at master 2968 lines 75 kB view raw
1// SPDX-License-Identifier: GPL-2.0 2/* 3 * bcache setup/teardown code, and some metadata io - read a superblock and 4 * figure out what to do with it. 5 * 6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com> 7 * Copyright 2012 Google, Inc. 8 */ 9 10#include "bcache.h" 11#include "btree.h" 12#include "debug.h" 13#include "extents.h" 14#include "request.h" 15#include "writeback.h" 16#include "features.h" 17 18#include <linux/blkdev.h> 19#include <linux/pagemap.h> 20#include <linux/debugfs.h> 21#include <linux/idr.h> 22#include <linux/kthread.h> 23#include <linux/workqueue.h> 24#include <linux/module.h> 25#include <linux/random.h> 26#include <linux/reboot.h> 27#include <linux/sysfs.h> 28 29unsigned int bch_cutoff_writeback; 30unsigned int bch_cutoff_writeback_sync; 31 32static const char bcache_magic[] = { 33 0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca, 34 0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81 35}; 36 37static const char invalid_uuid[] = { 38 0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78, 39 0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99 40}; 41 42static struct kobject *bcache_kobj; 43struct mutex bch_register_lock; 44bool bcache_is_reboot; 45LIST_HEAD(bch_cache_sets); 46static LIST_HEAD(uncached_devices); 47 48static int bcache_major; 49static DEFINE_IDA(bcache_device_idx); 50static wait_queue_head_t unregister_wait; 51struct workqueue_struct *bcache_wq; 52struct workqueue_struct *bch_flush_wq; 53struct workqueue_struct *bch_journal_wq; 54 55 56#define BTREE_MAX_PAGES (256 * 1024 / PAGE_SIZE) 57/* limitation of partitions number on single bcache device */ 58#define BCACHE_MINORS 128 59/* limitation of bcache devices number on single system */ 60#define BCACHE_DEVICE_IDX_MAX ((1U << MINORBITS)/BCACHE_MINORS) 61 62/* Superblock */ 63 64static unsigned int get_bucket_size(struct cache_sb *sb, struct cache_sb_disk *s) 65{ 66 unsigned int bucket_size = le16_to_cpu(s->bucket_size); 67 68 if (sb->version >= BCACHE_SB_VERSION_CDEV_WITH_FEATURES) { 69 if (bch_has_feature_large_bucket(sb)) { 70 unsigned int max, order; 71 72 max = sizeof(unsigned int) * BITS_PER_BYTE - 1; 73 order = le16_to_cpu(s->bucket_size); 74 /* 75 * bcache tool will make sure the overflow won't 76 * happen, an error message here is enough. 77 */ 78 if (order > max) 79 pr_err("Bucket size (1 << %u) overflows\n", 80 order); 81 bucket_size = 1 << order; 82 } else if (bch_has_feature_obso_large_bucket(sb)) { 83 bucket_size += 84 le16_to_cpu(s->obso_bucket_size_hi) << 16; 85 } 86 } 87 88 return bucket_size; 89} 90 91static const char *read_super_common(struct cache_sb *sb, struct block_device *bdev, 92 struct cache_sb_disk *s) 93{ 94 const char *err; 95 unsigned int i; 96 97 sb->first_bucket= le16_to_cpu(s->first_bucket); 98 sb->nbuckets = le64_to_cpu(s->nbuckets); 99 sb->bucket_size = get_bucket_size(sb, s); 100 101 sb->nr_in_set = le16_to_cpu(s->nr_in_set); 102 sb->nr_this_dev = le16_to_cpu(s->nr_this_dev); 103 104 err = "Too many journal buckets"; 105 if (sb->keys > SB_JOURNAL_BUCKETS) 106 goto err; 107 108 err = "Too many buckets"; 109 if (sb->nbuckets > LONG_MAX) 110 goto err; 111 112 err = "Not enough buckets"; 113 if (sb->nbuckets < 1 << 7) 114 goto err; 115 116 err = "Bad block size (not power of 2)"; 117 if (!is_power_of_2(sb->block_size)) 118 goto err; 119 120 err = "Bad block size (larger than page size)"; 121 if (sb->block_size > PAGE_SECTORS) 122 goto err; 123 124 err = "Bad bucket size (not power of 2)"; 125 if (!is_power_of_2(sb->bucket_size)) 126 goto err; 127 128 err = "Bad bucket size (smaller than page size)"; 129 if (sb->bucket_size < PAGE_SECTORS) 130 goto err; 131 132 err = "Invalid superblock: device too small"; 133 if (get_capacity(bdev->bd_disk) < 134 sb->bucket_size * sb->nbuckets) 135 goto err; 136 137 err = "Bad UUID"; 138 if (bch_is_zero(sb->set_uuid, 16)) 139 goto err; 140 141 err = "Bad cache device number in set"; 142 if (!sb->nr_in_set || 143 sb->nr_in_set <= sb->nr_this_dev || 144 sb->nr_in_set > MAX_CACHES_PER_SET) 145 goto err; 146 147 err = "Journal buckets not sequential"; 148 for (i = 0; i < sb->keys; i++) 149 if (sb->d[i] != sb->first_bucket + i) 150 goto err; 151 152 err = "Too many journal buckets"; 153 if (sb->first_bucket + sb->keys > sb->nbuckets) 154 goto err; 155 156 err = "Invalid superblock: first bucket comes before end of super"; 157 if (sb->first_bucket * sb->bucket_size < 16) 158 goto err; 159 160 err = NULL; 161err: 162 return err; 163} 164 165 166static const char *read_super(struct cache_sb *sb, struct block_device *bdev, 167 struct cache_sb_disk **res) 168{ 169 const char *err; 170 struct cache_sb_disk *s; 171 struct folio *folio; 172 unsigned int i; 173 174 folio = mapping_read_folio_gfp(bdev->bd_mapping, 175 SB_OFFSET >> PAGE_SHIFT, GFP_KERNEL); 176 if (IS_ERR(folio)) 177 return "IO error"; 178 s = folio_address(folio) + offset_in_folio(folio, SB_OFFSET); 179 180 sb->offset = le64_to_cpu(s->offset); 181 sb->version = le64_to_cpu(s->version); 182 183 memcpy(sb->magic, s->magic, 16); 184 memcpy(sb->uuid, s->uuid, 16); 185 memcpy(sb->set_uuid, s->set_uuid, 16); 186 memcpy(sb->label, s->label, SB_LABEL_SIZE); 187 188 sb->flags = le64_to_cpu(s->flags); 189 sb->seq = le64_to_cpu(s->seq); 190 sb->last_mount = le32_to_cpu(s->last_mount); 191 sb->keys = le16_to_cpu(s->keys); 192 193 for (i = 0; i < SB_JOURNAL_BUCKETS; i++) 194 sb->d[i] = le64_to_cpu(s->d[i]); 195 196 pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u\n", 197 sb->version, sb->flags, sb->seq, sb->keys); 198 199 err = "Not a bcache superblock (bad offset)"; 200 if (sb->offset != SB_SECTOR) 201 goto err; 202 203 err = "Not a bcache superblock (bad magic)"; 204 if (memcmp(sb->magic, bcache_magic, 16)) 205 goto err; 206 207 err = "Bad checksum"; 208 if (s->csum != csum_set(s)) 209 goto err; 210 211 err = "Bad UUID"; 212 if (bch_is_zero(sb->uuid, 16)) 213 goto err; 214 215 sb->block_size = le16_to_cpu(s->block_size); 216 217 err = "Superblock block size smaller than device block size"; 218 if (sb->block_size << 9 < bdev_logical_block_size(bdev)) 219 goto err; 220 221 switch (sb->version) { 222 case BCACHE_SB_VERSION_BDEV: 223 sb->data_offset = BDEV_DATA_START_DEFAULT; 224 break; 225 case BCACHE_SB_VERSION_BDEV_WITH_OFFSET: 226 case BCACHE_SB_VERSION_BDEV_WITH_FEATURES: 227 sb->data_offset = le64_to_cpu(s->data_offset); 228 229 err = "Bad data offset"; 230 if (sb->data_offset < BDEV_DATA_START_DEFAULT) 231 goto err; 232 233 break; 234 case BCACHE_SB_VERSION_CDEV: 235 case BCACHE_SB_VERSION_CDEV_WITH_UUID: 236 err = read_super_common(sb, bdev, s); 237 if (err) 238 goto err; 239 break; 240 case BCACHE_SB_VERSION_CDEV_WITH_FEATURES: 241 /* 242 * Feature bits are needed in read_super_common(), 243 * convert them firstly. 244 */ 245 sb->feature_compat = le64_to_cpu(s->feature_compat); 246 sb->feature_incompat = le64_to_cpu(s->feature_incompat); 247 sb->feature_ro_compat = le64_to_cpu(s->feature_ro_compat); 248 249 /* Check incompatible features */ 250 err = "Unsupported compatible feature found"; 251 if (bch_has_unknown_compat_features(sb)) 252 goto err; 253 254 err = "Unsupported read-only compatible feature found"; 255 if (bch_has_unknown_ro_compat_features(sb)) 256 goto err; 257 258 err = "Unsupported incompatible feature found"; 259 if (bch_has_unknown_incompat_features(sb)) 260 goto err; 261 262 err = read_super_common(sb, bdev, s); 263 if (err) 264 goto err; 265 break; 266 default: 267 err = "Unsupported superblock version"; 268 goto err; 269 } 270 271 sb->last_mount = (u32)ktime_get_real_seconds(); 272 *res = s; 273 return NULL; 274err: 275 folio_put(folio); 276 return err; 277} 278 279static void write_bdev_super_endio(struct bio *bio) 280{ 281 struct cached_dev *dc = bio->bi_private; 282 283 if (bio->bi_status) 284 bch_count_backing_io_errors(dc, bio); 285 286 closure_put(&dc->sb_write); 287} 288 289static void __write_super(struct cache_sb *sb, struct cache_sb_disk *out, 290 struct bio *bio) 291{ 292 unsigned int i; 293 294 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META; 295 bio->bi_iter.bi_sector = SB_SECTOR; 296 bio_add_virt_nofail(bio, out, SB_SIZE); 297 298 out->offset = cpu_to_le64(sb->offset); 299 300 memcpy(out->uuid, sb->uuid, 16); 301 memcpy(out->set_uuid, sb->set_uuid, 16); 302 memcpy(out->label, sb->label, SB_LABEL_SIZE); 303 304 out->flags = cpu_to_le64(sb->flags); 305 out->seq = cpu_to_le64(sb->seq); 306 307 out->last_mount = cpu_to_le32(sb->last_mount); 308 out->first_bucket = cpu_to_le16(sb->first_bucket); 309 out->keys = cpu_to_le16(sb->keys); 310 311 for (i = 0; i < sb->keys; i++) 312 out->d[i] = cpu_to_le64(sb->d[i]); 313 314 if (sb->version >= BCACHE_SB_VERSION_CDEV_WITH_FEATURES) { 315 out->feature_compat = cpu_to_le64(sb->feature_compat); 316 out->feature_incompat = cpu_to_le64(sb->feature_incompat); 317 out->feature_ro_compat = cpu_to_le64(sb->feature_ro_compat); 318 } 319 320 out->version = cpu_to_le64(sb->version); 321 out->csum = csum_set(out); 322 323 pr_debug("ver %llu, flags %llu, seq %llu\n", 324 sb->version, sb->flags, sb->seq); 325 326 submit_bio(bio); 327} 328 329static CLOSURE_CALLBACK(bch_write_bdev_super_unlock) 330{ 331 closure_type(dc, struct cached_dev, sb_write); 332 333 up(&dc->sb_write_mutex); 334} 335 336void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent) 337{ 338 struct closure *cl = &dc->sb_write; 339 struct bio *bio = &dc->sb_bio; 340 341 down(&dc->sb_write_mutex); 342 closure_init(cl, parent); 343 344 bio_init(bio, dc->bdev, dc->sb_bv, 1, 0); 345 bio->bi_end_io = write_bdev_super_endio; 346 bio->bi_private = dc; 347 348 closure_get(cl); 349 /* I/O request sent to backing device */ 350 __write_super(&dc->sb, dc->sb_disk, bio); 351 352 closure_return_with_destructor(cl, bch_write_bdev_super_unlock); 353} 354 355static void write_super_endio(struct bio *bio) 356{ 357 struct cache *ca = bio->bi_private; 358 359 /* is_read = 0 */ 360 bch_count_io_errors(ca, bio->bi_status, 0, 361 "writing superblock"); 362 closure_put(&ca->set->sb_write); 363} 364 365static CLOSURE_CALLBACK(bcache_write_super_unlock) 366{ 367 closure_type(c, struct cache_set, sb_write); 368 369 up(&c->sb_write_mutex); 370} 371 372void bcache_write_super(struct cache_set *c) 373{ 374 struct closure *cl = &c->sb_write; 375 struct cache *ca = c->cache; 376 struct bio *bio = &ca->sb_bio; 377 unsigned int version = BCACHE_SB_VERSION_CDEV_WITH_UUID; 378 379 down(&c->sb_write_mutex); 380 closure_init(cl, &c->cl); 381 382 ca->sb.seq++; 383 384 if (ca->sb.version < version) 385 ca->sb.version = version; 386 387 bio_init(bio, ca->bdev, ca->sb_bv, 1, 0); 388 bio->bi_end_io = write_super_endio; 389 bio->bi_private = ca; 390 391 closure_get(cl); 392 __write_super(&ca->sb, ca->sb_disk, bio); 393 394 closure_return_with_destructor(cl, bcache_write_super_unlock); 395} 396 397/* UUID io */ 398 399static void uuid_endio(struct bio *bio) 400{ 401 struct closure *cl = bio->bi_private; 402 struct cache_set *c = container_of(cl, struct cache_set, uuid_write); 403 404 cache_set_err_on(bio->bi_status, c, "accessing uuids"); 405 bch_bbio_free(bio, c); 406 closure_put(cl); 407} 408 409static CLOSURE_CALLBACK(uuid_io_unlock) 410{ 411 closure_type(c, struct cache_set, uuid_write); 412 413 up(&c->uuid_write_mutex); 414} 415 416static void uuid_io(struct cache_set *c, blk_opf_t opf, struct bkey *k, 417 struct closure *parent) 418{ 419 struct closure *cl = &c->uuid_write; 420 struct uuid_entry *u; 421 unsigned int i; 422 char buf[80]; 423 424 BUG_ON(!parent); 425 down(&c->uuid_write_mutex); 426 closure_init(cl, parent); 427 428 for (i = 0; i < KEY_PTRS(k); i++) { 429 struct bio *bio = bch_bbio_alloc(c); 430 431 bio->bi_opf = opf | REQ_SYNC | REQ_META; 432 bio->bi_iter.bi_size = KEY_SIZE(k) << 9; 433 434 bio->bi_end_io = uuid_endio; 435 bio->bi_private = cl; 436 bch_bio_map(bio, c->uuids); 437 438 bch_submit_bbio(bio, c, k, i); 439 440 if ((opf & REQ_OP_MASK) != REQ_OP_WRITE) 441 break; 442 } 443 444 bch_extent_to_text(buf, sizeof(buf), k); 445 pr_debug("%s UUIDs at %s\n", (opf & REQ_OP_MASK) == REQ_OP_WRITE ? 446 "wrote" : "read", buf); 447 448 for (u = c->uuids; u < c->uuids + c->nr_uuids; u++) 449 if (!bch_is_zero(u->uuid, 16)) 450 pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u\n", 451 u - c->uuids, u->uuid, u->label, 452 u->first_reg, u->last_reg, u->invalidated); 453 454 closure_return_with_destructor(cl, uuid_io_unlock); 455} 456 457static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl) 458{ 459 struct bkey *k = &j->uuid_bucket; 460 461 if (__bch_btree_ptr_invalid(c, k)) 462 return "bad uuid pointer"; 463 464 bkey_copy(&c->uuid_bucket, k); 465 uuid_io(c, REQ_OP_READ, k, cl); 466 467 if (j->version < BCACHE_JSET_VERSION_UUIDv1) { 468 struct uuid_entry_v0 *u0 = (void *) c->uuids; 469 struct uuid_entry *u1 = (void *) c->uuids; 470 int i; 471 472 closure_sync(cl); 473 474 /* 475 * Since the new uuid entry is bigger than the old, we have to 476 * convert starting at the highest memory address and work down 477 * in order to do it in place 478 */ 479 480 for (i = c->nr_uuids - 1; 481 i >= 0; 482 --i) { 483 memcpy(u1[i].uuid, u0[i].uuid, 16); 484 memcpy(u1[i].label, u0[i].label, 32); 485 486 u1[i].first_reg = u0[i].first_reg; 487 u1[i].last_reg = u0[i].last_reg; 488 u1[i].invalidated = u0[i].invalidated; 489 490 u1[i].flags = 0; 491 u1[i].sectors = 0; 492 } 493 } 494 495 return NULL; 496} 497 498static int __uuid_write(struct cache_set *c) 499{ 500 BKEY_PADDED(key) k; 501 struct closure cl; 502 struct cache *ca = c->cache; 503 unsigned int size; 504 505 closure_init_stack(&cl); 506 lockdep_assert_held(&bch_register_lock); 507 508 if (bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, true)) 509 return 1; 510 511 size = meta_bucket_pages(&ca->sb) * PAGE_SECTORS; 512 SET_KEY_SIZE(&k.key, size); 513 uuid_io(c, REQ_OP_WRITE, &k.key, &cl); 514 closure_sync(&cl); 515 516 /* Only one bucket used for uuid write */ 517 atomic_long_add(ca->sb.bucket_size, &ca->meta_sectors_written); 518 519 bkey_copy(&c->uuid_bucket, &k.key); 520 bkey_put(c, &k.key); 521 return 0; 522} 523 524int bch_uuid_write(struct cache_set *c) 525{ 526 int ret = __uuid_write(c); 527 528 if (!ret) 529 bch_journal_meta(c, NULL); 530 531 return ret; 532} 533 534static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid) 535{ 536 struct uuid_entry *u; 537 538 for (u = c->uuids; 539 u < c->uuids + c->nr_uuids; u++) 540 if (!memcmp(u->uuid, uuid, 16)) 541 return u; 542 543 return NULL; 544} 545 546static struct uuid_entry *uuid_find_empty(struct cache_set *c) 547{ 548 static const char zero_uuid[16] __nonstring = 549 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; 550 551 return uuid_find(c, zero_uuid); 552} 553 554/* 555 * Bucket priorities/gens: 556 * 557 * For each bucket, we store on disk its 558 * 8 bit gen 559 * 16 bit priority 560 * 561 * See alloc.c for an explanation of the gen. The priority is used to implement 562 * lru (and in the future other) cache replacement policies; for most purposes 563 * it's just an opaque integer. 564 * 565 * The gens and the priorities don't have a whole lot to do with each other, and 566 * it's actually the gens that must be written out at specific times - it's no 567 * big deal if the priorities don't get written, if we lose them we just reuse 568 * buckets in suboptimal order. 569 * 570 * On disk they're stored in a packed array, and in as many buckets are required 571 * to fit them all. The buckets we use to store them form a list; the journal 572 * header points to the first bucket, the first bucket points to the second 573 * bucket, et cetera. 574 * 575 * This code is used by the allocation code; periodically (whenever it runs out 576 * of buckets to allocate from) the allocation code will invalidate some 577 * buckets, but it can't use those buckets until their new gens are safely on 578 * disk. 579 */ 580 581static void prio_endio(struct bio *bio) 582{ 583 struct cache *ca = bio->bi_private; 584 585 cache_set_err_on(bio->bi_status, ca->set, "accessing priorities"); 586 bch_bbio_free(bio, ca->set); 587 closure_put(&ca->prio); 588} 589 590static void prio_io(struct cache *ca, uint64_t bucket, blk_opf_t opf) 591{ 592 struct closure *cl = &ca->prio; 593 struct bio *bio = bch_bbio_alloc(ca->set); 594 595 closure_init_stack(cl); 596 597 bio->bi_iter.bi_sector = bucket * ca->sb.bucket_size; 598 bio_set_dev(bio, ca->bdev); 599 bio->bi_iter.bi_size = meta_bucket_bytes(&ca->sb); 600 601 bio->bi_end_io = prio_endio; 602 bio->bi_private = ca; 603 bio->bi_opf = opf | REQ_SYNC | REQ_META; 604 bch_bio_map(bio, ca->disk_buckets); 605 606 closure_bio_submit(ca->set, bio, &ca->prio); 607 closure_sync(cl); 608} 609 610int bch_prio_write(struct cache *ca, bool wait) 611{ 612 int i; 613 struct bucket *b; 614 struct closure cl; 615 616 pr_debug("free_prio=%zu, free_none=%zu, free_inc=%zu\n", 617 fifo_used(&ca->free[RESERVE_PRIO]), 618 fifo_used(&ca->free[RESERVE_NONE]), 619 fifo_used(&ca->free_inc)); 620 621 /* 622 * Pre-check if there are enough free buckets. In the non-blocking 623 * scenario it's better to fail early rather than starting to allocate 624 * buckets and do a cleanup later in case of failure. 625 */ 626 if (!wait) { 627 size_t avail = fifo_used(&ca->free[RESERVE_PRIO]) + 628 fifo_used(&ca->free[RESERVE_NONE]); 629 if (prio_buckets(ca) > avail) 630 return -ENOMEM; 631 } 632 633 closure_init_stack(&cl); 634 635 lockdep_assert_held(&ca->set->bucket_lock); 636 637 ca->disk_buckets->seq++; 638 639 atomic_long_add(ca->sb.bucket_size * prio_buckets(ca), 640 &ca->meta_sectors_written); 641 642 for (i = prio_buckets(ca) - 1; i >= 0; --i) { 643 long bucket; 644 struct prio_set *p = ca->disk_buckets; 645 struct bucket_disk *d = p->data; 646 struct bucket_disk *end = d + prios_per_bucket(ca); 647 648 for (b = ca->buckets + i * prios_per_bucket(ca); 649 b < ca->buckets + ca->sb.nbuckets && d < end; 650 b++, d++) { 651 d->prio = cpu_to_le16(b->prio); 652 d->gen = b->gen; 653 } 654 655 p->next_bucket = ca->prio_buckets[i + 1]; 656 p->magic = pset_magic(&ca->sb); 657 p->csum = bch_crc64(&p->magic, meta_bucket_bytes(&ca->sb) - 8); 658 659 bucket = bch_bucket_alloc(ca, RESERVE_PRIO, wait); 660 BUG_ON(bucket == -1); 661 662 mutex_unlock(&ca->set->bucket_lock); 663 prio_io(ca, bucket, REQ_OP_WRITE); 664 mutex_lock(&ca->set->bucket_lock); 665 666 ca->prio_buckets[i] = bucket; 667 atomic_dec_bug(&ca->buckets[bucket].pin); 668 } 669 670 mutex_unlock(&ca->set->bucket_lock); 671 672 bch_journal_meta(ca->set, &cl); 673 closure_sync(&cl); 674 675 mutex_lock(&ca->set->bucket_lock); 676 677 /* 678 * Don't want the old priorities to get garbage collected until after we 679 * finish writing the new ones, and they're journalled 680 */ 681 for (i = 0; i < prio_buckets(ca); i++) { 682 if (ca->prio_last_buckets[i]) 683 __bch_bucket_free(ca, 684 &ca->buckets[ca->prio_last_buckets[i]]); 685 686 ca->prio_last_buckets[i] = ca->prio_buckets[i]; 687 } 688 return 0; 689} 690 691static int prio_read(struct cache *ca, uint64_t bucket) 692{ 693 struct prio_set *p = ca->disk_buckets; 694 struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d; 695 struct bucket *b; 696 unsigned int bucket_nr = 0; 697 int ret = -EIO; 698 699 for (b = ca->buckets; 700 b < ca->buckets + ca->sb.nbuckets; 701 b++, d++) { 702 if (d == end) { 703 ca->prio_buckets[bucket_nr] = bucket; 704 ca->prio_last_buckets[bucket_nr] = bucket; 705 bucket_nr++; 706 707 prio_io(ca, bucket, REQ_OP_READ); 708 709 if (p->csum != 710 bch_crc64(&p->magic, meta_bucket_bytes(&ca->sb) - 8)) { 711 pr_warn("bad csum reading priorities\n"); 712 goto out; 713 } 714 715 if (p->magic != pset_magic(&ca->sb)) { 716 pr_warn("bad magic reading priorities\n"); 717 goto out; 718 } 719 720 bucket = p->next_bucket; 721 d = p->data; 722 } 723 724 b->prio = le16_to_cpu(d->prio); 725 b->gen = b->last_gc = d->gen; 726 } 727 728 ret = 0; 729out: 730 return ret; 731} 732 733/* Bcache device */ 734 735static int open_dev(struct gendisk *disk, blk_mode_t mode) 736{ 737 struct bcache_device *d = disk->private_data; 738 739 if (test_bit(BCACHE_DEV_CLOSING, &d->flags)) 740 return -ENXIO; 741 742 closure_get(&d->cl); 743 return 0; 744} 745 746static void release_dev(struct gendisk *b) 747{ 748 struct bcache_device *d = b->private_data; 749 750 closure_put(&d->cl); 751} 752 753static int ioctl_dev(struct block_device *b, blk_mode_t mode, 754 unsigned int cmd, unsigned long arg) 755{ 756 struct bcache_device *d = b->bd_disk->private_data; 757 758 return d->ioctl(d, mode, cmd, arg); 759} 760 761static const struct block_device_operations bcache_cached_ops = { 762 .submit_bio = cached_dev_submit_bio, 763 .open = open_dev, 764 .release = release_dev, 765 .ioctl = ioctl_dev, 766 .owner = THIS_MODULE, 767}; 768 769static const struct block_device_operations bcache_flash_ops = { 770 .submit_bio = flash_dev_submit_bio, 771 .open = open_dev, 772 .release = release_dev, 773 .ioctl = ioctl_dev, 774 .owner = THIS_MODULE, 775}; 776 777void bcache_device_stop(struct bcache_device *d) 778{ 779 if (!test_and_set_bit(BCACHE_DEV_CLOSING, &d->flags)) 780 /* 781 * closure_fn set to 782 * - cached device: cached_dev_flush() 783 * - flash dev: flash_dev_flush() 784 */ 785 closure_queue(&d->cl); 786} 787 788static void bcache_device_unlink(struct bcache_device *d) 789{ 790 lockdep_assert_held(&bch_register_lock); 791 792 if (d->c && !test_and_set_bit(BCACHE_DEV_UNLINK_DONE, &d->flags)) { 793 struct cache *ca = d->c->cache; 794 795 sysfs_remove_link(&d->c->kobj, d->name); 796 sysfs_remove_link(&d->kobj, "cache"); 797 798 bd_unlink_disk_holder(ca->bdev, d->disk); 799 } 800} 801 802static void bcache_device_link(struct bcache_device *d, struct cache_set *c, 803 const char *name) 804{ 805 struct cache *ca = c->cache; 806 int ret; 807 808 bd_link_disk_holder(ca->bdev, d->disk); 809 810 snprintf(d->name, BCACHEDEVNAME_SIZE, 811 "%s%u", name, d->id); 812 813 ret = sysfs_create_link(&d->kobj, &c->kobj, "cache"); 814 if (ret < 0) 815 pr_err("Couldn't create device -> cache set symlink\n"); 816 817 ret = sysfs_create_link(&c->kobj, &d->kobj, d->name); 818 if (ret < 0) 819 pr_err("Couldn't create cache set -> device symlink\n"); 820 821 clear_bit(BCACHE_DEV_UNLINK_DONE, &d->flags); 822} 823 824static void bcache_device_detach(struct bcache_device *d) 825{ 826 lockdep_assert_held(&bch_register_lock); 827 828 atomic_dec(&d->c->attached_dev_nr); 829 830 if (test_bit(BCACHE_DEV_DETACHING, &d->flags)) { 831 struct uuid_entry *u = d->c->uuids + d->id; 832 833 SET_UUID_FLASH_ONLY(u, 0); 834 memcpy(u->uuid, invalid_uuid, 16); 835 u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds()); 836 bch_uuid_write(d->c); 837 } 838 839 bcache_device_unlink(d); 840 841 d->c->devices[d->id] = NULL; 842 closure_put(&d->c->caching); 843 d->c = NULL; 844} 845 846static void bcache_device_attach(struct bcache_device *d, struct cache_set *c, 847 unsigned int id) 848{ 849 d->id = id; 850 d->c = c; 851 c->devices[id] = d; 852 853 if (id >= c->devices_max_used) 854 c->devices_max_used = id + 1; 855 856 closure_get(&c->caching); 857} 858 859static inline int first_minor_to_idx(int first_minor) 860{ 861 return (first_minor/BCACHE_MINORS); 862} 863 864static inline int idx_to_first_minor(int idx) 865{ 866 return (idx * BCACHE_MINORS); 867} 868 869static void bcache_device_free(struct bcache_device *d) 870{ 871 struct gendisk *disk = d->disk; 872 873 lockdep_assert_held(&bch_register_lock); 874 875 if (disk) 876 pr_info("%s stopped\n", disk->disk_name); 877 else 878 pr_err("bcache device (NULL gendisk) stopped\n"); 879 880 if (d->c) 881 bcache_device_detach(d); 882 883 if (disk) { 884 ida_free(&bcache_device_idx, 885 first_minor_to_idx(disk->first_minor)); 886 put_disk(disk); 887 } 888 889 bioset_exit(&d->bio_split); 890 bioset_exit(&d->bio_detached); 891 kvfree(d->full_dirty_stripes); 892 kvfree(d->stripe_sectors_dirty); 893 894 closure_debug_destroy(&d->cl); 895} 896 897static int bcache_device_init(struct bcache_device *d, unsigned int block_size, 898 sector_t sectors, struct block_device *cached_bdev, 899 const struct block_device_operations *ops) 900{ 901 const size_t max_stripes = min_t(size_t, INT_MAX, 902 SIZE_MAX / sizeof(atomic_t)); 903 struct queue_limits lim = { 904 .max_hw_sectors = UINT_MAX, 905 .max_sectors = UINT_MAX, 906 .max_segment_size = UINT_MAX, 907 .max_segments = BIO_MAX_VECS, 908 .max_hw_discard_sectors = UINT_MAX, 909 .io_min = block_size, 910 .logical_block_size = block_size, 911 .physical_block_size = block_size, 912 .features = BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA, 913 }; 914 uint64_t n; 915 int idx; 916 917 if (cached_bdev) { 918 d->stripe_size = bdev_io_opt(cached_bdev) >> SECTOR_SHIFT; 919 lim.io_opt = umax(block_size, bdev_io_opt(cached_bdev)); 920 } 921 if (!d->stripe_size) 922 d->stripe_size = 1 << 31; 923 else if (d->stripe_size < BCH_MIN_STRIPE_SZ) 924 d->stripe_size = roundup(BCH_MIN_STRIPE_SZ, d->stripe_size); 925 926 n = DIV_ROUND_UP_ULL(sectors, d->stripe_size); 927 if (!n || n > max_stripes) { 928 pr_err("nr_stripes too large or invalid: %llu (start sector beyond end of disk?)\n", 929 n); 930 return -ENOMEM; 931 } 932 d->nr_stripes = n; 933 934 n = d->nr_stripes * sizeof(atomic_t); 935 d->stripe_sectors_dirty = kvzalloc(n, GFP_KERNEL); 936 if (!d->stripe_sectors_dirty) 937 return -ENOMEM; 938 939 n = BITS_TO_LONGS(d->nr_stripes) * sizeof(unsigned long); 940 d->full_dirty_stripes = kvzalloc(n, GFP_KERNEL); 941 if (!d->full_dirty_stripes) 942 goto out_free_stripe_sectors_dirty; 943 944 idx = ida_alloc_max(&bcache_device_idx, BCACHE_DEVICE_IDX_MAX - 1, 945 GFP_KERNEL); 946 if (idx < 0) 947 goto out_free_full_dirty_stripes; 948 949 if (bioset_init(&d->bio_split, 4, offsetof(struct bbio, bio), 950 BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER)) 951 goto out_ida_remove; 952 953 if (bioset_init(&d->bio_detached, 4, 954 offsetof(struct detached_dev_io_private, bio), 955 BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER)) 956 goto out_bioset_split_exit; 957 958 if (lim.logical_block_size > PAGE_SIZE && cached_bdev) { 959 /* 960 * This should only happen with BCACHE_SB_VERSION_BDEV. 961 * Block/page size is checked for BCACHE_SB_VERSION_CDEV. 962 */ 963 pr_info("bcache%i: sb/logical block size (%u) greater than page size (%lu) falling back to device logical block size (%u)\n", 964 idx, lim.logical_block_size, 965 PAGE_SIZE, bdev_logical_block_size(cached_bdev)); 966 967 /* This also adjusts physical block size/min io size if needed */ 968 lim.logical_block_size = bdev_logical_block_size(cached_bdev); 969 } 970 971 d->disk = blk_alloc_disk(&lim, NUMA_NO_NODE); 972 if (IS_ERR(d->disk)) 973 goto out_bioset_detach_exit; 974 975 set_capacity(d->disk, sectors); 976 snprintf(d->disk->disk_name, DISK_NAME_LEN, "bcache%i", idx); 977 978 d->disk->major = bcache_major; 979 d->disk->first_minor = idx_to_first_minor(idx); 980 d->disk->minors = BCACHE_MINORS; 981 d->disk->fops = ops; 982 d->disk->private_data = d; 983 return 0; 984 985out_bioset_detach_exit: 986 bioset_exit(&d->bio_detached); 987out_bioset_split_exit: 988 bioset_exit(&d->bio_split); 989out_ida_remove: 990 ida_free(&bcache_device_idx, idx); 991out_free_full_dirty_stripes: 992 kvfree(d->full_dirty_stripes); 993out_free_stripe_sectors_dirty: 994 kvfree(d->stripe_sectors_dirty); 995 return -ENOMEM; 996 997} 998 999/* Cached device */ 1000 1001static void calc_cached_dev_sectors(struct cache_set *c) 1002{ 1003 uint64_t sectors = 0; 1004 struct cached_dev *dc; 1005 1006 list_for_each_entry(dc, &c->cached_devs, list) 1007 sectors += bdev_nr_sectors(dc->bdev); 1008 1009 c->cached_dev_sectors = sectors; 1010} 1011 1012#define BACKING_DEV_OFFLINE_TIMEOUT 5 1013static int cached_dev_status_update(void *arg) 1014{ 1015 struct cached_dev *dc = arg; 1016 struct request_queue *q; 1017 1018 /* 1019 * If this delayed worker is stopping outside, directly quit here. 1020 * dc->io_disable might be set via sysfs interface, so check it 1021 * here too. 1022 */ 1023 while (!kthread_should_stop() && !dc->io_disable) { 1024 q = bdev_get_queue(dc->bdev); 1025 if (blk_queue_dying(q)) 1026 dc->offline_seconds++; 1027 else 1028 dc->offline_seconds = 0; 1029 1030 if (dc->offline_seconds >= BACKING_DEV_OFFLINE_TIMEOUT) { 1031 pr_err("%pg: device offline for %d seconds\n", 1032 dc->bdev, 1033 BACKING_DEV_OFFLINE_TIMEOUT); 1034 pr_err("%s: disable I/O request due to backing device offline\n", 1035 dc->disk.name); 1036 dc->io_disable = true; 1037 /* let others know earlier that io_disable is true */ 1038 smp_mb(); 1039 bcache_device_stop(&dc->disk); 1040 break; 1041 } 1042 schedule_timeout_interruptible(HZ); 1043 } 1044 1045 wait_for_kthread_stop(); 1046 return 0; 1047} 1048 1049 1050int bch_cached_dev_run(struct cached_dev *dc) 1051{ 1052 int ret = 0; 1053 struct bcache_device *d = &dc->disk; 1054 char *buf = kmemdup_nul(dc->sb.label, SB_LABEL_SIZE, GFP_KERNEL); 1055 char *env[] = { 1056 "DRIVER=bcache", 1057 kasprintf(GFP_KERNEL, "CACHED_UUID=%pU", dc->sb.uuid), 1058 kasprintf(GFP_KERNEL, "CACHED_LABEL=%s", buf ? : ""), 1059 NULL, 1060 }; 1061 1062 if (dc->io_disable) { 1063 pr_err("I/O disabled on cached dev %pg\n", dc->bdev); 1064 ret = -EIO; 1065 goto out; 1066 } 1067 1068 if (atomic_xchg(&dc->running, 1)) { 1069 pr_info("cached dev %pg is running already\n", dc->bdev); 1070 ret = -EBUSY; 1071 goto out; 1072 } 1073 1074 if (!d->c && 1075 BDEV_STATE(&dc->sb) != BDEV_STATE_NONE) { 1076 struct closure cl; 1077 1078 closure_init_stack(&cl); 1079 1080 SET_BDEV_STATE(&dc->sb, BDEV_STATE_STALE); 1081 bch_write_bdev_super(dc, &cl); 1082 closure_sync(&cl); 1083 } 1084 1085 ret = add_disk(d->disk); 1086 if (ret) 1087 goto out; 1088 bd_link_disk_holder(dc->bdev, dc->disk.disk); 1089 /* 1090 * won't show up in the uevent file, use udevadm monitor -e instead 1091 * only class / kset properties are persistent 1092 */ 1093 kobject_uevent_env(&disk_to_dev(d->disk)->kobj, KOBJ_CHANGE, env); 1094 1095 if (sysfs_create_link(&d->kobj, &disk_to_dev(d->disk)->kobj, "dev") || 1096 sysfs_create_link(&disk_to_dev(d->disk)->kobj, 1097 &d->kobj, "bcache")) { 1098 pr_err("Couldn't create bcache dev <-> disk sysfs symlinks\n"); 1099 ret = -ENOMEM; 1100 goto out; 1101 } 1102 1103 dc->status_update_thread = kthread_run(cached_dev_status_update, 1104 dc, "bcache_status_update"); 1105 if (IS_ERR(dc->status_update_thread)) { 1106 pr_warn("failed to create bcache_status_update kthread, continue to run without monitoring backing device status\n"); 1107 } 1108 1109out: 1110 kfree(env[1]); 1111 kfree(env[2]); 1112 kfree(buf); 1113 return ret; 1114} 1115 1116/* 1117 * If BCACHE_DEV_RATE_DW_RUNNING is set, it means routine of the delayed 1118 * work dc->writeback_rate_update is running. Wait until the routine 1119 * quits (BCACHE_DEV_RATE_DW_RUNNING is clear), then continue to 1120 * cancel it. If BCACHE_DEV_RATE_DW_RUNNING is not clear after time_out 1121 * seconds, give up waiting here and continue to cancel it too. 1122 */ 1123static void cancel_writeback_rate_update_dwork(struct cached_dev *dc) 1124{ 1125 int time_out = WRITEBACK_RATE_UPDATE_SECS_MAX * HZ; 1126 1127 do { 1128 if (!test_bit(BCACHE_DEV_RATE_DW_RUNNING, 1129 &dc->disk.flags)) 1130 break; 1131 time_out--; 1132 schedule_timeout_interruptible(1); 1133 } while (time_out > 0); 1134 1135 if (time_out == 0) 1136 pr_warn("give up waiting for dc->writeback_write_update to quit\n"); 1137 1138 cancel_delayed_work_sync(&dc->writeback_rate_update); 1139} 1140 1141static void cached_dev_detach_finish(struct work_struct *w) 1142{ 1143 struct cached_dev *dc = container_of(w, struct cached_dev, detach); 1144 struct cache_set *c = dc->disk.c; 1145 1146 BUG_ON(!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags)); 1147 BUG_ON(refcount_read(&dc->count)); 1148 1149 1150 if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags)) 1151 cancel_writeback_rate_update_dwork(dc); 1152 1153 if (!IS_ERR_OR_NULL(dc->writeback_thread)) { 1154 kthread_stop(dc->writeback_thread); 1155 dc->writeback_thread = NULL; 1156 } 1157 1158 mutex_lock(&bch_register_lock); 1159 1160 bcache_device_detach(&dc->disk); 1161 list_move(&dc->list, &uncached_devices); 1162 calc_cached_dev_sectors(c); 1163 1164 clear_bit(BCACHE_DEV_DETACHING, &dc->disk.flags); 1165 clear_bit(BCACHE_DEV_UNLINK_DONE, &dc->disk.flags); 1166 1167 mutex_unlock(&bch_register_lock); 1168 1169 pr_info("Caching disabled for %pg\n", dc->bdev); 1170 1171 /* Drop ref we took in cached_dev_detach() */ 1172 closure_put(&dc->disk.cl); 1173} 1174 1175void bch_cached_dev_detach(struct cached_dev *dc) 1176{ 1177 lockdep_assert_held(&bch_register_lock); 1178 1179 if (test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags)) 1180 return; 1181 1182 if (test_and_set_bit(BCACHE_DEV_DETACHING, &dc->disk.flags)) 1183 return; 1184 1185 /* 1186 * Block the device from being closed and freed until we're finished 1187 * detaching 1188 */ 1189 closure_get(&dc->disk.cl); 1190 1191 bch_writeback_queue(dc); 1192 1193 cached_dev_put(dc); 1194} 1195 1196int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c, 1197 uint8_t *set_uuid) 1198{ 1199 uint32_t rtime = cpu_to_le32((u32)ktime_get_real_seconds()); 1200 struct uuid_entry *u; 1201 struct cached_dev *exist_dc, *t; 1202 int ret = 0; 1203 1204 if ((set_uuid && memcmp(set_uuid, c->set_uuid, 16)) || 1205 (!set_uuid && memcmp(dc->sb.set_uuid, c->set_uuid, 16))) 1206 return -ENOENT; 1207 1208 if (dc->disk.c) { 1209 pr_err("Can't attach %pg: already attached\n", dc->bdev); 1210 return -EINVAL; 1211 } 1212 1213 if (test_bit(CACHE_SET_STOPPING, &c->flags)) { 1214 pr_err("Can't attach %pg: shutting down\n", dc->bdev); 1215 return -EINVAL; 1216 } 1217 1218 if (dc->sb.block_size < c->cache->sb.block_size) { 1219 /* Will die */ 1220 pr_err("Couldn't attach %pg: block size less than set's block size\n", 1221 dc->bdev); 1222 return -EINVAL; 1223 } 1224 1225 /* Check whether already attached */ 1226 list_for_each_entry_safe(exist_dc, t, &c->cached_devs, list) { 1227 if (!memcmp(dc->sb.uuid, exist_dc->sb.uuid, 16)) { 1228 pr_err("Tried to attach %pg but duplicate UUID already attached\n", 1229 dc->bdev); 1230 1231 return -EINVAL; 1232 } 1233 } 1234 1235 u = uuid_find(c, dc->sb.uuid); 1236 1237 if (u && 1238 (BDEV_STATE(&dc->sb) == BDEV_STATE_STALE || 1239 BDEV_STATE(&dc->sb) == BDEV_STATE_NONE)) { 1240 memcpy(u->uuid, invalid_uuid, 16); 1241 u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds()); 1242 u = NULL; 1243 } 1244 1245 if (!u) { 1246 if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) { 1247 pr_err("Couldn't find uuid for %pg in set\n", dc->bdev); 1248 return -ENOENT; 1249 } 1250 1251 u = uuid_find_empty(c); 1252 if (!u) { 1253 pr_err("Not caching %pg, no room for UUID\n", dc->bdev); 1254 return -EINVAL; 1255 } 1256 } 1257 1258 /* 1259 * Deadlocks since we're called via sysfs... 1260 * sysfs_remove_file(&dc->kobj, &sysfs_attach); 1261 */ 1262 1263 if (bch_is_zero(u->uuid, 16)) { 1264 struct closure cl; 1265 1266 closure_init_stack(&cl); 1267 1268 memcpy(u->uuid, dc->sb.uuid, 16); 1269 memcpy(u->label, dc->sb.label, SB_LABEL_SIZE); 1270 u->first_reg = u->last_reg = rtime; 1271 bch_uuid_write(c); 1272 1273 memcpy(dc->sb.set_uuid, c->set_uuid, 16); 1274 SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN); 1275 1276 bch_write_bdev_super(dc, &cl); 1277 closure_sync(&cl); 1278 } else { 1279 u->last_reg = rtime; 1280 bch_uuid_write(c); 1281 } 1282 1283 bcache_device_attach(&dc->disk, c, u - c->uuids); 1284 list_move(&dc->list, &c->cached_devs); 1285 calc_cached_dev_sectors(c); 1286 1287 /* 1288 * dc->c must be set before dc->count != 0 - paired with the mb in 1289 * cached_dev_get() 1290 */ 1291 smp_wmb(); 1292 refcount_set(&dc->count, 1); 1293 1294 /* Block writeback thread, but spawn it */ 1295 down_write(&dc->writeback_lock); 1296 if (bch_cached_dev_writeback_start(dc)) { 1297 up_write(&dc->writeback_lock); 1298 pr_err("Couldn't start writeback facilities for %s\n", 1299 dc->disk.disk->disk_name); 1300 return -ENOMEM; 1301 } 1302 1303 if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) { 1304 atomic_set(&dc->has_dirty, 1); 1305 bch_writeback_queue(dc); 1306 } 1307 1308 bch_sectors_dirty_init(&dc->disk); 1309 1310 ret = bch_cached_dev_run(dc); 1311 if (ret && (ret != -EBUSY)) { 1312 up_write(&dc->writeback_lock); 1313 /* 1314 * bch_register_lock is held, bcache_device_stop() is not 1315 * able to be directly called. The kthread and kworker 1316 * created previously in bch_cached_dev_writeback_start() 1317 * have to be stopped manually here. 1318 */ 1319 kthread_stop(dc->writeback_thread); 1320 cancel_writeback_rate_update_dwork(dc); 1321 pr_err("Couldn't run cached device %pg\n", dc->bdev); 1322 return ret; 1323 } 1324 1325 bcache_device_link(&dc->disk, c, "bdev"); 1326 atomic_inc(&c->attached_dev_nr); 1327 1328 if (bch_has_feature_obso_large_bucket(&(c->cache->sb))) { 1329 pr_err("The obsoleted large bucket layout is unsupported, set the bcache device into read-only\n"); 1330 pr_err("Please update to the latest bcache-tools to create the cache device\n"); 1331 set_disk_ro(dc->disk.disk, 1); 1332 } 1333 1334 /* Allow the writeback thread to proceed */ 1335 up_write(&dc->writeback_lock); 1336 1337 pr_info("Caching %pg as %s on set %pU\n", 1338 dc->bdev, 1339 dc->disk.disk->disk_name, 1340 dc->disk.c->set_uuid); 1341 return 0; 1342} 1343 1344/* when dc->disk.kobj released */ 1345void bch_cached_dev_release(struct kobject *kobj) 1346{ 1347 struct cached_dev *dc = container_of(kobj, struct cached_dev, 1348 disk.kobj); 1349 kfree(dc); 1350 module_put(THIS_MODULE); 1351} 1352 1353static CLOSURE_CALLBACK(cached_dev_free) 1354{ 1355 closure_type(dc, struct cached_dev, disk.cl); 1356 1357 if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags)) 1358 cancel_writeback_rate_update_dwork(dc); 1359 1360 if (!IS_ERR_OR_NULL(dc->writeback_thread)) 1361 kthread_stop(dc->writeback_thread); 1362 if (!IS_ERR_OR_NULL(dc->status_update_thread)) 1363 kthread_stop(dc->status_update_thread); 1364 1365 mutex_lock(&bch_register_lock); 1366 1367 if (atomic_read(&dc->running)) { 1368 bd_unlink_disk_holder(dc->bdev, dc->disk.disk); 1369 del_gendisk(dc->disk.disk); 1370 } 1371 bcache_device_free(&dc->disk); 1372 list_del(&dc->list); 1373 1374 mutex_unlock(&bch_register_lock); 1375 1376 if (dc->sb_disk) 1377 folio_put(virt_to_folio(dc->sb_disk)); 1378 1379 if (dc->bdev_file) 1380 fput(dc->bdev_file); 1381 1382 wake_up(&unregister_wait); 1383 1384 kobject_put(&dc->disk.kobj); 1385} 1386 1387static CLOSURE_CALLBACK(cached_dev_flush) 1388{ 1389 closure_type(dc, struct cached_dev, disk.cl); 1390 struct bcache_device *d = &dc->disk; 1391 1392 mutex_lock(&bch_register_lock); 1393 bcache_device_unlink(d); 1394 mutex_unlock(&bch_register_lock); 1395 1396 bch_cache_accounting_destroy(&dc->accounting); 1397 kobject_del(&d->kobj); 1398 1399 continue_at(cl, cached_dev_free, system_percpu_wq); 1400} 1401 1402static int cached_dev_init(struct cached_dev *dc, unsigned int block_size) 1403{ 1404 int ret; 1405 struct io *io; 1406 struct request_queue *q = bdev_get_queue(dc->bdev); 1407 1408 __module_get(THIS_MODULE); 1409 INIT_LIST_HEAD(&dc->list); 1410 closure_init(&dc->disk.cl, NULL); 1411 set_closure_fn(&dc->disk.cl, cached_dev_flush, system_percpu_wq); 1412 kobject_init(&dc->disk.kobj, &bch_cached_dev_ktype); 1413 INIT_WORK(&dc->detach, cached_dev_detach_finish); 1414 sema_init(&dc->sb_write_mutex, 1); 1415 INIT_LIST_HEAD(&dc->io_lru); 1416 spin_lock_init(&dc->io_lock); 1417 bch_cache_accounting_init(&dc->accounting, &dc->disk.cl); 1418 1419 dc->sequential_cutoff = 4 << 20; 1420 1421 for (io = dc->io; io < dc->io + RECENT_IO; io++) { 1422 list_add(&io->lru, &dc->io_lru); 1423 hlist_add_head(&io->hash, dc->io_hash + RECENT_IO); 1424 } 1425 1426 if (bdev_io_opt(dc->bdev)) 1427 dc->partial_stripes_expensive = !!(q->limits.features & 1428 BLK_FEAT_RAID_PARTIAL_STRIPES_EXPENSIVE); 1429 1430 ret = bcache_device_init(&dc->disk, block_size, 1431 bdev_nr_sectors(dc->bdev) - dc->sb.data_offset, 1432 dc->bdev, &bcache_cached_ops); 1433 if (ret) 1434 return ret; 1435 1436 atomic_set(&dc->io_errors, 0); 1437 dc->io_disable = false; 1438 dc->error_limit = DEFAULT_CACHED_DEV_ERROR_LIMIT; 1439 /* default to auto */ 1440 dc->stop_when_cache_set_failed = BCH_CACHED_DEV_STOP_AUTO; 1441 1442 bch_cached_dev_request_init(dc); 1443 bch_cached_dev_writeback_init(dc); 1444 return 0; 1445} 1446 1447/* Cached device - bcache superblock */ 1448 1449static int register_bdev(struct cache_sb *sb, struct cache_sb_disk *sb_disk, 1450 struct file *bdev_file, 1451 struct cached_dev *dc) 1452{ 1453 const char *err = "cannot allocate memory"; 1454 struct cache_set *c; 1455 int ret = -ENOMEM; 1456 1457 memcpy(&dc->sb, sb, sizeof(struct cache_sb)); 1458 dc->bdev_file = bdev_file; 1459 dc->bdev = file_bdev(bdev_file); 1460 dc->sb_disk = sb_disk; 1461 1462 if (cached_dev_init(dc, sb->block_size << 9)) 1463 goto err; 1464 1465 err = "error creating kobject"; 1466 if (kobject_add(&dc->disk.kobj, bdev_kobj(dc->bdev), "bcache")) 1467 goto err; 1468 if (bch_cache_accounting_add_kobjs(&dc->accounting, &dc->disk.kobj)) 1469 goto err; 1470 1471 pr_info("registered backing device %pg\n", dc->bdev); 1472 1473 list_add(&dc->list, &uncached_devices); 1474 /* attach to a matched cache set if it exists */ 1475 list_for_each_entry(c, &bch_cache_sets, list) 1476 bch_cached_dev_attach(dc, c, NULL); 1477 1478 if (BDEV_STATE(&dc->sb) == BDEV_STATE_NONE || 1479 BDEV_STATE(&dc->sb) == BDEV_STATE_STALE) { 1480 err = "failed to run cached device"; 1481 ret = bch_cached_dev_run(dc); 1482 if (ret) 1483 goto err; 1484 } 1485 1486 return 0; 1487err: 1488 pr_notice("error %pg: %s\n", dc->bdev, err); 1489 bcache_device_stop(&dc->disk); 1490 return ret; 1491} 1492 1493/* Flash only volumes */ 1494 1495/* When d->kobj released */ 1496void bch_flash_dev_release(struct kobject *kobj) 1497{ 1498 struct bcache_device *d = container_of(kobj, struct bcache_device, 1499 kobj); 1500 kfree(d); 1501} 1502 1503static CLOSURE_CALLBACK(flash_dev_free) 1504{ 1505 closure_type(d, struct bcache_device, cl); 1506 1507 mutex_lock(&bch_register_lock); 1508 atomic_long_sub(bcache_dev_sectors_dirty(d), 1509 &d->c->flash_dev_dirty_sectors); 1510 del_gendisk(d->disk); 1511 bcache_device_free(d); 1512 mutex_unlock(&bch_register_lock); 1513 kobject_put(&d->kobj); 1514} 1515 1516static CLOSURE_CALLBACK(flash_dev_flush) 1517{ 1518 closure_type(d, struct bcache_device, cl); 1519 1520 mutex_lock(&bch_register_lock); 1521 bcache_device_unlink(d); 1522 mutex_unlock(&bch_register_lock); 1523 kobject_del(&d->kobj); 1524 continue_at(cl, flash_dev_free, system_percpu_wq); 1525} 1526 1527static int flash_dev_run(struct cache_set *c, struct uuid_entry *u) 1528{ 1529 int err = -ENOMEM; 1530 struct bcache_device *d = kzalloc(sizeof(struct bcache_device), 1531 GFP_KERNEL); 1532 if (!d) 1533 goto err_ret; 1534 1535 closure_init(&d->cl, NULL); 1536 set_closure_fn(&d->cl, flash_dev_flush, system_percpu_wq); 1537 1538 kobject_init(&d->kobj, &bch_flash_dev_ktype); 1539 1540 if (bcache_device_init(d, block_bytes(c->cache), u->sectors, 1541 NULL, &bcache_flash_ops)) 1542 goto err; 1543 1544 bcache_device_attach(d, c, u - c->uuids); 1545 bch_sectors_dirty_init(d); 1546 bch_flash_dev_request_init(d); 1547 err = add_disk(d->disk); 1548 if (err) 1549 goto err; 1550 1551 err = kobject_add(&d->kobj, &disk_to_dev(d->disk)->kobj, "bcache"); 1552 if (err) 1553 goto err; 1554 1555 bcache_device_link(d, c, "volume"); 1556 1557 if (bch_has_feature_obso_large_bucket(&c->cache->sb)) { 1558 pr_err("The obsoleted large bucket layout is unsupported, set the bcache device into read-only\n"); 1559 pr_err("Please update to the latest bcache-tools to create the cache device\n"); 1560 set_disk_ro(d->disk, 1); 1561 } 1562 1563 return 0; 1564err: 1565 kobject_put(&d->kobj); 1566err_ret: 1567 return err; 1568} 1569 1570static int flash_devs_run(struct cache_set *c) 1571{ 1572 int ret = 0; 1573 struct uuid_entry *u; 1574 1575 for (u = c->uuids; 1576 u < c->uuids + c->nr_uuids && !ret; 1577 u++) 1578 if (UUID_FLASH_ONLY(u)) 1579 ret = flash_dev_run(c, u); 1580 1581 return ret; 1582} 1583 1584int bch_flash_dev_create(struct cache_set *c, uint64_t size) 1585{ 1586 struct uuid_entry *u; 1587 1588 if (test_bit(CACHE_SET_STOPPING, &c->flags)) 1589 return -EINTR; 1590 1591 if (!test_bit(CACHE_SET_RUNNING, &c->flags)) 1592 return -EPERM; 1593 1594 u = uuid_find_empty(c); 1595 if (!u) { 1596 pr_err("Can't create volume, no room for UUID\n"); 1597 return -EINVAL; 1598 } 1599 1600 get_random_bytes(u->uuid, 16); 1601 memset(u->label, 0, 32); 1602 u->first_reg = u->last_reg = cpu_to_le32((u32)ktime_get_real_seconds()); 1603 1604 SET_UUID_FLASH_ONLY(u, 1); 1605 u->sectors = size >> 9; 1606 1607 bch_uuid_write(c); 1608 1609 return flash_dev_run(c, u); 1610} 1611 1612bool bch_cached_dev_error(struct cached_dev *dc) 1613{ 1614 if (!dc || test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags)) 1615 return false; 1616 1617 dc->io_disable = true; 1618 /* make others know io_disable is true earlier */ 1619 smp_mb(); 1620 1621 pr_err("stop %s: too many IO errors on backing device %pg\n", 1622 dc->disk.disk->disk_name, dc->bdev); 1623 1624 bcache_device_stop(&dc->disk); 1625 return true; 1626} 1627 1628/* Cache set */ 1629 1630__printf(2, 3) 1631bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...) 1632{ 1633 struct va_format vaf; 1634 va_list args; 1635 1636 if (c->on_error != ON_ERROR_PANIC && 1637 test_bit(CACHE_SET_STOPPING, &c->flags)) 1638 return false; 1639 1640 if (test_and_set_bit(CACHE_SET_IO_DISABLE, &c->flags)) 1641 pr_info("CACHE_SET_IO_DISABLE already set\n"); 1642 1643 /* 1644 * XXX: we can be called from atomic context 1645 * acquire_console_sem(); 1646 */ 1647 1648 va_start(args, fmt); 1649 1650 vaf.fmt = fmt; 1651 vaf.va = &args; 1652 1653 pr_err("error on %pU: %pV, disabling caching\n", 1654 c->set_uuid, &vaf); 1655 1656 va_end(args); 1657 1658 if (c->on_error == ON_ERROR_PANIC) 1659 panic("panic forced after error\n"); 1660 1661 bch_cache_set_unregister(c); 1662 return true; 1663} 1664 1665/* When c->kobj released */ 1666void bch_cache_set_release(struct kobject *kobj) 1667{ 1668 struct cache_set *c = container_of(kobj, struct cache_set, kobj); 1669 1670 kfree(c); 1671 module_put(THIS_MODULE); 1672} 1673 1674static CLOSURE_CALLBACK(cache_set_free) 1675{ 1676 closure_type(c, struct cache_set, cl); 1677 struct cache *ca; 1678 1679 debugfs_remove(c->debug); 1680 1681 bch_open_buckets_free(c); 1682 bch_btree_cache_free(c); 1683 bch_journal_free(c); 1684 1685 mutex_lock(&bch_register_lock); 1686 bch_bset_sort_state_free(&c->sort); 1687 free_pages((unsigned long) c->uuids, ilog2(meta_bucket_pages(&c->cache->sb))); 1688 1689 ca = c->cache; 1690 if (ca) { 1691 ca->set = NULL; 1692 c->cache = NULL; 1693 kobject_put(&ca->kobj); 1694 } 1695 1696 1697 if (c->moving_gc_wq) 1698 destroy_workqueue(c->moving_gc_wq); 1699 bioset_exit(&c->bio_split); 1700 mempool_exit(&c->fill_iter); 1701 mempool_exit(&c->bio_meta); 1702 mempool_exit(&c->search); 1703 kfree(c->devices); 1704 1705 list_del(&c->list); 1706 mutex_unlock(&bch_register_lock); 1707 1708 pr_info("Cache set %pU unregistered\n", c->set_uuid); 1709 wake_up(&unregister_wait); 1710 1711 closure_debug_destroy(&c->cl); 1712 kobject_put(&c->kobj); 1713} 1714 1715static CLOSURE_CALLBACK(cache_set_flush) 1716{ 1717 closure_type(c, struct cache_set, caching); 1718 struct cache *ca = c->cache; 1719 struct btree *b; 1720 1721 bch_cache_accounting_destroy(&c->accounting); 1722 1723 kobject_put(&c->internal); 1724 kobject_del(&c->kobj); 1725 1726 if (!IS_ERR_OR_NULL(c->gc_thread)) 1727 kthread_stop(c->gc_thread); 1728 1729 if (!IS_ERR_OR_NULL(c->root)) 1730 list_add(&c->root->list, &c->btree_cache); 1731 1732 /* 1733 * Avoid flushing cached nodes if cache set is retiring 1734 * due to too many I/O errors detected. 1735 */ 1736 if (!test_bit(CACHE_SET_IO_DISABLE, &c->flags)) 1737 list_for_each_entry(b, &c->btree_cache, list) { 1738 mutex_lock(&b->write_lock); 1739 if (btree_node_dirty(b)) 1740 __bch_btree_node_write(b, NULL); 1741 mutex_unlock(&b->write_lock); 1742 } 1743 1744 /* 1745 * If the register_cache_set() call to bch_cache_set_alloc() failed, 1746 * ca has not been assigned a value and return error. 1747 * So we need check ca is not NULL during bch_cache_set_unregister(). 1748 */ 1749 if (ca && ca->alloc_thread) 1750 kthread_stop(ca->alloc_thread); 1751 1752 if (c->journal.cur) { 1753 cancel_delayed_work_sync(&c->journal.work); 1754 /* flush last journal entry if needed */ 1755 c->journal.work.work.func(&c->journal.work.work); 1756 } 1757 1758 closure_return(cl); 1759} 1760 1761/* 1762 * This function is only called when CACHE_SET_IO_DISABLE is set, which means 1763 * cache set is unregistering due to too many I/O errors. In this condition, 1764 * the bcache device might be stopped, it depends on stop_when_cache_set_failed 1765 * value and whether the broken cache has dirty data: 1766 * 1767 * dc->stop_when_cache_set_failed dc->has_dirty stop bcache device 1768 * BCH_CACHED_STOP_AUTO 0 NO 1769 * BCH_CACHED_STOP_AUTO 1 YES 1770 * BCH_CACHED_DEV_STOP_ALWAYS 0 YES 1771 * BCH_CACHED_DEV_STOP_ALWAYS 1 YES 1772 * 1773 * The expected behavior is, if stop_when_cache_set_failed is configured to 1774 * "auto" via sysfs interface, the bcache device will not be stopped if the 1775 * backing device is clean on the broken cache device. 1776 */ 1777static void conditional_stop_bcache_device(struct cache_set *c, 1778 struct bcache_device *d, 1779 struct cached_dev *dc) 1780{ 1781 if (dc->stop_when_cache_set_failed == BCH_CACHED_DEV_STOP_ALWAYS) { 1782 pr_warn("stop_when_cache_set_failed of %s is \"always\", stop it for failed cache set %pU.\n", 1783 d->disk->disk_name, c->set_uuid); 1784 bcache_device_stop(d); 1785 } else if (atomic_read(&dc->has_dirty)) { 1786 /* 1787 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO 1788 * and dc->has_dirty == 1 1789 */ 1790 pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is dirty, stop it to avoid potential data corruption.\n", 1791 d->disk->disk_name); 1792 /* 1793 * There might be a small time gap that cache set is 1794 * released but bcache device is not. Inside this time 1795 * gap, regular I/O requests will directly go into 1796 * backing device as no cache set attached to. This 1797 * behavior may also introduce potential inconsistence 1798 * data in writeback mode while cache is dirty. 1799 * Therefore before calling bcache_device_stop() due 1800 * to a broken cache device, dc->io_disable should be 1801 * explicitly set to true. 1802 */ 1803 dc->io_disable = true; 1804 /* make others know io_disable is true earlier */ 1805 smp_mb(); 1806 bcache_device_stop(d); 1807 } else { 1808 /* 1809 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO 1810 * and dc->has_dirty == 0 1811 */ 1812 pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is clean, keep it alive.\n", 1813 d->disk->disk_name); 1814 } 1815} 1816 1817static CLOSURE_CALLBACK(__cache_set_unregister) 1818{ 1819 closure_type(c, struct cache_set, caching); 1820 struct cached_dev *dc; 1821 struct bcache_device *d; 1822 size_t i; 1823 1824 mutex_lock(&bch_register_lock); 1825 1826 for (i = 0; i < c->devices_max_used; i++) { 1827 d = c->devices[i]; 1828 if (!d) 1829 continue; 1830 1831 if (!UUID_FLASH_ONLY(&c->uuids[i]) && 1832 test_bit(CACHE_SET_UNREGISTERING, &c->flags)) { 1833 dc = container_of(d, struct cached_dev, disk); 1834 bch_cached_dev_detach(dc); 1835 if (test_bit(CACHE_SET_IO_DISABLE, &c->flags)) 1836 conditional_stop_bcache_device(c, d, dc); 1837 } else { 1838 bcache_device_stop(d); 1839 } 1840 } 1841 1842 mutex_unlock(&bch_register_lock); 1843 1844 continue_at(cl, cache_set_flush, system_percpu_wq); 1845} 1846 1847void bch_cache_set_stop(struct cache_set *c) 1848{ 1849 if (!test_and_set_bit(CACHE_SET_STOPPING, &c->flags)) 1850 /* closure_fn set to __cache_set_unregister() */ 1851 closure_queue(&c->caching); 1852} 1853 1854void bch_cache_set_unregister(struct cache_set *c) 1855{ 1856 set_bit(CACHE_SET_UNREGISTERING, &c->flags); 1857 bch_cache_set_stop(c); 1858} 1859 1860#define alloc_meta_bucket_pages(gfp, sb) \ 1861 ((void *) __get_free_pages(__GFP_ZERO|__GFP_COMP|gfp, ilog2(meta_bucket_pages(sb)))) 1862 1863struct cache_set *bch_cache_set_alloc(struct cache_sb *sb) 1864{ 1865 int iter_size; 1866 struct cache *ca = container_of(sb, struct cache, sb); 1867 struct cache_set *c = kzalloc(sizeof(struct cache_set), GFP_KERNEL); 1868 1869 if (!c) 1870 return NULL; 1871 1872 __module_get(THIS_MODULE); 1873 closure_init(&c->cl, NULL); 1874 set_closure_fn(&c->cl, cache_set_free, system_percpu_wq); 1875 1876 closure_init(&c->caching, &c->cl); 1877 set_closure_fn(&c->caching, __cache_set_unregister, system_percpu_wq); 1878 1879 /* Maybe create continue_at_noreturn() and use it here? */ 1880 closure_set_stopped(&c->cl); 1881 closure_put(&c->cl); 1882 1883 kobject_init(&c->kobj, &bch_cache_set_ktype); 1884 kobject_init(&c->internal, &bch_cache_set_internal_ktype); 1885 1886 bch_cache_accounting_init(&c->accounting, &c->cl); 1887 1888 memcpy(c->set_uuid, sb->set_uuid, 16); 1889 1890 c->cache = ca; 1891 c->cache->set = c; 1892 c->bucket_bits = ilog2(sb->bucket_size); 1893 c->block_bits = ilog2(sb->block_size); 1894 c->nr_uuids = meta_bucket_bytes(sb) / sizeof(struct uuid_entry); 1895 c->devices_max_used = 0; 1896 atomic_set(&c->attached_dev_nr, 0); 1897 c->btree_pages = meta_bucket_pages(sb); 1898 if (c->btree_pages > BTREE_MAX_PAGES) 1899 c->btree_pages = max_t(int, c->btree_pages / 4, 1900 BTREE_MAX_PAGES); 1901 1902 sema_init(&c->sb_write_mutex, 1); 1903 mutex_init(&c->bucket_lock); 1904 init_waitqueue_head(&c->btree_cache_wait); 1905 spin_lock_init(&c->btree_cannibalize_lock); 1906 init_waitqueue_head(&c->bucket_wait); 1907 init_waitqueue_head(&c->gc_wait); 1908 sema_init(&c->uuid_write_mutex, 1); 1909 1910 spin_lock_init(&c->btree_gc_time.lock); 1911 spin_lock_init(&c->btree_split_time.lock); 1912 spin_lock_init(&c->btree_read_time.lock); 1913 1914 bch_moving_init_cache_set(c); 1915 1916 INIT_LIST_HEAD(&c->list); 1917 INIT_LIST_HEAD(&c->cached_devs); 1918 INIT_LIST_HEAD(&c->btree_cache); 1919 INIT_LIST_HEAD(&c->btree_cache_freeable); 1920 INIT_LIST_HEAD(&c->btree_cache_freed); 1921 INIT_LIST_HEAD(&c->data_buckets); 1922 1923 iter_size = sizeof(struct btree_iter) + 1924 ((meta_bucket_pages(sb) * PAGE_SECTORS) / sb->block_size) * 1925 sizeof(struct btree_iter_set); 1926 1927 c->devices = kcalloc(c->nr_uuids, sizeof(void *), GFP_KERNEL); 1928 if (!c->devices) 1929 goto err; 1930 1931 if (mempool_init_slab_pool(&c->search, 32, bch_search_cache)) 1932 goto err; 1933 1934 if (mempool_init_kmalloc_pool(&c->bio_meta, 2, 1935 sizeof(struct bbio) + 1936 sizeof(struct bio_vec) * meta_bucket_pages(sb))) 1937 goto err; 1938 1939 if (mempool_init_kmalloc_pool(&c->fill_iter, 1, iter_size)) 1940 goto err; 1941 1942 if (bioset_init(&c->bio_split, 4, offsetof(struct bbio, bio), 1943 BIOSET_NEED_RESCUER)) 1944 goto err; 1945 1946 c->uuids = alloc_meta_bucket_pages(GFP_KERNEL, sb); 1947 if (!c->uuids) 1948 goto err; 1949 1950 c->moving_gc_wq = alloc_workqueue("bcache_gc", 1951 WQ_MEM_RECLAIM | WQ_PERCPU, 0); 1952 if (!c->moving_gc_wq) 1953 goto err; 1954 1955 if (bch_journal_alloc(c)) 1956 goto err; 1957 1958 if (bch_btree_cache_alloc(c)) 1959 goto err; 1960 1961 if (bch_open_buckets_alloc(c)) 1962 goto err; 1963 1964 if (bch_bset_sort_state_init(&c->sort, ilog2(c->btree_pages))) 1965 goto err; 1966 1967 c->congested_read_threshold_us = 2000; 1968 c->congested_write_threshold_us = 20000; 1969 c->error_limit = DEFAULT_IO_ERROR_LIMIT; 1970 c->idle_max_writeback_rate_enabled = 1; 1971 WARN_ON(test_and_clear_bit(CACHE_SET_IO_DISABLE, &c->flags)); 1972 1973 return c; 1974err: 1975 bch_cache_set_unregister(c); 1976 return NULL; 1977} 1978 1979static int run_cache_set(struct cache_set *c) 1980{ 1981 const char *err = "cannot allocate memory"; 1982 struct cached_dev *dc, *t; 1983 struct cache *ca = c->cache; 1984 struct closure cl; 1985 LIST_HEAD(journal); 1986 struct journal_replay *l; 1987 1988 closure_init_stack(&cl); 1989 1990 c->nbuckets = ca->sb.nbuckets; 1991 set_gc_sectors(c); 1992 1993 if (CACHE_SYNC(&c->cache->sb)) { 1994 struct bkey *k; 1995 struct jset *j; 1996 1997 err = "cannot allocate memory for journal"; 1998 if (bch_journal_read(c, &journal)) 1999 goto err; 2000 2001 pr_debug("btree_journal_read() done\n"); 2002 2003 err = "no journal entries found"; 2004 if (list_empty(&journal)) 2005 goto err; 2006 2007 j = &list_entry(journal.prev, struct journal_replay, list)->j; 2008 2009 err = "IO error reading priorities"; 2010 if (prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev])) 2011 goto err; 2012 2013 /* 2014 * If prio_read() fails it'll call cache_set_error and we'll 2015 * tear everything down right away, but if we perhaps checked 2016 * sooner we could avoid journal replay. 2017 */ 2018 2019 k = &j->btree_root; 2020 2021 err = "bad btree root"; 2022 if (__bch_btree_ptr_invalid(c, k)) 2023 goto err; 2024 2025 err = "error reading btree root"; 2026 c->root = bch_btree_node_get(c, NULL, k, 2027 j->btree_level, 2028 true, NULL); 2029 if (IS_ERR(c->root)) 2030 goto err; 2031 2032 list_del_init(&c->root->list); 2033 rw_unlock(true, c->root); 2034 2035 err = uuid_read(c, j, &cl); 2036 if (err) 2037 goto err; 2038 2039 err = "error in recovery"; 2040 if (bch_btree_check(c)) 2041 goto err; 2042 2043 bch_journal_mark(c, &journal); 2044 bch_initial_gc_finish(c); 2045 pr_debug("btree_check() done\n"); 2046 2047 /* 2048 * bcache_journal_next() can't happen sooner, or 2049 * btree_gc_finish() will give spurious errors about last_gc > 2050 * gc_gen - this is a hack but oh well. 2051 */ 2052 bch_journal_next(&c->journal); 2053 2054 err = "error starting allocator thread"; 2055 if (bch_cache_allocator_start(ca)) 2056 goto err; 2057 2058 /* 2059 * First place it's safe to allocate: btree_check() and 2060 * btree_gc_finish() have to run before we have buckets to 2061 * allocate, and bch_bucket_alloc_set() might cause a journal 2062 * entry to be written so bcache_journal_next() has to be called 2063 * first. 2064 * 2065 * If the uuids were in the old format we have to rewrite them 2066 * before the next journal entry is written: 2067 */ 2068 if (j->version < BCACHE_JSET_VERSION_UUID) 2069 __uuid_write(c); 2070 2071 err = "bcache: replay journal failed"; 2072 if (bch_journal_replay(c, &journal)) 2073 goto err; 2074 } else { 2075 unsigned int j; 2076 2077 pr_notice("invalidating existing data\n"); 2078 ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7, 2079 2, SB_JOURNAL_BUCKETS); 2080 2081 for (j = 0; j < ca->sb.keys; j++) 2082 ca->sb.d[j] = ca->sb.first_bucket + j; 2083 2084 bch_initial_gc_finish(c); 2085 2086 err = "error starting allocator thread"; 2087 if (bch_cache_allocator_start(ca)) 2088 goto err; 2089 2090 mutex_lock(&c->bucket_lock); 2091 bch_prio_write(ca, true); 2092 mutex_unlock(&c->bucket_lock); 2093 2094 err = "cannot allocate new UUID bucket"; 2095 if (__uuid_write(c)) 2096 goto err; 2097 2098 err = "cannot allocate new btree root"; 2099 c->root = __bch_btree_node_alloc(c, NULL, 0, true, NULL); 2100 if (IS_ERR(c->root)) 2101 goto err; 2102 2103 mutex_lock(&c->root->write_lock); 2104 bkey_copy_key(&c->root->key, &MAX_KEY); 2105 bch_btree_node_write(c->root, &cl); 2106 mutex_unlock(&c->root->write_lock); 2107 2108 bch_btree_set_root(c->root); 2109 rw_unlock(true, c->root); 2110 2111 /* 2112 * We don't want to write the first journal entry until 2113 * everything is set up - fortunately journal entries won't be 2114 * written until the SET_CACHE_SYNC() here: 2115 */ 2116 SET_CACHE_SYNC(&c->cache->sb, true); 2117 2118 bch_journal_next(&c->journal); 2119 bch_journal_meta(c, &cl); 2120 } 2121 2122 err = "error starting gc thread"; 2123 if (bch_gc_thread_start(c)) 2124 goto err; 2125 2126 closure_sync(&cl); 2127 c->cache->sb.last_mount = (u32)ktime_get_real_seconds(); 2128 bcache_write_super(c); 2129 2130 if (bch_has_feature_obso_large_bucket(&c->cache->sb)) 2131 pr_err("Detect obsoleted large bucket layout, all attached bcache device will be read-only\n"); 2132 2133 list_for_each_entry_safe(dc, t, &uncached_devices, list) 2134 bch_cached_dev_attach(dc, c, NULL); 2135 2136 flash_devs_run(c); 2137 2138 bch_journal_space_reserve(&c->journal); 2139 set_bit(CACHE_SET_RUNNING, &c->flags); 2140 return 0; 2141err: 2142 while (!list_empty(&journal)) { 2143 l = list_first_entry(&journal, struct journal_replay, list); 2144 list_del(&l->list); 2145 kfree(l); 2146 } 2147 2148 closure_sync(&cl); 2149 2150 bch_cache_set_error(c, "%s", err); 2151 2152 return -EIO; 2153} 2154 2155static const char *register_cache_set(struct cache *ca) 2156{ 2157 char buf[12]; 2158 const char *err = "cannot allocate memory"; 2159 struct cache_set *c; 2160 2161 list_for_each_entry(c, &bch_cache_sets, list) 2162 if (!memcmp(c->set_uuid, ca->sb.set_uuid, 16)) { 2163 if (c->cache) 2164 return "duplicate cache set member"; 2165 2166 goto found; 2167 } 2168 2169 c = bch_cache_set_alloc(&ca->sb); 2170 if (!c) 2171 return err; 2172 2173 err = "error creating kobject"; 2174 if (kobject_add(&c->kobj, bcache_kobj, "%pU", c->set_uuid) || 2175 kobject_add(&c->internal, &c->kobj, "internal")) 2176 goto err; 2177 2178 if (bch_cache_accounting_add_kobjs(&c->accounting, &c->kobj)) 2179 goto err; 2180 2181 bch_debug_init_cache_set(c); 2182 2183 list_add(&c->list, &bch_cache_sets); 2184found: 2185 sprintf(buf, "cache%i", ca->sb.nr_this_dev); 2186 if (sysfs_create_link(&ca->kobj, &c->kobj, "set") || 2187 sysfs_create_link(&c->kobj, &ca->kobj, buf)) 2188 goto err; 2189 2190 kobject_get(&ca->kobj); 2191 ca->set = c; 2192 ca->set->cache = ca; 2193 2194 err = "failed to run cache set"; 2195 if (run_cache_set(c) < 0) 2196 goto err; 2197 2198 return NULL; 2199err: 2200 bch_cache_set_unregister(c); 2201 return err; 2202} 2203 2204/* Cache device */ 2205 2206/* When ca->kobj released */ 2207void bch_cache_release(struct kobject *kobj) 2208{ 2209 struct cache *ca = container_of(kobj, struct cache, kobj); 2210 unsigned int i; 2211 2212 if (ca->set) { 2213 BUG_ON(ca->set->cache != ca); 2214 ca->set->cache = NULL; 2215 } 2216 2217 free_pages((unsigned long) ca->disk_buckets, ilog2(meta_bucket_pages(&ca->sb))); 2218 kfree(ca->prio_buckets); 2219 vfree(ca->buckets); 2220 2221 free_heap(&ca->heap); 2222 free_fifo(&ca->free_inc); 2223 2224 for (i = 0; i < RESERVE_NR; i++) 2225 free_fifo(&ca->free[i]); 2226 2227 if (ca->sb_disk) 2228 folio_put(virt_to_folio(ca->sb_disk)); 2229 2230 if (ca->bdev_file) 2231 fput(ca->bdev_file); 2232 2233 kfree(ca); 2234 module_put(THIS_MODULE); 2235} 2236 2237static int cache_alloc(struct cache *ca) 2238{ 2239 size_t free; 2240 size_t btree_buckets; 2241 struct bucket *b; 2242 int ret = -ENOMEM; 2243 const char *err = NULL; 2244 2245 __module_get(THIS_MODULE); 2246 kobject_init(&ca->kobj, &bch_cache_ktype); 2247 2248 bio_init_inline(&ca->journal.bio, NULL, 8, 0); 2249 2250 /* 2251 * When the cache disk is first registered, ca->sb.njournal_buckets 2252 * is zero, and it is assigned in run_cache_set(). 2253 * 2254 * When ca->sb.njournal_buckets is not zero, journal exists, 2255 * and in bch_journal_replay(), tree node may split. 2256 * The worst situation is all journal buckets are valid journal, 2257 * and all the keys need to replay, so the number of RESERVE_BTREE 2258 * type buckets should be as much as journal buckets. 2259 * 2260 * If the number of RESERVE_BTREE type buckets is too few, the 2261 * bch_allocator_thread() may hang up and unable to allocate 2262 * bucket. The situation is roughly as follows: 2263 * 2264 * 1. In bch_data_insert_keys(), if the operation is not op->replace, 2265 * it will call the bch_journal(), which increments the journal_ref 2266 * counter. This counter is only decremented after bch_btree_insert 2267 * completes. 2268 * 2269 * 2. When calling bch_btree_insert, if the btree needs to split, 2270 * it will call btree_split() and btree_check_reserve() to check 2271 * whether there are enough reserved buckets in the RESERVE_BTREE 2272 * slot. If not enough, bcache_btree_root() will repeatedly retry. 2273 * 2274 * 3. Normally, the bch_allocator_thread is responsible for filling 2275 * the reservation slots from the free_inc bucket list. When the 2276 * free_inc bucket list is exhausted, the bch_allocator_thread 2277 * will call invalidate_buckets() until free_inc is refilled. 2278 * Then bch_allocator_thread calls bch_prio_write() once. and 2279 * bch_prio_write() will call bch_journal_meta() and waits for 2280 * the journal write to complete. 2281 * 2282 * 4. During journal_write, journal_write_unlocked() is be called. 2283 * If journal full occurs, journal_reclaim() and btree_flush_write() 2284 * will be called sequentially, then retry journal_write. 2285 * 2286 * 5. When 2 and 4 occur together, IO will hung up and cannot recover. 2287 * 2288 * Therefore, reserve more RESERVE_BTREE type buckets. 2289 */ 2290 btree_buckets = clamp_t(size_t, ca->sb.nbuckets >> 7, 2291 32, SB_JOURNAL_BUCKETS); 2292 free = roundup_pow_of_two(ca->sb.nbuckets) >> 10; 2293 if (!free) { 2294 ret = -EPERM; 2295 err = "ca->sb.nbuckets is too small"; 2296 goto err_free; 2297 } 2298 2299 if (!init_fifo(&ca->free[RESERVE_BTREE], btree_buckets, 2300 GFP_KERNEL)) { 2301 err = "ca->free[RESERVE_BTREE] alloc failed"; 2302 goto err_btree_alloc; 2303 } 2304 2305 if (!init_fifo_exact(&ca->free[RESERVE_PRIO], prio_buckets(ca), 2306 GFP_KERNEL)) { 2307 err = "ca->free[RESERVE_PRIO] alloc failed"; 2308 goto err_prio_alloc; 2309 } 2310 2311 if (!init_fifo(&ca->free[RESERVE_MOVINGGC], free, GFP_KERNEL)) { 2312 err = "ca->free[RESERVE_MOVINGGC] alloc failed"; 2313 goto err_movinggc_alloc; 2314 } 2315 2316 if (!init_fifo(&ca->free[RESERVE_NONE], free, GFP_KERNEL)) { 2317 err = "ca->free[RESERVE_NONE] alloc failed"; 2318 goto err_none_alloc; 2319 } 2320 2321 if (!init_fifo(&ca->free_inc, free << 2, GFP_KERNEL)) { 2322 err = "ca->free_inc alloc failed"; 2323 goto err_free_inc_alloc; 2324 } 2325 2326 if (!init_heap(&ca->heap, free << 3, GFP_KERNEL)) { 2327 err = "ca->heap alloc failed"; 2328 goto err_heap_alloc; 2329 } 2330 2331 ca->buckets = vzalloc(array_size(sizeof(struct bucket), 2332 ca->sb.nbuckets)); 2333 if (!ca->buckets) { 2334 err = "ca->buckets alloc failed"; 2335 goto err_buckets_alloc; 2336 } 2337 2338 ca->prio_buckets = kzalloc(array3_size(sizeof(uint64_t), 2339 prio_buckets(ca), 2), 2340 GFP_KERNEL); 2341 if (!ca->prio_buckets) { 2342 err = "ca->prio_buckets alloc failed"; 2343 goto err_prio_buckets_alloc; 2344 } 2345 2346 ca->disk_buckets = alloc_meta_bucket_pages(GFP_KERNEL, &ca->sb); 2347 if (!ca->disk_buckets) { 2348 err = "ca->disk_buckets alloc failed"; 2349 goto err_disk_buckets_alloc; 2350 } 2351 2352 ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca); 2353 2354 for_each_bucket(b, ca) 2355 atomic_set(&b->pin, 0); 2356 return 0; 2357 2358err_disk_buckets_alloc: 2359 kfree(ca->prio_buckets); 2360err_prio_buckets_alloc: 2361 vfree(ca->buckets); 2362err_buckets_alloc: 2363 free_heap(&ca->heap); 2364err_heap_alloc: 2365 free_fifo(&ca->free_inc); 2366err_free_inc_alloc: 2367 free_fifo(&ca->free[RESERVE_NONE]); 2368err_none_alloc: 2369 free_fifo(&ca->free[RESERVE_MOVINGGC]); 2370err_movinggc_alloc: 2371 free_fifo(&ca->free[RESERVE_PRIO]); 2372err_prio_alloc: 2373 free_fifo(&ca->free[RESERVE_BTREE]); 2374err_btree_alloc: 2375err_free: 2376 module_put(THIS_MODULE); 2377 if (err) 2378 pr_notice("error %pg: %s\n", ca->bdev, err); 2379 return ret; 2380} 2381 2382static int register_cache(struct cache_sb *sb, struct cache_sb_disk *sb_disk, 2383 struct file *bdev_file, 2384 struct cache *ca) 2385{ 2386 const char *err = NULL; /* must be set for any error case */ 2387 int ret = 0; 2388 2389 memcpy(&ca->sb, sb, sizeof(struct cache_sb)); 2390 ca->bdev_file = bdev_file; 2391 ca->bdev = file_bdev(bdev_file); 2392 ca->sb_disk = sb_disk; 2393 2394 ret = cache_alloc(ca); 2395 if (ret != 0) { 2396 if (ret == -ENOMEM) 2397 err = "cache_alloc(): -ENOMEM"; 2398 else if (ret == -EPERM) 2399 err = "cache_alloc(): cache device is too small"; 2400 else 2401 err = "cache_alloc(): unknown error"; 2402 pr_notice("error %pg: %s\n", file_bdev(bdev_file), err); 2403 /* 2404 * If we failed here, it means ca->kobj is not initialized yet, 2405 * kobject_put() won't be called and there is no chance to 2406 * call fput() to bdev in bch_cache_release(). So 2407 * we explicitly call fput() on the block device here. 2408 */ 2409 fput(bdev_file); 2410 return ret; 2411 } 2412 2413 if (kobject_add(&ca->kobj, bdev_kobj(file_bdev(bdev_file)), "bcache")) { 2414 pr_notice("error %pg: error calling kobject_add\n", 2415 file_bdev(bdev_file)); 2416 ret = -ENOMEM; 2417 goto out; 2418 } 2419 2420 mutex_lock(&bch_register_lock); 2421 err = register_cache_set(ca); 2422 mutex_unlock(&bch_register_lock); 2423 2424 if (err) { 2425 ret = -ENODEV; 2426 goto out; 2427 } 2428 2429 pr_info("registered cache device %pg\n", file_bdev(ca->bdev_file)); 2430 2431out: 2432 kobject_put(&ca->kobj); 2433 return ret; 2434} 2435 2436/* Global interfaces/init */ 2437 2438static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr, 2439 const char *buffer, size_t size); 2440static ssize_t bch_pending_bdevs_cleanup(struct kobject *k, 2441 struct kobj_attribute *attr, 2442 const char *buffer, size_t size); 2443 2444kobj_attribute_write(register, register_bcache); 2445kobj_attribute_write(register_quiet, register_bcache); 2446kobj_attribute_write(pendings_cleanup, bch_pending_bdevs_cleanup); 2447 2448static bool bch_is_open_backing(dev_t dev) 2449{ 2450 struct cache_set *c, *tc; 2451 struct cached_dev *dc, *t; 2452 2453 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) 2454 list_for_each_entry_safe(dc, t, &c->cached_devs, list) 2455 if (dc->bdev->bd_dev == dev) 2456 return true; 2457 list_for_each_entry_safe(dc, t, &uncached_devices, list) 2458 if (dc->bdev->bd_dev == dev) 2459 return true; 2460 return false; 2461} 2462 2463static bool bch_is_open_cache(dev_t dev) 2464{ 2465 struct cache_set *c, *tc; 2466 2467 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) { 2468 struct cache *ca = c->cache; 2469 2470 if (ca->bdev->bd_dev == dev) 2471 return true; 2472 } 2473 2474 return false; 2475} 2476 2477static bool bch_is_open(dev_t dev) 2478{ 2479 return bch_is_open_cache(dev) || bch_is_open_backing(dev); 2480} 2481 2482struct async_reg_args { 2483 struct delayed_work reg_work; 2484 char *path; 2485 struct cache_sb *sb; 2486 struct cache_sb_disk *sb_disk; 2487 struct file *bdev_file; 2488 void *holder; 2489}; 2490 2491static void register_bdev_worker(struct work_struct *work) 2492{ 2493 int fail = false; 2494 struct async_reg_args *args = 2495 container_of(work, struct async_reg_args, reg_work.work); 2496 2497 mutex_lock(&bch_register_lock); 2498 if (register_bdev(args->sb, args->sb_disk, args->bdev_file, 2499 args->holder) < 0) 2500 fail = true; 2501 mutex_unlock(&bch_register_lock); 2502 2503 if (fail) 2504 pr_info("error %s: fail to register backing device\n", 2505 args->path); 2506 kfree(args->sb); 2507 kfree(args->path); 2508 kfree(args); 2509 module_put(THIS_MODULE); 2510} 2511 2512static void register_cache_worker(struct work_struct *work) 2513{ 2514 int fail = false; 2515 struct async_reg_args *args = 2516 container_of(work, struct async_reg_args, reg_work.work); 2517 2518 /* blkdev_put() will be called in bch_cache_release() */ 2519 if (register_cache(args->sb, args->sb_disk, args->bdev_file, 2520 args->holder)) 2521 fail = true; 2522 2523 if (fail) 2524 pr_info("error %s: fail to register cache device\n", 2525 args->path); 2526 kfree(args->sb); 2527 kfree(args->path); 2528 kfree(args); 2529 module_put(THIS_MODULE); 2530} 2531 2532static void register_device_async(struct async_reg_args *args) 2533{ 2534 if (SB_IS_BDEV(args->sb)) 2535 INIT_DELAYED_WORK(&args->reg_work, register_bdev_worker); 2536 else 2537 INIT_DELAYED_WORK(&args->reg_work, register_cache_worker); 2538 2539 /* 10 jiffies is enough for a delay */ 2540 queue_delayed_work(system_percpu_wq, &args->reg_work, 10); 2541} 2542 2543static void *alloc_holder_object(struct cache_sb *sb) 2544{ 2545 if (SB_IS_BDEV(sb)) 2546 return kzalloc(sizeof(struct cached_dev), GFP_KERNEL); 2547 return kzalloc(sizeof(struct cache), GFP_KERNEL); 2548} 2549 2550static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr, 2551 const char *buffer, size_t size) 2552{ 2553 const char *err; 2554 char *path = NULL; 2555 struct cache_sb *sb; 2556 struct cache_sb_disk *sb_disk; 2557 struct file *bdev_file, *bdev_file2; 2558 void *holder = NULL; 2559 ssize_t ret; 2560 bool async_registration = false; 2561 bool quiet = false; 2562 2563#ifdef CONFIG_BCACHE_ASYNC_REGISTRATION 2564 async_registration = true; 2565#endif 2566 2567 ret = -EBUSY; 2568 err = "failed to reference bcache module"; 2569 if (!try_module_get(THIS_MODULE)) 2570 goto out; 2571 2572 /* For latest state of bcache_is_reboot */ 2573 smp_mb(); 2574 err = "bcache is in reboot"; 2575 if (bcache_is_reboot) 2576 goto out_module_put; 2577 2578 ret = -ENOMEM; 2579 err = "cannot allocate memory"; 2580 path = kstrndup(buffer, size, GFP_KERNEL); 2581 if (!path) 2582 goto out_module_put; 2583 2584 sb = kmalloc(sizeof(struct cache_sb), GFP_KERNEL); 2585 if (!sb) 2586 goto out_free_path; 2587 2588 ret = -EINVAL; 2589 err = "failed to open device"; 2590 bdev_file = bdev_file_open_by_path(strim(path), BLK_OPEN_READ, NULL, NULL); 2591 if (IS_ERR(bdev_file)) 2592 goto out_free_sb; 2593 2594 err = read_super(sb, file_bdev(bdev_file), &sb_disk); 2595 if (err) 2596 goto out_blkdev_put; 2597 2598 holder = alloc_holder_object(sb); 2599 if (!holder) { 2600 ret = -ENOMEM; 2601 err = "cannot allocate memory"; 2602 goto out_put_sb_folio; 2603 } 2604 2605 /* Now reopen in exclusive mode with proper holder */ 2606 bdev_file2 = bdev_file_open_by_dev(file_bdev(bdev_file)->bd_dev, 2607 BLK_OPEN_READ | BLK_OPEN_WRITE, holder, NULL); 2608 fput(bdev_file); 2609 bdev_file = bdev_file2; 2610 if (IS_ERR(bdev_file)) { 2611 ret = PTR_ERR(bdev_file); 2612 bdev_file = NULL; 2613 if (ret == -EBUSY) { 2614 dev_t dev; 2615 2616 mutex_lock(&bch_register_lock); 2617 if (lookup_bdev(strim(path), &dev) == 0 && 2618 bch_is_open(dev)) 2619 err = "device already registered"; 2620 else 2621 err = "device busy"; 2622 mutex_unlock(&bch_register_lock); 2623 if (attr == &ksysfs_register_quiet) { 2624 quiet = true; 2625 ret = size; 2626 } 2627 } 2628 goto out_free_holder; 2629 } 2630 2631 err = "failed to register device"; 2632 2633 if (async_registration) { 2634 /* register in asynchronous way */ 2635 struct async_reg_args *args = 2636 kzalloc(sizeof(struct async_reg_args), GFP_KERNEL); 2637 2638 if (!args) { 2639 ret = -ENOMEM; 2640 err = "cannot allocate memory"; 2641 goto out_free_holder; 2642 } 2643 2644 args->path = path; 2645 args->sb = sb; 2646 args->sb_disk = sb_disk; 2647 args->bdev_file = bdev_file; 2648 args->holder = holder; 2649 register_device_async(args); 2650 /* No wait and returns to user space */ 2651 goto async_done; 2652 } 2653 2654 if (SB_IS_BDEV(sb)) { 2655 mutex_lock(&bch_register_lock); 2656 ret = register_bdev(sb, sb_disk, bdev_file, holder); 2657 mutex_unlock(&bch_register_lock); 2658 /* blkdev_put() will be called in cached_dev_free() */ 2659 if (ret < 0) 2660 goto out_free_sb; 2661 } else { 2662 /* blkdev_put() will be called in bch_cache_release() */ 2663 ret = register_cache(sb, sb_disk, bdev_file, holder); 2664 if (ret) 2665 goto out_free_sb; 2666 } 2667 2668 kfree(sb); 2669 kfree(path); 2670 module_put(THIS_MODULE); 2671async_done: 2672 return size; 2673 2674out_free_holder: 2675 kfree(holder); 2676out_put_sb_folio: 2677 folio_put(virt_to_folio(sb_disk)); 2678out_blkdev_put: 2679 if (bdev_file) 2680 fput(bdev_file); 2681out_free_sb: 2682 kfree(sb); 2683out_free_path: 2684 kfree(path); 2685 path = NULL; 2686out_module_put: 2687 module_put(THIS_MODULE); 2688out: 2689 if (!quiet) 2690 pr_info("error %s: %s\n", path?path:"", err); 2691 return ret; 2692} 2693 2694 2695struct pdev { 2696 struct list_head list; 2697 struct cached_dev *dc; 2698}; 2699 2700static ssize_t bch_pending_bdevs_cleanup(struct kobject *k, 2701 struct kobj_attribute *attr, 2702 const char *buffer, 2703 size_t size) 2704{ 2705 LIST_HEAD(pending_devs); 2706 ssize_t ret = size; 2707 struct cached_dev *dc, *tdc; 2708 struct pdev *pdev, *tpdev; 2709 struct cache_set *c, *tc; 2710 2711 mutex_lock(&bch_register_lock); 2712 list_for_each_entry_safe(dc, tdc, &uncached_devices, list) { 2713 pdev = kmalloc(sizeof(struct pdev), GFP_KERNEL); 2714 if (!pdev) 2715 break; 2716 pdev->dc = dc; 2717 list_add(&pdev->list, &pending_devs); 2718 } 2719 2720 list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) { 2721 char *pdev_set_uuid = pdev->dc->sb.set_uuid; 2722 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) { 2723 char *set_uuid = c->set_uuid; 2724 2725 if (!memcmp(pdev_set_uuid, set_uuid, 16)) { 2726 list_del(&pdev->list); 2727 kfree(pdev); 2728 break; 2729 } 2730 } 2731 } 2732 mutex_unlock(&bch_register_lock); 2733 2734 list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) { 2735 pr_info("delete pdev %p\n", pdev); 2736 list_del(&pdev->list); 2737 bcache_device_stop(&pdev->dc->disk); 2738 kfree(pdev); 2739 } 2740 2741 return ret; 2742} 2743 2744static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x) 2745{ 2746 if (bcache_is_reboot) 2747 return NOTIFY_DONE; 2748 2749 if (code == SYS_DOWN || 2750 code == SYS_HALT || 2751 code == SYS_POWER_OFF) { 2752 DEFINE_WAIT(wait); 2753 unsigned long start = jiffies; 2754 bool stopped = false; 2755 2756 struct cache_set *c, *tc; 2757 struct cached_dev *dc, *tdc; 2758 2759 mutex_lock(&bch_register_lock); 2760 2761 if (bcache_is_reboot) 2762 goto out; 2763 2764 /* New registration is rejected since now */ 2765 bcache_is_reboot = true; 2766 /* 2767 * Make registering caller (if there is) on other CPU 2768 * core know bcache_is_reboot set to true earlier 2769 */ 2770 smp_mb(); 2771 2772 if (list_empty(&bch_cache_sets) && 2773 list_empty(&uncached_devices)) 2774 goto out; 2775 2776 mutex_unlock(&bch_register_lock); 2777 2778 pr_info("Stopping all devices:\n"); 2779 2780 /* 2781 * The reason bch_register_lock is not held to call 2782 * bch_cache_set_stop() and bcache_device_stop() is to 2783 * avoid potential deadlock during reboot, because cache 2784 * set or bcache device stopping process will acquire 2785 * bch_register_lock too. 2786 * 2787 * We are safe here because bcache_is_reboot sets to 2788 * true already, register_bcache() will reject new 2789 * registration now. bcache_is_reboot also makes sure 2790 * bcache_reboot() won't be re-entered on by other thread, 2791 * so there is no race in following list iteration by 2792 * list_for_each_entry_safe(). 2793 */ 2794 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) 2795 bch_cache_set_stop(c); 2796 2797 list_for_each_entry_safe(dc, tdc, &uncached_devices, list) 2798 bcache_device_stop(&dc->disk); 2799 2800 2801 /* 2802 * Give an early chance for other kthreads and 2803 * kworkers to stop themselves 2804 */ 2805 schedule(); 2806 2807 /* What's a condition variable? */ 2808 while (1) { 2809 long timeout = start + 10 * HZ - jiffies; 2810 2811 mutex_lock(&bch_register_lock); 2812 stopped = list_empty(&bch_cache_sets) && 2813 list_empty(&uncached_devices); 2814 2815 if (timeout < 0 || stopped) 2816 break; 2817 2818 prepare_to_wait(&unregister_wait, &wait, 2819 TASK_UNINTERRUPTIBLE); 2820 2821 mutex_unlock(&bch_register_lock); 2822 schedule_timeout(timeout); 2823 } 2824 2825 finish_wait(&unregister_wait, &wait); 2826 2827 if (stopped) 2828 pr_info("All devices stopped\n"); 2829 else 2830 pr_notice("Timeout waiting for devices to be closed\n"); 2831out: 2832 mutex_unlock(&bch_register_lock); 2833 } 2834 2835 return NOTIFY_DONE; 2836} 2837 2838static struct notifier_block reboot = { 2839 .notifier_call = bcache_reboot, 2840 .priority = INT_MAX, /* before any real devices */ 2841}; 2842 2843static void bcache_exit(void) 2844{ 2845 bch_debug_exit(); 2846 bch_request_exit(); 2847 if (bcache_kobj) 2848 kobject_put(bcache_kobj); 2849 if (bcache_wq) 2850 destroy_workqueue(bcache_wq); 2851 if (bch_journal_wq) 2852 destroy_workqueue(bch_journal_wq); 2853 if (bch_flush_wq) 2854 destroy_workqueue(bch_flush_wq); 2855 bch_btree_exit(); 2856 2857 if (bcache_major) 2858 unregister_blkdev(bcache_major, "bcache"); 2859 unregister_reboot_notifier(&reboot); 2860 mutex_destroy(&bch_register_lock); 2861} 2862 2863/* Check and fixup module parameters */ 2864static void check_module_parameters(void) 2865{ 2866 if (bch_cutoff_writeback_sync == 0) 2867 bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC; 2868 else if (bch_cutoff_writeback_sync > CUTOFF_WRITEBACK_SYNC_MAX) { 2869 pr_warn("set bch_cutoff_writeback_sync (%u) to max value %u\n", 2870 bch_cutoff_writeback_sync, CUTOFF_WRITEBACK_SYNC_MAX); 2871 bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC_MAX; 2872 } 2873 2874 if (bch_cutoff_writeback == 0) 2875 bch_cutoff_writeback = CUTOFF_WRITEBACK; 2876 else if (bch_cutoff_writeback > CUTOFF_WRITEBACK_MAX) { 2877 pr_warn("set bch_cutoff_writeback (%u) to max value %u\n", 2878 bch_cutoff_writeback, CUTOFF_WRITEBACK_MAX); 2879 bch_cutoff_writeback = CUTOFF_WRITEBACK_MAX; 2880 } 2881 2882 if (bch_cutoff_writeback > bch_cutoff_writeback_sync) { 2883 pr_warn("set bch_cutoff_writeback (%u) to %u\n", 2884 bch_cutoff_writeback, bch_cutoff_writeback_sync); 2885 bch_cutoff_writeback = bch_cutoff_writeback_sync; 2886 } 2887} 2888 2889static int __init bcache_init(void) 2890{ 2891 static const struct attribute *files[] = { 2892 &ksysfs_register.attr, 2893 &ksysfs_register_quiet.attr, 2894 &ksysfs_pendings_cleanup.attr, 2895 NULL 2896 }; 2897 2898 check_module_parameters(); 2899 2900 mutex_init(&bch_register_lock); 2901 init_waitqueue_head(&unregister_wait); 2902 register_reboot_notifier(&reboot); 2903 2904 bcache_major = register_blkdev(0, "bcache"); 2905 if (bcache_major < 0) { 2906 unregister_reboot_notifier(&reboot); 2907 mutex_destroy(&bch_register_lock); 2908 return bcache_major; 2909 } 2910 2911 if (bch_btree_init()) 2912 goto err; 2913 2914 bcache_wq = alloc_workqueue("bcache", WQ_MEM_RECLAIM | WQ_PERCPU, 0); 2915 if (!bcache_wq) 2916 goto err; 2917 2918 /* 2919 * Let's not make this `WQ_MEM_RECLAIM` for the following reasons: 2920 * 2921 * 1. It used `system_percpu_wq` before which also does no memory reclaim. 2922 * 2. With `WQ_MEM_RECLAIM` desktop stalls, increased boot times, and 2923 * reduced throughput can be observed. 2924 * 2925 * We still want to user our own queue to not congest the `system_percpu_wq`. 2926 */ 2927 bch_flush_wq = alloc_workqueue("bch_flush", WQ_PERCPU, 0); 2928 if (!bch_flush_wq) 2929 goto err; 2930 2931 bch_journal_wq = alloc_workqueue("bch_journal", 2932 WQ_MEM_RECLAIM | WQ_PERCPU, 0); 2933 if (!bch_journal_wq) 2934 goto err; 2935 2936 bcache_kobj = kobject_create_and_add("bcache", fs_kobj); 2937 if (!bcache_kobj) 2938 goto err; 2939 2940 if (bch_request_init() || 2941 sysfs_create_files(bcache_kobj, files)) 2942 goto err; 2943 2944 bch_debug_init(); 2945 2946 bcache_is_reboot = false; 2947 2948 return 0; 2949err: 2950 bcache_exit(); 2951 return -ENOMEM; 2952} 2953 2954/* 2955 * Module hooks 2956 */ 2957module_exit(bcache_exit); 2958module_init(bcache_init); 2959 2960module_param(bch_cutoff_writeback, uint, 0); 2961MODULE_PARM_DESC(bch_cutoff_writeback, "threshold to cutoff writeback"); 2962 2963module_param(bch_cutoff_writeback_sync, uint, 0); 2964MODULE_PARM_DESC(bch_cutoff_writeback_sync, "hard threshold to cutoff writeback"); 2965 2966MODULE_DESCRIPTION("Bcache: a Linux block layer cache"); 2967MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>"); 2968MODULE_LICENSE("GPL");