at master 30 kB view raw
1// SPDX-License-Identifier: GPL-2.0-or-later 2/* 3 * Copyright (C) 2004 Texas Instruments, Inc. 4 * 5 * Some parts based tps65010.c: 6 * Copyright (C) 2004 Texas Instruments and 7 * Copyright (C) 2004-2005 David Brownell 8 * 9 * Some parts based on tlv320aic24.c: 10 * Copyright (C) by Kai Svahn <kai.svahn@nokia.com> 11 * 12 * Changes for interrupt handling and clean-up by 13 * Tony Lindgren <tony@atomide.com> and Imre Deak <imre.deak@nokia.com> 14 * Cleanup and generalized support for voltage setting by 15 * Juha Yrjola 16 * Added support for controlling VCORE and regulator sleep states, 17 * Amit Kucheria <amit.kucheria@nokia.com> 18 * Copyright (C) 2005, 2006 Nokia Corporation 19 */ 20 21#include <linux/module.h> 22#include <linux/i2c.h> 23#include <linux/interrupt.h> 24#include <linux/sched.h> 25#include <linux/mutex.h> 26#include <linux/workqueue.h> 27#include <linux/delay.h> 28#include <linux/rtc.h> 29#include <linux/bcd.h> 30#include <linux/slab.h> 31#include <linux/mfd/menelaus.h> 32 33#include <asm/mach/irq.h> 34 35 36#define DRIVER_NAME "menelaus" 37 38#define MENELAUS_I2C_ADDRESS 0x72 39 40#define MENELAUS_REV 0x01 41#define MENELAUS_VCORE_CTRL1 0x02 42#define MENELAUS_VCORE_CTRL2 0x03 43#define MENELAUS_VCORE_CTRL3 0x04 44#define MENELAUS_VCORE_CTRL4 0x05 45#define MENELAUS_VCORE_CTRL5 0x06 46#define MENELAUS_DCDC_CTRL1 0x07 47#define MENELAUS_DCDC_CTRL2 0x08 48#define MENELAUS_DCDC_CTRL3 0x09 49#define MENELAUS_LDO_CTRL1 0x0A 50#define MENELAUS_LDO_CTRL2 0x0B 51#define MENELAUS_LDO_CTRL3 0x0C 52#define MENELAUS_LDO_CTRL4 0x0D 53#define MENELAUS_LDO_CTRL5 0x0E 54#define MENELAUS_LDO_CTRL6 0x0F 55#define MENELAUS_LDO_CTRL7 0x10 56#define MENELAUS_LDO_CTRL8 0x11 57#define MENELAUS_SLEEP_CTRL1 0x12 58#define MENELAUS_SLEEP_CTRL2 0x13 59#define MENELAUS_DEVICE_OFF 0x14 60#define MENELAUS_OSC_CTRL 0x15 61#define MENELAUS_DETECT_CTRL 0x16 62#define MENELAUS_INT_MASK1 0x17 63#define MENELAUS_INT_MASK2 0x18 64#define MENELAUS_INT_STATUS1 0x19 65#define MENELAUS_INT_STATUS2 0x1A 66#define MENELAUS_INT_ACK1 0x1B 67#define MENELAUS_INT_ACK2 0x1C 68#define MENELAUS_GPIO_CTRL 0x1D 69#define MENELAUS_GPIO_IN 0x1E 70#define MENELAUS_GPIO_OUT 0x1F 71#define MENELAUS_BBSMS 0x20 72#define MENELAUS_RTC_CTRL 0x21 73#define MENELAUS_RTC_UPDATE 0x22 74#define MENELAUS_RTC_SEC 0x23 75#define MENELAUS_RTC_MIN 0x24 76#define MENELAUS_RTC_HR 0x25 77#define MENELAUS_RTC_DAY 0x26 78#define MENELAUS_RTC_MON 0x27 79#define MENELAUS_RTC_YR 0x28 80#define MENELAUS_RTC_WKDAY 0x29 81#define MENELAUS_RTC_AL_SEC 0x2A 82#define MENELAUS_RTC_AL_MIN 0x2B 83#define MENELAUS_RTC_AL_HR 0x2C 84#define MENELAUS_RTC_AL_DAY 0x2D 85#define MENELAUS_RTC_AL_MON 0x2E 86#define MENELAUS_RTC_AL_YR 0x2F 87#define MENELAUS_RTC_COMP_MSB 0x30 88#define MENELAUS_RTC_COMP_LSB 0x31 89#define MENELAUS_S1_PULL_EN 0x32 90#define MENELAUS_S1_PULL_DIR 0x33 91#define MENELAUS_S2_PULL_EN 0x34 92#define MENELAUS_S2_PULL_DIR 0x35 93#define MENELAUS_MCT_CTRL1 0x36 94#define MENELAUS_MCT_CTRL2 0x37 95#define MENELAUS_MCT_CTRL3 0x38 96#define MENELAUS_MCT_PIN_ST 0x39 97#define MENELAUS_DEBOUNCE1 0x3A 98 99#define IH_MENELAUS_IRQS 12 100#define MENELAUS_MMC_S1CD_IRQ 0 /* MMC slot 1 card change */ 101#define MENELAUS_MMC_S2CD_IRQ 1 /* MMC slot 2 card change */ 102#define MENELAUS_MMC_S1D1_IRQ 2 /* MMC DAT1 low in slot 1 */ 103#define MENELAUS_MMC_S2D1_IRQ 3 /* MMC DAT1 low in slot 2 */ 104#define MENELAUS_LOWBAT_IRQ 4 /* Low battery */ 105#define MENELAUS_HOTDIE_IRQ 5 /* Hot die detect */ 106#define MENELAUS_UVLO_IRQ 6 /* UVLO detect */ 107#define MENELAUS_TSHUT_IRQ 7 /* Thermal shutdown */ 108#define MENELAUS_RTCTMR_IRQ 8 /* RTC timer */ 109#define MENELAUS_RTCALM_IRQ 9 /* RTC alarm */ 110#define MENELAUS_RTCERR_IRQ 10 /* RTC error */ 111#define MENELAUS_PSHBTN_IRQ 11 /* Push button */ 112#define MENELAUS_RESERVED12_IRQ 12 /* Reserved */ 113#define MENELAUS_RESERVED13_IRQ 13 /* Reserved */ 114#define MENELAUS_RESERVED14_IRQ 14 /* Reserved */ 115#define MENELAUS_RESERVED15_IRQ 15 /* Reserved */ 116 117/* VCORE_CTRL1 register */ 118#define VCORE_CTRL1_BYP_COMP (1 << 5) 119#define VCORE_CTRL1_HW_NSW (1 << 7) 120 121/* GPIO_CTRL register */ 122#define GPIO_CTRL_SLOTSELEN (1 << 5) 123#define GPIO_CTRL_SLPCTLEN (1 << 6) 124#define GPIO1_DIR_INPUT (1 << 0) 125#define GPIO2_DIR_INPUT (1 << 1) 126#define GPIO3_DIR_INPUT (1 << 2) 127 128/* MCT_CTRL1 register */ 129#define MCT_CTRL1_S1_CMD_OD (1 << 2) 130#define MCT_CTRL1_S2_CMD_OD (1 << 3) 131 132/* MCT_CTRL2 register */ 133#define MCT_CTRL2_VS2_SEL_D0 (1 << 0) 134#define MCT_CTRL2_VS2_SEL_D1 (1 << 1) 135#define MCT_CTRL2_S1CD_BUFEN (1 << 4) 136#define MCT_CTRL2_S2CD_BUFEN (1 << 5) 137#define MCT_CTRL2_S1CD_DBEN (1 << 6) 138#define MCT_CTRL2_S2CD_BEN (1 << 7) 139 140/* MCT_CTRL3 register */ 141#define MCT_CTRL3_SLOT1_EN (1 << 0) 142#define MCT_CTRL3_SLOT2_EN (1 << 1) 143#define MCT_CTRL3_S1_AUTO_EN (1 << 2) 144#define MCT_CTRL3_S2_AUTO_EN (1 << 3) 145 146/* MCT_PIN_ST register */ 147#define MCT_PIN_ST_S1_CD_ST (1 << 0) 148#define MCT_PIN_ST_S2_CD_ST (1 << 1) 149 150static void menelaus_work(struct work_struct *_menelaus); 151 152struct menelaus_chip { 153 struct mutex lock; 154 struct i2c_client *client; 155 struct work_struct work; 156#ifdef CONFIG_RTC_DRV_TWL92330 157 struct rtc_device *rtc; 158 u8 rtc_control; 159 unsigned uie:1; 160#endif 161 unsigned vcore_hw_mode:1; 162 u8 mask1, mask2; 163 void (*handlers[16])(struct menelaus_chip *); 164 void (*mmc_callback)(void *data, u8 mask); 165 void *mmc_callback_data; 166}; 167 168static struct menelaus_chip *the_menelaus; 169 170static int menelaus_write_reg(int reg, u8 value) 171{ 172 int val = i2c_smbus_write_byte_data(the_menelaus->client, reg, value); 173 174 if (val < 0) { 175 pr_err(DRIVER_NAME ": write error"); 176 return val; 177 } 178 179 return 0; 180} 181 182static int menelaus_read_reg(int reg) 183{ 184 int val = i2c_smbus_read_byte_data(the_menelaus->client, reg); 185 186 if (val < 0) 187 pr_err(DRIVER_NAME ": read error"); 188 189 return val; 190} 191 192static int menelaus_enable_irq(int irq) 193{ 194 if (irq > 7) { 195 irq -= 8; 196 the_menelaus->mask2 &= ~(1 << irq); 197 return menelaus_write_reg(MENELAUS_INT_MASK2, 198 the_menelaus->mask2); 199 } else { 200 the_menelaus->mask1 &= ~(1 << irq); 201 return menelaus_write_reg(MENELAUS_INT_MASK1, 202 the_menelaus->mask1); 203 } 204} 205 206static int menelaus_disable_irq(int irq) 207{ 208 if (irq > 7) { 209 irq -= 8; 210 the_menelaus->mask2 |= (1 << irq); 211 return menelaus_write_reg(MENELAUS_INT_MASK2, 212 the_menelaus->mask2); 213 } else { 214 the_menelaus->mask1 |= (1 << irq); 215 return menelaus_write_reg(MENELAUS_INT_MASK1, 216 the_menelaus->mask1); 217 } 218} 219 220static int menelaus_ack_irq(int irq) 221{ 222 if (irq > 7) 223 return menelaus_write_reg(MENELAUS_INT_ACK2, 1 << (irq - 8)); 224 else 225 return menelaus_write_reg(MENELAUS_INT_ACK1, 1 << irq); 226} 227 228/* Adds a handler for an interrupt. Does not run in interrupt context */ 229static int menelaus_add_irq_work(int irq, 230 void (*handler)(struct menelaus_chip *)) 231{ 232 int ret = 0; 233 234 mutex_lock(&the_menelaus->lock); 235 the_menelaus->handlers[irq] = handler; 236 ret = menelaus_enable_irq(irq); 237 mutex_unlock(&the_menelaus->lock); 238 239 return ret; 240} 241 242/* Removes handler for an interrupt */ 243static int menelaus_remove_irq_work(int irq) 244{ 245 int ret = 0; 246 247 mutex_lock(&the_menelaus->lock); 248 ret = menelaus_disable_irq(irq); 249 the_menelaus->handlers[irq] = NULL; 250 mutex_unlock(&the_menelaus->lock); 251 252 return ret; 253} 254 255/* 256 * Gets scheduled when a card detect interrupt happens. Note that in some cases 257 * this line is wired to card cover switch rather than the card detect switch 258 * in each slot. In this case the cards are not seen by menelaus. 259 * FIXME: Add handling for D1 too 260 */ 261static void menelaus_mmc_cd_work(struct menelaus_chip *menelaus_hw) 262{ 263 int reg; 264 unsigned char card_mask = 0; 265 266 reg = menelaus_read_reg(MENELAUS_MCT_PIN_ST); 267 if (reg < 0) 268 return; 269 270 if (!(reg & 0x1)) 271 card_mask |= MCT_PIN_ST_S1_CD_ST; 272 273 if (!(reg & 0x2)) 274 card_mask |= MCT_PIN_ST_S2_CD_ST; 275 276 if (menelaus_hw->mmc_callback) 277 menelaus_hw->mmc_callback(menelaus_hw->mmc_callback_data, 278 card_mask); 279} 280 281/* 282 * Toggles the MMC slots between open-drain and push-pull mode. 283 */ 284int menelaus_set_mmc_opendrain(int slot, int enable) 285{ 286 int ret, val; 287 288 if (slot != 1 && slot != 2) 289 return -EINVAL; 290 mutex_lock(&the_menelaus->lock); 291 ret = menelaus_read_reg(MENELAUS_MCT_CTRL1); 292 if (ret < 0) { 293 mutex_unlock(&the_menelaus->lock); 294 return ret; 295 } 296 val = ret; 297 if (slot == 1) { 298 if (enable) 299 val |= MCT_CTRL1_S1_CMD_OD; 300 else 301 val &= ~MCT_CTRL1_S1_CMD_OD; 302 } else { 303 if (enable) 304 val |= MCT_CTRL1_S2_CMD_OD; 305 else 306 val &= ~MCT_CTRL1_S2_CMD_OD; 307 } 308 ret = menelaus_write_reg(MENELAUS_MCT_CTRL1, val); 309 mutex_unlock(&the_menelaus->lock); 310 311 return ret; 312} 313EXPORT_SYMBOL(menelaus_set_mmc_opendrain); 314 315int menelaus_set_slot_sel(int enable) 316{ 317 int ret; 318 319 mutex_lock(&the_menelaus->lock); 320 ret = menelaus_read_reg(MENELAUS_GPIO_CTRL); 321 if (ret < 0) 322 goto out; 323 ret |= GPIO2_DIR_INPUT; 324 if (enable) 325 ret |= GPIO_CTRL_SLOTSELEN; 326 else 327 ret &= ~GPIO_CTRL_SLOTSELEN; 328 ret = menelaus_write_reg(MENELAUS_GPIO_CTRL, ret); 329out: 330 mutex_unlock(&the_menelaus->lock); 331 return ret; 332} 333EXPORT_SYMBOL(menelaus_set_slot_sel); 334 335int menelaus_set_mmc_slot(int slot, int enable, int power, int cd_en) 336{ 337 int ret, val; 338 339 if (slot != 1 && slot != 2) 340 return -EINVAL; 341 if (power >= 3) 342 return -EINVAL; 343 344 mutex_lock(&the_menelaus->lock); 345 346 ret = menelaus_read_reg(MENELAUS_MCT_CTRL2); 347 if (ret < 0) 348 goto out; 349 val = ret; 350 if (slot == 1) { 351 if (cd_en) 352 val |= MCT_CTRL2_S1CD_BUFEN | MCT_CTRL2_S1CD_DBEN; 353 else 354 val &= ~(MCT_CTRL2_S1CD_BUFEN | MCT_CTRL2_S1CD_DBEN); 355 } else { 356 if (cd_en) 357 val |= MCT_CTRL2_S2CD_BUFEN | MCT_CTRL2_S2CD_BEN; 358 else 359 val &= ~(MCT_CTRL2_S2CD_BUFEN | MCT_CTRL2_S2CD_BEN); 360 } 361 ret = menelaus_write_reg(MENELAUS_MCT_CTRL2, val); 362 if (ret < 0) 363 goto out; 364 365 ret = menelaus_read_reg(MENELAUS_MCT_CTRL3); 366 if (ret < 0) 367 goto out; 368 val = ret; 369 if (slot == 1) { 370 if (enable) 371 val |= MCT_CTRL3_SLOT1_EN; 372 else 373 val &= ~MCT_CTRL3_SLOT1_EN; 374 } else { 375 int b; 376 377 if (enable) 378 val |= MCT_CTRL3_SLOT2_EN; 379 else 380 val &= ~MCT_CTRL3_SLOT2_EN; 381 b = menelaus_read_reg(MENELAUS_MCT_CTRL2); 382 b &= ~(MCT_CTRL2_VS2_SEL_D0 | MCT_CTRL2_VS2_SEL_D1); 383 b |= power; 384 ret = menelaus_write_reg(MENELAUS_MCT_CTRL2, b); 385 if (ret < 0) 386 goto out; 387 } 388 /* Disable autonomous shutdown */ 389 val &= ~(MCT_CTRL3_S1_AUTO_EN | MCT_CTRL3_S2_AUTO_EN); 390 ret = menelaus_write_reg(MENELAUS_MCT_CTRL3, val); 391out: 392 mutex_unlock(&the_menelaus->lock); 393 return ret; 394} 395EXPORT_SYMBOL(menelaus_set_mmc_slot); 396 397int menelaus_register_mmc_callback(void (*callback)(void *data, u8 card_mask), 398 void *data) 399{ 400 int ret = 0; 401 402 the_menelaus->mmc_callback_data = data; 403 the_menelaus->mmc_callback = callback; 404 ret = menelaus_add_irq_work(MENELAUS_MMC_S1CD_IRQ, 405 menelaus_mmc_cd_work); 406 if (ret < 0) 407 return ret; 408 ret = menelaus_add_irq_work(MENELAUS_MMC_S2CD_IRQ, 409 menelaus_mmc_cd_work); 410 if (ret < 0) 411 return ret; 412 ret = menelaus_add_irq_work(MENELAUS_MMC_S1D1_IRQ, 413 menelaus_mmc_cd_work); 414 if (ret < 0) 415 return ret; 416 ret = menelaus_add_irq_work(MENELAUS_MMC_S2D1_IRQ, 417 menelaus_mmc_cd_work); 418 419 return ret; 420} 421EXPORT_SYMBOL(menelaus_register_mmc_callback); 422 423void menelaus_unregister_mmc_callback(void) 424{ 425 menelaus_remove_irq_work(MENELAUS_MMC_S1CD_IRQ); 426 menelaus_remove_irq_work(MENELAUS_MMC_S2CD_IRQ); 427 menelaus_remove_irq_work(MENELAUS_MMC_S1D1_IRQ); 428 menelaus_remove_irq_work(MENELAUS_MMC_S2D1_IRQ); 429 430 the_menelaus->mmc_callback = NULL; 431 the_menelaus->mmc_callback_data = NULL; 432} 433EXPORT_SYMBOL(menelaus_unregister_mmc_callback); 434 435struct menelaus_vtg { 436 const char *name; 437 u8 vtg_reg; 438 u8 vtg_shift; 439 u8 vtg_bits; 440 u8 mode_reg; 441}; 442 443struct menelaus_vtg_value { 444 u16 vtg; 445 u16 val; 446}; 447 448static int menelaus_set_voltage(const struct menelaus_vtg *vtg, int mV, 449 int vtg_val, int mode) 450{ 451 int val, ret; 452 struct i2c_client *c = the_menelaus->client; 453 454 mutex_lock(&the_menelaus->lock); 455 456 ret = menelaus_read_reg(vtg->vtg_reg); 457 if (ret < 0) 458 goto out; 459 val = ret & ~(((1 << vtg->vtg_bits) - 1) << vtg->vtg_shift); 460 val |= vtg_val << vtg->vtg_shift; 461 462 dev_dbg(&c->dev, "Setting voltage '%s'" 463 "to %d mV (reg 0x%02x, val 0x%02x)\n", 464 vtg->name, mV, vtg->vtg_reg, val); 465 466 ret = menelaus_write_reg(vtg->vtg_reg, val); 467 if (ret < 0) 468 goto out; 469 ret = menelaus_write_reg(vtg->mode_reg, mode); 470out: 471 mutex_unlock(&the_menelaus->lock); 472 if (ret == 0) { 473 /* Wait for voltage to stabilize */ 474 msleep(1); 475 } 476 return ret; 477} 478 479static int menelaus_get_vtg_value(int vtg, const struct menelaus_vtg_value *tbl, 480 int n) 481{ 482 int i; 483 484 for (i = 0; i < n; i++, tbl++) 485 if (tbl->vtg == vtg) 486 return tbl->val; 487 return -EINVAL; 488} 489 490/* 491 * Vcore can be programmed in two ways: 492 * SW-controlled: Required voltage is programmed into VCORE_CTRL1 493 * HW-controlled: Required range (roof-floor) is programmed into VCORE_CTRL3 494 * and VCORE_CTRL4 495 * 496 * Call correct 'set' function accordingly 497 */ 498 499static const struct menelaus_vtg_value vcore_values[] = { 500 { 1000, 0 }, 501 { 1025, 1 }, 502 { 1050, 2 }, 503 { 1075, 3 }, 504 { 1100, 4 }, 505 { 1125, 5 }, 506 { 1150, 6 }, 507 { 1175, 7 }, 508 { 1200, 8 }, 509 { 1225, 9 }, 510 { 1250, 10 }, 511 { 1275, 11 }, 512 { 1300, 12 }, 513 { 1325, 13 }, 514 { 1350, 14 }, 515 { 1375, 15 }, 516 { 1400, 16 }, 517 { 1425, 17 }, 518 { 1450, 18 }, 519}; 520 521int menelaus_set_vcore_hw(unsigned int roof_mV, unsigned int floor_mV) 522{ 523 int fval, rval, val, ret; 524 struct i2c_client *c = the_menelaus->client; 525 526 rval = menelaus_get_vtg_value(roof_mV, vcore_values, 527 ARRAY_SIZE(vcore_values)); 528 if (rval < 0) 529 return -EINVAL; 530 fval = menelaus_get_vtg_value(floor_mV, vcore_values, 531 ARRAY_SIZE(vcore_values)); 532 if (fval < 0) 533 return -EINVAL; 534 535 dev_dbg(&c->dev, "Setting VCORE FLOOR to %d mV and ROOF to %d mV\n", 536 floor_mV, roof_mV); 537 538 mutex_lock(&the_menelaus->lock); 539 ret = menelaus_write_reg(MENELAUS_VCORE_CTRL3, fval); 540 if (ret < 0) 541 goto out; 542 ret = menelaus_write_reg(MENELAUS_VCORE_CTRL4, rval); 543 if (ret < 0) 544 goto out; 545 if (!the_menelaus->vcore_hw_mode) { 546 val = menelaus_read_reg(MENELAUS_VCORE_CTRL1); 547 /* HW mode, turn OFF byte comparator */ 548 val |= (VCORE_CTRL1_HW_NSW | VCORE_CTRL1_BYP_COMP); 549 ret = menelaus_write_reg(MENELAUS_VCORE_CTRL1, val); 550 the_menelaus->vcore_hw_mode = 1; 551 } 552 msleep(1); 553out: 554 mutex_unlock(&the_menelaus->lock); 555 return ret; 556} 557 558static const struct menelaus_vtg vmem_vtg = { 559 .name = "VMEM", 560 .vtg_reg = MENELAUS_LDO_CTRL1, 561 .vtg_shift = 0, 562 .vtg_bits = 2, 563 .mode_reg = MENELAUS_LDO_CTRL3, 564}; 565 566static const struct menelaus_vtg_value vmem_values[] = { 567 { 1500, 0 }, 568 { 1800, 1 }, 569 { 1900, 2 }, 570 { 2500, 3 }, 571}; 572 573int menelaus_set_vmem(unsigned int mV) 574{ 575 int val; 576 577 if (mV == 0) 578 return menelaus_set_voltage(&vmem_vtg, 0, 0, 0); 579 580 val = menelaus_get_vtg_value(mV, vmem_values, ARRAY_SIZE(vmem_values)); 581 if (val < 0) 582 return -EINVAL; 583 return menelaus_set_voltage(&vmem_vtg, mV, val, 0x02); 584} 585EXPORT_SYMBOL(menelaus_set_vmem); 586 587static const struct menelaus_vtg vio_vtg = { 588 .name = "VIO", 589 .vtg_reg = MENELAUS_LDO_CTRL1, 590 .vtg_shift = 2, 591 .vtg_bits = 2, 592 .mode_reg = MENELAUS_LDO_CTRL4, 593}; 594 595static const struct menelaus_vtg_value vio_values[] = { 596 { 1500, 0 }, 597 { 1800, 1 }, 598 { 2500, 2 }, 599 { 2800, 3 }, 600}; 601 602int menelaus_set_vio(unsigned int mV) 603{ 604 int val; 605 606 if (mV == 0) 607 return menelaus_set_voltage(&vio_vtg, 0, 0, 0); 608 609 val = menelaus_get_vtg_value(mV, vio_values, ARRAY_SIZE(vio_values)); 610 if (val < 0) 611 return -EINVAL; 612 return menelaus_set_voltage(&vio_vtg, mV, val, 0x02); 613} 614EXPORT_SYMBOL(menelaus_set_vio); 615 616static const struct menelaus_vtg_value vdcdc_values[] = { 617 { 1500, 0 }, 618 { 1800, 1 }, 619 { 2000, 2 }, 620 { 2200, 3 }, 621 { 2400, 4 }, 622 { 2800, 5 }, 623 { 3000, 6 }, 624 { 3300, 7 }, 625}; 626 627static const struct menelaus_vtg vdcdc2_vtg = { 628 .name = "VDCDC2", 629 .vtg_reg = MENELAUS_DCDC_CTRL1, 630 .vtg_shift = 0, 631 .vtg_bits = 3, 632 .mode_reg = MENELAUS_DCDC_CTRL2, 633}; 634 635static const struct menelaus_vtg vdcdc3_vtg = { 636 .name = "VDCDC3", 637 .vtg_reg = MENELAUS_DCDC_CTRL1, 638 .vtg_shift = 3, 639 .vtg_bits = 3, 640 .mode_reg = MENELAUS_DCDC_CTRL3, 641}; 642 643int menelaus_set_vdcdc(int dcdc, unsigned int mV) 644{ 645 const struct menelaus_vtg *vtg; 646 int val; 647 648 if (dcdc != 2 && dcdc != 3) 649 return -EINVAL; 650 if (dcdc == 2) 651 vtg = &vdcdc2_vtg; 652 else 653 vtg = &vdcdc3_vtg; 654 655 if (mV == 0) 656 return menelaus_set_voltage(vtg, 0, 0, 0); 657 658 val = menelaus_get_vtg_value(mV, vdcdc_values, 659 ARRAY_SIZE(vdcdc_values)); 660 if (val < 0) 661 return -EINVAL; 662 return menelaus_set_voltage(vtg, mV, val, 0x03); 663} 664 665static const struct menelaus_vtg_value vmmc_values[] = { 666 { 1850, 0 }, 667 { 2800, 1 }, 668 { 3000, 2 }, 669 { 3100, 3 }, 670}; 671 672static const struct menelaus_vtg vmmc_vtg = { 673 .name = "VMMC", 674 .vtg_reg = MENELAUS_LDO_CTRL1, 675 .vtg_shift = 6, 676 .vtg_bits = 2, 677 .mode_reg = MENELAUS_LDO_CTRL7, 678}; 679 680int menelaus_set_vmmc(unsigned int mV) 681{ 682 int val; 683 684 if (mV == 0) 685 return menelaus_set_voltage(&vmmc_vtg, 0, 0, 0); 686 687 val = menelaus_get_vtg_value(mV, vmmc_values, ARRAY_SIZE(vmmc_values)); 688 if (val < 0) 689 return -EINVAL; 690 return menelaus_set_voltage(&vmmc_vtg, mV, val, 0x02); 691} 692EXPORT_SYMBOL(menelaus_set_vmmc); 693 694 695static const struct menelaus_vtg_value vaux_values[] = { 696 { 1500, 0 }, 697 { 1800, 1 }, 698 { 2500, 2 }, 699 { 2800, 3 }, 700}; 701 702static const struct menelaus_vtg vaux_vtg = { 703 .name = "VAUX", 704 .vtg_reg = MENELAUS_LDO_CTRL1, 705 .vtg_shift = 4, 706 .vtg_bits = 2, 707 .mode_reg = MENELAUS_LDO_CTRL6, 708}; 709 710int menelaus_set_vaux(unsigned int mV) 711{ 712 int val; 713 714 if (mV == 0) 715 return menelaus_set_voltage(&vaux_vtg, 0, 0, 0); 716 717 val = menelaus_get_vtg_value(mV, vaux_values, ARRAY_SIZE(vaux_values)); 718 if (val < 0) 719 return -EINVAL; 720 return menelaus_set_voltage(&vaux_vtg, mV, val, 0x02); 721} 722EXPORT_SYMBOL(menelaus_set_vaux); 723 724int menelaus_get_slot_pin_states(void) 725{ 726 return menelaus_read_reg(MENELAUS_MCT_PIN_ST); 727} 728EXPORT_SYMBOL(menelaus_get_slot_pin_states); 729 730int menelaus_set_regulator_sleep(int enable, u32 val) 731{ 732 int t, ret; 733 struct i2c_client *c = the_menelaus->client; 734 735 mutex_lock(&the_menelaus->lock); 736 ret = menelaus_write_reg(MENELAUS_SLEEP_CTRL2, val); 737 if (ret < 0) 738 goto out; 739 740 dev_dbg(&c->dev, "regulator sleep configuration: %02x\n", val); 741 742 ret = menelaus_read_reg(MENELAUS_GPIO_CTRL); 743 if (ret < 0) 744 goto out; 745 t = (GPIO_CTRL_SLPCTLEN | GPIO3_DIR_INPUT); 746 if (enable) 747 ret |= t; 748 else 749 ret &= ~t; 750 ret = menelaus_write_reg(MENELAUS_GPIO_CTRL, ret); 751out: 752 mutex_unlock(&the_menelaus->lock); 753 return ret; 754} 755 756/*-----------------------------------------------------------------------*/ 757 758/* Handles Menelaus interrupts. Does not run in interrupt context */ 759static void menelaus_work(struct work_struct *_menelaus) 760{ 761 struct menelaus_chip *menelaus = 762 container_of(_menelaus, struct menelaus_chip, work); 763 void (*handler)(struct menelaus_chip *menelaus); 764 765 while (1) { 766 unsigned isr; 767 768 isr = (menelaus_read_reg(MENELAUS_INT_STATUS2) 769 & ~menelaus->mask2) << 8; 770 isr |= menelaus_read_reg(MENELAUS_INT_STATUS1) 771 & ~menelaus->mask1; 772 if (!isr) 773 break; 774 775 while (isr) { 776 int irq = fls(isr) - 1; 777 isr &= ~(1 << irq); 778 779 mutex_lock(&menelaus->lock); 780 menelaus_disable_irq(irq); 781 menelaus_ack_irq(irq); 782 handler = menelaus->handlers[irq]; 783 if (handler) 784 handler(menelaus); 785 menelaus_enable_irq(irq); 786 mutex_unlock(&menelaus->lock); 787 } 788 } 789 enable_irq(menelaus->client->irq); 790} 791 792/* 793 * We cannot use I2C in interrupt context, so we just schedule work. 794 */ 795static irqreturn_t menelaus_irq(int irq, void *_menelaus) 796{ 797 struct menelaus_chip *menelaus = _menelaus; 798 799 disable_irq_nosync(irq); 800 (void)schedule_work(&menelaus->work); 801 802 return IRQ_HANDLED; 803} 804 805/*-----------------------------------------------------------------------*/ 806 807/* 808 * The RTC needs to be set once, then it runs on backup battery power. 809 * It supports alarms, including system wake alarms (from some modes); 810 * and 1/second IRQs if requested. 811 */ 812#ifdef CONFIG_RTC_DRV_TWL92330 813 814#define RTC_CTRL_RTC_EN (1 << 0) 815#define RTC_CTRL_AL_EN (1 << 1) 816#define RTC_CTRL_MODE12 (1 << 2) 817#define RTC_CTRL_EVERY_MASK (3 << 3) 818#define RTC_CTRL_EVERY_SEC (0 << 3) 819#define RTC_CTRL_EVERY_MIN (1 << 3) 820#define RTC_CTRL_EVERY_HR (2 << 3) 821#define RTC_CTRL_EVERY_DAY (3 << 3) 822 823#define RTC_UPDATE_EVERY 0x08 824 825#define RTC_HR_PM (1 << 7) 826 827static void menelaus_to_time(char *regs, struct rtc_time *t) 828{ 829 t->tm_sec = bcd2bin(regs[0]); 830 t->tm_min = bcd2bin(regs[1]); 831 if (the_menelaus->rtc_control & RTC_CTRL_MODE12) { 832 t->tm_hour = bcd2bin(regs[2] & 0x1f) - 1; 833 if (regs[2] & RTC_HR_PM) 834 t->tm_hour += 12; 835 } else 836 t->tm_hour = bcd2bin(regs[2] & 0x3f); 837 t->tm_mday = bcd2bin(regs[3]); 838 t->tm_mon = bcd2bin(regs[4]) - 1; 839 t->tm_year = bcd2bin(regs[5]) + 100; 840} 841 842static int time_to_menelaus(struct rtc_time *t, int regnum) 843{ 844 int hour, status; 845 846 status = menelaus_write_reg(regnum++, bin2bcd(t->tm_sec)); 847 if (status < 0) 848 goto fail; 849 850 status = menelaus_write_reg(regnum++, bin2bcd(t->tm_min)); 851 if (status < 0) 852 goto fail; 853 854 if (the_menelaus->rtc_control & RTC_CTRL_MODE12) { 855 hour = t->tm_hour + 1; 856 if (hour > 12) 857 hour = RTC_HR_PM | bin2bcd(hour - 12); 858 else 859 hour = bin2bcd(hour); 860 } else 861 hour = bin2bcd(t->tm_hour); 862 status = menelaus_write_reg(regnum++, hour); 863 if (status < 0) 864 goto fail; 865 866 status = menelaus_write_reg(regnum++, bin2bcd(t->tm_mday)); 867 if (status < 0) 868 goto fail; 869 870 status = menelaus_write_reg(regnum++, bin2bcd(t->tm_mon + 1)); 871 if (status < 0) 872 goto fail; 873 874 status = menelaus_write_reg(regnum++, bin2bcd(t->tm_year - 100)); 875 if (status < 0) 876 goto fail; 877 878 return 0; 879fail: 880 dev_err(&the_menelaus->client->dev, "rtc write reg %02x, err %d\n", 881 --regnum, status); 882 return status; 883} 884 885static int menelaus_read_time(struct device *dev, struct rtc_time *t) 886{ 887 struct i2c_msg msg[2]; 888 char regs[7]; 889 int status; 890 891 /* block read date and time registers */ 892 regs[0] = MENELAUS_RTC_SEC; 893 894 msg[0].addr = MENELAUS_I2C_ADDRESS; 895 msg[0].flags = 0; 896 msg[0].len = 1; 897 msg[0].buf = regs; 898 899 msg[1].addr = MENELAUS_I2C_ADDRESS; 900 msg[1].flags = I2C_M_RD; 901 msg[1].len = sizeof(regs); 902 msg[1].buf = regs; 903 904 status = i2c_transfer(the_menelaus->client->adapter, msg, 2); 905 if (status != 2) { 906 dev_err(dev, "%s error %d\n", "read", status); 907 return -EIO; 908 } 909 910 menelaus_to_time(regs, t); 911 t->tm_wday = bcd2bin(regs[6]); 912 913 return 0; 914} 915 916static int menelaus_set_time(struct device *dev, struct rtc_time *t) 917{ 918 int status; 919 920 /* write date and time registers */ 921 status = time_to_menelaus(t, MENELAUS_RTC_SEC); 922 if (status < 0) 923 return status; 924 status = menelaus_write_reg(MENELAUS_RTC_WKDAY, bin2bcd(t->tm_wday)); 925 if (status < 0) { 926 dev_err(&the_menelaus->client->dev, "rtc write reg %02x " 927 "err %d\n", MENELAUS_RTC_WKDAY, status); 928 return status; 929 } 930 931 /* now commit the write */ 932 status = menelaus_write_reg(MENELAUS_RTC_UPDATE, RTC_UPDATE_EVERY); 933 if (status < 0) 934 dev_err(&the_menelaus->client->dev, "rtc commit time, err %d\n", 935 status); 936 937 return 0; 938} 939 940static int menelaus_read_alarm(struct device *dev, struct rtc_wkalrm *w) 941{ 942 struct i2c_msg msg[2]; 943 char regs[6]; 944 int status; 945 946 /* block read alarm registers */ 947 regs[0] = MENELAUS_RTC_AL_SEC; 948 949 msg[0].addr = MENELAUS_I2C_ADDRESS; 950 msg[0].flags = 0; 951 msg[0].len = 1; 952 msg[0].buf = regs; 953 954 msg[1].addr = MENELAUS_I2C_ADDRESS; 955 msg[1].flags = I2C_M_RD; 956 msg[1].len = sizeof(regs); 957 msg[1].buf = regs; 958 959 status = i2c_transfer(the_menelaus->client->adapter, msg, 2); 960 if (status != 2) { 961 dev_err(dev, "%s error %d\n", "alarm read", status); 962 return -EIO; 963 } 964 965 menelaus_to_time(regs, &w->time); 966 967 w->enabled = !!(the_menelaus->rtc_control & RTC_CTRL_AL_EN); 968 969 /* NOTE we *could* check if actually pending... */ 970 w->pending = 0; 971 972 return 0; 973} 974 975static int menelaus_set_alarm(struct device *dev, struct rtc_wkalrm *w) 976{ 977 int status; 978 979 if (the_menelaus->client->irq <= 0 && w->enabled) 980 return -ENODEV; 981 982 /* clear previous alarm enable */ 983 if (the_menelaus->rtc_control & RTC_CTRL_AL_EN) { 984 the_menelaus->rtc_control &= ~RTC_CTRL_AL_EN; 985 status = menelaus_write_reg(MENELAUS_RTC_CTRL, 986 the_menelaus->rtc_control); 987 if (status < 0) 988 return status; 989 } 990 991 /* write alarm registers */ 992 status = time_to_menelaus(&w->time, MENELAUS_RTC_AL_SEC); 993 if (status < 0) 994 return status; 995 996 /* enable alarm if requested */ 997 if (w->enabled) { 998 the_menelaus->rtc_control |= RTC_CTRL_AL_EN; 999 status = menelaus_write_reg(MENELAUS_RTC_CTRL, 1000 the_menelaus->rtc_control); 1001 } 1002 1003 return status; 1004} 1005 1006#ifdef CONFIG_RTC_INTF_DEV 1007 1008static void menelaus_rtc_update_work(struct menelaus_chip *m) 1009{ 1010 /* report 1/sec update */ 1011 rtc_update_irq(m->rtc, 1, RTC_IRQF | RTC_UF); 1012} 1013 1014static int menelaus_ioctl(struct device *dev, unsigned cmd, unsigned long arg) 1015{ 1016 int status; 1017 1018 if (the_menelaus->client->irq <= 0) 1019 return -ENOIOCTLCMD; 1020 1021 switch (cmd) { 1022 /* alarm IRQ */ 1023 case RTC_AIE_ON: 1024 if (the_menelaus->rtc_control & RTC_CTRL_AL_EN) 1025 return 0; 1026 the_menelaus->rtc_control |= RTC_CTRL_AL_EN; 1027 break; 1028 case RTC_AIE_OFF: 1029 if (!(the_menelaus->rtc_control & RTC_CTRL_AL_EN)) 1030 return 0; 1031 the_menelaus->rtc_control &= ~RTC_CTRL_AL_EN; 1032 break; 1033 /* 1/second "update" IRQ */ 1034 case RTC_UIE_ON: 1035 if (the_menelaus->uie) 1036 return 0; 1037 status = menelaus_remove_irq_work(MENELAUS_RTCTMR_IRQ); 1038 status = menelaus_add_irq_work(MENELAUS_RTCTMR_IRQ, 1039 menelaus_rtc_update_work); 1040 if (status == 0) 1041 the_menelaus->uie = 1; 1042 return status; 1043 case RTC_UIE_OFF: 1044 if (!the_menelaus->uie) 1045 return 0; 1046 status = menelaus_remove_irq_work(MENELAUS_RTCTMR_IRQ); 1047 if (status == 0) 1048 the_menelaus->uie = 0; 1049 return status; 1050 default: 1051 return -ENOIOCTLCMD; 1052 } 1053 return menelaus_write_reg(MENELAUS_RTC_CTRL, the_menelaus->rtc_control); 1054} 1055 1056#else 1057#define menelaus_ioctl NULL 1058#endif 1059 1060/* REVISIT no compensation register support ... */ 1061 1062static const struct rtc_class_ops menelaus_rtc_ops = { 1063 .ioctl = menelaus_ioctl, 1064 .read_time = menelaus_read_time, 1065 .set_time = menelaus_set_time, 1066 .read_alarm = menelaus_read_alarm, 1067 .set_alarm = menelaus_set_alarm, 1068}; 1069 1070static void menelaus_rtc_alarm_work(struct menelaus_chip *m) 1071{ 1072 /* report alarm */ 1073 rtc_update_irq(m->rtc, 1, RTC_IRQF | RTC_AF); 1074 1075 /* then disable it; alarms are oneshot */ 1076 the_menelaus->rtc_control &= ~RTC_CTRL_AL_EN; 1077 menelaus_write_reg(MENELAUS_RTC_CTRL, the_menelaus->rtc_control); 1078} 1079 1080static inline void menelaus_rtc_init(struct menelaus_chip *m) 1081{ 1082 int alarm = (m->client->irq > 0); 1083 int err; 1084 1085 /* assume 32KDETEN pin is pulled high */ 1086 if (!(menelaus_read_reg(MENELAUS_OSC_CTRL) & 0x80)) { 1087 dev_dbg(&m->client->dev, "no 32k oscillator\n"); 1088 return; 1089 } 1090 1091 m->rtc = devm_rtc_allocate_device(&m->client->dev); 1092 if (IS_ERR(m->rtc)) 1093 return; 1094 1095 m->rtc->ops = &menelaus_rtc_ops; 1096 1097 /* support RTC alarm; it can issue wakeups */ 1098 if (alarm) { 1099 if (menelaus_add_irq_work(MENELAUS_RTCALM_IRQ, 1100 menelaus_rtc_alarm_work) < 0) { 1101 dev_err(&m->client->dev, "can't handle RTC alarm\n"); 1102 return; 1103 } 1104 device_init_wakeup(&m->client->dev, 1); 1105 } 1106 1107 /* be sure RTC is enabled; allow 1/sec irqs; leave 12hr mode alone */ 1108 m->rtc_control = menelaus_read_reg(MENELAUS_RTC_CTRL); 1109 if (!(m->rtc_control & RTC_CTRL_RTC_EN) 1110 || (m->rtc_control & RTC_CTRL_AL_EN) 1111 || (m->rtc_control & RTC_CTRL_EVERY_MASK)) { 1112 if (!(m->rtc_control & RTC_CTRL_RTC_EN)) { 1113 dev_warn(&m->client->dev, "rtc clock needs setting\n"); 1114 m->rtc_control |= RTC_CTRL_RTC_EN; 1115 } 1116 m->rtc_control &= ~RTC_CTRL_EVERY_MASK; 1117 m->rtc_control &= ~RTC_CTRL_AL_EN; 1118 menelaus_write_reg(MENELAUS_RTC_CTRL, m->rtc_control); 1119 } 1120 1121 err = devm_rtc_register_device(m->rtc); 1122 if (err) { 1123 if (alarm) { 1124 menelaus_remove_irq_work(MENELAUS_RTCALM_IRQ); 1125 device_init_wakeup(&m->client->dev, 0); 1126 } 1127 the_menelaus->rtc = NULL; 1128 } 1129} 1130 1131#else 1132 1133static inline void menelaus_rtc_init(struct menelaus_chip *m) 1134{ 1135 /* nothing */ 1136} 1137 1138#endif 1139 1140/*-----------------------------------------------------------------------*/ 1141 1142static struct i2c_driver menelaus_i2c_driver; 1143 1144static int menelaus_probe(struct i2c_client *client) 1145{ 1146 struct menelaus_chip *menelaus; 1147 int rev = 0; 1148 int err = 0; 1149 struct menelaus_platform_data *menelaus_pdata = 1150 dev_get_platdata(&client->dev); 1151 1152 if (the_menelaus) { 1153 dev_dbg(&client->dev, "only one %s for now\n", 1154 DRIVER_NAME); 1155 return -ENODEV; 1156 } 1157 1158 menelaus = devm_kzalloc(&client->dev, sizeof(*menelaus), GFP_KERNEL); 1159 if (!menelaus) 1160 return -ENOMEM; 1161 1162 i2c_set_clientdata(client, menelaus); 1163 1164 the_menelaus = menelaus; 1165 menelaus->client = client; 1166 1167 /* If a true probe check the device */ 1168 rev = menelaus_read_reg(MENELAUS_REV); 1169 if (rev < 0) { 1170 pr_err(DRIVER_NAME ": device not found"); 1171 return -ENODEV; 1172 } 1173 1174 /* Ack and disable all Menelaus interrupts */ 1175 menelaus_write_reg(MENELAUS_INT_ACK1, 0xff); 1176 menelaus_write_reg(MENELAUS_INT_ACK2, 0xff); 1177 menelaus_write_reg(MENELAUS_INT_MASK1, 0xff); 1178 menelaus_write_reg(MENELAUS_INT_MASK2, 0xff); 1179 menelaus->mask1 = 0xff; 1180 menelaus->mask2 = 0xff; 1181 1182 /* Set output buffer strengths */ 1183 menelaus_write_reg(MENELAUS_MCT_CTRL1, 0x73); 1184 1185 if (client->irq > 0) { 1186 err = request_irq(client->irq, menelaus_irq, 0, 1187 DRIVER_NAME, menelaus); 1188 if (err) { 1189 dev_dbg(&client->dev, "can't get IRQ %d, err %d\n", 1190 client->irq, err); 1191 return err; 1192 } 1193 } 1194 1195 mutex_init(&menelaus->lock); 1196 INIT_WORK(&menelaus->work, menelaus_work); 1197 1198 pr_info("Menelaus rev %d.%d\n", rev >> 4, rev & 0x0f); 1199 1200 err = menelaus_read_reg(MENELAUS_VCORE_CTRL1); 1201 if (err < 0) 1202 goto fail; 1203 if (err & VCORE_CTRL1_HW_NSW) 1204 menelaus->vcore_hw_mode = 1; 1205 else 1206 menelaus->vcore_hw_mode = 0; 1207 1208 if (menelaus_pdata != NULL && menelaus_pdata->late_init != NULL) { 1209 err = menelaus_pdata->late_init(&client->dev); 1210 if (err < 0) 1211 goto fail; 1212 } 1213 1214 menelaus_rtc_init(menelaus); 1215 1216 return 0; 1217fail: 1218 free_irq(client->irq, menelaus); 1219 flush_work(&menelaus->work); 1220 return err; 1221} 1222 1223static void menelaus_remove(struct i2c_client *client) 1224{ 1225 struct menelaus_chip *menelaus = i2c_get_clientdata(client); 1226 1227 free_irq(client->irq, menelaus); 1228 flush_work(&menelaus->work); 1229 the_menelaus = NULL; 1230} 1231 1232static const struct i2c_device_id menelaus_id[] = { 1233 { "menelaus" }, 1234 { } 1235}; 1236MODULE_DEVICE_TABLE(i2c, menelaus_id); 1237 1238static struct i2c_driver menelaus_i2c_driver = { 1239 .driver = { 1240 .name = DRIVER_NAME, 1241 }, 1242 .probe = menelaus_probe, 1243 .remove = menelaus_remove, 1244 .id_table = menelaus_id, 1245}; 1246 1247module_i2c_driver(menelaus_i2c_driver); 1248 1249MODULE_AUTHOR("Texas Instruments, Inc. (and others)"); 1250MODULE_DESCRIPTION("I2C interface for Menelaus."); 1251MODULE_LICENSE("GPL");