Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/drivers/mmc/core/core.c
4 *
5 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
6 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
7 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
8 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
9 */
10#include <linux/module.h>
11#include <linux/init.h>
12#include <linux/interrupt.h>
13#include <linux/completion.h>
14#include <linux/device.h>
15#include <linux/delay.h>
16#include <linux/pagemap.h>
17#include <linux/err.h>
18#include <linux/leds.h>
19#include <linux/scatterlist.h>
20#include <linux/log2.h>
21#include <linux/pm_runtime.h>
22#include <linux/suspend.h>
23#include <linux/fault-inject.h>
24#include <linux/random.h>
25#include <linux/slab.h>
26#include <linux/of.h>
27
28#include <linux/mmc/card.h>
29#include <linux/mmc/host.h>
30#include <linux/mmc/mmc.h>
31#include <linux/mmc/sd.h>
32#include <linux/mmc/slot-gpio.h>
33
34#define CREATE_TRACE_POINTS
35#include <trace/events/mmc.h>
36
37#include "core.h"
38#include "card.h"
39#include "crypto.h"
40#include "bus.h"
41#include "host.h"
42#include "sdio_bus.h"
43#include "pwrseq.h"
44
45#include "mmc_ops.h"
46#include "sd_ops.h"
47#include "sdio_ops.h"
48
49/* The max erase timeout, used when host->max_busy_timeout isn't specified */
50#define MMC_ERASE_TIMEOUT_MS (60 * 1000) /* 60 s */
51#define SD_DISCARD_TIMEOUT_MS (250)
52
53static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
54
55/*
56 * Enabling software CRCs on the data blocks can be a significant (30%)
57 * performance cost, and for other reasons may not always be desired.
58 * So we allow it to be disabled.
59 */
60bool use_spi_crc = 1;
61module_param(use_spi_crc, bool, 0);
62
63static int mmc_schedule_delayed_work(struct delayed_work *work,
64 unsigned long delay)
65{
66 /*
67 * We use the system_freezable_wq, because of two reasons.
68 * First, it allows several works (not the same work item) to be
69 * executed simultaneously. Second, the queue becomes frozen when
70 * userspace becomes frozen during system PM.
71 */
72 return queue_delayed_work(system_freezable_wq, work, delay);
73}
74
75#ifdef CONFIG_FAIL_MMC_REQUEST
76
77/*
78 * Internal function. Inject random data errors.
79 * If mmc_data is NULL no errors are injected.
80 */
81static void mmc_should_fail_request(struct mmc_host *host,
82 struct mmc_request *mrq)
83{
84 struct mmc_command *cmd = mrq->cmd;
85 struct mmc_data *data = mrq->data;
86 static const int data_errors[] = {
87 -ETIMEDOUT,
88 -EILSEQ,
89 -EIO,
90 };
91
92 if (!data)
93 return;
94
95 if ((cmd && cmd->error) || data->error ||
96 !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
97 return;
98
99 data->error = data_errors[get_random_u32_below(ARRAY_SIZE(data_errors))];
100 data->bytes_xfered = get_random_u32_below(data->bytes_xfered >> 9) << 9;
101}
102
103#else /* CONFIG_FAIL_MMC_REQUEST */
104
105static inline void mmc_should_fail_request(struct mmc_host *host,
106 struct mmc_request *mrq)
107{
108}
109
110#endif /* CONFIG_FAIL_MMC_REQUEST */
111
112static inline void mmc_complete_cmd(struct mmc_request *mrq)
113{
114 if (mrq->cap_cmd_during_tfr && !completion_done(&mrq->cmd_completion))
115 complete_all(&mrq->cmd_completion);
116}
117
118void mmc_command_done(struct mmc_host *host, struct mmc_request *mrq)
119{
120 if (!mrq->cap_cmd_during_tfr)
121 return;
122
123 mmc_complete_cmd(mrq);
124
125 pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n",
126 mmc_hostname(host), mrq->cmd->opcode);
127}
128EXPORT_SYMBOL(mmc_command_done);
129
130/**
131 * mmc_request_done - finish processing an MMC request
132 * @host: MMC host which completed request
133 * @mrq: MMC request which request
134 *
135 * MMC drivers should call this function when they have completed
136 * their processing of a request.
137 */
138void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
139{
140 struct mmc_command *cmd = mrq->cmd;
141 int err = cmd->error;
142
143 /* Flag re-tuning needed on CRC errors */
144 if (!mmc_op_tuning(cmd->opcode) &&
145 !host->retune_crc_disable &&
146 (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) ||
147 (mrq->data && mrq->data->error == -EILSEQ) ||
148 (mrq->stop && mrq->stop->error == -EILSEQ)))
149 mmc_retune_needed(host);
150
151 if (err && cmd->retries && mmc_host_is_spi(host)) {
152 if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
153 cmd->retries = 0;
154 }
155
156 if (host->ongoing_mrq == mrq)
157 host->ongoing_mrq = NULL;
158
159 mmc_complete_cmd(mrq);
160
161 trace_mmc_request_done(host, mrq);
162
163 /*
164 * We list various conditions for the command to be considered
165 * properly done:
166 *
167 * - There was no error, OK fine then
168 * - We are not doing some kind of retry
169 * - The card was removed (...so just complete everything no matter
170 * if there are errors or retries)
171 */
172 if (!err || !cmd->retries || mmc_card_removed(host->card)) {
173 mmc_should_fail_request(host, mrq);
174
175 if (!host->ongoing_mrq)
176 led_trigger_event(host->led, LED_OFF);
177
178 if (mrq->sbc) {
179 pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
180 mmc_hostname(host), mrq->sbc->opcode,
181 mrq->sbc->error,
182 mrq->sbc->resp[0], mrq->sbc->resp[1],
183 mrq->sbc->resp[2], mrq->sbc->resp[3]);
184 }
185
186 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
187 mmc_hostname(host), cmd->opcode, err,
188 cmd->resp[0], cmd->resp[1],
189 cmd->resp[2], cmd->resp[3]);
190
191 if (mrq->data) {
192 pr_debug("%s: %d bytes transferred: %d\n",
193 mmc_hostname(host),
194 mrq->data->bytes_xfered, mrq->data->error);
195 }
196
197 if (mrq->stop) {
198 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
199 mmc_hostname(host), mrq->stop->opcode,
200 mrq->stop->error,
201 mrq->stop->resp[0], mrq->stop->resp[1],
202 mrq->stop->resp[2], mrq->stop->resp[3]);
203 }
204 }
205 /*
206 * Request starter must handle retries - see
207 * mmc_wait_for_req_done().
208 */
209 if (mrq->done)
210 mrq->done(mrq);
211}
212
213EXPORT_SYMBOL(mmc_request_done);
214
215static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
216{
217 int err;
218
219 /* Assumes host controller has been runtime resumed by mmc_claim_host */
220 err = mmc_retune(host);
221 if (err) {
222 mrq->cmd->error = err;
223 mmc_request_done(host, mrq);
224 return;
225 }
226
227 /*
228 * For sdio rw commands we must wait for card busy otherwise some
229 * sdio devices won't work properly.
230 * And bypass I/O abort, reset and bus suspend operations.
231 */
232 if (sdio_is_io_busy(mrq->cmd->opcode, mrq->cmd->arg) &&
233 host->ops->card_busy) {
234 int tries = 500; /* Wait aprox 500ms at maximum */
235
236 while (host->ops->card_busy(host) && --tries)
237 mmc_delay(1);
238
239 if (tries == 0) {
240 mrq->cmd->error = -EBUSY;
241 mmc_request_done(host, mrq);
242 return;
243 }
244 }
245
246 if (mrq->cap_cmd_during_tfr) {
247 host->ongoing_mrq = mrq;
248 /*
249 * Retry path could come through here without having waiting on
250 * cmd_completion, so ensure it is reinitialised.
251 */
252 reinit_completion(&mrq->cmd_completion);
253 }
254
255 trace_mmc_request_start(host, mrq);
256
257 if (host->cqe_on)
258 host->cqe_ops->cqe_off(host);
259
260 host->ops->request(host, mrq);
261}
262
263static void mmc_mrq_pr_debug(struct mmc_host *host, struct mmc_request *mrq,
264 bool cqe)
265{
266 if (mrq->sbc) {
267 pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
268 mmc_hostname(host), mrq->sbc->opcode,
269 mrq->sbc->arg, mrq->sbc->flags);
270 }
271
272 if (mrq->cmd) {
273 pr_debug("%s: starting %sCMD%u arg %08x flags %08x\n",
274 mmc_hostname(host), cqe ? "CQE direct " : "",
275 mrq->cmd->opcode, mrq->cmd->arg, mrq->cmd->flags);
276 } else if (cqe) {
277 pr_debug("%s: starting CQE transfer for tag %d blkaddr %u\n",
278 mmc_hostname(host), mrq->tag, mrq->data->blk_addr);
279 }
280
281 if (mrq->data) {
282 pr_debug("%s: blksz %d blocks %d flags %08x "
283 "tsac %d ms nsac %d\n",
284 mmc_hostname(host), mrq->data->blksz,
285 mrq->data->blocks, mrq->data->flags,
286 mrq->data->timeout_ns / 1000000,
287 mrq->data->timeout_clks);
288 }
289
290 if (mrq->stop) {
291 pr_debug("%s: CMD%u arg %08x flags %08x\n",
292 mmc_hostname(host), mrq->stop->opcode,
293 mrq->stop->arg, mrq->stop->flags);
294 }
295}
296
297static int mmc_mrq_prep(struct mmc_host *host, struct mmc_request *mrq)
298{
299 unsigned int i, sz = 0;
300 struct scatterlist *sg;
301
302 if (mrq->cmd) {
303 mrq->cmd->error = 0;
304 mrq->cmd->mrq = mrq;
305 mrq->cmd->data = mrq->data;
306 }
307 if (mrq->sbc) {
308 mrq->sbc->error = 0;
309 mrq->sbc->mrq = mrq;
310 }
311 if (mrq->data) {
312 if (mrq->data->blksz > host->max_blk_size ||
313 mrq->data->blocks > host->max_blk_count ||
314 mrq->data->blocks * mrq->data->blksz > host->max_req_size)
315 return -EINVAL;
316
317 for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
318 sz += sg->length;
319 if (sz != mrq->data->blocks * mrq->data->blksz)
320 return -EINVAL;
321
322 mrq->data->error = 0;
323 mrq->data->mrq = mrq;
324 if (mrq->stop) {
325 mrq->data->stop = mrq->stop;
326 mrq->stop->error = 0;
327 mrq->stop->mrq = mrq;
328 }
329 }
330
331 return 0;
332}
333
334int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
335{
336 int err;
337
338 if (mrq->cmd->has_ext_addr)
339 mmc_send_ext_addr(host, mrq->cmd->ext_addr);
340
341 init_completion(&mrq->cmd_completion);
342
343 mmc_retune_hold(host);
344
345 if (mmc_card_removed(host->card))
346 return -ENOMEDIUM;
347
348 mmc_mrq_pr_debug(host, mrq, false);
349
350 WARN_ON(!host->claimed);
351
352 err = mmc_mrq_prep(host, mrq);
353 if (err)
354 return err;
355
356 if (host->uhs2_sd_tran)
357 mmc_uhs2_prepare_cmd(host, mrq);
358
359 led_trigger_event(host->led, LED_FULL);
360 __mmc_start_request(host, mrq);
361
362 return 0;
363}
364EXPORT_SYMBOL(mmc_start_request);
365
366static void mmc_wait_done(struct mmc_request *mrq)
367{
368 complete(&mrq->completion);
369}
370
371static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host *host)
372{
373 struct mmc_request *ongoing_mrq = READ_ONCE(host->ongoing_mrq);
374
375 /*
376 * If there is an ongoing transfer, wait for the command line to become
377 * available.
378 */
379 if (ongoing_mrq && !completion_done(&ongoing_mrq->cmd_completion))
380 wait_for_completion(&ongoing_mrq->cmd_completion);
381}
382
383static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
384{
385 int err;
386
387 mmc_wait_ongoing_tfr_cmd(host);
388
389 init_completion(&mrq->completion);
390 mrq->done = mmc_wait_done;
391
392 err = mmc_start_request(host, mrq);
393 if (err) {
394 mrq->cmd->error = err;
395 mmc_complete_cmd(mrq);
396 complete(&mrq->completion);
397 }
398
399 return err;
400}
401
402void mmc_wait_for_req_done(struct mmc_host *host, struct mmc_request *mrq)
403{
404 struct mmc_command *cmd;
405
406 while (1) {
407 wait_for_completion(&mrq->completion);
408
409 cmd = mrq->cmd;
410
411 if (!cmd->error || !cmd->retries ||
412 mmc_card_removed(host->card))
413 break;
414
415 mmc_retune_recheck(host);
416
417 pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
418 mmc_hostname(host), cmd->opcode, cmd->error);
419 cmd->retries--;
420 cmd->error = 0;
421 __mmc_start_request(host, mrq);
422 }
423
424 mmc_retune_release(host);
425}
426EXPORT_SYMBOL(mmc_wait_for_req_done);
427
428/*
429 * mmc_cqe_start_req - Start a CQE request.
430 * @host: MMC host to start the request
431 * @mrq: request to start
432 *
433 * Start the request, re-tuning if needed and it is possible. Returns an error
434 * code if the request fails to start or -EBUSY if CQE is busy.
435 */
436int mmc_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
437{
438 int err;
439
440 /*
441 * CQE cannot process re-tuning commands. Caller must hold retuning
442 * while CQE is in use. Re-tuning can happen here only when CQE has no
443 * active requests i.e. this is the first. Note, re-tuning will call
444 * ->cqe_off().
445 */
446 err = mmc_retune(host);
447 if (err)
448 goto out_err;
449
450 mrq->host = host;
451
452 mmc_mrq_pr_debug(host, mrq, true);
453
454 err = mmc_mrq_prep(host, mrq);
455 if (err)
456 goto out_err;
457
458 if (host->uhs2_sd_tran)
459 mmc_uhs2_prepare_cmd(host, mrq);
460
461 err = host->cqe_ops->cqe_request(host, mrq);
462 if (err)
463 goto out_err;
464
465 trace_mmc_request_start(host, mrq);
466
467 return 0;
468
469out_err:
470 if (mrq->cmd) {
471 pr_debug("%s: failed to start CQE direct CMD%u, error %d\n",
472 mmc_hostname(host), mrq->cmd->opcode, err);
473 } else {
474 pr_debug("%s: failed to start CQE transfer for tag %d, error %d\n",
475 mmc_hostname(host), mrq->tag, err);
476 }
477 return err;
478}
479EXPORT_SYMBOL(mmc_cqe_start_req);
480
481/**
482 * mmc_cqe_request_done - CQE has finished processing an MMC request
483 * @host: MMC host which completed request
484 * @mrq: MMC request which completed
485 *
486 * CQE drivers should call this function when they have completed
487 * their processing of a request.
488 */
489void mmc_cqe_request_done(struct mmc_host *host, struct mmc_request *mrq)
490{
491 mmc_should_fail_request(host, mrq);
492
493 /* Flag re-tuning needed on CRC errors */
494 if ((mrq->cmd && mrq->cmd->error == -EILSEQ) ||
495 (mrq->data && mrq->data->error == -EILSEQ))
496 mmc_retune_needed(host);
497
498 trace_mmc_request_done(host, mrq);
499
500 if (mrq->cmd) {
501 pr_debug("%s: CQE req done (direct CMD%u): %d\n",
502 mmc_hostname(host), mrq->cmd->opcode, mrq->cmd->error);
503 } else {
504 pr_debug("%s: CQE transfer done tag %d\n",
505 mmc_hostname(host), mrq->tag);
506 }
507
508 if (mrq->data) {
509 pr_debug("%s: %d bytes transferred: %d\n",
510 mmc_hostname(host),
511 mrq->data->bytes_xfered, mrq->data->error);
512 }
513
514 mrq->done(mrq);
515}
516EXPORT_SYMBOL(mmc_cqe_request_done);
517
518/**
519 * mmc_cqe_post_req - CQE post process of a completed MMC request
520 * @host: MMC host
521 * @mrq: MMC request to be processed
522 */
523void mmc_cqe_post_req(struct mmc_host *host, struct mmc_request *mrq)
524{
525 if (host->cqe_ops->cqe_post_req)
526 host->cqe_ops->cqe_post_req(host, mrq);
527}
528EXPORT_SYMBOL(mmc_cqe_post_req);
529
530/* Arbitrary 1 second timeout */
531#define MMC_CQE_RECOVERY_TIMEOUT 1000
532
533/*
534 * mmc_cqe_recovery - Recover from CQE errors.
535 * @host: MMC host to recover
536 *
537 * Recovery consists of stopping CQE, stopping eMMC, discarding the queue
538 * in eMMC, and discarding the queue in CQE. CQE must call
539 * mmc_cqe_request_done() on all requests. An error is returned if the eMMC
540 * fails to discard its queue.
541 */
542int mmc_cqe_recovery(struct mmc_host *host)
543{
544 struct mmc_command cmd;
545 int err;
546
547 mmc_retune_hold_now(host);
548
549 /*
550 * Recovery is expected seldom, if at all, but it reduces performance,
551 * so make sure it is not completely silent.
552 */
553 pr_warn("%s: running CQE recovery\n", mmc_hostname(host));
554
555 host->cqe_ops->cqe_recovery_start(host);
556
557 memset(&cmd, 0, sizeof(cmd));
558 cmd.opcode = MMC_STOP_TRANSMISSION;
559 cmd.flags = MMC_RSP_R1B_NO_CRC | MMC_CMD_AC; /* Ignore CRC */
560 cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT;
561 mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
562
563 mmc_poll_for_busy(host->card, MMC_CQE_RECOVERY_TIMEOUT, true, MMC_BUSY_IO);
564
565 memset(&cmd, 0, sizeof(cmd));
566 cmd.opcode = MMC_CMDQ_TASK_MGMT;
567 cmd.arg = 1; /* Discard entire queue */
568 cmd.flags = MMC_RSP_R1B_NO_CRC | MMC_CMD_AC; /* Ignore CRC */
569 cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT;
570 err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
571
572 host->cqe_ops->cqe_recovery_finish(host);
573
574 if (err)
575 err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
576
577 mmc_retune_release(host);
578
579 return err;
580}
581EXPORT_SYMBOL(mmc_cqe_recovery);
582
583/**
584 * mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done
585 * @host: MMC host
586 * @mrq: MMC request
587 *
588 * mmc_is_req_done() is used with requests that have
589 * mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after
590 * starting a request and before waiting for it to complete. That is,
591 * either in between calls to mmc_start_req(), or after mmc_wait_for_req()
592 * and before mmc_wait_for_req_done(). If it is called at other times the
593 * result is not meaningful.
594 */
595bool mmc_is_req_done(struct mmc_host *host, struct mmc_request *mrq)
596{
597 return completion_done(&mrq->completion);
598}
599EXPORT_SYMBOL(mmc_is_req_done);
600
601/**
602 * mmc_wait_for_req - start a request and wait for completion
603 * @host: MMC host to start command
604 * @mrq: MMC request to start
605 *
606 * Start a new MMC custom command request for a host, and wait
607 * for the command to complete. In the case of 'cap_cmd_during_tfr'
608 * requests, the transfer is ongoing and the caller can issue further
609 * commands that do not use the data lines, and then wait by calling
610 * mmc_wait_for_req_done().
611 * Does not attempt to parse the response.
612 */
613void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
614{
615 __mmc_start_req(host, mrq);
616
617 if (!mrq->cap_cmd_during_tfr)
618 mmc_wait_for_req_done(host, mrq);
619}
620EXPORT_SYMBOL(mmc_wait_for_req);
621
622/**
623 * mmc_wait_for_cmd - start a command and wait for completion
624 * @host: MMC host to start command
625 * @cmd: MMC command to start
626 * @retries: maximum number of retries
627 *
628 * Start a new MMC command for a host, and wait for the command
629 * to complete. Return any error that occurred while the command
630 * was executing. Do not attempt to parse the response.
631 */
632int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
633{
634 struct mmc_request mrq = {};
635
636 WARN_ON(!host->claimed);
637
638 memset(cmd->resp, 0, sizeof(cmd->resp));
639 cmd->retries = retries;
640
641 mrq.cmd = cmd;
642 cmd->data = NULL;
643
644 mmc_wait_for_req(host, &mrq);
645
646 return cmd->error;
647}
648
649EXPORT_SYMBOL(mmc_wait_for_cmd);
650
651/**
652 * mmc_set_data_timeout - set the timeout for a data command
653 * @data: data phase for command
654 * @card: the MMC card associated with the data transfer
655 *
656 * Computes the data timeout parameters according to the
657 * correct algorithm given the card type.
658 */
659void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
660{
661 unsigned int mult;
662
663 /*
664 * SDIO cards only define an upper 1 s limit on access.
665 */
666 if (mmc_card_sdio(card)) {
667 data->timeout_ns = 1000000000;
668 data->timeout_clks = 0;
669 return;
670 }
671
672 /*
673 * SD cards use a 100 multiplier rather than 10
674 */
675 mult = mmc_card_sd(card) ? 100 : 10;
676
677 /*
678 * Scale up the multiplier (and therefore the timeout) by
679 * the r2w factor for writes.
680 */
681 if (data->flags & MMC_DATA_WRITE)
682 mult <<= card->csd.r2w_factor;
683
684 data->timeout_ns = card->csd.taac_ns * mult;
685 data->timeout_clks = card->csd.taac_clks * mult;
686
687 /*
688 * SD cards also have an upper limit on the timeout.
689 */
690 if (mmc_card_sd(card)) {
691 unsigned int timeout_us, limit_us;
692
693 timeout_us = data->timeout_ns / 1000;
694 if (card->host->ios.clock)
695 timeout_us += data->timeout_clks * 1000 /
696 (card->host->ios.clock / 1000);
697
698 if (data->flags & MMC_DATA_WRITE)
699 /*
700 * The MMC spec "It is strongly recommended
701 * for hosts to implement more than 500ms
702 * timeout value even if the card indicates
703 * the 250ms maximum busy length." Even the
704 * previous value of 300ms is known to be
705 * insufficient for some cards.
706 */
707 limit_us = 3000000;
708 else
709 limit_us = 100000;
710
711 /*
712 * SDHC cards always use these fixed values.
713 */
714 if (timeout_us > limit_us) {
715 data->timeout_ns = limit_us * 1000;
716 data->timeout_clks = 0;
717 }
718
719 /* assign limit value if invalid */
720 if (timeout_us == 0)
721 data->timeout_ns = limit_us * 1000;
722 }
723
724 /*
725 * Some cards require longer data read timeout than indicated in CSD.
726 * Address this by setting the read timeout to a "reasonably high"
727 * value. For the cards tested, 600ms has proven enough. If necessary,
728 * this value can be increased if other problematic cards require this.
729 */
730 if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
731 data->timeout_ns = 600000000;
732 data->timeout_clks = 0;
733 }
734
735 /*
736 * Some cards need very high timeouts if driven in SPI mode.
737 * The worst observed timeout was 900ms after writing a
738 * continuous stream of data until the internal logic
739 * overflowed.
740 */
741 if (mmc_host_is_spi(card->host)) {
742 if (data->flags & MMC_DATA_WRITE) {
743 if (data->timeout_ns < 1000000000)
744 data->timeout_ns = 1000000000; /* 1s */
745 } else {
746 if (data->timeout_ns < 100000000)
747 data->timeout_ns = 100000000; /* 100ms */
748 }
749 }
750}
751EXPORT_SYMBOL(mmc_set_data_timeout);
752
753/*
754 * Allow claiming an already claimed host if the context is the same or there is
755 * no context but the task is the same.
756 */
757static inline bool mmc_ctx_matches(struct mmc_host *host, struct mmc_ctx *ctx,
758 struct task_struct *task)
759{
760 return host->claimer == ctx ||
761 (!ctx && task && host->claimer->task == task);
762}
763
764static inline void mmc_ctx_set_claimer(struct mmc_host *host,
765 struct mmc_ctx *ctx,
766 struct task_struct *task)
767{
768 if (!host->claimer) {
769 if (ctx)
770 host->claimer = ctx;
771 else
772 host->claimer = &host->default_ctx;
773 }
774 if (task)
775 host->claimer->task = task;
776}
777
778/**
779 * __mmc_claim_host - exclusively claim a host
780 * @host: mmc host to claim
781 * @ctx: context that claims the host or NULL in which case the default
782 * context will be used
783 * @abort: whether or not the operation should be aborted
784 *
785 * Claim a host for a set of operations. If @abort is non null and
786 * dereference a non-zero value then this will return prematurely with
787 * that non-zero value without acquiring the lock. Returns zero
788 * with the lock held otherwise.
789 */
790int __mmc_claim_host(struct mmc_host *host, struct mmc_ctx *ctx,
791 atomic_t *abort)
792{
793 struct task_struct *task = ctx ? NULL : current;
794 DECLARE_WAITQUEUE(wait, current);
795 unsigned long flags;
796 int stop;
797 bool pm = false;
798
799 might_sleep();
800
801 add_wait_queue(&host->wq, &wait);
802 spin_lock_irqsave(&host->lock, flags);
803 while (1) {
804 set_current_state(TASK_UNINTERRUPTIBLE);
805 stop = abort ? atomic_read(abort) : 0;
806 if (stop || !host->claimed || mmc_ctx_matches(host, ctx, task))
807 break;
808 spin_unlock_irqrestore(&host->lock, flags);
809 schedule();
810 spin_lock_irqsave(&host->lock, flags);
811 }
812 set_current_state(TASK_RUNNING);
813 if (!stop) {
814 host->claimed = 1;
815 mmc_ctx_set_claimer(host, ctx, task);
816 host->claim_cnt += 1;
817 if (host->claim_cnt == 1)
818 pm = true;
819 } else
820 wake_up(&host->wq);
821 spin_unlock_irqrestore(&host->lock, flags);
822 remove_wait_queue(&host->wq, &wait);
823
824 if (pm)
825 pm_runtime_get_sync(mmc_dev(host));
826
827 return stop;
828}
829EXPORT_SYMBOL(__mmc_claim_host);
830
831/**
832 * mmc_release_host - release a host
833 * @host: mmc host to release
834 *
835 * Release a MMC host, allowing others to claim the host
836 * for their operations.
837 */
838void mmc_release_host(struct mmc_host *host)
839{
840 unsigned long flags;
841
842 WARN_ON(!host->claimed);
843
844 spin_lock_irqsave(&host->lock, flags);
845 if (--host->claim_cnt) {
846 /* Release for nested claim */
847 spin_unlock_irqrestore(&host->lock, flags);
848 } else {
849 host->claimed = 0;
850 host->claimer->task = NULL;
851 host->claimer = NULL;
852 spin_unlock_irqrestore(&host->lock, flags);
853 wake_up(&host->wq);
854 pm_runtime_mark_last_busy(mmc_dev(host));
855 if (host->caps & MMC_CAP_SYNC_RUNTIME_PM)
856 pm_runtime_put_sync_suspend(mmc_dev(host));
857 else
858 pm_runtime_put_autosuspend(mmc_dev(host));
859 }
860}
861EXPORT_SYMBOL(mmc_release_host);
862
863/*
864 * This is a helper function, which fetches a runtime pm reference for the
865 * card device and also claims the host.
866 */
867void mmc_get_card(struct mmc_card *card, struct mmc_ctx *ctx)
868{
869 pm_runtime_get_sync(&card->dev);
870 __mmc_claim_host(card->host, ctx, NULL);
871}
872EXPORT_SYMBOL(mmc_get_card);
873
874/*
875 * This is a helper function, which releases the host and drops the runtime
876 * pm reference for the card device.
877 */
878void mmc_put_card(struct mmc_card *card, struct mmc_ctx *ctx)
879{
880 struct mmc_host *host = card->host;
881
882 WARN_ON(ctx && host->claimer != ctx);
883
884 mmc_release_host(host);
885 pm_runtime_put_autosuspend(&card->dev);
886}
887EXPORT_SYMBOL(mmc_put_card);
888
889/*
890 * Internal function that does the actual ios call to the host driver,
891 * optionally printing some debug output.
892 */
893static inline void mmc_set_ios(struct mmc_host *host)
894{
895 struct mmc_ios *ios = &host->ios;
896
897 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
898 "width %u timing %u\n",
899 mmc_hostname(host), ios->clock, ios->bus_mode,
900 ios->power_mode, ios->chip_select, ios->vdd,
901 1 << ios->bus_width, ios->timing);
902
903 host->ops->set_ios(host, ios);
904}
905
906/*
907 * Control chip select pin on a host.
908 */
909void mmc_set_chip_select(struct mmc_host *host, int mode)
910{
911 host->ios.chip_select = mode;
912 mmc_set_ios(host);
913}
914
915/*
916 * Sets the host clock to the highest possible frequency that
917 * is below "hz".
918 */
919void mmc_set_clock(struct mmc_host *host, unsigned int hz)
920{
921 WARN_ON(hz && hz < host->f_min);
922
923 if (hz > host->f_max)
924 hz = host->f_max;
925
926 host->ios.clock = hz;
927 mmc_set_ios(host);
928}
929
930int mmc_execute_tuning(struct mmc_card *card)
931{
932 struct mmc_host *host = card->host;
933 u32 opcode;
934 int err;
935
936 if (!host->ops->execute_tuning)
937 return 0;
938
939 if (host->cqe_on)
940 host->cqe_ops->cqe_off(host);
941
942 if (mmc_card_mmc(card))
943 opcode = MMC_SEND_TUNING_BLOCK_HS200;
944 else
945 opcode = MMC_SEND_TUNING_BLOCK;
946
947 err = host->ops->execute_tuning(host, opcode);
948 if (!err) {
949 mmc_retune_clear(host);
950 mmc_retune_enable(host);
951 return 0;
952 }
953
954 /* Only print error when we don't check for card removal */
955 if (!host->detect_change) {
956 pr_err("%s: tuning execution failed: %d\n",
957 mmc_hostname(host), err);
958 mmc_debugfs_err_stats_inc(host, MMC_ERR_TUNING);
959 }
960
961 return err;
962}
963
964/*
965 * Change the bus mode (open drain/push-pull) of a host.
966 */
967void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
968{
969 host->ios.bus_mode = mode;
970 mmc_set_ios(host);
971}
972
973/*
974 * Change data bus width of a host.
975 */
976void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
977{
978 host->ios.bus_width = width;
979 mmc_set_ios(host);
980}
981
982/*
983 * Set initial state after a power cycle or a hw_reset.
984 */
985void mmc_set_initial_state(struct mmc_host *host)
986{
987 if (host->cqe_on)
988 host->cqe_ops->cqe_off(host);
989
990 mmc_retune_disable(host);
991
992 if (mmc_host_is_spi(host))
993 host->ios.chip_select = MMC_CS_HIGH;
994 else
995 host->ios.chip_select = MMC_CS_DONTCARE;
996 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
997 host->ios.bus_width = MMC_BUS_WIDTH_1;
998 host->ios.timing = MMC_TIMING_LEGACY;
999 host->ios.drv_type = 0;
1000 host->ios.enhanced_strobe = false;
1001
1002 /*
1003 * Make sure we are in non-enhanced strobe mode before we
1004 * actually enable it in ext_csd.
1005 */
1006 if ((host->caps2 & MMC_CAP2_HS400_ES) &&
1007 host->ops->hs400_enhanced_strobe)
1008 host->ops->hs400_enhanced_strobe(host, &host->ios);
1009
1010 mmc_set_ios(host);
1011
1012 mmc_crypto_set_initial_state(host);
1013}
1014
1015/**
1016 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1017 * @vdd: voltage (mV)
1018 * @low_bits: prefer low bits in boundary cases
1019 *
1020 * This function returns the OCR bit number according to the provided @vdd
1021 * value. If conversion is not possible a negative errno value returned.
1022 *
1023 * Depending on the @low_bits flag the function prefers low or high OCR bits
1024 * on boundary voltages. For example,
1025 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1026 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1027 *
1028 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1029 */
1030static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1031{
1032 const int max_bit = ilog2(MMC_VDD_35_36);
1033 int bit;
1034
1035 if (vdd < 1650 || vdd > 3600)
1036 return -EINVAL;
1037
1038 if (vdd >= 1650 && vdd <= 1950)
1039 return ilog2(MMC_VDD_165_195);
1040
1041 if (low_bits)
1042 vdd -= 1;
1043
1044 /* Base 2000 mV, step 100 mV, bit's base 8. */
1045 bit = (vdd - 2000) / 100 + 8;
1046 if (bit > max_bit)
1047 return max_bit;
1048 return bit;
1049}
1050
1051/**
1052 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1053 * @vdd_min: minimum voltage value (mV)
1054 * @vdd_max: maximum voltage value (mV)
1055 *
1056 * This function returns the OCR mask bits according to the provided @vdd_min
1057 * and @vdd_max values. If conversion is not possible the function returns 0.
1058 *
1059 * Notes wrt boundary cases:
1060 * This function sets the OCR bits for all boundary voltages, for example
1061 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1062 * MMC_VDD_34_35 mask.
1063 */
1064u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1065{
1066 u32 mask = 0;
1067
1068 if (vdd_max < vdd_min)
1069 return 0;
1070
1071 /* Prefer high bits for the boundary vdd_max values. */
1072 vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1073 if (vdd_max < 0)
1074 return 0;
1075
1076 /* Prefer low bits for the boundary vdd_min values. */
1077 vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1078 if (vdd_min < 0)
1079 return 0;
1080
1081 /* Fill the mask, from max bit to min bit. */
1082 while (vdd_max >= vdd_min)
1083 mask |= 1 << vdd_max--;
1084
1085 return mask;
1086}
1087
1088static int mmc_of_get_func_num(struct device_node *node)
1089{
1090 u32 reg;
1091 int ret;
1092
1093 ret = of_property_read_u32(node, "reg", ®);
1094 if (ret < 0)
1095 return ret;
1096
1097 return reg;
1098}
1099
1100struct device_node *mmc_of_find_child_device(struct mmc_host *host,
1101 unsigned func_num)
1102{
1103 struct device_node *node;
1104
1105 if (!host->parent || !host->parent->of_node)
1106 return NULL;
1107
1108 for_each_child_of_node(host->parent->of_node, node) {
1109 if (mmc_of_get_func_num(node) == func_num)
1110 return node;
1111 }
1112
1113 return NULL;
1114}
1115
1116/*
1117 * Mask off any voltages we don't support and select
1118 * the lowest voltage
1119 */
1120u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1121{
1122 int bit;
1123
1124 /*
1125 * Sanity check the voltages that the card claims to
1126 * support.
1127 */
1128 if (ocr & 0x7F) {
1129 dev_warn(mmc_dev(host),
1130 "card claims to support voltages below defined range\n");
1131 ocr &= ~0x7F;
1132 }
1133
1134 ocr &= host->ocr_avail;
1135 if (!ocr) {
1136 dev_warn(mmc_dev(host), "no support for card's volts\n");
1137 return 0;
1138 }
1139
1140 if (!mmc_card_uhs2(host) && host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1141 bit = ffs(ocr) - 1;
1142 ocr &= 3 << bit;
1143 mmc_power_cycle(host, ocr);
1144 } else {
1145 bit = fls(ocr) - 1;
1146 /*
1147 * The bit variable represents the highest voltage bit set in
1148 * the OCR register.
1149 * To keep a range of 2 values (e.g. 3.2V/3.3V and 3.3V/3.4V),
1150 * we must shift the mask '3' with (bit - 1).
1151 */
1152 ocr &= 3 << (bit - 1);
1153 if (bit != host->ios.vdd)
1154 dev_warn(mmc_dev(host), "exceeding card's volts\n");
1155 }
1156
1157 return ocr;
1158}
1159
1160int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1161{
1162 int err = 0;
1163 int old_signal_voltage = host->ios.signal_voltage;
1164
1165 host->ios.signal_voltage = signal_voltage;
1166 if (host->ops->start_signal_voltage_switch)
1167 err = host->ops->start_signal_voltage_switch(host, &host->ios);
1168
1169 if (err)
1170 host->ios.signal_voltage = old_signal_voltage;
1171
1172 return err;
1173
1174}
1175
1176void mmc_set_initial_signal_voltage(struct mmc_host *host)
1177{
1178 /* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1179 if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330))
1180 dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
1181 else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1182 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
1183 else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120))
1184 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
1185}
1186
1187int mmc_host_set_uhs_voltage(struct mmc_host *host)
1188{
1189 u32 clock;
1190
1191 /*
1192 * During a signal voltage level switch, the clock must be gated
1193 * for 5 ms according to the SD spec
1194 */
1195 clock = host->ios.clock;
1196 host->ios.clock = 0;
1197 mmc_set_ios(host);
1198
1199 if (mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1200 return -EAGAIN;
1201
1202 /* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1203 mmc_delay(10);
1204 host->ios.clock = clock;
1205 mmc_set_ios(host);
1206
1207 return 0;
1208}
1209
1210int mmc_set_uhs_voltage(struct mmc_host *host, u32 ocr)
1211{
1212 struct mmc_command cmd = {};
1213 int err = 0;
1214
1215 /*
1216 * If we cannot switch voltages, return failure so the caller
1217 * can continue without UHS mode
1218 */
1219 if (!host->ops->start_signal_voltage_switch)
1220 return -EPERM;
1221 if (!host->ops->card_busy)
1222 pr_warn("%s: cannot verify signal voltage switch\n",
1223 mmc_hostname(host));
1224
1225 cmd.opcode = SD_SWITCH_VOLTAGE;
1226 cmd.arg = 0;
1227 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1228
1229 err = mmc_wait_for_cmd(host, &cmd, 0);
1230 if (err)
1231 goto power_cycle;
1232
1233 if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1234 return -EIO;
1235
1236 /*
1237 * The card should drive cmd and dat[0:3] low immediately
1238 * after the response of cmd11, but wait 1 ms to be sure
1239 */
1240 mmc_delay(1);
1241 if (host->ops->card_busy && !host->ops->card_busy(host)) {
1242 err = -EAGAIN;
1243 goto power_cycle;
1244 }
1245
1246 if (mmc_host_set_uhs_voltage(host)) {
1247 /*
1248 * Voltages may not have been switched, but we've already
1249 * sent CMD11, so a power cycle is required anyway
1250 */
1251 err = -EAGAIN;
1252 goto power_cycle;
1253 }
1254
1255 /* Wait for at least 1 ms according to spec */
1256 mmc_delay(1);
1257
1258 /*
1259 * Failure to switch is indicated by the card holding
1260 * dat[0:3] low
1261 */
1262 if (host->ops->card_busy && host->ops->card_busy(host))
1263 err = -EAGAIN;
1264
1265power_cycle:
1266 if (err) {
1267 pr_debug("%s: Signal voltage switch failed, "
1268 "power cycling card\n", mmc_hostname(host));
1269 mmc_power_cycle(host, ocr);
1270 }
1271
1272 return err;
1273}
1274
1275/*
1276 * Select timing parameters for host.
1277 */
1278void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1279{
1280 host->ios.timing = timing;
1281 mmc_set_ios(host);
1282}
1283
1284/*
1285 * Select appropriate driver type for host.
1286 */
1287void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1288{
1289 host->ios.drv_type = drv_type;
1290 mmc_set_ios(host);
1291}
1292
1293int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr,
1294 int card_drv_type, int *drv_type)
1295{
1296 struct mmc_host *host = card->host;
1297 int host_drv_type = SD_DRIVER_TYPE_B;
1298
1299 *drv_type = 0;
1300
1301 if (!host->ops->select_drive_strength)
1302 return 0;
1303
1304 /* Use SD definition of driver strength for hosts */
1305 if (host->caps & MMC_CAP_DRIVER_TYPE_A)
1306 host_drv_type |= SD_DRIVER_TYPE_A;
1307
1308 if (host->caps & MMC_CAP_DRIVER_TYPE_C)
1309 host_drv_type |= SD_DRIVER_TYPE_C;
1310
1311 if (host->caps & MMC_CAP_DRIVER_TYPE_D)
1312 host_drv_type |= SD_DRIVER_TYPE_D;
1313
1314 /*
1315 * The drive strength that the hardware can support
1316 * depends on the board design. Pass the appropriate
1317 * information and let the hardware specific code
1318 * return what is possible given the options
1319 */
1320 return host->ops->select_drive_strength(card, max_dtr,
1321 host_drv_type,
1322 card_drv_type,
1323 drv_type);
1324}
1325
1326/*
1327 * Apply power to the MMC stack. This is a two-stage process.
1328 * First, we enable power to the card without the clock running.
1329 * We then wait a bit for the power to stabilise. Finally,
1330 * enable the bus drivers and clock to the card.
1331 *
1332 * We must _NOT_ enable the clock prior to power stablising.
1333 *
1334 * If a host does all the power sequencing itself, ignore the
1335 * initial MMC_POWER_UP stage.
1336 */
1337void mmc_power_up(struct mmc_host *host, u32 ocr)
1338{
1339 if (host->ios.power_mode == MMC_POWER_ON)
1340 return;
1341
1342 mmc_pwrseq_pre_power_on(host);
1343
1344 host->ios.vdd = fls(ocr) - 1;
1345 host->ios.power_mode = MMC_POWER_UP;
1346 /* Set initial state and call mmc_set_ios */
1347 mmc_set_initial_state(host);
1348
1349 mmc_set_initial_signal_voltage(host);
1350
1351 /*
1352 * This delay should be sufficient to allow the power supply
1353 * to reach the minimum voltage.
1354 */
1355 mmc_delay(host->ios.power_delay_ms);
1356
1357 mmc_pwrseq_post_power_on(host);
1358
1359 host->ios.clock = host->f_init;
1360
1361 host->ios.power_mode = MMC_POWER_ON;
1362 mmc_set_ios(host);
1363
1364 /*
1365 * This delay must be at least 74 clock sizes, or 1 ms, or the
1366 * time required to reach a stable voltage.
1367 */
1368 mmc_delay(host->ios.power_delay_ms);
1369}
1370
1371void mmc_power_off(struct mmc_host *host)
1372{
1373 if (host->ios.power_mode == MMC_POWER_OFF)
1374 return;
1375
1376 mmc_pwrseq_power_off(host);
1377
1378 host->ios.clock = 0;
1379 host->ios.vdd = 0;
1380
1381 host->ios.power_mode = MMC_POWER_OFF;
1382 /* Set initial state and call mmc_set_ios */
1383 mmc_set_initial_state(host);
1384
1385 /*
1386 * Some configurations, such as the 802.11 SDIO card in the OLPC
1387 * XO-1.5, require a short delay after poweroff before the card
1388 * can be successfully turned on again.
1389 */
1390 mmc_delay(1);
1391}
1392
1393void mmc_power_cycle(struct mmc_host *host, u32 ocr)
1394{
1395 mmc_power_off(host);
1396 /* Wait at least 1 ms according to SD spec */
1397 mmc_delay(1);
1398 mmc_power_up(host, ocr);
1399}
1400
1401/**
1402 * mmc_handle_undervoltage - Handle an undervoltage event on the MMC bus
1403 * @host: The MMC host that detected the undervoltage condition
1404 *
1405 * This function is called when an undervoltage event is detected on one of
1406 * the MMC regulators.
1407 *
1408 * Returns: 0 on success or a negative error code on failure.
1409 */
1410int mmc_handle_undervoltage(struct mmc_host *host)
1411{
1412 /* Stop the host to prevent races with card removal */
1413 __mmc_stop_host(host);
1414
1415 if (!host->bus_ops || !host->bus_ops->handle_undervoltage)
1416 return 0;
1417
1418 dev_warn(mmc_dev(host), "%s: Undervoltage detected, initiating emergency stop\n",
1419 mmc_hostname(host));
1420
1421 return host->bus_ops->handle_undervoltage(host);
1422}
1423
1424/*
1425 * Assign a mmc bus handler to a host. Only one bus handler may control a
1426 * host at any given time.
1427 */
1428void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1429{
1430 host->bus_ops = ops;
1431}
1432
1433/*
1434 * Remove the current bus handler from a host.
1435 */
1436void mmc_detach_bus(struct mmc_host *host)
1437{
1438 host->bus_ops = NULL;
1439}
1440
1441void _mmc_detect_change(struct mmc_host *host, unsigned long delay, bool cd_irq)
1442{
1443 /*
1444 * Prevent system sleep for 5s to allow user space to consume the
1445 * corresponding uevent. This is especially useful, when CD irq is used
1446 * as a system wakeup, but doesn't hurt in other cases.
1447 */
1448 if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL))
1449 __pm_wakeup_event(host->ws, 5000);
1450
1451 host->detect_change = 1;
1452 mmc_schedule_delayed_work(&host->detect, delay);
1453}
1454
1455/**
1456 * mmc_detect_change - process change of state on a MMC socket
1457 * @host: host which changed state.
1458 * @delay: optional delay to wait before detection (jiffies)
1459 *
1460 * MMC drivers should call this when they detect a card has been
1461 * inserted or removed. The MMC layer will confirm that any
1462 * present card is still functional, and initialize any newly
1463 * inserted.
1464 */
1465void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1466{
1467 _mmc_detect_change(host, delay, true);
1468}
1469EXPORT_SYMBOL(mmc_detect_change);
1470
1471void mmc_init_erase(struct mmc_card *card)
1472{
1473 unsigned int sz;
1474
1475 if (is_power_of_2(card->erase_size))
1476 card->erase_shift = ffs(card->erase_size) - 1;
1477 else
1478 card->erase_shift = 0;
1479
1480 /*
1481 * It is possible to erase an arbitrarily large area of an SD or MMC
1482 * card. That is not desirable because it can take a long time
1483 * (minutes) potentially delaying more important I/O, and also the
1484 * timeout calculations become increasingly hugely over-estimated.
1485 * Consequently, 'pref_erase' is defined as a guide to limit erases
1486 * to that size and alignment.
1487 *
1488 * For SD cards that define Allocation Unit size, limit erases to one
1489 * Allocation Unit at a time.
1490 * For MMC, have a stab at ai good value and for modern cards it will
1491 * end up being 4MiB. Note that if the value is too small, it can end
1492 * up taking longer to erase. Also note, erase_size is already set to
1493 * High Capacity Erase Size if available when this function is called.
1494 */
1495 if (mmc_card_sd(card) && card->ssr.au) {
1496 card->pref_erase = card->ssr.au;
1497 card->erase_shift = ffs(card->ssr.au) - 1;
1498 } else if (card->erase_size) {
1499 sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1500 if (sz < 128)
1501 card->pref_erase = 512 * 1024 / 512;
1502 else if (sz < 512)
1503 card->pref_erase = 1024 * 1024 / 512;
1504 else if (sz < 1024)
1505 card->pref_erase = 2 * 1024 * 1024 / 512;
1506 else
1507 card->pref_erase = 4 * 1024 * 1024 / 512;
1508 if (card->pref_erase < card->erase_size)
1509 card->pref_erase = card->erase_size;
1510 else {
1511 sz = card->pref_erase % card->erase_size;
1512 if (sz)
1513 card->pref_erase += card->erase_size - sz;
1514 }
1515 } else
1516 card->pref_erase = 0;
1517}
1518
1519static bool is_trim_arg(unsigned int arg)
1520{
1521 return (arg & MMC_TRIM_OR_DISCARD_ARGS) && arg != MMC_DISCARD_ARG;
1522}
1523
1524static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1525 unsigned int arg, unsigned int qty)
1526{
1527 unsigned int erase_timeout;
1528
1529 if (arg == MMC_DISCARD_ARG ||
1530 (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1531 erase_timeout = card->ext_csd.trim_timeout;
1532 } else if (card->ext_csd.erase_group_def & 1) {
1533 /* High Capacity Erase Group Size uses HC timeouts */
1534 if (arg == MMC_TRIM_ARG)
1535 erase_timeout = card->ext_csd.trim_timeout;
1536 else
1537 erase_timeout = card->ext_csd.hc_erase_timeout;
1538 } else {
1539 /* CSD Erase Group Size uses write timeout */
1540 unsigned int mult = (10 << card->csd.r2w_factor);
1541 unsigned int timeout_clks = card->csd.taac_clks * mult;
1542 unsigned int timeout_us;
1543
1544 /* Avoid overflow: e.g. taac_ns=80000000 mult=1280 */
1545 if (card->csd.taac_ns < 1000000)
1546 timeout_us = (card->csd.taac_ns * mult) / 1000;
1547 else
1548 timeout_us = (card->csd.taac_ns / 1000) * mult;
1549
1550 /*
1551 * ios.clock is only a target. The real clock rate might be
1552 * less but not that much less, so fudge it by multiplying by 2.
1553 */
1554 timeout_clks <<= 1;
1555 timeout_us += (timeout_clks * 1000) /
1556 (card->host->ios.clock / 1000);
1557
1558 erase_timeout = timeout_us / 1000;
1559
1560 /*
1561 * Theoretically, the calculation could underflow so round up
1562 * to 1ms in that case.
1563 */
1564 if (!erase_timeout)
1565 erase_timeout = 1;
1566 }
1567
1568 /* Multiplier for secure operations */
1569 if (arg & MMC_SECURE_ARGS) {
1570 if (arg == MMC_SECURE_ERASE_ARG)
1571 erase_timeout *= card->ext_csd.sec_erase_mult;
1572 else
1573 erase_timeout *= card->ext_csd.sec_trim_mult;
1574 }
1575
1576 erase_timeout *= qty;
1577
1578 /*
1579 * Ensure at least a 1 second timeout for SPI as per
1580 * 'mmc_set_data_timeout()'
1581 */
1582 if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1583 erase_timeout = 1000;
1584
1585 return erase_timeout;
1586}
1587
1588static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1589 unsigned int arg,
1590 unsigned int qty)
1591{
1592 unsigned int erase_timeout;
1593
1594 /* for DISCARD none of the below calculation applies.
1595 * the busy timeout is 250msec per discard command.
1596 */
1597 if (arg == SD_DISCARD_ARG)
1598 return SD_DISCARD_TIMEOUT_MS;
1599
1600 if (card->ssr.erase_timeout) {
1601 /* Erase timeout specified in SD Status Register (SSR) */
1602 erase_timeout = card->ssr.erase_timeout * qty +
1603 card->ssr.erase_offset;
1604 } else {
1605 /*
1606 * Erase timeout not specified in SD Status Register (SSR) so
1607 * use 250ms per write block.
1608 */
1609 erase_timeout = 250 * qty;
1610 }
1611
1612 /* Must not be less than 1 second */
1613 if (erase_timeout < 1000)
1614 erase_timeout = 1000;
1615
1616 return erase_timeout;
1617}
1618
1619static unsigned int mmc_erase_timeout(struct mmc_card *card,
1620 unsigned int arg,
1621 unsigned int qty)
1622{
1623 if (mmc_card_sd(card))
1624 return mmc_sd_erase_timeout(card, arg, qty);
1625 else
1626 return mmc_mmc_erase_timeout(card, arg, qty);
1627}
1628
1629static int mmc_do_erase(struct mmc_card *card, sector_t from,
1630 sector_t to, unsigned int arg)
1631{
1632 struct mmc_command cmd = {};
1633 unsigned int qty = 0, busy_timeout = 0;
1634 bool use_r1b_resp;
1635 int err;
1636
1637 mmc_retune_hold(card->host);
1638
1639 /*
1640 * qty is used to calculate the erase timeout which depends on how many
1641 * erase groups (or allocation units in SD terminology) are affected.
1642 * We count erasing part of an erase group as one erase group.
1643 * For SD, the allocation units are always a power of 2. For MMC, the
1644 * erase group size is almost certainly also power of 2, but it does not
1645 * seem to insist on that in the JEDEC standard, so we fall back to
1646 * division in that case. SD may not specify an allocation unit size,
1647 * in which case the timeout is based on the number of write blocks.
1648 *
1649 * Note that the timeout for secure trim 2 will only be correct if the
1650 * number of erase groups specified is the same as the total of all
1651 * preceding secure trim 1 commands. Since the power may have been
1652 * lost since the secure trim 1 commands occurred, it is generally
1653 * impossible to calculate the secure trim 2 timeout correctly.
1654 */
1655 if (card->erase_shift)
1656 qty += ((to >> card->erase_shift) -
1657 (from >> card->erase_shift)) + 1;
1658 else if (mmc_card_sd(card))
1659 qty += to - from + 1;
1660 else
1661 qty += (mmc_sector_div(to, card->erase_size) -
1662 mmc_sector_div(from, card->erase_size)) + 1;
1663
1664 if (!mmc_card_blockaddr(card)) {
1665 from <<= 9;
1666 to <<= 9;
1667 }
1668
1669 if (mmc_card_sd(card))
1670 cmd.opcode = SD_ERASE_WR_BLK_START;
1671 else
1672 cmd.opcode = MMC_ERASE_GROUP_START;
1673 cmd.arg = from;
1674 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1675
1676 if (mmc_card_ult_capacity(card)) {
1677 cmd.ext_addr = from >> 32;
1678 cmd.has_ext_addr = true;
1679 }
1680
1681 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1682 if (err) {
1683 pr_err("mmc_erase: group start error %d, "
1684 "status %#x\n", err, cmd.resp[0]);
1685 err = -EIO;
1686 goto out;
1687 }
1688
1689 memset(&cmd, 0, sizeof(struct mmc_command));
1690 if (mmc_card_sd(card))
1691 cmd.opcode = SD_ERASE_WR_BLK_END;
1692 else
1693 cmd.opcode = MMC_ERASE_GROUP_END;
1694 cmd.arg = to;
1695 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1696
1697 if (mmc_card_ult_capacity(card)) {
1698 cmd.ext_addr = to >> 32;
1699 cmd.has_ext_addr = true;
1700 }
1701
1702 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1703 if (err) {
1704 pr_err("mmc_erase: group end error %d, status %#x\n",
1705 err, cmd.resp[0]);
1706 err = -EIO;
1707 goto out;
1708 }
1709
1710 memset(&cmd, 0, sizeof(struct mmc_command));
1711 cmd.opcode = MMC_ERASE;
1712 cmd.arg = arg;
1713 busy_timeout = mmc_erase_timeout(card, arg, qty);
1714 use_r1b_resp = mmc_prepare_busy_cmd(card->host, &cmd, busy_timeout);
1715
1716 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1717 if (err) {
1718 pr_err("mmc_erase: erase error %d, status %#x\n",
1719 err, cmd.resp[0]);
1720 err = -EIO;
1721 goto out;
1722 }
1723
1724 if (mmc_host_is_spi(card->host))
1725 goto out;
1726
1727 /*
1728 * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling
1729 * shall be avoided.
1730 */
1731 if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp)
1732 goto out;
1733
1734 /* Let's poll to find out when the erase operation completes. */
1735 err = mmc_poll_for_busy(card, busy_timeout, false, MMC_BUSY_ERASE);
1736
1737out:
1738 mmc_retune_release(card->host);
1739 return err;
1740}
1741
1742static unsigned int mmc_align_erase_size(struct mmc_card *card,
1743 sector_t *from,
1744 sector_t *to,
1745 unsigned int nr)
1746{
1747 sector_t from_new = *from;
1748 unsigned int nr_new = nr, rem;
1749
1750 /*
1751 * When the 'card->erase_size' is power of 2, we can use round_up/down()
1752 * to align the erase size efficiently.
1753 */
1754 if (is_power_of_2(card->erase_size)) {
1755 sector_t temp = from_new;
1756
1757 from_new = round_up(temp, card->erase_size);
1758 rem = from_new - temp;
1759
1760 if (nr_new > rem)
1761 nr_new -= rem;
1762 else
1763 return 0;
1764
1765 nr_new = round_down(nr_new, card->erase_size);
1766 } else {
1767 rem = mmc_sector_mod(from_new, card->erase_size);
1768 if (rem) {
1769 rem = card->erase_size - rem;
1770 from_new += rem;
1771 if (nr_new > rem)
1772 nr_new -= rem;
1773 else
1774 return 0;
1775 }
1776
1777 rem = nr_new % card->erase_size;
1778 if (rem)
1779 nr_new -= rem;
1780 }
1781
1782 if (nr_new == 0)
1783 return 0;
1784
1785 *to = from_new + nr_new;
1786 *from = from_new;
1787
1788 return nr_new;
1789}
1790
1791/**
1792 * mmc_erase - erase sectors.
1793 * @card: card to erase
1794 * @from: first sector to erase
1795 * @nr: number of sectors to erase
1796 * @arg: erase command argument
1797 *
1798 * Caller must claim host before calling this function.
1799 */
1800int mmc_erase(struct mmc_card *card, sector_t from, unsigned int nr,
1801 unsigned int arg)
1802{
1803 unsigned int rem;
1804 sector_t to = from + nr;
1805
1806 int err;
1807
1808 if (!(card->csd.cmdclass & CCC_ERASE))
1809 return -EOPNOTSUPP;
1810
1811 if (!card->erase_size)
1812 return -EOPNOTSUPP;
1813
1814 if (mmc_card_sd(card) && arg != SD_ERASE_ARG && arg != SD_DISCARD_ARG)
1815 return -EOPNOTSUPP;
1816
1817 if (mmc_card_mmc(card) && (arg & MMC_SECURE_ARGS) &&
1818 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
1819 return -EOPNOTSUPP;
1820
1821 if (mmc_card_mmc(card) && is_trim_arg(arg) &&
1822 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
1823 return -EOPNOTSUPP;
1824
1825 if (arg == MMC_SECURE_ERASE_ARG) {
1826 if (mmc_sector_mod(from, card->erase_size) || nr % card->erase_size)
1827 return -EINVAL;
1828 }
1829
1830 if (arg == MMC_ERASE_ARG)
1831 nr = mmc_align_erase_size(card, &from, &to, nr);
1832
1833 if (nr == 0)
1834 return 0;
1835
1836 if (to <= from)
1837 return -EINVAL;
1838
1839 /* 'from' and 'to' are inclusive */
1840 to -= 1;
1841
1842 /*
1843 * Special case where only one erase-group fits in the timeout budget:
1844 * If the region crosses an erase-group boundary on this particular
1845 * case, we will be trimming more than one erase-group which, does not
1846 * fit in the timeout budget of the controller, so we need to split it
1847 * and call mmc_do_erase() twice if necessary. This special case is
1848 * identified by the card->eg_boundary flag.
1849 */
1850 rem = card->erase_size - mmc_sector_mod(from, card->erase_size);
1851 if ((arg & MMC_TRIM_OR_DISCARD_ARGS) && card->eg_boundary && nr > rem) {
1852 err = mmc_do_erase(card, from, from + rem - 1, arg);
1853 from += rem;
1854 if ((err) || (to <= from))
1855 return err;
1856 }
1857
1858 return mmc_do_erase(card, from, to, arg);
1859}
1860EXPORT_SYMBOL(mmc_erase);
1861
1862bool mmc_card_can_erase(struct mmc_card *card)
1863{
1864 return (card->csd.cmdclass & CCC_ERASE && card->erase_size);
1865}
1866EXPORT_SYMBOL(mmc_card_can_erase);
1867
1868bool mmc_card_can_trim(struct mmc_card *card)
1869{
1870 return ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) &&
1871 (!(card->quirks & MMC_QUIRK_TRIM_BROKEN)));
1872}
1873EXPORT_SYMBOL(mmc_card_can_trim);
1874
1875bool mmc_card_can_discard(struct mmc_card *card)
1876{
1877 /*
1878 * As there's no way to detect the discard support bit at v4.5
1879 * use the s/w feature support filed.
1880 */
1881 return (card->ext_csd.feature_support & MMC_DISCARD_FEATURE);
1882}
1883EXPORT_SYMBOL(mmc_card_can_discard);
1884
1885bool mmc_card_can_sanitize(struct mmc_card *card)
1886{
1887 if (!mmc_card_can_trim(card) && !mmc_card_can_erase(card))
1888 return false;
1889 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
1890 return true;
1891 return false;
1892}
1893
1894bool mmc_card_can_secure_erase_trim(struct mmc_card *card)
1895{
1896 return ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
1897 !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN));
1898}
1899EXPORT_SYMBOL(mmc_card_can_secure_erase_trim);
1900
1901bool mmc_card_can_cmd23(struct mmc_card *card)
1902{
1903 return ((mmc_card_mmc(card) &&
1904 card->csd.mmca_vsn >= CSD_SPEC_VER_3) ||
1905 (mmc_card_sd(card) && !mmc_card_ult_capacity(card) &&
1906 card->scr.cmds & SD_SCR_CMD23_SUPPORT));
1907}
1908EXPORT_SYMBOL(mmc_card_can_cmd23);
1909
1910int mmc_erase_group_aligned(struct mmc_card *card, sector_t from,
1911 unsigned int nr)
1912{
1913 if (!card->erase_size)
1914 return 0;
1915 if (mmc_sector_mod(from, card->erase_size) || nr % card->erase_size)
1916 return 0;
1917 return 1;
1918}
1919EXPORT_SYMBOL(mmc_erase_group_aligned);
1920
1921static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
1922 unsigned int arg)
1923{
1924 struct mmc_host *host = card->host;
1925 unsigned int max_discard, x, y, qty = 0, max_qty, min_qty, timeout;
1926 unsigned int last_timeout = 0;
1927 unsigned int max_busy_timeout = host->max_busy_timeout ?
1928 host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS;
1929
1930 if (card->erase_shift) {
1931 max_qty = UINT_MAX >> card->erase_shift;
1932 min_qty = card->pref_erase >> card->erase_shift;
1933 } else if (mmc_card_sd(card)) {
1934 max_qty = UINT_MAX;
1935 min_qty = card->pref_erase;
1936 } else {
1937 max_qty = UINT_MAX / card->erase_size;
1938 min_qty = card->pref_erase / card->erase_size;
1939 }
1940
1941 /*
1942 * We should not only use 'host->max_busy_timeout' as the limitation
1943 * when deciding the max discard sectors. We should set a balance value
1944 * to improve the erase speed, and it can not get too long timeout at
1945 * the same time.
1946 *
1947 * Here we set 'card->pref_erase' as the minimal discard sectors no
1948 * matter what size of 'host->max_busy_timeout', but if the
1949 * 'host->max_busy_timeout' is large enough for more discard sectors,
1950 * then we can continue to increase the max discard sectors until we
1951 * get a balance value. In cases when the 'host->max_busy_timeout'
1952 * isn't specified, use the default max erase timeout.
1953 */
1954 do {
1955 y = 0;
1956 for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
1957 timeout = mmc_erase_timeout(card, arg, qty + x);
1958
1959 if (qty + x > min_qty && timeout > max_busy_timeout)
1960 break;
1961
1962 if (timeout < last_timeout)
1963 break;
1964 last_timeout = timeout;
1965 y = x;
1966 }
1967 qty += y;
1968 } while (y);
1969
1970 if (!qty)
1971 return 0;
1972
1973 /*
1974 * When specifying a sector range to trim, chances are we might cross
1975 * an erase-group boundary even if the amount of sectors is less than
1976 * one erase-group.
1977 * If we can only fit one erase-group in the controller timeout budget,
1978 * we have to care that erase-group boundaries are not crossed by a
1979 * single trim operation. We flag that special case with "eg_boundary".
1980 * In all other cases we can just decrement qty and pretend that we
1981 * always touch (qty + 1) erase-groups as a simple optimization.
1982 */
1983 if (qty == 1)
1984 card->eg_boundary = 1;
1985 else
1986 qty--;
1987
1988 /* Convert qty to sectors */
1989 if (card->erase_shift)
1990 max_discard = qty << card->erase_shift;
1991 else if (mmc_card_sd(card))
1992 max_discard = qty + 1;
1993 else
1994 max_discard = qty * card->erase_size;
1995
1996 return max_discard;
1997}
1998
1999unsigned int mmc_calc_max_discard(struct mmc_card *card)
2000{
2001 struct mmc_host *host = card->host;
2002 unsigned int max_discard, max_trim;
2003
2004 /*
2005 * Without erase_group_def set, MMC erase timeout depends on clock
2006 * frequence which can change. In that case, the best choice is
2007 * just the preferred erase size.
2008 */
2009 if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
2010 return card->pref_erase;
2011
2012 max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
2013 if (mmc_card_can_trim(card)) {
2014 max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
2015 if (max_trim < max_discard || max_discard == 0)
2016 max_discard = max_trim;
2017 } else if (max_discard < card->erase_size) {
2018 max_discard = 0;
2019 }
2020 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
2021 mmc_hostname(host), max_discard, host->max_busy_timeout ?
2022 host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS);
2023 return max_discard;
2024}
2025EXPORT_SYMBOL(mmc_calc_max_discard);
2026
2027bool mmc_card_is_blockaddr(struct mmc_card *card)
2028{
2029 return card ? mmc_card_blockaddr(card) : false;
2030}
2031EXPORT_SYMBOL(mmc_card_is_blockaddr);
2032
2033int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
2034{
2035 struct mmc_command cmd = {};
2036
2037 if (mmc_card_blockaddr(card) || mmc_card_ddr52(card) ||
2038 mmc_card_hs400(card) || mmc_card_hs400es(card))
2039 return 0;
2040
2041 cmd.opcode = MMC_SET_BLOCKLEN;
2042 cmd.arg = blocklen;
2043 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2044 return mmc_wait_for_cmd(card->host, &cmd, 5);
2045}
2046EXPORT_SYMBOL(mmc_set_blocklen);
2047
2048static void mmc_hw_reset_for_init(struct mmc_host *host)
2049{
2050 mmc_pwrseq_reset(host);
2051
2052 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->card_hw_reset)
2053 return;
2054 host->ops->card_hw_reset(host);
2055}
2056
2057/**
2058 * mmc_hw_reset - reset the card in hardware
2059 * @card: card to be reset
2060 *
2061 * Hard reset the card. This function is only for upper layers, like the
2062 * block layer or card drivers. You cannot use it in host drivers (struct
2063 * mmc_card might be gone then).
2064 *
2065 * Return: 0 on success, -errno on failure
2066 */
2067int mmc_hw_reset(struct mmc_card *card)
2068{
2069 struct mmc_host *host = card->host;
2070 int ret;
2071
2072 ret = host->bus_ops->hw_reset(host);
2073 if (ret < 0)
2074 pr_warn("%s: tried to HW reset card, got error %d\n",
2075 mmc_hostname(host), ret);
2076
2077 return ret;
2078}
2079EXPORT_SYMBOL(mmc_hw_reset);
2080
2081int mmc_sw_reset(struct mmc_card *card)
2082{
2083 struct mmc_host *host = card->host;
2084 int ret;
2085
2086 if (!host->bus_ops->sw_reset)
2087 return -EOPNOTSUPP;
2088
2089 ret = host->bus_ops->sw_reset(host);
2090 if (ret)
2091 pr_warn("%s: tried to SW reset card, got error %d\n",
2092 mmc_hostname(host), ret);
2093
2094 return ret;
2095}
2096EXPORT_SYMBOL(mmc_sw_reset);
2097
2098static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2099{
2100 host->f_init = freq;
2101
2102 pr_debug("%s: %s: trying to init card at %u Hz\n",
2103 mmc_hostname(host), __func__, host->f_init);
2104
2105 mmc_power_up(host, host->ocr_avail);
2106
2107 /*
2108 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2109 * do a hardware reset if possible.
2110 */
2111 mmc_hw_reset_for_init(host);
2112
2113 /*
2114 * sdio_reset sends CMD52 to reset card. Since we do not know
2115 * if the card is being re-initialized, just send it. CMD52
2116 * should be ignored by SD/eMMC cards.
2117 * Skip it if we already know that we do not support SDIO commands
2118 */
2119 if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2120 sdio_reset(host);
2121
2122 mmc_go_idle(host);
2123
2124 if (!(host->caps2 & MMC_CAP2_NO_SD)) {
2125 if (mmc_send_if_cond_pcie(host, host->ocr_avail))
2126 goto out;
2127 if (mmc_card_sd_express(host))
2128 return 0;
2129 }
2130
2131 /* Order's important: probe SDIO, then SD, then MMC */
2132 if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2133 if (!mmc_attach_sdio(host))
2134 return 0;
2135
2136 if (!(host->caps2 & MMC_CAP2_NO_SD))
2137 if (!mmc_attach_sd(host))
2138 return 0;
2139
2140 if (!(host->caps2 & MMC_CAP2_NO_MMC))
2141 if (!mmc_attach_mmc(host))
2142 return 0;
2143
2144out:
2145 mmc_power_off(host);
2146 return -EIO;
2147}
2148
2149int _mmc_detect_card_removed(struct mmc_host *host)
2150{
2151 int ret;
2152
2153 if (!host->card || mmc_card_removed(host->card))
2154 return 1;
2155
2156 ret = host->bus_ops->alive(host);
2157
2158 /*
2159 * Card detect status and alive check may be out of sync if card is
2160 * removed slowly, when card detect switch changes while card/slot
2161 * pads are still contacted in hardware (refer to "SD Card Mechanical
2162 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2163 * detect work 200ms later for this case.
2164 */
2165 if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2166 mmc_detect_change(host, msecs_to_jiffies(200));
2167 pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2168 }
2169
2170 if (ret) {
2171 mmc_card_set_removed(host->card);
2172 pr_debug("%s: card remove detected\n", mmc_hostname(host));
2173 }
2174
2175 return ret;
2176}
2177
2178int mmc_detect_card_removed(struct mmc_host *host)
2179{
2180 struct mmc_card *card = host->card;
2181 int ret;
2182
2183 WARN_ON(!host->claimed);
2184
2185 if (!card)
2186 return 1;
2187
2188 if (!mmc_card_is_removable(host))
2189 return 0;
2190
2191 ret = mmc_card_removed(card);
2192 /*
2193 * The card will be considered unchanged unless we have been asked to
2194 * detect a change or host requires polling to provide card detection.
2195 */
2196 if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2197 return ret;
2198
2199 host->detect_change = 0;
2200 if (!ret) {
2201 ret = _mmc_detect_card_removed(host);
2202 if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2203 /*
2204 * Schedule a detect work as soon as possible to let a
2205 * rescan handle the card removal.
2206 */
2207 cancel_delayed_work(&host->detect);
2208 _mmc_detect_change(host, 0, false);
2209 }
2210 }
2211
2212 return ret;
2213}
2214EXPORT_SYMBOL(mmc_detect_card_removed);
2215
2216int mmc_card_alternative_gpt_sector(struct mmc_card *card, sector_t *gpt_sector)
2217{
2218 unsigned int boot_sectors_num;
2219
2220 if ((!(card->host->caps2 & MMC_CAP2_ALT_GPT_TEGRA)))
2221 return -EOPNOTSUPP;
2222
2223 /* filter out unrelated cards */
2224 if (card->ext_csd.rev < 3 ||
2225 !mmc_card_mmc(card) ||
2226 !mmc_card_is_blockaddr(card) ||
2227 mmc_card_is_removable(card->host))
2228 return -ENOENT;
2229
2230 /*
2231 * eMMC storage has two special boot partitions in addition to the
2232 * main one. NVIDIA's bootloader linearizes eMMC boot0->boot1->main
2233 * accesses, this means that the partition table addresses are shifted
2234 * by the size of boot partitions. In accordance with the eMMC
2235 * specification, the boot partition size is calculated as follows:
2236 *
2237 * boot partition size = 128K byte x BOOT_SIZE_MULT
2238 *
2239 * Calculate number of sectors occupied by the both boot partitions.
2240 */
2241 boot_sectors_num = card->ext_csd.raw_boot_mult * SZ_128K /
2242 SZ_512 * MMC_NUM_BOOT_PARTITION;
2243
2244 /* Defined by NVIDIA and used by Android devices. */
2245 *gpt_sector = card->ext_csd.sectors - boot_sectors_num - 1;
2246
2247 return 0;
2248}
2249EXPORT_SYMBOL(mmc_card_alternative_gpt_sector);
2250
2251void mmc_rescan(struct work_struct *work)
2252{
2253 struct mmc_host *host =
2254 container_of(work, struct mmc_host, detect.work);
2255 int i;
2256
2257 if (host->rescan_disable)
2258 return;
2259
2260 /* If there is a non-removable card registered, only scan once */
2261 if (!mmc_card_is_removable(host) && host->rescan_entered)
2262 return;
2263 host->rescan_entered = 1;
2264
2265 if (host->trigger_card_event && host->ops->card_event) {
2266 mmc_claim_host(host);
2267 host->ops->card_event(host);
2268 mmc_release_host(host);
2269 host->trigger_card_event = false;
2270 }
2271
2272 /* Verify a registered card to be functional, else remove it. */
2273 if (host->bus_ops)
2274 host->bus_ops->detect(host);
2275
2276 host->detect_change = 0;
2277
2278 /* if there still is a card present, stop here */
2279 if (host->bus_ops != NULL)
2280 goto out;
2281
2282 mmc_claim_host(host);
2283 if (mmc_card_is_removable(host) && host->ops->get_cd &&
2284 host->ops->get_cd(host) == 0) {
2285 mmc_power_off(host);
2286 mmc_release_host(host);
2287 goto out;
2288 }
2289
2290 /* If an SD express card is present, then leave it as is. */
2291 if (mmc_card_sd_express(host)) {
2292 mmc_release_host(host);
2293 goto out;
2294 }
2295
2296 /*
2297 * Ideally we should favor initialization of legacy SD cards and defer
2298 * UHS-II enumeration. However, it seems like cards doesn't reliably
2299 * announce their support for UHS-II in the response to the ACMD41,
2300 * while initializing the legacy SD interface. Therefore, let's start
2301 * with UHS-II for now.
2302 */
2303 if (!mmc_attach_sd_uhs2(host)) {
2304 mmc_release_host(host);
2305 goto out;
2306 }
2307
2308 for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2309 unsigned int freq = freqs[i];
2310 if (freq > host->f_max) {
2311 if (i + 1 < ARRAY_SIZE(freqs))
2312 continue;
2313 freq = host->f_max;
2314 }
2315 if (!mmc_rescan_try_freq(host, max(freq, host->f_min)))
2316 break;
2317 if (freqs[i] <= host->f_min)
2318 break;
2319 }
2320
2321 /* A non-removable card should have been detected by now. */
2322 if (!mmc_card_is_removable(host) && !host->bus_ops)
2323 pr_info("%s: Failed to initialize a non-removable card",
2324 mmc_hostname(host));
2325
2326 /*
2327 * Ignore the command timeout errors observed during
2328 * the card init as those are excepted.
2329 */
2330 host->err_stats[MMC_ERR_CMD_TIMEOUT] = 0;
2331 mmc_release_host(host);
2332
2333 out:
2334 if (host->caps & MMC_CAP_NEEDS_POLL)
2335 mmc_schedule_delayed_work(&host->detect, HZ);
2336}
2337
2338void mmc_start_host(struct mmc_host *host)
2339{
2340 bool power_up = !(host->caps2 &
2341 (MMC_CAP2_NO_PRESCAN_POWERUP | MMC_CAP2_SD_UHS2));
2342
2343 host->f_init = max(min(freqs[0], host->f_max), host->f_min);
2344 host->rescan_disable = 0;
2345
2346 if (power_up) {
2347 mmc_claim_host(host);
2348 mmc_power_up(host, host->ocr_avail);
2349 mmc_release_host(host);
2350 }
2351
2352 mmc_gpiod_request_cd_irq(host);
2353 _mmc_detect_change(host, 0, false);
2354}
2355
2356void __mmc_stop_host(struct mmc_host *host)
2357{
2358 if (host->rescan_disable)
2359 return;
2360
2361 if (host->slot.cd_irq >= 0) {
2362 mmc_gpio_set_cd_wake(host, false);
2363 disable_irq(host->slot.cd_irq);
2364 }
2365
2366 host->rescan_disable = 1;
2367 cancel_delayed_work_sync(&host->detect);
2368}
2369
2370void mmc_stop_host(struct mmc_host *host)
2371{
2372 __mmc_stop_host(host);
2373
2374 /* clear pm flags now and let card drivers set them as needed */
2375 host->pm_flags = 0;
2376
2377 if (host->bus_ops) {
2378 /* Calling bus_ops->remove() with a claimed host can deadlock */
2379 host->bus_ops->remove(host);
2380 mmc_claim_host(host);
2381 mmc_detach_bus(host);
2382 mmc_power_off(host);
2383 mmc_release_host(host);
2384 return;
2385 }
2386
2387 mmc_claim_host(host);
2388 mmc_power_off(host);
2389 mmc_release_host(host);
2390}
2391
2392static int __init mmc_init(void)
2393{
2394 int ret;
2395
2396 ret = mmc_register_bus();
2397 if (ret)
2398 return ret;
2399
2400 ret = mmc_register_host_class();
2401 if (ret)
2402 goto unregister_bus;
2403
2404 ret = sdio_register_bus();
2405 if (ret)
2406 goto unregister_host_class;
2407
2408 return 0;
2409
2410unregister_host_class:
2411 mmc_unregister_host_class();
2412unregister_bus:
2413 mmc_unregister_bus();
2414 return ret;
2415}
2416
2417static void __exit mmc_exit(void)
2418{
2419 sdio_unregister_bus();
2420 mmc_unregister_host_class();
2421 mmc_unregister_bus();
2422}
2423
2424subsys_initcall(mmc_init);
2425module_exit(mmc_exit);
2426
2427MODULE_DESCRIPTION("MMC core driver");
2428MODULE_LICENSE("GPL");