Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * bcache journalling code, for btree insertions
4 *
5 * Copyright 2012 Google, Inc.
6 */
7
8#include "bcache.h"
9#include "btree.h"
10#include "debug.h"
11#include "extents.h"
12
13#include <trace/events/bcache.h>
14
15/*
16 * Journal replay/recovery:
17 *
18 * This code is all driven from run_cache_set(); we first read the journal
19 * entries, do some other stuff, then we mark all the keys in the journal
20 * entries (same as garbage collection would), then we replay them - reinserting
21 * them into the cache in precisely the same order as they appear in the
22 * journal.
23 *
24 * We only journal keys that go in leaf nodes, which simplifies things quite a
25 * bit.
26 */
27
28static void journal_read_endio(struct bio *bio)
29{
30 struct closure *cl = bio->bi_private;
31
32 closure_put(cl);
33}
34
35static int journal_read_bucket(struct cache *ca, struct list_head *list,
36 unsigned int bucket_index)
37{
38 struct journal_device *ja = &ca->journal;
39 struct bio *bio = &ja->bio;
40
41 struct journal_replay *i;
42 struct jset *j, *data = ca->set->journal.w[0].data;
43 struct closure cl;
44 unsigned int len, left, offset = 0;
45 int ret = 0;
46 sector_t bucket = bucket_to_sector(ca->set, ca->sb.d[bucket_index]);
47
48 closure_init_stack(&cl);
49
50 pr_debug("reading %u\n", bucket_index);
51
52 while (offset < ca->sb.bucket_size) {
53reread: left = ca->sb.bucket_size - offset;
54 len = min_t(unsigned int, left, PAGE_SECTORS << JSET_BITS);
55
56 bio_reset(bio, ca->bdev, REQ_OP_READ);
57 bio->bi_iter.bi_sector = bucket + offset;
58 bio->bi_iter.bi_size = len << 9;
59
60 bio->bi_end_io = journal_read_endio;
61 bio->bi_private = &cl;
62 bch_bio_map(bio, data);
63
64 closure_bio_submit(ca->set, bio, &cl);
65 closure_sync(&cl);
66
67 /* This function could be simpler now since we no longer write
68 * journal entries that overlap bucket boundaries; this means
69 * the start of a bucket will always have a valid journal entry
70 * if it has any journal entries at all.
71 */
72
73 j = data;
74 while (len) {
75 struct list_head *where;
76 size_t blocks, bytes = set_bytes(j);
77
78 if (j->magic != jset_magic(&ca->sb)) {
79 pr_debug("%u: bad magic\n", bucket_index);
80 return ret;
81 }
82
83 if (bytes > left << 9 ||
84 bytes > PAGE_SIZE << JSET_BITS) {
85 pr_info("%u: too big, %zu bytes, offset %u\n",
86 bucket_index, bytes, offset);
87 return ret;
88 }
89
90 if (bytes > len << 9)
91 goto reread;
92
93 if (j->csum != csum_set(j)) {
94 pr_info("%u: bad csum, %zu bytes, offset %u\n",
95 bucket_index, bytes, offset);
96 return ret;
97 }
98
99 blocks = set_blocks(j, block_bytes(ca));
100
101 /*
102 * Nodes in 'list' are in linear increasing order of
103 * i->j.seq, the node on head has the smallest (oldest)
104 * journal seq, the node on tail has the biggest
105 * (latest) journal seq.
106 */
107
108 /*
109 * Check from the oldest jset for last_seq. If
110 * i->j.seq < j->last_seq, it means the oldest jset
111 * in list is expired and useless, remove it from
112 * this list. Otherwise, j is a candidate jset for
113 * further following checks.
114 */
115 while (!list_empty(list)) {
116 i = list_first_entry(list,
117 struct journal_replay, list);
118 if (i->j.seq >= j->last_seq)
119 break;
120 list_del(&i->list);
121 kfree(i);
122 }
123
124 /* iterate list in reverse order (from latest jset) */
125 list_for_each_entry_reverse(i, list, list) {
126 if (j->seq == i->j.seq)
127 goto next_set;
128
129 /*
130 * if j->seq is less than any i->j.last_seq
131 * in list, j is an expired and useless jset.
132 */
133 if (j->seq < i->j.last_seq)
134 goto next_set;
135
136 /*
137 * 'where' points to first jset in list which
138 * is elder then j.
139 */
140 if (j->seq > i->j.seq) {
141 where = &i->list;
142 goto add;
143 }
144 }
145
146 where = list;
147add:
148 i = kmalloc(offsetof(struct journal_replay, j) +
149 bytes, GFP_KERNEL);
150 if (!i)
151 return -ENOMEM;
152 unsafe_memcpy(&i->j, j, bytes,
153 /* "bytes" was calculated by set_bytes() above */);
154 /* Add to the location after 'where' points to */
155 list_add(&i->list, where);
156 ret = 1;
157
158 if (j->seq > ja->seq[bucket_index])
159 ja->seq[bucket_index] = j->seq;
160next_set:
161 offset += blocks * ca->sb.block_size;
162 len -= blocks * ca->sb.block_size;
163 j = ((void *) j) + blocks * block_bytes(ca);
164 }
165 }
166
167 return ret;
168}
169
170int bch_journal_read(struct cache_set *c, struct list_head *list)
171{
172#define read_bucket(b) \
173 ({ \
174 ret = journal_read_bucket(ca, list, b); \
175 __set_bit(b, bitmap); \
176 if (ret < 0) \
177 return ret; \
178 ret; \
179 })
180
181 struct cache *ca = c->cache;
182 int ret = 0;
183 struct journal_device *ja = &ca->journal;
184 DECLARE_BITMAP(bitmap, SB_JOURNAL_BUCKETS);
185 unsigned int i, l, r, m;
186 uint64_t seq;
187
188 bitmap_zero(bitmap, SB_JOURNAL_BUCKETS);
189 pr_debug("%u journal buckets\n", ca->sb.njournal_buckets);
190
191 /*
192 * Read journal buckets ordered by golden ratio hash to quickly
193 * find a sequence of buckets with valid journal entries
194 */
195 for (i = 0; i < ca->sb.njournal_buckets; i++) {
196 /*
197 * We must try the index l with ZERO first for
198 * correctness due to the scenario that the journal
199 * bucket is circular buffer which might have wrapped
200 */
201 l = (i * 2654435769U) % ca->sb.njournal_buckets;
202
203 if (test_bit(l, bitmap))
204 break;
205
206 if (read_bucket(l))
207 goto bsearch;
208 }
209
210 /*
211 * If that fails, check all the buckets we haven't checked
212 * already
213 */
214 pr_debug("falling back to linear search\n");
215
216 for_each_clear_bit(l, bitmap, ca->sb.njournal_buckets)
217 if (read_bucket(l))
218 goto bsearch;
219
220 /* no journal entries on this device? */
221 if (l == ca->sb.njournal_buckets)
222 goto out;
223bsearch:
224 BUG_ON(list_empty(list));
225
226 /* Binary search */
227 m = l;
228 r = find_next_bit(bitmap, ca->sb.njournal_buckets, l + 1);
229 pr_debug("starting binary search, l %u r %u\n", l, r);
230
231 while (l + 1 < r) {
232 seq = list_entry(list->prev, struct journal_replay,
233 list)->j.seq;
234
235 m = (l + r) >> 1;
236 read_bucket(m);
237
238 if (seq != list_entry(list->prev, struct journal_replay,
239 list)->j.seq)
240 l = m;
241 else
242 r = m;
243 }
244
245 /*
246 * Read buckets in reverse order until we stop finding more
247 * journal entries
248 */
249 pr_debug("finishing up: m %u njournal_buckets %u\n",
250 m, ca->sb.njournal_buckets);
251 l = m;
252
253 while (1) {
254 if (!l--)
255 l = ca->sb.njournal_buckets - 1;
256
257 if (l == m)
258 break;
259
260 if (test_bit(l, bitmap))
261 continue;
262
263 if (!read_bucket(l))
264 break;
265 }
266
267 seq = 0;
268
269 for (i = 0; i < ca->sb.njournal_buckets; i++)
270 if (ja->seq[i] > seq) {
271 seq = ja->seq[i];
272 /*
273 * When journal_reclaim() goes to allocate for
274 * the first time, it'll use the bucket after
275 * ja->cur_idx
276 */
277 ja->cur_idx = i;
278 ja->last_idx = (i + 1) % ca->sb.njournal_buckets;
279
280 }
281
282out:
283 if (!list_empty(list))
284 c->journal.seq = list_entry(list->prev,
285 struct journal_replay,
286 list)->j.seq;
287
288 return 0;
289#undef read_bucket
290}
291
292void bch_journal_mark(struct cache_set *c, struct list_head *list)
293{
294 atomic_t p = { 0 };
295 struct bkey *k;
296 struct journal_replay *i;
297 struct journal *j = &c->journal;
298 uint64_t last = j->seq;
299
300 /*
301 * journal.pin should never fill up - we never write a journal
302 * entry when it would fill up. But if for some reason it does, we
303 * iterate over the list in reverse order so that we can just skip that
304 * refcount instead of bugging.
305 */
306
307 list_for_each_entry_reverse(i, list, list) {
308 BUG_ON(last < i->j.seq);
309 i->pin = NULL;
310
311 while (last-- != i->j.seq)
312 if (fifo_free(&j->pin) > 1) {
313 fifo_push_front(&j->pin, p);
314 atomic_set(&fifo_front(&j->pin), 0);
315 }
316
317 if (fifo_free(&j->pin) > 1) {
318 fifo_push_front(&j->pin, p);
319 i->pin = &fifo_front(&j->pin);
320 atomic_set(i->pin, 1);
321 }
322
323 for (k = i->j.start;
324 k < bset_bkey_last(&i->j);
325 k = bkey_next(k))
326 if (!__bch_extent_invalid(c, k)) {
327 unsigned int j;
328
329 for (j = 0; j < KEY_PTRS(k); j++)
330 if (ptr_available(c, k, j))
331 atomic_inc(&PTR_BUCKET(c, k, j)->pin);
332
333 bch_initial_mark_key(c, 0, k);
334 }
335 }
336}
337
338int bch_journal_replay(struct cache_set *s, struct list_head *list)
339{
340 int ret = 0, keys = 0, entries = 0;
341 struct bkey *k;
342 struct journal_replay *i =
343 list_entry(list->prev, struct journal_replay, list);
344
345 uint64_t start = i->j.last_seq, end = i->j.seq, n = start;
346 struct keylist keylist;
347
348 list_for_each_entry(i, list, list) {
349 BUG_ON(i->pin && atomic_read(i->pin) != 1);
350
351 if (n != i->j.seq) {
352 pr_err("journal entries %llu-%llu missing! (replaying %llu-%llu)\n",
353 n, i->j.seq - 1, start, end);
354 ret = -EIO;
355 goto err;
356 }
357
358 for (k = i->j.start;
359 k < bset_bkey_last(&i->j);
360 k = bkey_next(k)) {
361 trace_bcache_journal_replay_key(k);
362
363 bch_keylist_init_single(&keylist, k);
364
365 ret = bch_btree_insert(s, &keylist, i->pin, NULL);
366 if (ret)
367 goto err;
368
369 BUG_ON(!bch_keylist_empty(&keylist));
370 keys++;
371
372 cond_resched();
373 }
374
375 if (i->pin)
376 atomic_dec(i->pin);
377 n = i->j.seq + 1;
378 entries++;
379 }
380
381 pr_info("journal replay done, %i keys in %i entries, seq %llu\n",
382 keys, entries, end);
383err:
384 while (!list_empty(list)) {
385 i = list_first_entry(list, struct journal_replay, list);
386 list_del(&i->list);
387 kfree(i);
388 }
389
390 return ret;
391}
392
393void bch_journal_space_reserve(struct journal *j)
394{
395 j->do_reserve = true;
396}
397
398/* Journalling */
399
400static void btree_flush_write(struct cache_set *c)
401{
402 struct btree *b, *t, *btree_nodes[BTREE_FLUSH_NR];
403 unsigned int i, nr;
404 int ref_nr;
405 atomic_t *fifo_front_p, *now_fifo_front_p;
406 size_t mask;
407
408 if (c->journal.btree_flushing)
409 return;
410
411 spin_lock(&c->journal.flush_write_lock);
412 if (c->journal.btree_flushing) {
413 spin_unlock(&c->journal.flush_write_lock);
414 return;
415 }
416 c->journal.btree_flushing = true;
417 spin_unlock(&c->journal.flush_write_lock);
418
419 /* get the oldest journal entry and check its refcount */
420 spin_lock(&c->journal.lock);
421 fifo_front_p = &fifo_front(&c->journal.pin);
422 ref_nr = atomic_read(fifo_front_p);
423 if (ref_nr <= 0) {
424 /*
425 * do nothing if no btree node references
426 * the oldest journal entry
427 */
428 spin_unlock(&c->journal.lock);
429 goto out;
430 }
431 spin_unlock(&c->journal.lock);
432
433 mask = c->journal.pin.mask;
434 nr = 0;
435 atomic_long_inc(&c->flush_write);
436 memset(btree_nodes, 0, sizeof(btree_nodes));
437
438 mutex_lock(&c->bucket_lock);
439 list_for_each_entry_safe_reverse(b, t, &c->btree_cache, list) {
440 /*
441 * It is safe to get now_fifo_front_p without holding
442 * c->journal.lock here, because we don't need to know
443 * the exactly accurate value, just check whether the
444 * front pointer of c->journal.pin is changed.
445 */
446 now_fifo_front_p = &fifo_front(&c->journal.pin);
447 /*
448 * If the oldest journal entry is reclaimed and front
449 * pointer of c->journal.pin changes, it is unnecessary
450 * to scan c->btree_cache anymore, just quit the loop and
451 * flush out what we have already.
452 */
453 if (now_fifo_front_p != fifo_front_p)
454 break;
455 /*
456 * quit this loop if all matching btree nodes are
457 * scanned and record in btree_nodes[] already.
458 */
459 ref_nr = atomic_read(fifo_front_p);
460 if (nr >= ref_nr)
461 break;
462
463 if (btree_node_journal_flush(b))
464 pr_err("BUG: flush_write bit should not be set here!\n");
465
466 mutex_lock(&b->write_lock);
467
468 if (!btree_node_dirty(b)) {
469 mutex_unlock(&b->write_lock);
470 continue;
471 }
472
473 if (!btree_current_write(b)->journal) {
474 mutex_unlock(&b->write_lock);
475 continue;
476 }
477
478 /*
479 * Only select the btree node which exactly references
480 * the oldest journal entry.
481 *
482 * If the journal entry pointed by fifo_front_p is
483 * reclaimed in parallel, don't worry:
484 * - the list_for_each_xxx loop will quit when checking
485 * next now_fifo_front_p.
486 * - If there are matched nodes recorded in btree_nodes[],
487 * they are clean now (this is why and how the oldest
488 * journal entry can be reclaimed). These selected nodes
489 * will be ignored and skipped in the following for-loop.
490 */
491 if (((btree_current_write(b)->journal - fifo_front_p) &
492 mask) != 0) {
493 mutex_unlock(&b->write_lock);
494 continue;
495 }
496
497 set_btree_node_journal_flush(b);
498
499 mutex_unlock(&b->write_lock);
500
501 btree_nodes[nr++] = b;
502 /*
503 * To avoid holding c->bucket_lock too long time,
504 * only scan for BTREE_FLUSH_NR matched btree nodes
505 * at most. If there are more btree nodes reference
506 * the oldest journal entry, try to flush them next
507 * time when btree_flush_write() is called.
508 */
509 if (nr == BTREE_FLUSH_NR)
510 break;
511 }
512 mutex_unlock(&c->bucket_lock);
513
514 for (i = 0; i < nr; i++) {
515 b = btree_nodes[i];
516 if (!b) {
517 pr_err("BUG: btree_nodes[%d] is NULL\n", i);
518 continue;
519 }
520
521 /* safe to check without holding b->write_lock */
522 if (!btree_node_journal_flush(b)) {
523 pr_err("BUG: bnode %p: journal_flush bit cleaned\n", b);
524 continue;
525 }
526
527 mutex_lock(&b->write_lock);
528 if (!btree_current_write(b)->journal) {
529 clear_bit(BTREE_NODE_journal_flush, &b->flags);
530 mutex_unlock(&b->write_lock);
531 pr_debug("bnode %p: written by others\n", b);
532 continue;
533 }
534
535 if (!btree_node_dirty(b)) {
536 clear_bit(BTREE_NODE_journal_flush, &b->flags);
537 mutex_unlock(&b->write_lock);
538 pr_debug("bnode %p: dirty bit cleaned by others\n", b);
539 continue;
540 }
541
542 __bch_btree_node_write(b, NULL);
543 clear_bit(BTREE_NODE_journal_flush, &b->flags);
544 mutex_unlock(&b->write_lock);
545 }
546
547out:
548 spin_lock(&c->journal.flush_write_lock);
549 c->journal.btree_flushing = false;
550 spin_unlock(&c->journal.flush_write_lock);
551}
552
553#define last_seq(j) ((j)->seq - fifo_used(&(j)->pin) + 1)
554
555static unsigned int free_journal_buckets(struct cache_set *c)
556{
557 struct journal *j = &c->journal;
558 struct cache *ca = c->cache;
559 struct journal_device *ja = &c->cache->journal;
560 unsigned int n;
561
562 /* In case njournal_buckets is not power of 2 */
563 if (ja->cur_idx >= ja->last_idx)
564 n = ca->sb.njournal_buckets + ja->last_idx - ja->cur_idx;
565 else
566 n = ja->last_idx - ja->cur_idx;
567
568 if (n > (1 + j->do_reserve))
569 return n - (1 + j->do_reserve);
570
571 return 0;
572}
573
574static void journal_reclaim(struct cache_set *c)
575{
576 struct bkey *k = &c->journal.key;
577 struct cache *ca = c->cache;
578 uint64_t last_seq;
579 struct journal_device *ja = &ca->journal;
580 atomic_t p __maybe_unused;
581
582 atomic_long_inc(&c->reclaim);
583
584 while (!atomic_read(&fifo_front(&c->journal.pin)))
585 fifo_pop(&c->journal.pin, p);
586
587 last_seq = last_seq(&c->journal);
588
589 /* Update last_idx */
590
591 while (ja->last_idx != ja->cur_idx &&
592 ja->seq[ja->last_idx] < last_seq)
593 ja->last_idx = (ja->last_idx + 1) %
594 ca->sb.njournal_buckets;
595
596 if (c->journal.blocks_free)
597 goto out;
598
599 if (!free_journal_buckets(c))
600 goto out;
601
602 ja->cur_idx = (ja->cur_idx + 1) % ca->sb.njournal_buckets;
603 k->ptr[0] = MAKE_PTR(0,
604 bucket_to_sector(c, ca->sb.d[ja->cur_idx]),
605 ca->sb.nr_this_dev);
606 atomic_long_inc(&c->reclaimed_journal_buckets);
607
608 bkey_init(k);
609 SET_KEY_PTRS(k, 1);
610 c->journal.blocks_free = ca->sb.bucket_size >> c->block_bits;
611
612out:
613 if (!journal_full(&c->journal))
614 __closure_wake_up(&c->journal.wait);
615}
616
617void bch_journal_next(struct journal *j)
618{
619 atomic_t p = { 1 };
620
621 j->cur = (j->cur == j->w)
622 ? &j->w[1]
623 : &j->w[0];
624
625 /*
626 * The fifo_push() needs to happen at the same time as j->seq is
627 * incremented for last_seq() to be calculated correctly
628 */
629 BUG_ON(!fifo_push(&j->pin, p));
630 atomic_set(&fifo_back(&j->pin), 1);
631
632 j->cur->data->seq = ++j->seq;
633 j->cur->dirty = false;
634 j->cur->need_write = false;
635 j->cur->data->keys = 0;
636
637 if (fifo_full(&j->pin))
638 pr_debug("journal_pin full (%zu)\n", fifo_used(&j->pin));
639}
640
641static void journal_write_endio(struct bio *bio)
642{
643 struct journal_write *w = bio->bi_private;
644
645 cache_set_err_on(bio->bi_status, w->c, "journal io error");
646 closure_put(&w->c->journal.io);
647}
648
649static CLOSURE_CALLBACK(journal_write);
650
651static CLOSURE_CALLBACK(journal_write_done)
652{
653 closure_type(j, struct journal, io);
654 struct journal_write *w = (j->cur == j->w)
655 ? &j->w[1]
656 : &j->w[0];
657
658 __closure_wake_up(&w->wait);
659 continue_at_nobarrier(cl, journal_write, bch_journal_wq);
660}
661
662static CLOSURE_CALLBACK(journal_write_unlock)
663 __releases(&c->journal.lock)
664{
665 closure_type(c, struct cache_set, journal.io);
666
667 c->journal.io_in_flight = 0;
668 spin_unlock(&c->journal.lock);
669}
670
671static CLOSURE_CALLBACK(journal_write_unlocked)
672 __releases(c->journal.lock)
673{
674 closure_type(c, struct cache_set, journal.io);
675 struct cache *ca = c->cache;
676 struct journal_write *w = c->journal.cur;
677 struct bkey *k = &c->journal.key;
678 unsigned int i, sectors = set_blocks(w->data, block_bytes(ca)) *
679 ca->sb.block_size;
680
681 struct bio *bio;
682 struct bio_list list;
683
684 bio_list_init(&list);
685
686 if (!w->need_write) {
687 closure_return_with_destructor(cl, journal_write_unlock);
688 return;
689 } else if (journal_full(&c->journal)) {
690 journal_reclaim(c);
691 spin_unlock(&c->journal.lock);
692
693 btree_flush_write(c);
694 continue_at(cl, journal_write, bch_journal_wq);
695 return;
696 }
697
698 c->journal.blocks_free -= set_blocks(w->data, block_bytes(ca));
699
700 w->data->btree_level = c->root->level;
701
702 bkey_copy(&w->data->btree_root, &c->root->key);
703 bkey_copy(&w->data->uuid_bucket, &c->uuid_bucket);
704
705 w->data->prio_bucket[ca->sb.nr_this_dev] = ca->prio_buckets[0];
706 w->data->magic = jset_magic(&ca->sb);
707 w->data->version = BCACHE_JSET_VERSION;
708 w->data->last_seq = last_seq(&c->journal);
709 w->data->csum = csum_set(w->data);
710
711 for (i = 0; i < KEY_PTRS(k); i++) {
712 ca = c->cache;
713 bio = &ca->journal.bio;
714
715 atomic_long_add(sectors, &ca->meta_sectors_written);
716
717 bio_reset(bio, ca->bdev, REQ_OP_WRITE |
718 REQ_SYNC | REQ_META | REQ_PREFLUSH | REQ_FUA);
719 bio->bi_iter.bi_sector = PTR_OFFSET(k, i);
720 bio->bi_iter.bi_size = sectors << 9;
721
722 bio->bi_end_io = journal_write_endio;
723 bio->bi_private = w;
724 bch_bio_map(bio, w->data);
725
726 trace_bcache_journal_write(bio, w->data->keys);
727 bio_list_add(&list, bio);
728
729 SET_PTR_OFFSET(k, i, PTR_OFFSET(k, i) + sectors);
730
731 ca->journal.seq[ca->journal.cur_idx] = w->data->seq;
732 }
733
734 /* If KEY_PTRS(k) == 0, this jset gets lost in air */
735 BUG_ON(i == 0);
736
737 atomic_dec_bug(&fifo_back(&c->journal.pin));
738 bch_journal_next(&c->journal);
739 journal_reclaim(c);
740
741 spin_unlock(&c->journal.lock);
742
743 while ((bio = bio_list_pop(&list)))
744 closure_bio_submit(c, bio, cl);
745
746 continue_at(cl, journal_write_done, NULL);
747}
748
749static CLOSURE_CALLBACK(journal_write)
750{
751 closure_type(c, struct cache_set, journal.io);
752
753 spin_lock(&c->journal.lock);
754 journal_write_unlocked(&cl->work);
755}
756
757static void journal_try_write(struct cache_set *c)
758 __releases(c->journal.lock)
759{
760 struct closure *cl = &c->journal.io;
761 struct journal_write *w = c->journal.cur;
762
763 w->need_write = true;
764
765 if (!c->journal.io_in_flight) {
766 c->journal.io_in_flight = 1;
767 closure_call(cl, journal_write_unlocked, NULL, &c->cl);
768 } else {
769 spin_unlock(&c->journal.lock);
770 }
771}
772
773static struct journal_write *journal_wait_for_write(struct cache_set *c,
774 unsigned int nkeys)
775 __acquires(&c->journal.lock)
776{
777 size_t sectors;
778 struct closure cl;
779 bool wait = false;
780 struct cache *ca = c->cache;
781
782 closure_init_stack(&cl);
783
784 spin_lock(&c->journal.lock);
785
786 while (1) {
787 struct journal_write *w = c->journal.cur;
788
789 sectors = __set_blocks(w->data, w->data->keys + nkeys,
790 block_bytes(ca)) * ca->sb.block_size;
791
792 if (sectors <= min_t(size_t,
793 c->journal.blocks_free * ca->sb.block_size,
794 PAGE_SECTORS << JSET_BITS))
795 return w;
796
797 if (wait)
798 closure_wait(&c->journal.wait, &cl);
799
800 if (!journal_full(&c->journal)) {
801 if (wait)
802 trace_bcache_journal_entry_full(c);
803
804 /*
805 * XXX: If we were inserting so many keys that they
806 * won't fit in an _empty_ journal write, we'll
807 * deadlock. For now, handle this in
808 * bch_keylist_realloc() - but something to think about.
809 */
810 BUG_ON(!w->data->keys);
811
812 journal_try_write(c); /* unlocks */
813 } else {
814 if (wait)
815 trace_bcache_journal_full(c);
816
817 journal_reclaim(c);
818 spin_unlock(&c->journal.lock);
819
820 btree_flush_write(c);
821 }
822
823 closure_sync(&cl);
824 spin_lock(&c->journal.lock);
825 wait = true;
826 }
827}
828
829static void journal_write_work(struct work_struct *work)
830{
831 struct cache_set *c = container_of(to_delayed_work(work),
832 struct cache_set,
833 journal.work);
834 spin_lock(&c->journal.lock);
835 if (c->journal.cur->dirty)
836 journal_try_write(c);
837 else
838 spin_unlock(&c->journal.lock);
839}
840
841/*
842 * Entry point to the journalling code - bio_insert() and btree_invalidate()
843 * pass bch_journal() a list of keys to be journalled, and then
844 * bch_journal() hands those same keys off to btree_insert_async()
845 */
846
847atomic_t *bch_journal(struct cache_set *c,
848 struct keylist *keys,
849 struct closure *parent)
850{
851 struct journal_write *w;
852 atomic_t *ret;
853
854 /* No journaling if CACHE_SET_IO_DISABLE set already */
855 if (unlikely(test_bit(CACHE_SET_IO_DISABLE, &c->flags)))
856 return NULL;
857
858 if (!CACHE_SYNC(&c->cache->sb))
859 return NULL;
860
861 w = journal_wait_for_write(c, bch_keylist_nkeys(keys));
862
863 memcpy(bset_bkey_last(w->data), keys->keys, bch_keylist_bytes(keys));
864 w->data->keys += bch_keylist_nkeys(keys);
865
866 ret = &fifo_back(&c->journal.pin);
867 atomic_inc(ret);
868
869 if (parent) {
870 closure_wait(&w->wait, parent);
871 journal_try_write(c);
872 } else if (!w->dirty) {
873 w->dirty = true;
874 queue_delayed_work(bch_flush_wq, &c->journal.work,
875 msecs_to_jiffies(c->journal_delay_ms));
876 spin_unlock(&c->journal.lock);
877 } else {
878 spin_unlock(&c->journal.lock);
879 }
880
881
882 return ret;
883}
884
885void bch_journal_meta(struct cache_set *c, struct closure *cl)
886{
887 struct keylist keys;
888 atomic_t *ref;
889
890 bch_keylist_init(&keys);
891
892 ref = bch_journal(c, &keys, cl);
893 if (ref)
894 atomic_dec_bug(ref);
895}
896
897void bch_journal_free(struct cache_set *c)
898{
899 free_pages((unsigned long) c->journal.w[1].data, JSET_BITS);
900 free_pages((unsigned long) c->journal.w[0].data, JSET_BITS);
901 free_fifo(&c->journal.pin);
902}
903
904int bch_journal_alloc(struct cache_set *c)
905{
906 struct journal *j = &c->journal;
907
908 spin_lock_init(&j->lock);
909 spin_lock_init(&j->flush_write_lock);
910 INIT_DELAYED_WORK(&j->work, journal_write_work);
911
912 c->journal_delay_ms = 100;
913
914 j->w[0].c = c;
915 j->w[1].c = c;
916
917 if (!(init_fifo(&j->pin, JOURNAL_PIN, GFP_KERNEL)) ||
918 !(j->w[0].data = (void *) __get_free_pages(GFP_KERNEL|__GFP_COMP, JSET_BITS)) ||
919 !(j->w[1].data = (void *) __get_free_pages(GFP_KERNEL|__GFP_COMP, JSET_BITS)))
920 return -ENOMEM;
921
922 return 0;
923}