Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * raid10.c : Multiple Devices driver for Linux
4 *
5 * Copyright (C) 2000-2004 Neil Brown
6 *
7 * RAID-10 support for md.
8 *
9 * Base on code in raid1.c. See raid1.c for further copyright information.
10 */
11
12#include <linux/slab.h>
13#include <linux/delay.h>
14#include <linux/blkdev.h>
15#include <linux/module.h>
16#include <linux/seq_file.h>
17#include <linux/ratelimit.h>
18#include <linux/kthread.h>
19#include <linux/raid/md_p.h>
20#include <trace/events/block.h>
21#include "md.h"
22
23#define RAID_1_10_NAME "raid10"
24#include "raid10.h"
25#include "raid0.h"
26#include "md-bitmap.h"
27#include "md-cluster.h"
28
29/*
30 * RAID10 provides a combination of RAID0 and RAID1 functionality.
31 * The layout of data is defined by
32 * chunk_size
33 * raid_disks
34 * near_copies (stored in low byte of layout)
35 * far_copies (stored in second byte of layout)
36 * far_offset (stored in bit 16 of layout )
37 * use_far_sets (stored in bit 17 of layout )
38 * use_far_sets_bugfixed (stored in bit 18 of layout )
39 *
40 * The data to be stored is divided into chunks using chunksize. Each device
41 * is divided into far_copies sections. In each section, chunks are laid out
42 * in a style similar to raid0, but near_copies copies of each chunk is stored
43 * (each on a different drive). The starting device for each section is offset
44 * near_copies from the starting device of the previous section. Thus there
45 * are (near_copies * far_copies) of each chunk, and each is on a different
46 * drive. near_copies and far_copies must be at least one, and their product
47 * is at most raid_disks.
48 *
49 * If far_offset is true, then the far_copies are handled a bit differently.
50 * The copies are still in different stripes, but instead of being very far
51 * apart on disk, there are adjacent stripes.
52 *
53 * The far and offset algorithms are handled slightly differently if
54 * 'use_far_sets' is true. In this case, the array's devices are grouped into
55 * sets that are (near_copies * far_copies) in size. The far copied stripes
56 * are still shifted by 'near_copies' devices, but this shifting stays confined
57 * to the set rather than the entire array. This is done to improve the number
58 * of device combinations that can fail without causing the array to fail.
59 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
60 * on a device):
61 * A B C D A B C D E
62 * ... ...
63 * D A B C E A B C D
64 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
65 * [A B] [C D] [A B] [C D E]
66 * |...| |...| |...| | ... |
67 * [B A] [D C] [B A] [E C D]
68 */
69
70static void allow_barrier(struct r10conf *conf);
71static void lower_barrier(struct r10conf *conf);
72static int _enough(struct r10conf *conf, int previous, int ignore);
73static int enough(struct r10conf *conf, int ignore);
74static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
75 int *skipped);
76static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
77static void end_reshape_write(struct bio *bio);
78static void end_reshape(struct r10conf *conf);
79
80#include "raid1-10.c"
81
82#define NULL_CMD
83#define cmd_before(conf, cmd) \
84 do { \
85 write_sequnlock_irq(&(conf)->resync_lock); \
86 cmd; \
87 } while (0)
88#define cmd_after(conf) write_seqlock_irq(&(conf)->resync_lock)
89
90#define wait_event_barrier_cmd(conf, cond, cmd) \
91 wait_event_cmd((conf)->wait_barrier, cond, cmd_before(conf, cmd), \
92 cmd_after(conf))
93
94#define wait_event_barrier(conf, cond) \
95 wait_event_barrier_cmd(conf, cond, NULL_CMD)
96
97/*
98 * for resync bio, r10bio pointer can be retrieved from the per-bio
99 * 'struct resync_pages'.
100 */
101static inline struct r10bio *get_resync_r10bio(struct bio *bio)
102{
103 return get_resync_pages(bio)->raid_bio;
104}
105
106static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
107{
108 struct r10conf *conf = data;
109 int size = offsetof(struct r10bio, devs[conf->geo.raid_disks]);
110
111 /* allocate a r10bio with room for raid_disks entries in the
112 * bios array */
113 return kzalloc(size, gfp_flags);
114}
115
116#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
117/* amount of memory to reserve for resync requests */
118#define RESYNC_WINDOW (1024*1024)
119/* maximum number of concurrent requests, memory permitting */
120#define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
121#define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW)
122#define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
123
124/*
125 * When performing a resync, we need to read and compare, so
126 * we need as many pages are there are copies.
127 * When performing a recovery, we need 2 bios, one for read,
128 * one for write (we recover only one drive per r10buf)
129 *
130 */
131static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
132{
133 struct r10conf *conf = data;
134 struct r10bio *r10_bio;
135 struct bio *bio;
136 int j;
137 int nalloc, nalloc_rp;
138 struct resync_pages *rps;
139
140 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
141 if (!r10_bio)
142 return NULL;
143
144 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
145 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
146 nalloc = conf->copies; /* resync */
147 else
148 nalloc = 2; /* recovery */
149
150 /* allocate once for all bios */
151 if (!conf->have_replacement)
152 nalloc_rp = nalloc;
153 else
154 nalloc_rp = nalloc * 2;
155 rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags);
156 if (!rps)
157 goto out_free_r10bio;
158
159 /*
160 * Allocate bios.
161 */
162 for (j = nalloc ; j-- ; ) {
163 bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
164 if (!bio)
165 goto out_free_bio;
166 bio_init_inline(bio, NULL, RESYNC_PAGES, 0);
167 r10_bio->devs[j].bio = bio;
168 if (!conf->have_replacement)
169 continue;
170 bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
171 if (!bio)
172 goto out_free_bio;
173 bio_init_inline(bio, NULL, RESYNC_PAGES, 0);
174 r10_bio->devs[j].repl_bio = bio;
175 }
176 /*
177 * Allocate RESYNC_PAGES data pages and attach them
178 * where needed.
179 */
180 for (j = 0; j < nalloc; j++) {
181 struct bio *rbio = r10_bio->devs[j].repl_bio;
182 struct resync_pages *rp, *rp_repl;
183
184 rp = &rps[j];
185 if (rbio)
186 rp_repl = &rps[nalloc + j];
187
188 bio = r10_bio->devs[j].bio;
189
190 if (!j || test_bit(MD_RECOVERY_SYNC,
191 &conf->mddev->recovery)) {
192 if (resync_alloc_pages(rp, gfp_flags))
193 goto out_free_pages;
194 } else {
195 memcpy(rp, &rps[0], sizeof(*rp));
196 resync_get_all_pages(rp);
197 }
198
199 rp->raid_bio = r10_bio;
200 bio->bi_private = rp;
201 if (rbio) {
202 memcpy(rp_repl, rp, sizeof(*rp));
203 rbio->bi_private = rp_repl;
204 }
205 }
206
207 return r10_bio;
208
209out_free_pages:
210 while (--j >= 0)
211 resync_free_pages(&rps[j]);
212
213 j = 0;
214out_free_bio:
215 for ( ; j < nalloc; j++) {
216 if (r10_bio->devs[j].bio)
217 bio_uninit(r10_bio->devs[j].bio);
218 kfree(r10_bio->devs[j].bio);
219 if (r10_bio->devs[j].repl_bio)
220 bio_uninit(r10_bio->devs[j].repl_bio);
221 kfree(r10_bio->devs[j].repl_bio);
222 }
223 kfree(rps);
224out_free_r10bio:
225 rbio_pool_free(r10_bio, conf);
226 return NULL;
227}
228
229static void r10buf_pool_free(void *__r10_bio, void *data)
230{
231 struct r10conf *conf = data;
232 struct r10bio *r10bio = __r10_bio;
233 int j;
234 struct resync_pages *rp = NULL;
235
236 for (j = conf->copies; j--; ) {
237 struct bio *bio = r10bio->devs[j].bio;
238
239 if (bio) {
240 rp = get_resync_pages(bio);
241 resync_free_pages(rp);
242 bio_uninit(bio);
243 kfree(bio);
244 }
245
246 bio = r10bio->devs[j].repl_bio;
247 if (bio) {
248 bio_uninit(bio);
249 kfree(bio);
250 }
251 }
252
253 /* resync pages array stored in the 1st bio's .bi_private */
254 kfree(rp);
255
256 rbio_pool_free(r10bio, conf);
257}
258
259static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
260{
261 int i;
262
263 for (i = 0; i < conf->geo.raid_disks; i++) {
264 struct bio **bio = & r10_bio->devs[i].bio;
265 if (!BIO_SPECIAL(*bio))
266 bio_put(*bio);
267 *bio = NULL;
268 bio = &r10_bio->devs[i].repl_bio;
269 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
270 bio_put(*bio);
271 *bio = NULL;
272 }
273}
274
275static void free_r10bio(struct r10bio *r10_bio)
276{
277 struct r10conf *conf = r10_bio->mddev->private;
278
279 put_all_bios(conf, r10_bio);
280 mempool_free(r10_bio, &conf->r10bio_pool);
281}
282
283static void put_buf(struct r10bio *r10_bio)
284{
285 struct r10conf *conf = r10_bio->mddev->private;
286
287 mempool_free(r10_bio, &conf->r10buf_pool);
288
289 lower_barrier(conf);
290}
291
292static void wake_up_barrier(struct r10conf *conf)
293{
294 if (wq_has_sleeper(&conf->wait_barrier))
295 wake_up(&conf->wait_barrier);
296}
297
298static void reschedule_retry(struct r10bio *r10_bio)
299{
300 unsigned long flags;
301 struct mddev *mddev = r10_bio->mddev;
302 struct r10conf *conf = mddev->private;
303
304 spin_lock_irqsave(&conf->device_lock, flags);
305 list_add(&r10_bio->retry_list, &conf->retry_list);
306 conf->nr_queued ++;
307 spin_unlock_irqrestore(&conf->device_lock, flags);
308
309 /* wake up frozen array... */
310 wake_up(&conf->wait_barrier);
311
312 md_wakeup_thread(mddev->thread);
313}
314
315/*
316 * raid_end_bio_io() is called when we have finished servicing a mirrored
317 * operation and are ready to return a success/failure code to the buffer
318 * cache layer.
319 */
320static void raid_end_bio_io(struct r10bio *r10_bio)
321{
322 struct bio *bio = r10_bio->master_bio;
323 struct r10conf *conf = r10_bio->mddev->private;
324
325 if (!test_and_set_bit(R10BIO_Returned, &r10_bio->state)) {
326 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
327 bio->bi_status = BLK_STS_IOERR;
328 bio_endio(bio);
329 }
330
331 /*
332 * Wake up any possible resync thread that waits for the device
333 * to go idle.
334 */
335 allow_barrier(conf);
336
337 free_r10bio(r10_bio);
338}
339
340/*
341 * Update disk head position estimator based on IRQ completion info.
342 */
343static inline void update_head_pos(int slot, struct r10bio *r10_bio)
344{
345 struct r10conf *conf = r10_bio->mddev->private;
346
347 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
348 r10_bio->devs[slot].addr + (r10_bio->sectors);
349}
350
351/*
352 * Find the disk number which triggered given bio
353 */
354static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
355 struct bio *bio, int *slotp, int *replp)
356{
357 int slot;
358 int repl = 0;
359
360 for (slot = 0; slot < conf->geo.raid_disks; slot++) {
361 if (r10_bio->devs[slot].bio == bio)
362 break;
363 if (r10_bio->devs[slot].repl_bio == bio) {
364 repl = 1;
365 break;
366 }
367 }
368
369 update_head_pos(slot, r10_bio);
370
371 if (slotp)
372 *slotp = slot;
373 if (replp)
374 *replp = repl;
375 return r10_bio->devs[slot].devnum;
376}
377
378static void raid10_end_read_request(struct bio *bio)
379{
380 int uptodate = !bio->bi_status;
381 struct r10bio *r10_bio = bio->bi_private;
382 int slot;
383 struct md_rdev *rdev;
384 struct r10conf *conf = r10_bio->mddev->private;
385
386 slot = r10_bio->read_slot;
387 rdev = r10_bio->devs[slot].rdev;
388 /*
389 * this branch is our 'one mirror IO has finished' event handler:
390 */
391 update_head_pos(slot, r10_bio);
392
393 if (uptodate) {
394 /*
395 * Set R10BIO_Uptodate in our master bio, so that
396 * we will return a good error code to the higher
397 * levels even if IO on some other mirrored buffer fails.
398 *
399 * The 'master' represents the composite IO operation to
400 * user-side. So if something waits for IO, then it will
401 * wait for the 'master' bio.
402 */
403 set_bit(R10BIO_Uptodate, &r10_bio->state);
404 } else if (!raid1_should_handle_error(bio)) {
405 uptodate = 1;
406 } else {
407 /* If all other devices that store this block have
408 * failed, we want to return the error upwards rather
409 * than fail the last device. Here we redefine
410 * "uptodate" to mean "Don't want to retry"
411 */
412 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
413 rdev->raid_disk))
414 uptodate = 1;
415 }
416 if (uptodate) {
417 raid_end_bio_io(r10_bio);
418 rdev_dec_pending(rdev, conf->mddev);
419 } else {
420 /*
421 * oops, read error - keep the refcount on the rdev
422 */
423 pr_err_ratelimited("md/raid10:%s: %pg: rescheduling sector %llu\n",
424 mdname(conf->mddev),
425 rdev->bdev,
426 (unsigned long long)r10_bio->sector);
427 set_bit(R10BIO_ReadError, &r10_bio->state);
428 reschedule_retry(r10_bio);
429 }
430}
431
432static void close_write(struct r10bio *r10_bio)
433{
434 struct mddev *mddev = r10_bio->mddev;
435
436 md_write_end(mddev);
437}
438
439static void one_write_done(struct r10bio *r10_bio)
440{
441 if (atomic_dec_and_test(&r10_bio->remaining)) {
442 if (test_bit(R10BIO_WriteError, &r10_bio->state))
443 reschedule_retry(r10_bio);
444 else {
445 close_write(r10_bio);
446 if (test_bit(R10BIO_MadeGood, &r10_bio->state))
447 reschedule_retry(r10_bio);
448 else
449 raid_end_bio_io(r10_bio);
450 }
451 }
452}
453
454static void raid10_end_write_request(struct bio *bio)
455{
456 struct r10bio *r10_bio = bio->bi_private;
457 int dev;
458 int dec_rdev = 1;
459 struct r10conf *conf = r10_bio->mddev->private;
460 int slot, repl;
461 struct md_rdev *rdev = NULL;
462 struct bio *to_put = NULL;
463 bool ignore_error = !raid1_should_handle_error(bio) ||
464 (bio->bi_status && bio_op(bio) == REQ_OP_DISCARD);
465
466 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
467
468 if (repl)
469 rdev = conf->mirrors[dev].replacement;
470 if (!rdev) {
471 smp_rmb();
472 repl = 0;
473 rdev = conf->mirrors[dev].rdev;
474 }
475 /*
476 * this branch is our 'one mirror IO has finished' event handler:
477 */
478 if (bio->bi_status && !ignore_error) {
479 if (repl)
480 /* Never record new bad blocks to replacement,
481 * just fail it.
482 */
483 md_error(rdev->mddev, rdev);
484 else {
485 set_bit(WriteErrorSeen, &rdev->flags);
486 if (!test_and_set_bit(WantReplacement, &rdev->flags))
487 set_bit(MD_RECOVERY_NEEDED,
488 &rdev->mddev->recovery);
489
490 dec_rdev = 0;
491 if (test_bit(FailFast, &rdev->flags) &&
492 (bio->bi_opf & MD_FAILFAST)) {
493 md_error(rdev->mddev, rdev);
494 }
495
496 /*
497 * When the device is faulty, it is not necessary to
498 * handle write error.
499 */
500 if (!test_bit(Faulty, &rdev->flags))
501 set_bit(R10BIO_WriteError, &r10_bio->state);
502 else {
503 /* Fail the request */
504 r10_bio->devs[slot].bio = NULL;
505 to_put = bio;
506 dec_rdev = 1;
507 }
508 }
509 } else {
510 /*
511 * Set R10BIO_Uptodate in our master bio, so that
512 * we will return a good error code for to the higher
513 * levels even if IO on some other mirrored buffer fails.
514 *
515 * The 'master' represents the composite IO operation to
516 * user-side. So if something waits for IO, then it will
517 * wait for the 'master' bio.
518 *
519 * Do not set R10BIO_Uptodate if the current device is
520 * rebuilding or Faulty. This is because we cannot use
521 * such device for properly reading the data back (we could
522 * potentially use it, if the current write would have felt
523 * before rdev->recovery_offset, but for simplicity we don't
524 * check this here.
525 */
526 if (test_bit(In_sync, &rdev->flags) &&
527 !test_bit(Faulty, &rdev->flags))
528 set_bit(R10BIO_Uptodate, &r10_bio->state);
529
530 /* Maybe we can clear some bad blocks. */
531 if (rdev_has_badblock(rdev, r10_bio->devs[slot].addr,
532 r10_bio->sectors) &&
533 !ignore_error) {
534 bio_put(bio);
535 if (repl)
536 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
537 else
538 r10_bio->devs[slot].bio = IO_MADE_GOOD;
539 dec_rdev = 0;
540 set_bit(R10BIO_MadeGood, &r10_bio->state);
541 }
542 }
543
544 /*
545 *
546 * Let's see if all mirrored write operations have finished
547 * already.
548 */
549 one_write_done(r10_bio);
550 if (dec_rdev)
551 rdev_dec_pending(rdev, conf->mddev);
552 if (to_put)
553 bio_put(to_put);
554}
555
556/*
557 * RAID10 layout manager
558 * As well as the chunksize and raid_disks count, there are two
559 * parameters: near_copies and far_copies.
560 * near_copies * far_copies must be <= raid_disks.
561 * Normally one of these will be 1.
562 * If both are 1, we get raid0.
563 * If near_copies == raid_disks, we get raid1.
564 *
565 * Chunks are laid out in raid0 style with near_copies copies of the
566 * first chunk, followed by near_copies copies of the next chunk and
567 * so on.
568 * If far_copies > 1, then after 1/far_copies of the array has been assigned
569 * as described above, we start again with a device offset of near_copies.
570 * So we effectively have another copy of the whole array further down all
571 * the drives, but with blocks on different drives.
572 * With this layout, and block is never stored twice on the one device.
573 *
574 * raid10_find_phys finds the sector offset of a given virtual sector
575 * on each device that it is on.
576 *
577 * raid10_find_virt does the reverse mapping, from a device and a
578 * sector offset to a virtual address
579 */
580
581static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
582{
583 int n,f;
584 sector_t sector;
585 sector_t chunk;
586 sector_t stripe;
587 int dev;
588 int slot = 0;
589 int last_far_set_start, last_far_set_size;
590
591 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
592 last_far_set_start *= geo->far_set_size;
593
594 last_far_set_size = geo->far_set_size;
595 last_far_set_size += (geo->raid_disks % geo->far_set_size);
596
597 /* now calculate first sector/dev */
598 chunk = r10bio->sector >> geo->chunk_shift;
599 sector = r10bio->sector & geo->chunk_mask;
600
601 chunk *= geo->near_copies;
602 stripe = chunk;
603 dev = sector_div(stripe, geo->raid_disks);
604 if (geo->far_offset)
605 stripe *= geo->far_copies;
606
607 sector += stripe << geo->chunk_shift;
608
609 /* and calculate all the others */
610 for (n = 0; n < geo->near_copies; n++) {
611 int d = dev;
612 int set;
613 sector_t s = sector;
614 r10bio->devs[slot].devnum = d;
615 r10bio->devs[slot].addr = s;
616 slot++;
617
618 for (f = 1; f < geo->far_copies; f++) {
619 set = d / geo->far_set_size;
620 d += geo->near_copies;
621
622 if ((geo->raid_disks % geo->far_set_size) &&
623 (d > last_far_set_start)) {
624 d -= last_far_set_start;
625 d %= last_far_set_size;
626 d += last_far_set_start;
627 } else {
628 d %= geo->far_set_size;
629 d += geo->far_set_size * set;
630 }
631 s += geo->stride;
632 r10bio->devs[slot].devnum = d;
633 r10bio->devs[slot].addr = s;
634 slot++;
635 }
636 dev++;
637 if (dev >= geo->raid_disks) {
638 dev = 0;
639 sector += (geo->chunk_mask + 1);
640 }
641 }
642}
643
644static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
645{
646 struct geom *geo = &conf->geo;
647
648 if (conf->reshape_progress != MaxSector &&
649 ((r10bio->sector >= conf->reshape_progress) !=
650 conf->mddev->reshape_backwards)) {
651 set_bit(R10BIO_Previous, &r10bio->state);
652 geo = &conf->prev;
653 } else
654 clear_bit(R10BIO_Previous, &r10bio->state);
655
656 __raid10_find_phys(geo, r10bio);
657}
658
659static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
660{
661 sector_t offset, chunk, vchunk;
662 /* Never use conf->prev as this is only called during resync
663 * or recovery, so reshape isn't happening
664 */
665 struct geom *geo = &conf->geo;
666 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
667 int far_set_size = geo->far_set_size;
668 int last_far_set_start;
669
670 if (geo->raid_disks % geo->far_set_size) {
671 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
672 last_far_set_start *= geo->far_set_size;
673
674 if (dev >= last_far_set_start) {
675 far_set_size = geo->far_set_size;
676 far_set_size += (geo->raid_disks % geo->far_set_size);
677 far_set_start = last_far_set_start;
678 }
679 }
680
681 offset = sector & geo->chunk_mask;
682 if (geo->far_offset) {
683 int fc;
684 chunk = sector >> geo->chunk_shift;
685 fc = sector_div(chunk, geo->far_copies);
686 dev -= fc * geo->near_copies;
687 if (dev < far_set_start)
688 dev += far_set_size;
689 } else {
690 while (sector >= geo->stride) {
691 sector -= geo->stride;
692 if (dev < (geo->near_copies + far_set_start))
693 dev += far_set_size - geo->near_copies;
694 else
695 dev -= geo->near_copies;
696 }
697 chunk = sector >> geo->chunk_shift;
698 }
699 vchunk = chunk * geo->raid_disks + dev;
700 sector_div(vchunk, geo->near_copies);
701 return (vchunk << geo->chunk_shift) + offset;
702}
703
704/*
705 * This routine returns the disk from which the requested read should
706 * be done. There is a per-array 'next expected sequential IO' sector
707 * number - if this matches on the next IO then we use the last disk.
708 * There is also a per-disk 'last know head position' sector that is
709 * maintained from IRQ contexts, both the normal and the resync IO
710 * completion handlers update this position correctly. If there is no
711 * perfect sequential match then we pick the disk whose head is closest.
712 *
713 * If there are 2 mirrors in the same 2 devices, performance degrades
714 * because position is mirror, not device based.
715 *
716 * The rdev for the device selected will have nr_pending incremented.
717 */
718
719/*
720 * FIXME: possibly should rethink readbalancing and do it differently
721 * depending on near_copies / far_copies geometry.
722 */
723static struct md_rdev *read_balance(struct r10conf *conf,
724 struct r10bio *r10_bio,
725 int *max_sectors)
726{
727 const sector_t this_sector = r10_bio->sector;
728 int disk, slot;
729 int sectors = r10_bio->sectors;
730 int best_good_sectors;
731 sector_t new_distance, best_dist;
732 struct md_rdev *best_dist_rdev, *best_pending_rdev, *rdev = NULL;
733 int do_balance;
734 int best_dist_slot, best_pending_slot;
735 bool has_nonrot_disk = false;
736 unsigned int min_pending;
737 struct geom *geo = &conf->geo;
738
739 raid10_find_phys(conf, r10_bio);
740 best_dist_slot = -1;
741 min_pending = UINT_MAX;
742 best_dist_rdev = NULL;
743 best_pending_rdev = NULL;
744 best_dist = MaxSector;
745 best_good_sectors = 0;
746 do_balance = 1;
747 clear_bit(R10BIO_FailFast, &r10_bio->state);
748
749 if (raid1_should_read_first(conf->mddev, this_sector, sectors))
750 do_balance = 0;
751
752 for (slot = 0; slot < conf->copies ; slot++) {
753 sector_t first_bad;
754 sector_t bad_sectors;
755 sector_t dev_sector;
756 unsigned int pending;
757 bool nonrot;
758
759 if (r10_bio->devs[slot].bio == IO_BLOCKED)
760 continue;
761 disk = r10_bio->devs[slot].devnum;
762 rdev = conf->mirrors[disk].replacement;
763 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
764 r10_bio->devs[slot].addr + sectors >
765 rdev->recovery_offset)
766 rdev = conf->mirrors[disk].rdev;
767 if (rdev == NULL ||
768 test_bit(Faulty, &rdev->flags))
769 continue;
770 if (!test_bit(In_sync, &rdev->flags) &&
771 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
772 continue;
773
774 dev_sector = r10_bio->devs[slot].addr;
775 if (is_badblock(rdev, dev_sector, sectors,
776 &first_bad, &bad_sectors)) {
777 if (best_dist < MaxSector)
778 /* Already have a better slot */
779 continue;
780 if (first_bad <= dev_sector) {
781 /* Cannot read here. If this is the
782 * 'primary' device, then we must not read
783 * beyond 'bad_sectors' from another device.
784 */
785 bad_sectors -= (dev_sector - first_bad);
786 if (!do_balance && sectors > bad_sectors)
787 sectors = bad_sectors;
788 if (best_good_sectors > sectors)
789 best_good_sectors = sectors;
790 } else {
791 sector_t good_sectors =
792 first_bad - dev_sector;
793 if (good_sectors > best_good_sectors) {
794 best_good_sectors = good_sectors;
795 best_dist_slot = slot;
796 best_dist_rdev = rdev;
797 }
798 if (!do_balance)
799 /* Must read from here */
800 break;
801 }
802 continue;
803 } else
804 best_good_sectors = sectors;
805
806 if (!do_balance)
807 break;
808
809 nonrot = bdev_nonrot(rdev->bdev);
810 has_nonrot_disk |= nonrot;
811 pending = atomic_read(&rdev->nr_pending);
812 if (min_pending > pending && nonrot) {
813 min_pending = pending;
814 best_pending_slot = slot;
815 best_pending_rdev = rdev;
816 }
817
818 if (best_dist_slot >= 0)
819 /* At least 2 disks to choose from so failfast is OK */
820 set_bit(R10BIO_FailFast, &r10_bio->state);
821 /* This optimisation is debatable, and completely destroys
822 * sequential read speed for 'far copies' arrays. So only
823 * keep it for 'near' arrays, and review those later.
824 */
825 if (geo->near_copies > 1 && !pending)
826 new_distance = 0;
827
828 /* for far > 1 always use the lowest address */
829 else if (geo->far_copies > 1)
830 new_distance = r10_bio->devs[slot].addr;
831 else
832 new_distance = abs(r10_bio->devs[slot].addr -
833 conf->mirrors[disk].head_position);
834
835 if (new_distance < best_dist) {
836 best_dist = new_distance;
837 best_dist_slot = slot;
838 best_dist_rdev = rdev;
839 }
840 }
841 if (slot >= conf->copies) {
842 if (has_nonrot_disk) {
843 slot = best_pending_slot;
844 rdev = best_pending_rdev;
845 } else {
846 slot = best_dist_slot;
847 rdev = best_dist_rdev;
848 }
849 }
850
851 if (slot >= 0) {
852 atomic_inc(&rdev->nr_pending);
853 r10_bio->read_slot = slot;
854 } else
855 rdev = NULL;
856 *max_sectors = best_good_sectors;
857
858 return rdev;
859}
860
861static void flush_pending_writes(struct r10conf *conf)
862{
863 /* Any writes that have been queued but are awaiting
864 * bitmap updates get flushed here.
865 */
866 spin_lock_irq(&conf->device_lock);
867
868 if (conf->pending_bio_list.head) {
869 struct blk_plug plug;
870 struct bio *bio;
871
872 bio = bio_list_get(&conf->pending_bio_list);
873 spin_unlock_irq(&conf->device_lock);
874
875 /*
876 * As this is called in a wait_event() loop (see freeze_array),
877 * current->state might be TASK_UNINTERRUPTIBLE which will
878 * cause a warning when we prepare to wait again. As it is
879 * rare that this path is taken, it is perfectly safe to force
880 * us to go around the wait_event() loop again, so the warning
881 * is a false-positive. Silence the warning by resetting
882 * thread state
883 */
884 __set_current_state(TASK_RUNNING);
885
886 blk_start_plug(&plug);
887 raid1_prepare_flush_writes(conf->mddev);
888 wake_up(&conf->wait_barrier);
889
890 while (bio) { /* submit pending writes */
891 struct bio *next = bio->bi_next;
892
893 raid1_submit_write(bio);
894 bio = next;
895 cond_resched();
896 }
897 blk_finish_plug(&plug);
898 } else
899 spin_unlock_irq(&conf->device_lock);
900}
901
902/* Barriers....
903 * Sometimes we need to suspend IO while we do something else,
904 * either some resync/recovery, or reconfigure the array.
905 * To do this we raise a 'barrier'.
906 * The 'barrier' is a counter that can be raised multiple times
907 * to count how many activities are happening which preclude
908 * normal IO.
909 * We can only raise the barrier if there is no pending IO.
910 * i.e. if nr_pending == 0.
911 * We choose only to raise the barrier if no-one is waiting for the
912 * barrier to go down. This means that as soon as an IO request
913 * is ready, no other operations which require a barrier will start
914 * until the IO request has had a chance.
915 *
916 * So: regular IO calls 'wait_barrier'. When that returns there
917 * is no backgroup IO happening, It must arrange to call
918 * allow_barrier when it has finished its IO.
919 * backgroup IO calls must call raise_barrier. Once that returns
920 * there is no normal IO happeing. It must arrange to call
921 * lower_barrier when the particular background IO completes.
922 */
923
924static void raise_barrier(struct r10conf *conf, int force)
925{
926 write_seqlock_irq(&conf->resync_lock);
927
928 if (WARN_ON_ONCE(force && !conf->barrier))
929 force = false;
930
931 /* Wait until no block IO is waiting (unless 'force') */
932 wait_event_barrier(conf, force || !conf->nr_waiting);
933
934 /* block any new IO from starting */
935 WRITE_ONCE(conf->barrier, conf->barrier + 1);
936
937 /* Now wait for all pending IO to complete */
938 wait_event_barrier(conf, !atomic_read(&conf->nr_pending) &&
939 conf->barrier < RESYNC_DEPTH);
940
941 write_sequnlock_irq(&conf->resync_lock);
942}
943
944static void lower_barrier(struct r10conf *conf)
945{
946 unsigned long flags;
947
948 write_seqlock_irqsave(&conf->resync_lock, flags);
949 WRITE_ONCE(conf->barrier, conf->barrier - 1);
950 write_sequnlock_irqrestore(&conf->resync_lock, flags);
951 wake_up(&conf->wait_barrier);
952}
953
954static bool stop_waiting_barrier(struct r10conf *conf)
955{
956 struct bio_list *bio_list = current->bio_list;
957 struct md_thread *thread;
958
959 /* barrier is dropped */
960 if (!conf->barrier)
961 return true;
962
963 /*
964 * If there are already pending requests (preventing the barrier from
965 * rising completely), and the pre-process bio queue isn't empty, then
966 * don't wait, as we need to empty that queue to get the nr_pending
967 * count down.
968 */
969 if (atomic_read(&conf->nr_pending) && bio_list &&
970 (!bio_list_empty(&bio_list[0]) || !bio_list_empty(&bio_list[1])))
971 return true;
972
973 /* daemon thread must exist while handling io */
974 thread = rcu_dereference_protected(conf->mddev->thread, true);
975 /*
976 * move on if io is issued from raid10d(), nr_pending is not released
977 * from original io(see handle_read_error()). All raise barrier is
978 * blocked until this io is done.
979 */
980 if (thread->tsk == current) {
981 WARN_ON_ONCE(atomic_read(&conf->nr_pending) == 0);
982 return true;
983 }
984
985 return false;
986}
987
988static bool wait_barrier_nolock(struct r10conf *conf)
989{
990 unsigned int seq = read_seqbegin(&conf->resync_lock);
991
992 if (READ_ONCE(conf->barrier))
993 return false;
994
995 atomic_inc(&conf->nr_pending);
996 if (!read_seqretry(&conf->resync_lock, seq))
997 return true;
998
999 if (atomic_dec_and_test(&conf->nr_pending))
1000 wake_up_barrier(conf);
1001
1002 return false;
1003}
1004
1005static bool wait_barrier(struct r10conf *conf, bool nowait)
1006{
1007 bool ret = true;
1008
1009 if (wait_barrier_nolock(conf))
1010 return true;
1011
1012 write_seqlock_irq(&conf->resync_lock);
1013 if (conf->barrier) {
1014 /* Return false when nowait flag is set */
1015 if (nowait) {
1016 ret = false;
1017 } else {
1018 conf->nr_waiting++;
1019 mddev_add_trace_msg(conf->mddev, "raid10 wait barrier");
1020 wait_event_barrier(conf, stop_waiting_barrier(conf));
1021 conf->nr_waiting--;
1022 }
1023 if (!conf->nr_waiting)
1024 wake_up(&conf->wait_barrier);
1025 }
1026 /* Only increment nr_pending when we wait */
1027 if (ret)
1028 atomic_inc(&conf->nr_pending);
1029 write_sequnlock_irq(&conf->resync_lock);
1030 return ret;
1031}
1032
1033static void allow_barrier(struct r10conf *conf)
1034{
1035 if ((atomic_dec_and_test(&conf->nr_pending)) ||
1036 (conf->array_freeze_pending))
1037 wake_up_barrier(conf);
1038}
1039
1040static void freeze_array(struct r10conf *conf, int extra)
1041{
1042 /* stop syncio and normal IO and wait for everything to
1043 * go quiet.
1044 * We increment barrier and nr_waiting, and then
1045 * wait until nr_pending match nr_queued+extra
1046 * This is called in the context of one normal IO request
1047 * that has failed. Thus any sync request that might be pending
1048 * will be blocked by nr_pending, and we need to wait for
1049 * pending IO requests to complete or be queued for re-try.
1050 * Thus the number queued (nr_queued) plus this request (extra)
1051 * must match the number of pending IOs (nr_pending) before
1052 * we continue.
1053 */
1054 write_seqlock_irq(&conf->resync_lock);
1055 conf->array_freeze_pending++;
1056 WRITE_ONCE(conf->barrier, conf->barrier + 1);
1057 conf->nr_waiting++;
1058 wait_event_barrier_cmd(conf, atomic_read(&conf->nr_pending) ==
1059 conf->nr_queued + extra, flush_pending_writes(conf));
1060 conf->array_freeze_pending--;
1061 write_sequnlock_irq(&conf->resync_lock);
1062}
1063
1064static void unfreeze_array(struct r10conf *conf)
1065{
1066 /* reverse the effect of the freeze */
1067 write_seqlock_irq(&conf->resync_lock);
1068 WRITE_ONCE(conf->barrier, conf->barrier - 1);
1069 conf->nr_waiting--;
1070 wake_up(&conf->wait_barrier);
1071 write_sequnlock_irq(&conf->resync_lock);
1072}
1073
1074static sector_t choose_data_offset(struct r10bio *r10_bio,
1075 struct md_rdev *rdev)
1076{
1077 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1078 test_bit(R10BIO_Previous, &r10_bio->state))
1079 return rdev->data_offset;
1080 else
1081 return rdev->new_data_offset;
1082}
1083
1084static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1085{
1086 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb, cb);
1087 struct mddev *mddev = plug->cb.data;
1088 struct r10conf *conf = mddev->private;
1089 struct bio *bio;
1090
1091 if (from_schedule) {
1092 spin_lock_irq(&conf->device_lock);
1093 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1094 spin_unlock_irq(&conf->device_lock);
1095 wake_up_barrier(conf);
1096 md_wakeup_thread(mddev->thread);
1097 kfree(plug);
1098 return;
1099 }
1100
1101 /* we aren't scheduling, so we can do the write-out directly. */
1102 bio = bio_list_get(&plug->pending);
1103 raid1_prepare_flush_writes(mddev);
1104 wake_up_barrier(conf);
1105
1106 while (bio) { /* submit pending writes */
1107 struct bio *next = bio->bi_next;
1108
1109 raid1_submit_write(bio);
1110 bio = next;
1111 cond_resched();
1112 }
1113 kfree(plug);
1114}
1115
1116/*
1117 * 1. Register the new request and wait if the reconstruction thread has put
1118 * up a bar for new requests. Continue immediately if no resync is active
1119 * currently.
1120 * 2. If IO spans the reshape position. Need to wait for reshape to pass.
1121 */
1122static bool regular_request_wait(struct mddev *mddev, struct r10conf *conf,
1123 struct bio *bio, sector_t sectors)
1124{
1125 /* Bail out if REQ_NOWAIT is set for the bio */
1126 if (!wait_barrier(conf, bio->bi_opf & REQ_NOWAIT)) {
1127 bio_wouldblock_error(bio);
1128 return false;
1129 }
1130 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1131 bio->bi_iter.bi_sector < conf->reshape_progress &&
1132 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1133 allow_barrier(conf);
1134 if (bio->bi_opf & REQ_NOWAIT) {
1135 bio_wouldblock_error(bio);
1136 return false;
1137 }
1138 mddev_add_trace_msg(conf->mddev, "raid10 wait reshape");
1139 wait_event(conf->wait_barrier,
1140 conf->reshape_progress <= bio->bi_iter.bi_sector ||
1141 conf->reshape_progress >= bio->bi_iter.bi_sector +
1142 sectors);
1143 wait_barrier(conf, false);
1144 }
1145 return true;
1146}
1147
1148static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1149 struct r10bio *r10_bio, bool io_accounting)
1150{
1151 struct r10conf *conf = mddev->private;
1152 struct bio *read_bio;
1153 int max_sectors;
1154 struct md_rdev *rdev;
1155 char b[BDEVNAME_SIZE];
1156 int slot = r10_bio->read_slot;
1157 struct md_rdev *err_rdev = NULL;
1158 gfp_t gfp = GFP_NOIO;
1159
1160 if (slot >= 0 && r10_bio->devs[slot].rdev) {
1161 /*
1162 * This is an error retry, but we cannot
1163 * safely dereference the rdev in the r10_bio,
1164 * we must use the one in conf.
1165 * If it has already been disconnected (unlikely)
1166 * we lose the device name in error messages.
1167 */
1168 int disk;
1169 /*
1170 * As we are blocking raid10, it is a little safer to
1171 * use __GFP_HIGH.
1172 */
1173 gfp = GFP_NOIO | __GFP_HIGH;
1174
1175 disk = r10_bio->devs[slot].devnum;
1176 err_rdev = conf->mirrors[disk].rdev;
1177 if (err_rdev)
1178 snprintf(b, sizeof(b), "%pg", err_rdev->bdev);
1179 else {
1180 strcpy(b, "???");
1181 /* This never gets dereferenced */
1182 err_rdev = r10_bio->devs[slot].rdev;
1183 }
1184 }
1185
1186 if (!regular_request_wait(mddev, conf, bio, r10_bio->sectors)) {
1187 raid_end_bio_io(r10_bio);
1188 return;
1189 }
1190
1191 rdev = read_balance(conf, r10_bio, &max_sectors);
1192 if (!rdev) {
1193 if (err_rdev) {
1194 pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1195 mdname(mddev), b,
1196 (unsigned long long)r10_bio->sector);
1197 }
1198 raid_end_bio_io(r10_bio);
1199 return;
1200 }
1201 if (err_rdev)
1202 pr_err_ratelimited("md/raid10:%s: %pg: redirecting sector %llu to another mirror\n",
1203 mdname(mddev),
1204 rdev->bdev,
1205 (unsigned long long)r10_bio->sector);
1206 if (max_sectors < bio_sectors(bio)) {
1207 allow_barrier(conf);
1208 bio = bio_submit_split_bioset(bio, max_sectors,
1209 &conf->bio_split);
1210 wait_barrier(conf, false);
1211 if (!bio) {
1212 set_bit(R10BIO_Returned, &r10_bio->state);
1213 goto err_handle;
1214 }
1215
1216 r10_bio->master_bio = bio;
1217 r10_bio->sectors = max_sectors;
1218 }
1219 slot = r10_bio->read_slot;
1220
1221 if (io_accounting) {
1222 md_account_bio(mddev, &bio);
1223 r10_bio->master_bio = bio;
1224 }
1225 read_bio = bio_alloc_clone(rdev->bdev, bio, gfp, &mddev->bio_set);
1226 read_bio->bi_opf &= ~REQ_NOWAIT;
1227
1228 r10_bio->devs[slot].bio = read_bio;
1229 r10_bio->devs[slot].rdev = rdev;
1230
1231 read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1232 choose_data_offset(r10_bio, rdev);
1233 read_bio->bi_end_io = raid10_end_read_request;
1234 if (test_bit(FailFast, &rdev->flags) &&
1235 test_bit(R10BIO_FailFast, &r10_bio->state))
1236 read_bio->bi_opf |= MD_FAILFAST;
1237 read_bio->bi_private = r10_bio;
1238 mddev_trace_remap(mddev, read_bio, r10_bio->sector);
1239 submit_bio_noacct(read_bio);
1240 return;
1241err_handle:
1242 atomic_dec(&rdev->nr_pending);
1243 raid_end_bio_io(r10_bio);
1244}
1245
1246static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
1247 struct bio *bio, bool replacement,
1248 int n_copy)
1249{
1250 unsigned long flags;
1251 struct r10conf *conf = mddev->private;
1252 struct md_rdev *rdev;
1253 int devnum = r10_bio->devs[n_copy].devnum;
1254 struct bio *mbio;
1255
1256 rdev = replacement ? conf->mirrors[devnum].replacement :
1257 conf->mirrors[devnum].rdev;
1258
1259 mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO, &mddev->bio_set);
1260 mbio->bi_opf &= ~REQ_NOWAIT;
1261 if (replacement)
1262 r10_bio->devs[n_copy].repl_bio = mbio;
1263 else
1264 r10_bio->devs[n_copy].bio = mbio;
1265
1266 mbio->bi_iter.bi_sector = (r10_bio->devs[n_copy].addr +
1267 choose_data_offset(r10_bio, rdev));
1268 mbio->bi_end_io = raid10_end_write_request;
1269 if (!replacement && test_bit(FailFast,
1270 &conf->mirrors[devnum].rdev->flags)
1271 && enough(conf, devnum))
1272 mbio->bi_opf |= MD_FAILFAST;
1273 mbio->bi_private = r10_bio;
1274 mddev_trace_remap(mddev, mbio, r10_bio->sector);
1275 /* flush_pending_writes() needs access to the rdev so...*/
1276 mbio->bi_bdev = (void *)rdev;
1277
1278 atomic_inc(&r10_bio->remaining);
1279
1280 if (!raid1_add_bio_to_plug(mddev, mbio, raid10_unplug, conf->copies)) {
1281 spin_lock_irqsave(&conf->device_lock, flags);
1282 bio_list_add(&conf->pending_bio_list, mbio);
1283 spin_unlock_irqrestore(&conf->device_lock, flags);
1284 md_wakeup_thread(mddev->thread);
1285 }
1286}
1287
1288static void wait_blocked_dev(struct mddev *mddev, struct r10bio *r10_bio)
1289{
1290 struct r10conf *conf = mddev->private;
1291 struct md_rdev *blocked_rdev;
1292 int i;
1293
1294retry_wait:
1295 blocked_rdev = NULL;
1296 for (i = 0; i < conf->copies; i++) {
1297 struct md_rdev *rdev, *rrdev;
1298
1299 rdev = conf->mirrors[i].rdev;
1300 if (rdev) {
1301 sector_t dev_sector = r10_bio->devs[i].addr;
1302
1303 /*
1304 * Discard request doesn't care the write result
1305 * so it doesn't need to wait blocked disk here.
1306 */
1307 if (test_bit(WriteErrorSeen, &rdev->flags) &&
1308 r10_bio->sectors &&
1309 rdev_has_badblock(rdev, dev_sector,
1310 r10_bio->sectors) < 0)
1311 /*
1312 * Mustn't write here until the bad
1313 * block is acknowledged
1314 */
1315 set_bit(BlockedBadBlocks, &rdev->flags);
1316
1317 if (rdev_blocked(rdev)) {
1318 blocked_rdev = rdev;
1319 atomic_inc(&rdev->nr_pending);
1320 break;
1321 }
1322 }
1323
1324 rrdev = conf->mirrors[i].replacement;
1325 if (rrdev && rdev_blocked(rrdev)) {
1326 atomic_inc(&rrdev->nr_pending);
1327 blocked_rdev = rrdev;
1328 break;
1329 }
1330 }
1331
1332 if (unlikely(blocked_rdev)) {
1333 /* Have to wait for this device to get unblocked, then retry */
1334 allow_barrier(conf);
1335 mddev_add_trace_msg(conf->mddev,
1336 "raid10 %s wait rdev %d blocked",
1337 __func__, blocked_rdev->raid_disk);
1338 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1339 wait_barrier(conf, false);
1340 goto retry_wait;
1341 }
1342}
1343
1344static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1345 struct r10bio *r10_bio)
1346{
1347 struct r10conf *conf = mddev->private;
1348 int i, k;
1349 sector_t sectors;
1350 int max_sectors;
1351
1352 if ((mddev_is_clustered(mddev) &&
1353 mddev->cluster_ops->area_resyncing(mddev, WRITE,
1354 bio->bi_iter.bi_sector,
1355 bio_end_sector(bio)))) {
1356 DEFINE_WAIT(w);
1357 /* Bail out if REQ_NOWAIT is set for the bio */
1358 if (bio->bi_opf & REQ_NOWAIT) {
1359 bio_wouldblock_error(bio);
1360 return;
1361 }
1362 for (;;) {
1363 prepare_to_wait(&conf->wait_barrier,
1364 &w, TASK_IDLE);
1365 if (!mddev->cluster_ops->area_resyncing(mddev, WRITE,
1366 bio->bi_iter.bi_sector, bio_end_sector(bio)))
1367 break;
1368 schedule();
1369 }
1370 finish_wait(&conf->wait_barrier, &w);
1371 }
1372
1373 sectors = r10_bio->sectors;
1374 if (!regular_request_wait(mddev, conf, bio, sectors)) {
1375 raid_end_bio_io(r10_bio);
1376 return;
1377 }
1378
1379 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1380 (mddev->reshape_backwards
1381 ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1382 bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1383 : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1384 bio->bi_iter.bi_sector < conf->reshape_progress))) {
1385 /* Need to update reshape_position in metadata */
1386 mddev->reshape_position = conf->reshape_progress;
1387 set_mask_bits(&mddev->sb_flags, 0,
1388 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1389 md_wakeup_thread(mddev->thread);
1390 if (bio->bi_opf & REQ_NOWAIT) {
1391 allow_barrier(conf);
1392 bio_wouldblock_error(bio);
1393 return;
1394 }
1395 mddev_add_trace_msg(conf->mddev,
1396 "raid10 wait reshape metadata");
1397 wait_event(mddev->sb_wait,
1398 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
1399
1400 conf->reshape_safe = mddev->reshape_position;
1401 }
1402
1403 /* first select target devices under rcu_lock and
1404 * inc refcount on their rdev. Record them by setting
1405 * bios[x] to bio
1406 * If there are known/acknowledged bad blocks on any device
1407 * on which we have seen a write error, we want to avoid
1408 * writing to those blocks. This potentially requires several
1409 * writes to write around the bad blocks. Each set of writes
1410 * gets its own r10_bio with a set of bios attached.
1411 */
1412
1413 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1414 raid10_find_phys(conf, r10_bio);
1415
1416 wait_blocked_dev(mddev, r10_bio);
1417
1418 max_sectors = r10_bio->sectors;
1419
1420 for (i = 0; i < conf->copies; i++) {
1421 int d = r10_bio->devs[i].devnum;
1422 struct md_rdev *rdev, *rrdev;
1423
1424 rdev = conf->mirrors[d].rdev;
1425 rrdev = conf->mirrors[d].replacement;
1426 if (rdev && (test_bit(Faulty, &rdev->flags)))
1427 rdev = NULL;
1428 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1429 rrdev = NULL;
1430
1431 r10_bio->devs[i].bio = NULL;
1432 r10_bio->devs[i].repl_bio = NULL;
1433
1434 if (!rdev && !rrdev)
1435 continue;
1436 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1437 sector_t first_bad;
1438 sector_t dev_sector = r10_bio->devs[i].addr;
1439 sector_t bad_sectors;
1440 int is_bad;
1441
1442 is_bad = is_badblock(rdev, dev_sector, max_sectors,
1443 &first_bad, &bad_sectors);
1444 if (is_bad && first_bad <= dev_sector) {
1445 /* Cannot write here at all */
1446 bad_sectors -= (dev_sector - first_bad);
1447 if (bad_sectors < max_sectors)
1448 /* Mustn't write more than bad_sectors
1449 * to other devices yet
1450 */
1451 max_sectors = bad_sectors;
1452 continue;
1453 }
1454 if (is_bad) {
1455 int good_sectors;
1456
1457 /*
1458 * We cannot atomically write this, so just
1459 * error in that case. It could be possible to
1460 * atomically write other mirrors, but the
1461 * complexity of supporting that is not worth
1462 * the benefit.
1463 */
1464 if (bio->bi_opf & REQ_ATOMIC)
1465 goto err_handle;
1466
1467 good_sectors = first_bad - dev_sector;
1468 if (good_sectors < max_sectors)
1469 max_sectors = good_sectors;
1470 }
1471 }
1472 if (rdev) {
1473 r10_bio->devs[i].bio = bio;
1474 atomic_inc(&rdev->nr_pending);
1475 }
1476 if (rrdev) {
1477 r10_bio->devs[i].repl_bio = bio;
1478 atomic_inc(&rrdev->nr_pending);
1479 }
1480 }
1481
1482 if (max_sectors < r10_bio->sectors)
1483 r10_bio->sectors = max_sectors;
1484
1485 if (r10_bio->sectors < bio_sectors(bio)) {
1486 allow_barrier(conf);
1487 bio = bio_submit_split_bioset(bio, r10_bio->sectors,
1488 &conf->bio_split);
1489 wait_barrier(conf, false);
1490 if (!bio) {
1491 set_bit(R10BIO_Returned, &r10_bio->state);
1492 goto err_handle;
1493 }
1494
1495 r10_bio->master_bio = bio;
1496 }
1497
1498 md_account_bio(mddev, &bio);
1499 r10_bio->master_bio = bio;
1500 atomic_set(&r10_bio->remaining, 1);
1501
1502 for (i = 0; i < conf->copies; i++) {
1503 if (r10_bio->devs[i].bio)
1504 raid10_write_one_disk(mddev, r10_bio, bio, false, i);
1505 if (r10_bio->devs[i].repl_bio)
1506 raid10_write_one_disk(mddev, r10_bio, bio, true, i);
1507 }
1508 one_write_done(r10_bio);
1509 return;
1510err_handle:
1511 for (k = 0; k < i; k++) {
1512 int d = r10_bio->devs[k].devnum;
1513 struct md_rdev *rdev = conf->mirrors[d].rdev;
1514 struct md_rdev *rrdev = conf->mirrors[d].replacement;
1515
1516 if (r10_bio->devs[k].bio) {
1517 rdev_dec_pending(rdev, mddev);
1518 r10_bio->devs[k].bio = NULL;
1519 }
1520 if (r10_bio->devs[k].repl_bio) {
1521 rdev_dec_pending(rrdev, mddev);
1522 r10_bio->devs[k].repl_bio = NULL;
1523 }
1524 }
1525
1526 raid_end_bio_io(r10_bio);
1527}
1528
1529static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
1530{
1531 struct r10conf *conf = mddev->private;
1532 struct r10bio *r10_bio;
1533
1534 r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1535
1536 r10_bio->master_bio = bio;
1537 r10_bio->sectors = sectors;
1538
1539 r10_bio->mddev = mddev;
1540 r10_bio->sector = bio->bi_iter.bi_sector;
1541 r10_bio->state = 0;
1542 r10_bio->read_slot = -1;
1543 memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) *
1544 conf->geo.raid_disks);
1545
1546 if (bio_data_dir(bio) == READ)
1547 raid10_read_request(mddev, bio, r10_bio, true);
1548 else
1549 raid10_write_request(mddev, bio, r10_bio);
1550}
1551
1552static void raid_end_discard_bio(struct r10bio *r10bio)
1553{
1554 struct r10conf *conf = r10bio->mddev->private;
1555 struct r10bio *first_r10bio;
1556
1557 while (atomic_dec_and_test(&r10bio->remaining)) {
1558
1559 allow_barrier(conf);
1560
1561 if (!test_bit(R10BIO_Discard, &r10bio->state)) {
1562 first_r10bio = (struct r10bio *)r10bio->master_bio;
1563 free_r10bio(r10bio);
1564 r10bio = first_r10bio;
1565 } else {
1566 md_write_end(r10bio->mddev);
1567 bio_endio(r10bio->master_bio);
1568 free_r10bio(r10bio);
1569 break;
1570 }
1571 }
1572}
1573
1574static void raid10_end_discard_request(struct bio *bio)
1575{
1576 struct r10bio *r10_bio = bio->bi_private;
1577 struct r10conf *conf = r10_bio->mddev->private;
1578 struct md_rdev *rdev = NULL;
1579 int dev;
1580 int slot, repl;
1581
1582 /*
1583 * We don't care the return value of discard bio
1584 */
1585 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
1586 set_bit(R10BIO_Uptodate, &r10_bio->state);
1587
1588 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1589 rdev = repl ? conf->mirrors[dev].replacement :
1590 conf->mirrors[dev].rdev;
1591
1592 raid_end_discard_bio(r10_bio);
1593 rdev_dec_pending(rdev, conf->mddev);
1594}
1595
1596/*
1597 * There are some limitations to handle discard bio
1598 * 1st, the discard size is bigger than stripe_size*2.
1599 * 2st, if the discard bio spans reshape progress, we use the old way to
1600 * handle discard bio
1601 */
1602static int raid10_handle_discard(struct mddev *mddev, struct bio *bio)
1603{
1604 struct r10conf *conf = mddev->private;
1605 struct geom *geo = &conf->geo;
1606 int far_copies = geo->far_copies;
1607 bool first_copy = true;
1608 struct r10bio *r10_bio, *first_r10bio;
1609 struct bio *split;
1610 int disk;
1611 sector_t chunk;
1612 unsigned int stripe_size;
1613 unsigned int stripe_data_disks;
1614 sector_t split_size;
1615 sector_t bio_start, bio_end;
1616 sector_t first_stripe_index, last_stripe_index;
1617 sector_t start_disk_offset;
1618 unsigned int start_disk_index;
1619 sector_t end_disk_offset;
1620 unsigned int end_disk_index;
1621 unsigned int remainder;
1622
1623 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1624 return -EAGAIN;
1625
1626 if (!wait_barrier(conf, bio->bi_opf & REQ_NOWAIT)) {
1627 bio_wouldblock_error(bio);
1628 return 0;
1629 }
1630
1631 /*
1632 * Check reshape again to avoid reshape happens after checking
1633 * MD_RECOVERY_RESHAPE and before wait_barrier
1634 */
1635 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1636 goto out;
1637
1638 if (geo->near_copies)
1639 stripe_data_disks = geo->raid_disks / geo->near_copies +
1640 geo->raid_disks % geo->near_copies;
1641 else
1642 stripe_data_disks = geo->raid_disks;
1643
1644 stripe_size = stripe_data_disks << geo->chunk_shift;
1645
1646 bio_start = bio->bi_iter.bi_sector;
1647 bio_end = bio_end_sector(bio);
1648
1649 /*
1650 * Maybe one discard bio is smaller than strip size or across one
1651 * stripe and discard region is larger than one stripe size. For far
1652 * offset layout, if the discard region is not aligned with stripe
1653 * size, there is hole when we submit discard bio to member disk.
1654 * For simplicity, we only handle discard bio which discard region
1655 * is bigger than stripe_size * 2
1656 */
1657 if (bio_sectors(bio) < stripe_size*2)
1658 goto out;
1659
1660 /*
1661 * Keep bio aligned with strip size.
1662 */
1663 div_u64_rem(bio_start, stripe_size, &remainder);
1664 if (remainder) {
1665 split_size = stripe_size - remainder;
1666 split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split);
1667 if (IS_ERR(split)) {
1668 bio->bi_status = errno_to_blk_status(PTR_ERR(split));
1669 bio_endio(bio);
1670 return 0;
1671 }
1672
1673 bio_chain(split, bio);
1674 trace_block_split(split, bio->bi_iter.bi_sector);
1675 allow_barrier(conf);
1676 /* Resend the fist split part */
1677 submit_bio_noacct(split);
1678 wait_barrier(conf, false);
1679 }
1680 div_u64_rem(bio_end, stripe_size, &remainder);
1681 if (remainder) {
1682 split_size = bio_sectors(bio) - remainder;
1683 split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split);
1684 if (IS_ERR(split)) {
1685 bio->bi_status = errno_to_blk_status(PTR_ERR(split));
1686 bio_endio(bio);
1687 return 0;
1688 }
1689
1690 bio_chain(split, bio);
1691 trace_block_split(split, bio->bi_iter.bi_sector);
1692 allow_barrier(conf);
1693 /* Resend the second split part */
1694 submit_bio_noacct(bio);
1695 bio = split;
1696 wait_barrier(conf, false);
1697 }
1698
1699 bio_start = bio->bi_iter.bi_sector;
1700 bio_end = bio_end_sector(bio);
1701
1702 /*
1703 * Raid10 uses chunk as the unit to store data. It's similar like raid0.
1704 * One stripe contains the chunks from all member disk (one chunk from
1705 * one disk at the same HBA address). For layout detail, see 'man md 4'
1706 */
1707 chunk = bio_start >> geo->chunk_shift;
1708 chunk *= geo->near_copies;
1709 first_stripe_index = chunk;
1710 start_disk_index = sector_div(first_stripe_index, geo->raid_disks);
1711 if (geo->far_offset)
1712 first_stripe_index *= geo->far_copies;
1713 start_disk_offset = (bio_start & geo->chunk_mask) +
1714 (first_stripe_index << geo->chunk_shift);
1715
1716 chunk = bio_end >> geo->chunk_shift;
1717 chunk *= geo->near_copies;
1718 last_stripe_index = chunk;
1719 end_disk_index = sector_div(last_stripe_index, geo->raid_disks);
1720 if (geo->far_offset)
1721 last_stripe_index *= geo->far_copies;
1722 end_disk_offset = (bio_end & geo->chunk_mask) +
1723 (last_stripe_index << geo->chunk_shift);
1724
1725retry_discard:
1726 r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1727 r10_bio->mddev = mddev;
1728 r10_bio->state = 0;
1729 r10_bio->sectors = 0;
1730 memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * geo->raid_disks);
1731 wait_blocked_dev(mddev, r10_bio);
1732
1733 /*
1734 * For far layout it needs more than one r10bio to cover all regions.
1735 * Inspired by raid10_sync_request, we can use the first r10bio->master_bio
1736 * to record the discard bio. Other r10bio->master_bio record the first
1737 * r10bio. The first r10bio only release after all other r10bios finish.
1738 * The discard bio returns only first r10bio finishes
1739 */
1740 if (first_copy) {
1741 md_account_bio(mddev, &bio);
1742 r10_bio->master_bio = bio;
1743 set_bit(R10BIO_Discard, &r10_bio->state);
1744 first_copy = false;
1745 first_r10bio = r10_bio;
1746 } else
1747 r10_bio->master_bio = (struct bio *)first_r10bio;
1748
1749 /*
1750 * first select target devices under rcu_lock and
1751 * inc refcount on their rdev. Record them by setting
1752 * bios[x] to bio
1753 */
1754 for (disk = 0; disk < geo->raid_disks; disk++) {
1755 struct md_rdev *rdev, *rrdev;
1756
1757 rdev = conf->mirrors[disk].rdev;
1758 rrdev = conf->mirrors[disk].replacement;
1759 r10_bio->devs[disk].bio = NULL;
1760 r10_bio->devs[disk].repl_bio = NULL;
1761
1762 if (rdev && (test_bit(Faulty, &rdev->flags)))
1763 rdev = NULL;
1764 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1765 rrdev = NULL;
1766 if (!rdev && !rrdev)
1767 continue;
1768
1769 if (rdev) {
1770 r10_bio->devs[disk].bio = bio;
1771 atomic_inc(&rdev->nr_pending);
1772 }
1773 if (rrdev) {
1774 r10_bio->devs[disk].repl_bio = bio;
1775 atomic_inc(&rrdev->nr_pending);
1776 }
1777 }
1778
1779 atomic_set(&r10_bio->remaining, 1);
1780 for (disk = 0; disk < geo->raid_disks; disk++) {
1781 sector_t dev_start, dev_end;
1782 struct bio *mbio, *rbio = NULL;
1783
1784 /*
1785 * Now start to calculate the start and end address for each disk.
1786 * The space between dev_start and dev_end is the discard region.
1787 *
1788 * For dev_start, it needs to consider three conditions:
1789 * 1st, the disk is before start_disk, you can imagine the disk in
1790 * the next stripe. So the dev_start is the start address of next
1791 * stripe.
1792 * 2st, the disk is after start_disk, it means the disk is at the
1793 * same stripe of first disk
1794 * 3st, the first disk itself, we can use start_disk_offset directly
1795 */
1796 if (disk < start_disk_index)
1797 dev_start = (first_stripe_index + 1) * mddev->chunk_sectors;
1798 else if (disk > start_disk_index)
1799 dev_start = first_stripe_index * mddev->chunk_sectors;
1800 else
1801 dev_start = start_disk_offset;
1802
1803 if (disk < end_disk_index)
1804 dev_end = (last_stripe_index + 1) * mddev->chunk_sectors;
1805 else if (disk > end_disk_index)
1806 dev_end = last_stripe_index * mddev->chunk_sectors;
1807 else
1808 dev_end = end_disk_offset;
1809
1810 /*
1811 * It only handles discard bio which size is >= stripe size, so
1812 * dev_end > dev_start all the time.
1813 * It doesn't need to use rcu lock to get rdev here. We already
1814 * add rdev->nr_pending in the first loop.
1815 */
1816 if (r10_bio->devs[disk].bio) {
1817 struct md_rdev *rdev = conf->mirrors[disk].rdev;
1818 mbio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO,
1819 &mddev->bio_set);
1820 mbio->bi_end_io = raid10_end_discard_request;
1821 mbio->bi_private = r10_bio;
1822 r10_bio->devs[disk].bio = mbio;
1823 r10_bio->devs[disk].devnum = disk;
1824 atomic_inc(&r10_bio->remaining);
1825 md_submit_discard_bio(mddev, rdev, mbio,
1826 dev_start + choose_data_offset(r10_bio, rdev),
1827 dev_end - dev_start);
1828 bio_endio(mbio);
1829 }
1830 if (r10_bio->devs[disk].repl_bio) {
1831 struct md_rdev *rrdev = conf->mirrors[disk].replacement;
1832 rbio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO,
1833 &mddev->bio_set);
1834 rbio->bi_end_io = raid10_end_discard_request;
1835 rbio->bi_private = r10_bio;
1836 r10_bio->devs[disk].repl_bio = rbio;
1837 r10_bio->devs[disk].devnum = disk;
1838 atomic_inc(&r10_bio->remaining);
1839 md_submit_discard_bio(mddev, rrdev, rbio,
1840 dev_start + choose_data_offset(r10_bio, rrdev),
1841 dev_end - dev_start);
1842 bio_endio(rbio);
1843 }
1844 }
1845
1846 if (!geo->far_offset && --far_copies) {
1847 first_stripe_index += geo->stride >> geo->chunk_shift;
1848 start_disk_offset += geo->stride;
1849 last_stripe_index += geo->stride >> geo->chunk_shift;
1850 end_disk_offset += geo->stride;
1851 atomic_inc(&first_r10bio->remaining);
1852 raid_end_discard_bio(r10_bio);
1853 wait_barrier(conf, false);
1854 goto retry_discard;
1855 }
1856
1857 raid_end_discard_bio(r10_bio);
1858
1859 return 0;
1860out:
1861 allow_barrier(conf);
1862 return -EAGAIN;
1863}
1864
1865static bool raid10_make_request(struct mddev *mddev, struct bio *bio)
1866{
1867 struct r10conf *conf = mddev->private;
1868 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1869 int chunk_sects = chunk_mask + 1;
1870 int sectors = bio_sectors(bio);
1871
1872 if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1873 && md_flush_request(mddev, bio))
1874 return true;
1875
1876 md_write_start(mddev, bio);
1877
1878 if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
1879 if (!raid10_handle_discard(mddev, bio))
1880 return true;
1881
1882 /*
1883 * If this request crosses a chunk boundary, we need to split
1884 * it.
1885 */
1886 if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1887 sectors > chunk_sects
1888 && (conf->geo.near_copies < conf->geo.raid_disks
1889 || conf->prev.near_copies <
1890 conf->prev.raid_disks)))
1891 sectors = chunk_sects -
1892 (bio->bi_iter.bi_sector &
1893 (chunk_sects - 1));
1894 __make_request(mddev, bio, sectors);
1895
1896 /* In case raid10d snuck in to freeze_array */
1897 wake_up_barrier(conf);
1898 return true;
1899}
1900
1901static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1902{
1903 struct r10conf *conf = mddev->private;
1904 int i;
1905
1906 lockdep_assert_held(&mddev->lock);
1907
1908 if (conf->geo.near_copies < conf->geo.raid_disks)
1909 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1910 if (conf->geo.near_copies > 1)
1911 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1912 if (conf->geo.far_copies > 1) {
1913 if (conf->geo.far_offset)
1914 seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1915 else
1916 seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1917 if (conf->geo.far_set_size != conf->geo.raid_disks)
1918 seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1919 }
1920 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1921 conf->geo.raid_disks - mddev->degraded);
1922 for (i = 0; i < conf->geo.raid_disks; i++) {
1923 struct md_rdev *rdev = READ_ONCE(conf->mirrors[i].rdev);
1924
1925 seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1926 }
1927 seq_printf(seq, "]");
1928}
1929
1930/* check if there are enough drives for
1931 * every block to appear on atleast one.
1932 * Don't consider the device numbered 'ignore'
1933 * as we might be about to remove it.
1934 */
1935static int _enough(struct r10conf *conf, int previous, int ignore)
1936{
1937 int first = 0;
1938 int has_enough = 0;
1939 int disks, ncopies;
1940 if (previous) {
1941 disks = conf->prev.raid_disks;
1942 ncopies = conf->prev.near_copies;
1943 } else {
1944 disks = conf->geo.raid_disks;
1945 ncopies = conf->geo.near_copies;
1946 }
1947
1948 do {
1949 int n = conf->copies;
1950 int cnt = 0;
1951 int this = first;
1952 while (n--) {
1953 struct md_rdev *rdev;
1954 if (this != ignore &&
1955 (rdev = conf->mirrors[this].rdev) &&
1956 test_bit(In_sync, &rdev->flags))
1957 cnt++;
1958 this = (this+1) % disks;
1959 }
1960 if (cnt == 0)
1961 goto out;
1962 first = (first + ncopies) % disks;
1963 } while (first != 0);
1964 has_enough = 1;
1965out:
1966 return has_enough;
1967}
1968
1969static int enough(struct r10conf *conf, int ignore)
1970{
1971 /* when calling 'enough', both 'prev' and 'geo' must
1972 * be stable.
1973 * This is ensured if ->reconfig_mutex or ->device_lock
1974 * is held.
1975 */
1976 return _enough(conf, 0, ignore) &&
1977 _enough(conf, 1, ignore);
1978}
1979
1980/**
1981 * raid10_error() - RAID10 error handler.
1982 * @mddev: affected md device.
1983 * @rdev: member device to fail.
1984 *
1985 * The routine acknowledges &rdev failure and determines new @mddev state.
1986 * If it failed, then:
1987 * - &MD_BROKEN flag is set in &mddev->flags.
1988 * Otherwise, it must be degraded:
1989 * - recovery is interrupted.
1990 * - &mddev->degraded is bumped.
1991 *
1992 * @rdev is marked as &Faulty excluding case when array is failed and
1993 * &mddev->fail_last_dev is off.
1994 */
1995static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1996{
1997 struct r10conf *conf = mddev->private;
1998 unsigned long flags;
1999
2000 spin_lock_irqsave(&conf->device_lock, flags);
2001
2002 if (test_bit(In_sync, &rdev->flags) && !enough(conf, rdev->raid_disk)) {
2003 set_bit(MD_BROKEN, &mddev->flags);
2004
2005 if (!mddev->fail_last_dev) {
2006 spin_unlock_irqrestore(&conf->device_lock, flags);
2007 return;
2008 }
2009 }
2010 if (test_and_clear_bit(In_sync, &rdev->flags))
2011 mddev->degraded++;
2012
2013 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2014 set_bit(Blocked, &rdev->flags);
2015 set_bit(Faulty, &rdev->flags);
2016 set_mask_bits(&mddev->sb_flags, 0,
2017 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
2018 spin_unlock_irqrestore(&conf->device_lock, flags);
2019 pr_crit("md/raid10:%s: Disk failure on %pg, disabling device.\n"
2020 "md/raid10:%s: Operation continuing on %d devices.\n",
2021 mdname(mddev), rdev->bdev,
2022 mdname(mddev), conf->geo.raid_disks - mddev->degraded);
2023}
2024
2025static void print_conf(struct r10conf *conf)
2026{
2027 int i;
2028 struct md_rdev *rdev;
2029
2030 pr_debug("RAID10 conf printout:\n");
2031 if (!conf) {
2032 pr_debug("(!conf)\n");
2033 return;
2034 }
2035 pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
2036 conf->geo.raid_disks);
2037
2038 lockdep_assert_held(&conf->mddev->reconfig_mutex);
2039 for (i = 0; i < conf->geo.raid_disks; i++) {
2040 rdev = conf->mirrors[i].rdev;
2041 if (rdev)
2042 pr_debug(" disk %d, wo:%d, o:%d, dev:%pg\n",
2043 i, !test_bit(In_sync, &rdev->flags),
2044 !test_bit(Faulty, &rdev->flags),
2045 rdev->bdev);
2046 }
2047}
2048
2049static void close_sync(struct r10conf *conf)
2050{
2051 wait_barrier(conf, false);
2052 allow_barrier(conf);
2053
2054 mempool_exit(&conf->r10buf_pool);
2055}
2056
2057static int raid10_spare_active(struct mddev *mddev)
2058{
2059 int i;
2060 struct r10conf *conf = mddev->private;
2061 struct raid10_info *tmp;
2062 int count = 0;
2063 unsigned long flags;
2064
2065 /*
2066 * Find all non-in_sync disks within the RAID10 configuration
2067 * and mark them in_sync
2068 */
2069 for (i = 0; i < conf->geo.raid_disks; i++) {
2070 tmp = conf->mirrors + i;
2071 if (tmp->replacement
2072 && tmp->replacement->recovery_offset == MaxSector
2073 && !test_bit(Faulty, &tmp->replacement->flags)
2074 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
2075 /* Replacement has just become active */
2076 if (!tmp->rdev
2077 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
2078 count++;
2079 if (tmp->rdev) {
2080 /* Replaced device not technically faulty,
2081 * but we need to be sure it gets removed
2082 * and never re-added.
2083 */
2084 set_bit(Faulty, &tmp->rdev->flags);
2085 sysfs_notify_dirent_safe(
2086 tmp->rdev->sysfs_state);
2087 }
2088 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
2089 } else if (tmp->rdev
2090 && tmp->rdev->recovery_offset == MaxSector
2091 && !test_bit(Faulty, &tmp->rdev->flags)
2092 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
2093 count++;
2094 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
2095 }
2096 }
2097 spin_lock_irqsave(&conf->device_lock, flags);
2098 mddev->degraded -= count;
2099 spin_unlock_irqrestore(&conf->device_lock, flags);
2100
2101 print_conf(conf);
2102 return count;
2103}
2104
2105static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
2106{
2107 struct r10conf *conf = mddev->private;
2108 int err = -EEXIST;
2109 int mirror, repl_slot = -1;
2110 int first = 0;
2111 int last = conf->geo.raid_disks - 1;
2112 struct raid10_info *p;
2113
2114 if (mddev->resync_offset < MaxSector)
2115 /* only hot-add to in-sync arrays, as recovery is
2116 * very different from resync
2117 */
2118 return -EBUSY;
2119 if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
2120 return -EINVAL;
2121
2122 if (rdev->raid_disk >= 0)
2123 first = last = rdev->raid_disk;
2124
2125 if (rdev->saved_raid_disk >= first &&
2126 rdev->saved_raid_disk < conf->geo.raid_disks &&
2127 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
2128 mirror = rdev->saved_raid_disk;
2129 else
2130 mirror = first;
2131 for ( ; mirror <= last ; mirror++) {
2132 p = &conf->mirrors[mirror];
2133 if (p->recovery_disabled == mddev->recovery_disabled)
2134 continue;
2135 if (p->rdev) {
2136 if (test_bit(WantReplacement, &p->rdev->flags) &&
2137 p->replacement == NULL && repl_slot < 0)
2138 repl_slot = mirror;
2139 continue;
2140 }
2141
2142 err = mddev_stack_new_rdev(mddev, rdev);
2143 if (err)
2144 return err;
2145 p->head_position = 0;
2146 p->recovery_disabled = mddev->recovery_disabled - 1;
2147 rdev->raid_disk = mirror;
2148 err = 0;
2149 if (rdev->saved_raid_disk != mirror)
2150 conf->fullsync = 1;
2151 WRITE_ONCE(p->rdev, rdev);
2152 break;
2153 }
2154
2155 if (err && repl_slot >= 0) {
2156 p = &conf->mirrors[repl_slot];
2157 clear_bit(In_sync, &rdev->flags);
2158 set_bit(Replacement, &rdev->flags);
2159 rdev->raid_disk = repl_slot;
2160 err = mddev_stack_new_rdev(mddev, rdev);
2161 if (err)
2162 return err;
2163 conf->fullsync = 1;
2164 WRITE_ONCE(p->replacement, rdev);
2165 }
2166
2167 print_conf(conf);
2168 return err;
2169}
2170
2171static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
2172{
2173 struct r10conf *conf = mddev->private;
2174 int err = 0;
2175 int number = rdev->raid_disk;
2176 struct md_rdev **rdevp;
2177 struct raid10_info *p;
2178
2179 print_conf(conf);
2180 if (unlikely(number >= mddev->raid_disks))
2181 return 0;
2182 p = conf->mirrors + number;
2183 if (rdev == p->rdev)
2184 rdevp = &p->rdev;
2185 else if (rdev == p->replacement)
2186 rdevp = &p->replacement;
2187 else
2188 return 0;
2189
2190 if (test_bit(In_sync, &rdev->flags) ||
2191 atomic_read(&rdev->nr_pending)) {
2192 err = -EBUSY;
2193 goto abort;
2194 }
2195 /* Only remove non-faulty devices if recovery
2196 * is not possible.
2197 */
2198 if (!test_bit(Faulty, &rdev->flags) &&
2199 mddev->recovery_disabled != p->recovery_disabled &&
2200 (!p->replacement || p->replacement == rdev) &&
2201 number < conf->geo.raid_disks &&
2202 enough(conf, -1)) {
2203 err = -EBUSY;
2204 goto abort;
2205 }
2206 WRITE_ONCE(*rdevp, NULL);
2207 if (p->replacement) {
2208 /* We must have just cleared 'rdev' */
2209 WRITE_ONCE(p->rdev, p->replacement);
2210 clear_bit(Replacement, &p->replacement->flags);
2211 WRITE_ONCE(p->replacement, NULL);
2212 }
2213
2214 clear_bit(WantReplacement, &rdev->flags);
2215 err = md_integrity_register(mddev);
2216
2217abort:
2218
2219 print_conf(conf);
2220 return err;
2221}
2222
2223static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
2224{
2225 struct r10conf *conf = r10_bio->mddev->private;
2226
2227 if (!bio->bi_status)
2228 set_bit(R10BIO_Uptodate, &r10_bio->state);
2229 else
2230 /* The write handler will notice the lack of
2231 * R10BIO_Uptodate and record any errors etc
2232 */
2233 atomic_add(r10_bio->sectors,
2234 &conf->mirrors[d].rdev->corrected_errors);
2235
2236 /* for reconstruct, we always reschedule after a read.
2237 * for resync, only after all reads
2238 */
2239 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
2240 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
2241 atomic_dec_and_test(&r10_bio->remaining)) {
2242 /* we have read all the blocks,
2243 * do the comparison in process context in raid10d
2244 */
2245 reschedule_retry(r10_bio);
2246 }
2247}
2248
2249static void end_sync_read(struct bio *bio)
2250{
2251 struct r10bio *r10_bio = get_resync_r10bio(bio);
2252 struct r10conf *conf = r10_bio->mddev->private;
2253 int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
2254
2255 __end_sync_read(r10_bio, bio, d);
2256}
2257
2258static void end_reshape_read(struct bio *bio)
2259{
2260 /* reshape read bio isn't allocated from r10buf_pool */
2261 struct r10bio *r10_bio = bio->bi_private;
2262
2263 __end_sync_read(r10_bio, bio, r10_bio->read_slot);
2264}
2265
2266static void end_sync_request(struct r10bio *r10_bio)
2267{
2268 struct mddev *mddev = r10_bio->mddev;
2269
2270 while (atomic_dec_and_test(&r10_bio->remaining)) {
2271 if (r10_bio->master_bio == NULL) {
2272 /* the primary of several recovery bios */
2273 sector_t s = r10_bio->sectors;
2274 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2275 test_bit(R10BIO_WriteError, &r10_bio->state))
2276 reschedule_retry(r10_bio);
2277 else
2278 put_buf(r10_bio);
2279 md_done_sync(mddev, s, 1);
2280 break;
2281 } else {
2282 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
2283 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2284 test_bit(R10BIO_WriteError, &r10_bio->state))
2285 reschedule_retry(r10_bio);
2286 else
2287 put_buf(r10_bio);
2288 r10_bio = r10_bio2;
2289 }
2290 }
2291}
2292
2293static void end_sync_write(struct bio *bio)
2294{
2295 struct r10bio *r10_bio = get_resync_r10bio(bio);
2296 struct mddev *mddev = r10_bio->mddev;
2297 struct r10conf *conf = mddev->private;
2298 int d;
2299 int slot;
2300 int repl;
2301 struct md_rdev *rdev = NULL;
2302
2303 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
2304 if (repl)
2305 rdev = conf->mirrors[d].replacement;
2306 else
2307 rdev = conf->mirrors[d].rdev;
2308
2309 if (bio->bi_status) {
2310 if (repl)
2311 md_error(mddev, rdev);
2312 else {
2313 set_bit(WriteErrorSeen, &rdev->flags);
2314 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2315 set_bit(MD_RECOVERY_NEEDED,
2316 &rdev->mddev->recovery);
2317 set_bit(R10BIO_WriteError, &r10_bio->state);
2318 }
2319 } else if (rdev_has_badblock(rdev, r10_bio->devs[slot].addr,
2320 r10_bio->sectors)) {
2321 set_bit(R10BIO_MadeGood, &r10_bio->state);
2322 }
2323
2324 rdev_dec_pending(rdev, mddev);
2325
2326 end_sync_request(r10_bio);
2327}
2328
2329/*
2330 * Note: sync and recover and handled very differently for raid10
2331 * This code is for resync.
2332 * For resync, we read through virtual addresses and read all blocks.
2333 * If there is any error, we schedule a write. The lowest numbered
2334 * drive is authoritative.
2335 * However requests come for physical address, so we need to map.
2336 * For every physical address there are raid_disks/copies virtual addresses,
2337 * which is always are least one, but is not necessarly an integer.
2338 * This means that a physical address can span multiple chunks, so we may
2339 * have to submit multiple io requests for a single sync request.
2340 */
2341/*
2342 * We check if all blocks are in-sync and only write to blocks that
2343 * aren't in sync
2344 */
2345static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2346{
2347 struct r10conf *conf = mddev->private;
2348 int i, first;
2349 struct bio *tbio, *fbio;
2350 int vcnt;
2351 struct page **tpages, **fpages;
2352
2353 atomic_set(&r10_bio->remaining, 1);
2354
2355 /* find the first device with a block */
2356 for (i=0; i<conf->copies; i++)
2357 if (!r10_bio->devs[i].bio->bi_status)
2358 break;
2359
2360 if (i == conf->copies)
2361 goto done;
2362
2363 first = i;
2364 fbio = r10_bio->devs[i].bio;
2365 fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2366 fbio->bi_iter.bi_idx = 0;
2367 fpages = get_resync_pages(fbio)->pages;
2368
2369 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2370 /* now find blocks with errors */
2371 for (i=0 ; i < conf->copies ; i++) {
2372 int j, d;
2373 struct md_rdev *rdev;
2374 struct resync_pages *rp;
2375
2376 tbio = r10_bio->devs[i].bio;
2377
2378 if (tbio->bi_end_io != end_sync_read)
2379 continue;
2380 if (i == first)
2381 continue;
2382
2383 tpages = get_resync_pages(tbio)->pages;
2384 d = r10_bio->devs[i].devnum;
2385 rdev = conf->mirrors[d].rdev;
2386 if (!r10_bio->devs[i].bio->bi_status) {
2387 /* We know that the bi_io_vec layout is the same for
2388 * both 'first' and 'i', so we just compare them.
2389 * All vec entries are PAGE_SIZE;
2390 */
2391 int sectors = r10_bio->sectors;
2392 for (j = 0; j < vcnt; j++) {
2393 int len = PAGE_SIZE;
2394 if (sectors < (len / 512))
2395 len = sectors * 512;
2396 if (memcmp(page_address(fpages[j]),
2397 page_address(tpages[j]),
2398 len))
2399 break;
2400 sectors -= len/512;
2401 }
2402 if (j == vcnt)
2403 continue;
2404 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2405 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2406 /* Don't fix anything. */
2407 continue;
2408 } else if (test_bit(FailFast, &rdev->flags)) {
2409 /* Just give up on this device */
2410 md_error(rdev->mddev, rdev);
2411 continue;
2412 }
2413 /* Ok, we need to write this bio, either to correct an
2414 * inconsistency or to correct an unreadable block.
2415 * First we need to fixup bv_offset, bv_len and
2416 * bi_vecs, as the read request might have corrupted these
2417 */
2418 rp = get_resync_pages(tbio);
2419 bio_reset(tbio, conf->mirrors[d].rdev->bdev, REQ_OP_WRITE);
2420
2421 md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size);
2422
2423 rp->raid_bio = r10_bio;
2424 tbio->bi_private = rp;
2425 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2426 tbio->bi_end_io = end_sync_write;
2427
2428 bio_copy_data(tbio, fbio);
2429
2430 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2431 atomic_inc(&r10_bio->remaining);
2432
2433 if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2434 tbio->bi_opf |= MD_FAILFAST;
2435 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2436 submit_bio_noacct(tbio);
2437 }
2438
2439 /* Now write out to any replacement devices
2440 * that are active
2441 */
2442 for (i = 0; i < conf->copies; i++) {
2443 tbio = r10_bio->devs[i].repl_bio;
2444 if (!tbio || !tbio->bi_end_io)
2445 continue;
2446 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2447 && r10_bio->devs[i].bio != fbio)
2448 bio_copy_data(tbio, fbio);
2449 atomic_inc(&r10_bio->remaining);
2450 submit_bio_noacct(tbio);
2451 }
2452
2453done:
2454 if (atomic_dec_and_test(&r10_bio->remaining)) {
2455 md_done_sync(mddev, r10_bio->sectors, 1);
2456 put_buf(r10_bio);
2457 }
2458}
2459
2460/*
2461 * Now for the recovery code.
2462 * Recovery happens across physical sectors.
2463 * We recover all non-is_sync drives by finding the virtual address of
2464 * each, and then choose a working drive that also has that virt address.
2465 * There is a separate r10_bio for each non-in_sync drive.
2466 * Only the first two slots are in use. The first for reading,
2467 * The second for writing.
2468 *
2469 */
2470static void fix_recovery_read_error(struct r10bio *r10_bio)
2471{
2472 /* We got a read error during recovery.
2473 * We repeat the read in smaller page-sized sections.
2474 * If a read succeeds, write it to the new device or record
2475 * a bad block if we cannot.
2476 * If a read fails, record a bad block on both old and
2477 * new devices.
2478 */
2479 struct mddev *mddev = r10_bio->mddev;
2480 struct r10conf *conf = mddev->private;
2481 struct bio *bio = r10_bio->devs[0].bio;
2482 sector_t sect = 0;
2483 int sectors = r10_bio->sectors;
2484 int idx = 0;
2485 int dr = r10_bio->devs[0].devnum;
2486 int dw = r10_bio->devs[1].devnum;
2487 struct page **pages = get_resync_pages(bio)->pages;
2488
2489 while (sectors) {
2490 int s = sectors;
2491 struct md_rdev *rdev;
2492 sector_t addr;
2493 int ok;
2494
2495 if (s > (PAGE_SIZE>>9))
2496 s = PAGE_SIZE >> 9;
2497
2498 rdev = conf->mirrors[dr].rdev;
2499 addr = r10_bio->devs[0].addr + sect;
2500 ok = sync_page_io(rdev,
2501 addr,
2502 s << 9,
2503 pages[idx],
2504 REQ_OP_READ, false);
2505 if (ok) {
2506 rdev = conf->mirrors[dw].rdev;
2507 addr = r10_bio->devs[1].addr + sect;
2508 ok = sync_page_io(rdev,
2509 addr,
2510 s << 9,
2511 pages[idx],
2512 REQ_OP_WRITE, false);
2513 if (!ok) {
2514 set_bit(WriteErrorSeen, &rdev->flags);
2515 if (!test_and_set_bit(WantReplacement,
2516 &rdev->flags))
2517 set_bit(MD_RECOVERY_NEEDED,
2518 &rdev->mddev->recovery);
2519 }
2520 }
2521 if (!ok) {
2522 /* We don't worry if we cannot set a bad block -
2523 * it really is bad so there is no loss in not
2524 * recording it yet
2525 */
2526 rdev_set_badblocks(rdev, addr, s, 0);
2527
2528 if (rdev != conf->mirrors[dw].rdev) {
2529 /* need bad block on destination too */
2530 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2531 addr = r10_bio->devs[1].addr + sect;
2532 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2533 if (!ok) {
2534 /* just abort the recovery */
2535 pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2536 mdname(mddev));
2537
2538 conf->mirrors[dw].recovery_disabled
2539 = mddev->recovery_disabled;
2540 set_bit(MD_RECOVERY_INTR,
2541 &mddev->recovery);
2542 break;
2543 }
2544 }
2545 }
2546
2547 sectors -= s;
2548 sect += s;
2549 idx++;
2550 }
2551}
2552
2553static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2554{
2555 struct r10conf *conf = mddev->private;
2556 int d;
2557 struct bio *wbio = r10_bio->devs[1].bio;
2558 struct bio *wbio2 = r10_bio->devs[1].repl_bio;
2559
2560 /* Need to test wbio2->bi_end_io before we call
2561 * submit_bio_noacct as if the former is NULL,
2562 * the latter is free to free wbio2.
2563 */
2564 if (wbio2 && !wbio2->bi_end_io)
2565 wbio2 = NULL;
2566
2567 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2568 fix_recovery_read_error(r10_bio);
2569 if (wbio->bi_end_io)
2570 end_sync_request(r10_bio);
2571 if (wbio2)
2572 end_sync_request(r10_bio);
2573 return;
2574 }
2575
2576 /*
2577 * share the pages with the first bio
2578 * and submit the write request
2579 */
2580 d = r10_bio->devs[1].devnum;
2581 if (wbio->bi_end_io) {
2582 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2583 submit_bio_noacct(wbio);
2584 }
2585 if (wbio2) {
2586 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2587 submit_bio_noacct(wbio2);
2588 }
2589}
2590
2591static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2592 int sectors, struct page *page, enum req_op op)
2593{
2594 if (rdev_has_badblock(rdev, sector, sectors) &&
2595 (op == REQ_OP_READ || test_bit(WriteErrorSeen, &rdev->flags)))
2596 return -1;
2597 if (sync_page_io(rdev, sector, sectors << 9, page, op, false))
2598 /* success */
2599 return 1;
2600 if (op == REQ_OP_WRITE) {
2601 set_bit(WriteErrorSeen, &rdev->flags);
2602 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2603 set_bit(MD_RECOVERY_NEEDED,
2604 &rdev->mddev->recovery);
2605 }
2606 /* need to record an error - either for the block or the device */
2607 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2608 md_error(rdev->mddev, rdev);
2609 return 0;
2610}
2611
2612/*
2613 * This is a kernel thread which:
2614 *
2615 * 1. Retries failed read operations on working mirrors.
2616 * 2. Updates the raid superblock when problems encounter.
2617 * 3. Performs writes following reads for array synchronising.
2618 */
2619
2620static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2621{
2622 int sect = 0; /* Offset from r10_bio->sector */
2623 int sectors = r10_bio->sectors, slot = r10_bio->read_slot;
2624 struct md_rdev *rdev;
2625 int d = r10_bio->devs[slot].devnum;
2626
2627 /* still own a reference to this rdev, so it cannot
2628 * have been cleared recently.
2629 */
2630 rdev = conf->mirrors[d].rdev;
2631
2632 if (test_bit(Faulty, &rdev->flags))
2633 /* drive has already been failed, just ignore any
2634 more fix_read_error() attempts */
2635 return;
2636
2637 if (exceed_read_errors(mddev, rdev)) {
2638 r10_bio->devs[slot].bio = IO_BLOCKED;
2639 return;
2640 }
2641
2642 while(sectors) {
2643 int s = sectors;
2644 int sl = slot;
2645 int success = 0;
2646 int start;
2647
2648 if (s > (PAGE_SIZE>>9))
2649 s = PAGE_SIZE >> 9;
2650
2651 do {
2652 d = r10_bio->devs[sl].devnum;
2653 rdev = conf->mirrors[d].rdev;
2654 if (rdev &&
2655 test_bit(In_sync, &rdev->flags) &&
2656 !test_bit(Faulty, &rdev->flags) &&
2657 rdev_has_badblock(rdev,
2658 r10_bio->devs[sl].addr + sect,
2659 s) == 0) {
2660 atomic_inc(&rdev->nr_pending);
2661 success = sync_page_io(rdev,
2662 r10_bio->devs[sl].addr +
2663 sect,
2664 s<<9,
2665 conf->tmppage,
2666 REQ_OP_READ, false);
2667 rdev_dec_pending(rdev, mddev);
2668 if (success)
2669 break;
2670 }
2671 sl++;
2672 if (sl == conf->copies)
2673 sl = 0;
2674 } while (sl != slot);
2675
2676 if (!success) {
2677 /* Cannot read from anywhere, just mark the block
2678 * as bad on the first device to discourage future
2679 * reads.
2680 */
2681 int dn = r10_bio->devs[slot].devnum;
2682 rdev = conf->mirrors[dn].rdev;
2683
2684 if (!rdev_set_badblocks(
2685 rdev,
2686 r10_bio->devs[slot].addr
2687 + sect,
2688 s, 0)) {
2689 md_error(mddev, rdev);
2690 r10_bio->devs[slot].bio
2691 = IO_BLOCKED;
2692 }
2693 break;
2694 }
2695
2696 start = sl;
2697 /* write it back and re-read */
2698 while (sl != slot) {
2699 if (sl==0)
2700 sl = conf->copies;
2701 sl--;
2702 d = r10_bio->devs[sl].devnum;
2703 rdev = conf->mirrors[d].rdev;
2704 if (!rdev ||
2705 test_bit(Faulty, &rdev->flags) ||
2706 !test_bit(In_sync, &rdev->flags))
2707 continue;
2708
2709 atomic_inc(&rdev->nr_pending);
2710 if (r10_sync_page_io(rdev,
2711 r10_bio->devs[sl].addr +
2712 sect,
2713 s, conf->tmppage, REQ_OP_WRITE)
2714 == 0) {
2715 /* Well, this device is dead */
2716 pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %pg)\n",
2717 mdname(mddev), s,
2718 (unsigned long long)(
2719 sect +
2720 choose_data_offset(r10_bio,
2721 rdev)),
2722 rdev->bdev);
2723 pr_notice("md/raid10:%s: %pg: failing drive\n",
2724 mdname(mddev),
2725 rdev->bdev);
2726 }
2727 rdev_dec_pending(rdev, mddev);
2728 }
2729 sl = start;
2730 while (sl != slot) {
2731 if (sl==0)
2732 sl = conf->copies;
2733 sl--;
2734 d = r10_bio->devs[sl].devnum;
2735 rdev = conf->mirrors[d].rdev;
2736 if (!rdev ||
2737 test_bit(Faulty, &rdev->flags) ||
2738 !test_bit(In_sync, &rdev->flags))
2739 continue;
2740
2741 atomic_inc(&rdev->nr_pending);
2742 switch (r10_sync_page_io(rdev,
2743 r10_bio->devs[sl].addr +
2744 sect,
2745 s, conf->tmppage, REQ_OP_READ)) {
2746 case 0:
2747 /* Well, this device is dead */
2748 pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %pg)\n",
2749 mdname(mddev), s,
2750 (unsigned long long)(
2751 sect +
2752 choose_data_offset(r10_bio, rdev)),
2753 rdev->bdev);
2754 pr_notice("md/raid10:%s: %pg: failing drive\n",
2755 mdname(mddev),
2756 rdev->bdev);
2757 break;
2758 case 1:
2759 pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %pg)\n",
2760 mdname(mddev), s,
2761 (unsigned long long)(
2762 sect +
2763 choose_data_offset(r10_bio, rdev)),
2764 rdev->bdev);
2765 atomic_add(s, &rdev->corrected_errors);
2766 }
2767
2768 rdev_dec_pending(rdev, mddev);
2769 }
2770
2771 sectors -= s;
2772 sect += s;
2773 }
2774}
2775
2776static bool narrow_write_error(struct r10bio *r10_bio, int i)
2777{
2778 struct bio *bio = r10_bio->master_bio;
2779 struct mddev *mddev = r10_bio->mddev;
2780 struct r10conf *conf = mddev->private;
2781 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2782 /* bio has the data to be written to slot 'i' where
2783 * we just recently had a write error.
2784 * We repeatedly clone the bio and trim down to one block,
2785 * then try the write. Where the write fails we record
2786 * a bad block.
2787 * It is conceivable that the bio doesn't exactly align with
2788 * blocks. We must handle this.
2789 *
2790 * We currently own a reference to the rdev.
2791 */
2792
2793 int block_sectors;
2794 sector_t sector;
2795 int sectors;
2796 int sect_to_write = r10_bio->sectors;
2797 bool ok = true;
2798
2799 if (rdev->badblocks.shift < 0)
2800 return false;
2801
2802 block_sectors = roundup(1 << rdev->badblocks.shift,
2803 bdev_logical_block_size(rdev->bdev) >> 9);
2804 sector = r10_bio->sector;
2805 sectors = ((r10_bio->sector + block_sectors)
2806 & ~(sector_t)(block_sectors - 1))
2807 - sector;
2808
2809 while (sect_to_write) {
2810 struct bio *wbio;
2811 sector_t wsector;
2812 if (sectors > sect_to_write)
2813 sectors = sect_to_write;
2814 /* Write at 'sector' for 'sectors' */
2815 wbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO,
2816 &mddev->bio_set);
2817 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2818 wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2819 wbio->bi_iter.bi_sector = wsector +
2820 choose_data_offset(r10_bio, rdev);
2821 wbio->bi_opf = REQ_OP_WRITE;
2822
2823 if (submit_bio_wait(wbio) < 0)
2824 /* Failure! */
2825 ok = rdev_set_badblocks(rdev, wsector,
2826 sectors, 0)
2827 && ok;
2828
2829 bio_put(wbio);
2830 sect_to_write -= sectors;
2831 sector += sectors;
2832 sectors = block_sectors;
2833 }
2834 return ok;
2835}
2836
2837static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2838{
2839 int slot = r10_bio->read_slot;
2840 struct bio *bio;
2841 struct r10conf *conf = mddev->private;
2842 struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2843
2844 /* we got a read error. Maybe the drive is bad. Maybe just
2845 * the block and we can fix it.
2846 * We freeze all other IO, and try reading the block from
2847 * other devices. When we find one, we re-write
2848 * and check it that fixes the read error.
2849 * This is all done synchronously while the array is
2850 * frozen.
2851 */
2852 bio = r10_bio->devs[slot].bio;
2853 bio_put(bio);
2854 r10_bio->devs[slot].bio = NULL;
2855
2856 if (mddev->ro)
2857 r10_bio->devs[slot].bio = IO_BLOCKED;
2858 else if (!test_bit(FailFast, &rdev->flags)) {
2859 freeze_array(conf, 1);
2860 fix_read_error(conf, mddev, r10_bio);
2861 unfreeze_array(conf);
2862 } else
2863 md_error(mddev, rdev);
2864
2865 rdev_dec_pending(rdev, mddev);
2866 r10_bio->state = 0;
2867 raid10_read_request(mddev, r10_bio->master_bio, r10_bio, false);
2868 /*
2869 * allow_barrier after re-submit to ensure no sync io
2870 * can be issued while regular io pending.
2871 */
2872 allow_barrier(conf);
2873}
2874
2875static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2876{
2877 /* Some sort of write request has finished and it
2878 * succeeded in writing where we thought there was a
2879 * bad block. So forget the bad block.
2880 * Or possibly if failed and we need to record
2881 * a bad block.
2882 */
2883 int m;
2884 struct md_rdev *rdev;
2885
2886 if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2887 test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2888 for (m = 0; m < conf->copies; m++) {
2889 int dev = r10_bio->devs[m].devnum;
2890 rdev = conf->mirrors[dev].rdev;
2891 if (r10_bio->devs[m].bio == NULL ||
2892 r10_bio->devs[m].bio->bi_end_io == NULL)
2893 continue;
2894 if (!r10_bio->devs[m].bio->bi_status) {
2895 rdev_clear_badblocks(
2896 rdev,
2897 r10_bio->devs[m].addr,
2898 r10_bio->sectors, 0);
2899 } else {
2900 if (!rdev_set_badblocks(
2901 rdev,
2902 r10_bio->devs[m].addr,
2903 r10_bio->sectors, 0))
2904 md_error(conf->mddev, rdev);
2905 }
2906 rdev = conf->mirrors[dev].replacement;
2907 if (r10_bio->devs[m].repl_bio == NULL ||
2908 r10_bio->devs[m].repl_bio->bi_end_io == NULL)
2909 continue;
2910
2911 if (!r10_bio->devs[m].repl_bio->bi_status) {
2912 rdev_clear_badblocks(
2913 rdev,
2914 r10_bio->devs[m].addr,
2915 r10_bio->sectors, 0);
2916 } else {
2917 if (!rdev_set_badblocks(
2918 rdev,
2919 r10_bio->devs[m].addr,
2920 r10_bio->sectors, 0))
2921 md_error(conf->mddev, rdev);
2922 }
2923 }
2924 put_buf(r10_bio);
2925 } else {
2926 bool fail = false;
2927 for (m = 0; m < conf->copies; m++) {
2928 int dev = r10_bio->devs[m].devnum;
2929 struct bio *bio = r10_bio->devs[m].bio;
2930 rdev = conf->mirrors[dev].rdev;
2931 if (bio == IO_MADE_GOOD) {
2932 rdev_clear_badblocks(
2933 rdev,
2934 r10_bio->devs[m].addr,
2935 r10_bio->sectors, 0);
2936 rdev_dec_pending(rdev, conf->mddev);
2937 } else if (bio != NULL && bio->bi_status) {
2938 fail = true;
2939 if (!narrow_write_error(r10_bio, m))
2940 md_error(conf->mddev, rdev);
2941 rdev_dec_pending(rdev, conf->mddev);
2942 }
2943 bio = r10_bio->devs[m].repl_bio;
2944 rdev = conf->mirrors[dev].replacement;
2945 if (rdev && bio == IO_MADE_GOOD) {
2946 rdev_clear_badblocks(
2947 rdev,
2948 r10_bio->devs[m].addr,
2949 r10_bio->sectors, 0);
2950 rdev_dec_pending(rdev, conf->mddev);
2951 }
2952 }
2953 if (fail) {
2954 spin_lock_irq(&conf->device_lock);
2955 list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
2956 conf->nr_queued++;
2957 spin_unlock_irq(&conf->device_lock);
2958 /*
2959 * In case freeze_array() is waiting for condition
2960 * nr_pending == nr_queued + extra to be true.
2961 */
2962 wake_up(&conf->wait_barrier);
2963 md_wakeup_thread(conf->mddev->thread);
2964 } else {
2965 if (test_bit(R10BIO_WriteError,
2966 &r10_bio->state))
2967 close_write(r10_bio);
2968 raid_end_bio_io(r10_bio);
2969 }
2970 }
2971}
2972
2973static void raid10d(struct md_thread *thread)
2974{
2975 struct mddev *mddev = thread->mddev;
2976 struct r10bio *r10_bio;
2977 unsigned long flags;
2978 struct r10conf *conf = mddev->private;
2979 struct list_head *head = &conf->retry_list;
2980 struct blk_plug plug;
2981
2982 md_check_recovery(mddev);
2983
2984 if (!list_empty_careful(&conf->bio_end_io_list) &&
2985 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2986 LIST_HEAD(tmp);
2987 spin_lock_irqsave(&conf->device_lock, flags);
2988 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2989 while (!list_empty(&conf->bio_end_io_list)) {
2990 list_move(conf->bio_end_io_list.prev, &tmp);
2991 conf->nr_queued--;
2992 }
2993 }
2994 spin_unlock_irqrestore(&conf->device_lock, flags);
2995 while (!list_empty(&tmp)) {
2996 r10_bio = list_first_entry(&tmp, struct r10bio,
2997 retry_list);
2998 list_del(&r10_bio->retry_list);
2999
3000 if (test_bit(R10BIO_WriteError,
3001 &r10_bio->state))
3002 close_write(r10_bio);
3003 raid_end_bio_io(r10_bio);
3004 }
3005 }
3006
3007 blk_start_plug(&plug);
3008 for (;;) {
3009
3010 flush_pending_writes(conf);
3011
3012 spin_lock_irqsave(&conf->device_lock, flags);
3013 if (list_empty(head)) {
3014 spin_unlock_irqrestore(&conf->device_lock, flags);
3015 break;
3016 }
3017 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
3018 list_del(head->prev);
3019 conf->nr_queued--;
3020 spin_unlock_irqrestore(&conf->device_lock, flags);
3021
3022 mddev = r10_bio->mddev;
3023 conf = mddev->private;
3024 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
3025 test_bit(R10BIO_WriteError, &r10_bio->state))
3026 handle_write_completed(conf, r10_bio);
3027 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
3028 reshape_request_write(mddev, r10_bio);
3029 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
3030 sync_request_write(mddev, r10_bio);
3031 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
3032 recovery_request_write(mddev, r10_bio);
3033 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
3034 handle_read_error(mddev, r10_bio);
3035 else
3036 WARN_ON_ONCE(1);
3037
3038 cond_resched();
3039 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
3040 md_check_recovery(mddev);
3041 }
3042 blk_finish_plug(&plug);
3043}
3044
3045static int init_resync(struct r10conf *conf)
3046{
3047 int ret, buffs, i;
3048
3049 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
3050 BUG_ON(mempool_initialized(&conf->r10buf_pool));
3051 conf->have_replacement = 0;
3052 for (i = 0; i < conf->geo.raid_disks; i++)
3053 if (conf->mirrors[i].replacement)
3054 conf->have_replacement = 1;
3055 ret = mempool_init(&conf->r10buf_pool, buffs,
3056 r10buf_pool_alloc, r10buf_pool_free, conf);
3057 if (ret)
3058 return ret;
3059 conf->next_resync = 0;
3060 return 0;
3061}
3062
3063static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf)
3064{
3065 struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO);
3066 struct rsync_pages *rp;
3067 struct bio *bio;
3068 int nalloc;
3069 int i;
3070
3071 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
3072 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
3073 nalloc = conf->copies; /* resync */
3074 else
3075 nalloc = 2; /* recovery */
3076
3077 for (i = 0; i < nalloc; i++) {
3078 bio = r10bio->devs[i].bio;
3079 rp = bio->bi_private;
3080 bio_reset(bio, NULL, 0);
3081 bio->bi_private = rp;
3082 bio = r10bio->devs[i].repl_bio;
3083 if (bio) {
3084 rp = bio->bi_private;
3085 bio_reset(bio, NULL, 0);
3086 bio->bi_private = rp;
3087 }
3088 }
3089 return r10bio;
3090}
3091
3092/*
3093 * Set cluster_sync_high since we need other nodes to add the
3094 * range [cluster_sync_low, cluster_sync_high] to suspend list.
3095 */
3096static void raid10_set_cluster_sync_high(struct r10conf *conf)
3097{
3098 sector_t window_size;
3099 int extra_chunk, chunks;
3100
3101 /*
3102 * First, here we define "stripe" as a unit which across
3103 * all member devices one time, so we get chunks by use
3104 * raid_disks / near_copies. Otherwise, if near_copies is
3105 * close to raid_disks, then resync window could increases
3106 * linearly with the increase of raid_disks, which means
3107 * we will suspend a really large IO window while it is not
3108 * necessary. If raid_disks is not divisible by near_copies,
3109 * an extra chunk is needed to ensure the whole "stripe" is
3110 * covered.
3111 */
3112
3113 chunks = conf->geo.raid_disks / conf->geo.near_copies;
3114 if (conf->geo.raid_disks % conf->geo.near_copies == 0)
3115 extra_chunk = 0;
3116 else
3117 extra_chunk = 1;
3118 window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors;
3119
3120 /*
3121 * At least use a 32M window to align with raid1's resync window
3122 */
3123 window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ?
3124 CLUSTER_RESYNC_WINDOW_SECTORS : window_size;
3125
3126 conf->cluster_sync_high = conf->cluster_sync_low + window_size;
3127}
3128
3129/*
3130 * perform a "sync" on one "block"
3131 *
3132 * We need to make sure that no normal I/O request - particularly write
3133 * requests - conflict with active sync requests.
3134 *
3135 * This is achieved by tracking pending requests and a 'barrier' concept
3136 * that can be installed to exclude normal IO requests.
3137 *
3138 * Resync and recovery are handled very differently.
3139 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
3140 *
3141 * For resync, we iterate over virtual addresses, read all copies,
3142 * and update if there are differences. If only one copy is live,
3143 * skip it.
3144 * For recovery, we iterate over physical addresses, read a good
3145 * value for each non-in_sync drive, and over-write.
3146 *
3147 * So, for recovery we may have several outstanding complex requests for a
3148 * given address, one for each out-of-sync device. We model this by allocating
3149 * a number of r10_bio structures, one for each out-of-sync device.
3150 * As we setup these structures, we collect all bio's together into a list
3151 * which we then process collectively to add pages, and then process again
3152 * to pass to submit_bio_noacct.
3153 *
3154 * The r10_bio structures are linked using a borrowed master_bio pointer.
3155 * This link is counted in ->remaining. When the r10_bio that points to NULL
3156 * has its remaining count decremented to 0, the whole complex operation
3157 * is complete.
3158 *
3159 */
3160
3161static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
3162 sector_t max_sector, int *skipped)
3163{
3164 struct r10conf *conf = mddev->private;
3165 struct r10bio *r10_bio;
3166 struct bio *biolist = NULL, *bio;
3167 sector_t nr_sectors;
3168 int i;
3169 int max_sync;
3170 sector_t sync_blocks;
3171 sector_t sectors_skipped = 0;
3172 int chunks_skipped = 0;
3173 sector_t chunk_mask = conf->geo.chunk_mask;
3174 int page_idx = 0;
3175 int error_disk = -1;
3176
3177 /*
3178 * Allow skipping a full rebuild for incremental assembly
3179 * of a clean array, like RAID1 does.
3180 */
3181 if (mddev->bitmap == NULL &&
3182 mddev->resync_offset == MaxSector &&
3183 mddev->reshape_position == MaxSector &&
3184 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
3185 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
3186 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
3187 conf->fullsync == 0) {
3188 *skipped = 1;
3189 return mddev->dev_sectors - sector_nr;
3190 }
3191
3192 if (!mempool_initialized(&conf->r10buf_pool))
3193 if (init_resync(conf))
3194 return 0;
3195
3196 skipped:
3197 if (sector_nr >= max_sector) {
3198 conf->cluster_sync_low = 0;
3199 conf->cluster_sync_high = 0;
3200
3201 /* If we aborted, we need to abort the
3202 * sync on the 'current' bitmap chucks (there can
3203 * be several when recovering multiple devices).
3204 * as we may have started syncing it but not finished.
3205 * We can find the current address in
3206 * mddev->curr_resync, but for recovery,
3207 * we need to convert that to several
3208 * virtual addresses.
3209 */
3210 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3211 end_reshape(conf);
3212 close_sync(conf);
3213 return 0;
3214 }
3215
3216 if (mddev->curr_resync < max_sector) { /* aborted */
3217 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3218 md_bitmap_end_sync(mddev, mddev->curr_resync,
3219 &sync_blocks);
3220 else for (i = 0; i < conf->geo.raid_disks; i++) {
3221 sector_t sect =
3222 raid10_find_virt(conf, mddev->curr_resync, i);
3223
3224 md_bitmap_end_sync(mddev, sect, &sync_blocks);
3225 }
3226 } else {
3227 /* completed sync */
3228 if ((!mddev->bitmap || conf->fullsync)
3229 && conf->have_replacement
3230 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3231 /* Completed a full sync so the replacements
3232 * are now fully recovered.
3233 */
3234 for (i = 0; i < conf->geo.raid_disks; i++) {
3235 struct md_rdev *rdev =
3236 conf->mirrors[i].replacement;
3237
3238 if (rdev)
3239 rdev->recovery_offset = MaxSector;
3240 }
3241 }
3242 conf->fullsync = 0;
3243 }
3244 if (md_bitmap_enabled(mddev, false))
3245 mddev->bitmap_ops->close_sync(mddev);
3246 close_sync(conf);
3247 *skipped = 1;
3248 return sectors_skipped;
3249 }
3250
3251 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3252 return reshape_request(mddev, sector_nr, skipped);
3253
3254 if (chunks_skipped >= conf->geo.raid_disks) {
3255 pr_err("md/raid10:%s: %s fails\n", mdname(mddev),
3256 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ? "resync" : "recovery");
3257 if (error_disk >= 0 &&
3258 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3259 /*
3260 * recovery fails, set mirrors.recovery_disabled,
3261 * device shouldn't be added to there.
3262 */
3263 conf->mirrors[error_disk].recovery_disabled =
3264 mddev->recovery_disabled;
3265 return 0;
3266 }
3267 /*
3268 * if there has been nothing to do on any drive,
3269 * then there is nothing to do at all.
3270 */
3271 *skipped = 1;
3272 return (max_sector - sector_nr) + sectors_skipped;
3273 }
3274
3275 if (max_sector > mddev->resync_max)
3276 max_sector = mddev->resync_max; /* Don't do IO beyond here */
3277
3278 /* make sure whole request will fit in a chunk - if chunks
3279 * are meaningful
3280 */
3281 if (conf->geo.near_copies < conf->geo.raid_disks &&
3282 max_sector > (sector_nr | chunk_mask))
3283 max_sector = (sector_nr | chunk_mask) + 1;
3284
3285 /*
3286 * If there is non-resync activity waiting for a turn, then let it
3287 * though before starting on this new sync request.
3288 */
3289 if (conf->nr_waiting)
3290 schedule_timeout_uninterruptible(1);
3291
3292 /* Again, very different code for resync and recovery.
3293 * Both must result in an r10bio with a list of bios that
3294 * have bi_end_io, bi_sector, bi_bdev set,
3295 * and bi_private set to the r10bio.
3296 * For recovery, we may actually create several r10bios
3297 * with 2 bios in each, that correspond to the bios in the main one.
3298 * In this case, the subordinate r10bios link back through a
3299 * borrowed master_bio pointer, and the counter in the master
3300 * includes a ref from each subordinate.
3301 */
3302 /* First, we decide what to do and set ->bi_end_io
3303 * To end_sync_read if we want to read, and
3304 * end_sync_write if we will want to write.
3305 */
3306
3307 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3308 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3309 /* recovery... the complicated one */
3310 int j;
3311 r10_bio = NULL;
3312
3313 for (i = 0 ; i < conf->geo.raid_disks; i++) {
3314 bool still_degraded;
3315 struct r10bio *rb2;
3316 sector_t sect;
3317 bool must_sync;
3318 int any_working;
3319 struct raid10_info *mirror = &conf->mirrors[i];
3320 struct md_rdev *mrdev, *mreplace;
3321
3322 mrdev = mirror->rdev;
3323 mreplace = mirror->replacement;
3324
3325 if (mrdev && (test_bit(Faulty, &mrdev->flags) ||
3326 test_bit(In_sync, &mrdev->flags)))
3327 mrdev = NULL;
3328 if (mreplace && test_bit(Faulty, &mreplace->flags))
3329 mreplace = NULL;
3330
3331 if (!mrdev && !mreplace)
3332 continue;
3333
3334 still_degraded = false;
3335 /* want to reconstruct this device */
3336 rb2 = r10_bio;
3337 sect = raid10_find_virt(conf, sector_nr, i);
3338 if (sect >= mddev->resync_max_sectors)
3339 /* last stripe is not complete - don't
3340 * try to recover this sector.
3341 */
3342 continue;
3343 /* Unless we are doing a full sync, or a replacement
3344 * we only need to recover the block if it is set in
3345 * the bitmap
3346 */
3347 must_sync = md_bitmap_start_sync(mddev, sect,
3348 &sync_blocks, true);
3349 if (sync_blocks < max_sync)
3350 max_sync = sync_blocks;
3351 if (!must_sync &&
3352 mreplace == NULL &&
3353 !conf->fullsync) {
3354 /* yep, skip the sync_blocks here, but don't assume
3355 * that there will never be anything to do here
3356 */
3357 chunks_skipped = -1;
3358 continue;
3359 }
3360 if (mrdev)
3361 atomic_inc(&mrdev->nr_pending);
3362 if (mreplace)
3363 atomic_inc(&mreplace->nr_pending);
3364
3365 r10_bio = raid10_alloc_init_r10buf(conf);
3366 r10_bio->state = 0;
3367 raise_barrier(conf, rb2 != NULL);
3368 atomic_set(&r10_bio->remaining, 0);
3369
3370 r10_bio->master_bio = (struct bio*)rb2;
3371 if (rb2)
3372 atomic_inc(&rb2->remaining);
3373 r10_bio->mddev = mddev;
3374 set_bit(R10BIO_IsRecover, &r10_bio->state);
3375 r10_bio->sector = sect;
3376
3377 raid10_find_phys(conf, r10_bio);
3378
3379 /* Need to check if the array will still be
3380 * degraded
3381 */
3382 for (j = 0; j < conf->geo.raid_disks; j++) {
3383 struct md_rdev *rdev = conf->mirrors[j].rdev;
3384
3385 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3386 still_degraded = false;
3387 break;
3388 }
3389 }
3390
3391 md_bitmap_start_sync(mddev, sect, &sync_blocks,
3392 still_degraded);
3393 any_working = 0;
3394 for (j=0; j<conf->copies;j++) {
3395 int k;
3396 int d = r10_bio->devs[j].devnum;
3397 sector_t from_addr, to_addr;
3398 struct md_rdev *rdev = conf->mirrors[d].rdev;
3399 sector_t sector, first_bad;
3400 sector_t bad_sectors;
3401 if (!rdev ||
3402 !test_bit(In_sync, &rdev->flags))
3403 continue;
3404 /* This is where we read from */
3405 any_working = 1;
3406 sector = r10_bio->devs[j].addr;
3407
3408 if (is_badblock(rdev, sector, max_sync,
3409 &first_bad, &bad_sectors)) {
3410 if (first_bad > sector)
3411 max_sync = first_bad - sector;
3412 else {
3413 bad_sectors -= (sector
3414 - first_bad);
3415 if (max_sync > bad_sectors)
3416 max_sync = bad_sectors;
3417 continue;
3418 }
3419 }
3420 bio = r10_bio->devs[0].bio;
3421 bio->bi_next = biolist;
3422 biolist = bio;
3423 bio->bi_end_io = end_sync_read;
3424 bio->bi_opf = REQ_OP_READ;
3425 if (test_bit(FailFast, &rdev->flags))
3426 bio->bi_opf |= MD_FAILFAST;
3427 from_addr = r10_bio->devs[j].addr;
3428 bio->bi_iter.bi_sector = from_addr +
3429 rdev->data_offset;
3430 bio_set_dev(bio, rdev->bdev);
3431 atomic_inc(&rdev->nr_pending);
3432 /* and we write to 'i' (if not in_sync) */
3433
3434 for (k=0; k<conf->copies; k++)
3435 if (r10_bio->devs[k].devnum == i)
3436 break;
3437 BUG_ON(k == conf->copies);
3438 to_addr = r10_bio->devs[k].addr;
3439 r10_bio->devs[0].devnum = d;
3440 r10_bio->devs[0].addr = from_addr;
3441 r10_bio->devs[1].devnum = i;
3442 r10_bio->devs[1].addr = to_addr;
3443
3444 if (mrdev) {
3445 bio = r10_bio->devs[1].bio;
3446 bio->bi_next = biolist;
3447 biolist = bio;
3448 bio->bi_end_io = end_sync_write;
3449 bio->bi_opf = REQ_OP_WRITE;
3450 bio->bi_iter.bi_sector = to_addr
3451 + mrdev->data_offset;
3452 bio_set_dev(bio, mrdev->bdev);
3453 atomic_inc(&r10_bio->remaining);
3454 } else
3455 r10_bio->devs[1].bio->bi_end_io = NULL;
3456
3457 /* and maybe write to replacement */
3458 bio = r10_bio->devs[1].repl_bio;
3459 if (bio)
3460 bio->bi_end_io = NULL;
3461 /* Note: if replace is not NULL, then bio
3462 * cannot be NULL as r10buf_pool_alloc will
3463 * have allocated it.
3464 */
3465 if (!mreplace)
3466 break;
3467 bio->bi_next = biolist;
3468 biolist = bio;
3469 bio->bi_end_io = end_sync_write;
3470 bio->bi_opf = REQ_OP_WRITE;
3471 bio->bi_iter.bi_sector = to_addr +
3472 mreplace->data_offset;
3473 bio_set_dev(bio, mreplace->bdev);
3474 atomic_inc(&r10_bio->remaining);
3475 break;
3476 }
3477 if (j == conf->copies) {
3478 /* Cannot recover, so abort the recovery or
3479 * record a bad block */
3480 if (any_working) {
3481 /* problem is that there are bad blocks
3482 * on other device(s)
3483 */
3484 int k;
3485 for (k = 0; k < conf->copies; k++)
3486 if (r10_bio->devs[k].devnum == i)
3487 break;
3488 if (mrdev && !test_bit(In_sync,
3489 &mrdev->flags)
3490 && !rdev_set_badblocks(
3491 mrdev,
3492 r10_bio->devs[k].addr,
3493 max_sync, 0))
3494 any_working = 0;
3495 if (mreplace &&
3496 !rdev_set_badblocks(
3497 mreplace,
3498 r10_bio->devs[k].addr,
3499 max_sync, 0))
3500 any_working = 0;
3501 }
3502 if (!any_working) {
3503 if (!test_and_set_bit(MD_RECOVERY_INTR,
3504 &mddev->recovery))
3505 pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3506 mdname(mddev));
3507 mirror->recovery_disabled
3508 = mddev->recovery_disabled;
3509 } else {
3510 error_disk = i;
3511 }
3512 put_buf(r10_bio);
3513 if (rb2)
3514 atomic_dec(&rb2->remaining);
3515 r10_bio = rb2;
3516 if (mrdev)
3517 rdev_dec_pending(mrdev, mddev);
3518 if (mreplace)
3519 rdev_dec_pending(mreplace, mddev);
3520 break;
3521 }
3522 if (mrdev)
3523 rdev_dec_pending(mrdev, mddev);
3524 if (mreplace)
3525 rdev_dec_pending(mreplace, mddev);
3526 if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3527 /* Only want this if there is elsewhere to
3528 * read from. 'j' is currently the first
3529 * readable copy.
3530 */
3531 int targets = 1;
3532 for (; j < conf->copies; j++) {
3533 int d = r10_bio->devs[j].devnum;
3534 if (conf->mirrors[d].rdev &&
3535 test_bit(In_sync,
3536 &conf->mirrors[d].rdev->flags))
3537 targets++;
3538 }
3539 if (targets == 1)
3540 r10_bio->devs[0].bio->bi_opf
3541 &= ~MD_FAILFAST;
3542 }
3543 }
3544 if (biolist == NULL) {
3545 while (r10_bio) {
3546 struct r10bio *rb2 = r10_bio;
3547 r10_bio = (struct r10bio*) rb2->master_bio;
3548 rb2->master_bio = NULL;
3549 put_buf(rb2);
3550 }
3551 goto giveup;
3552 }
3553 } else {
3554 /* resync. Schedule a read for every block at this virt offset */
3555 int count = 0;
3556
3557 /*
3558 * Since curr_resync_completed could probably not update in
3559 * time, and we will set cluster_sync_low based on it.
3560 * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for
3561 * safety reason, which ensures curr_resync_completed is
3562 * updated in bitmap_cond_end_sync.
3563 */
3564 if (md_bitmap_enabled(mddev, false))
3565 mddev->bitmap_ops->cond_end_sync(mddev, sector_nr,
3566 mddev_is_clustered(mddev) &&
3567 (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
3568
3569 if (!md_bitmap_start_sync(mddev, sector_nr, &sync_blocks,
3570 mddev->degraded) &&
3571 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3572 &mddev->recovery)) {
3573 /* We can skip this block */
3574 *skipped = 1;
3575 return sync_blocks + sectors_skipped;
3576 }
3577 if (sync_blocks < max_sync)
3578 max_sync = sync_blocks;
3579 r10_bio = raid10_alloc_init_r10buf(conf);
3580 r10_bio->state = 0;
3581
3582 r10_bio->mddev = mddev;
3583 atomic_set(&r10_bio->remaining, 0);
3584 raise_barrier(conf, 0);
3585 conf->next_resync = sector_nr;
3586
3587 r10_bio->master_bio = NULL;
3588 r10_bio->sector = sector_nr;
3589 set_bit(R10BIO_IsSync, &r10_bio->state);
3590 raid10_find_phys(conf, r10_bio);
3591 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3592
3593 for (i = 0; i < conf->copies; i++) {
3594 int d = r10_bio->devs[i].devnum;
3595 sector_t first_bad, sector;
3596 sector_t bad_sectors;
3597 struct md_rdev *rdev;
3598
3599 if (r10_bio->devs[i].repl_bio)
3600 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3601
3602 bio = r10_bio->devs[i].bio;
3603 bio->bi_status = BLK_STS_IOERR;
3604 rdev = conf->mirrors[d].rdev;
3605 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
3606 continue;
3607
3608 sector = r10_bio->devs[i].addr;
3609 if (is_badblock(rdev, sector, max_sync,
3610 &first_bad, &bad_sectors)) {
3611 if (first_bad > sector)
3612 max_sync = first_bad - sector;
3613 else {
3614 bad_sectors -= (sector - first_bad);
3615 if (max_sync > bad_sectors)
3616 max_sync = bad_sectors;
3617 continue;
3618 }
3619 }
3620 atomic_inc(&rdev->nr_pending);
3621 atomic_inc(&r10_bio->remaining);
3622 bio->bi_next = biolist;
3623 biolist = bio;
3624 bio->bi_end_io = end_sync_read;
3625 bio->bi_opf = REQ_OP_READ;
3626 if (test_bit(FailFast, &rdev->flags))
3627 bio->bi_opf |= MD_FAILFAST;
3628 bio->bi_iter.bi_sector = sector + rdev->data_offset;
3629 bio_set_dev(bio, rdev->bdev);
3630 count++;
3631
3632 rdev = conf->mirrors[d].replacement;
3633 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
3634 continue;
3635
3636 atomic_inc(&rdev->nr_pending);
3637
3638 /* Need to set up for writing to the replacement */
3639 bio = r10_bio->devs[i].repl_bio;
3640 bio->bi_status = BLK_STS_IOERR;
3641
3642 sector = r10_bio->devs[i].addr;
3643 bio->bi_next = biolist;
3644 biolist = bio;
3645 bio->bi_end_io = end_sync_write;
3646 bio->bi_opf = REQ_OP_WRITE;
3647 if (test_bit(FailFast, &rdev->flags))
3648 bio->bi_opf |= MD_FAILFAST;
3649 bio->bi_iter.bi_sector = sector + rdev->data_offset;
3650 bio_set_dev(bio, rdev->bdev);
3651 count++;
3652 }
3653
3654 if (count < 2) {
3655 for (i=0; i<conf->copies; i++) {
3656 int d = r10_bio->devs[i].devnum;
3657 if (r10_bio->devs[i].bio->bi_end_io)
3658 rdev_dec_pending(conf->mirrors[d].rdev,
3659 mddev);
3660 if (r10_bio->devs[i].repl_bio &&
3661 r10_bio->devs[i].repl_bio->bi_end_io)
3662 rdev_dec_pending(
3663 conf->mirrors[d].replacement,
3664 mddev);
3665 }
3666 put_buf(r10_bio);
3667 biolist = NULL;
3668 goto giveup;
3669 }
3670 }
3671
3672 nr_sectors = 0;
3673 if (sector_nr + max_sync < max_sector)
3674 max_sector = sector_nr + max_sync;
3675 do {
3676 struct page *page;
3677 int len = PAGE_SIZE;
3678 if (sector_nr + (len>>9) > max_sector)
3679 len = (max_sector - sector_nr) << 9;
3680 if (len == 0)
3681 break;
3682 for (bio= biolist ; bio ; bio=bio->bi_next) {
3683 struct resync_pages *rp = get_resync_pages(bio);
3684 page = resync_fetch_page(rp, page_idx);
3685 if (WARN_ON(!bio_add_page(bio, page, len, 0))) {
3686 bio->bi_status = BLK_STS_RESOURCE;
3687 bio_endio(bio);
3688 goto giveup;
3689 }
3690 }
3691 nr_sectors += len>>9;
3692 sector_nr += len>>9;
3693 } while (++page_idx < RESYNC_PAGES);
3694 r10_bio->sectors = nr_sectors;
3695
3696 if (mddev_is_clustered(mddev) &&
3697 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3698 /* It is resync not recovery */
3699 if (conf->cluster_sync_high < sector_nr + nr_sectors) {
3700 conf->cluster_sync_low = mddev->curr_resync_completed;
3701 raid10_set_cluster_sync_high(conf);
3702 /* Send resync message */
3703 mddev->cluster_ops->resync_info_update(mddev,
3704 conf->cluster_sync_low,
3705 conf->cluster_sync_high);
3706 }
3707 } else if (mddev_is_clustered(mddev)) {
3708 /* This is recovery not resync */
3709 sector_t sect_va1, sect_va2;
3710 bool broadcast_msg = false;
3711
3712 for (i = 0; i < conf->geo.raid_disks; i++) {
3713 /*
3714 * sector_nr is a device address for recovery, so we
3715 * need translate it to array address before compare
3716 * with cluster_sync_high.
3717 */
3718 sect_va1 = raid10_find_virt(conf, sector_nr, i);
3719
3720 if (conf->cluster_sync_high < sect_va1 + nr_sectors) {
3721 broadcast_msg = true;
3722 /*
3723 * curr_resync_completed is similar as
3724 * sector_nr, so make the translation too.
3725 */
3726 sect_va2 = raid10_find_virt(conf,
3727 mddev->curr_resync_completed, i);
3728
3729 if (conf->cluster_sync_low == 0 ||
3730 conf->cluster_sync_low > sect_va2)
3731 conf->cluster_sync_low = sect_va2;
3732 }
3733 }
3734 if (broadcast_msg) {
3735 raid10_set_cluster_sync_high(conf);
3736 mddev->cluster_ops->resync_info_update(mddev,
3737 conf->cluster_sync_low,
3738 conf->cluster_sync_high);
3739 }
3740 }
3741
3742 while (biolist) {
3743 bio = biolist;
3744 biolist = biolist->bi_next;
3745
3746 bio->bi_next = NULL;
3747 r10_bio = get_resync_r10bio(bio);
3748 r10_bio->sectors = nr_sectors;
3749
3750 if (bio->bi_end_io == end_sync_read) {
3751 bio->bi_status = 0;
3752 submit_bio_noacct(bio);
3753 }
3754 }
3755
3756 if (sectors_skipped)
3757 /* pretend they weren't skipped, it makes
3758 * no important difference in this case
3759 */
3760 md_done_sync(mddev, sectors_skipped, 1);
3761
3762 return sectors_skipped + nr_sectors;
3763 giveup:
3764 /* There is nowhere to write, so all non-sync
3765 * drives must be failed or in resync, all drives
3766 * have a bad block, so try the next chunk...
3767 */
3768 if (sector_nr + max_sync < max_sector)
3769 max_sector = sector_nr + max_sync;
3770
3771 sectors_skipped += (max_sector - sector_nr);
3772 chunks_skipped ++;
3773 sector_nr = max_sector;
3774 goto skipped;
3775}
3776
3777static sector_t
3778raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3779{
3780 sector_t size;
3781 struct r10conf *conf = mddev->private;
3782
3783 if (!raid_disks)
3784 raid_disks = min(conf->geo.raid_disks,
3785 conf->prev.raid_disks);
3786 if (!sectors)
3787 sectors = conf->dev_sectors;
3788
3789 size = sectors >> conf->geo.chunk_shift;
3790 sector_div(size, conf->geo.far_copies);
3791 size = size * raid_disks;
3792 sector_div(size, conf->geo.near_copies);
3793
3794 return size << conf->geo.chunk_shift;
3795}
3796
3797static void calc_sectors(struct r10conf *conf, sector_t size)
3798{
3799 /* Calculate the number of sectors-per-device that will
3800 * actually be used, and set conf->dev_sectors and
3801 * conf->stride
3802 */
3803
3804 size = size >> conf->geo.chunk_shift;
3805 sector_div(size, conf->geo.far_copies);
3806 size = size * conf->geo.raid_disks;
3807 sector_div(size, conf->geo.near_copies);
3808 /* 'size' is now the number of chunks in the array */
3809 /* calculate "used chunks per device" */
3810 size = size * conf->copies;
3811
3812 /* We need to round up when dividing by raid_disks to
3813 * get the stride size.
3814 */
3815 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3816
3817 conf->dev_sectors = size << conf->geo.chunk_shift;
3818
3819 if (conf->geo.far_offset)
3820 conf->geo.stride = 1 << conf->geo.chunk_shift;
3821 else {
3822 sector_div(size, conf->geo.far_copies);
3823 conf->geo.stride = size << conf->geo.chunk_shift;
3824 }
3825}
3826
3827enum geo_type {geo_new, geo_old, geo_start};
3828static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3829{
3830 int nc, fc, fo;
3831 int layout, chunk, disks;
3832 switch (new) {
3833 case geo_old:
3834 layout = mddev->layout;
3835 chunk = mddev->chunk_sectors;
3836 disks = mddev->raid_disks - mddev->delta_disks;
3837 break;
3838 case geo_new:
3839 layout = mddev->new_layout;
3840 chunk = mddev->new_chunk_sectors;
3841 disks = mddev->raid_disks;
3842 break;
3843 default: /* avoid 'may be unused' warnings */
3844 case geo_start: /* new when starting reshape - raid_disks not
3845 * updated yet. */
3846 layout = mddev->new_layout;
3847 chunk = mddev->new_chunk_sectors;
3848 disks = mddev->raid_disks + mddev->delta_disks;
3849 break;
3850 }
3851 if (layout >> 19)
3852 return -1;
3853 if (chunk < (PAGE_SIZE >> 9) ||
3854 !is_power_of_2(chunk))
3855 return -2;
3856 nc = layout & 255;
3857 fc = (layout >> 8) & 255;
3858 fo = layout & (1<<16);
3859 geo->raid_disks = disks;
3860 geo->near_copies = nc;
3861 geo->far_copies = fc;
3862 geo->far_offset = fo;
3863 switch (layout >> 17) {
3864 case 0: /* original layout. simple but not always optimal */
3865 geo->far_set_size = disks;
3866 break;
3867 case 1: /* "improved" layout which was buggy. Hopefully no-one is
3868 * actually using this, but leave code here just in case.*/
3869 geo->far_set_size = disks/fc;
3870 WARN(geo->far_set_size < fc,
3871 "This RAID10 layout does not provide data safety - please backup and create new array\n");
3872 break;
3873 case 2: /* "improved" layout fixed to match documentation */
3874 geo->far_set_size = fc * nc;
3875 break;
3876 default: /* Not a valid layout */
3877 return -1;
3878 }
3879 geo->chunk_mask = chunk - 1;
3880 geo->chunk_shift = ffz(~chunk);
3881 return nc*fc;
3882}
3883
3884static void raid10_free_conf(struct r10conf *conf)
3885{
3886 if (!conf)
3887 return;
3888
3889 mempool_exit(&conf->r10bio_pool);
3890 kfree(conf->mirrors);
3891 kfree(conf->mirrors_old);
3892 kfree(conf->mirrors_new);
3893 safe_put_page(conf->tmppage);
3894 bioset_exit(&conf->bio_split);
3895 kfree(conf);
3896}
3897
3898static struct r10conf *setup_conf(struct mddev *mddev)
3899{
3900 struct r10conf *conf = NULL;
3901 int err = -EINVAL;
3902 struct geom geo;
3903 int copies;
3904
3905 copies = setup_geo(&geo, mddev, geo_new);
3906
3907 if (copies == -2) {
3908 pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3909 mdname(mddev), PAGE_SIZE);
3910 goto out;
3911 }
3912
3913 if (copies < 2 || copies > mddev->raid_disks) {
3914 pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3915 mdname(mddev), mddev->new_layout);
3916 goto out;
3917 }
3918
3919 err = -ENOMEM;
3920 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3921 if (!conf)
3922 goto out;
3923
3924 /* FIXME calc properly */
3925 conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks),
3926 sizeof(struct raid10_info),
3927 GFP_KERNEL);
3928 if (!conf->mirrors)
3929 goto out;
3930
3931 conf->tmppage = alloc_page(GFP_KERNEL);
3932 if (!conf->tmppage)
3933 goto out;
3934
3935 conf->geo = geo;
3936 conf->copies = copies;
3937 err = mempool_init(&conf->r10bio_pool, NR_RAID_BIOS, r10bio_pool_alloc,
3938 rbio_pool_free, conf);
3939 if (err)
3940 goto out;
3941
3942 err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3943 if (err)
3944 goto out;
3945
3946 calc_sectors(conf, mddev->dev_sectors);
3947 if (mddev->reshape_position == MaxSector) {
3948 conf->prev = conf->geo;
3949 conf->reshape_progress = MaxSector;
3950 } else {
3951 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3952 err = -EINVAL;
3953 goto out;
3954 }
3955 conf->reshape_progress = mddev->reshape_position;
3956 if (conf->prev.far_offset)
3957 conf->prev.stride = 1 << conf->prev.chunk_shift;
3958 else
3959 /* far_copies must be 1 */
3960 conf->prev.stride = conf->dev_sectors;
3961 }
3962 conf->reshape_safe = conf->reshape_progress;
3963 spin_lock_init(&conf->device_lock);
3964 INIT_LIST_HEAD(&conf->retry_list);
3965 INIT_LIST_HEAD(&conf->bio_end_io_list);
3966
3967 seqlock_init(&conf->resync_lock);
3968 init_waitqueue_head(&conf->wait_barrier);
3969 atomic_set(&conf->nr_pending, 0);
3970
3971 err = -ENOMEM;
3972 rcu_assign_pointer(conf->thread,
3973 md_register_thread(raid10d, mddev, "raid10"));
3974 if (!conf->thread)
3975 goto out;
3976
3977 conf->mddev = mddev;
3978 return conf;
3979
3980 out:
3981 raid10_free_conf(conf);
3982 return ERR_PTR(err);
3983}
3984
3985static unsigned int raid10_nr_stripes(struct r10conf *conf)
3986{
3987 unsigned int raid_disks = conf->geo.raid_disks;
3988
3989 if (conf->geo.raid_disks % conf->geo.near_copies)
3990 return raid_disks;
3991 return raid_disks / conf->geo.near_copies;
3992}
3993
3994static int raid10_set_queue_limits(struct mddev *mddev)
3995{
3996 struct r10conf *conf = mddev->private;
3997 struct queue_limits lim;
3998 int err;
3999
4000 md_init_stacking_limits(&lim);
4001 lim.max_write_zeroes_sectors = 0;
4002 lim.max_hw_wzeroes_unmap_sectors = 0;
4003 lim.logical_block_size = mddev->logical_block_size;
4004 lim.io_min = mddev->chunk_sectors << 9;
4005 lim.chunk_sectors = mddev->chunk_sectors;
4006 lim.io_opt = lim.io_min * raid10_nr_stripes(conf);
4007 lim.features |= BLK_FEAT_ATOMIC_WRITES;
4008 err = mddev_stack_rdev_limits(mddev, &lim, MDDEV_STACK_INTEGRITY);
4009 if (err)
4010 return err;
4011 return queue_limits_set(mddev->gendisk->queue, &lim);
4012}
4013
4014static int raid10_run(struct mddev *mddev)
4015{
4016 struct r10conf *conf;
4017 int i, disk_idx;
4018 struct raid10_info *disk;
4019 struct md_rdev *rdev;
4020 sector_t size;
4021 sector_t min_offset_diff = 0;
4022 int first = 1;
4023 int ret = -EIO;
4024
4025 if (mddev->private == NULL) {
4026 conf = setup_conf(mddev);
4027 if (IS_ERR(conf))
4028 return PTR_ERR(conf);
4029 mddev->private = conf;
4030 }
4031 conf = mddev->private;
4032 if (!conf)
4033 goto out;
4034
4035 rcu_assign_pointer(mddev->thread, conf->thread);
4036 rcu_assign_pointer(conf->thread, NULL);
4037
4038 if (mddev_is_clustered(conf->mddev)) {
4039 int fc, fo;
4040
4041 fc = (mddev->layout >> 8) & 255;
4042 fo = mddev->layout & (1<<16);
4043 if (fc > 1 || fo > 0) {
4044 pr_err("only near layout is supported by clustered"
4045 " raid10\n");
4046 goto out_free_conf;
4047 }
4048 }
4049
4050 rdev_for_each(rdev, mddev) {
4051 long long diff;
4052
4053 disk_idx = rdev->raid_disk;
4054 if (disk_idx < 0)
4055 continue;
4056 if (disk_idx >= conf->geo.raid_disks &&
4057 disk_idx >= conf->prev.raid_disks)
4058 continue;
4059 disk = conf->mirrors + disk_idx;
4060
4061 if (test_bit(Replacement, &rdev->flags)) {
4062 if (disk->replacement)
4063 goto out_free_conf;
4064 disk->replacement = rdev;
4065 } else {
4066 if (disk->rdev)
4067 goto out_free_conf;
4068 disk->rdev = rdev;
4069 }
4070 diff = (rdev->new_data_offset - rdev->data_offset);
4071 if (!mddev->reshape_backwards)
4072 diff = -diff;
4073 if (diff < 0)
4074 diff = 0;
4075 if (first || diff < min_offset_diff)
4076 min_offset_diff = diff;
4077
4078 disk->head_position = 0;
4079 first = 0;
4080 }
4081
4082 if (!mddev_is_dm(conf->mddev)) {
4083 int err = raid10_set_queue_limits(mddev);
4084
4085 if (err) {
4086 ret = err;
4087 goto out_free_conf;
4088 }
4089 }
4090
4091 /* need to check that every block has at least one working mirror */
4092 if (!enough(conf, -1)) {
4093 pr_err("md/raid10:%s: not enough operational mirrors.\n",
4094 mdname(mddev));
4095 goto out_free_conf;
4096 }
4097
4098 if (conf->reshape_progress != MaxSector) {
4099 /* must ensure that shape change is supported */
4100 if (conf->geo.far_copies != 1 &&
4101 conf->geo.far_offset == 0)
4102 goto out_free_conf;
4103 if (conf->prev.far_copies != 1 &&
4104 conf->prev.far_offset == 0)
4105 goto out_free_conf;
4106 }
4107
4108 mddev->degraded = 0;
4109 for (i = 0;
4110 i < conf->geo.raid_disks
4111 || i < conf->prev.raid_disks;
4112 i++) {
4113
4114 disk = conf->mirrors + i;
4115
4116 if (!disk->rdev && disk->replacement) {
4117 /* The replacement is all we have - use it */
4118 disk->rdev = disk->replacement;
4119 disk->replacement = NULL;
4120 clear_bit(Replacement, &disk->rdev->flags);
4121 }
4122
4123 if (!disk->rdev ||
4124 !test_bit(In_sync, &disk->rdev->flags)) {
4125 disk->head_position = 0;
4126 mddev->degraded++;
4127 if (disk->rdev &&
4128 disk->rdev->saved_raid_disk < 0)
4129 conf->fullsync = 1;
4130 }
4131
4132 if (disk->replacement &&
4133 !test_bit(In_sync, &disk->replacement->flags) &&
4134 disk->replacement->saved_raid_disk < 0) {
4135 conf->fullsync = 1;
4136 }
4137
4138 disk->recovery_disabled = mddev->recovery_disabled - 1;
4139 }
4140
4141 if (mddev->resync_offset != MaxSector)
4142 pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
4143 mdname(mddev));
4144 pr_info("md/raid10:%s: active with %d out of %d devices\n",
4145 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
4146 conf->geo.raid_disks);
4147 /*
4148 * Ok, everything is just fine now
4149 */
4150 mddev->dev_sectors = conf->dev_sectors;
4151 size = raid10_size(mddev, 0, 0);
4152 md_set_array_sectors(mddev, size);
4153 mddev->resync_max_sectors = size;
4154 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
4155
4156 if (md_integrity_register(mddev))
4157 goto out_free_conf;
4158
4159 if (conf->reshape_progress != MaxSector) {
4160 unsigned long before_length, after_length;
4161
4162 before_length = ((1 << conf->prev.chunk_shift) *
4163 conf->prev.far_copies);
4164 after_length = ((1 << conf->geo.chunk_shift) *
4165 conf->geo.far_copies);
4166
4167 if (max(before_length, after_length) > min_offset_diff) {
4168 /* This cannot work */
4169 pr_warn("md/raid10: offset difference not enough to continue reshape\n");
4170 goto out_free_conf;
4171 }
4172 conf->offset_diff = min_offset_diff;
4173
4174 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4175 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4176 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4177 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4178 }
4179
4180 return 0;
4181
4182out_free_conf:
4183 md_unregister_thread(mddev, &mddev->thread);
4184 raid10_free_conf(conf);
4185 mddev->private = NULL;
4186out:
4187 return ret;
4188}
4189
4190static void raid10_free(struct mddev *mddev, void *priv)
4191{
4192 raid10_free_conf(priv);
4193}
4194
4195static void raid10_quiesce(struct mddev *mddev, int quiesce)
4196{
4197 struct r10conf *conf = mddev->private;
4198
4199 if (quiesce)
4200 raise_barrier(conf, 0);
4201 else
4202 lower_barrier(conf);
4203}
4204
4205static int raid10_resize(struct mddev *mddev, sector_t sectors)
4206{
4207 /* Resize of 'far' arrays is not supported.
4208 * For 'near' and 'offset' arrays we can set the
4209 * number of sectors used to be an appropriate multiple
4210 * of the chunk size.
4211 * For 'offset', this is far_copies*chunksize.
4212 * For 'near' the multiplier is the LCM of
4213 * near_copies and raid_disks.
4214 * So if far_copies > 1 && !far_offset, fail.
4215 * Else find LCM(raid_disks, near_copy)*far_copies and
4216 * multiply by chunk_size. Then round to this number.
4217 * This is mostly done by raid10_size()
4218 */
4219 struct r10conf *conf = mddev->private;
4220 sector_t oldsize, size;
4221
4222 if (mddev->reshape_position != MaxSector)
4223 return -EBUSY;
4224
4225 if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
4226 return -EINVAL;
4227
4228 oldsize = raid10_size(mddev, 0, 0);
4229 size = raid10_size(mddev, sectors, 0);
4230 if (mddev->external_size &&
4231 mddev->array_sectors > size)
4232 return -EINVAL;
4233
4234 if (md_bitmap_enabled(mddev, false)) {
4235 int ret = mddev->bitmap_ops->resize(mddev, size, 0);
4236
4237 if (ret)
4238 return ret;
4239 }
4240
4241 md_set_array_sectors(mddev, size);
4242 if (sectors > mddev->dev_sectors &&
4243 mddev->resync_offset > oldsize) {
4244 mddev->resync_offset = oldsize;
4245 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4246 }
4247 calc_sectors(conf, sectors);
4248 mddev->dev_sectors = conf->dev_sectors;
4249 mddev->resync_max_sectors = size;
4250 return 0;
4251}
4252
4253static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
4254{
4255 struct md_rdev *rdev;
4256 struct r10conf *conf;
4257
4258 if (mddev->degraded > 0) {
4259 pr_warn("md/raid10:%s: Error: degraded raid0!\n",
4260 mdname(mddev));
4261 return ERR_PTR(-EINVAL);
4262 }
4263 sector_div(size, devs);
4264
4265 /* Set new parameters */
4266 mddev->new_level = 10;
4267 /* new layout: far_copies = 1, near_copies = 2 */
4268 mddev->new_layout = (1<<8) + 2;
4269 mddev->new_chunk_sectors = mddev->chunk_sectors;
4270 mddev->delta_disks = mddev->raid_disks;
4271 mddev->raid_disks *= 2;
4272 /* make sure it will be not marked as dirty */
4273 mddev->resync_offset = MaxSector;
4274 mddev->dev_sectors = size;
4275
4276 conf = setup_conf(mddev);
4277 if (!IS_ERR(conf)) {
4278 rdev_for_each(rdev, mddev)
4279 if (rdev->raid_disk >= 0) {
4280 rdev->new_raid_disk = rdev->raid_disk * 2;
4281 rdev->sectors = size;
4282 }
4283 }
4284
4285 return conf;
4286}
4287
4288static void *raid10_takeover(struct mddev *mddev)
4289{
4290 struct r0conf *raid0_conf;
4291
4292 /* raid10 can take over:
4293 * raid0 - providing it has only two drives
4294 */
4295 if (mddev->level == 0) {
4296 /* for raid0 takeover only one zone is supported */
4297 raid0_conf = mddev->private;
4298 if (raid0_conf->nr_strip_zones > 1) {
4299 pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
4300 mdname(mddev));
4301 return ERR_PTR(-EINVAL);
4302 }
4303 return raid10_takeover_raid0(mddev,
4304 raid0_conf->strip_zone->zone_end,
4305 raid0_conf->strip_zone->nb_dev);
4306 }
4307 return ERR_PTR(-EINVAL);
4308}
4309
4310static int raid10_check_reshape(struct mddev *mddev)
4311{
4312 /* Called when there is a request to change
4313 * - layout (to ->new_layout)
4314 * - chunk size (to ->new_chunk_sectors)
4315 * - raid_disks (by delta_disks)
4316 * or when trying to restart a reshape that was ongoing.
4317 *
4318 * We need to validate the request and possibly allocate
4319 * space if that might be an issue later.
4320 *
4321 * Currently we reject any reshape of a 'far' mode array,
4322 * allow chunk size to change if new is generally acceptable,
4323 * allow raid_disks to increase, and allow
4324 * a switch between 'near' mode and 'offset' mode.
4325 */
4326 struct r10conf *conf = mddev->private;
4327 struct geom geo;
4328
4329 if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
4330 return -EINVAL;
4331
4332 if (setup_geo(&geo, mddev, geo_start) != conf->copies)
4333 /* mustn't change number of copies */
4334 return -EINVAL;
4335 if (geo.far_copies > 1 && !geo.far_offset)
4336 /* Cannot switch to 'far' mode */
4337 return -EINVAL;
4338
4339 if (mddev->array_sectors & geo.chunk_mask)
4340 /* not factor of array size */
4341 return -EINVAL;
4342
4343 if (!enough(conf, -1))
4344 return -EINVAL;
4345
4346 kfree(conf->mirrors_new);
4347 conf->mirrors_new = NULL;
4348 if (mddev->delta_disks > 0) {
4349 /* allocate new 'mirrors' list */
4350 conf->mirrors_new =
4351 kcalloc(mddev->raid_disks + mddev->delta_disks,
4352 sizeof(struct raid10_info),
4353 GFP_KERNEL);
4354 if (!conf->mirrors_new)
4355 return -ENOMEM;
4356 }
4357 return 0;
4358}
4359
4360/*
4361 * Need to check if array has failed when deciding whether to:
4362 * - start an array
4363 * - remove non-faulty devices
4364 * - add a spare
4365 * - allow a reshape
4366 * This determination is simple when no reshape is happening.
4367 * However if there is a reshape, we need to carefully check
4368 * both the before and after sections.
4369 * This is because some failed devices may only affect one
4370 * of the two sections, and some non-in_sync devices may
4371 * be insync in the section most affected by failed devices.
4372 */
4373static int calc_degraded(struct r10conf *conf)
4374{
4375 int degraded, degraded2;
4376 int i;
4377
4378 degraded = 0;
4379 /* 'prev' section first */
4380 for (i = 0; i < conf->prev.raid_disks; i++) {
4381 struct md_rdev *rdev = conf->mirrors[i].rdev;
4382
4383 if (!rdev || test_bit(Faulty, &rdev->flags))
4384 degraded++;
4385 else if (!test_bit(In_sync, &rdev->flags))
4386 /* When we can reduce the number of devices in
4387 * an array, this might not contribute to
4388 * 'degraded'. It does now.
4389 */
4390 degraded++;
4391 }
4392 if (conf->geo.raid_disks == conf->prev.raid_disks)
4393 return degraded;
4394 degraded2 = 0;
4395 for (i = 0; i < conf->geo.raid_disks; i++) {
4396 struct md_rdev *rdev = conf->mirrors[i].rdev;
4397
4398 if (!rdev || test_bit(Faulty, &rdev->flags))
4399 degraded2++;
4400 else if (!test_bit(In_sync, &rdev->flags)) {
4401 /* If reshape is increasing the number of devices,
4402 * this section has already been recovered, so
4403 * it doesn't contribute to degraded.
4404 * else it does.
4405 */
4406 if (conf->geo.raid_disks <= conf->prev.raid_disks)
4407 degraded2++;
4408 }
4409 }
4410 if (degraded2 > degraded)
4411 return degraded2;
4412 return degraded;
4413}
4414
4415static int raid10_start_reshape(struct mddev *mddev)
4416{
4417 /* A 'reshape' has been requested. This commits
4418 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4419 * This also checks if there are enough spares and adds them
4420 * to the array.
4421 * We currently require enough spares to make the final
4422 * array non-degraded. We also require that the difference
4423 * between old and new data_offset - on each device - is
4424 * enough that we never risk over-writing.
4425 */
4426
4427 unsigned long before_length, after_length;
4428 sector_t min_offset_diff = 0;
4429 int first = 1;
4430 struct geom new;
4431 struct r10conf *conf = mddev->private;
4432 struct md_rdev *rdev;
4433 int spares = 0;
4434 int ret;
4435
4436 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4437 return -EBUSY;
4438
4439 if (setup_geo(&new, mddev, geo_start) != conf->copies)
4440 return -EINVAL;
4441
4442 before_length = ((1 << conf->prev.chunk_shift) *
4443 conf->prev.far_copies);
4444 after_length = ((1 << conf->geo.chunk_shift) *
4445 conf->geo.far_copies);
4446
4447 rdev_for_each(rdev, mddev) {
4448 if (!test_bit(In_sync, &rdev->flags)
4449 && !test_bit(Faulty, &rdev->flags))
4450 spares++;
4451 if (rdev->raid_disk >= 0) {
4452 long long diff = (rdev->new_data_offset
4453 - rdev->data_offset);
4454 if (!mddev->reshape_backwards)
4455 diff = -diff;
4456 if (diff < 0)
4457 diff = 0;
4458 if (first || diff < min_offset_diff)
4459 min_offset_diff = diff;
4460 first = 0;
4461 }
4462 }
4463
4464 if (max(before_length, after_length) > min_offset_diff)
4465 return -EINVAL;
4466
4467 if (spares < mddev->delta_disks)
4468 return -EINVAL;
4469
4470 conf->offset_diff = min_offset_diff;
4471 spin_lock_irq(&conf->device_lock);
4472 if (conf->mirrors_new) {
4473 memcpy(conf->mirrors_new, conf->mirrors,
4474 sizeof(struct raid10_info)*conf->prev.raid_disks);
4475 smp_mb();
4476 kfree(conf->mirrors_old);
4477 conf->mirrors_old = conf->mirrors;
4478 conf->mirrors = conf->mirrors_new;
4479 conf->mirrors_new = NULL;
4480 }
4481 setup_geo(&conf->geo, mddev, geo_start);
4482 smp_mb();
4483 if (mddev->reshape_backwards) {
4484 sector_t size = raid10_size(mddev, 0, 0);
4485 if (size < mddev->array_sectors) {
4486 spin_unlock_irq(&conf->device_lock);
4487 pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4488 mdname(mddev));
4489 return -EINVAL;
4490 }
4491 mddev->resync_max_sectors = size;
4492 conf->reshape_progress = size;
4493 } else
4494 conf->reshape_progress = 0;
4495 conf->reshape_safe = conf->reshape_progress;
4496 spin_unlock_irq(&conf->device_lock);
4497
4498 if (mddev->delta_disks && mddev->bitmap) {
4499 struct mdp_superblock_1 *sb = NULL;
4500 sector_t oldsize, newsize;
4501
4502 oldsize = raid10_size(mddev, 0, 0);
4503 newsize = raid10_size(mddev, 0, conf->geo.raid_disks);
4504
4505 if (!mddev_is_clustered(mddev) &&
4506 md_bitmap_enabled(mddev, false)) {
4507 ret = mddev->bitmap_ops->resize(mddev, newsize, 0);
4508 if (ret)
4509 goto abort;
4510 else
4511 goto out;
4512 }
4513
4514 rdev_for_each(rdev, mddev) {
4515 if (rdev->raid_disk > -1 &&
4516 !test_bit(Faulty, &rdev->flags))
4517 sb = page_address(rdev->sb_page);
4518 }
4519
4520 /*
4521 * some node is already performing reshape, and no need to
4522 * call bitmap_ops->resize again since it should be called when
4523 * receiving BITMAP_RESIZE msg
4524 */
4525 if ((sb && (le32_to_cpu(sb->feature_map) &
4526 MD_FEATURE_RESHAPE_ACTIVE)) || (oldsize == newsize))
4527 goto out;
4528
4529 /* cluster can't be setup without bitmap */
4530 ret = mddev->bitmap_ops->resize(mddev, newsize, 0);
4531 if (ret)
4532 goto abort;
4533
4534 ret = mddev->cluster_ops->resize_bitmaps(mddev, newsize, oldsize);
4535 if (ret) {
4536 mddev->bitmap_ops->resize(mddev, oldsize, 0);
4537 goto abort;
4538 }
4539 }
4540out:
4541 if (mddev->delta_disks > 0) {
4542 rdev_for_each(rdev, mddev)
4543 if (rdev->raid_disk < 0 &&
4544 !test_bit(Faulty, &rdev->flags)) {
4545 if (raid10_add_disk(mddev, rdev) == 0) {
4546 if (rdev->raid_disk >=
4547 conf->prev.raid_disks)
4548 set_bit(In_sync, &rdev->flags);
4549 else
4550 rdev->recovery_offset = 0;
4551
4552 /* Failure here is OK */
4553 sysfs_link_rdev(mddev, rdev);
4554 }
4555 } else if (rdev->raid_disk >= conf->prev.raid_disks
4556 && !test_bit(Faulty, &rdev->flags)) {
4557 /* This is a spare that was manually added */
4558 set_bit(In_sync, &rdev->flags);
4559 }
4560 }
4561 /* When a reshape changes the number of devices,
4562 * ->degraded is measured against the larger of the
4563 * pre and post numbers.
4564 */
4565 spin_lock_irq(&conf->device_lock);
4566 mddev->degraded = calc_degraded(conf);
4567 spin_unlock_irq(&conf->device_lock);
4568 mddev->raid_disks = conf->geo.raid_disks;
4569 mddev->reshape_position = conf->reshape_progress;
4570 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4571
4572 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4573 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4574 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4575 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4576 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4577 conf->reshape_checkpoint = jiffies;
4578 md_new_event();
4579 return 0;
4580
4581abort:
4582 mddev->recovery = 0;
4583 spin_lock_irq(&conf->device_lock);
4584 conf->geo = conf->prev;
4585 mddev->raid_disks = conf->geo.raid_disks;
4586 rdev_for_each(rdev, mddev)
4587 rdev->new_data_offset = rdev->data_offset;
4588 smp_wmb();
4589 conf->reshape_progress = MaxSector;
4590 conf->reshape_safe = MaxSector;
4591 mddev->reshape_position = MaxSector;
4592 spin_unlock_irq(&conf->device_lock);
4593 return ret;
4594}
4595
4596/* Calculate the last device-address that could contain
4597 * any block from the chunk that includes the array-address 's'
4598 * and report the next address.
4599 * i.e. the address returned will be chunk-aligned and after
4600 * any data that is in the chunk containing 's'.
4601 */
4602static sector_t last_dev_address(sector_t s, struct geom *geo)
4603{
4604 s = (s | geo->chunk_mask) + 1;
4605 s >>= geo->chunk_shift;
4606 s *= geo->near_copies;
4607 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4608 s *= geo->far_copies;
4609 s <<= geo->chunk_shift;
4610 return s;
4611}
4612
4613/* Calculate the first device-address that could contain
4614 * any block from the chunk that includes the array-address 's'.
4615 * This too will be the start of a chunk
4616 */
4617static sector_t first_dev_address(sector_t s, struct geom *geo)
4618{
4619 s >>= geo->chunk_shift;
4620 s *= geo->near_copies;
4621 sector_div(s, geo->raid_disks);
4622 s *= geo->far_copies;
4623 s <<= geo->chunk_shift;
4624 return s;
4625}
4626
4627static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4628 int *skipped)
4629{
4630 /* We simply copy at most one chunk (smallest of old and new)
4631 * at a time, possibly less if that exceeds RESYNC_PAGES,
4632 * or we hit a bad block or something.
4633 * This might mean we pause for normal IO in the middle of
4634 * a chunk, but that is not a problem as mddev->reshape_position
4635 * can record any location.
4636 *
4637 * If we will want to write to a location that isn't
4638 * yet recorded as 'safe' (i.e. in metadata on disk) then
4639 * we need to flush all reshape requests and update the metadata.
4640 *
4641 * When reshaping forwards (e.g. to more devices), we interpret
4642 * 'safe' as the earliest block which might not have been copied
4643 * down yet. We divide this by previous stripe size and multiply
4644 * by previous stripe length to get lowest device offset that we
4645 * cannot write to yet.
4646 * We interpret 'sector_nr' as an address that we want to write to.
4647 * From this we use last_device_address() to find where we might
4648 * write to, and first_device_address on the 'safe' position.
4649 * If this 'next' write position is after the 'safe' position,
4650 * we must update the metadata to increase the 'safe' position.
4651 *
4652 * When reshaping backwards, we round in the opposite direction
4653 * and perform the reverse test: next write position must not be
4654 * less than current safe position.
4655 *
4656 * In all this the minimum difference in data offsets
4657 * (conf->offset_diff - always positive) allows a bit of slack,
4658 * so next can be after 'safe', but not by more than offset_diff
4659 *
4660 * We need to prepare all the bios here before we start any IO
4661 * to ensure the size we choose is acceptable to all devices.
4662 * The means one for each copy for write-out and an extra one for
4663 * read-in.
4664 * We store the read-in bio in ->master_bio and the others in
4665 * ->devs[x].bio and ->devs[x].repl_bio.
4666 */
4667 struct r10conf *conf = mddev->private;
4668 struct r10bio *r10_bio;
4669 sector_t next, safe, last;
4670 int max_sectors;
4671 int nr_sectors;
4672 int s;
4673 struct md_rdev *rdev;
4674 int need_flush = 0;
4675 struct bio *blist;
4676 struct bio *bio, *read_bio;
4677 int sectors_done = 0;
4678 struct page **pages;
4679
4680 if (sector_nr == 0) {
4681 /* If restarting in the middle, skip the initial sectors */
4682 if (mddev->reshape_backwards &&
4683 conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4684 sector_nr = (raid10_size(mddev, 0, 0)
4685 - conf->reshape_progress);
4686 } else if (!mddev->reshape_backwards &&
4687 conf->reshape_progress > 0)
4688 sector_nr = conf->reshape_progress;
4689 if (sector_nr) {
4690 mddev->curr_resync_completed = sector_nr;
4691 sysfs_notify_dirent_safe(mddev->sysfs_completed);
4692 *skipped = 1;
4693 return sector_nr;
4694 }
4695 }
4696
4697 /* We don't use sector_nr to track where we are up to
4698 * as that doesn't work well for ->reshape_backwards.
4699 * So just use ->reshape_progress.
4700 */
4701 if (mddev->reshape_backwards) {
4702 /* 'next' is the earliest device address that we might
4703 * write to for this chunk in the new layout
4704 */
4705 next = first_dev_address(conf->reshape_progress - 1,
4706 &conf->geo);
4707
4708 /* 'safe' is the last device address that we might read from
4709 * in the old layout after a restart
4710 */
4711 safe = last_dev_address(conf->reshape_safe - 1,
4712 &conf->prev);
4713
4714 if (next + conf->offset_diff < safe)
4715 need_flush = 1;
4716
4717 last = conf->reshape_progress - 1;
4718 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4719 & conf->prev.chunk_mask);
4720 if (sector_nr + RESYNC_SECTORS < last)
4721 sector_nr = last + 1 - RESYNC_SECTORS;
4722 } else {
4723 /* 'next' is after the last device address that we
4724 * might write to for this chunk in the new layout
4725 */
4726 next = last_dev_address(conf->reshape_progress, &conf->geo);
4727
4728 /* 'safe' is the earliest device address that we might
4729 * read from in the old layout after a restart
4730 */
4731 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4732
4733 /* Need to update metadata if 'next' might be beyond 'safe'
4734 * as that would possibly corrupt data
4735 */
4736 if (next > safe + conf->offset_diff)
4737 need_flush = 1;
4738
4739 sector_nr = conf->reshape_progress;
4740 last = sector_nr | (conf->geo.chunk_mask
4741 & conf->prev.chunk_mask);
4742
4743 if (sector_nr + RESYNC_SECTORS <= last)
4744 last = sector_nr + RESYNC_SECTORS - 1;
4745 }
4746
4747 if (need_flush ||
4748 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4749 /* Need to update reshape_position in metadata */
4750 wait_barrier(conf, false);
4751 mddev->reshape_position = conf->reshape_progress;
4752 if (mddev->reshape_backwards)
4753 mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4754 - conf->reshape_progress;
4755 else
4756 mddev->curr_resync_completed = conf->reshape_progress;
4757 conf->reshape_checkpoint = jiffies;
4758 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4759 md_wakeup_thread(mddev->thread);
4760 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
4761 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4762 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4763 allow_barrier(conf);
4764 return sectors_done;
4765 }
4766 conf->reshape_safe = mddev->reshape_position;
4767 allow_barrier(conf);
4768 }
4769
4770 raise_barrier(conf, 0);
4771read_more:
4772 /* Now schedule reads for blocks from sector_nr to last */
4773 r10_bio = raid10_alloc_init_r10buf(conf);
4774 r10_bio->state = 0;
4775 raise_barrier(conf, 1);
4776 atomic_set(&r10_bio->remaining, 0);
4777 r10_bio->mddev = mddev;
4778 r10_bio->sector = sector_nr;
4779 set_bit(R10BIO_IsReshape, &r10_bio->state);
4780 r10_bio->sectors = last - sector_nr + 1;
4781 rdev = read_balance(conf, r10_bio, &max_sectors);
4782 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4783
4784 if (!rdev) {
4785 /* Cannot read from here, so need to record bad blocks
4786 * on all the target devices.
4787 */
4788 // FIXME
4789 mempool_free(r10_bio, &conf->r10buf_pool);
4790 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4791 return sectors_done;
4792 }
4793
4794 read_bio = bio_alloc_bioset(rdev->bdev, RESYNC_PAGES, REQ_OP_READ,
4795 GFP_KERNEL, &mddev->bio_set);
4796 read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4797 + rdev->data_offset);
4798 read_bio->bi_private = r10_bio;
4799 read_bio->bi_end_io = end_reshape_read;
4800 r10_bio->master_bio = read_bio;
4801 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4802
4803 /*
4804 * Broadcast RESYNC message to other nodes, so all nodes would not
4805 * write to the region to avoid conflict.
4806 */
4807 if (mddev_is_clustered(mddev) && conf->cluster_sync_high <= sector_nr) {
4808 struct mdp_superblock_1 *sb = NULL;
4809 int sb_reshape_pos = 0;
4810
4811 conf->cluster_sync_low = sector_nr;
4812 conf->cluster_sync_high = sector_nr + CLUSTER_RESYNC_WINDOW_SECTORS;
4813 sb = page_address(rdev->sb_page);
4814 if (sb) {
4815 sb_reshape_pos = le64_to_cpu(sb->reshape_position);
4816 /*
4817 * Set cluster_sync_low again if next address for array
4818 * reshape is less than cluster_sync_low. Since we can't
4819 * update cluster_sync_low until it has finished reshape.
4820 */
4821 if (sb_reshape_pos < conf->cluster_sync_low)
4822 conf->cluster_sync_low = sb_reshape_pos;
4823 }
4824
4825 mddev->cluster_ops->resync_info_update(mddev, conf->cluster_sync_low,
4826 conf->cluster_sync_high);
4827 }
4828
4829 /* Now find the locations in the new layout */
4830 __raid10_find_phys(&conf->geo, r10_bio);
4831
4832 blist = read_bio;
4833 read_bio->bi_next = NULL;
4834
4835 for (s = 0; s < conf->copies*2; s++) {
4836 struct bio *b;
4837 int d = r10_bio->devs[s/2].devnum;
4838 struct md_rdev *rdev2;
4839 if (s&1) {
4840 rdev2 = conf->mirrors[d].replacement;
4841 b = r10_bio->devs[s/2].repl_bio;
4842 } else {
4843 rdev2 = conf->mirrors[d].rdev;
4844 b = r10_bio->devs[s/2].bio;
4845 }
4846 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4847 continue;
4848
4849 bio_set_dev(b, rdev2->bdev);
4850 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4851 rdev2->new_data_offset;
4852 b->bi_end_io = end_reshape_write;
4853 b->bi_opf = REQ_OP_WRITE;
4854 b->bi_next = blist;
4855 blist = b;
4856 }
4857
4858 /* Now add as many pages as possible to all of these bios. */
4859
4860 nr_sectors = 0;
4861 pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4862 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4863 struct page *page = pages[s / (PAGE_SIZE >> 9)];
4864 int len = (max_sectors - s) << 9;
4865 if (len > PAGE_SIZE)
4866 len = PAGE_SIZE;
4867 for (bio = blist; bio ; bio = bio->bi_next) {
4868 if (WARN_ON(!bio_add_page(bio, page, len, 0))) {
4869 bio->bi_status = BLK_STS_RESOURCE;
4870 bio_endio(bio);
4871 return sectors_done;
4872 }
4873 }
4874 sector_nr += len >> 9;
4875 nr_sectors += len >> 9;
4876 }
4877 r10_bio->sectors = nr_sectors;
4878
4879 /* Now submit the read */
4880 atomic_inc(&r10_bio->remaining);
4881 read_bio->bi_next = NULL;
4882 submit_bio_noacct(read_bio);
4883 sectors_done += nr_sectors;
4884 if (sector_nr <= last)
4885 goto read_more;
4886
4887 lower_barrier(conf);
4888
4889 /* Now that we have done the whole section we can
4890 * update reshape_progress
4891 */
4892 if (mddev->reshape_backwards)
4893 conf->reshape_progress -= sectors_done;
4894 else
4895 conf->reshape_progress += sectors_done;
4896
4897 return sectors_done;
4898}
4899
4900static void end_reshape_request(struct r10bio *r10_bio);
4901static int handle_reshape_read_error(struct mddev *mddev,
4902 struct r10bio *r10_bio);
4903static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4904{
4905 /* Reshape read completed. Hopefully we have a block
4906 * to write out.
4907 * If we got a read error then we do sync 1-page reads from
4908 * elsewhere until we find the data - or give up.
4909 */
4910 struct r10conf *conf = mddev->private;
4911 int s;
4912
4913 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4914 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4915 /* Reshape has been aborted */
4916 md_done_sync(mddev, r10_bio->sectors, 0);
4917 return;
4918 }
4919
4920 /* We definitely have the data in the pages, schedule the
4921 * writes.
4922 */
4923 atomic_set(&r10_bio->remaining, 1);
4924 for (s = 0; s < conf->copies*2; s++) {
4925 struct bio *b;
4926 int d = r10_bio->devs[s/2].devnum;
4927 struct md_rdev *rdev;
4928 if (s&1) {
4929 rdev = conf->mirrors[d].replacement;
4930 b = r10_bio->devs[s/2].repl_bio;
4931 } else {
4932 rdev = conf->mirrors[d].rdev;
4933 b = r10_bio->devs[s/2].bio;
4934 }
4935 if (!rdev || test_bit(Faulty, &rdev->flags))
4936 continue;
4937
4938 atomic_inc(&rdev->nr_pending);
4939 atomic_inc(&r10_bio->remaining);
4940 b->bi_next = NULL;
4941 submit_bio_noacct(b);
4942 }
4943 end_reshape_request(r10_bio);
4944}
4945
4946static void end_reshape(struct r10conf *conf)
4947{
4948 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4949 return;
4950
4951 spin_lock_irq(&conf->device_lock);
4952 conf->prev = conf->geo;
4953 md_finish_reshape(conf->mddev);
4954 smp_wmb();
4955 conf->reshape_progress = MaxSector;
4956 conf->reshape_safe = MaxSector;
4957 spin_unlock_irq(&conf->device_lock);
4958
4959 mddev_update_io_opt(conf->mddev, raid10_nr_stripes(conf));
4960 conf->fullsync = 0;
4961}
4962
4963static void raid10_update_reshape_pos(struct mddev *mddev)
4964{
4965 struct r10conf *conf = mddev->private;
4966 sector_t lo, hi;
4967
4968 mddev->cluster_ops->resync_info_get(mddev, &lo, &hi);
4969 if (((mddev->reshape_position <= hi) && (mddev->reshape_position >= lo))
4970 || mddev->reshape_position == MaxSector)
4971 conf->reshape_progress = mddev->reshape_position;
4972 else
4973 WARN_ON_ONCE(1);
4974}
4975
4976static int handle_reshape_read_error(struct mddev *mddev,
4977 struct r10bio *r10_bio)
4978{
4979 /* Use sync reads to get the blocks from somewhere else */
4980 int sectors = r10_bio->sectors;
4981 struct r10conf *conf = mddev->private;
4982 struct r10bio *r10b;
4983 int slot = 0;
4984 int idx = 0;
4985 struct page **pages;
4986
4987 r10b = kmalloc(struct_size(r10b, devs, conf->copies), GFP_NOIO);
4988 if (!r10b) {
4989 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4990 return -ENOMEM;
4991 }
4992
4993 /* reshape IOs share pages from .devs[0].bio */
4994 pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4995
4996 r10b->sector = r10_bio->sector;
4997 __raid10_find_phys(&conf->prev, r10b);
4998
4999 while (sectors) {
5000 int s = sectors;
5001 int success = 0;
5002 int first_slot = slot;
5003
5004 if (s > (PAGE_SIZE >> 9))
5005 s = PAGE_SIZE >> 9;
5006
5007 while (!success) {
5008 int d = r10b->devs[slot].devnum;
5009 struct md_rdev *rdev = conf->mirrors[d].rdev;
5010 sector_t addr;
5011 if (rdev == NULL ||
5012 test_bit(Faulty, &rdev->flags) ||
5013 !test_bit(In_sync, &rdev->flags))
5014 goto failed;
5015
5016 addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
5017 atomic_inc(&rdev->nr_pending);
5018 success = sync_page_io(rdev,
5019 addr,
5020 s << 9,
5021 pages[idx],
5022 REQ_OP_READ, false);
5023 rdev_dec_pending(rdev, mddev);
5024 if (success)
5025 break;
5026 failed:
5027 slot++;
5028 if (slot >= conf->copies)
5029 slot = 0;
5030 if (slot == first_slot)
5031 break;
5032 }
5033 if (!success) {
5034 /* couldn't read this block, must give up */
5035 set_bit(MD_RECOVERY_INTR,
5036 &mddev->recovery);
5037 kfree(r10b);
5038 return -EIO;
5039 }
5040 sectors -= s;
5041 idx++;
5042 }
5043 kfree(r10b);
5044 return 0;
5045}
5046
5047static void end_reshape_write(struct bio *bio)
5048{
5049 struct r10bio *r10_bio = get_resync_r10bio(bio);
5050 struct mddev *mddev = r10_bio->mddev;
5051 struct r10conf *conf = mddev->private;
5052 int d;
5053 int slot;
5054 int repl;
5055 struct md_rdev *rdev = NULL;
5056
5057 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
5058 rdev = repl ? conf->mirrors[d].replacement :
5059 conf->mirrors[d].rdev;
5060
5061 if (bio->bi_status) {
5062 /* FIXME should record badblock */
5063 md_error(mddev, rdev);
5064 }
5065
5066 rdev_dec_pending(rdev, mddev);
5067 end_reshape_request(r10_bio);
5068}
5069
5070static void end_reshape_request(struct r10bio *r10_bio)
5071{
5072 if (!atomic_dec_and_test(&r10_bio->remaining))
5073 return;
5074 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
5075 bio_put(r10_bio->master_bio);
5076 put_buf(r10_bio);
5077}
5078
5079static void raid10_finish_reshape(struct mddev *mddev)
5080{
5081 struct r10conf *conf = mddev->private;
5082
5083 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5084 return;
5085
5086 if (mddev->delta_disks > 0) {
5087 if (mddev->resync_offset > mddev->resync_max_sectors) {
5088 mddev->resync_offset = mddev->resync_max_sectors;
5089 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5090 }
5091 mddev->resync_max_sectors = mddev->array_sectors;
5092 } else {
5093 int d;
5094 for (d = conf->geo.raid_disks ;
5095 d < conf->geo.raid_disks - mddev->delta_disks;
5096 d++) {
5097 struct md_rdev *rdev = conf->mirrors[d].rdev;
5098 if (rdev)
5099 clear_bit(In_sync, &rdev->flags);
5100 rdev = conf->mirrors[d].replacement;
5101 if (rdev)
5102 clear_bit(In_sync, &rdev->flags);
5103 }
5104 }
5105 mddev->layout = mddev->new_layout;
5106 mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
5107 mddev->reshape_position = MaxSector;
5108 mddev->delta_disks = 0;
5109 mddev->reshape_backwards = 0;
5110}
5111
5112static struct md_personality raid10_personality =
5113{
5114 .head = {
5115 .type = MD_PERSONALITY,
5116 .id = ID_RAID10,
5117 .name = "raid10",
5118 .owner = THIS_MODULE,
5119 },
5120
5121 .make_request = raid10_make_request,
5122 .run = raid10_run,
5123 .free = raid10_free,
5124 .status = raid10_status,
5125 .error_handler = raid10_error,
5126 .hot_add_disk = raid10_add_disk,
5127 .hot_remove_disk= raid10_remove_disk,
5128 .spare_active = raid10_spare_active,
5129 .sync_request = raid10_sync_request,
5130 .quiesce = raid10_quiesce,
5131 .size = raid10_size,
5132 .resize = raid10_resize,
5133 .takeover = raid10_takeover,
5134 .check_reshape = raid10_check_reshape,
5135 .start_reshape = raid10_start_reshape,
5136 .finish_reshape = raid10_finish_reshape,
5137 .update_reshape_pos = raid10_update_reshape_pos,
5138};
5139
5140static int __init raid10_init(void)
5141{
5142 return register_md_submodule(&raid10_personality.head);
5143}
5144
5145static void __exit raid10_exit(void)
5146{
5147 unregister_md_submodule(&raid10_personality.head);
5148}
5149
5150module_init(raid10_init);
5151module_exit(raid10_exit);
5152MODULE_LICENSE("GPL");
5153MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
5154MODULE_ALIAS("md-personality-9"); /* RAID10 */
5155MODULE_ALIAS("md-raid10");
5156MODULE_ALIAS("md-level-10");