err;
1246 }
1247
1248 /* load MSI-X values */
1249 ice_set_min_max_msix(pf);
1250
1251 err = ice_init_dev(pf);
1252 if (err)
1253 goto unroll_hw_init;
1254
1255 err = ice_init_pf(pf);
1256 if (err) {
1257 dev_err(dev, "ice_init_pf failed: %d\n", err);
1258 goto unroll_dev_init;
1259 }
1260
1261 vsi->flags = ICE_VSI_FLAG_INIT;
1262
1263 rtnl_lock();
1264 err = ice_vsi_cfg(vsi);
1265 rtnl_unlock();
1266 if (err)
1267 goto unroll_pf_init;
1268
1269 /* No need to take devl_lock, it's already taken by devlink API */
1270 err = ice_load(pf);
1271 if (err)
1272 goto err_load;
1273
1274 return 0;
1275
1276err_load:
1277 rtnl_lock();
1278 ice_vsi_decfg(vsi);
1279 rtnl_unlock();
1280unroll_pf_init:
1281 ice_deinit_pf(pf);
1282unroll_dev_init:
1283 need_dev_deinit = true;
1284unroll_hw_init:
1285 ice_deinit_hw(&pf->hw);
1286 if (need_dev_deinit)
1287 ice_deinit_dev(pf);
1288 return err;
1289}
1290
1291/**
1292 * ice_devlink_reload_up - do reload up after reinit
1293 * @devlink: pointer to the devlink instance reloading
1294 * @action: the action requested
1295 * @limit: limits imposed by userspace, such as not resetting
1296 * @actions_performed: on return, indicate what actions actually performed
1297 * @extack: netlink extended ACK structure
1298 */
1299static int
1300ice_devlink_reload_up(struct devlink *devlink,
1301 enum devlink_reload_action action,
1302 enum devlink_reload_limit limit,
1303 u32 *actions_performed,
1304 struct netlink_ext_ack *extack)
1305{
1306 struct ice_pf *pf = devlink_priv(devlink);
1307
1308 switch (action) {
1309 case DEVLINK_RELOAD_ACTION_DRIVER_REINIT:
1310 *actions_performed = BIT(DEVLINK_RELOAD_ACTION_DRIVER_REINIT);
1311 return ice_devlink_reinit_up(pf);
1312 case DEVLINK_RELOAD_ACTION_FW_ACTIVATE:
1313 *actions_performed = BIT(DEVLINK_RELOAD_ACTION_FW_ACTIVATE);
1314 return ice_devlink_reload_empr_finish(pf, extack);
1315 default:
1316 WARN_ON(1);
1317 return -EOPNOTSUPP;
1318 }
1319}
1320
1321static const struct devlink_ops ice_devlink_ops = {
1322 .supported_flash_update_params = DEVLINK_SUPPORT_FLASH_UPDATE_OVERWRITE_MASK,
1323 .reload_actions = BIT(DEVLINK_RELOAD_ACTION_DRIVER_REINIT) |
1324 BIT(DEVLINK_RELOAD_ACTION_FW_ACTIVATE),
1325 .reload_down = ice_devlink_reload_down,
1326 .reload_up = ice_devlink_reload_up,
1327 .eswitch_mode_get = ice_eswitch_mode_get,
1328 .eswitch_mode_set = ice_eswitch_mode_set,
1329 .info_get = ice_devlink_info_get,
1330 .flash_update = ice_devlink_flash_update,
1331
1332 .rate_node_new = ice_devlink_rate_node_new,
1333 .rate_node_del = ice_devlink_rate_node_del,
1334
1335 .rate_leaf_tx_max_set = ice_devlink_rate_leaf_tx_max_set,
1336 .rate_leaf_tx_share_set = ice_devlink_rate_leaf_tx_share_set,
1337 .rate_leaf_tx_priority_set = ice_devlink_rate_leaf_tx_priority_set,
1338 .rate_leaf_tx_weight_set = ice_devlink_rate_leaf_tx_weight_set,
1339
1340 .rate_node_tx_max_set = ice_devlink_rate_node_tx_max_set,
1341 .rate_node_tx_share_set = ice_devlink_rate_node_tx_share_set,
1342 .rate_node_tx_priority_set = ice_devlink_rate_node_tx_priority_set,
1343 .rate_node_tx_weight_set = ice_devlink_rate_node_tx_weight_set,
1344
1345 .rate_leaf_parent_set = ice_devlink_set_parent,
1346 .rate_node_parent_set = ice_devlink_set_parent,
1347
1348 .port_new = ice_devlink_port_new,
1349};
1350
1351static const struct devlink_ops ice_sf_devlink_ops;
1352
1353static int
1354ice_devlink_enable_roce_get(struct devlink *devlink, u32 id,
1355 struct devlink_param_gset_ctx *ctx,
1356 struct netlink_ext_ack *extack)
1357{
1358 struct ice_pf *pf = devlink_priv(devlink);
1359 struct iidc_rdma_core_dev_info *cdev;
1360
1361 cdev = pf->cdev_info;
1362 if (!cdev)
1363 return -ENODEV;
1364
1365 ctx->val.vbool = !!(cdev->rdma_protocol & IIDC_RDMA_PROTOCOL_ROCEV2);
1366
1367 return 0;
1368}
1369
1370static int ice_devlink_enable_roce_set(struct devlink *devlink, u32 id,
1371 struct devlink_param_gset_ctx *ctx,
1372 struct netlink_ext_ack *extack)
1373{
1374 struct ice_pf *pf = devlink_priv(devlink);
1375 struct iidc_rdma_core_dev_info *cdev;
1376 bool roce_ena = ctx->val.vbool;
1377 int ret;
1378
1379 cdev = pf->cdev_info;
1380 if (!cdev)
1381 return -ENODEV;
1382
1383 if (!roce_ena) {
1384 ice_unplug_aux_dev(pf);
1385 cdev->rdma_protocol &= ~IIDC_RDMA_PROTOCOL_ROCEV2;
1386 return 0;
1387 }
1388
1389 cdev->rdma_protocol |= IIDC_RDMA_PROTOCOL_ROCEV2;
1390 ret = ice_plug_aux_dev(pf);
1391 if (ret)
1392 cdev->rdma_protocol &= ~IIDC_RDMA_PROTOCOL_ROCEV2;
1393
1394 return ret;
1395}
1396
1397static int
1398ice_devlink_enable_roce_validate(struct devlink *devlink, u32 id,
1399 union devlink_param_value val,
1400 struct netlink_ext_ack *extack)
1401{
1402 struct ice_pf *pf = devlink_priv(devlink);
1403 struct iidc_rdma_core_dev_info *cdev;
1404
1405 cdev = pf->cdev_info;
1406 if (!cdev)
1407 return -ENODEV;
1408
1409 if (!test_bit(ICE_FLAG_RDMA_ENA, pf->flags))
1410 return -EOPNOTSUPP;
1411
1412 if (cdev->rdma_protocol & IIDC_RDMA_PROTOCOL_IWARP) {
1413 NL_SET_ERR_MSG_MOD(extack, "iWARP is currently enabled. This device cannot enable iWARP and RoCEv2 simultaneously");
1414 return -EOPNOTSUPP;
1415 }
1416
1417 return 0;
1418}
1419
1420static int
1421ice_devlink_enable_iw_get(struct devlink *devlink, u32 id,
1422 struct devlink_param_gset_ctx *ctx,
1423 struct netlink_ext_ack *extack)
1424{
1425 struct ice_pf *pf = devlink_priv(devlink);
1426 struct iidc_rdma_core_dev_info *cdev;
1427
1428 cdev = pf->cdev_info;
1429 if (!cdev)
1430 return -ENODEV;
1431
1432 ctx->val.vbool = !!(cdev->rdma_protocol & IIDC_RDMA_PROTOCOL_IWARP);
1433
1434 return 0;
1435}
1436
1437static int ice_devlink_enable_iw_set(struct devlink *devlink, u32 id,
1438 struct devlink_param_gset_ctx *ctx,
1439 struct netlink_ext_ack *extack)
1440{
1441 struct ice_pf *pf = devlink_priv(devlink);
1442 struct iidc_rdma_core_dev_info *cdev;
1443 bool iw_ena = ctx->val.vbool;
1444 int ret;
1445
1446 cdev = pf->cdev_info;
1447 if (!cdev)
1448 return -ENODEV;
1449
1450 if (!iw_ena) {
1451 ice_unplug_aux_dev(pf);
1452 cdev->rdma_protocol &= ~IIDC_RDMA_PROTOCOL_IWARP;
1453 return 0;
1454 }
1455
1456 cdev->rdma_protocol |= IIDC_RDMA_PROTOCOL_IWARP;
1457 ret = ice_plug_aux_dev(pf);
1458 if (ret)
1459 cdev->rdma_protocol &= ~IIDC_RDMA_PROTOCOL_IWARP;
1460
1461 return ret;
1462}
1463
1464static int
1465ice_devlink_enable_iw_validate(struct devlink *devlink, u32 id,
1466 union devlink_param_value val,
1467 struct netlink_ext_ack *extack)
1468{
1469 struct ice_pf *pf = devlink_priv(devlink);
1470
1471 if (!test_bit(ICE_FLAG_RDMA_ENA, pf->flags))
1472 return -EOPNOTSUPP;
1473
1474 if (pf->cdev_info->rdma_protocol & IIDC_RDMA_PROTOCOL_ROCEV2) {
1475 NL_SET_ERR_MSG_MOD(extack, "RoCEv2 is currently enabled. This device cannot enable iWARP and RoCEv2 simultaneously");
1476 return -EOPNOTSUPP;
1477 }
1478
1479 return 0;
1480}
1481
1482#define DEVLINK_LOCAL_FWD_DISABLED_STR "disabled"
1483#define DEVLINK_LOCAL_FWD_ENABLED_STR "enabled"
1484#define DEVLINK_LOCAL_FWD_PRIORITIZED_STR "prioritized"
1485
1486/**
1487 * ice_devlink_local_fwd_mode_to_str - Get string for local_fwd mode.
1488 * @mode: local forwarding for mode used in port_info struct.
1489 *
1490 * Return: Mode respective string or "Invalid".
1491 */
1492static const char *
1493ice_devlink_local_fwd_mode_to_str(enum ice_local_fwd_mode mode)
1494{
1495 switch (mode) {
1496 case ICE_LOCAL_FWD_MODE_ENABLED:
1497 return DEVLINK_LOCAL_FWD_ENABLED_STR;
1498 case ICE_LOCAL_FWD_MODE_PRIORITIZED:
1499 return DEVLINK_LOCAL_FWD_PRIORITIZED_STR;
1500 case ICE_LOCAL_FWD_MODE_DISABLED:
1501 return DEVLINK_LOCAL_FWD_DISABLED_STR;
1502 }
1503
1504 return "Invalid";
1505}
1506
1507/**
1508 * ice_devlink_local_fwd_str_to_mode - Get local_fwd mode from string name.
1509 * @mode_str: local forwarding mode string.
1510 *
1511 * Return: Mode value or negative number if invalid.
1512 */
1513static int ice_devlink_local_fwd_str_to_mode(const char *mode_str)
1514{
1515 if (!strcmp(mode_str, DEVLINK_LOCAL_FWD_ENABLED_STR))
1516 return ICE_LOCAL_FWD_MODE_ENABLED;
1517 else if (!strcmp(mode_str, DEVLINK_LOCAL_FWD_PRIORITIZED_STR))
1518 return ICE_LOCAL_FWD_MODE_PRIORITIZED;
1519 else if (!strcmp(mode_str, DEVLINK_LOCAL_FWD_DISABLED_STR))
1520 return ICE_LOCAL_FWD_MODE_DISABLED;
1521
1522 return -EINVAL;
1523}
1524
1525/**
1526 * ice_devlink_local_fwd_get - Get local_fwd parameter.
1527 * @devlink: Pointer to the devlink instance.
1528 * @id: The parameter ID to set.
1529 * @ctx: Context to store the parameter value.
1530 * @extack: netlink extended ACK structure
1531 *
1532 * Return: Zero.
1533 */
1534static int ice_devlink_local_fwd_get(struct devlink *devlink, u32 id,
1535 struct devlink_param_gset_ctx *ctx,
1536 struct netlink_ext_ack *extack)
1537{
1538 struct ice_pf *pf = devlink_priv(devlink);
1539 struct ice_port_info *pi;
1540 const char *mode_str;
1541
1542 pi = pf->hw.port_info;
1543 mode_str = ice_devlink_local_fwd_mode_to_str(pi->local_fwd_mode);
1544 snprintf(ctx->val.vstr, sizeof(ctx->val.vstr), "%s", mode_str);
1545
1546 return 0;
1547}
1548
1549/**
1550 * ice_devlink_local_fwd_set - Set local_fwd parameter.
1551 * @devlink: Pointer to the devlink instance.
1552 * @id: The parameter ID to set.
1553 * @ctx: Context to get the parameter value.
1554 * @extack: Netlink extended ACK structure.
1555 *
1556 * Return: Zero.
1557 */
1558static int ice_devlink_local_fwd_set(struct devlink *devlink, u32 id,
1559 struct devlink_param_gset_ctx *ctx,
1560 struct netlink_ext_ack *extack)
1561{
1562 int new_local_fwd_mode = ice_devlink_local_fwd_str_to_mode(ctx->val.vstr);
1563 struct ice_pf *pf = devlink_priv(devlink);
1564 struct device *dev = ice_pf_to_dev(pf);
1565 struct ice_port_info *pi;
1566
1567 pi = pf->hw.port_info;
1568 if (pi->local_fwd_mode != new_local_fwd_mode) {
1569 pi->local_fwd_mode = new_local_fwd_mode;
1570 dev_info(dev, "Setting local_fwd to %s\n", ctx->val.vstr);
1571 ice_schedule_reset(pf, ICE_RESET_CORER);
1572 }
1573
1574 return 0;
1575}
1576
1577/**
1578 * ice_devlink_local_fwd_validate - Validate passed local_fwd parameter value.
1579 * @devlink: Unused pointer to devlink instance.
1580 * @id: The parameter ID to validate.
1581 * @val: Value to validate.
1582 * @extack: Netlink extended ACK structure.
1583 *
1584 * Supported values are:
1585 * "enabled" - local_fwd is enabled, "disabled" - local_fwd is disabled
1586 * "prioritized" - local_fwd traffic is prioritized in scheduling.
1587 *
1588 * Return: Zero when passed parameter value is supported. Negative value on
1589 * error.
1590 */
1591static int ice_devlink_local_fwd_validate(struct devlink *devlink, u32 id,
1592 union devlink_param_value val,
1593 struct netlink_ext_ack *extack)
1594{
1595 if (ice_devlink_local_fwd_str_to_mode(val.vstr) < 0) {
1596 NL_SET_ERR_MSG_MOD(extack, "Error: Requested value is not supported.");
1597 return -EINVAL;
1598 }
1599
1600 return 0;
1601}
1602
1603static int
1604ice_devlink_msix_max_pf_validate(struct devlink *devlink, u32 id,
1605 union devlink_param_value val,
1606 struct netlink_ext_ack *extack)
1607{
1608 struct ice_pf *pf = devlink_priv(devlink);
1609
1610 if (val.vu32 > pf->hw.func_caps.common_cap.num_msix_vectors)
1611 return -EINVAL;
1612
1613 return 0;
1614}
1615
1616static int
1617ice_devlink_msix_min_pf_validate(struct devlink *devlink, u32 id,
1618 union devlink_param_value val,
1619 struct netlink_ext_ack *extack)
1620{
1621 if (val.vu32 < ICE_MIN_MSIX)
1622 return -EINVAL;
1623
1624 return 0;
1625}
1626
1627static int ice_devlink_enable_rdma_validate(struct devlink *devlink, u32 id,
1628 union devlink_param_value val,
1629 struct netlink_ext_ack *extack)
1630{
1631 struct ice_pf *pf = devlink_priv(devlink);
1632 bool new_state = val.vbool;
1633
1634 if (new_state && !test_bit(ICE_FLAG_RDMA_ENA, pf->flags))
1635 return -EOPNOTSUPP;
1636
1637 return 0;
1638}
1639
1640enum ice_param_id {
1641 ICE_DEVLINK_PARAM_ID_BASE = DEVLINK_PARAM_GENERIC_ID_MAX,
1642 ICE_DEVLINK_PARAM_ID_TX_SCHED_LAYERS,
1643 ICE_DEVLINK_PARAM_ID_LOCAL_FWD,
1644};
1645
1646static const struct devlink_param ice_dvl_rdma_params[] = {
1647 DEVLINK_PARAM_GENERIC(ENABLE_ROCE, BIT(DEVLINK_PARAM_CMODE_RUNTIME),
1648 ice_devlink_enable_roce_get,
1649 ice_devlink_enable_roce_set,
1650 ice_devlink_enable_roce_validate),
1651 DEVLINK_PARAM_GENERIC(ENABLE_IWARP, BIT(DEVLINK_PARAM_CMODE_RUNTIME),
1652 ice_devlink_enable_iw_get,
1653 ice_devlink_enable_iw_set,
1654 ice_devlink_enable_iw_validate),
1655 DEVLINK_PARAM_GENERIC(ENABLE_RDMA, BIT(DEVLINK_PARAM_CMODE_DRIVERINIT),
1656 NULL, NULL, ice_devlink_enable_rdma_validate),
1657};
1658
1659static const struct devlink_param ice_dvl_msix_params[] = {
1660 DEVLINK_PARAM_GENERIC(MSIX_VEC_PER_PF_MAX,
1661 BIT(DEVLINK_PARAM_CMODE_DRIVERINIT),
1662 NULL, NULL, ice_devlink_msix_max_pf_validate),
1663 DEVLINK_PARAM_GENERIC(MSIX_VEC_PER_PF_MIN,
1664 BIT(DEVLINK_PARAM_CMODE_DRIVERINIT),
1665 NULL, NULL, ice_devlink_msix_min_pf_validate),
1666};
1667
1668static const struct devlink_param ice_dvl_sched_params[] = {
1669 DEVLINK_PARAM_DRIVER(ICE_DEVLINK_PARAM_ID_TX_SCHED_LAYERS,
1670 "tx_scheduling_layers",
1671 DEVLINK_PARAM_TYPE_U8,
1672 BIT(DEVLINK_PARAM_CMODE_PERMANENT),
1673 ice_devlink_tx_sched_layers_get,
1674 ice_devlink_tx_sched_layers_set,
1675 ice_devlink_tx_sched_layers_validate),
1676 DEVLINK_PARAM_DRIVER(ICE_DEVLINK_PARAM_ID_LOCAL_FWD,
1677 "local_forwarding", DEVLINK_PARAM_TYPE_STRING,
1678 BIT(DEVLINK_PARAM_CMODE_RUNTIME),
1679 ice_devlink_local_fwd_get,
1680 ice_devlink_local_fwd_set,
1681 ice_devlink_local_fwd_validate),
1682};
1683
1684static void ice_devlink_free(void *devlink_ptr)
1685{
1686 devlink_free((struct devlink *)devlink_ptr);
1687}
1688
1689/**
1690 * ice_allocate_pf - Allocate devlink and return PF structure pointer
1691 * @dev: the device to allocate for
1692 *
1693 * Allocate a devlink instance for this device and return the private area as
1694 * the PF structure. The devlink memory is kept track of through devres by
1695 * adding an action to remove it when unwinding.
1696 */
1697struct ice_pf *ice_allocate_pf(struct device *dev)
1698{
1699 struct devlink *devlink;
1700
1701 devlink = devlink_alloc(&ice_devlink_ops, sizeof(struct ice_pf), dev);
1702 if (!devlink)
1703 return NULL;
1704
1705 /* Add an action to teardown the devlink when unwinding the driver */
1706 if (devm_add_action_or_reset(dev, ice_devlink_free, devlink))
1707 return NULL;
1708
1709 return devlink_priv(devlink);
1710}
1711
1712/**
1713 * ice_allocate_sf - Allocate devlink and return SF structure pointer
1714 * @dev: the device to allocate for
1715 * @pf: pointer to the PF structure
1716 *
1717 * Allocate a devlink instance for SF.
1718 *
1719 * Return: ice_sf_priv pointer to allocated memory or ERR_PTR in case of error
1720 */
1721struct ice_sf_priv *ice_allocate_sf(struct device *dev, struct ice_pf *pf)
1722{
1723 struct devlink *devlink;
1724 int err;
1725
1726 devlink = devlink_alloc(&ice_sf_devlink_ops, sizeof(struct ice_sf_priv),
1727 dev);
1728 if (!devlink)
1729 return ERR_PTR(-ENOMEM);
1730
1731 err = devl_nested_devlink_set(priv_to_devlink(pf), devlink);
1732 if (err) {
1733 devlink_free(devlink);
1734 return ERR_PTR(err);
1735 }
1736
1737 return devlink_priv(devlink);
1738}
1739
1740/**
1741 * ice_devlink_register - Register devlink interface for this PF
1742 * @pf: the PF to register the devlink for.
1743 *
1744 * Register the devlink instance associated with this physical function.
1745 *
1746 * Return: zero on success or an error code on failure.
1747 */
1748void ice_devlink_register(struct ice_pf *pf)
1749{
1750 struct devlink *devlink = priv_to_devlink(pf);
1751
1752 devl_register(devlink);
1753}
1754
1755/**
1756 * ice_devlink_unregister - Unregister devlink resources for this PF.
1757 * @pf: the PF structure to cleanup
1758 *
1759 * Releases resources used by devlink and cleans up associated memory.
1760 */
1761void ice_devlink_unregister(struct ice_pf *pf)
1762{
1763 devl_unregister(priv_to_devlink(pf));
1764}
1765
1766int ice_devlink_register_params(struct ice_pf *pf)
1767{
1768 struct devlink *devlink = priv_to_devlink(pf);
1769 union devlink_param_value value;
1770 struct ice_hw *hw = &pf->hw;
1771 int status;
1772
1773 status = devl_params_register(devlink, ice_dvl_rdma_params,
1774 ARRAY_SIZE(ice_dvl_rdma_params));
1775 if (status)
1776 return status;
1777
1778 status = devl_params_register(devlink, ice_dvl_msix_params,
1779 ARRAY_SIZE(ice_dvl_msix_params));
1780 if (status)
1781 goto unregister_rdma_params;
1782
1783 if (hw->func_caps.common_cap.tx_sched_topo_comp_mode_en)
1784 status = devl_params_register(devlink, ice_dvl_sched_params,
1785 ARRAY_SIZE(ice_dvl_sched_params));
1786 if (status)
1787 goto unregister_msix_params;
1788
1789 value.vu32 = pf->msix.max;
1790 devl_param_driverinit_value_set(devlink,
1791 DEVLINK_PARAM_GENERIC_ID_MSIX_VEC_PER_PF_MAX,
1792 value);
1793 value.vu32 = pf->msix.min;
1794 devl_param_driverinit_value_set(devlink,
1795 DEVLINK_PARAM_GENERIC_ID_MSIX_VEC_PER_PF_MIN,
1796 value);
1797
1798 value.vbool = test_bit(ICE_FLAG_RDMA_ENA, pf->flags);
1799 devl_param_driverinit_value_set(devlink,
1800 DEVLINK_PARAM_GENERIC_ID_ENABLE_RDMA,
1801 value);
1802
1803 return 0;
1804
1805unregister_msix_params:
1806 devl_params_unregister(devlink, ice_dvl_msix_params,
1807 ARRAY_SIZE(ice_dvl_msix_params));
1808unregister_rdma_params:
1809 devl_params_unregister(devlink, ice_dvl_rdma_params,
1810 ARRAY_SIZE(ice_dvl_rdma_params));
1811 return status;
1812}
1813
1814void ice_devlink_unregister_params(struct ice_pf *pf)
1815{
1816 struct devlink *devlink = priv_to_devlink(pf);
1817 struct ice_hw *hw = &pf->hw;
1818
1819 devl_params_unregister(devlink, ice_dvl_rdma_params,
1820 ARRAY_SIZE(ice_dvl_rdma_params));
1821 devl_params_unregister(devlink, ice_dvl_msix_params,
1822 ARRAY_SIZE(ice_dvl_msix_params));
1823
1824 if (hw->func_caps.common_cap.tx_sched_topo_comp_mode_en)
1825 devl_params_unregister(devlink, ice_dvl_sched_params,
1826 ARRAY_SIZE(ice_dvl_sched_params));
1827}
1828
1829#define ICE_DEVLINK_READ_BLK_SIZE (1024 * 1024)
1830
1831static const struct devlink_region_ops ice_nvm_region_ops;
1832static const struct devlink_region_ops ice_sram_region_ops;
1833
1834/**
1835 * ice_devlink_nvm_snapshot - Capture a snapshot of the NVM flash contents
1836 * @devlink: the devlink instance
1837 * @ops: the devlink region to snapshot
1838 * @extack: extended ACK response structure
1839 * @data: on exit points to snapshot data buffer
1840 *
1841 * This function is called in response to a DEVLINK_CMD_REGION_NEW for either
1842 * the nvm-flash or shadow-ram region.
1843 *
1844 * It captures a snapshot of the NVM or Shadow RAM flash contents. This
1845 * snapshot can then later be viewed via the DEVLINK_CMD_REGION_READ netlink
1846 * interface.
1847 *
1848 * @returns zero on success, and updates the data pointer. Returns a non-zero
1849 * error code on failure.
1850 */
1851static int ice_devlink_nvm_snapshot(struct devlink *devlink,
1852 const struct devlink_region_ops *ops,
1853 struct netlink_ext_ack *extack, u8 **data)
1854{
1855 struct ice_pf *pf = devlink_priv(devlink);
1856 struct device *dev = ice_pf_to_dev(pf);
1857 struct ice_hw *hw = &pf->hw;
1858 bool read_shadow_ram;
1859 u8 *nvm_data, *tmp, i;
1860 u32 nvm_size, left;
1861 s8 num_blks;
1862 int status;
1863
1864 if (ops == &ice_nvm_region_ops) {
1865 read_shadow_ram = false;
1866 nvm_size = hw->flash.flash_size;
1867 } else if (ops == &ice_sram_region_ops) {
1868 read_shadow_ram = true;
1869 nvm_size = hw->flash.sr_words * 2u;
1870 } else {
1871 NL_SET_ERR_MSG_MOD(extack, "Unexpected region in snapshot function");
1872 return -EOPNOTSUPP;
1873 }
1874
1875 nvm_data = vzalloc(nvm_size);
1876 if (!nvm_data)
1877 return -ENOMEM;
1878
1879 num_blks = DIV_ROUND_UP(nvm_size, ICE_DEVLINK_READ_BLK_SIZE);
1880 tmp = nvm_data;
1881 left = nvm_size;
1882
1883 /* Some systems take longer to read the NVM than others which causes the
1884 * FW to reclaim the NVM lock before the entire NVM has been read. Fix
1885 * this by breaking the reads of the NVM into smaller chunks that will
1886 * probably not take as long. This has some overhead since we are
1887 * increasing the number of AQ commands, but it should always work
1888 */
1889 for (i = 0; i < num_blks; i++) {
1890 u32 read_sz = min_t(u32, ICE_DEVLINK_READ_BLK_SIZE, left);
1891
1892 status = ice_acquire_nvm(hw, ICE_RES_READ);
1893 if (status) {
1894 dev_dbg(dev, "ice_acquire_nvm failed, err %d aq_err %d\n",
1895 status, hw->adminq.sq_last_status);
1896 NL_SET_ERR_MSG_MOD(extack, "Failed to acquire NVM semaphore");
1897 vfree(nvm_data);
1898 return -EIO;
1899 }
1900
1901 status = ice_read_flat_nvm(hw, i * ICE_DEVLINK_READ_BLK_SIZE,
1902 &read_sz, tmp, read_shadow_ram);
1903 if (status) {
1904 dev_dbg(dev, "ice_read_flat_nvm failed after reading %u bytes, err %d aq_err %d\n",
1905 read_sz, status, hw->adminq.sq_last_status);
1906 NL_SET_ERR_MSG_MOD(extack, "Failed to read NVM contents");
1907 ice_release_nvm(hw);
1908 vfree(nvm_data);
1909 return -EIO;
1910 }
1911 ice_release_nvm(hw);
1912
1913 tmp += read_sz;
1914 left -= read_sz;
1915 }
1916
1917 *data = nvm_data;
1918
1919 return 0;
1920}
1921
1922/**
1923 * ice_devlink_nvm_read - Read a portion of NVM flash contents
1924 * @devlink: the devlink instance
1925 * @ops: the devlink region to snapshot
1926 * @extack: extended ACK response structure
1927 * @offset: the offset to start at
1928 * @size: the amount to read
1929 * @data: the data buffer to read into
1930 *
1931 * This function is called in response to DEVLINK_CMD_REGION_READ to directly
1932 * read a section of the NVM contents.
1933 *
1934 * It reads from either the nvm-flash or shadow-ram region contents.
1935 *
1936 * @returns zero on success, and updates the data pointer. Returns a non-zero
1937 * error code on failure.
1938 */
1939static int ice_devlink_nvm_read(struct devlink *devlink,
1940 const struct devlink_region_ops *ops,
1941 struct netlink_ext_ack *extack,
1942 u64 offset, u32 size, u8 *data)
1943{
1944 struct ice_pf *pf = devlink_priv(devlink);
1945 struct device *dev = ice_pf_to_dev(pf);
1946 struct ice_hw *hw = &pf->hw;
1947 bool read_shadow_ram;
1948 u64 nvm_size;
1949 int status;
1950
1951 if (ops == &ice_nvm_region_ops) {
1952 read_shadow_ram = false;
1953 nvm_size = hw->flash.flash_size;
1954 } else if (ops == &ice_sram_region_ops) {
1955 read_shadow_ram = true;
1956 nvm_size = hw->flash.sr_words * 2u;
1957 } else {
1958 NL_SET_ERR_MSG_MOD(extack, "Unexpected region in snapshot function");
1959 return -EOPNOTSUPP;
1960 }
1961
1962 if (offset + size >= nvm_size) {
1963 NL_SET_ERR_MSG_MOD(extack, "Cannot read beyond the region size");
1964 return -ERANGE;
1965 }
1966
1967 status = ice_acquire_nvm(hw, ICE_RES_READ);
1968 if (status) {
1969 dev_dbg(dev, "ice_acquire_nvm failed, err %d aq_err %d\n",
1970 status, hw->adminq.sq_last_status);
1971 NL_SET_ERR_MSG_MOD(extack, "Failed to acquire NVM semaphore");
1972 return -EIO;
1973 }
1974
1975 status = ice_read_flat_nvm(hw, (u32)offset, &size, data,
1976 read_shadow_ram);
1977 if (status) {
1978 dev_dbg(dev, "ice_read_flat_nvm failed after reading %u bytes, err %d aq_err %d\n",
1979 size, status, hw->adminq.sq_last_status);
1980 NL_SET_ERR_MSG_MOD(extack, "Failed to read NVM contents");
1981 ice_release_nvm(hw);
1982 return -EIO;
1983 }
1984 ice_release_nvm(hw);
1985
1986 return 0;
1987}
1988
1989/**
1990 * ice_devlink_devcaps_snapshot - Capture snapshot of device capabilities
1991 * @devlink: the devlink instance
1992 * @ops: the devlink region being snapshotted
1993 * @extack: extended ACK response structure
1994 * @data: on exit points to snapshot data buffer
1995 *
1996 * This function is called in response to the DEVLINK_CMD_REGION_TRIGGER for
1997 * the device-caps devlink region. It captures a snapshot of the device
1998 * capabilities reported by firmware.
1999 *
2000 * @returns zero on success, and updates the data pointer. Returns a non-zero
2001 * error code on failure.
2002 */
2003static int
2004ice_devlink_devcaps_snapshot(struct devlink *devlink,
2005 const struct devlink_region_ops *ops,
2006 struct netlink_ext_ack *extack, u8 **data)
2007{
2008 struct ice_pf *pf = devlink_priv(devlink);
2009 struct device *dev = ice_pf_to_dev(pf);
2010 struct ice_hw *hw = &pf->hw;
2011 void *devcaps;
2012 int status;
2013
2014 devcaps = vzalloc(ICE_AQ_MAX_BUF_LEN);
2015 if (!devcaps)
2016 return -ENOMEM;
2017
2018 status = ice_aq_list_caps(hw, devcaps, ICE_AQ_MAX_BUF_LEN, NULL,
2019 ice_aqc_opc_list_dev_caps, NULL);
2020 if (status) {
2021 dev_dbg(dev, "ice_aq_list_caps: failed to read device capabilities, err %d aq_err %d\n",
2022 status, hw->adminq.sq_last_status);
2023 NL_SET_ERR_MSG_MOD(extack, "Failed to read device capabilities");
2024 vfree(devcaps);
2025 return status;
2026 }
2027
2028 *data = (u8 *)devcaps;
2029
2030 return 0;
2031}
2032
2033static const struct devlink_region_ops ice_nvm_region_ops = {
2034 .name = "nvm-flash",
2035 .destructor = vfree,
2036 .snapshot = ice_devlink_nvm_snapshot,
2037 .read = ice_devlink_nvm_read,
2038};
2039
2040static const struct devlink_region_ops ice_sram_region_ops = {
2041 .name = "shadow-ram",
2042 .destructor = vfree,
2043 .snapshot = ice_devlink_nvm_snapshot,
2044 .read = ice_devlink_nvm_read,
2045};
2046
2047static const struct devlink_region_ops ice_devcaps_region_ops = {
2048 .name = "device-caps",
2049 .destructor = vfree,
2050 .snapshot = ice_devlink_devcaps_snapshot,
2051};
2052
2053/**
2054 * ice_devlink_init_regions - Initialize devlink regions
2055 * @pf: the PF device structure
2056 *
2057 * Create devlink regions used to enable access to dump the contents of the
2058 * flash memory on the device.
2059 */
2060void ice_devlink_init_regions(struct ice_pf *pf)
2061{
2062 struct devlink *devlink = priv_to_devlink(pf);
2063 struct device *dev = ice_pf_to_dev(pf);
2064 u64 nvm_size, sram_size;
2065
2066 nvm_size = pf->hw.flash.flash_size;
2067 pf->nvm_region = devl_region_create(devlink, &ice_nvm_region_ops, 1,
2068 nvm_size);
2069 if (IS_ERR(pf->nvm_region)) {
2070 dev_err(dev, "failed to create NVM devlink region, err %ld\n",
2071 PTR_ERR(pf->nvm_region));
2072 pf->nvm_region = NULL;
2073 }
2074
2075 sram_size = pf->hw.flash.sr_words * 2u;
2076 pf->sram_region = devl_region_create(devlink, &ice_sram_region_ops,
2077 1, sram_size);
2078 if (IS_ERR(pf->sram_region)) {
2079 dev_err(dev, "failed to create shadow-ram devlink region, err %ld\n",
2080 PTR_ERR(pf->sram_region));
2081 pf->sram_region = NULL;
2082 }
2083
2084 pf->devcaps_region = devl_region_create(devlink,
2085 &ice_devcaps_region_ops, 10,
2086 ICE_AQ_MAX_BUF_LEN);
2087 if (IS_ERR(pf->devcaps_region)) {
2088 dev_err(dev, "failed to create device-caps devlink region, err %ld\n",
2089 PTR_ERR(pf->devcaps_region));
2090 pf->devcaps_region = NULL;
2091 }
2092}
2093
2094/**
2095 * ice_devlink_destroy_regions - Destroy devlink regions
2096 * @pf: the PF device structure
2097 *
2098 * Remove previously created regions for this PF.
2099 */
2100void ice_devlink_destroy_regions(struct ice_pf *pf)
2101{
2102 if (pf->nvm_region)
2103 devl_region_destroy(pf->nvm_region);
2104
2105 if (pf->sram_region)
2106 devl_region_destroy(pf->sram_region);
2107
2108 if (pf->devcaps_region)
2109 devl_region_destroy(pf->devcaps_region);
2110}